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Subsystem-Based Control with Modularity for
Strict-Feedback Form Nonlinear Systems

Janne Koivumäki1, Jukka-Pekka Humaloja2, Lassi Paunonen2, Wen-Hong Zhu3 and Jouni Mattila1

Abstract—This study proposes an adaptive subsystem-based
control (SBC) for systematic and straightforward nonlinear con-
trol of nth-order strict-feedback form (SFF) systems. By decom-
posing the SFF system to subsystems, a generic term (namely
stability connector) can be created to address dynamic interactions
between the subsystems. This 1) enables modular control design
with global asymptotic stability, 2) such that the control design
and its stability analysis can be performed locally at a subsystem
level, 3) while avoiding an excessive growth of the control design
complexity when the system order n increases. The above prop-
erties make the proposed method suitable especially for high-
order systems. We also design a smooth projection function for
the system parametric uncertainties. The efficiency of the method
is demonstrated in simulations with a nonlinear 5th-order system.

Index Terms—Nonlinear control, model-based control, adap-
tive control, global asymptotic stability, modular control.

I. INTRODUCTION

NONLINEAR model-based control aims to design a spe-
cific feedforward (FF) compensation term based on the

system inverse dynamics to generate the control output(s) from
the system states and desired input signals [1]. If the FF com-
pensation can exactly capture the inverse of the plant dynamics
for all frequencies, an infinite control bandwidth with zero
tracking error becomes theoretically possible [2], [3]. While
early control methods, e.g., feedback linearization [4], aimed
to cancel (or linearize) the system nonlinearities, adaptive
backstepping [5] became a significant breakthrough in nonlin-
ear systems control by incorporating the nonlinearities towards
ideal FF compensation with global asymptotic stability.

This study proposes globally asymptotically stable adaptive
subsystem-based control (SBC) for nth-order strict-feedback
form (SFF) systems. The proposed method has built-in modu-
larity and it avoids excessive growth of the control design com-
plexity when the system order n increases (an issue reported
for backstepping-based methods in several studies [6]–[14]).
Dynamic surface control (DSC) [6], [7], adaptive DSC [8] and
neural network (NN) adaptive DSC [9] are previously devel-
oped as an alternative to backstepping to avoid the reported
“explosion of complexity” with semi-global stability. They are
based on multiple sliding surface control [15], [16] (a method
similar to backstepping) using a series of low-pass filters [7].
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More recently, an adaptive DSC with nonlinear filtering [10]
and NN adaptive DSC [11] achieved semi-global asymptotic
convergence, improving the bounded output trajectory tracking
of the previous DSC methods (see [11]). In [12], a predefined-
time DSC (non-adaptive method) achieved global stability.
Also backstepping-based command filtered methods for NN
adaptive control [13] and finite-time adaptive control [14] are
proposed to overcome the “explosion of complexity”, however,
without asymptotic convergence. Our method involves either
filtering or NNs, and is globally asymptotically stable. While
the studies in [6]–[14] used a 3rd-order system in numerical
validations, we provide the results with a 5th-order system.

The proposed method originates from virtual decomposition
control (VDC) [3], [17] that is developed for controlling com-
plex robotic systems. Modularity is one of the key aspects in
addressing complexity in advanced control realizations [18],
[19, Sec. IV]. In VDC, robotic systems are virtually decom-
posed into modular subsystems (rigid links and joints) such
that both control design and stability analysis can be performed
locally at the subsystem (SS) level to guarantee overall global
asymptotic stability. In particular, VDC introduced virtual
power flows (VPFs) [3, Def. 2.16] to define dynamic inter-
actions between the adjacent SSs such that the VPFs cancel
each others out when the SSs are connected. However, when
applied beyond robotics, the interactions between SSs will no
longer be described by VPFs [20]. Some early ideas for the
proposed method originate from the application-oriented paper
in [20]. In addition, some ideological similarities can be seen
to [21] that designs strictly passive interaction dynamics for
adjacent SSs in SFF; see Remark 4.4 for more details.

As the main contribution, the proposed method generalizes
the “subsystem-based control philosophy” in [3], [20] for the
nth-order SFF systems. After defining a generic form for SSs,
we design a specific stability connector (a generic spill-over
term in SS stability analysis in Def. 4.1) to address dynamic
interactions between the adjacent SSs. We show that every SS
with a “stability preventing” connector is compensated by the
subsequent SS with a corresponding “stabilizing” connector.
Similarly to VDC, we formulate a generic definition for virtual
stability1 such that when every SS is virtually stable, the over-
all system becomes automatically globally asymptotically sta-
ble. Instead of using Lebesque L2/L∞ integrable functions as in
[3], [20], [21], we base the results on Lyapunov functions. The
proposed method is modular in the sense that control laws for
every SS can be designed with a single generic-form equation;

1In terms of Lyapunov functions, definition of virtual stability (see Def. 4.2
in Section IV) includes quadratic terms for asymptotic convergence added with
stability connector(s) for compensating/stabilizing dynamics of adjacent SSs.
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see Remark 3.2. As part of the control, we design a smooth
projection function for the system parametric uncertainties.

Next, Section II introduces the control problem. Section III
formulates the proposed method. Section IV provides in-depth
analysis on the control design and its stability. Section V pro-
vides numerical validation. Section VI concludes the study.

