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Abstract
This paper presents a direct model predictive control algorithm for a three-level neutral point clamped
converter connected to the grid via an LCL filter. The proposed controller simultaneously controls
the grid and converter currents as well as the filter capacitor voltage, while meeting the relevant grid
standards. Moreover, output constraints are included to ensure operation of the system within its safe
operating limits. This is achieved by formulating the direct MPC problem as a constrained integer least-
squares optimization problem, wherein the output constraints are mapped into input constraints. The
presented results verify the effectiveness of the proposed method.

Introduction
Medium-voltage (MV) grid-tied converters are used for the integration of renewable energy sources,
scalable loads, and high-performance variable speed drives into the electrical grid. To ensure smooth
operation, grid standards—e.g., the IEEE 519 [1] and the IEC 61000-2-4 [2] standards—are imposed to
the point of common coupling (PCC). Such standards set tight limits on the current and voltage harmonics
injected by the power electronic systems into the grid. To mitigate the current harmonics, LCL filters are
commonly placed between the converter and the PCC. The addition of such a filter, however, gives rise
to a third-order system, implying that its control is a nontrivial task. More specifically, not only the grid
current needs to be controlled—as is the case with all grid-tied systems—but also the converter current
and the capacitor voltage. Moreover, adequate damping of the filter resonance is required. Finally, large
overshoots during transients that may harm the hardware components due to the correlated dynamics of
the system need to be avoided to ensure safe system operation.

Meeting the above-mentioned tasks with conventional control techniques—that rely on linear control
principles—is challenging, while the controller design can become complicated [3]. Furthermore, the
most favorable dynamic operation is not achieved due to the cascaded control loops that tend to limit the
bandwidth of the controller, especially when operation at low switching frequency is required [4]. As
an alternative to linear control techniques, model predictive control (MPC) can be employed. Thanks
to its multiple-input multiple-output (MIMO) nature as well as its ability to handle explicit constraints
and provide active damping, superior steady-state and dynamic performance of the grid-connected power
electronic system can be achieved [5, 6].

The most popular MPC-based method in academia is direct MPC, i.e., a control strategy that directly
computes and applies the switching signals. Direct MPC with output reference tracking, also referred
to as finite control set MPC (FCS-MPC), fully exploits the advantages that MPC can offer, but, alas, it
comes with pronounced computational load [5, 7]. To address this—at least to some extent—the direct
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Fig. 1: (a) MV grid-tied three-phase 3L-NPC converter with an LCL-filter placed between the converter and the
step-down transformer. (b) Equivalent circuit in the αβ-plane.

MPC problem can be designed as an integer least-squares (ILS) one and solved with a sphere decoding
algorithm [8]. Such an approach, however, cannot easily handle constraints that will ensure operation
of the system within its safe operating area. Thus, to avoid overcurrents and/or overvoltages that may
damage the hardware of the converter and/or the filter, the feasible set of the optimization problem
underlying direct MPC needs to be carefully redesigned [9].

Given the above, this paper proposes a constrained direct MPC for an MV three-level neutral point
clamped (3L-NPC) converter connected to the grid via an LCL filter. The optimization problem, for-
mulated as an ILS one, accounts for constraints on all the controlled variables to increase the system
reliability. To this aim, the output constraints are mapped into constraints on the control input. In doing
so, candidate solutions that may lead to large overshoots are already excluded in a preprocessing stage.
Moreover, a long horizon is employed, which combined with full-state information, provides damping
of the filter resonance without requiring a dedicated active damping loop. As a result, the MV converter
can be operated at a very low switching frequency (and close to the resonance), while still meeting the
grid standards. The effectiveness of the adopted method is demonstrated with the presented results.

Formulation of the Constrained Direct MPC Optimization Problem
Consider the MV grid-tied 3LNPC converter with an LCL-filter shown in Fig. 1(a). To keep the demon-
stration of the proposed control method simple, the dc-link voltage Vdc is assumed to be constant1 and
the neutral point potential N fixed. All variables given in the abc-plane ξabc = [ξa ξb ξc]

T are mapped
into two-dimensional vectors ξαβ = [ξα ξβ]T via the reduced Clarke transformation matrix K, i.e.,
ξαβ = Kξabc, see [5].

