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1. Classification 

 

Brain cancer is an extremely heterogeneous group of tumors with 37 entries under 

gliomas alone in ICD-O-3 and 54 codes for neuroepithelial tumors in the WHO 

classification (1). The grouping of brain cancer is based on histopathology, i.e., 

morphological appearance in microscopic examination, with a relation to the presumed 

cell type of origin [Figure 1], but also increasingly in genetic alterations of the tumor (1). 

Malignant tumors of the brain arise primarily from the neuroepithelial tissue, mainly glial 

cells and their precursors. Glial cells include astrocytes and oligodendrocytes, which 

constitute 85% of the cells of the brain. The diversity of diagnostic entries involves, 

however, a large number of relatively rare tumor types and astrocytic tumors make up at 

least two thirds of all primary brain cancers, more when only adults are concerned. Other 

main types of gliomas include oligodendroglioma and ependymoma, At present, all 

infiltrating gliomas – whether astrocytic or oligodendroglial – can be grouped as diffuse 

gliomas. As this publication focuses on occupational factors, childhood brain tumors are 

not covered here in any detail. Central nervous system (CNS) malignancies can also arise 
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e.g. from the lymphatic system (lymphoma, with a frequency 2-5% of the tumors) and 

connective tissue (sarcoma, rare) in the CNS. 

Astrocytomas account for three quarters of all gliomas. They include diffuse 

astrocytoma (WHO grade II, approximately 5% of all astrocytic tumors), anaplastic 

astrocytoma (WHO grade III, 10% of all astrocytomas) and glioblastoma (WHO grade 

IV, also called glioblastoma multiforme, 60% of astrocytomas). Diffuse and anaplastic 

tumors have a tendency to progress toward a more malignant phenotype. The number of 

genetic aberrations (mutations and chromosomal changes) within a tumor increases with 

grade with a broad spectrum of changes in complex combinations. Diffusely infiltrating 

grade II-IV astrocytomas are subdivided into isocitrate dehydrogenase (IDH) –mutant 

and IDH-wildtype tumors (2). Other common mutations include tumor suppressor TP53, 

alpha-thalassemia/mental retardation syndrome X-linked gene (ATRX) and telomerase 

reverse transcriptase (TERT) promoter region. Also, methylation of MGMT promoter 

region is frequently encountered. 

The key features defining the grade are anaplasia (assessed as nuclear atypia), 

proliferative capacity (indicated by mitotic activity), as well as neovascularisation and 

necrosis (the latter two features defining glioblastoma). Morphologically, grade II tumors 

show atypia, grade III also increased mitotic activity and grade IV vascular proliferation 

and/or necrosis (3). Perhaps the sharpest distinction is between grade I and grade II 

astrocytoma, which are regarded as distinct entities. The other neuroepithelial tumors, i.e. 

oligodendrogliomas and ependymomas are also divided into grades II and III (anaplastic 

tumors), with also some grade I tumor types for ependymoma (subependymoma and 
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myxopapillary ependymoma). Grades I-II are sometimes referred to as low-grade tumors, 

while III-IV are termed high-grade cancers.  

 

2 Pathogenesis 

The presumed cell type of origin for astrocytic tumors is the glial cell, though it 

remains uncertain if the main route of gliomagenesis is dedifferentiation of mature cells 

or transformation of stem or progenitor cells (4). Within a single tumor, heterogeneity in 

various cellular features can be found, including a mixed pattern of differentiation. 

Diverse genetic alterations are encountered in gliomas, and genetic characterization of 

brain cancers is becoming increasingly important in the diagnosis of glioma, 

complementing classic morphologic criteria. For astrocytoma, the diversity of genetic and 

molecular alterations increases with grade [Table 1].  

Changes involving the BRAF gene involved in the mitogen-activated protein kinase 

(maPK) pathway occur mainly in low-grade glioma. Other early events in glioma 

tumorigenesis include isocitrate dehydrogenase (IDH1) and p53 mutations, as well as 

platelet-derived growth factor (PDGF) overexpression (5,6). In addition to IDH mutation, 

chromosome 1p loss or 1p/19q co-deletion is typical for oligodendrogliomas (1). IDH1 

and IDH2 mutations in diffuse (grade II) and anaplastic (grade III) astrocytomas are 

associated with improved survival.  

