
The Journal of Systems & Software 198 (2023) 111575

V
F
a

b

c

c
c
m
i
t
e
f
i

h
b
K

f
s

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

A critical comparison on six static analysis tools: Detection, agreement,
and precision✩

alentina Lenarduzzi a,∗, Fabiano Pecorelli b, Nyyti Saarimaki b, Savanna Lujan b,
abio Palomba c

M3S Research Unit - University of Oulu, Finland
Clowee Research group - Tampere University, Finland
SeSa Lab - University of Salerno, Italy

a r t i c l e i n f o

Article history:
Received 16 February 2022
Received in revised form 25 October 2022
Accepted 28 November 2022
Available online 30 November 2022

Keywords:
Static analysis tools
Software quality
Empirical study

a b s t r a c t

Background: Developers use Static Analysis Tools (SATs) to control for potential quality issues in
source code, including defects and technical debt. Tool vendors have devised quite a number of
tools, which makes it harder for practitioners to select the most suitable one for their needs. To
better support developers, researchers have been conducting several studies on SATs to favor the
understanding of their actual capabilities.
Aims: Despite the work done so far, there is still a lack of knowledge regarding (1) what is their
agreement, and (2) what is the precision of their recommendations. We aim at bridging this gap by
proposing a large-scale comparison of six popular SATs for Java projects: Better Code Hub, CheckStyle,
Coverity Scan, FindBugs, PMD, and SonarQube.
Methods: We analyze 47 Java projects applying 6 SATs. To assess their agreement, we compared them
by manually analyzing – at line – and class-level — whether they identify the same issues. Finally, we
evaluate the precision of the tools against a manually-defined ground truth.
Results: The key results show little to no agreement among the tools and a low degree of precision.
Conclusion: Our study provides the first overview on the agreement among different tools as well as
an extensive analysis of their precision that can be used by researchers, practitioners, and tool vendors
to map the current capabilities of the tools and envision possible improvements.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Static analysis tools (SATs) are instruments that analyze source
ode without executing it, in an effort to discover potential source
ode quality issues (Ernst et al., 2015). These tools are getting
ore popular as they are becoming easier to use—especially

n continuous integration pipelines (Zampetti et al., 2017)—and
here is a wide range to choose from Vassallo et al. (2019). How-
ver, as the number of available tools grows, it becomes harder
or practitioners to choose the tool (or combination thereof) that
s most suitable for their needs (Thomas et al., 2016).

To help practitioners with this selection process, researchers
ave been conducting empirical studies to compare the capa-
ilities of existing SATs (Mantere et al., 2009; Wilander and
amkar, 2002). Most of these investigations have focused on (1)

✩ Editor: Dr Shane McIntosh.
∗ Corresponding author.

E-mail addresses: valentina.lenarduzzi@oulu.fi (V. Lenarduzzi),
abiano.pecorelli@tuni.fi (F. Pecorelli), nyyti.saarimaki@tuni.fi (N. Saarimaki),
avanna.lujan@tuni.fi (S. Lujan), fpalomba@unisa.it (F. Palomba).
ttps://doi.org/10.1016/j.jss.2022.111575
164-1212/© 2022 The Author(s). Published by Elsevier Inc. This is an open access a
the features provided by the tools, e.g., which maintainability
dimensions can be tracked by current SATs, (2) comparing specific
aspects considered by the tools, such as security (Antunes and
Vieira, 2009; McLean, 2012) or concurrency defects (Al Mamun
et al., 2010), and (3) assessing the number of false positives given
by the available SATs (Johnson et al., 2013).

Recognizing the effort spent by the research community, which
led to notable advances in the way tool vendors develop SATs,
we herein notice that our knowledge on the capabilities of the
existing SATs is still limited. More specifically, in the context of
our research we point out that three specific aspects are under-
investigated: (1) which source quality problems can actually be
detected by static analysis tools, (2) what is the agreement among
different tools with respect to source code marked as potentially
problematic, and (3) what is the precision with which a large vari-
ety of the available tools provide recommendations. An improved
knowledge of these aspects would not only allow practitioners
to take informed decisions when selecting the tool(s) to use, but
also researchers/tool vendors to enhance the tool and improve
the level of support provided to developers.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2022.111575
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111575&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:valentina.lenarduzzi@oulu.fi
mailto:fabiano.pecorelli@tuni.fi
mailto:nyyti.saarimaki@tuni.fi
mailto:savanna.lujan@tuni.fi
mailto:fpalomba@unisa.it
https://doi.org/10.1016/j.jss.2022.111575
http://creativecommons.org/licenses/by/4.0/

V. Lenarduzzi, F. Pecorelli, N. Saarimaki et al. The Journal of Systems & Software 198 (2023) 111575

i
n
P

c
c
r

In this paper, we propose a large-scale empirical investigation
nto the detection capabilities of six of the most widely used SATs,
amely SonarQube, Better Code Hub, Coverity Scan, FindBugs,
MD, and CheckStyle.1 Specifically, we run the considered tools

against a corpus of 47 projects from the Qualitas Corpus dataset,
(1) showcasing the functionalities and distribution of source code
quality issues detected by the tools; (2) computing the agreement
among the recommendations given by them at line-level; and (3)
manually computing the precision of the tools.

The key results of the study shows that, among the considered
tools, SonarQube is the one able to detect most of the quality
issues that can be detected by the other SATs. However, when
considering the specific quality issues detected, there is little to
no agreement among the tools, indicating that different tools are
able to identify different forms of quality problems. Finally, the
precision of the considered tools ranges between 18% and 86%,
meaning that the practical accuracy of some tools is seriously
threatened by the presence of false positives—this result corrob-
orates and enlarges previous findings (Johnson et al., 2013) on a
larger scale and considering a broader set of tools.

To sum up, the main contribution of our work is represented
by the largest empirical analysis up to date on the capabilities of
existing static analysis tools—a more detailed description of how
our work compares to previous studies in the field is reported in
the next section. Specifically, we advance the current state of the
art in three different manners:

1. By providing an overview of the features and types of
source code quality concerns detectable by six popular
static analyzers, which may be used by practitioners as a
way to select the most suitable tool(s) based on the specific
needs of a project;

2. By investigating the agreement among the considered tools,
which can inform tool vendors about the limitations of the
current solutions available the market, other than mak-
ing practitioners aware of how to benefit more from the
combined capabilities of existing static analysis tool;

3. By providing a quantification of the precision of six static
analysis tools, which may used to describe their accu-
racy in practice, hence alerting developers on the actual
effectiveness of those tools.

Structure of the paper. Section 2 discusses the related work in
the field of empirical studies on static analysis tools, highlighting
how our work advances the state of the art. Section 3 reports on
the tools selected for the empirical investigation, while Section 4
presents the specific research questions targeted by our study and
the methods employed to address them. The results are presented
in Section 5 and further elaborated in Section 6. Section 7 identi-
fies the threats to the validity of our study. Finally, in Section 8 we
draw conclusions and provide an outlook on our future research
agenda.

2. Related work

Static analysis tools (SATs) are getting more popular (Vassallo
et al., 2019; Lenarduzzi et al., 2019c) as they are becoming easier
to use (Zampetti et al., 2017). The use of static analysis tools has
been studied by several researchers in the last years (Wagner
et al., 2005; Nagappan and Ball, 2005; Zheng et al., 2006; Nanda
et al., 2010). In this section, we report the relevant work on
static analysis tools focusing on their usage (Saarimäki et al.,

1 SATs verify code compliance with a specific set of rules that, if violated,
an introduce an issue in the code. This issue can be accounted for as ‘‘source
ode quality issue’’: as such, in the remaining the paper we use this term when
eferring to the output of the considered tools.
2

2019; Lenarduzzi et al., 2019b, 2020), rules and the detected
problems (Flanagan et al., 2002; Heckman and Williams, 2011;
Beller et al., 2016).

SATs has been investigating considering which tools are being
used, which types of issues are detected (Kong et al., 2007;
Zampetti et al., 2017), and the effective solving time (Marcilio
et al., 2019), considering projects developed in different lan-
guage (Lu et al., 2018). Results showed that the most violated
rules are related to adherence to coding standards and missing
licenses (Zampetti et al., 2017). Looking at the which issues is
fixed and the related fixing time in average 13% of the issues have
been solved in the systems (Marcilio et al., 2019). Developers can
use SATs, such as SonarQube 3.6 and CheckStyle,2 to evaluate
software source code, finding anomalies of various kinds in the
code (Rutar et al., 2004; Tomas et al., 2013). Moreover, SATs are
widely adopted in many research studies in order to evaluate the
code quality (Johnson et al., 2013; Schnappinger et al., 2019; Mar-
cilio et al., 2019) and identify issues in the code (Saarimäki et al.,
2019; Lenarduzzi et al., 2019b, 2020). Some studies demonstrated
that some rules detected by SATs can be effective for identifying
issues in the code (Zheng et al., 2006; Lenarduzzi et al., 2019a,
2020). However, evaluating the performance in defect prediction,
results are discordant comparing different tools (e.g. FindBugs5
and PMD7) (Rahman et al., 2014).

Rutar et al. (2004) compared five bug-finding tools for Java
(Bandera,3 ESC/Java2,4 FindBugs,5 JLint,6 and PMD7), that use
syntactic bug pattern detection, on five projects, including JBoss
3.2.38 and Apache Tomcat 5.019.9 They focused on the different
rules (also called rules) provided by each tool, and their results
demonstrate some overlaps among the types of errors detected,
which may be due to the fact that each tool applies different
trade-offs to generate false positives and false negatives. Overall,
they stated that rules provided by the different tools are not cor-
related with each other. Complementing the work by Rutar et al.
(2004), we calculated the agreement of SATs on TD identification.
In addition, we investigated the precision with which these tools
output rules. Finally, we also investigated the types of TD items
that can actually be detected by existing SATs.

Tomas et al. (2013) performed a comparative analysis by
means of a systematic literature review. In total, they compared
16 Java code SATs, including JDepend,10 FindBugs5, PMD7, and
SonarQube. They focused on internal quality metrics of a software
product and software tools of static code analysis that automate
measurement of these metrics. As results, they reported the tools’
detection strategies and what they detect. For instance, most of
them automate the calculation of internal quality metrics, the
most common ones being code smells, complexity, and code
size (Tomas et al., 2013). However, they did not investigate
agreement between the tools’ detection rules.

Avgeriou et al. (2021) identified the available SATs for the
Technical Debt detection. They compared features and popularity
of nine tools investigating also the empirical evidence on their
validity. Results can help practitioners and developers to select
the suitable tool against the other ones according to the measured
information that satisfied better their needs. However, they did
not evaluate their agreement and precision in the detection.

2 https://checkstyle.sourceforge.io/
3 http://bandera.projects.cs.ksu.edu/.
4 https://kindsoftware.com/products/opensource/ESCJava2/.
5 http://findbugs.sourceforge.net/.
6 http://jlint.sourceforge.net/.
7 https://pmd.github.io/.
8 http://www.jboss.org/.
9 http://jakarta.apache.org/tomcat.

10 https://github.com/clarkware/jdepend.

https://checkstyle.sourceforge.io/
http://bandera.projects.cs.ksu.edu/
https://kindsoftware.com/products/opensource/ESCJava2/
http://findbugs.sourceforge.net/
http://jlint.sourceforge.net/
https://pmd.github.io/
http://www.jboss.org/
http://jakarta.apache.org/tomcat
https://github.com/clarkware/jdepend

V. Lenarduzzi, F. Pecorelli, N. Saarimaki et al. The Journal of Systems & Software 198 (2023) 111575

c
e
2
a
v
t
f
a
s
r
b
d
c
b
b
c
r
w
F
e
2

t
t
S
S
t
d
S
d
f
a
s
w
v
a
a
i
t
t
t
t

3

a

s
b
r

Table 1
Detection capability of the six selected SATs. For each tool, the number of supported rules, the number of rules categories, the
number of severity levels and the description of severity levels are reported.
Tool Detection capability

rule #Type group #Severity levels Severity levels

Better Code Hub 10 3 3 Medium, High, and Very High
Checkstyle 173 14 4 Error, Ignore, Info, and Rule
Coverity 130 – 3 Low, Medium, and High
FindBugs 424 9 4 Of concern, Troubling, Scary, and Scariest
PMD 305 8 5 from 1 (most severe) to 5 (least severe)
SonarQube 413 3 5 Info, Minor, Major, Critical, and Blocker
g
C

t
c
f

t
3
C
r
a
C
H
a
s
S
t

3

q

Focusing on developers’ perception on the SATs usage, they
an help to find bugs (Johnson et al., 2013). However, develop-
rs are not sure about the usefulness of the rules (Taibi et al.,
017; Vassallo et al., 2018; Sadowski et al., 2018), they do pay
ttention to different rules categories and priorities and remove
iolations related to rules with high severity (Vassallo et al., 2018)
o avoid the possible risk of faults (Taibi et al., 2017). Moreover,
alse positives and the way in which the rules are presented
re barriers to their wider adoption (Johnson et al., 2013). Some
tudies highlighted the need to reduce the number of detectable
ules (Muske et al., 2018; Bodden, 2018) or summarize them
ased on similarities (Vassallo et al., 2018). SATs are able to
etect many defects in the code. However, some tools do not
apture all the possible defect even if they could be detected
y the tools (Thung et al., 2015). Even if some studies since the
eginning of 2010 highlighted the need to better clarify the pre-
ision of the tools, differentiating false positives from actionable
ules (Liang et al., 2010; Ruthruff et al., 2008), many studies deal
ith the many false positives produced by different tools, such as
indBugs5 (Thung et al., 2015; Ayewah and Pugh, 2010; Ayewah
t al., 2008), JLint6, PMD7, CheckStyle2, and JCSC11 (Thung et al.,
015).
The two closest works with respect to ours are those by Man-

ere et al. (2009) and Wilander and Kamkar (2002). Both of
hem investigated and compared existing security vulnerability
ATs. More specifically, Mantere et al. (2009) executed three
ATs (Fortify SCA, Splint, and Frama-C) on a project reporting
he amount of violated security rules without comparing their
etection agreement. Wilander and Kamkar (2002) compared five
ATs (Flawfinder, ITS4, RATS, Splint, and BOON) and verified their
etection capability of four security vulnerabilities (Changing the
law of control, Bugger overflow attacks, Buffer overflow vulner-
bilities, and Format string attacks) on 20 vulnerable functions
elected from ITS4’s vulnerability database. Differently from our
ork, the two papers just discussed only focused on security
ulnerabilities. In addition, none of them performed additional
nalyses aiming at shedding lights on their detection agreement
nd precision. As such, our work represents the first attempt to
nvestigate the capabilities of a large amount of static analysis
ools under multiple perspectives, providing researchers, practi-
ioners, and tool vendors with insights into (1) the features and
ypes of issues they detect; (2) the potential usefulness given by
heir combination; and (3) the limitations in terms of precision.

. Selection of the static analysis tools

In this section, we describe the SATs we selected for this work
nd their code quality issues detection capability.
In particular, we selected six SATs based on two main ob-

ervations. First and foremost, we selected the tools that have
een previously investigated by researchers in the field with
espect to their adoption (Vassallo et al., 2019; Vassallo et al.,

11 http://jcsc.sourceforge.net.
3

2018; Avgeriou et al., 2021) and were found to be the most
widely employed in practice (Vassallo et al., 2019). In the second
place, the selected tools were familiar to the authors: such a
familiarity allowed us to (1) use/run them better (e.g., by running
them without errors) and (2) analyze their results better, for
instance by providing qualitative insights able to explain the
reasons behind the achieved results. The analysis of other tools
is already part of our future research agenda. Table 1 reports the
detection capability of each tool in terms of how many rules can
be detected, and the classification of internal rules (e.g., type and
severity). Moreover, we report the diffusion of the rule in the
selected projects.