Controller Model
The equivalent circuit of the system under consideration in the αβ-reference frame2 is shown in Fig. 1(b).
This paper considers the same MV conversion system as the case study described in [10], from which the
system parameters are taken (see Table I in [10]). A strong grid is assumed, and the (dominant) LCL-
filter resonance frequency is fres = 304 Hz. The passive components have very small (series) resistive
parts, i.e., they essentially do not provide any passive damping. All SI variables are normalized based on
the rated values of the step-down transformer (secondary side).

Depending on the single-phase switch position uz ∈ U = {−1, 0, 1}, with z ∈ {a, b, c}, the single-phase
output voltage of a 3L-NPC converter can assume three possible discrete voltage levels, i.e., −Vdc

2 , 0,
Vdc
2 , respectively. By introducing the three-phase switch position3 uabc = [ua ub uc]

T ∈ U = U3, the
converter output voltage vconv is given by

vconv(t) =
Vdc
2
Kuabc(t) =

Vdc
2
u(t) . (1)

1The outer layer which regulates the dc-link voltage and generates the power references is out of the scope of this paper.
2Hereafter, to simplify the notation, variables in the αβ-frame are not indicated by the corresponding subscript, unless

otherwise stated.
3Note that, given a 3L-NPC topology, the integer input set U comprises 33 = 27 combinations of uabc



Fig. 2: Structure of the direct MPC (formulated as an ILS problem) to control the system shown in Fig. 1. The
preprocessing procedure to compute ρini is executed before calling the sphere decoder, which computes then u∗

abc.

By choosing x = [iTconv v
T
c i

T
g v

T
g ]T ∈ R8 and y = [iTconv v

T
c i

T
g ]T ∈ R6 as the state and output vectors,

respectively, and u ≡ uabc as the control input, the continuous-time state-space representation of the
system in Fig. 1(a) is

dx(t)

dt
= Fx(t) +Gu(t) (2a)

y(t) = Cx(t) , (2b)

where the voltage vg models the grid source, ig is the grid current, iconv is the converter current, while
vc is the capacitor voltage. The reader is referred to [10] for the full derivation of the continuous-time
differential equations which describe the system dynamics depicted in Fig. 1(b) as well as the definition
of the matrices F ∈ R8×8, G ∈ R8×3, and C ∈ R6×8, respectively. Note that since an ideal grid is
assumed (i.e., its angular frequency ωg is constant), F is a time-invariant matrix. Likewise, due to the
assumption of a constant dc-link voltage,G is also time invariant.

The discretized version of the continous-time system (2) is derived by using exact discretization with the
sampling interval Ts, i.e.,

x(k + 1) = Ax(k) +Bu(k) (3a)

y(k) = Cx(k) , (3b)

with A = eFTs and B =
∫ Ts
0 eF τ dτ G = −F−1 (I8 −A)G, while e is the matrix exponential, and

k ∈ N denotes the discrete time step. Due to the absence of a modulator, Ts directly affects the switching
frequency (and the granularity of switching), see [11].

Reformulation of the Constrained Direct MPC Problem in the Equivalent ILS Form

The block diagram of the presented MPC strategy is shown in Fig. 2. As a grid-connected power con-
verter is considered in this work, the total demand distortion (TDD) of ig,abc and vpcc,abc as well as
the amplitude of the associated harmonics should meet the IEEE 519 [1] and IEC 61000-2-4 [2] grid
standards. Given this, the main control objective is to regulate ig, iconv, and vc along their sinusoidal
references by directly manipulating the converter switches, i.e., without the use of a modulator. This
needs to be achieved while operating the MV converter at a low switching frequency so that the switching
power losses are kept low. The output references yref , i.e. yref = [iTconv,ref v

T
c,ref i

T
g,ref ]

T , are computed
based on the real Pin,ref and reactive Qin,ref power requirements at the transformer secondary side, with
Qin,ref = 0 at steady-state operation to achieve unity power factor pf = 1. Given a prediction horizon of
Np time steps, these control objectives are mapped into a scalar by the quadratic objective function

J(k) =

k+Np−1∑
`=k

‖yref(`+ 1)− y(`+ 1)‖2Q + λu ‖∆u(`)‖22 . (4)



The first term in (4) denotes the deviation of the output variables y from their reference values yref .
This error is weighted with the 6× 6 positive semidefinite matrix Q � 0, the diagonal entries of which
prioritize the tracking accuracy among the different controlled variables. The second term in (4) penalizes
the switching effort, i.e., ∆u(`) = u(`)−u(`−1), which directly relates to the definition of the average
device switching frequency fsw [11]. To set the trade-off between the tracking accuracy and the resulting
fsw at each time step ` = k, . . . , k +Np − 1, the weighting factor λu ∈ R++ is introduced.