II. THE CONTROL PROBLEM

Consider the following nth-order SFF system
θ11ẋ1(t) = f1(x1, t)+g1(x1, t)x2(t)

θi1ẋi(t) = fi(xxxi, t)+gi(xxxi, t)xi+1(t), ∀i ∈ {2, ...,n−1}
θn1ẋn(t) = fn(xxxn, t)+gn(xxxn, t)u(t)

(1)
(2)
(3)

where xxxk = [x1(t),x2(t), · · · ,xk(t)], ∀k ∈ {1, · · · ,n}, u(t) is the
system input, fk(xxxk, t), ∀k ∈ {1, · · · ,n}, can be written as

fk(xxxk, t) = θk2γk2(xxxk, t)+θk3γk3(xxxk, t)+ · · ·+θk jγk j(xxxk, t) (4)

and θk1,θk2, · · · ,θk j > 0 in (1)–(4) are constant parameters. We
often omit the notation t for brevity. Similarly to backstepping,
we assume that gk(xxxk) and fk(xxxk) (i.e, γkζ (xxxk), ∀ζ ∈ {2, . . . , j})
are sufficiently smooth and gk(xxxk, t) 6= 0 on Rk× [0,∞).

Throughout the paper, we use n to denote the system overall
order, while it also denotes the last SS (or its element) in (3).
We use i∈ {2, · · · ,n−1} to denote a SS (or its element) in the
middle of the SFF sequence; see (2). We use k to denote an
arbitrary decomposed SS (or its element), such that generic
and modular form for SSk (the kth SS) in (1)–(3) is given by

θk1ẋk = fk(xxxk)+gk(xxxk)xk+1, ∀k ∈ {1, ...,n} (5)

where we denote xn+1 = u.
Let x1d ∈Cn−1(0,∞;R) be a desired trajectory for x1(t) such

that x(n)1d exists almost everywhere; here Cn−1(0,∞;R) denotes
the space of n−1 times continuously differentiable real-valued
functions over the interval [0,∞). In the sequel, we will use the
shorthand notation Ck for the space of k times continuously
differentiable functions over their interval of definition. Next,
we aim to design a control for (1)–(3), such that e1(t) = x1d(t)
−x1(t) globally asymptotically converges to zero when t > 0.

III. THE PROPOSED CONTROL METHOD

In Section III-A, we first design the baseline SBC by assum-
ing the plant parameters θk j in (1)–(4) known ∀k, ∀ j. Then,
Section III-B proposes a projection function Pk for parametric
uncertainties, such that SBC can be updated to the proposed
adaptive SBC in Section III-C. The control design philosophy
behind the proposed method is analyzed later in Section IV.

A. Subsystem-Based Control
Let the system parameters θk j in (1)–(4) be known ∀k,∀ j.

The SBC for the SFF system in (1)–(3) can be designed as

g1(x1)x2d = θ11ẋ1d− f1(x1)+λ1e1

= Y1θθθ 1 +λ1e1

gi(xxxi)x(i+1)d = θi1ẋid− fi(xxxi)+δi−1gi−1(xxxi−1)ei−1 +λiei

= Yiθθθ i +δi−1gi−1(xxxi−1)ei−1 +λiei

gn(xxxn)u = θn1ẋnd− fn(xxxn)+δn−1gn−1(xxxn−1)en−1 +λnen

= Ynθθθ n +δn−1gn−1(xxxn−1)en−1 +λnen

(6)

(7)

(8)

where λkek = λk(xkd−xk) is the local feedback (FB) term with
λk > 0; δk−1gk−1(xxxk−1)ek−1 is the stabilizing FB term for the
previous subsystem with δk−1 > 0; fk(xxxk) is defined in (4); and
in the model-based FF compensation term Ykθθθ k, the regressor
Yk and the parameter vector θθθ k are defined as

Yk :=
[
ẋkd, −γk2(xxxk), −γk3(xxxk), · · · , −γk j(xxxk)

]
∈ R1× j (9)

θθθ k :=
[
θk1,θk2,θk3, · · · ,θk j

]T ∈ R j. (10)

The control design in (6)–(8) is modular. This can be shown
similarly as addressed later in Remark 3.2.

B. The Proposed Smooth Projection Function

As Fig. 1 shows, a parameter estimate θ̂θθ k (that is an argu-
ment of x(k+1)d) should be a function in Cn−k when stepping
through the remaining time derivatives d

dt in the chain. This
can be guaranteed with the projection function in Def. 3.1.

Definition 3.1: Let k∈{1, ...,n}, a,b,c> 0 satisfying c+b>
b> a> a−c> 0, p∈Cn−k, and σ ,ρ > 0 be fixed. Then, Pk(t)
is defined to be the solution of

Ṗk(t) = ρ [p(t)+σκ(Pk)] , Pk(0) = Pk0 (11)

for some Pk0 ∈ R. Here κ has the form

κ(Pk) =


b−Pk if Pk > b+ c

(b−Pk)Sb(Pk) if b < Pk < b+ c
0 if a6Pk 6 b

(a−Pk)Sa(Pk) if a− c < Pk < a
a−Pk if Pk 6 a− c

and the strictly decreasing Sa : (a− c,a)→ (0,1) and strictly
increasing Sb : (b,b+ c)→ (0,1) are such that κ ∈ Cn−k.

Appendix A provides formulas for the switching functions
Sa and Sb, and an analysis of the projection function Pk.

Remark 3.1: We note that when n− k 6 1 holds for SSk,
P ∈ C1 in [3], [22] can be used instead of Pk satisfying
(11). When n−k6 2 holds, P2 ∈C2 in [3], [22] can be used.