3.1. Better Code Hub

Better Code Hub12 is a commonly used static analysis tool that
assesses code quality. The analysis is done through the website’s
API, which analyzes the repository from GitHub. The default con-
figuration file can be modified for customization purposes. Code
quality is generally measured based on structure, organization,
modifiability, and comprehensibility.

This is done by assessing the code against ten guidelines:
write short units of code, write simple units of code, write code
once, keep unit interfaces small, separate concern in modules,
couple architecture components loosely, keep architecture com-
ponents balanced, keep your code base small, automate tests, and
write clean code. Out of the ten guidelines, eight guidelines are
rouped based on type of severity: medium, high, and very high.
ompliance is rated on a scale from 1–10 based on the results.13
Better Code Hub static analysis is based on the analysis of

he source code against heuristics and commonly adopted coding
onventions. This gives a holistic view of the health of the code
rom a macroscopic perspective.

It detects a total of 10 rules, of which 8 are grouped based on
ype and severity. Better Code Hub categorizes the 8 rules under
types: RefactoringFileCandidateWithLocationList, RefactoringFile-
andidate, and RefactoringFileCandidateWithCategory. Of these 8
ules, one is of RefactoringFileCandidateWithLocationList type, six
re of RefactoringFileCandidate type, and one is of RefactoringFile-
andidateWithCategory type. In addition to the types, Better Code
ub assigns three possible severities to the rules: Medium, High,
nd Very High. Of these eight rules, four were classified as Medium
everity, four as High severity, and eight as Very High severity.
ome of the rules have more than one severity possibly assigned
o them.

.2. Checkstyle

Checkstyle14 is an open-source tool that evaluates Java code
uality. The analysis is done either by using it as a side feature in

12 https://bettercodehub.com/.
13 https://pybit.es/bettercodehub.html.
14 https://checkstyle.org.

http://jcsc.sourceforge.net
https://bettercodehub.com/
https://pybit.es/bettercodehub.html
https://checkstyle.org

V. Lenarduzzi, F. Pecorelli, N. Saarimaki et al. The Journal of Systems & Software 198 (2023) 111575

t
f
T
t
c
t
o

I

r
o

M

A
m
t
m
t
c
v
a
2
r
g
a
t
v
D
o
1
c
o
’
9
1

3

a
g
l
t
v
m
J
t
c
r
t
w

t
B
t
o
D
a
t
(

Ant or as a command line tool. Checkstyle assesses code according
to a certain coding standard, which is configured according to a
set of checks. Checkstyle has two sets of style configurations for
standard checks: Google Java Style15 and Sun Java Style.16 In addi-
ion to standard checks provided by Checkstyle, customized con-
iguration files are also possible according to user preference.17
hese checks are classified under 14 different categories: annota-
ions, block checks, class design, coding, headers, imports, javadoc
omments, metrics, miscellaneous, modifiers, naming conven-
ions, regexp, size violations, and whitespace. Moreover, the vi-
lation of the checks are grouped under two severity levels:

error and rule,18 with the first reporting actual problems and the
second possible issues to be verified.

It detects a total of 173 rules which are grouped based on
type and severity. Checkstyle categorizes the 173 rules under
14 types: Annotations, Block Checks, Class Design, Coding, Headers,
mports, Javac Comments, Metrics, Miscellaneous, Modifiers, Naming
Conventions, Regexp, Size Violations, and Whitespace. Of these 173
ules, 8 are of Annotations type, 6 are of Block Checks type, 9 are
f Class Design type, 52 are of Coding type, 1 is of Headers type,

8 are of Imports type, 19 are of Javac Comments type, 6 are of
etrics type, 16 are of Miscellaneous type, 4 are of Modifiers type,

16 are of Naming Conventions type, 4 are of Regexp type, 8 are of
Size Violations type, and 16 are of Whitespace type. In addition to
these types, Checkstyle groups these checks under four different
severity levels: Error, Ignore, Info, and rule. The distribution of the
checks with respect to the severity levels is not provided in the
documentation.

3.3. Coverity scan

Coverity Scan19 is another common open-source static anal-
ysis tool. The code build is analyzed by submitting the build to
the server through the public API. The tool detects defects and
vulnerabilities that are grouped by categories such as: resource
leaks, dereferences of NULL pointers, incorrect usage of APIs,
use of uninitialized data, memory corruptions, buffer overruns,
control flow issues, error handling issues, incorrect expressions,
concurrency issues, insecure data handling, unsafe use of signed
values, and use of resources that have been freed.20 For each of
these categories, there are various issue types that explain more
details about the defect. In addition to issue types, issues are
grouped based on impact: low, medium, and high. The static anal-
ysis applied by Coverity Scan is based on the examination of the
source code by determining all possible paths the program may
take. This gives a better understanding of the control and data
flow of the code.21 Coverity Scan’s total scope of detectable rules
as well as the classification is not known, since its documentation
requires being a client. However, within the scope of our results,
Coverity Scan detected a total of 130 rules. These rules were
classified under three severity levels: Low, Medium, and High. Of
these 130 rules, 48 were classified as Low severity, 87 as Medium
severity, and 12 as High severity. Like Better Code Hub, some of
Coverity Scan’s rules have more than one severity type assigned
to them.

15 https://checkstyle.sourceforge.io/google_style.html.
16 https://checkstyle.sourceforge.io/sun_style.html.
17 https://checkstyle.sourceforge.io/index.html.
18 https://checkstyle.sourceforge.io/checks.html.
19 https://scan.coverity.com/.
20 https://scan.coverity.com/faq#what-is-coverity-scan.
21 https://devguide.python.org/coverity.
4

3.4. FindBugs

FindBugs22 is a static analysis tool for evaluating Java code,
more precisely Java bytecode. Despite analyzing bytecode, the
tool is able to highlight the exact position of an issue if also
the source code is provided to the tool.23 The analysis is done
using the GUI, which is engaged through the command line. The
analysis applied by the tool is based on detecting bug patterns.
ccording to FindBugs, the bug patterns arise for the following
ain reasons: difficult language features, misunderstood API fea-

ures, misunderstood invariants when code is modified during
aintenance, and garden variety mistakes.2425 Such bug pat-

erns are classified under 9 different categories: bad practice,
orrectness, experimental, internationalization, malicious code
ulnerability, multithreaded correctness, performance, security,
nd dodgy code. Moreover, the bug patterns are ranked from 1–
0. Rank 1–4 is the scariest group, rank 5–9 is the scary group,
ank 10–14 is the troubling group, and rank 15–20 is the concern
roup.26 It detects a total of 424 rules grouped based on type
nd severity. It categorizes the 424 rules under 9 types: Bad prac-
ice, Correctness, Experimental, Internationalization, Malicious code
ulnerability, Multithreaded correctness, Performance, Security, and
odgy code. Of these 424 rules, 88 are of Bad practice type, 149 are
f Correctness, 3 are of Experimental, 2 are of Internationalization,
7 are of Malicious code vulnerability, 46 are of Multithreaded
orrectness, 29 are of Performance, 11 are of Security, and 79 are
f Dodgy code. In addition to these types, FindBugs ranks these
bug patterns’ from 1–20. Rank 1–4 is the scariest group, rank 5–
is the scary group, rank 10–14 is the troubling group, and rank
5–20 is the concern group.

.5. PMD

PMD27 is a static analysis tool mainly used to evaluate Java
nd Apex, even though it can also be applied to six other pro-
ramming languages. The analysis is done through the command
ine using the tool’s binary distributions. PMD uses a set of rules
o assess code quality according to the main focus areas: unused
ariables, empty catch blocks, unnecessary object creation, and
ore. There are a total of 33 different rule set configurations28 for

ava projects. The rule sets can also be customized according to
he user preference.29 These rules are classified under 8 different
ategories: best practices, code style, design, documentation, er-
or prone, multi threading, performance, and security. Moreover,
he violations of rules are measured on a priority scale from 1–5,
ith 1 being the most severe and 5 being the least.30
PMD detects a total of 305 rules which are grouped based on

ype and severity. PMD categorizes the 305 rules under 8 types:
est Practices, Code Style, Design, Documentation, Error Prone, Mul-
ithreading, Performance, and Security. Of these 305 rules, 51 are
f Best Practices, 62 are of Code Style, 46 are of Design, 5 are of
ocumentation, 98 are of Error Prone, 11 are of Multithreading, 30
re of Performance, and 2 are of Security type. In addition to the
ypes, PMD categorizes the rules according to five priority levels
from P1 ‘‘Change absolutely required’’ to P5 ‘‘Change highly

22 http://findbugs.sourceforge.net.
23 http://findbugs.sourceforge.net/manual/gui.html.
24 http://findbugs.sourceforge.net/findbugs2.html.
25 http://findbugs.sourceforge.net/factSheet.html.
26 http://findbugs.sourceforge.net/bugDescriptions.html.
27 https://pmd.github.io/latest/.
28 https://github.com/pmd/pmd/tree/master/pmd-java/src/main/resources/
rulesets/java.
29 https://pmd.github.io/latest/index.html.
30 https://pmd.github.io/latest/pmd_rules_java.html.

https://checkstyle.sourceforge.io/google_style.html
https://checkstyle.sourceforge.io/sun_style.html
https://checkstyle.sourceforge.io/index.html
https://checkstyle.sourceforge.io/checks.html
https://scan.coverity.com/
https://scan.coverity.com/faq#what-is-coverity-scan
https://devguide.python.org/coverity
http://findbugs.sourceforge.net
http://findbugs.sourceforge.net/manual/gui.html
http://findbugs.sourceforge.net/findbugs2.html
http://findbugs.sourceforge.net/factSheet.html
http://findbugs.sourceforge.net/bugDescriptions.html
https://pmd.github.io/latest/
https://github.com/pmd/pmd/tree/master/pmd-java/src/main/resources/rulesets/java
https://github.com/pmd/pmd/tree/master/pmd-java/src/main/resources/rulesets/java
https://pmd.github.io/latest/index.html
https://pmd.github.io/latest/pmd_rules_java.html

V. Lenarduzzi, F. Pecorelli, N. Saarimaki et al. The Journal of Systems & Software 198 (2023) 111575

O
S
Q
M

a
S
t

4

d
t
s

4

d
o
t
t
q
a
w
f
w
t
d

i
s
p
d
a

optional’’). Rule priority guidelines for default and custom-made
rules can be found in the PMD project documentation.31.

3.6. SonarQube

SonarQube32 is one of the most popular open-source static
code analysis tools for measuring code quality issues. It is pro-
vided as a service by the sonarcloud.io platform or it can
be downloaded and executed on a private server. SonarQube
computes several metrics such as number of lines of code and
code complexity, and verifies code compliance with a specific
set of ‘‘coding rules’’ defined for most common development
languages. If the analyzed source code violates a coding rule, the
tool reports an ‘‘issue’’. The time needed to remove these issues
is called remediation effort.

SonarQube includes reliability, maintainability, and security
rules. Reliability rules, also named Bugs, create quality issues that
‘‘represent something wrong in the code’’ and that will soon be
reflected in a bug. Code smells are considered ‘‘maintainability-
related issues’’ in the code that decrease code readability and
code modifiability. It is important to note that in the category
‘‘code smells’’, SonarQube actually includes some of the code
smells proposed by Fowler and Beck (1999).

SonarQube LTS 6.7.7 detects a total of 413 rules which are
grouped based on type and severity. SonarQube categorizes the
413 rules under 3 types: Bugs, Code Smells, and Vulnerabilities.
f these 413 rules, 107 rules are classified as Bugs, 272 as Code
mells, and 34 as Vulnerabilities. In addition to the types, Sonar-
ube groups the rules under 5 severity typers: Blocker, Critical,
ajor, Minor, and Info. Considering the assigned severity levels,

SonarQube detects 36 Blocker, 61 Critical, 170 Major, 141 Minor,
nd 5 Info rules. Unlike Better Code Hub and Coverity Scan,
onarQube has only one severity and classification type assigned
o each rule.

. Empirical study design

We designed our empirical study according to the guidelines
efined by Wohlin et al. (2000). The following section describes
he goals and specific research questions driving our empirical
tudy as well as the data collection and analysis procedures.

.1. Goal and research questions

The goal of our empirical study is to compare state-of-the-
practice SATs with the aim of assessing their capabilities when
etecting source code quality issues with respect to (1) the types
f problems they can actually identify; (2) the agreement among
hem, and (3) their precision. Our ultimate purpose is to enlarge
he knowledge available on the identification of source code
uality issues with SATs from the perspective of both researchers
nd tool vendors. The former are interested in identifying areas
here the state-of-the-art tools can be improved, thus setting up

uture research directions, while the latter are instead concerned
ith assessing their current capabilities and possibly the limita-
ions that should be addressed in the future to better support
evelopers.
It is important to remark that the goal of the empirical study

s to show and compare the capabilities of existing, widely used
tatic analysis tools independently from the types of analyses they
erform while detecting potential concerns in source code. In-
eed, we are interested in benchmarking the most popular static
nalysis tools with respect to their practical support provided

31 https://pmd.github.io/latest/
32 http://www.sonarsource.org/.
5

by developers, i.e., with respect to the issues they are able to
uncover, the potential gain provided by their combination, and
their overall precision. Our results are meant to inform practi-
tioners on how to benefit more from the capabilities of existing
static analysis tools, other than alerting them on the potential
drawbacks of blindly relying on these tools. In addition, our
findings might raise limitations that researchers and tool vendors
should consider to provide better tools. More specifically, our goal
can be structured around three main research questions (RQs).
As a first step, we conducted a preliminary investigation aiming
at posing the basis for the additional analyses. The goal of our
first research question is to (i) analyze the features the various
tools make available, and (ii) determine how many issues can be
detected on the selected dataset—this is important to understand
whether the selected dataset is actually useful to address the
other research questions.

RQ1. How do the considered static analysis tools compare in
terms of functionalities and distribution of source code quality
issues?

Once we had characterized the tools with respect to what they
are able to identify, we proceeded with a finer-grained investi-
gation aimed at measuring the extent to which SATs agree with
each other. Regarding this aspect, further investigation would not
only benefit tool vendors who want to better understand the
capabilities of their tools compared to others, but would also
benefit practitioners who would like to know whether it is worth
using multiple tools within their code base. Moreover, we were
interested in how the issues from different tools overlap with
each other. We wanted to determine the type and number of
overlapping issues, but also whether the overlapping is between
all tools or just a subset.

RQ2. What is the agreement among different Static Analysis Tools
when detecting source code quality issues?

Finally, we focused on investigating the potential accuracy of
the tools in practice. While they could output numerous rules that
alert developers of the presence of potential quality problems,
it is still possible that some of these rules might represent false
positive instances, i.e., that they wrongly recommend source code
entities to be refactored/investigated. Previous studies have high-
lighted the presence of false positives as one of the main prob-
lems of the tools currently available (Johnson et al., 2013); our
study aims at corroborating and extending the available findings,
as further remarked in Section 4.4.