The aforementioned control goals have to be met while protecting the switching devices and LCL filter
components from overcurrents and overvoltages, respectively. Therefore, during power transients, the
amplitudes of iconv, vc, and ig must be kept within given bounds. To this end, soft constraints are
typically introduced in the optimization problem to include such physical limitations. Nevertheless, hard
constraints are implemented in this work to facilitate the reformulation of the optimization problem, as
shown in later sections. Hence, the constraints on the system output are designed in the αβ-plane and
imposed at each time step `+ 1, i.e.,

‖iconv(`+ 1)‖2 ≤ iconv,max , ‖vc(`+ 1)‖2 ≤ vc,max , ‖ig(`+ 1)‖2 ≤ ig,max , (5)

where the positive scalars iconv,max, vc,max, ig,max ∈ R+ define the upper boundary values of the con-
verter current, filter capacitor voltage, and grid current, respectively. As an example, considering iconv
bounded by iconv,max, it follows that

i2conv,α(`+ 1) + i2conv,β(`+ 1) ≤ i2conv,max , (6)

which defines a circle in the αβ-plane of radius iconv,max. The constraints on vc and ig are imposed in a
similar manner by referring to vc,max and ig,max, respectively.

Given the above, to compute the optimal switching sequence over theNp prediction steps4, i.e.,U∗(k) =[
u∗T (k)u∗T (k + 1) . . . u∗T (k +Np − 1)

]T ∈ U = U × . . . × U = UNp ⊂ Z3Np , that results in the
best system performance—as quantified by (4)—while respecting the system dynamics and constraints—
as expressed by (3) and (5), respectively—the constrained optimization problem underlying MPC needs
to be solved. As shown in [8], to mitigate the computational burden of long-horizon direct MPC, while
still guaranteeing optimality, function (4) can be written such that the associated optimization problem
is a truncated ILS one. This problem can be subsequently solved in a computationally efficient manner
with a dedicated branch-and-bound strategy named sphere decoder [8], [12].

By considering the unconstrained solution Uunc, i.e., the solution that minimizes (4) when relaxing the
feasible set from U to R3Np , the following equivalent constrained ILS problem can be defined

U∗(k) = arg minimize
U(k)∈U

∥∥V U(k)− Ūunc(k)
∥∥2
2

(7a)

subject to U(k) ∈ U = UNp , ‖∆u(`)‖∞ ≤ 1 , (7b)

‖iconv(`+ 1)‖2 ≤ iconv,max , ‖vc(`+ 1)‖2 ≤ vc,max , (7c)

‖ig(`+ 1)‖2 ≤ ig,max , ∀` = k, . . . , k +Np − 1 , (7d)

where Ūunc(k) = V Uunc(k) ∈ R3Np , and V ∈ R3Np×3Np is a nonsingular, upper triangular matrix,
known as the lattice generator matrix. The latter generates the 3Np-dimensional discrete space (lattice),
one point of which is the solution to problem (7), i.e., the lattice point with the shortest Euclidean distance
to Ūunc. Note that, a further (hard) input constraint, i.e., ‖∆u(`)‖∞ ≤ 1, with ∆u(`) = u(`)−u(`−1),
is imposed by (7b) to avoid a shoot-through in the converter due to the 3L-NPC topology [5]. Out of
U∗, only the first element u∗ is applied to the converter whereas the rest are discarded in line with the
receding horizon (RH) control principle [13]. Following, the optimization procedure is repeated at k+ 1
based on a new x(k) and a shifted prediction horizon Np.

