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Abstract: In this paper, a model-free data fusion method for combining redundant sensor data is presented. The objective
is to maintain a reliable tool center point pose measurement of a long-reach robotic manipulator using a visual sensor
system with multiple cameras. The fusion method is based on weighted averaging. The weight parameter for each variable
is computed using the sliding window variance with N latest observations. After each sliding window, the window length
N is updated, and simple transition smoothing is included. For experimental validation, two sets of pose trajectory data
from redundant visual sensors were obtained: 1) using a camera located near the tip of a long-reach manipulator running
a simultaneous localization and mapping (SLAM) algorithm and 2) marker-based tracking with cameras located near
the base of the manipulator. For pose tracking, a fiducial marker was attached near the SLAM camera. The proposed
methodology was examined using a real-time measurement setup and offline data analysis using the recorded data. The
results demonstrate that the proposed system can increase the overall robustness and fault tolerance of the system, which
are desired features for future autonomous field robotic machines.
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1. INTRODUCTION

The heavy machinery industry is taking major leaps
toward electrification and autonomous systems. These
heavy-duty mobile machines require new intelligent al-
gorithms and sophisticated sensors [1] in order to work
independently in harsh environments, such as mines. A
variety of long-reach robotic manipulators are found in
such machines to perform various tasks related to min-
ing and heavy lifting, for example [2]. One of the key
challenges is replacing human vision and decision mak-
ing with sensors and computerized algorithms in order
to perform work tasks autonomously. For this purpose,
measurement information about the manipulator’s tool
center point (TCP) is typically required. The TCP pose
(3 degrees-of-freedom (DOF) position and 3 DOF ori-
entation) can be obtained using forward kinematics with
joint encoders. For a small-scale, ideal industrial robot,
an accurate forward kinematic model can be obtained.
However, this is not the case for long-reach manipula-
tors, as they have significant structural flexibilities that
are not considered by traditional rigid-body kinematics.
Consequently, visual servoing methods have been well
established for small-scale industrial robots. In contrast,
for long-reach manipulators working in unstructured en-
vironments, there are challenges with visual sensing re-
lated to camera calibration, view distance, field of view,
and occlusions, for example [3].

In an attempt to replace human vision in applications
striving toward autonomy, a wide variety of visual sen-
sors have been investigated, including radar technology
and optical methods, such as laser scanners and camera
systems [4]. Data provided by different proprioceptive
and exteroceptive sensors can be combined to obtain a
more accurate or robust picture of an observed system.

This process of combining sensor information is called
multi-sensor fusion, or simply sensor fusion. Based on
how sensor information is utilized, fusion methods are
usually classified as competitive, complementary, or co-
operative systems [5]. For sensor fusion, the Kalman
filter and its nonlinear variants are popular methods [6-
7]. Neural networks and fuzzy set theory have also been
investigated [8-9]. The most mature branch of sensor
fusion is perhaps related to self-driving vehicles, which
have been avidly examined [10-11] and with, for ex-
ample, Tesla Autopilot available for consumer vehicles.
These systems are built on deep learning algorithms, re-
quiring massive amounts of training data, which, scale-
wise, are not feasible for the low-volume heavy machin-
ery industry.

One of the previous studies on multi-sensor integration
[5] argued that the key to intelligent fusion of disparate
sensory information is to provide an effective model of
sensor capabilities. However, in some cases, finding a
sufficient sensor model may not be possible. Research on
such model-free sensor data fusion methods is very lim-
ited and restricted to simple, albeit potentially effective,
methods. For example, in [12], fusion was carried out us-
ing confidence weighted averaging. However, determin-
ing the confidence functions for weight computations in
dynamic, online scenarios has not been well established.

In this paper, we focus on combining continuous mea-
surements of the same variables from different sensors in
an attempt to increase the system’s robustness and relia-
bility. The fusion method is a statistical approach based
on confidence weighted averaging [12], with our contri-
butions including determining the weight parameters in
a dynamic manner using sliding window variance (sam-
ple variance) instead of a specified confidence function.
The sliding window length is updated after each individ-



ual window, and a simple approach for transition smooth-
ing is also presented. The proposed methodology was
investigated using a real-time setup comprising a long-
reach hydraulic manipulator. The objective was to esti-
mate the end effector’s pose with visual sensors [13]. The
first pose estimate was obtained using a camera running
a simultaneous localization and mapping (SLAM) algo-
rithm, with the camera attached near the tip of the ma-
nipulator. The second pose estimate was obtained using
marker-based tracking, with a fiducial marker attached
near the SLAM camera. Before sensor fusion was per-
formed, the pose variables were extrinsically calibrated
to a concurrent coordinate system according to [14].