C. Adaptive Subsystem-Based Control

Let the system in (1)–(4) be subject to parametric uncertain-
ties, i.e., θk j is unknown ∀k,∀ j. The control in Section III-A
can be updated to the proposed adaptive SBC as

g1(x1)x2d = Y1θ̂θθ 1 +λ1e1

gi(xxxi)x(i+1)d = Yiθ̂θθ i +δi−1gi−1(xxxi−1)ei−1 +λiei

gn(xxxn)u = Ynθ̂θθ n +δn−1gn−1(xxxn−1)en−1 +λnen

(12)

(13)

(14)

where Ykθ̂θθ k is the adaptive model-based FF compensation, Yk
is defined in (9) and θ̂θθ k ∈R j is an estimate of θθθ k in (10). The
estimated parameters in θ̂θθ k need to be updated. We define

pk := ekYT
k (15)

such that the ζ th element of θ̂θθ k in (12)–(14) can be updated
by using the projection function Pk in Definition 3.1 as

θ̂kζ = Pk(t), ∀ζ ∈ {1, ..., j} (16)

with parameters pkζ ,ρkζ ,σkζ ,a = θ kζ ,b = θ kζ and ckζ , where
θ̂kζ is the ζ th element of θ̂θθ k; pkζ is the ζ th element of pk in

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3206618

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 3

xnd

The SFF system 

in (1)–(3)

uSubsystem n 

control in (14)

x1

x2

xn

en

en-1

...

+– 

Yn
θ1θ1

θnθn

xid
.
xid
.

ei

Yi Y1

e2 x3d

x4d

x2d
e1

e3

e4 en-1

x(n-1)d

en-2

...

.

.

x4

+
– 

+
– 

θ3θ3

θ2θ2

θn–1 θn–1 

θiθi

x3

d

dt

d

dt

d

dt

d

dt

x3x2 xn-1

xn-1

xn xn

x3d
.

x4d
.

...

d

dt

d

dt

en

e1

Regressor 

vectors; see (9)xnd
.
xnd
.

x1d
.
x1d
.

xnd
.
xnd
.Subsystem n-1 

control with    

i = n-1

Subsystem 3 

control with 

i = 3

Subsystem 2 

control with 

i = 2

The proposed adaptive SBC

d

dt

d

dt

x2dSubsystem 1 

control in (12)

x1d
.
x1d
.

x1d
+

x1

– 

x2

+
– 

Parameter

adaptation; 

see (15) and (16) 

 Subsystem i control in (13)

Fig. 1. Diagram of the proposed adaptive SBC (highlighted in light blue). The desired variables (and the control output u) are shown in red, the feedback signals
are in green, the adaptive control is in blue, and the system output states are in black. The bold lines are vectors and the thin lines are scalar variables.

(15); ρkζ > 0 and σkζ > 0 are the parameter update gains; θ kζ

and θ kζ are the lower and the upper bounds of θkζ ; and ckζ

defines the activation interval beyond the bounds.
Fig. 1 shows the diagram of the proposed method.
Remark 3.2: Similarly to SSk dynamics in (5), SSk control in

(12)–(14) can be reproduced with a single modular-structured
equation gk(xxxk)x(k+1)d = Ykθ̂θθ k + δk−1gk−1(xxxk−1)ek−1 + λkek
such that δ0g0(xxx0)e0 = 0 and x(n+1)d = u. This modularity
allows that changing SSk dynamics or adding/removing SSs,
do not alter the control laws in the remaining SSs.

IV. STABILITY ANALYSIS

Next, we provide an in-depth analysis on the adaptive SBC
in Section III-C. Respective analysis can be performed for the
SBC in Section III-A using θθθ k−θθθ k = 0 instead of θθθ k− θ̂θθ k.

Motivated by a key concept in virtual stability analysis—
a virtual power flow [3, Sect. 2.9.2]—we introduce a related
notion of a stability connector as follows:

Definition 4.1: For the system (1)–(3) with the control (12)–
(14), the stability connector sk is defined as

sk = ∆kgk(t,xxxk)ekek+1

where SS-related term ∆k = 1, if k= 1, and ∆k =
1

δ1···δk−1
, if k>

1, and δ1,δ2, · · · ,δk−1 > 0 are feedback gains from Section III.
Next, in Lemmas 4.1–4.3 we provide auxiliary results for

the convergence analysis in Theorem 4.1. Motivated by the
concept of virtual stability [3, Sect. 2.9], the auxiliary analysis
is carried out for the individual subsystem error dynamics ek
and the corresponding parameter estimation errors θθθ k− θ̂θθ k.

Subtracting (1) from (12), adding θ11ẋ1d−θ11ẋ1d = 0, using
(4), (9) and (10), and rearranging the terms, we get the fol-
lowing error dynamics for SS1

θ11ė1 =−λ1e1 +g1(x1)e2 +Y1(θθθ 1− θ̂θθ 1). (17)

Lemma 4.1: Considering SS1 error dynamics in (17), and
θθθ 1− θ̂θθ 1 governed by (10), (15) and (16), the derivative of the
quadratic function

ν1 =
1
2

(
θ11e2

1 +
j

∑
ζ=1

(θ1ζ − θ̂1ζ )
2

ρ1ζ

)
(18)

along the trajectories of the error dynamics satisfies

ν̇1 6−λ1e2
1 + s1 (19)

where s1 is the stability connector from Def. 4.1.
Proof: See Appendix B.

Remark 4.1: In Lemma 4.1, term e2 in (17) is treated as an
external input that causes s1 to appear in (19) (see Appendix B)
that will be canceled out based on the result of the next lemma.
The dynamics of e2 as well as the subsequent subsystems error
dynamics are accounted for in the next two lemmas.

Subtracting (2) from (13), adding θi1ẋid−θi1ẋid = 0 using
(4), (9) and (10), and rearranging the terms, we get the fol-
lowing error dynamics for SSi, ∀i ∈ {2, ...,n−1},

θi1ėi =−λiei−δi−1gi−1(xxxi−1)ei−1 +gi(xxxi)ei+1

+Yi(θθθ i− θ̂θθ i). (20)

Lemma 4.2: Considering SSi error dynamics in (20), and
θθθ i− θ̂θθ i governed by (10), (15) and (16), the derivative of the
quadratic function

νi =
1

2(δ1 · · ·δi−1)

(
θi1e2

i +
j

∑
ζ=1

(θiζ − θ̂iζ )
2

ρiζ

)
(21)

along the trajectories of the error dynamics satisfies

ν̇i 6−
λi

δ1 · · ·δi−1
e2

i − si−1 + si (22)

where si−1 and si are the stability connectors from Def. 4.1.
Proof: See Appendix B.