The spectrum of genetic changes in anaplastic astrocytoma resembles those in GBM, 

but with lower frequency, e.g. anaplastic tumors commonly harbor phosphatase and 

tensin homologue (PTEN) mutations, epidermal growth factor (EGFR) abnormalities and 

p16/CDKN2A (cyclin-dependent kinase inhibitor) loss or downregulation (5).  
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Multiple molecular and chromosomal abnormalities are typical for glioblastoma. 

Features that can distinguish glioblastoma from anaplastic astrocytoma, which mostly 

harbor IDH mutation, include p16 and PTEN deletions or mutations, as well as EGFR 

amplification (1,3).  

Primary glioblastoma arises de novo, while the less common secondary glioblastoma 

is preceded by a lower grade astrocytoma and evolves through gradual dedifferentiation 

(5). These two tumor types are thought to involve partly different genetic mechanisms. 

Epidermal growth factor receptor (EGFR) mutation, overexpression or amplification is 

common in primary glioblastoma, and also PDGFR amplification appears important for 

GBM (1,4,6). Both are surface receptors for growth factors involved in controlling cell 

proliferation with ras- and Akt-mediated signaling pathways linked to the cyclin-

dependent kinase CDKN2 (4). Another related event is MDM2/MDM4 (murine double 

minute) amplification (6). The normal function of EGFR is transducing both EGF and 

TGF signals from the membrane to the cell, resulting in tyrosine kinase activation and 

other mechanisms increasing proliferation and decreasing apoptosis. Amplification or 

overexpression of MDM2, which codes for a transcription factor that interacts with p53, 

occurs in about one tenth of glioblastomas (5). PTEN mutations (or 10q loss) are found in 

a third of GBM cases, but rarely encountered in low-grade glioma (6). Methyl-guanine 

methyl transferase (MGMT) promoter methylation is found in both glioblastoma and 

other gliomas, and it can be used to assess sensitivity to alkylating agent-based 

chemotherapy. In terms of chromosomal alterations, loss of heterozygosity on 

chromosome 10 is common in glioblastoma (3). 
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In oligodendroglioma, the IDH mutations and combined LOH of 1p and 19q are 

diagnostic (1).  The 1p/19q co-deletion is also important in the sense that it predicts a 

favorable therapeutic response and survival (5). p53 mutations, on the other hand, are 

clearly less frequent than in other gliomas.  

IDH mutations do not occur in ependymomas. These tumors display several 

cytogenetic aberrations, and genetic characteristics include NF2 mutation, YAP1 fusion 

gene and RELA fusion gene. The latter genetic change defines a new ependymoma 

subtype in the novel WHO classification, RELA-positive ependymoma (7). 

More detailed and distinctive molecular characterization has also led to suggestions 

of abandoning the term oligoastrocytic tumors, as these appear to be mixed 

oligodendroglial and astrocytic components, and not a cell type of its own (1). 

 

3 Occurrence 

Brain and other CNS cancers make up 1.8% of all primary cancers (excluding skin 

cancer) and, with a global total of 256,000 cases in 2012, rank as the 17th most common 

type of cancer (8). Age-standardized incidence among men was estimated as 3.9 per 

100,000 and 3.0 per 100,000 among women. The age-standardized incidence rates for 

more developed countries were reported as 5.9 per 100,000 in men and 4.4 per 100,000 in 

women, while the corresponding rates in less developed populations were 3.3 and 2.7 (9). 

In the global burden of cancer project, it was estimated that brain and CNS cancer cause 

84 disability-adjusted life-years (DALYs) per 100,000 in men and 69 in women (10). 

Occurrence estimates from different source are strongly affected by the reference 

population used in age-standardization. For instance, the weighting factor for the age 
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group 0-19 years ranges from < 20% to >30% in widely used standard populations, and 

weights for the age group 75+ years range from 2% to 8%, with the world population 

representing the youngest age structure. The incidence of brain cancer reported by SEER 

with the US 2000 standard population as reference is nearly a quarter higher than that 

shown using the world standard population.  

The quality of the incidence estimates depends on completeness of coverage and 

ascertainment, availability of histological diagnosis, exclusion of metastases and extent of 

double counting (failure to eliminate duplicate records). Classification of nervous system 

tumors is very heterogeneous in different registers, which makes compilation of 

information in a consistent fashion challenging. Revisions in diagnostic classification 

also make it demanding to provide incidence data with consistent definitions and 

comparable classifications over time. 