RQ3. What is the precision of Static Analysis Tools?

All in all, our goal was to provide an updated view on this
matter and understand whether, and to what extent, this problem
has been mitigated in recent years or whether there is still room
for improvement.

4.2. Context of the study

We selected projects from the Qualitas Corpus collection of
software systems (Release 20130901), using the compiled version
of the Qualitas Corpus (Terra et al., 2013). There are two main
reasons leading to the selection of the Qualitas Corpus dataset.
First, it provides compiled versions of software systems. This is a

https://pmd.github.io/latest/
http://www.sonarsource.org/

V. Lenarduzzi, F. Pecorelli, N. Saarimaki et al. The Journal of Systems & Software 198 (2023) 111575

m
M
s
M
w
s
B
t
p

4

t
p
o

s
o
a
h
L
b

f
c
e
C

l
t
i
d
t

s
w
y

t

A
p
e

a

4

a

a
a
t
S
p
t
a
h
b
t
t
f
a
r

d
c
i

a
‘

t
t
s
s

s
T
t
t
t

t

c
t

key requirement in our case, as most of the static analysis tools
considered in our study require compiled code to be executed —
the build phase would have been extremely time-consuming and
error-prone, should have we relied on different datasets (Tufano
et al., 2017). In addition, the Qualitas Corpus dataset allowed us
to perform analyses on a publicly available and well-established
source, which has been often used as a benchmark for software
quality studies (Lewowski and Madeyski, 2022; Singh et al., 2018;
Tavares et al., 2020). As such, we preferred to conduct the study
on this dataset to provide researchers with insights and findings
that can be challenged by other researchers by using the same
dataset.

The dataset contains 112 Java systems with 754 versions,
ore than 18 million LOCs, 16,000 packages, and 200,000 classes.
oreover, the dataset includes projects from different contexts
uch as IDEs, databases, and programming language compilers.
ore information is available in Terra et al. (2013). In our study,
e considered the recent (‘‘r’’) release of each of the 112 available
ystems. Since two of SATs considered, i.e., Coverity Scan and
etter Code Hub, require permissions in the GitHub project or
he upload of a configuration file, we privately uploaded all 112
rojects to our GitHub account in order to enable the analysis.33

.3. Data collection

This section describes the data collection from each tool and
he data collection process. We analyzed a single snapshot of each
roject, considering the release available in the dataset for each
f 112 systems.
SonarQube. We first installed SonarQube LTS 6.7.7 on a private

erver having 128 GB RAM and 4 processors. However, because
f the limitations of the open-source version of SonarQube, we
re allowed to use only one core, therefore more cores would
ave not been beneficial for our scope. We decided to adopt the
TS version (Long-Time Support) since this is the most stable and
est-supported version of the tool.
Coverity Scan. The projects were registered in Coverity Scan

(version 2017.07) by linking the GitHub account and adding all
the projects to the profile. Coverity Scan was set up by down-
loading the tarball file from https://scan.coverity.com/download
and adding the bin directory of the installation folder to the path
in the .bash_profile. Afterwards the building process began,
which was dependent on the type of project in question. Coverity
Scan requires to compile the sources with a special command.
Therefore, we had to compile them, instead of using the original
binaries.

Better Code Hub. The .bettercodehub.yml files were con-
igured by defining the component_depth, languages, and ex-
lusions. The exclusions were defined so that they would
xclude all directories that were not source code, since Better
ode Hub only analyzes source code.
Checkstyle. The JAR file for the Checkstyle analysis was down-

oaded directly from Checkstyle’s website34 in order to engage
he analysis from the command line. The executable JAR file used
n this case was checkstyle-8.30-all.jar. In addition to
ownloading the JAR executable, Checkstlye offers two different
ypes of rule sets for the analysis34.

FindBugs. FindBugs 3.0.1 was installed by running brew in-
tall findbugs in the command line. Once installed, the GUI
as then engaged by writing spotbugs. From the GUI, the anal-
sis was executed through File → New Project. The classpath

33 The GitHub projects, with the related configuration adopted for executing
he tools, will be made public in the case of acceptance of this paper.
34 https://checkstyle.org/#Download.
6

for the analysis was identified to be the location of the project
directory.

PMD. PMD 6.23.0 was downloaded from GitHub35 as a zip file.
fter unzipping, the analysis was engaged by identifying several
arameters: project directory, export file format, rule set, and
xport file name.
More details about the how install and ran the tools are

vailable in our replication package36.

.4. Data analysis

In this section, we describe the analysis methods employed to
ddress our research questions (RQs).
Source code quality issues identified by the tools (RQ1). To

ddress this RQ, we first provide an overview of the features
nd the issues detected by the tools. To this aim, we consulted
he tools’ documentation in order to extract their main features.
pecifically, we collected the list of programming languages sup-
orted by each tool and the typologies of issues they cover. As for
he former, we simply reported programming language support
ccording to the documentation. For the latter case, instead, we
ad to perform a qualitative analysis process (Wohlin et al., 2012)
y applying descriptive and pattern coding (Saldaña, 2021). First,
he documentation of each tool was analyzed in order to extract
he categories of issues covered. Then, two of the authors per-
ormed a standardization of the categories to ensure consistency
nd completeness of the coding process. Finally, the categories
eferring to the same or similar concept were grouped together.

Once having provided an overview of the tools features, in or-
er to determine the tool detection capabilities overlaps, we also
alculated how many issues are generated by the rules violated
n the reference dataset.

In the reminder of the paper, we will refer to all the categories
nd types of rules and analysis checks performed by SATs as
‘rule’’ and to the instances of rules violated in the code as ‘‘issue’’.

Agreement among the tools (RQ2). In this research question
he goal is to inspect whether the tools are similar in terms of
he issues they detect. The assumption is similar tools to have
imilar rules and, further, we expect similar rules to affect the
ame classes, and the same lines of the code.
Tool similarity. Similar tools were identified by comparing all

ix tools with each other, meaning
(6
2

)
= 15 tool pair comparisons.

o determine the similarity of a tool pair t1 and t2, we calculated
he percentage of detected issues that in both tools highlighted
he same position in the source code. The agreement value for
ools t1 and t2 is defined below:

ool agreement(t1, t2)

=
#issues in the same position from t1 and t2

min (#issues from t1, #issues from t2)
(1)

The numerator is the number of times issues from t1 and
t2 were detected in the same code position. The maximum of
this number achieved when all issues generated from one tool
are always present with an issue from the other tool, which is
possible only for the tool that generated less issues. Therefore,
the formula uses minimum in the denominator. In the equation,
issues for t is the total number of issues the tool has identified,
therefore, it is the sum of issues generated by all rules in tool t .

The overlap of the detected issues was determined by ana-
lyzing all possible rule pairs from each tool pair. For each rule
pair (rm, rn), we iterated through all detected instances of rm and
hecked whether an instance of rn was affecting the same posi-
ion. For calculating the tool similarity, this data was aggregated

35 https://github.com/pmd/pmd/releases/download/pmd_releases%2F6.23.0/
pmd-bin-6.23.0.zip.

https://scan.coverity.com/download
https://checkstyle.org/#Download
https://github.com/pmd/pmd/releases/download/pmd_releases%2F6.23.0/pmd-bin-6.23.0.zip
https://github.com/pmd/pmd/releases/download/pmd_releases%2F6.23.0/pmd-bin-6.23.0.zip

V. Lenarduzzi, F. Pecorelli, N. Saarimaki et al. The Journal of Systems & Software 198 (2023) 111575

a
a
t
c
d
r
f
s
r
m
w

s
f
s
a
s
b
a
o

t
t
o
t
r
w
h
t
i
m
n

c
t
b
p
w
8

i
l
c
a
t
a
B
t

a
p
t
r
c
s
e
b
c
b
m
t
a
m
t
r

r
t
p
p

p

to the tool level. For example, in the data set used in this paper,
SonarQube had 275 rules and which generated issues while PMD
had 180, resulting in 275 · 180 = 49,500 possible rule pairs from
that tool pair. In total, we analyzed 339,169 rule pairs as similar
comparison was made for each tool pair (Table 5).

Rule similarity. In addition to tool similarity, we investigated
the similarity of the individual rules from the tools. The similarity
of two rules is determined using the percentage of the instances
of a rule occurring together with another rule. The agreement
value for rule rm when compared to rule rn is defined as below:

rule agreement(rm, rn)

=
#times rm and rn violated in the same position

#total violations of rm
(2)

The data for the numerator was obtained during the data
analysis for the tool agreement, and it has been described there.

Note, that the value is calculated separately for both rules
in a rule pair, i.e., it is possible that rule agreement(r1,r2) ̸= rule
greement(r2,r1). Therefore, the perfect overlap is obtained if the
greement for both rules is equal to one. This means that all
he issues generated by s and r are always detected in the same
lasses or position, and no issues are detected separately in a
ifferent class. Such measure was used as the granularity of the
ules differs greatly between the tools. For example, BCH has only
ew wide rules like ‘‘write clean code’’ where as SonarQube has
everal smaller rules falling under that rule. The lower granularity
ules might always exist with the wider rule as they both are
eant to detect the smaller issues but the wider rule exists also
ithout the smaller rule as it catches other issues as well.
Naturally, most of these rule pairs are not even meant to be

imilar, they might never occur together or they could be defined
or a different level of granularity. However, we decided to in-
pect all possible rule pairs to make the comparison as objective
s possible. This would have not been true, had we manually
elected the inspected rule pairs based on their description. We
elieve similar rules should be found also by comparing all rules
s similar rules should consistently highlight the same positions
f code.
Granularity of the comparisons. In both rule agreement and

ool agreement we have used the term ‘‘in the same position’’ in
heir definition. In this paper, the comparisons were performed
n two granularity levels: class level and line level. On class level
he requirement was for the issues to be found in the same class,
egardless where in the class the issues were located. Practically,
e checked for each issue from one tool whether the other tool
ad a issue in the same class. However, on line level, in addition
he issues being in the same class, the lines affected by the
ssues had to overlap. A third granularity option would have been
ethod level but, as several of the tools did not report it, it was
ot used in the paper.
As the granularity of the rules varies between the tools, we

hecked what fraction of the affected lines are overlapping be-
ween the issues, instead of requiring sufficient overlap between
oth issues. To quantify the degree of overlapping, we used the
ercentage of the lines inside the comparison range. The results
ere grouped based on four percentage thresholds: 100%, 90%,
0%, and 70%.
The concept is illustrated in Fig. 1. The lines represent issues

n a code file, indicating the start and end of the affected code
ines. issue BCH1 is the comparison issue to which other issues are
ompared to. Depending on the used threshold, different issues
re selected based on the overlapping percentage, as shown in
he table associated with the figure. For example, SQ1 would be
lways considered as a similar issue as it is completely ‘‘inside’’
CH1. 90% of PMD1 is within the comparison issue BCH1 and,
herefore, if the selected threshold is 90% or less it is listed as a
7

Fig. 1. Determining issues in the same position as BCH1 at ‘‘line-level’’ for
thresholds 100%, 90%, 80%, and 70%. (RQ2).

similar issue, otherwise it is discarded. However, as less than 70%
of CS1 and CS2 are overlapping with the comparison issue, they
will not be listed as a similar issue regardless of the threshold.

As a final step, we manually inspected all the rules with
agreement 100% to verify if they were related to the same type
of problem. For this purpose, two authors having high expertise
with SAT tools manually checked all the 100% matching rules
applying open coding. In the case of disagreements, a third author
helped to solve the inconsistencies. The whole process lasted
around three hours.

Precision of the tools (RQ3). In our last research question, we
imed at assessing the precision of the considered tools. Since
revious work already assessed the accuracy of static analysis
ools (Johnson et al., 2013), with this analysis we aimed at cor-
oborating or contrasting the findings previously achieved. In any
ase, it is worth remarking immediately that, in the context of our
tudy, we did not consider the conventions used by the consid-
red projects: as such, we could not know if certain issues output
y the tools were actually relevant for developers or if they were
onsidered meaningless. Since the individual conventions used
y the projects are not always explicitly established or easy to
ine, we can only estimate the false positive rate by looking at

he precision of the tools, being aware of the potential bias of this
nalysis. Nonetheless, we still believe that an analysis of this type
ight be useful to researchers and tool vendors to understand

he extent to which the issues output by tools can be considered
eliable.st

From a theoretical point of view, precision is defined as the
atio between the true positive issues identified by a tool and
he total number of issues it detects, i.e., true positives plus false
ositive items (TPs + FPs). Formally, for each tool we computed
recision as follows:

recision =
TPs

TPs + FPs
(3)

It is worth remarking that our focus on precision is driven
by recent findings in the field that showed that the presence of
false positives is among the most critical barriers to the adoption
of static analysis tools in practice (Johnson et al., 2013; Vassallo
et al., 2019). Hence, our analysis provides research community,
practitioners, and tool vendors with indications on the actual
precision of the currently available tools—and aims at possibly
highlighting limitations that can be addressed by further studies.
It is also important to remark that we do not assess recall, i.e., the
number of true positive items identified over the total number
of issues present in a software project, because of the lack of a
comprehensive ground truth. We plan to create a similar dataset

V. Lenarduzzi, F. Pecorelli, N. Saarimaki et al. The Journal of Systems & Software 198 (2023) 111575

c
t
o
e
(
w
w
a
t
9
i
3
S
T
C
C

p
s
c
m
r
s
s
T

a
(
t
t
r
C
i
a
i
c
a
h
c
t
u
t
r
i
T
r
t
o
t

w
A

Table 2
The selected samples to compute the Precision of the six static analysis tools
(RQ3).
SATs # samples

Better Code Hub 375
Checkstyle 384
Coverity Scan 367
FindBugs 379
PMD 380
SonarQube 384

and perform such an additional evaluation as part of our future
research agenda.

When assessing precision, a crucial detail is related to the
omputation of the set of true positive issues identified by each
ool. In the context of our work, we conducted a manual analysis
f the rules highlighted by the six considered tools, thus marking
ach of them as true or false positive based on our analysis of
1) the issue identified and (2) the source code of the system
here the issue was detected. Given the expensive amount of
ork required for a manual inspection, we could not consider
ll the rules output by each tool, but rather focused on statis-
ically significant samples. Specifically, we took into account a
5% statistically significant stratified sample with a 5% confidence
nterval (Sandelowski, 1995) of the 65,133, 8828, 62,293, 402,409,
3,704, and 467,583 items given by Better Code Hub, Coverity
can, SonarQube, Checkstyle, FindBugs, and PMD respectively:
his step led to the selection of a set of 375 items from Better
ode Hub, 367 from Coverity Scan, 384 from SonarQube, 384 from
heckstyle, 379 from FindBugs, and 380 from PMD.
Using stratified sampling, the components of the target sam-

les are separated into distinct groups or strata, and within each
tratum, they are similar to one another and respect key relevant
riteria of the initial sample (including weights, in our case) (Ney-
an, 1992). Therefore, the selection of a stratified sample already

esolves the problem of having different weights. Indeed, this
trategy intrinsically ensures that the weights in the selected
ample are consistent with the ones in the original superset (see
ables 2 and 16).
To increase the reliability of this manual analysis, two of the

uthors of this paper having a high expertise with SAT tools
henceforth called the inspectors) first independently analyzed
he rule samples. They were provided with a spreadsheet con-
aining six columns: (1) the name of the static analysis tool the
ow refers to, i.e., Better Code Hub, Coverity Scan, Sonarqube,
heckstyle, FindBugs, and PMD; (2) the full path of the rule
dentified by the tool that the inspectors had to verify manually;
nd (3) the rule type and specification, e.g., the code smell. The
nspectors’ task was to go over each of the rules and add a seventh
olumn in the spreadsheet that indicated whether the rule was
true or a false positive. During this analysis, the inspectors
ad to first understand the context of the issue, namely the
lass or the project of interest. As such, before analyzing a issue,
hey inspected the project with the aim of having a general
nderstanding of the functionalities implemented. Afterwards,
hey analyzed the specific class affected by a potential problem
aised by the issue and analyzed the content of the class and,
f needed, the content of the other classes called by the class.
his last step, namely the analysis of the class dependencies, was
equired in just five cases; in the others, the inspectors were able
o assess the validity of a issue just by looking at the source code
f the affected class. Both the inspectors were able to complete
he entire process in one week.