Note that the initial radius of the sphere ρini affects the effectiveness of the search process as it defines
the first upper bound of the branch-and-bound mechanism. Therefore, ρini should be as small as possible

4Note that, the feasible set U is defined by the Np-times Cartesian product of U



to remove a priori as many candidate solutions as possible, while still ensuring feasibility of the opti-
mization process, e.g., containing at least one lattice point. In [14], the initial radius ρini is computed as

ρini(k) = min { ρ1(k), ρ2(k) } , (8)

where the relative options are

ρ1(k) =
∥∥Ūunc(k)− V Ubab(k)

∥∥
2

and ρ2(k) =
∥∥Ūunc(k)− V U ed(k)

∥∥
2
. (9)

Radius ρ1 in (9) depends on the Babai estimate Ubab, which is the rounded unconstrained solution, i.e.,
Ubab(k) = bUunc(k)e. On the other hand, radius ρ2 in (9) depends on an educated guess U ed, which is
the previously applied solution U∗(k − 1) shifted by one time step according to the RH policy, see [9].

Solving the Equivalent Constrained Integer Least-Squares Problem
The presence of constraint (7) affects the aforementioned computation of ρini. Indeed, by adopting (8),
there is a possibility that Uunc and/or some of the candidate solutions included in the sphere violate (7).
To avoid this, the computation of the initial radius needs to be revised. This is done by mapping the output
constraints (7) into (hard) input constraints, thus limiting the feasible set U. The approach presented in
this paper is based on [9] and extended to handle multiple constraints by simultaneously considering
bounds on iconv, vc, and ig.

By utilizing (3a) and (3b), the output dynamics at step k + 1 are given by

y(k + 1) = CAx(k) +CB̃Ku(k) ⇒ iconv(k + 1) = [ I2 02×6 ]Ax(k) + γconvI2uαβ(k) (10a)

vc(k + 1) = [ 02×2 I2 02×4 ]Ax(k) + γcI2uαβ(k) (10b)

ig(k + 1) = [ 02×4 I2 02×2 ]Ax(k) + γgI2uαβ(k) , (10c)

where B̃ = −F−1 (I8 −A) G̃, with G̃ = (Vdc/2Xfc) [I2 02×6]
T . Moreover, uαβ(k) = Ku(k),

whileCB̃K = CB holds. In more detail, givenC ∈ R6×8 and B̃ ∈ R8×2, (10a), (10b), and (10c), are
derived by noticing the structure of the product CB̃ ∈ R6×2, i.e.,

CB̃ =

[
γconv 0 γc 0 γg 0

0 γconv 0 γc 0 γg

]T
=
[
γconvI2 γcI2 γgI2

]T
. (11)

As can be seen in (11), three 2× 2 diagonal matrices appear, i.e., diag(γconv) � 0 ∈ R2×2, diag(γc) �
0 ∈ R2×2, and diag(γg) � 0 ∈ R2×2, with γconv 6= γc 6= γg. In particular, γconvI2 = [I2 02×6] B̃,
γcI2 = [02×2 I2 02×4] B̃ and γgI2 = [02×4 I2 02×2] B̃ can be easily computed. Given (10a), (10b),
and (10c), the three one-dimensional constraints in (5) can be rewritten as

‖iconv(`+ 1)‖2 ≤ iconv,max ⇒
∥∥∥∥ [ I2 02×6 ]Ax(k)

γconv
+Ku(k)

∥∥∥∥
2

≤ iconv,max

γconv
(12a)

‖vc(`+ 1)‖2 ≤ vc,max ⇒
∥∥∥∥ [ 02×2 I2 02×4 ]Ax(k)

γc
+Ku(k)

∥∥∥∥
2

≤ vc,max

γc
(12b)

‖ig(`+ 1)‖2 ≤ ig,max ⇒
∥∥∥∥ [ 02×4 I2 02×2 ]Ax(k)

γg
+Ku(k)

∥∥∥∥
2

≤ ig,max

γg
. (12c)

To simplify the derivation of the constrained ILS problem, let us first consider a generic one-dimensional
constraint of the form∥∥∥∥∥C̃Ax(k)

γ
+Ku(k)

∥∥∥∥∥
2

≤ ymax

γ
⇐⇒ ‖uconstr(k) +Ku(k)‖2 ≤ ρconstr , (13)

where the generic C̃, γ, and ymax are changed according to which constraint among (12a), (12b),
and (12c) is taken into consideration. Note that (13) describes a feasible set in the form of a circle C
in the αβ-plane centered at uconstr(k) = − C̃Ax(k)

γ with radius ρconstr = ymax

γ .