The underlying motivation with this configuration is
that the SLAM algorithm has a narrow but accurate view,
whereas the marker-tracking cameras are placed on top
of a machine and provide a wider view but a less accu-
rate pose measurement. A conceptual example is shown
in Fig. 1. For this application, a marker provides a fixed
and repeatable target. Consequently, the visual sensors
are able to complement each other, but also provide the
necessary redundancy, as both sensing methods are sus-
ceptible to faulty situations. These include, for example,
marker occlusions and insufficient feature extraction for
SLAM.
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Fig. 1. The overall conceptual design: The TCP is
observed using a visual sensor system comprising
marker tracking and SLAM modules. The Sandvik
DT912D single boom tunneling jumbo is shown as
an example.

The remainder of the paper is organized as follows:
The data fusion methodology is described in Section 2,
the experimental setup is detailed in Section 3, the re-
sults are discussed in Section 4, and finally Section 5 con-
cludes the paper.

2. METHODOLOGY

2.1 Data fusion using sliding window variance
A fused sensor signal can be formulated by taking the

weighted average of all the sensor signals that estimate
the same variable:

xF =

n∑
i=1

wixi, (1)

where xF is the fused signal, wi denotes the weight pa-
rameters, xi denotes the redundant sensor data, and n is
the number of sensors. The fused variance can be written

as

σ2
F =

n∑
i=1

wiσ
2
i , (2)

where σ2
F is the fused variance, and σ2

i denotes the input
signal variance.

To obtain the optimal fused measurement, the weight
parameters should be chosen so that the fused variance is
minimized, which can be achieved by solving the follow-
ing minimization problem:

argmin
wi

n∑
i=1

w2
i σ

2
i , (3)

with the sum of all weights wi equal to 1. Solving the
minimization problem results in the following equation
to compute the weights:

wi =
1

σ2
i

n∑
j=1

1

σ2
j

. (4)

Substituting Eq. (4) into Eq. (2) shows that for n ≥ 2, the
fused variance is always smaller than the input variances.

The variance for a given measurement signal is com-
puted over a sliding window of length N data points:

σ2
i =

1

N − 1

N∑
j=1

|xj − µi|2, (5)

where µi denotes the mean of xj over the sliding window
of N observations and is computed as

µi =
1

N

N∑
i=j

xj . (6)

Then, the sliding window variances are used to compute
the weight parameters using Eq. (4) for data fusion.

The rationale is that computing the weights based
on sliding window variances of redundant measurements
will emphasize better-quality signals, as it is expected
that a signal with less variance is more accurate. This de-
rives from the assumption that the measurements are re-
liable, and grossly faulty measurements are detected and
discarded before the data fusion procedure.

2.2 Updating the sliding window length
The length of the sliding window, denoted by N , is

updated at the end of each window, which is conducted
as follows:

N = kN max|µx1
− µxj

|, (7)

where µx1
and µxj

, j ∈ {2, ..., n} denote vectors of
the mean values of each sensor measurement, computed
over the entire current sliding window. The largest abso-
lute mean difference is used to compute the next window
length, and the coefficient kN is used to tune the win-
dow length to a desired scale. Note that N is rounded to
an integer value. The sliding window length should be
constrained between the minimum Nmin and maximum
Nmax values to avoid computational issues.



2.3 Transition smoothing
Raw sensor data can contain occasional outliers, or

some sensors may cease to operate, which requires
smoothly and safely transitioning the fused sensor signal
to exclude the unavailable sensor measurement. For this
purpose, we use a simple transition smoothing method.
The fused sensor signal x̂F is computed using the fol-
lowing condition:

x̂F,new =

{
xF if |x̂F,previous − x̂F,current| < ϵ

xFcorr
otherwise

.

(8)
The error coefficient ϵ determines the limit after which
the transition smoothing is applied. If the absolute differ-
ence between the previous and current fused values is less
than the designated error coefficient, the next fused value
is computed normally using Eq. (1). If the condition is
not met, the next fused value is predicted in a naı̈ve man-
ner by using linear interpolation. A polynomial function
p(x) of k degree is written as:

p(x) = p1x
k + p2x

k−1 + ...+ pkx+ pk+1. (9)

Considering a first-order polynomial, the linear system
can be presented as follows:[

t1 1
t2 1

] [
p1
p2

]
=

[
x̂F,previous

x̂F,current

]
, (10)

where {t1, t2} are time stamps dictating the rate of the de-
sired transition smoothing, and {p1, p2} are polynomial
coefficients to be solved. Then, the new corrected fused
value for the next time step is obtained using Eq. (9):

xFcorr
= p1 ∗ (t1 + Ts) + p2, (11)

where Ts is the sampling period.