Remark 4.2: Similarly to Lemma 4.1, ei+1 in (20) is treated
as an external input that causes si to appear in (22). The
stabilizing FB term δi−1gi−1(xxxi−1)ei−1 in (20) creates another
stability connector −si−1 to appear in (22) (see Appendix B)
that will cancel out si−1 from the previous SS. The last
connector sn−1 will be canceled out based on the result of
the next lemma, after which we are in the position to present
the convergence result for the overall error dynamics.

Subtracting (3) from (14), adding θn1ẋnd−θn1ẋnd = 0 using
(4), (9) and (10), and rearranging the terms, we get the fol-
lowing error dynamics for SSn

θn1ėn =−λnen−δn−1gn−1(xxxn−1)en−1 +Yn(θθθ n− θ̂θθ n). (23)

Lemma 4.3: Considering SSn error dynamics in (23), and
θθθ n− θ̂θθ n governed by (10), (15) and (16), the derivative of the
quadratic function

νn =
1

2(δ1 · · ·δn−1)

(
θn1e2

n +
j

∑
ζ=1

(θnζ − θ̂nζ )
2

ρnζ

)
(24)
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along the trajectories of the error dynamics satisfies

ν̇n 6−
λn

δ1 · · ·δn−1
e2

n− sn−1 (25)

where sn−1 is the stability connector from Def. 4.1.
Proof: See Appendix B.

We will now construct a Lyapunov candidate for the overall
error dynamics as the sum of the quadratic functions from
Lemmas 4.1–4.3. Based on the properties derived in the lem-
mas, we obtain that the error dynamics will remain bounded,
and moreover, that the control errors converge globally asymp-
totically to zero. The result is given in the following theorem.

Theorem 4.1: Consider the error dynamics eee = [e1, . . . ,en]
T

and the parameter estimation error θθθ k− θ̂θθ k, ∀k ∈ {1,2, . . . ,n},
that are governed in Lemmas 4.1–4.3. For arbitrary initial
conditions, θθθ k− θ̂θθ k remains bounded and ek(t)→ 0 globally
as t→ ∞ for all k ∈ {1,2, . . . ,n}.

Proof: Using (18), (21) and (24), we choose a Lyapunov
candidate function for the overall error dynamics as

νtot = ν1 +
n−1

∑
i=2

νi +νn

=
1
2

eeeT Aeee+
n

∑
k=1

1
2(δ1 · · ·δk−1)

j

∑
ζ=1

(θkζ − θ̂kζ )
2

ρkζ

where A= diag
(

θ11,
θ21
δ1
, θ31

δ1δ2
, · · · , θn1

δ1···δn−1

)
∈Rn×n is positive

definite. Then, it follows from (19), (22) and (25) that

ν̇tot = ν̇1 +
n−1

∑
i=2

ν̇i + ν̇n

6−λ1e2
1 + s1−

n−1

∑
i=2

[
λi

δ1 · · ·δi−1
e2

i − si−1 + si

]
− λn

δ1 · · ·δn−1
e2

n− sn−1

=−λ1e2
1−

n−1

∑
i=2

λ1

δ1 · · ·δi−1
e2

i −
λn

δ1 · · ·δn−1
e2

n +
n−1

∑
k=1

(sk− sk)

=−eeeT Beee

where B = diag
(

λ1,
λ2
δ1
, λ3

δ1δ2
, · · · , λn

δ1···δn−1

)
∈ Rn×n is positive

definite and every stability connector sk is canceled by its neg-
ative counterpart −sk, ∀k ∈ {1,2, ...,n−1}. By [23, Thm. 8.4]
both the control errors and the parameter estimation errors are
bounded, and eee(t)T Beee(t)→ 0 globally as t→∞, which by the
positive-definiteness of B is equivalent to eee(t)→ 0 as t→ ∞,
i.e., ek(t)→ 0, ∀k ∈ {1,2, . . . ,n} as t→ ∞.

Finally, motivated by the original concept of virtual stability
[3, Sect. 2.9], Def. 4.2 generalizes the results in Lemmas 4.1–
4.3 for generic tools of virtual stability to design SSk control.

Definition 4.2: The kth subsystem, ∀k∈{1, ...,n}, in (1)–(3),
combined with its respective control in (12)–(16), is said to be
virtually stable if the derivative of a quadratic function νk =
αke2

k +(θθθ k−θ̂θθ k)
TΓΓΓk(θθθ k−θ̂θθ k) along the trajectories of the error

dynamics satisfies ν̇k 6−βke2
k− sk−1 + sk for some αk,βk > 0

and positive-definite ΓΓΓk ∈ Rk×k, where sk−1 and sk are the
stability connectors by Def. 4.1 such that s0 = 0 and sn = 0.

We note that alternative control laws, e.g., for the parameter
adaptation, can be incorporated/designed for Def. 4.2, as long

as the stability connectors sk−1 and sk exist and the stability
can be guaranteed as in the proof of Theorem 4.1. This is sim-
ilarly as we have demonstrated for local control design modifi-
cations in [24], where a local observer design was incorporated
to VDC using VPFs; see Appendix C for VDC and VPFs.