After this analysis, the two inspectors had a four-hour meeting
here they discussed their work and resolved any disagreements:
ll the items marked as true or false positive by both inspectors
8

were considered as actual true or false positives; in the case of
a disagreement, the inspectors re-analyzed the rule in order to
provide a common assessment. Overall, after the first phase of
inspection, the inspectors reached an agreement of 0.84—which
we computed using Krippendorff’s alpha Krα (Krippendorff, 2018)
and which is higher than 0.80, which has been reported to be the
standard reference score for Krα (Antoine et al., 2014). Overall, the
inspectors individually spent, approximately, 160 person/hours.

In Section 5.3, we report the precision values obtained for each
of the considered tools and discuss some qualitative examples
that emerged from the manual analysis of the sample dataset.

4.5. Replicability

In order to allow the replication of our study, we have pub-
lished the raw data in a replication package.36

5. Analysis of the results

In this section, we report and discuss the results obtained
when addressing our research questions (RQs).

5.1. Static analysis tools detected issues (RQ1)

Table 3 reports information about the tools’ support for the top
15 programming languages, according to PYPL classification.37
The complete results, including all the programming languages
supported by the six tools are reported in our Appendix. As we
can observe, the most popular programming language is Java,
which is the only one supported by all the considered tools—this
is one of the reasons for the dataset selection in Section 4.2.

Other languages having high support by the selected tools are
Javascript, C/C#/C++, Objective C, Swift, Go, and Kotlin, that are
supported by Better Code Hub, Coverity, and SonarQube (and also
PMD for Javascript).

Turning to the tools perspective, we can observe that Sonar-
Qube is the one providing the best support for the top 15 pro-
gramming languages, covering 11 of them. Almost the same set
of languages are also supported by Better Code Hub and Coverity
which support respectively 10 and 9 out of the top 15 program-
ming languages.

The remaining three tools only focus on a very narrow set
of programming languages. Specifically, Checkstyle and Findbugs
only support Java source code while PMD provides support only
for Java and Javascript.

Table 4 shows the categories of issues covered by the subject
tools. As a result of the coding process described in Section 4.4,
we came out with 5 categories, namely Syntax, Bugs, Security,
Design, Bad practices.

Results of our classification show that the selected tools mainly
deal with design concerns. They all capture design issues and bad
practices (excluding Checkstyle for the latter). Some of the tools
also check for other characteristics such as syntactic violations,
and indicators of bugs/security flaws.

As an overall observation, we can conclude that the selected
tools are mainly focused on the same characteristics, hence justi-
fying the empirical comparison subject of our next two research
questions.

We obtained results only for 47 projects out of the 112 con-
tained in the Qualitas Corpus dataset, applying the rules defined
by Better Code Hub, Checkstyle, Coverity Scan, FindBugs, PMD,
and SonarQube. Unfortunately, the used versions of Better Code
Hub and Coverity Scan were not able to analyze all the dataset.
So, we considered only the projects analyzed by all the six tools.

36 https://figshare.com/s/5df8c271baa0368cd695.
37 https://pypl.github.io/PYPL.html.

https://figshare.com/s/5df8c271baa0368cd695
https://pypl.github.io/PYPL.html

V. Lenarduzzi, F. Pecorelli, N. Saarimaki et al. The Journal of Systems & Software 198 (2023) 111575

1
w
r
w
w
w
r
6
i
c
W
t
a

a
s
(
r
i

a

o
t

Table 3
Support for the top 15 programming languages according to the PYPL index. Results for all the programming languages supported by the tools are reported in
Appendix.
Tool Python Java Javascript C# C/C++ PHP R TypeScript Objective C Swift Go Matlab Kotlin Rust VBA

Better Code Hub x x x x x x x x x x
Checkstyle x
Coverity x x x x x x x x x
FindBugs x
PMD x x
SonarQube x x x x x x x x x x x
t
w
c
w
o
3
t
c

p
a
r
9
i
t

c

o
t

r
p
‘
a
t
r
s
i
T
t

S
C
S
a

Table 4
Typologies of issues spotted by the tools.
Tool Syntax Bugs Security Design Bad practices

Better Code Hub x x
Checkstyle x x
Coverity x x x x
FindBugs x x x
PMD x x x x x
SonarQube x x x x

Table 5
Issues detected by the six SATs in the 47 projects (RQ1).
Tool Detected rule

rule # occurrences # type # severity

Better Code Hub 8 27,888 3 3
Checkstyle 88 9,686,813 12 2
Coverity 130 7,431 26 3
FindBugs 255 33,704 9 3
PMD 275 3,380,493 7 5
SonarQube 180 418,433 3 5

In total, the projects were infected by 936 rules violated
3,554,762 times (number of total issues). 8 (out of 10) rules
ere detected by Better Code Hub 27,888 times, 88 (out of 173)
ules were detected by Checkstyle 9,686,813 times, 130 rules
ere detected by Coverity Scan 7431 times, 255 (out of 424) rules
ere detected by FindBugs 33,704 time, 275 (out of 305) rules
ere detected by PMD 3,380,493 times, and 180 (out of 413)
ules were detected by SonarQube 418.433 times (Tables 5 and
). It is important to note that in Table 5, the detection capability
s empty for Coverity. As mentioned earlier, the full detection
apability is only provided to clients and not on the public API.
e also computed how often rules were violated by grouping

hem based on type and severity. The full results of this additional
nalysis are reported in our replication package36.
Given the scope of rules that were detected, our projects were

ffected by all rules that are detectable by Better Code Hub and by
ome rules that are detectable by Coverity Scan and SonarQube
Table 7). For the sake of readability, we report only the Top-10
ules detected in our projects by the six tools. The complete list
s available in the replication package36.

Finding 1. The selected tools share the same main features.
The amount of rules detected by the six static analysis tools
is significant (936 rules detected 13,554,762 times); hence,
we can proceed with the analysis of the remaining RQs.

5.2. Static analysis tools agreement (RQ2)

Our second research question focused on the analysis of the
greement between the SATs.
Agreement based on the overlapping at ‘‘class-level’’. In

rder to include Coverity Scan in this analysis, we first evaluated
he detection agreement at ‘‘class-level’’, considering each class
9

where the rule detected by the other five tools overlapped at
100% and where at least one rule of Coverity Scan was violated
in the same class.

To calculate Tool similarity (column ‘‘%’’, Table 8), we checked
he occurrences of the rules of both tools in our projects, then
e considered only the minimum value. For example, in Table 8,
alculating the percentage between Checkstyle — PMD rule pairs,
e have 9,686,813 rules Checkstyle detected and 3,380,493 PMD
nes detected. The combination of these rule should be maximum
,380,493 (the minimum value between the two). We calculated
he percentage considering the column ‘‘# occurrences’’ and the
olumn ‘‘# possible occurrences’’.
The Tool similarity on the ‘‘class-level’’ is always low, as re-

orted in Table 8. This means that a piece of code violated by
rule detected by one tool is almost never violated by another

ule detected by another tool. In the best case (Table 8), only
.378% of the possible rule (FindBugs-PMD). Moreover, we did not
nvestigate Tool similarity at ‘‘class-level’’ considering more that
wo tools (e.g. Checkstyle-FindBugs-PMD).

For each rule pair we computed the detection agreement at
lass level. For the sake of readability, we report these results in
Appendix. Specifically, the three tables (Tables 13, 14, and 15)
verview the detection agreement of each rule pair, according to
he procedure described in Section 4.4. As further explained in the
Appendix, for reasoning of space we only showed the 10 most
ecurrent pairs, putting the full set of results in our replication
ackage36. In these tables, the third and fourth columns (eg.
‘#BCH pairs’’ and ‘‘# CHS pairs’’, Table 13) report howmany times
rule instance from a tool exists with another one. The remaining
wo columns report the agreement of each tool considered in the
ule pairs (eg. ‘‘#BCH Agr’’. and ‘‘# CHS Agr’’., Table 13). Results
howed for all the rule pairs that the agreement at ‘‘class-level’’
s very low, as none of the most recurrent rule pairs agree well.
he results also highlighted the difference in the granularity of
he rules.

Agreement based on the overlapping at the ‘‘line-level’’.
ince we cannot compare at ‘‘line-level’’ the rules detected by
overity Scan, we could only consider the remaining five SATs.
everal rule pairs were found according to the 100%, 90%, 80%,
nd 70% thresholds (Fig. 1). Using the threshold of 100% which

indicates that a rule completely resides within the comparison
rule, we found 17,977 rule pairs, as reported in Table 9. Using
the thresholds of 90%, 80%, and 70% the following rule pairs were
found respectively: 17,985, 18,004, and 18,025 (Table 10). These
rules resided partially within the reference rule.

Similarly to what happened with the agreement at ‘‘class-
level’’, it is important to note that the overlap at the ‘‘line-level’’
is always low. Results show that, also in this case, only 9.378%
of the possible rule occurrences are detected in the same line by
the same two tools (FindBugs and PMD). In addition, also in this
case we did find no pair rules at ‘‘line-level’’ considering more
that two tools (e.g. Checkstyle-FindBugs-PMD).

When considering the agreement for each rule pair at ‘‘line-
level‘, we could not obtain any result because of computational
reasons. Indeed, the analysis at line-level of 936 rule types that

V. Lenarduzzi, F. Pecorelli, N. Saarimaki et al. The Journal of Systems & Software 198 (2023) 111575

p
1
a
w
A
B
q
t
T
q

Table 6
Rule diffusion across the 47 projects (RQ1).
Project name #Classes #Methods SQ BCH Coverity Checkstyle PMD FindBugs Total

AOI 865 2 568 10 865 924 123 250 201 108 458 1 979 372 550
Collections 646 2 019 4 545 584 25 85 501 39 893 185 130 733
Colt 627 1 482 7 452 560 62 172 034 47 843 4 227 955
Columba 1 288 2 941 7 030 662 70 166 062 49 068 1 345 224 237
DisplayTag 337 683 853 452 22 32 033 10 137 32 43 529
Drawswf 1 031 1 079 3 493 559 65 368 052 22 264 69 394 502
Emma 509 962 4 451 648 55 68 838 16 524 172 90 688
FindBugs 1 396 4 691 12 496 600 134 320 087 90 309 1 068 424 694
Freecol 1 569 4 857 5 963 607 337 127 363 79 588 704 214 562
Freemind 1 773 3 460 5 698 662 112 128 590 50 873 1 536 187 471
Ganttproject 1 093 2 404 12 349 642 64 71 872 36 689 898 122 514
Hadoop 3 880 10 701 24 125 682 665 284 315 228 966 1 547 540 300
HSQLDB 1 284 5 459 14 139 620 178 192 010 109 625 182 316 754
Htmlunit 3 767 9 061 5 176 924 141 92 998 59 807 467 159 513
Informa 260 644 992 594 56 11 276 9 364 217 22 499
Jag 1 234 1 926 6 091 301 56 24 643 19 818 408 51 317
James 4 138 2 197 6 091 656 82 336 107 29 253 25 372 214
Jasperreports 2 380 4 699 17 575 702 226 643 076 96 000 1 420 758 999
Javacc 269 689 3 693 504 29 24 936 17 784 39 46 985
JBoss 7 650 18 239 42 190 415 51 1 084 739 377 357 1 158 1 505 910
JEdit 2 410 4 918 15 464 630 134 434 183 93 605 74 544 090
JExt 2 798 2 804 7 185 585 339 276 503 42 693 125 327 430
JFreechart 1 152 3 534 6 708 660 88 154 064 89 284 849 251 653
JGraph 314 1 350 2 577 666 128 98 119 22 516 41 124 047
JGgraphPad 433 916 2 550 599 10 62 230 18 777 75 84 241
JGgraphT 330 696 922 562 35 23 808 11 147 15 36 489
JGroups 1 370 4 029 14 497 602 391 265 886 89 601 1 560 372 537
JMoney 183 455 575 426 52 15 377 5 639 118 22 187
Jpf 143 443 522 558 21 14 736 7 054 20 22 911
JRefactory 4 210 5 132 18 165 580 129 207 911 116 452 2 633 345 870
Log4J 674 1 028 2 042 625 125 40 206 15 463 162 58 623
Lucene 4 454 10 332 11 332 707 85 627 683 233 379 585 873 771
Marauroa 266 777 1 228 547 33 53 616 10 681 148 66 253
Maven 1 730 4 455 3 110 642 121 225 017 46 620 1 242 276 752
Megamek 3 225 8 754 14 974 600 321 346 070 174 680 3 430 540 075
Myfaces_core 1 922 5 097 22 247 312 121 619 072 174 790 790 817 332
Nekohtml 82 269 623 460 13 12 987 3 979 56 18 118
PMD 1 263 3 116 8 818 616 50 109 519 47 664 543 167 210
POI 2 276 8 648 19 463 903 771 476 488 162 045 792 660 462
Proguard 1 043 1 815 3 203 646 23 115 466 37 221 6 156 565
Quilt 394 638 1 075 386 13 16 840 7 488 170 25 972
Sablecc 251 886 4 385 520 25 30 840 19 756 101 55 627
Struts 2 598 6 719 8 878 616 57 231 912 106 513 253 348 229
Sunflow 227 670 1 549 478 46 32 251 20 937 63 55 324
Trove 421 477 454 216 78 15 507 5 430 416 22 101
Weka 2 147 6 286 32 258 604 1437 365 535 195 774 4 118 599 726
Xalan 2 174 4 758 18 362 844 232 330 254 121 685 1 864 473 241

Total 74,486 169,763 418,433 27,888 7431 9,686,813 3,380,493 33,704 13,554,762
have been violated 13,554,762 times would have required a pro-
hibitively expensive amount of time/space—according to our esti-
mations, it would have been taken up to 1.5 years—and, therefore,
we preferred excluding it.

Manual validation of the agreement based on the overlap-
ing at ‘‘class-level’’. The manual inspection of the 66 rules with
00% agreement resulted into six couples of rules from Checkstyle
nd PMD. It is interesting to note that for all the other tools, rules
ith 100% agreement were referred to totally different concepts.
s an example, none of the rules agreeing with 100% between
CH and Coverity Scan were considered to be related to the same
uality issue. An example of a rule pair is BCH ‘‘automate_tests’’
hat matches with Coverity Scan rule ‘‘dead default in switch’’.
able 11 reports the rules that resulted to be related to the same
uality issue.