3. EXPERIMENTAL SETUP

For validating the proposed model-free sensor fusion
pipeline, two sets of 6-DOF pose trajectories were ob-
tained from two redundant visual sensing methods. The
experimental system is illustrated in Fig. 2, and it
comprised a hydraulic manipulator, a stereo camera for
SLAM, and a motion capture system for marker tracking.

The real-time system controlling the hydraulic ma-
nipulator was a Beckhoff CX2030 industrial PC. During
the experiments, the manipulator was moved arbitrarily
around its workspace. All the measurement data were
collected by the Beckhoff PC to ensure time synchroniza-
tion.

3.1 SLAM module
A ZED2 stereo camera was attached near the tip of

the hydraulic manipulator. The camera was connected
to a dedicated Linux PC running ROS (the robot operat-
ing system), and 720p images were published using the
manufacturer-provided ROS node.

OptiTrack base frame

OptiTrack marker

ZED2 stereo camera

Test wall for SLAM feature extraction

OptiTrack cameras

Fig. 2. The experimental setup: The hydraulic manipula-
tor was moved arbitrarily around its workspace, and
two sets of 6-DOF pose trajectory data were obtained
using 1) the ZED2 stereo camera for SLAM and 2)
the OptiTrack motion capture system for tracking the
marker pose with respect to the OptiTrack L-frame.

For SLAM, we used the open-source ORB-SLAM2
Stereo1 algorithm [15]. The algorithm ran on the dedi-
cated Linux PC in real time using the images published
by the ZED2 ROS node, and the 6-DOF pose trajectory
data were transmitted to the Beckhoff industrial PC via
UDP (user datagram protocol).

3.2 Marker tracking module
The marker-tracking module comprised three Opti-

Track Prime 17W wide angle coverage cameras, a pas-
sive marker, and a base frame. The cameras were placed
on high pillars around the base of the manipulator. The
base frame (or OptiTrack L-frame) was placed in view
of the cameras, and the marker was attached near the tip
of the manipulator. The system then tracked the 6-DOF
marker pose with reference to the L-frame.

A dedicated laptop with OptiTrack’s Motive software
was used to set up the marker-tracking module. A MAT-
LAB plugin was configured to transmit the 6-DOF pose
trajectory data to the Beckhoff industrial PC.

3.3 Signal calibration
Sensor fusion requires variables that represent the

same information. A requirement before fusion is that
the measured variables are transformed from each sen-
sor’s local coordinate system to a common one [16]. For
pose estimates, this implies that the poses must be ex-
pressed with respect to a concurrent coordinate system.
This extrinsic calibration is defined as a rigid transforma-
tion, comprising a rotation matrix and a translation vec-
tor, from one coordinate system to another.

Obtaining this rigid relationship can be a challenging
task especially with field robotic systems due to the un-
structured and unknown environments. In this work, we
used a probabilistic point set matching-based methodol-
ogy [14] to find the transformation between the two visual
sensor coordinate systems. Specifically, the SLAM poses

1https://github.com/raulmur/ORB SLAM2



were calibrated to the OptiTrack’s base frame.

3.4 Real-time implementation
After the extrinsic calibration, the two pose measure-

ments were expressed in the same coordinate system and
fused according to the methodology detailed in Section
2. The error limit for transition smoothing in Eq. (8) was
computed using the maximum absolute errors resulting
from the extrinsic calibration as follows: ϵ = kϵϵcalib,
where kϵ is a multiplication factor used to tune the tran-
sition smoothing. The relevant parameters applied in the
experiments are shown in Table 1 and they were manually
optimized for the investigated application.

Table 1. Applied parameters.

Nmin Nmax kN kϵ t1 t2 Ts

200 4000 30 ∗ 104 1.0 0 s 0.5 s 1 ms

The data fusion algorithm was initialized using the set
maximum window size, which took 4 s with the applied
parameters. Normal operation was commenced only after
the initialization. The sliding window was implemented
so that the overall window size was constant (the set max-
imum size), with the unused elements set to zero. The
variance and mean value Eqs. (5)–(6) related to each
measured variable were computed over the nonzero ele-
ments, with the length of the nonzero variables depending
on the current window size N .