Remark 4.3: Similarly to adaptive backstepping [5], x(k+1)d
in (12) and (13) acts as a fictitious control from SSk to SSk+1,
∀k ∈ {1, ...,n− 1}, while the actual control effort u is even-
tually obtained in (14) after recursively stepping through ev-
ery SS. However, instead of designing the overall control u
that eventually stabilizes the entire system “as a whole”, we
proposed generic and modular tools (see Remark 3.2, Def. 4.1,
Thm. 4.1 and Def. 4.2) that 1) automatically stabilize the ad-
jacent SSs (for global asymptotic stability), and 2) prevent an
excessive growth of the control design complexity. The method
also allows that 3) SSk control can be modified (without af-
fecting the control laws in the remaining SSs), as long as sk−1
and sk in Def. 4.2 exist for the adjacent SSs and stability can
be guaranteed as shown in the proof of Theorem 4.1.

Remark 4.4: While the dissipative adaptive control in
[21] designs strictly passive interaction dynamics for adja-
cent SSs, we designed in (12)–(14) the stabilizing FB term
δk−1gk−1(xxxk−1)ek−1, ∀k ∈ {2, ...,n}, to produce stability con-
nector sk−1. This provides that every SS is automatically stabi-
lized by its adjacent SS such that passivity between SSs does
not need to be considered. We based the results on Lyapunov
functions instead of Lebesque L2/L∞ integrable functions.

Comparisons to VDC [3] can be found in Appendix C.

V. NUMERICAL VALIDATION

The previous methods [6]–[14] demonstrated the results
without the “explosion of complexity” with a 3rd-order SFF
plant. For this purpose, we use the following 5th-order SFF
plant (the plant from [8], [9] updated with SS3 and SS4)

a1ẋ1 = b1x3
1 + x2

a2ẋ2 = b2(x2
1 + x2

2)+ x3

a3ẋ3 = b3 sin3(x1)sin(x2)x3− x4

a4ẋ4 = b4(x2
1x4− x2

2x3)− [(cos4(x1)cos2(x2)+2]x5

a5ẋ5 = u.

(26)

Using (12)–(14), we design the control for the plant in (26) as

g1(x1)x2d = Y1θ̂θθ 1 +λ1e1

g2(xxx2)x3d = Y2θ̂θθ 2 +λ2e2 +δ1g1(x1)e1

g3(xxx3)x4d = Y3θ̂θθ 3 +λ3e3 +δ2g2(xxx2)e2

g4(xxx4)x5d = Y4θ̂θθ 4 +λ4e4 +δ3g3(xxx3)e3

g5(xxx5)u = Y5θ̂5 +λ5e5 +δ4g4(xxx4)e4

(27)

where g1(x1) = g2(xxx2) = g5(xxx5) = 1, g3(xxx3) = −1, g4(xxx4) =
−(cos4(x1)cos2(x2)+2); Y1 = [ẋ1d − x3

1], Y2 = [ẋ2d − (x2
1 +

x2
2)], Y3 = [ẋ3d − sin3(x1)sin(x2)x3], Y4 = [ẋ4d − (x2

1x4 −
x2

2x3)], Y5 = ẋ5d; and ideally θθθ 1 = [θ11 θ12]
T = [a1 b1]

T ,
θθθ 2 = [θ21 θ22]

T = [a2 b2]
T , θθθ 3 = [θ31 θ32]

T = [a3 b3]
T , θθθ 4 =

[θ41 θ42]
T = [a4 b4]

T , θ5 = θ51 = a5 hold for the parameters.
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Tracking of the desired trajectory x1d (C1; no param. adapt.)
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Tracking of the desired trajectory x3d (C1; no param. adapt.)

x1d
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Fig. 2. Control performance in C1 with inaccurate constant parameters (no
parameter adaptation). The desired trajectories are shown in black and their
controlled variables in gray (plots 1–5). The last plot shows the output signal u.
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Fig. 3. Tracking errors ek , ∀k ∈ {1, ...,5}, in C1 (no parameter adaptation).

To study the global asymptotic convergence suggested by
Theorem 4.1, the following sufficiently smooth reference tra-
jectory x1d(t) is used

x1d(t) =
{

sin(2πt)tanh(t3), if 06 t 6 5
sin(2πt)tanh(t3)[1− tanh((t−5)3)], if t > 5.

For simplicity, a1,a2,a3,a4 = 1 are used in (26) and con-
sidered known for the control in (27). The plant parameters
b1,b2,b3,b4 = 5 and a5 = 2 are considered unknown for the
experiments with adaptive control in (27). The FB gains were
loosely tuned to λ1 = 10, λ2 = 20, λ3 = 40, λ4 = 80, λ5 =
160, δ1 = 10, δ2 = 10, δ3 = 100 and δ4 = 1000. A fixed-step
discrete solver with the sample time of 0.1 ms was used in
the simulations. The following three test cases are studied:

Tracking of the desired trajectory x1d (C2; with param. adapt.)

Tracking of the desired trajectory x2d (C2; with param. adapt.)

Tracking of the desired trajectory x3d (C2; with param. adapt.)

x1d

x1

Tracking of the desired trajectory x4d (C2; with param. adapt.)

Tracking of the desired trajectory x5d (C2; with param. adapt.)

Control output u (C2; with param. adapt.)
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Fig. 4. Control performance in C2 with adaptive control. The desired
trajectories are shown in black and their controlled variables in gray (plots
1–5). The last plot shows the output signal u.

Tracking error e1 (C2 and C3; with param. adapt.)

Tracking error e2 (C2 and C3; with param. adapt.)

Tracking error e3 (C2 and C3; with param. adapt.)

Tracking error e4 (C2 and C3; with param. adapt.)

Tracking error e5 (C2 and C3; with param. adapt.)
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Fig. 5. Tracking errors ek , ∀k ∈ {1, ...,5}, in C2 and C3 (adaptive control).

C1: The baseline SBC (in Sec. III-A) is employed in (27) with
inaccurate constant FF parameters θ12,θ32 = 6, θ22,θ42 =
4 and θ51 = 2.5 (while the respective plant parameters
are b1,b2,b3,b4 = 5 and a5 = 2). C1 is used as a baseline
for comparisons to the proposed adaptive SBC later in
C2 and C3. Figs. 2 and 3 show C1 results.