Finding 2. The detection agreement among the different
tools is very low (less than 0.4%). The rule pairs Checkstyle
- PMD as the lowest overlap (0.144%) and FindBugs - PMD
the highest one (9.378%). Consequently also the detection
agreement is very low.
10
Finding 3. Among the 66 rules with 100% detection
agreement, only six are related to the same quality issues.

5.3. Static analysis tools precision (RQ3)

In the context of our last research question, we focused on the
precision of the SATs when employed for potential quality rules
detection. Table 12 reports the results of our manual analyses. As
shown, the precision of most tools is quite low, e.g., SonarQube
has a precision of 18%, with the only exception of CheckStyle
whose precision is equal to 86%.

In general, based on our findings, we can first corroborate
previous findings in the field (Antunes and Vieira, 2009; John-
son et al., 2013; McLean, 2012) and the observations reported
by Johnson et al. (2013), who found through semi-structured
interviews with developers that the presence of false positives
represents one of the main issues that developers face when
using SATs in practice. With respect to the qualitative insights
obtained by interviewing developers (Johnson et al., 2013), our
work concretely quantifies the capabilities of the considered SATs.

V. Lenarduzzi, F. Pecorelli, N. Saarimaki et al. The Journal of Systems & Software 198 (2023) 111575

i
H
t
a
d
p

Table 7
The top-10 issues detected by Better Code Hub, Checkstyle, Coverity Scan, FindBugs, PMD, and SonarQube (RQ1).
Id Better Code Hub Detected rule #

WRITE_CLEAN_CODE 16,055
WRITE_CODE_ONCE 14,692
WRITE_SHORT_UNITS 6,510
AUTOMATE_TESTS 6,475
WRITE_SIMPLE_UNITS 6,362
SMALL_UNIT_INTERFACES 6,352
SEPARATE_CONCERNS_IN_MODULES 5,880
COUPLE_ARCHITECTURE_COMPONENTS_LOOSELY 2,807

Id Checkstyle Detected rule #

IndentationCheck 3,997,581
FileTabCharacterCheck 2,406,876
WhitespaceAroundCheck 865,339
LeftCurlyCheck 757,512
LineLengthCheck 703,429
RegexpSinglelineCheck 590,020
FinalParametersCheck 406,331
ParenPadCheck 333,007
NeedBracesCheck 245,110
MagicNumberCheck 223,398

Id Coverty Scan Detected rule #

Dereference null return value 1,360
Dm: Dubious method used 689
Unguarded read 556
Explicit null dereferenced 514
Resource leak on an exceptional path 494
Dereference after null check 334
Resource leak 301
DLS: Dead local store 293
Missing call to superclass 242
Se: Incorrect definition of serializable class 224

Id FindBugs Detected rule #

BC_UNCONFIRMED_CAST 2,840
DM_NUMBER_CTOR 2,557
BC_UNCONFIRMED_CAST_OF_RETURN_VALUE 2,424
DM_DEFAULT_ENCODING 1,946
RCN_REDUNDANT_NULLCHECK_OF_NONNULL_VALUE 1,544
DLS_DEAD_LOCAL_STORE 1,281
DM_FP_NUMBER_CTOR 959
SE_NO_SERIALVERSIONID 944
REC_CATCH_EXCEPTION 887
SE_BAD_FIELD 878

Id PMD Detected rule #

LawOfDemeter 505,947
MethodArgumentCouldBeFinal 374,159
CommentRequired 368,177
LocalVariableCouldBeFinal 341,240
CommentSize 153,464
DataflowAnomalyAnalysis 152,681
ShortVariable 136,162
UselessParentheses 128,682
BeanMembersShouldSerialize 111,400
ControlStatementBraces 110,241

Id SonarQube Detected rule #

S1213 The members of an interface declaration or class should appear in a pre-defined order 30,888
S125 Sections of code should not be ‘‘commented out’’ 30,336
S00122 Statements should be on separate lines 26,072
S00116 Field names should comply with a naming convention 25,449
S00117 Local variable and method parameter names should comply with a naming convention 23,497
S1166 Exception handlers should preserve the original exceptions 21,150
S106 Standard outputs should not be used directly to log anything 19,713
S1192 String literals should not be duplicated 19,508
S134 Control flow statements ‘‘if’’,‘‘for’’,‘‘while’’,‘‘switch’’ and ‘‘try’’ should not be nested too deeply 17,654
S1132 Strings literals should be placed on the left side when checking for equality 13,576
Looking deeper into the results, we could delineate some
nteresting discussion points. First, we found that for Better Code
ub and Coverity Scan almost two thirds of the recommenda-
ions represented false alarms, while the lowest performance was
chieved by SonarQube. The poor precision of the tools is likely
ue to the high sensitivity of the rules adopted to search for
otential issues in the source code, e.g., threshold values that
11
are too low lead to the identification of false positive TD items.
This is especially true in the case of SonarQube: In our dataset, it
outputs an average of 47.4 violations per source code class, often
detecting potential TD in the code too hastily.

A slightly different discussion is the one related to the other
three SATs, namely PMD, FindBugs, and Checkstyle.

V. Lenarduzzi, F. Pecorelli, N. Saarimaki et al. The Journal of Systems & Software 198 (2023) 111575

r
o
s

i
s
p
c
o
o
i
a
c
a
t
m
P
d
r
c
s

i
a
t
c
f
(
p
a
t
w
a
t
d
t

Table 8
Issue pairs that overlap at the ‘‘class-level’’ (RQ2).
Issue pairs # occurrences # possible occurrences %

Checkstyle - PMD 4872 3,380,493 0.144
SonarQube - PMD 4126 418,433 0.98
FindBugs - PMD 3161 33,704 9.378
SonarQube - Checkstyle 1495 418,433 0.357
FindBugs - Checkstyle 1265 33,704 3.753
BCH-PMD 1017 27,888 3.646
SonarQube - FindBugs 849 33,704 2.518
BCH-SonarQube 517 27,888 1.853
BCH-Checkstyle 440 27,888 1.577
BCH-FindBugs 235 27,888 0.842
Coverity - BCH 117 7431 1.574
Coverity - Checkstyle 128 7431 1.723
Coverity - FindBugs 120 7431 1.615
Coverity - PMD 128 7431 1.723
Coverity - SonarQube 128 7431 1.723

Total 18,598 4,457,178 0.417

Table 9
Issue pairs that overlap at the 100% threshold considering the ‘‘line-level’’
(RQ2).
Issue pairs # occurrences # possible occurrences %

Checkstyle - PMD 4872 3,380,493 0.144
SonarQube - PMD 4126 418,433 0.98
FindBugs - PMD 3161 33,704 9.378
SonarQube - Checkstyle 1495 418,433 0.357
FindBugs - Checkstyle 1265 33,704 3.753
BCH-PMD 1017 27,888 3.646
SonarQube - FindBugs 849 33,704 2.518
BCH-SonarQube 517 27,888 1.853
BCH-CheckSyle 440 27,888 1.577
BCH-FindBugs 235 27,888 0.842

Total 17,977 4,430,023 0.4%

As for the former, we noticed that it typically fails when raising
ules related to naming conventions. For instance, this is the case
f the ‘AbstractName’ rule: it suggests the developer that an ab-
tract class should contain the term Abstract in the name. In our
validation, we discovered that in several cases the recommenda-
tion was wrong because the contribution guidelines established
by developers explicitly indicated alternative naming conven-
tions. A similar problem was found when considering FindBugs.
The precision of the tool is 57% and, hence, almost half of the
rules were labeled as false positives. In this case, one of the most
problematic cases was related to the ‘BC_UNCONFIRMED_CAST’
rules: these are raised when a cast is unchecked and not all
instances of the type casted from can be cast to the type it is
being cast to. In most cases, these rules have been labeled as false
positives because, despite casts were formally unchecked, they
were still correct by design, i.e., the casts could not fail anyway
because developers have implicitly ensured that all of them were
correct.

Finally, Checkstyle was the SAT having the highest precision,
i.e., 86%. When validating the instances output by the tool, we
realized that the rules raised are related to pretty simple checks
in source code that cannot be considered false positives, yet do
not influence too much the functioning of the source code. To
make the reasoning clearer, let consider the case of the ’Inden-
tationCheck’ rule: as the name suggests, it is raised when the
indentation of the code does not respect the standards of the
project. In our sample, these rules were all true positives, hence
contributing to the increase of the precision value. However, the
implementation of these recommendations would improve the
documentation of the source code but not dealing with possible
defects or vulnerabilities. As such, we claim that the adoption
of Checkstyle would be ideal when used in combination with
additional SATs.
 b

12
To broaden the scope of the discussion, the poor performance
achieved by the considered tools reinforces the preliminary re-
search efforts to devise approaches for the automatic/adaptive
configuration of SATs (Nadi et al., 2014; Di Nucci et al., 2017)
as well as for the automatic derivation of proper thresholds
to use when locating the presence of design issues in source
code (Aniche et al., 2016; Fontana Arcelli et al., 2015b). It might
indeed be possible that the integration of those approaches into
the inner workings of the currently available SATs could lead to a
reduction of the number of false positive. In addition, our findings
also suggest that the current SATs should not limit themselves
to the analysis of source code but, for instance, complementing
it with additional resources like naming conventions actually in
place in the target software system.

Finding 4. Most of the considered SATs suffer from a high
number of false positive rules, and their precision ranges
between 18% and 57%. The only exception is Checkstyle
(precision=86%), even though most of the rules it raises
are related to documentation issues rather than functional
problems and, as such, its adoption should be complemented
with other SATs.

6. Discussion and implications

The results of our study provide a number of insights that
can be used by researchers and tool vendors to improve SATs.
Specifically, these are:

There is no silver bullet. According to the results obtained in
our study, and specifically for RQ2, different SAT rules are able
to cover different issues, and can therefore find different forms
of source code quality problems: Hence, we can claim that there
s no silver bullet that is able to guarantee source code quality as-
essment on its own. On the one hand, this finding highlights that
ractitioners interested in detecting quality issues in their source
ode might want to combine multiple SATs to find a larger variety
f problems. On the other hand, and perhaps more importantly,
ur results suggest that the research community should have an
nterest in and be willing to devise more advanced algorithms
nd techniques that can improve the detection capabilities of
urrently available tools. As an example, we can envision a wider
doption of more complex static analysis methods, e.g., taint
racking and typestate, other than ensemble methods or meta-
odels (Catolino and Ferrucci, 2019; Catolino et al., 2019, 2018;
alomba et al., 2017), that can (1) combine the results from
ifferent SATs and (2) account for possible overlaps among the
ules of different SATs. This would allow the presentation of more
omplete reports about the code quality status of the software
ystems to their developers.
Learning to deal with false positives. One of the main find-

ngs of our study concerns with the low performance achieved by
ll SATs in terms of precision of the recommendations provided
o developers (RQ3). Our findings represent the first attempt to
oncretely quantify the capabilities of the considered SATs in the
ield. Moreover, our study provides two practical implications:
1) It corroborates and triangulates the qualitative observations
rovided by Johnson et al. (2013), hence confirming that the real
ccuracy of SATs is threatened by the presence of false posi-
ives; (2) it supports the need for more research on how to deal
ith false positives, and particularly on how to filter likely false
larms (Fontana Arcelli et al., 2015a) and how to select/prioritize
he rules to be presented to developers (Liang et al., 2010; Lenar-
uzzi et al., 2019a). While some preliminary research efforts on
he matter have been made, we believe that more research should

e devoted to these aspects. Finally, our findings may potentially

V. Lenarduzzi, F. Pecorelli, N. Saarimaki et al. The Journal of Systems & Software 198 (2023) 111575

R

Table 10
Issue pairs that overlap at the different thresholds, i.e., 90/80/70%, considering the ‘‘line-level’’ (RQ2).
Issue pairs # occurrences

90% 80% 70% Possible

#(%) #(%) #(%)

Checkstyle - PMD 4872 (0.144) 4874 (0.144) 4876 (0.144) 3,380,493
SonarQube - PMD 4126 (0.986) 4130 (0.987) 4139 (0.989) 418,433
FindBugs - PMD 3167 (9.39) 3173 (9.41) 3173 (9.41) 33,704
SonarQube - Checkstyle 1495 (0.357) 1496 (0.357) 1496 (0.357) 418,433
FindBugs - Checkstyle 1265 (3.753) 1265 (3.753) 1265 (3.753) 33,704
BCH-PMD 1017 (3.646) 1019 (3.646) 1024 (3.647) 27,888
SonarQube - FindBugs 849 (2.519) 849 (2.519) 849 (2.519) 33,704
BCH-SonarQube 517 (1.853) 521 (1.868) 522 (1.868) 27,888
BCH-CheckSyle 440 (1.577) 440 (1.577) 441 (1.578) 27,888
BCH-FindBugs 237 (0.849) 237 (0.849) 240 (0.860) 27,888

Total 18,004 (0.4) 18,004 (0.4) 18,025 (0.4) 4,430,023
Table 11
Rules with 100% agreement related to similar quality issue (RQ2).
Checkstyle PMD Manually validation

JavadocVariableCheck CommentRequired PMD Rule is more generic. Checkstyle refers to variables while PMD to all elements.

MissingJavadocMethodCheck CommentRequired PMD Rule is more generic. Checkstyle refers to methods while PMD to all elements.

StaticVariableNameCheck VariableNamingConventions PMD Rule is more generic. Checkstyle only refers to static variables. PMD to all
variables.

NeedBracesCheck ControlStatementBraces Checkstyle rule is more generic. PMD only refers to control statements. Checkstyle
to all blocks.

ParameterNameCheck FormalParameterNamingConventions PMD defines one rule for both local variables and formal parameters. Checkstyle and
PMD define two separate rules.

EmptyStatementCheck EmptyIfStmt/EmptyWhileStmt PMD and Checkstyle define one rule for both if and while statements. PMD defines
two separate rules.
t
t
t
r
e
d
i
t
a
s
o

S
c
s
w
d

d

Table 12
Precision of the considered SATs over the manually validated sample set of rules
(RQ3).
SAT # rules # True positives Precision

Better Code Hub 375 109 29%
Checkstyle 384 330 86%
Coverity Scan 367 136 37%
FindBugs 379 217 57%
PMD 384 199 52%
SonarQube 384 69 18%

suggest the need for further investigation into the effects of false
positives in practice: For example, it may be worthwhile for
researchers to study what the maximum number of false positive
instances is that developers can deal with, e.g., they should devise
a critical mass theory for false positive ASAT rules (Oliver and
Marwell, 2001) in order to augment the design of existing tools
and the way they present rules to developers.

Complementing static analysis tools. The findings from our
Q2 highlight that most of the issues reported by the static analy-

sis tools are related to rather simple problems, like the writing of
shorter units or the automation of software tests. These specific
problems could possibly be avoided if current SATs tools would
be complemented with effective tools targeting (1) automated
refactoring and (2) automatic test case generation. In other words,
our findings support and strongly reinforce the need for a joint
research effort among the communities of source code quality
improvement and testing, which are called to study possible
synergies between them as well as to devise novel approaches
and tools that could help practitioners complement the outcome
provided by SATs with that of other refactoring and testing tools.
For instance, with effective refactoring tools, the number of viola-
tions output by SATs would be notably reduced, possibly enabling
practitioners to focus on the most serious issues. At the same
time, the opposite is true as well. Running a static analyzer on
13
large projects might lead to have too many potential issues to
address and this would make the resolution of problems infeasi-
ble in practice. Yet, most projects still employ static analyzers in
a continuous integration context (Zampetti et al., 2017) to adhere
to the rules they care about. In this sense, static analyzers might
be used to identify possible refactoring opportunities and guide
developers toward the improvement of source code quality (Im-
tiaz et al., 2019). This point further reinforces the need for a joint
research effort toward a better integration of static analysis tools
and other software engineering methods.