In the case of noisy data, we suggest using a geomet-
ric moving average filter [17] before data fusion for im-
proved signal quality. The filter is formulated as follows:

Xi = (1− α)Xi−1 + αxi, i > 0, (12)

where Xi is the conditioned output signal at time i, xi is
the unconditioned input signal at time i, and 0 < α ≤ 1
is the filter gain, for which a low value is advised. The
results presented in this paper, however, were unfiltered.

4. RESULTS AND DISCUSSION

The data fusion algorithm was tested online on the
real-time system, and data were recorded for further of-
fline data analysis. The results presented here were ob-
tained in MATLAB’s Simulink environment using the
recorded data. Three cases were studied: Case 1: normal
operation, Case 2: updating the sliding window length,
and Case 3: transition smoothing.

For Case 1, Figs. 3–6 illustrate the poses, weight pa-
rameters, variances, and sliding window lengths obtained
from the same measurement. In general, the red lines
denote SLAM signals, the green lines denote marker-
tracking signals, and the black lines denote fused sig-
nals. Fig. 3 shows the poses for which the positional
components of both measurements perform similarly.
Regarding the orientation measurements, the marker-
tracking signals were noisy, whereas SLAM provided

better-quality signals. Thus, the fused signals empha-
sized the orientations provided by the SLAM module.
The difference between the position and orientation mea-
surements is also demonstrated in the weight parameters
in Fig. 4: The position signals had similar qualities, re-
sulting in uniform weight parameter distributions. The
SLAM orientation measurements had better qualities in
the sense that the sliding window variances were smaller,
resulting in larger weight parameters for the SLAM ori-
entations. Note that the weight parameters were set to
zeros during the initialization, but during normal opera-
tion the total sum of the weights is equal to 1. The re-
spective signal variances are shown in Fig. 5. As dis-
cussed, the fused variances are always smaller than the
input variances as a result from Eq. (3). Finally, Fig. 6
illustrates the sliding window lengths for each variable.
As shown, the fusion algorithm was initialized with the
set maximum window length Nmax = 4000, after which
the lengths were updated after each sliding window ac-
cording to Eq. (7).

Fig. 3. Case 1: All six pose variables are shown. The
red lines are the SLAM signals, the green lines are
the marker-tracking signals, and the black lines are
the fused signals.

For Case 2, the goal was to demonstrate the impact of
the sliding window length on the fusion output. Figs. 7–9
show the fused poses for three instances: constant (min-
imum) sliding window length, constant (maximum) slid-
ing window length, and variable sliding window length
(same as in Case 1). For clearer visualization, at 30 s, the
SLAM position signals were artificially increased by 0.15
m, and the SLAM orientation signals were increased by
5◦. The left figures show the pose signals, and the right
figures show the respective sliding window lengths. On
the left, the red lines are the SLAM signals, the green
lines are the marker-tracking signals, and the black lines
are the fused signals. Fig. 7 shows the results when the
set minimum sliding window length of Nmin = 200 is



Fig. 4. Case 1: The weight parameters for each fused
signal at the given time stamps. The red lines repre-
sent the SLAM weight parameters, whereas the green
lines represent the marker-tracking weight parame-
ters.

Fig. 5. Case 1: Computed variances over the sliding win-
dow for each signal. The red lines are the SLAM sig-
nal variances, the green lines are the marker-tracking
signal variances, and the black lines are the fused
variances.

used. Applying a small window length for signals with
approximately equal variances results in poor fused sig-
nal quality, when the difference between the input sig-
nals increases. This is shown in the position signals. For
orientation signals with clearly different variances (due
to the noise level), the fused output strictly emphasizes

Fig. 6. Case 1: The sliding window lengths for each
signal at the given time stamps.

the better-quality SLAM orientation signal. However, the
small window length still induces some of the noise in
the fused output. Fig. 8 shows the same results, while
the set maximum window length of Nmax = 4000 is
used. In this case, the resulting fused signals are more
restrained. Finally, Fig. 9 shows the results for the vari-
able sliding window lengths. As illustrated, the window
lengths first float between the set minimum and maxi-
mum values. However, after the SLAM signals are artifi-
cially increased, the window lengths jump to the set max-
imum values. The difference compared with the previ-
ous case of using the set maximum window length is that
with variable lengths the computations can be performed
over a smaller number of elements. Moreover, as demon-
strated in Figs. 7–9 before the 30 s marks, the fused sig-
nals are slightly better with smaller window lengths due
to the small difference between the input measurements.
Thus, the absolute mean difference between the signals,
computed over the current sliding window, was chosen as
the basis for updating the window length in Eq. (7).