C2: The adaptive SBC (in Sec. III-C) is enabled in (27) with
initial parameter estimates θ̂12(0),θ̂32(0) = 6, θ̂22(0),
θ̂42(0) = 4 and θ̂51(0) = 2.5. Figs. 4–6 show C2 results.

C3: The adaptive SBC (in Sec. III-C) is enabled in (27) with
initial parameter estimates θ̂12(0),θ̂32(0) = 0.1, θ̂22(0),
θ̂42(0) = 9.9 and θ̂51(0) = 0.5 that are outside the projec-
tion function Pk bounds. Figs. 5 and 6 show C3 results.
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In C2 and C3, the parameter update gains were set to
ρ12 = 2000, ρ22 = 4, ρ32 = 2, ρ42 = 0.001, ρ51 = 3e−8,
σk2 = 1000/ρk2, ∀k ∈ {1, ...,4}, and σ51 = 1000/ρ51; the
parameter bounds were set to θ 12,θ 22,θ 32,θ 42 = 9, θ 51 = 3 and
θ 12,θ 22,θ 32,θ 42,θ 51 = 1; and the activation intervals beyond
the bounds were set to c12,c22,c32,c42 = 0.5 and c51 = 0.25.

Figs. 2 and 3 show the results in C1 with inaccurate FF pa-
rameters (i.e., θk2 6= bk, ∀k∈{1, ...,4}, and θ51 6= a5). In Fig. 2,
plots 1–5 shows the desired trajectory xkd, ∀k ∈ {1, ...,5}, in
black and its controlled state xk in gray. The last plot shows the
control output u. Fig. 3 shows the detailed tracking errors. The
maximum absolute errors are |e1|max = 0.160, |e2|max = 1.831,
|e3|max = 2.170, |e4|max = 67.67 and |e5|max = 2136. Due to
the parametric uncertainty, noticeable tracking errors occur in
the transition phases.

Figs. 4–6 show the main results of the study with the pro-
posed adaptive SBC in (27). Fig. 4 shows the tracking results
in C2 where the initial parameter estimate values are defined in
accordance to C1, i.e., θ̂12(0),θ̂32(0) = 6, θ̂22(0),θ̂42(0) = 4 and
θ̂51(0) = 2.5. As the black lines in Fig. 5 show, the tracking
errors are significantly decreased in relation to C1, with the
max. absolute errors |e1|max = 0.015, |e2|max = 0.218, |e3|max
= 0.341, |e4|max = 12.36 and |e5|max = 684.6. As stated by
the theory, global asymptotic convergence is achieved. Fig.
6 shows the parameter estimates θ̂12, θ̂22, θ̂32, θ̂42 and θ̂51 in
black, showing that the projection function Pk actively pushes
the parameter values toward their real plant value.

Finally, in C3, the initial parameter values are set outside
the projection function Pk bounds such that θ̂12(0),θ̂32(0) =
0.1, θ̂22(0),θ̂42(0) = 9.9, θ̂51(0) = 0.5. Figs. 5 and 6 show the
results in gray. Despite a significant inaccuracy in the initial
parameter values, the projection function Pk actively pushes
the parameter values toward their real plant value (see Fig. 6).
The max. absolute tracking errors are |e1|max = 0.067, |e2|max
= 0.744, |e3|max = 1.452, |e4|max = 71.73 and |e5|max = 1494
(see Fig. 5). After 1.5 s, the control behavior in C3 becomes
virtually identical to C2.

VI. CONCLUSIONS

This study proposed theoretical foundations for an adaptive
subsystem-based control for controlling nth-order SFF systems
with parametric uncertainties. As an alternative for backstep-
ping, we provided systematic and straightforward tools for
globally asymptotically stable control while avoiding a growth
of the control design complexity when the system order n in-
creases. The proposed method is modular in the sense that the
control for every SS can be designed with a single generic-
form equation such that changing SS dynamics or remov-
ing/adding SSs do not affect to the control laws in the remain-
ing SSs. For the method, we reformulated the original concept
of virtual stability in [3, Def. 2.17] and proposed a specific
stability connector to address dynamic interactions between
the adjacent SSs. These features enable that both the control
design and its stability analysis can be performed locally at a
SS level (as opposed to the whole system). We proposed also
a smooth projection function Pk for the system parametric
uncertainties. Theoretical developments on global asymptotic

Adaptive control of parameter θ12 (C2 and C3)

Adaptive control of parameter θ22 (C2 and C3)

Adaptive control of parameter θ32 (C2 and C3)

Adaptive control of parameter θ42 (C2 and C3)

Adaptive control of parameter θ51 (C2 and C3)

1 2 3 4 5 6Time [s]

2

3

1

5

0
2.5

7.5
10

C2

C3θ12

θ12

b1

5

0
2.5

7.5
10

b2

θ22

θ22 C2

C3

5

0
2.5

7.5
10

b3 θ32

θ32 C2
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a5 θ51
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Fig. 6. Adapted parameters θ̂12(t), θ̂22(t), θ̂32(t), θ̂42(t) and θ̂51(t). The re-
sults in C2 are given in black, while the result in C3 are given in gray. The
true plant parameters b1,b2,b3,b4 = 5 and a5 = 2 are shown in dashed line.
The upper bounds (θ ) and lower bounds (θ ) are shown in dashed-dot line.

convergence (in Theorem 4.1) were verified in numerical sim-
ulations with a nonlinear 5th-order SFF system. We left topics,
e.g., a signal noise attenuation and semi-SFF systems with un-
known dynamics, for a subject of future studies.