7. Threats to validity

A number of factors might have influenced the results re-
ported in our study. This section discusses the main threats to
validity and how we mitigated them.

Construct Validity. Threats in this category concern the rela-
ionship between theory and observation. A first aspect is related
o the dataset used. In our work, we selected 112 projects from
he Qualitas Corpus (Terra et al., 2013), which is one of the most
eliable data sources in software engineering research (Tempero
t al., 2010). We are aware of the fact that this dataset contains
ata collected in 2013, hence we could have missed some newly
ntroduced constructs (e.g., lambda expressions). This is a limita-
ion of the study, which we could not address because of time
nd computation constraints. Replications of our study on newer
ystems might address this limitation and highlight new insights
n how static analysis tools work in practice.
Another possible threat relates to the configuration of the

ATs employed. None of the considered projects had all the SATs
onfigured and so we had to manually introduce them; in doing
o, we adopted the default configuration of the tools. However,
e are aware that different configurations given directly by the
evelopers of the projects could affect the results.
Nevertheless, it is important to point out that this choice

id not influence our analyses: indeed, we were interested in

V. Lenarduzzi, F. Pecorelli, N. Saarimaki et al. The Journal of Systems & Software 198 (2023) 111575

i
t
w
i
w
m
e
r

comparing the capabilities of existing tools independently from
their practical usage in the considered systems. The problem of
configuring the tools therefore does not change the answers to
our research questions.

Internal Validity. As for potential confounding factors that
may have influenced our findings, it is worth mentioning that
some issues detected by SonarQube were duplicated: in partic-
ular, in some cases the tool reported the same issue violated in
the same class multiple times. To mitigate this issue, we manually
excluded those cases to avoid interpretation bias; we also went
over the rules output by the other SATs employed to check for the
presence of duplicates, but we did not find any. Another relevant
threat concerns with the analysis of the precision of the static
analysis tools (RQ3). By design, we did not analyze whether the
considered projects established conventions or internal policies
to ignore some of the violated rules raised by static analysis
tools. This may have influenced our findings because the reported
precision might not be consistent with the developer’s perception
of the accuracy of the tools. Nonetheless, mining conventions
is not always possible, since some of them are not explicitly
reported by developer. As such, the results of RQ3 might be
an underestimation of the accuracy of the static analysis tools.
We are aware of this limitation, yet we still believe that the
reported results might be interesting for both developers and tool
vendors, since they represent a lower-bound validity of the tools
in practice.

External Validity. Threats in this category are concerned with
the generalization of the results. While we cannot claim that
our results fully represent every Java project, we considered a
large set of projects with different characteristics, domains, sizes,
and architectures. This makes us confident of the validity of our
results in the field, yet replications conducted in other contexts
would be desirable to corroborate the reported findings.

Another discussion point is related to our decision to focus
only on open-source projects. In our case, this was a requirement:
we needed to access the code base of the projects in order
to configure the SATs. Nevertheless, open-source projects are
comparable—in terms of source code quality—to closed-source
or industrial applications (Lenarduzzi et al., 2019d); hence, we
are confident that we might have obtained similar results by
analyzing different projects. Nevertheless, additional replications
would provide further complementary insights and are, therefore,
still desirable.

Finally, we limited ourselves to the analysis of Java projects,
hence we cannot generalize our results to projects in different
programming languages. Therefore, further replications would be
useful to corroborate our results.

Conclusion Validity. With respect to the correctness of the
conclusions reached in this study, this has mainly to do with the
data analysis processes used. In the context of RQ3, we conducted
terative manual analyses in order to study the precision of the
ools, respectively. While we cannot exclude possible imprecision,
e mitigated this threat by involving more than one inspector

n each phase, who first conducted independent evaluations that
ere later merged and discussed. Perhaps more importantly, we
ade all data used in the study publicly available with the aim of
ncouraging replicability, other than a further assessment of our
esults.

In RQ2 we proceeded with an automatic mechanism to study
the agreement among the tools. As explained in Section 4.3,
different SATs might possibly output the same rules in slightly
different positions of the source code, e.g., highlighting the vio-
lation of a rule at two subsequent lines of code. To account for
this aspect, we defined thresholds with which we could manage
those cases where the same rules were presented in different
locations. In this case, too, we cannot exclude possible impreci-
sion; however, we extensively tested our automated data analysis
14
script. More specifically, we manually validated a subset of rules
for which the script indicated an overlap between two tools with
the aim of assessing whether it was correct or not. This manual
validation was conducted by one of the authors of this paper, who
took into account a random sample of 300 candidate overlapping
rules. In this sample, the author could not find any false positives,
meaning that our script correctly identified the agreement among
tools. This further analysis makes us confident of the validity of
the findings reported for RQ2.

8. Conclusion

We performed a large-scale comparison of six popular static
analysis tools (Better Code Hub, CheckStyle, Coverity Scan, Find-
Bugs, PMD, and SonarQube) with respect to the detection of
static analysis rules. We analyzed 47 Java projects from the Qual-
itas Corpus dataset, and derived similar rules that can be de-
tected by the tools. We also compared their detection agreement
at ‘‘line-level’’ and ‘‘class-level’’, and manually analyzed their
precision.

Our future work includes an extension of this study with
the evaluation of the recall, and the in-vivo assessment of the
tools. Furthermore, we plan to conduct additional investigations
into how different types of static analyses, e.g., taint tracking or
typestate, can impact the detection capabilities observed in our
study.

CRediT authorship contribution statement

Valentina Lenarduzzi: Conceptualization, Methodology, Writ-
ing – original draft, Data analysis. Fabiano Pecorelli: Writing -
original draft preparation, Data analysis. Nyyti Saarimaki: Data
analysis, Data curation. Savanna Lujan: Data analysis. Fabio
Palomba: Conceptualization, Methodology, Supervision, Review
& editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

The authors would like to thank the Associate Editor and
anonymous reviewers for the feedback provided during the re-
view process. Fabio is partially supported by the Swiss National
Science Foundation - SNF Project No. PZ00P2_186090. Further-
more, this work has been partially supported by the EMELIOT
national research project, which has been funded by the MUR
under the PRIN 2020 program (Contract No. 2020W3A5FY).

Appendix

In the following, we report more results achieved in the con-
text of RQ2. For each rules pair we computed the detection
agreement at class level as reported in Tables 13, 14, and 15,
according to the process described in Section 4.4. It is worth
remarking that, for the sake of readability, we only show the 10
most recurrent pairs. The results for the remaining thresholds are
reported in the replication package.36

V. Lenarduzzi, F. Pecorelli, N. Saarimaki et al. The Journal of Systems & Software 198 (2023) 111575
Table 13
The 10 most recurrent rule pairs detected in the same class by the considered SATs and their corresponding agreement values (RQ2).
SonarQube FindBugs # SQ pairs # FB pairs SQ Agr. FB Agr.

CommentedOutCodeLine RV_RETURN_VALUE_OF_PUTIFABSENT_IGNORED 2 1 0.000 1.000
S1155 RV_RETURN_VALUE_OF_PUTIFABSENT_IGNORED 1 1 0.000 1.000
S1186 RV_RETURN_VALUE_OF_PUTIFABSENT_IGNORED 1 1 0.000 1.000
S135 RV_RETURN_VALUE_OF_PUTIFABSENT_IGNORED 3 1 0.001 1.000
S1312 RV_RETURN_VALUE_OF_PUTIFABSENT_IGNORED 1 1 0.000 1.000
complex_class RV_RETURN_VALUE_OF_PUTIFABSENT_IGNORED 1 1 0.000 1.000
S1195 DM_DEFAULT_ENCODING 1 1 1.000 0.001
S1195 EI_EXPOSE_REP 1 1 1.000 0.001
S1301 LG_LOST_LOGGER_DUE_TO_WEAK_REFERENCE 1 1 0.001 1.000
S1148 FI_NULLIFY_SUPER 1 1 0.000 1.000

SonarQube PMD # SQ pairs # PMD pairs SQ Agr. PMD Agr.

S1192 FinalizeOnlyCallsSuperFinalize 1 1 0.000 1.000
S2110 JUnit4SuitesShouldUseSuiteAnnotation 1 1 1.000 0.001
S2110 AvoidCatchingGenericException 1 5 1.000 0.000
S2110 AvoidCatchingNPE 1 4 1.000 0.011
S2110 AvoidPrintStackTrace 1 1 1.000 0.000
S2110 CloseResource 1 2 1.000 0.000
S2110 CommentSize 1 2 1.000 0.000
S2110 DataflowAnomalyAnalysis 1 5 1.000 0.000
S2110 JUnit4TestShouldUseBeforeAnnotation 1 1 1.000 0.001
S2110 ShortVariable 1 25 1.000 0.000

SonarQube CheckStyle # SQ pairs # CHS pairs SQ Agr. CHS Agr.

S2252 CommentsIndentationCheck 1 1 1.000 0.000
S2200 NeedBracesCheck 2 12 1.000 0.000
S2123 RedundantModifierCheck 2 56 1.000 0.002
S2123 InvalidJavadocPositionCheck 2 4 1.000 0.000
S2123 RegexpSinglelineCheck 2 42 1.000 0.000
S2123 WhitespaceAroundCheck 2 22 1.000 0.000
S2200 EqualsHashCodeCheck 2 1 1.000 0.002
S2200 FileTabCharacterCheck 2 8 1.000 0.000
S2200 FinalParametersCheck 2 9 1.000 0.000
S2200 IndentationCheck 2 1 1.000 0.000

SonarQube CoverityScan # SQ pairs # CS pairs SQ Agr. CS Agr.

S1244 Unexpected control flow 2 2 0.001 1.000
S00105 Use of hard-coded cryptographic key 1 1 0.000 1.000
S1125 Dead default in switch 4 1 0.001 1.000
S1126 Dead default in switch 2 1 0.001 1.000
S1132 Dead default in switch 1 1 0.000 1.000
S1149 Dead default in switch 1 1 0.000 1.000
S1151 Dead default in switch 8 1 0.001 1.000
S1172 Dead default in switch 4 1 0.002 1.000
S1213 Dead default in switch 26 1 0.001 1.000
S1226 Dead default in switch 7 1 0.001 1.000

CheckStyle FindBugs # CHS pairs # FB pairs CHS Agr. FB Agr.

AvoidStarImportCheck SA_FIELD_SELF_COMPUTATION 8 2 0.000 1.000
FinalParametersCheck NP_NONNULL_FIELD_NOT_INITIALIZED_IN_CONSTRUCTOR 3 1 0.000 1.000
RedundantModifierCheck IC_SUPERCLASS_USES_SUBCLASS_DURING_INITIALIZATION 1 1 0.000 1.000
DesignForExtensionCheck RV_RETURN_VALUE_OF_PUTIFABSENT_IGNORED 8 1 0.000 1.000
NeedBracesCheck TQ_EXPLICIT_UNKNOWN_SOURCE_VALUE_REACHES_NEVER... 28 1 0.000 1.000
JavadocVariableCheck RV_RETURN_VALUE_OF_PUTIFABSENT_IGNORED 8 1 0.000 1.000
JavadocVariableCheck IC_SUPERCLASS_USES_SUBCLASS_DURING_INITIALIZATION 1 1 0.000 1.000
WhitespaceAroundCheck BIT_IOR 10 1 0.000 1.000
JavadocPackageCheck IC_SUPERCLASS_USES_SUBCLASS_DURING_INITIALIZATION 1 1 0.000 1.000
MissingJavadocMethodCheck FI_MISSING_SUPER_CALL 149 1 0.001 1.000

Agr. means Agreement.
Table 14
The 10 most recurrent rule pairs detected in the same class by the considered SATs and their corresponding agreement values (RQ2).
BetterCodeHub CheckStyle # BCH pairs # CHS pairs BCH Agr. CHS Agr.

WRITE_SIMPLE_UNITS AvoidEscapedUnicodeCharactersCheck 1 29859 0.000 0.529
WRITE_SHORT_UNITS AvoidEscapedUnicodeCharactersCheck 1 29859 0.000 0.529
WRITE_CODE_ONCE AvoidEscapedUnicodeCharactersCheck 1 29859 0.000 0.529
WRITE_SIMPLE_UNITS OperatorWrapCheck 1 60694 0.000 0.312
WRITE_SHORT_UNITS OperatorWrapCheck 1 60694 0.000 0.312
WRITE_CODE_ONCE OperatorWrapCheck 1 60694 0.000 0.312
WRITE_SHORT_UNITS IllegalTokenTextCheck 4 418 0.001 0.306
WRITE_SIMPLE_UNITS IllegalTokenTextCheck 4 418 0.001 0.306

(continued on next page)
15

V. Lenarduzzi, F. Pecorelli, N. Saarimaki et al. The Journal of Systems & Software 198 (2023) 111575
Table 14 (continued).
BetterCodeHub CheckStyle # BCH pairs # CHS pairs BCH Agr. CHS Agr.

AUTOMATE_TESTS IllegalTokenTextCheck 2 418 0.000 0.306
WRITE_CODE_ONCE AtclauseOrderCheck 30 210 0.002 0.306

BetterCodeHub CoverityScan # BCH pairs # CS pairs BCH Agr. CS Agr.

AUTOMATE_TESTS Exception leaked to user interface 2 1 0.000 1.000
SEPARATE_CONCERNS_IN_MODULES Unsafe reflection 2 2 0.000 1.000
COUPLE_ARCHITECTURE_COMPONENTS_LOOSELY AT: Possible atomicity violation 2 1 0.001 1.000
WRITE_CLEAN_CODE Use of hard-coded cryptographic key 20 1 0.001 1.000
WRITE_SIMPLE_UNITS Exception leaked to user interface 2 1 0.000 1.000
WRITE_SHORT_UNITS Exception leaked to user interface 2 1 0.000 1.000
WRITE_CODE_ONCE Exception leaked to user interface 2 1 0.000 1.000
WRITE_SHORT_UNITS Unsafe reflection 2 2 0.000 1.000
WRITE_SIMPLE_UNITS Unsafe reflection 2 2 0.000 1.000
AUTOMATE_TESTS Dead default in switch 2 1 0.000 1.000

BetterCodeHub FindBugs # BCH pairs # FB pairs BCH Agr. FB Agr.

WRITE_CODE_ONCE ICAST_BAD_SHIFT_AMOUNT 12 8 0.001 1.000
WRITE_SIMPLE_UNITS SA_LOCAL_SELF_ASSIGNMENT_INSTEAD_OF_FIELD 2 1 0.000 1.000
AUTOMATE_TESTS FI_MISSING_SUPER_CALL 3 1 0.000 1.000
SMALL_UNIT_INTERFACES ICAST_BAD_SHIFT_AMOUNT 12 8 0.002 1.000
WRITE_SHORT_UNITS INT_VACUOUS_BIT_OPERATION 6 1 0.001 1.000
WRITE_SHORT_UNITS RV_RETURN_VALUE_OF_PUTIFABSENT_IGNORED 4 1 0.001 1.000
SEPARATE_CONCERNS_IN_MODULES EQ_COMPARING_CLASS_NAMES 2 1 0.000 1.000
AUTOMATE_TESTS NP_ALWAYS_NULL_EXCEPTION 2 1 0.000 1.000
WRITE_CLEAN_CODE RV_RETURN_VALUE_OF_PUTIFABSENT_IGNORED 4 1 0.000 1.000
AUTOMATE_TESTS ICAST_BAD_SHIFT_AMOUNT 3 8 0.000 1.000

BetterCodeHub PMD # BCH pairs # PMD pairs BCH Agr. PMD Agr.