With (13), the constraints in (12) define Cconv, Cc, and Cg related to iconv, vc, and ig, respectively,
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Fig. 3: Computation of the input constrained set Cconstr and choice of the initial radius in the αβ-plane. (a)
Computation of ρini(k) for a one-dimensional constraint (set Cconv). (b) Computation of Cconstr and ρini(k) based
on all three constraints. Focusing on (a), the gradient, as depicted by the (scaled-down) vector g(k), shows the
relative position of uunc(k) with respect to the center of Cconv, i.e., uconstr(k). Subsequently, the intersection point
between g(k) and Cconv, i.e., u∗

int(k) (indicated as green circle), that is closer to uunc(k) (shown as red circle) is
rounded up. Based on ufeas(k) (shown as blue circle) the radius ρini(k) (red dash-dotted line) of the hypersphere
(shown as a red circle) is determined. The infeasible points enclosed in the hypersphere are indicated with light
gray circles, whereas the black solid circles are feasible, but suboptimal, points.

which individually restrict the feasible set U. This implies that to meet the output constraint (7), the
optimal switching sequence U∗ should lie within the intersection of all the constrained sets Cconstr =
Cconv ∩ Cc ∩ Cg in the αβ-plane. Based on this, the feasible set of the integer-valued input vector U is
defined as Uconstr = U ∩ Cconstr = Uconstr,1 × . . .× Uconstr,Np , with

Uconstr,i = {u(`) |Ku(`) ∈ Cconstr, u(`) ∈ U} ∀` = k, . . . , k +Np − 1 , (14)

for i ∈ {1, . . . , Np}. A graphical example is depicted in Fig. 3(a).

Given (14), the initial radius ρini of the hypersphere needs to be revised according to the restricted
input feasible set Uconstr. While on the one hand the radius should meet the same objective as in the
unconstrained ILS problem case, i.e., to be as small as possible, an additional goal is that the new
hypersphere should include at least one feasible point. To satisfy both criteria, (8) is substituted by

ρini(k) = min { ρ̂1(k), ρ̂2(k) } . (15)

To compute ρini in presence of the multiple output constraints, the following procedure is adopted.

Step 1: Radius ρ̂1 is defined as

ρ̂1(k) =
∥∥Ūunc(k)− V U rnd(k)

∥∥
2
, (16)

where the new initial guess U rnd(k) =
[
uTrnd(k) . . . uTrnd(k +Np − 1)

]T in the αβ-plane is equal to
the Babai estimate Ubab from time step k + 1 up to k + Np − 1, whereas the estimate at k results by
guessing the feasible candidate solution ufeas(k) = Kufeas,abc(k), with ufeas,abc ∈ Uconstr,1, closest to
uunc [9].

Step 2: Considering a single (one-dimensional) output constraint, the vector g(k) = uconstr(k) −
uunc(k) that spans the line passing through uunc and the center of C, i.e., uconstr, is computed.

Step 3: The intersection points, uint,1 and uint,2, of the aforementioned line and C are calculated. The
one closer to uunc is computed with

u∗int(k) = arg minimize ‖uint,i(k)− uunc(k)‖2 for i = 1, 2 .



Step 4: The feasible input closer to u∗int is found. This is done by examining the sign of the elements of
g(k), i.e., the direction of the gradient in each dimension of the space. Following, u∗int is rounded up or
down (i.e., ceiled or floored, respectively) depending on the direction of the gradient, i.e.,

ufeas(k) =

{
du∗int(k)e if g(k) ≥ 0AAAAAA

bu∗int(k)c if g(k) < 0 .
(17)

Step 5: The candidate solution ufeas—mapped onto the three-phase switch position by ufeas,abc(k) =
K−1ufeas(k)—is the initial guess at time-step k. As for radius ρ̂2, this depends on the educated guess
U ed. However, it is finite only if U ed belongs to the constrained feasible set, i.e.,

ρ̂2(k) =

{
ρ2(k) if U ed(k) ∈ Uconstr .