APPENDIX A
THE PROJECTION FUNCTION Pk

In Def. 3.1, parameters a and b define the lower and upper
bounds for Pk such that b>Pc > a > 0, where Pc is the ac-
tual constant parameter value for Pk. Within the bounds, Ṗk
is driven by ρp(t) and the behavior of Pk is equal to P ∈C1

and P2 ∈C2 in [3], [22]. Outside the bounds, a corrective term
σκ(Pk) is designed to bring Pk back toward the bounds. The
parameter c defines activation intervals (a−c,a) and (b,b+c)
for the switching functions Sa and Sb. Fig. 7 shows how the
projection function in Def. 3.1 is driven within the segments
defined by a, b and c, and illustrates the designed κ(Pk).

Let k ∈ {1, ...,n} be fixed and assume |p(n−k)(t)|<+∞. To
guarantee the existence of P

(n−k)
k , i.e., κ ∈Cn−k, the strictly

decreasing Sa ∈ Cn−k(a− c,a;(0,1)) and strictly increasing
Sb ∈Cn−k(b,b+ c;(0,1)) are required to satisfy:

lim
x→(a−c)+

Sa(x) = 1, lim
x→(a−c)+

S( j)
a (x) = 0,

lim
x→a−

Sa(x) = 0 and lim
x→a−

S( j)
a (x) = 0,

(28)

lim
x→(b+c)−

Sb(x) = 1, lim
x→(b+c)−

S( j)
b (x) = 0,

lim
x→b+

Sb(x) = 0 and lim
x→b+

S( j)
b (x) = 0,

(29)

∀ j ∈ {1, ...,n− k}. These assumptions guarantee that κ in
Def. 3.1 satisfies κ ∈Cn−k (see Fig. 7). Def. A.1 provides a
strictly decreasing function Sa ∈Cn−k and a strictly increasing
function Sb ∈Cn−k, satisfying (28) and (29), respectively, for
any n− k.
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Definition A.1: Sa : (a−c,a)→ (0,1) is a smooth and strictly
decreasing switching function defined as

Sa(Pk) :=
1
2

[
1− tanh

(
1

a− c−Pk
+

1
a−Pk

)]
and Sb : (b,b+ c)→ (0,1) is a smooth and strictly increasing
switching function defined as

Sb(Pk) :=
1
2

[
1+ tanh

(
1

b−Pk
+

1
b+ c−Pk

)]
.

The projection function in (11) has the following property.
Lemma A.1: For any constant Pc with a6Pc 6 b we have

(Pc−Pk)

(
p(t)− 1

ρ
Ṗk

)
6−σκ

2(Pk)6 0, ∀Pk ∈ R.
(30)

Proof: The proof of Lemma A.1 follows a similar proce-
dure as the proof of Lemma 2.10 in [3]. First, substituting (11)
into (30) we get

(Pc−Pk)

(
p(t)− 1

ρ
Ṗk

)
=−σ(Pc−Pk)κ(Pk). (31)

Below, we will show that −σ(Pc−Pk)κ(Pk) 6−σκ(Pk)
2

6 0 holds for all Pk ∈ R in (31), eventually completing the
proof of Lemma A.1.

Since a6Pc 6 b, we have

Pc−Pk > a−Pk (32)
Pk−Pc >Pk−b. (33)

When Pk 6 a− c, Def. 3.1 yields κ(Pk) = (a−Pk) > 0.
Using (32), we get

−σ(Pc−Pk)κ(Pk)6−σ(a−Pk)κ(Pk)

=−σκ
2(Pk)6 0. (34)

When a− c < Pk < a, Def. 3.1 yields κ(Pk) = (a−
Pk)Sa(Pk)> 0 and Sa(Pk) ∈ (0,1). Using (32), we get

−σ(Pc−Pk)κ(Pk)6−σ(a−Pk)κ(Pk)

<−σ(a−Pk)Sa(Pk)κ(Pk)

=−σκ
2(Pk)6 0. (35)

When a6Pk 6 b, κ(Pk) = 0 and we get

−σ(Pc−Pk)κ(Pk) = 0. (36)

When b < Pk < b + c, Def. 3.1 yields κ(Pk) = (b−
Pk)Sb(Pk)< 0 and Sb(Pk) ∈ (0,1). Using (33), we get

−σ(Pc−Pk)κ(Pk) = σ(Pk−Pc)κ(Pk)

6 σ(Pk−b)κ(Pk)

< σ(Pk−b)Sb(Pk)κ(Pk)

=−σ(b−Pk)Sb(Pk)κ(Pk)

=−σκ
2(Pk)6 0. (37)

When Pk > b+ c, Def. 3.1 yields κ(Pk) = (b−Pk)< 0.
Using (33), we get

−σ(Pc−Pk)κ(Pk) = σ(Pk−Pc)κ(Pk)

6 σ(Pk−b)κ(Pk)

=−σ(b−Pk)κ(Pk)

=−σκ
2(Pk)6 0. (38)

a
b

c

c

Ƥk = ρp(t),                          where κ(Ƥk) = 0  
.

Ƥk = ρp(t)+σ(b-Ƥk)Sb(Ƥk),  where (b-Ƥk)Sb(Ƥk) = κ(Ƥk)   
.

Ƥk = ρp(t)+σ(a-Ƥk)Sa(Ƥk),  where (a-Ƥk)Sa(Ƥk) = κ(Ƥk)  
.

Ƥk = ρp(t)+σ(b-Ƥk),            where (b-Ƥk) = κ(Ƥk)    
.

Ƥk = ρp(t)+σ(a-Ƥk),            where (a-Ƥk)Sa(Ƥk) = κ(Ƥk)   
.

a

κ
(Ƥ

k)

b

cc

Ƥk

0
+
–

b+ca-c

Fig. 7. Left: a diagram describing how the proposed projection function in
Def. 3.1 is driven within the piecewise defined segments in κ(Pk). Right: a
behavior of κ(Pk) in Def. 3.1 with the designed Sa and Sb in Def. A.1.