SEPARATE_CONCERNS_IN_MODULES FinalizeOnlyCallsSuperFinalize 2 1 0.000 1.000
WRITE_CODE_ONCE FinalizeOnlyCallsSuperFinalize 4 1 0.000 1.000
SEPARATE_CONCERNS_IN_MODULES AvoidMultipleUnaryOperators 3 2 0.001 1.000
COUPLE_ARCHITECTURE_COMPONENTS_LOOSELY AvoidMultipleUnaryOperators 3 2 0.001 1.000
SMALL_UNIT_INTERFACES FinalizeOnlyCallsSuperFinalize 4 1 0.001 1.000
WRITE_CLEAN_CODE InvalidLogMessageFormat 2 1 0.000 1.000
AUTOMATE_TESTS FinalizeOnlyCallsSuperFinalize 2 1 0.000 1.000
AUTOMATE_TESTS EmptyStatementBlock 2 160 0.000 0.748
WRITE_SHORT_UNITS EmptyStatementBlock 2 160 0.000 0.748
WRITE_SIMPLE_UNITS EmptyStatementBlock 4 160 0.001 0.748

CheckStyle CoverityScan # CHS pairs # CS pairs CHS Agr. CS Agr.

FinalParametersCheck Unsafe reflection 313 2 0.001 1.000
InvalidJavadocPositionCheck IP: Ignored parameter 4 2 0.000 1.000
NoWhitespaceAfterCheck IP: Ignored parameter 1 2 0.000 1.000
MissingJavadocMethodCheck IP: Ignored parameter 112 2 0.001 1.000
MagicNumberCheck IP: Ignored parameter 50 2 0.000 1.000
LineLengthCheck IP: Ignored parameter 6 2 0.000 1.000
JavadocVariableCheck IP: Ignored parameter 36 2 0.000 1.000
JavadocStyleCheck IP: Ignored parameter 84 2 0.001 1.000
JavadocMethodCheck IP: Ignored parameter 66 2 0.001 1.000
IndentationCheck IP: Ignored parameter 1152 2 0.000 1.000

Agr. means Agreement.
Table 15
The 10 most recurrent rule pairs detected in the same class by the considered SATs and their corresponding agreement values (RQ2).
CheckStyle PMD # CHS pairs # PMD pairs CHS Agr. PMD Agr.

FinalParametersCheck AvoidMultipleUnaryOperators 51 2 0.000 1.000
RegexpSinglelineCheck AvoidMultipleUnaryOperators 75 2 0.000 1.000
NoFinalizerCheck FinalizeOnlyCallsSuperFinalize 1 1 0.015 1.000
VisibilityModifierCheck InvalidLogMessageFormat 15 1 0.000 1.000
AbbreviationAsWordInNameCheck FinalizeOnlyCallsSuperFinalize 1 1 0.000 1.000
NoWhitespaceAfterCheck AvoidMultipleUnaryOperators 7 2 0.000 1.000
VariableDeclarationUsageDistanceCheck AvoidMultipleUnaryOperators 7 2 0.001 1.000
NeedBracesCheck AvoidMultipleUnaryOperators 90 2 0.000 1.000
JavadocParagraphCheck FinalizeOnlyCallsSuperFinalize 1 1 0.000 1.000

(continued on next page)
16

V. Lenarduzzi, F. Pecorelli, N. Saarimaki et al. The Journal of Systems & Software 198 (2023) 111575
Table 15 (continued).
CheckStyle PMD # CHS pairs # PMD pairs CHS Agr. PMD Agr.

NonEmptyAtclauseDescriptionCheck FinalizeOnlyCallsSuperFinalize 10 1 0.000 1.000

CoverityScan FindBugs #CS pairs #FB pairs CS Agr. FB Agr.

UCF: Useless control flow BC_UNCONFIRMED_CAST_OF_RETURN_VALUE 1 2 1.000 0.001
Dead default in switch DLS_DEAD_LOCAL_STORE 1 5 1.000 0.004
DLS: Dead local store NP_ALWAYS_NULL_EXCEPTION 3 1 0.010 1.000
UCF: Useless control flow BC_UNCONFIRMED_CAST 1 1 1.000 0.000
Unsafe reflection NP_LOAD_OF_KNOWN_NULL_VALUE 2 2 1.000 0.012
UCF: Useless control flow UCF_USELESS_CONTROL_FLOW 1 1 1.000 0.011
OGNL injection RCN_REDUNDANT_NULLCHECK_OF_NONNULL_VALUE 1 1 1.000 0.001
Failure to call super.finalize() FI_NULLIFY_SUPER 1 1 0.500 1.000
REC: RuntimeException capture RV_RETURN_VALUE_OF_PUTIFABSENT_IGNORED 1 1 0.013 1.000
USELESS_STRING: Useless/non-informative string... FI_MISSING_SUPER_CALL 5 1 0.250 1.000

CoverityScan PMD # CS pairs # PMD pairs CS Agr. PMD Agr.

Dead default in switch AvoidInstantiatingObjectsInLoops 1 1 1.000 0.000
TLW: Wait with two locks held ShortVariable 1 10 1.000 0.000
TLW: Wait with two locks held UseCorrectExceptionLogging 1 3 1.000 0.010
TLW: Wait with two locks held UseConcurrentHashMap 1 5 1.000 0.002
TLW: Wait with two locks held UnusedImports 1 21 1.000 0.000
TLW: Wait with two locks held UnnecessaryFullyQualifiedName 1 2 1.000 0.000
TLW: Wait with two locks held TooManyMethods 1 1 1.000 0.000
TLW: Wait with two locks held TooManyFields 1 1 1.000 0.001
TLW: Wait with two locks held StdCyclomaticComplexity 1 2 1.000 0.000
TLW: Wait with two locks held ProperLogger 1 2 1.000 0.001

FindBugs PMD # FB pairs # PMD pairs FB Agr. PMD Agr.

DMI_EMPTY_DB_PASSWORD LawOfDemeter 1 9 1.000 0.000
TESTING OnlyOneReturn 1 169 1.000 0.002
ICAST_BAD_SHIFT_AMOUNT DataflowAnomalyAnalysis 8 100 1.000 0.001
BIT_IOR SignatureDeclareThrowsException 1 14 1.000 0.000
BC_IMPOSSIBLE_DOWNCAST_OF_TOARRAY ForLoopCanBeForeach 1 6 1.000 0.000
LG_LOST_LOGGER_DUE_TO_WEAK_REFERENCE MethodArgumentCouldBeFinal 1 62 1.000 0.000
QF_QUESTIONABLE_FOR_LOOP MethodArgumentCouldBeFinal 1 6 1.000 0.000
HRS_REQUEST_PARAMETER_TO_HTTP_HEADER MethodArgumentCouldBeFinal 1 6 1.000 0.000
ICAST_BAD_SHIFT_AMOUNT ConfusingTernary 8 4 1.000 0.000
BIT_IOR ConfusingTernary 1 3 1.000 0.000

SonarQube BetterCodeHub # SQ pairs # BCH pairs SQ Agr. BCH Agr.

S2275 COUPLE_ARCHITECTURE_COMPONENTS_LOOSELY 1 2 1.000 0.001
S2275 AUTOMATE_TESTS 1 2 1.000 0.000
S888 COUPLE_ARCHITECTURE_COMPONENTS_LOOSELY 2 4 0.667 0.001
S888 WRITE_CLEAN_CODE 2 10 0.667 0.001
S888 WRITE_CODE_ONCE 2 26 0.667 0.002
S888 AUTOMATE_TESTS 2 2 0.667 0.000
S888 SEPARATE_CONCERNS_IN_MODULES 2 2 0.667 0.000
ObjectFinalizeOverridenCalls SuperFinalizeCheck AUTOMATE_TESTS 1 3 0.500 0.000
S2232 SEPARATE_CONCERNS_IN_MODULES 1 1 0.500 0.000
S2232 AUTOMATE_TESTS 1 1 0.500 0.000

Agr. means Agreement.
Table 16
Programming languages supported by the tools.
Tool C C# C++ Go Groovy Java Javascript Objective C Perl Python Ruby Scala

Better Code Hub x x x x x x x x x x x x
Checkstyle x
Coverity x x x x x x x x x
FindBugs x
PMD x x x
SonarQube x x x x x x x x x x

Tool Shell
Script

Solidity Swift TypeScript Kotlin VB.NET Salesforce.com Visualforce Modelica PL PL Apache
Velocity

Better Code Hub x x x x x
Checkstyle
Coverity x x x
FindBugs
PMD x x x x x
SonarQube x x x x x x

Tool XML XSL Terraform CloudFormation ABAP COBOL CSS Flex HTML5 RPG T-SQL VB6

Better Code Hub
Checkstyle
Coverity
FindBugs
PMD x x
SonarQube x x x x x x x x x x x
17

V. Lenarduzzi, F. Pecorelli, N. Saarimaki et al. The Journal of Systems & Software 198 (2023) 111575

A

A

A

A

A

A

B

B

C

C

C

D

E

F

F

F

F

H

I

J

K

K

L

L

References

Al Mamun, M.A., Khanam, A., Grahn, H., Feldt, R., 2010. Comparing four static
analysis tools for java concurrency bugs. In: Third Swedish Workshop on
Multi-Core Computing (2010).

niche, M., Treude, C., Zaidman, A., Van Deursen, A., Gerosa, M.A., 2016. SATT:
Tailoring code metric thresholds for different software architectures. In:
International Working Conference on Source Code Analysis and Manipulation
(SCAM 2016). pp. 41–50.

ntoine, J.-Y., Villaneau, J., Lefeuvre, A., 2014. Weighted krippendorff’s alpha is
a more reliable metrics for multi-coders ordinal annotations: experimental
studies on emotion, opinion and coreference annotation. In: 14th Conference
of the European Chapter of the Association for Computational Linguistics
(2014). pp. 550–559.

ntunes, N., Vieira, M., 2009. Comparing the effectiveness of penetration testing
and static code analysis on the detection of sql injection vulnerabilities in
web services. In: International Symposium on Dependable Computing (2009).

vgeriou, P., Taibi, D., Ampatzoglou, A., Arcelli Fontana, F., Besker, T., Chatzigeor-
giou, A., Lenarduzzi, V., Martini, A., Moschou, N., Pigazzini, I., Saarimäki, N.,
Sas, D., Soares de Toledo, S., Tsintzira, A., 2021. An overview and comparison
of technical debt measurement tools. IEEE Softw..

yewah, N., Hovemeyer, D., Morgenthaler, J.D., Penix, J., Pugh, W., 2008. Using
static analysis to find bugs. IEEE Softw. 25, 22–29.

yewah, N., Pugh, W., 2010. The google FindBugs fixit. In: 19th International
Symposium on Software Testing and Analysis (2010). pp. 241–252.

eller, M., Bholanath, R., McIntosh, S., Zaidman, A., 2016. Analyzing the state of
static analysis: A large-scale evaluation in open source software. In: 23rd
International Conference on Software Analysis, Evolution, and Reengineering
(SANER 2016). 1, pp. 470–481.

odden, E., 2018. Self-adaptive static analysis. In: 40th International Conference
on Software Engineering: New Ideas and Emerging Results (ICSE 2018). pp.
45–48.

atolino, G., Ferrucci, F., 2019. An extensive evaluation of ensemble techniques
for software change prediction. J. Softw.: Evol. Process e2156.

atolino, G., Palomba, F., De Lucia, A., Ferrucci, F., Zaidman, A., 2018. Enhancing
change prediction models using developer-related factors. J. Syst. Softw. 143,
14–28.

atolino, G., Palomba, F., Fontana Arcelli, F., De Lucia, A., Zaidman, A., Fer-
rucci, F., 2019. Improving change prediction models with code smell-related
information. arXiv preprint arXiv:1905.10889.

i Nucci, D., Palomba, F., Oliveto, R., De Lucia, A., 2017. Dynamic selection of
classifiers in bug prediction: An adaptive method. Trans. Emerg. Top. Comput.
Intell. 1 (3), 202–212.

rnst, N.A., Bellomo, S., Ozkaya, I., Nord, R.L., Gorton, I., 2015. Measure it? Man-
age it? Ignore it? Software practitioners and technical debt. In: Symposium
on the Foundations of Software Engineering. pp. 50–60.

lanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R., 2002.
Extended static checking for java. In: Conference on Programming Language
Design and Implementation (2002). pp. 234–245.

ontana Arcelli, F., Ferme, V., Zanoni, M., 2015a. Filtering code smells detection
results. In: International Conference on Software Engineering-Volume 2 (ICSE
2015). pp. 803–804.

ontana Arcelli, F., Ferme, V., Zanoni, M., Yamashita, A., 2015b. Automatic metric
thresholds derivation for code smell detection. In: International Workshop
on Emerging Trends in Software Metrics (2015). pp. 44–53.

owler, M., Beck, K., 1999. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Longman Publishing Co., Inc..

eckman, S., Williams, L., 2011. A systematic literature review of actionable
alert identification techniques for automated static code analysis. Inf. Softw.
Technol. 53 (4), 363–387, Special section: Software Engineering track of the
24th Annual Symposium on Applied Computing.

mtiaz, N., Murphy, B., Williams, L., 2019. How do developers act on static
analysis alerts? an empirical study of coverity usage. In: 2019 IEEE 30th
International Symposium on Software Reliability Engineering (ISSRE 2019).
IEEE, pp. 323–333.

ohnson, B., Song, Y., Murphy-Hill, E., Bowdidge, R., 2013. Why don’t software
developers use static analysis tools to find bugs? In: 2013 35th International
Conference on Software Engineering (ICSE 2013). IEEE, pp. 672–681.

ong, D., Zheng, Q., Chen, C., Shuai, J., Zhu, M., 2007. ISA: A source code
static vulnerability detection system based on data fusion. In: International
Conference on Scalable Information Systems. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering).

rippendorff, K., 2018. Content Analysis: An Introduction to its Methodology.
Sage publications.

enarduzzi, V., Lomio, F., Huttunen, H., Taibi, D., 2019a. Are SonarQube rules
inducing bugs? In: International Conference on Software Analysis, Evolution
and Reengineering (SANER). Preprint: arXiv:1907.00376.

enarduzzi, V., Martini, A., Taibi, D., Tamburri, D.A., 2019b. Towards surgically-
precise technical debt estimation: Early results and research roadmap.
In: International Workshop on Machine Learning Techniques for Software
Quality Evaluation (2019). In: MaLTeSQuE 2019, pp. 37–42.
18
Lenarduzzi, V., Saarimäki, N., Taibi, D., 2020. Some SonarQube issues have a
significant but SmallEffect on faults and changes. a large-scale empirical
study. J. Syst. Softw. 170.

Lenarduzzi, V., Sillitti, A., Taibi, D., 2019c. A survey on code analysis tools
for software maintenance prediction. In: Software Engineering for Defence
Applications - SEDA 2018. In: Advances in Intelligent Systems and Computing
(AISC), 925, Springer-Verlag.