For Case 3, the aim was to assess the fusion algo-
rithm’s performance when a measured signal is lost, and
transition smoothing is required. Smoothing is applied to
avoid sudden, undesired changes with large amplitudes in
the fused output signal. The results are illustrated in Fig.
10, in which, at 30 s, the SLAM position signals were
again artificially increased by 0.15 m, and the SLAM ori-
entation signals were increased by 5◦, respectively. Then,
the SLAM measurement was switched off, after which
the fusion algorithm switched to utilize only the marker
tracking-based measurement. Then, the SLAM measure-
ment was switched back on, and the fusion algorithm
resumed to utilize both pose measurements. For com-
parison, the same procedure was repeated by switching
the marker tracking off and on. The red lines are the



Fig. 7. Case 2: A constant sliding window length of 200
was used: At 30 s, the SLAM position signals were
artificially increased by 0.15 m, and the SLAM orien-
tation signals were increased by 5◦. The left figures
show the signals, and the right figures show the re-
spective sliding window lengths. On the left, the red
lines are the SLAM signals, the green lines are the
marker-tracking signals, and the black lines are the
fused signals.

Fig. 8. Case 2: A constant sliding window length of 4000
was used: At 30 s, the SLAM position signals were
artificially increased by 0.15 m, and the SLAM orien-
tation signals were increased by 5◦. The left figures
show the signals, and the right figures show the re-
spective sliding window lengths. On the left, the red
lines are the SLAM signals, the green lines are the
marker-tracking signals, and the black lines are the
fused signals.

SLAM signals, the green lines are the marker-tracking
signals, the black lines are the fused signals with transi-
tion smoothing, and the magenta lines are the fused sig-
nals without transition smoothing. The switching time
t2 − t1 in Eq. (10) was 0.5 s, which dictated the de-
sired convergence time toward the available pose mea-
surement, and the “jump” occurs when the error coeffi-
cient ϵ in Eq. (8) is reached. As shown, the transitions

Fig. 9. Case 2: Variable sliding window lengths were
used: At 30 s, the SLAM position signals were ar-
tificially increased by 0.15 m, and the SLAM orien-
tation signals were increased by 5◦. The left figures
show the signals, and the right figures show the re-
spective sliding window lengths. On the left, the red
lines are the SLAM signals, the green lines are the
marker-tracking signals, and the black lines are the
fused signals.

are appropriately smoothed, and the effectiveness can be
tuned by adjusting the parameters.

Fig. 10. Case 3: At 30 s, the SLAM position signals
were artificially increased by 0.15 m, and the SLAM
orientation signals were increased by 5◦. The transi-
tioning of the fused signal is demonstrated when the
other measurement signal is lost. The red lines are
the SLAM signals, the green lines are the marker-
tracking signals, the black lines are the fused sig-
nals with transition smoothing, and the magenta lines
show the fused signals without transition smoothing.

The error coefficients have to be carefully set, as val-
ues that are too low will have a deteriorating effect on
the fusion output; the transition smoothing should enable
only when sudden, undesired changes occur in the input
measurements. However, values that are too large will



render the smoothing ineffective.

5. CONCLUSION

In this paper, we examined the problem of directly fus-
ing continuous sensor data in a real-time setting. The pre-
sented model-free pipeline is a statistical approach based
on weighted averaging, in which the weight parameters
are constantly updated using the sliding window vari-
ances of the respective signals to be fused. A method
for updating the window length was shown, along with a
simple transition smoothing design.

Results based on real-time experiments were pre-
sented: 6-DOF pose trajectory data from two indepen-
dent, redundant visual sensors were fused in an optimal
manner in the sense that the variances of the fused signals
were minimized with respect to the input variances, com-
puted over the current sliding windows. The experimen-
tal results demonstrated that the proposed methodology
can increase the system’s robustness and fault tolerance,
which are the desired features for future autonomous field
robotic machines.

Some challenges of this methodology include the lack
of a model, which makes the system rely more on so-
phisticated sensor self-diagnostics before fusion occurs,
so that faulty measurements are detected and discarded
before fusion is executed.
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