Finally, (34)–(38) together with (31) complete the proof.

APPENDIX B
PROOFS OF LEMMAS 4.1, 4.2, AND 4.3

Proof of Lemma 4.1: Let us first define the two properties
in (39) and (40). It follows directly from Lemma A.1 that

j

∑
ζ=1

(θ1ζ − θ̂1ζ )

p1ζ −
˙̂
θ 1ζ

ρ1ζ

6 0. (39)

In addition, Definition 4.1 yields

g1(x1)e1e2 = s1. (40)

Using (17), (39) and (40), the derivative of the quadratic
function ν1 in (18) can be written as

ν̇1 = e1θ11ė1−
j

∑
ζ=1

(θ1ζ − θ̂1ζ )

˙̂
θ 1ζ

ρ1ζ

=−λ1e2
1 +g1(x1)e1e2 + e1Y1(θθθ 1− θ̂θθ 1)

−
j

∑
ζ=1

(θ1ζ − θ̂1ζ )

˙̂
θ 1ζ

ρ1ζ

=−λ1e2
1 + s1 +

j

∑
ζ=1

(θ1ζ − θ̂1ζ )

p1ζ −
˙̂
θ 1ζ

ρ1ζ


6−λ1e2

1 + s1

which completes the proof of Lemma 4.1. �
Proof of Lemma 4.2: As in the proof of Lemma 4.1, using

(20), Def. 4.1 and Lemma A.1, the derivative of the quadratic
function νi in (21), ∀i ∈ {2, ..., n−1}, can be written as

ν̇i = ei
θi1

δ1 · · ·δi−1
ėi−

1
δ1 · · ·δi−1

j

∑
ζ=1

(θiζ − θ̂iζ )

˙̂
θ iζ

ρiζ

= ei
1

δ1 · · ·δi−1

[
gi(xxxi)ei+1−δi−1gi−1(xxxi−1)ei−1−λiei

+Yi(θθθ i− θ̂θθ i)
]
− 1

δ1 · · ·δi−1

j

∑
ζ=1

(θiζ − θ̂iζ )

˙̂
θ iζ

ρiζ

=− λi

δ1 · · ·δi−1
e2

i −
1

δ1 · · ·δi−2
gi−1(xxxi−1)ei−1ei

+
1

δ1 · · ·δi−1
gi(xxxi)eiei+1

+
1

δ1 · · ·δi−1

j

∑
ζ=1

(θiζ − θ̂iζ )

piζ −
˙̂
θ iζ

ρiζ


6− λi

δ1 · · ·δi−1
e2

i − si−1 + si
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which completes the proof of Lemma 4.2. �
Proof of Lemma 4.3: As in the proof of Lemma 4.1, using

(23), Def. 4.1 and Lemma A.1, the derivative of the quadratic
function νn in (24) can be written as

ν̇n = en
θn1

δ1 · · ·δn−1
ėn−

1
δ1 · · ·δn−1

j

∑
ζ=1

(θnζ − θ̂nζ )

˙̂
θ nζ

ρnζ

= en
1

δ1 · · ·δn−1

[
−λnen−δn−1gn−1(xxxn−1)en−1

+Yn(θθθ n− θ̂θθ n)
]
− 1

δ1 · · ·δn−1

j

∑
ζ=1

(θnζ − θ̂nζ )

˙̂
θ nζ

ρnζ

=− λn

δ1 · · ·δn−1
e2

n−
1

δ1 · · ·δn−2
gn−1(xxxn−1)en−1en

+
1

δ1 · · ·δn−1

j

∑
ζ=1

(θnζ − θ̂nζ )

pnζ −
˙̂
θ nζ

ρnζ


6− λn

δ1 · · ·δn−1
e2

n− sn−1

which completes the proof of Lemma 4.3. �

APPENDIX C
COMPARISONS TO VDC [3]

In VDC, a robotic system (composed of rigid links con-
nected by joints) is virtually decomposed into subsystems by
placing conceptual virtual cutting points (VCPs); see [3, Def.
2.13] or [25, Def. 2]. VCPs allow that rigid links (described
with 2nd-order ordinary differential equations) can be con-
ceptually decomposed to separate parts where six-dimensional
force/moment vector can be exerted from one part to another.
Then, virtual power flows (VPFs) (see [3, Def. 2.16] or [25,
Def. 4]) are used to address the dynamic interactions between
the decomposed parts. When {A} is a three-dimensional or-
thogonal coordinate system locating at the VCP, a VPF pA at
{A} is defined as the inner product of the linear/angular veloc-
ity vector error (AVr−AV ) ∈R6 and the force/moment vector
error (AFr−AF) ∈ R6, i.e., pA = (AVr−AV )T (AFr−AF).

In the original concept of virtual stability (see [3, Def. 2.17]
or [25, Def. 5]), VPFs provide a stabilizing connection inter-
face to the adjacent subsystems such that global asymptotic
stability follows automatically when every subsystem is virtu-
ally stable. Similarly to VPFs, we designed stability connector
sk (in Def. 4.1) such that we were able to formulate the concept
of virtual stability (in Def. 4.2) for SFF systems. Instead
of using Lebesque L2/L∞ integrable functions, we based the
results on the Lyapunov functions.

VDC introduced 1st- and 2nd-order differentiable projection
functions P ∈ C1 and P2 ∈ C2 (see [3], [22]), satisfying
the needs for robotic control purposes. The present study
updated P2 ∈ C2 to the piecewise-continuous (n-k)th-order
differentiable projection function Pk ∈ Cn−k, ∀k ∈ {1, ...,n},
targeted for nth-order SFF systems.
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