∞ if U ed(k) 6∈ UAAA

constr .
(18)

Then, the initial radius is found by solving ρini(k) = min { ρ̂1(k), ρ̂2(k) }.

At this point it should be mentioned that by adopting steps 1–5 for each one-dimensional constraint,
three values of ρini—related to three different values of ufeas—result. Hence, the new hypersphere
should contain at least one point/solution within Cconstr = Cconv ∩Cc∩Cg. To achieve this, the following
step is introduced.

Step 6: For each one-dimensional constraint j ∈ {1, 2, 3}, the outcome of steps 1–5 is ufeas,j (see (17))
that relates to ρini,j . Thus, ufeas,j which lies in Cconstr is selected and the related ρini,j is used to build
the sphere. If multiple ufeas,j lie in Cconstr, the one with the minimal distance from uunc is selected5.

To elucidate the above-mentioned procedure, the example in Fig. 3(b) is provided. Therein, the three
output constraints are visualized, with ufeas,1 ← Cconv, ufeas,2 ← Cc, and ufeas,3 ← Cg, while only
one candidate solution is assumed to lie in Cconstr at time step k to simplify the demonstration. After
computing the feasible input set and the refined initial radius, the sphere decoder is called with the
difference that now the 3Np-dimensional candidate solution U∗(k) enclosed in the hypersphere belongs
to set Uconstr = U ∩ Cconstr. Nevertheless, in the worst-case scenario, if none of the resulting ufeas,j

computed from steps 1–6 belongs to Cconstr, the set is first relaxed to Cconstr = Cconv ∩ Cc, and then to
Cconstr = Cconv in order to find the that best suboptimal solution that violates the smallest number of
constraints.

Performance Assessment
The performance of the proposed direct MPC scheme is evaluated through MATLAB simulations. Con-
sidering fres = 304 Hz, the goal is to choose λu such that the switching frequency fsw is close to
fres. To this aim, λu is chosen such that fsw ≈ 400 Hz results, i.e., λu = 0.45. A sampling interval
Ts = 150µs is chosen such that a high granularity of switching is achieved, as this improves the system
performance [11]. Moreover, given that for a favorable steady-state and transient performance a long pre-
diction interval in time is recommended [15], a ten-step (Np = 10) horizon is implemented. Regarding
the matrix Q, the tracking of ig,abc is prioritized over the reference tracking of the other variables to re-
duce the grid current TDD, Ig,TDD. Then, the converter current tracking is prioritized with respect to the
voltage capacitor to (indirectly) avoid a deterioration in the tracking performance of ig,abc. This yields
Q = diag (10, 10, 1, 1, 100, 100). The upper bounds iconv,max = 1.3 per unit (p.u.), vc,max = 1.25 p.u.,
and ig,max = 1.25 p.u. are considered to limit overshoots during transients. Note that, given the chosen
limits, the hard constraints do not affect the steady-state operation. All results in the sequel are in p.u.

Both steady-state and transient performances are depicted in Fig. 4 over two fundamental periods. More
specifically, Fig. 4(a) shows the three-phase output waveforms produced by a direct MPC formulation
without output bounds, i.e., when neglecting (7) and computing ρini as in (8). On the other hand, Fig. 4(b)
depicts the system response when the constrained MPC is taken into account, i.e., when considering (7)
and the modified radius is computed according to (15).

5Note that, this procedure can be also adopted to evaluate a larger number of constraints nc, i.e. j = 1, ..., nc
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Fig. 4: Simulated waveforms produced by direct MPC when the output constraints are (a) not included, and (b)
included. The results are shown over two fundamental periods 2Tg , with Tg = 20 ms. From top to bottom: real Pin

(blue line) and reactive power Qin (green line) and their references (dashed lines); three-phase converter currents
iconv,abc (with a, b and c shown with blue, red, and green lines, respectively) and the related references; three-phase
capacitor voltage vc,abc; three-phase grid currents ig,abc; three-phase switch position uabc.