First, brain tumors are not always reported separately from other central nervous 

system or nervous system tumors, though brain tumors make up approximately 90% of 

CNS tumors. Brain is the site of gliomas in >95% of cases, though spinal and optic nerve 

gliomas also occur.  

Second, benign tumors sometimes also are included. GloboCan (8) and Cancer 

Incidence in Five Continents (11) databases cover only malignant brain and nervous 

system tumors, while SEER and NordCan include both malignant and benign brain 

tumors. In the U.S., the Central Brain Tumor Registry of the United States (CBTRUS) 

nowadays compiles detailed information on malignant and benign brain tumors from 

cancer registries within the SEER and NPCR programs covering all U.S. states (12). 
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Yet another factor to be considered is the proportion of microscopically verified 

diagnoses, as brain metastases from other cancer sites (particularly breast and lung) are 

more common than primary brain cancer. Finally, the proportion of cases with specific 

histological type versus unspecified glioma or astrocytoma affects the rates by tumor 

subtype (13). Similarly, more comprehensive reporting of tumor location can interfere 

with trends by specific site (14).  

There is a slight male predominance in astrocytic tumors, with a male:female ratio of 

1.2-1.5, with a slightly lower sex ratio for oligodendroglioma and little gender difference 

for ependymoma (12,15-16). In the U.S. SEER data, whites have higher incidence rates 

than other, with 30-50% lower rates for black and Asian people (17). Hispanic whites 

also show lower rates than non-Hispanic. 

Glioblastoma is by far the most common malignant brain tumor type in adults. The 

age-standardized incidence of glioblastoma has ranged from 3 to 5 per 100,000 among 

men and 2-3 per 100,000 in women (12,13,16,18-20) [Figure 2]. Anaplastic astrocytomas 

constitute less than 10% of all gliomas and diffuse astrocytoma somewhat less. Incidence 

rates of around 0.3-0.4 per 100,000 have been reported for oligodendroglioma, while 

rates for ependymoma are slightly lower (12,13,16,18-19). 

Gliomas in adults occur mainly in supratentorial parts of the brain, most commonly in 

anterior and cortical areas (12). Frontal lobe is the most frequent location, also when 

adjusted for the difference in volume between the lobes (14,22)  

The age-specific incidence of all brain tumors combined in adults increases 

monotonically with age up to approximately 75 years, but then flattens or turns 

downward, possibly reflecting under-ascertainment at older ages rather than a true 
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reduction in incidence (15). The spectrum of astrocytic tumors changes with age, with the 

proportion of poorly differentiated tumors increasing (20). For instance, diffuse 

astrocytomas tend to occur approximately five years earlier than anaplastic astrocytoma 

(median age at diagnosis 48 vs 53 years), and age at diagnosis for glioblastoma is again 

10 years older (median age 64) (12). The age gradient for astrocytic tumors is steeper 

than for ependymoma and oligodendroglioma and, consequently, the proportion of 

astrocytic tumors increases with age. 

An increase in brain cancer incidence from the mid-20th century to the 1970s has been 

reported, particularly in the older age groups. However, relatively stable rates since the 

1990s have been reported in several studies in Europe and the United States (13,15-16,18, 

21,23-25). It is unclear to what extent the earlier increase reflects improved coverage of 

registers and more accurate diagnostics, with developments in diagnostic technologies, 

primarily computer-assisted tomography (mainly in the late 1970s and early 1980s) and 

magnetic resonance imaging (in the 1980s and 1990s).  

Differences in availability of detection methods also may explain some of the 

geographic variation in brain cancer incidence, though the differentials between 

populations among high-resource countries are not as striking as for some other types of 

cancer, particularly when comparing Caucasian populations in Europe, North America 

and Australasia. Age-specific incidence rates are largely comparable in Europe and the 

U.S. The incidence rate of astrocytic tumors in the age group around 50 years for both 

sexes combined was roughly 6-7 per 100,000 and increase for ages 60 years and older, 

though the morphological classification are not entirely consistent in various reports 

(12,15-16,18). In Asia, lower brain tumor rates are reported compared with the Caucasian 
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populations, for instance in India, Japan and Korea often around 3 per 100,000 in men 

and 2 per 100,000 in women (though somewhat higher in China) (11). Within the US, 

incidence rates of malignant brain tumors vary between the states by a factor of 1.3 at 

most compared to the average national rate (12).  