Lenarduzzi, V., Tosi, D., Lavazza, L., Morasca, S., 2019d. Why do developers adopt
open source software? Past, present and future. In: Open Source Systems.
Springer International Publishing, pp. 104–115.

Lewowski, T., Madeyski, L., 2022. How far are we from reproducible research
on code smell detection? A systematic literature review. Inf. Softw. Technol.
144, 106783.

Liang, G., Wu, L., Wu, Q., Wang, Q., Xie, T., Mei, H., 2010. Automatic construction
of an effective training set for prioritizing static analysis warnings. In: Int.
Conf. on Automated Software Engineering (ASE 2010). pp. 93–102.

Lu, B., Dong, W., Yin, L., Zhang, L., 2018. Evaluating and integrating diverse bug
finders for effective program analysis. In: Bu, L., Xiong, Y. (Eds.), Software
Analysis, Testing, and Evolution (2018). Cham, pp. 51–67.

Mantere, M., Uusitalo, I., Roning, J., 2009. Comparison of static code anal-
ysis tools. In: Int. Conf. on Emerging Security Information, Systems and
Technologies (2009). pp. 15–22.

Marcilio, D., Bonifácio, R., Monteiro, E., Canedo, E., Luz, W., Pinto, G., 2019. Are
static analysis violations really fixed? A closer look at realistic usage of
SonarQube. In: 27th International Conference on Program Comprehension
(ICPC 2019). pp. 209–219.

McLean, R.K., 2012. Comparing static security analysis tools using open source
software. In: Int. Conf. on Software Security and Reliability (2012). pp. 68–74.

Muske, T., Talluri, R., Serebrenik, A., 2018. Repositioning of static analysis alarms.
In: 27th International Symposium on Software Testing and Analysis (2018).
pp. 187–197.

Nadi, S., Berger, T., Kästner, C., Czarnecki, K., 2014. Mining configuration con-
straints: Static analyses and empirical results. In: International Conference
on Software Engineering (ICSE 2014). ACM, pp. 140–151.

Nagappan, N., Ball, T., 2005. Static analysis tools as early indicators of pre-release
defect density. In: 27th International Conference on Software Engineering
(ICSE 2005). pp. 580–586.

Nanda, M.G., Gupta, M., Sinha, S., Chandra, S., Schmidt, D., Balachandran, P., 2010.
Making defect-finding tools work for you. In: 32nd ACM/IEEE International
Conference on Software Engineering - Volume 2 (ICSE 2010). pp. 99–108.

Neyman, J., 1992. On the two different aspects of the representative method:
the method of stratified sampling and the method of purposive selection.
In: Breakthroughs in Statistics. Springer, pp. 123–150.

Oliver, P.E., Marwell, G., 2001. Whatever happened to critical mass theory? A
retrospective and assessment. Sociol. Theory 19 (3), 292–311.

Palomba, F., Zanoni, M., Fontana Arcelli, F., De Lucia, A., Oliveto, R., 2017. Toward
a smell-aware bug prediction model. Trans. Softw. Eng. 45 (2), 194–218.

Rahman, F., Khatri, S., Barr, E.T., Devanbu, P., 2014. Comparing static bug finders
and statistical prediction. In: 36th International Conference on Software
Engineering (ICSE 2014). pp. 424–434.

Rutar, N., Almazan, C.B., Foster, J.S., 2004. A comparison of bug finding tools for
Java. In: Symposium on Software Reliability Engineering (2004). pp. 245–256.

Ruthruff, J.R., Penix, J., Morgenthaler, J.D., Elbaum, S., Rothermel, G., 2008.
Predicting accurate and actionable static analysis warnings: An experimental
approach. In: 30th International Conference on Software Engineering (ICSE
2008). pp. 341–350.

Saarimäki, N., Lenarduzzi, V., Taibi, D., 2019. On the diffuseness of code technical
debt in open source projects. In: International Conference on Technical Debt
(TechDebt 2019).

Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon, L., Jaspan, C., 2018. Lessons
from building static analysis tools at Google. Commun. ACM 61 (4), 58–66.

Saldaña, J., 2021. The Coding Manual for Qualitative Researchers. sage.
Sandelowski, M., 1995. Sample size in qualitative research. Res. Nurs. Health 18

(2), 179–183.
Schnappinger, M., Osman, M.H., Pretschner, A., Fietzke, A., 2019. Learning a

classifier for prediction of maintainability based on static analysis tools. In:
27th International Conference on Program Comprehension (ICPC 2019). pp.
243–248.

Singh, A., Bhatia, R., Singhrova, A., 2018. Taxonomy of machine learning algo-
rithms in software fault prediction using object oriented metrics. Procedia
Comput. Sci. 132, 993–1001.

Taibi, D., Janes, A., Lenarduzzi, V., 2017. How developers perceive smells in
source code: A replicated study. Inf. Softw. Technol. 92, 223–235.

Tavares, C., Bigonha, M., Figueiredo, E., 2020. Analyzing the impact of refactoring
on bad smells. In: Proceedings of the 34th Brazilian Symposium on Software
Engineering (2020). pp. 97–101.

Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H., Noble, J.,
2010. The qualitas corpus: A curated collection of java code for empirical
studies. In: Asia Pacific Software Engineering Conference. pp. 336–345.

http://refhub.elsevier.com/S0164-1212(22)00251-5/sb1
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb1
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb1
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb1
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb1
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb2
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb2
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb2
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb2
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb2
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb2
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb2
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb3
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb3
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb3
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb3
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb3
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb3
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb3
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb3
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb3
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb4
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb4
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb4
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb4
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb4
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb5
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb5
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb5
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb5
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb5
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb5
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb5
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb6
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb6
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb6
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb7
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb7
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb7
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb8
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb8
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb8
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb8
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb8
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb8
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb8
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb9
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb9
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb9
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb9
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb9
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb10
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb10
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb10
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb11
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb11
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb11
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb11
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb11
http://arxiv.org/abs/1905.10889
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb13
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb13
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb13
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb13
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb13
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb14
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb14
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb14
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb14
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb14
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb15
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb15
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb15
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb15
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb15
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb16
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb16
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb16
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb16
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb16
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb17
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb17
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb17
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb17
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb17
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb18
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb18
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb18
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb19
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb19
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb19
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb19
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb19
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb19
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb19
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb20
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb20
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb20
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb20
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb20
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb20
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb20
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb21
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb21
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb21
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb21
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb21
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb22
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb22
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb22
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb22
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb22
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb22
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb22
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb23
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb23
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb23
http://arxiv.org/abs/1907.00376
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb25
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb25
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb25
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb25
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb25
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb25
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb25
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb26
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb26
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb26
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb26
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb26
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb27
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb27
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb27
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb27
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb27
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb27
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb27
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb28
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb28
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb28
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb28
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb28
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb29
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb29
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb29
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb29
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb29
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb30
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb30
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb30
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb30
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb30
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb31
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb31
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb31
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb31
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb31
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb32
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb32
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb32
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb32
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb32
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb33
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb33
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb33
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb33
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb33
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb33
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb33
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb34
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb34
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb34
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb35
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb35
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb35
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb35
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb35
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb36
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb36
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb36
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb36
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb36
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb37
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb37
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb37
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb37
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb37
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb38
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb38
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb38
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb38
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb38
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb39
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb39
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb39
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb39
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb39
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb40
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb40
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb40
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb41
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb41
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb41
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb42
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb42
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb42
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb42
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb42
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb43
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb43
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb43
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb44
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb44
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb44
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb44
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb44
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb44
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb44
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb45
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb45
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb45
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb45
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb45
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb46
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb46
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb46
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb47
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb48
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb48
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb48
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb49
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb49
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb49
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb49
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb49
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb49
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb49
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb50
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb50
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb50
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb50
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb50
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb51
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb51
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb51
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb52
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb52
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb52
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb52
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb52
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb53
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb53
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb53
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb53
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb53

V. Lenarduzzi, F. Pecorelli, N. Saarimaki et al. The Journal of Systems & Software 198 (2023) 111575

T

T

T

T

V

V

W

W

W

W

Z

Z

V
o
d
e
o
P
F
a
U
S

Terra, R.M., Miranda, L.F., Valente, M.T., da Silva Bigonha, R., 2013. Qualitas.class
corpus: a compiled version of the qualitas corpus. ACM SIGSOFT Softw. Eng.
Notes 38, 1–4.

homas, T.W., Lipford, H., Chu, B., Smith, J., Murphy-Hill, E., 2016. What questions
remain? an examination of how developers understand an interactive static
analysis tool. In: Symposium on Usable Privacy and Security (2016).

hung, F., Lucia, Lo, D., Jiang, L., Rahman, F., Devanbu, P.T., 2015. To what extent
could we detect field defects? An extended empirical study of false negatives
in static bug-finding tools. Autom. Softw. Eng. 22 (4), 561–602.

omas, P., Escalona, M.J., Mejias, M., 2013. Open source tools for measuring
the internal quality of java software products. A survey. Comput. Stand.
Interfaces 36 (1), 244–255.

ufano, M., Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A., Poshy-
vanyk, D., 2017. There and back again: Can you compile that snapshot? J.
Softw.: Evol. Process 29 (4), e1838.

assallo, C., Panichella, S., Palomba, F., Proksch, S., Gall, H.C., Zaidman, A., 2019.
How developers engage with static analysis tools in different contexts. Empir.
Softw. Eng. 1–39.

assallo, C., Panichella, S., Palomba, F., Proksch, S., Zaidman, A., Gall, H.C., 2018.
Context is king: The developer perspective on the usage of static analysis
tools. In: 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER 2018). pp. 38–49.

agner, S., Jürjens, J., Koller, C., Trischberger, P., 2005. Comparing bug finding
tools with reviews and tests. In: International Conference on Testing of
Communicating Systems (2005). pp. 40–55.

ilander, J., Kamkar, M., 2002. A comparison of publicly available tools for static
intrusion prevention. In: Workshop on Secure IT Systems (2002).

ohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A., 2000.
Experimentation in software engineering: An introduction.

ohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A., 2012.
Experimentation in Software Engineering. Springer Science & Business Media.

ampetti, F., Scalabrino, S., Oliveto, R., Canfora, G., Di Penta, M., 2017. How
open source projects use static code analysis tools in continuous integration
pipelines. In: Int. Conf. on Mining Software Repositories (2017). pp. 334–344.

heng, J., Williams, L., Nagappan, N., Snipes, W., Hudepohl, J.P., Vouk, M.A., 2006.
On the value of static analysis for fault detection in software. IEEE Trans.
Softw. Eng. 32 (4), 240–253.

alentina Lenarduzzi is an assistant professor (tenure track) at the University
f Oulu (Finland). Her research activities are related to modern software
evelopment practices and methodologies, including data analysis in software
ngineering, software quality, software maintenance, and evolution, focusing
n Technical Debt as well as code and architectural smells. She got the
h.D. in Computer Science in 2015 and was a postdoctoral researcher at the
ree University of Bozen-Bolzano, (Italy), at the Tampere University (Finland),
nd at LUT University (Finland). Moreover, she was visiting researcher at the
niversity of Kaiserslautern (TUK) and the Fraunhofer Institute for Experimental
oftware Engineering IESE (Germany). She served as a program committee
19
member of various international conferences (e.g., ICPC, ICSME, ESEM), and for
various international journals (e.g., TSE, EMSE, JSS, IST) in the field of software
engineering. She has been program co-chair of OSS 2021 and TechDebt 2022,
SEAA 2023, and PROFES 2023. She was also one of the organizer of the last
edition of MaLTeSQuE workshop (2022) collocated with ESEC/FSE. Dr. Lenarduzzi
is recognized by the Journal of Systems and Software (JSS) as one of the most
active SE researcher in top-quality journals in the period 2013 to 2020.

Fabiano Pecorelli is a researcher at Tampere University, Finland. He received
a bachelor’s and master’s degree in computer science from the University of
Salerno, Italy. In 2018, he started a Ph.D. at the University of Salerno, under
the supervision of Professor Andrea De Lucia. He has already submitted a
Ph.D. Thesis about technical debt to be defended in March 2022. His research
interests include software code and test code quality, predictive analytics,
mining software repositories, software maintenance and evolution, and empirical
software engineering. For more information, visit his website at fabianopecorelli.
github.io.

Nyyti Saarimäki is a software engineering Ph.D. student at Tampere University,
Finland. She received her B.Sc. in mathematics in 2016 and M.Sc. in theoret-
ical computer science in 2018 from Tampere University of Technology. Her
main research interests include data analysis and adapting observational study
methodologies from epidemiology to empirical software engineering.

Savanna Lujan received her bachelor’s degree in computer science from Tam-
pere University in 2020, with a Thesis on the comparison of warning categories
generated by static analysis tools conducted under the supervision of Professor
Davide Taibi.

Fabio Palomba is an assistant professor at the Software Engineering (SeSa) Lab
of the University of Salerno. He received the European Ph.D. degree in Manage-
ment & Information Technology in 2017. His Ph.D. Thesis was the recipient of
the 2017 IEEE Computer Society Best Ph.D. Thesis Award. His research interests
include software maintenance and evolution, empirical software engineering,
source code quality, and mining software repositories. In 2019 he was the
recipient of an SNSF Ambizione grant, one of the most prestigious individual
research grants in Europe. He serves and has served as a program committee
member of various international conferences (e.g., MSR, ICSME), and as referee
for various international journals (e.g., TSE, EMSE) in the field of software
engineering. He has been program cochair of ICPC 2021, industrial track co-chair
of SANER 2022, ERA track co-chair of MobileSoft 2022, other than program co-
chair of MaLTeSQuE 2018 and 2019. Since 2021 he is Editorial Board Member
of the Springer’s Empirical Software Engineering Journal (EMSE) – formerly, he
was within the Review Board since 2016 – and the e-Informatica Software
Engineering Journal (EISEJ). He is Review Board Member and Editorial Board
Member of several journals. For his reviewing activities, he was the recipient of
ten Distinguished/Outstanding Reviewer Awards.

http://refhub.elsevier.com/S0164-1212(22)00251-5/sb54
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb54
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb54
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb54
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb54
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb55
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb55
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb55
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb55
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb55
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb56
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb56
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb56
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb56
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb56
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb57
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb57
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb57
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb57
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb57
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb58
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb58
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb58
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb58
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb58
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb59
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb59
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb59
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb59
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb59
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb60
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb60
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb60
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb60
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb60
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb60
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb60
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb61
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb61
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb61
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb61
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb61
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb62
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb62
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb62
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb63
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb63
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb63
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb64
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb64
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb64
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb65
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb65
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb65
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb65
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb65
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb66
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb66
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb66
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb66
http://refhub.elsevier.com/S0164-1212(22)00251-5/sb66

	A critical comparison on six static analysis tools: Detection, agreement, and precision
	Introduction
	Related Work
	Selection of the Static Analysis Tools
	Better Code Hub
	Checkstyle
	Coverity Scan
	FindBugs
	PMD
	SonarQube

	Empirical Study Design
	Goal and Research Questions
	Context of the Study
	Data Collection
	Data Analysis
	Replicability

	Analysis of the Results
	Static Analysis Tools detected issues (RQ1)
	Static Analysis Tools Agreement (RQ2)
	Static Analysis Tools precision (RQ3)

	Discussion and Implications
	Threats to Validity
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix
	References