Large step-wise changes in the input power references are applied. At t = 18 ms, Pin,ref is changed
from 1 to 0.2 p.u. and back to 1 p.u. at t = 26 ms. Likewise, Qin,ref is changed from 0 to 0.8 p.u.
and back to 0 p.u. at the same time instants. The power references are translated into the corresponding
yref,abc which are accurately followed by yabc. As shown in Fig. 4(a), when the output constraints are not
considered, the variables iconv,abc and vc,abc exhibit significant overshoots during transients, exceeding
the associated trip levels defined by the translation of iconv,max and vc,max into the abc-plane via K. To
provide more insight into this point, and since the constraints are given in the αβ-plane, the dynamics
in Fig. 4 are translated accordingly and shown in Fig. 5. In particular, given the time window from
t = 15 ms to t = 35 ms, Fig. 5(a) shows and quantifies the violation of yabc. For example, as can be
seen, iconv,αβ presents a peak of 1.70 p.u. which is 40% above iconv,max = 1.3 p.u.

On the other hand, the effectiveness of the constrained MPC algorithm can be appreciated in Figs. 4(b)
and 5(b), where yabc (and yαβ) always remain within the imposed bounds. It is worth mentioning,
however, that the constrained MPC is less aggressive since the output bounds restrict the input set to
Uconstr ⊂ U, i.e., the candidate solutions that could lead to faster settling times are limited as these can
lead to violation of the constraints. This implies that the decisions the MPC algorithm makes when the
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Fig. 5: Simulated waveforms of iconv,αβ (left), vc,αβ (center), and ig,αβ (right) produced by the proposed direct
MPC algorithm when output constraints are (a) not included, and (b) included. The references and bounds are
shown as (red) dotted and (black) dashed circles, respectively. The αβ-plots cover a time window from 15 to
35 ms. All variables in Fig. 4 are mapped from abc to αβ, i.e. ξαβ = Kξabc.

output constraints are active would correspond to suboptimal solutions compared to the case where the
constraints are not considered. As a result, the settling times of the power transients in Figs. 4(b) are
slightly longer compared to Fig. 4(a).

Finally, it worth mentioning that when operating at steady-state—i.e., Pin,ref = 1 and Qin,ref = 0 with
pf = 1—the output constraints are not activated, hence both MPC algorithms perform the same.6 In
both cases, all output variables yabc accurately track their sinusoidal reference values, despite operation
at a switching frequency that is very close to the resonance one. The current and PCC voltage harmonic
spectra produced by the proposed direct MPC are shown in Fig. 6. As can be seen, even though the
harmonic energy for both ig,abc and vpcc,abc is spread over a wide range of frequencies due to the variable
switching frequency, the grid codes, such as the IEEE 519 and IEC 61000-2-4 standards, are met with
Ig,TDD ≈ 1.25% and Vpcc,TDD ≈ 3.03%. For comparison purposes the spectra of conventional space
vector modulation (SVM) are shown in the same figure, while considering the same fsw. This is like
having a simple closed-loop linear controller with a very low bandwidth [16]. As can be seen, the TDD
values of both current and PCC voltage produced by SVM are higher than those obtained with MPC.

Conclusions
This paper presented a long-horizon direct MPC algorithm for an MV 3L-NPC converter connected to
the grid via an LCL filter. The control problem formulation is augmented with output constraints that
relate to physical limitations of the system components. The underlying optimization problem is formu-
lated as an ILS problem where the output constraints are translated into input constraints that define a
new feasible set. Subsequently, the employed sphere decoder finds the feasible point within the refined
hypersphere in a computationally efficient manner. In doing so, operation within the safety operating re-
gion of the system is guaranteed without deteriorating its performance. As shown, the proposed approach

6Note that the constraint ‖∆u(`)‖∞ ≤ 1 is activated and fully respected in both MPC formulations.
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Fig. 6: Harmonic spectra of (a) ig,abc, and (b) vpcc,abc in p.u. For both cases, the harmonics do not violate their
respective limits (in terms of TDD and amplitude) imposed by the IEEE 519 and IEC 61000-2-4 standards.

achieves excellent steady-state and transient performance, while meeting the relevant grid codes despite
the low switching frequency which is very close to the resonance one. Finally, thanks to the adopted
long prediction horizon and the full-state information, an additional active damping loop is unnecessary,
resulting in a simpler control architecture compared to conventional control strategies.
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