Globally, mortality from brain and nervous system cancer in 2012 has been estimated 

as 2.5 per 100,000 (3.0 for men and 2.1 for women), with 174,000 deaths occurring 

annually (8). These figures place brain cancer as the 13th most common cause of cancer 

death. No substantial increase in brain cancer mortality is obvious from the international 

compilation of cancer statistics (11). Mortality-incidence ratio of 0.7-0.8 indicates a high 

case-fatality.  

Survival in adult brain tumors varies by histological type, molecular-genetic features 

and patient’s age. Generally, the outcome of astrocytic tumors is poorer than other 

gliomas of similar grade. The median survival for glioblastoma is only one year or less, 

2-3 years have been reported for anaplastic (grade III) astrocytoma and 4-8 years for 

diffuse (grade II) astrocytoma (21,26-29). Five-year relative survival (survival among 

patients compared with population same age and sex) for glioblastoma is close to 5%, 

30% for anaplastic astrocytoma and 50% for diffuse astrocytoma (12,30). In low-grade 

glioma and anaplastic astrocytoma, cases with IDH mutation have twice as long median 

survival as wild-type tumors (31). In oligodendroglioma, substantially lower five-year 

relative survival has been reported from Europe compared with the U.S. (40% vs 50-

80%)(12,30). The median survival has been 2-5 years for cases without 1p/19q co-

deletion, and as high as 10+ years for those with this favorable prognostic indicator (32-

33). Ependymoma has the most favorable prognosis of the main glioma types in adults, 
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with median survival of approximately 10 years, and 5-year relative survival of 84% in 

the US and 40-70% in Europe depending on age (12,30,34-35). The decrease in survival 

with age is more striking for astrocytic than oligondendroglial or ependymal tumors.  

 

4 Non-occupational risk factors for brain cancer in adults 

Few etiologic factors have been firmly established for adult brain cancer. The known 

determinants are hereditary factors and high doses of ionizing radiation, but they account 

only for a minor fraction of all cases. 

A two-fold risk of glioma has been found in first-degree relatives of glioma patients 

(36-40). A number of rare hereditary syndromes including tuberous sclerosis, hereditary 

non-polyposis colorectal cancer syndrome (Lynch or Turcot syndrome involving 

mutations in DNA mismatch repair genes) and Li-Fraumeni syndromes (inherited 

mutation of the p53 gene), as well as neurofibromatosis 1/2, carry an increased risk of 

astrocytic tumors (as well as other cancers).  However, known hereditary syndromes 

account for only 1-5% of all adult brain cancers, as they are very rare (the most common 

being neurofibromatosis which affects 1/3000). Genome-wide association studies have 

indicated more than 20 polymorphisms associated with an increased glioma risk, though 

most showing only small to  moderate effect sizes with odds ratios of 1.2-1.4 (41-43). 

They involve genes such as EGFR, TERT, RTEL and others. These explain only a 

minority of the estimated heritability of gliomas (44). 

Several studies on the relation between allergic conditions and glioma have 

consistently shown a reduced risk associated with asthma and eczema by 20-50% (40,45-

53). Meta-analyses have confirmed the protective effect for asthma, allergy and eczema 
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(54-55). Also, other markers of atopic constitution such as serum IgE levels and use of 

antihistamines have been associated with a reduced risk (46,48,56-62). This has been 

postulated to result from immunological factors, possibly involving increased 

immunosurveillance with improved antitumor defense mechanisms. A study focusing on 

oligodendroglioma showed results that were comparable to glioma: a reduced risk related 

to allergy and elevated risk for family history of brain tumors (40). 

History of chickenpox and antibodies against varicella zoster virus has also been 

associated with a reduced risk of malignant brain tumors in several studies (63-67). 

N-nitroso compounds have been associated with brain tumors in animal models. For 

humans, the exposure patterns are complex, with intake from both diet and tobacco and 

alcohol with formation, metabolism and elimination regulated by several hereditary and 

physiological factors. A meta-analysis did not find consistent evidence for consumption 

of cured meat, an important dietary source of N-nitroso compounds (68). Several studies 

have been conducted on smoking and alcohol use but with inconsistent results (69-71). A 

meta-analysis of 17 studies showed a pooled RR of 1.1 for ever smokers (72). As for 

nutritional factors, studies on consumption of coffee and tea or cured meat and fish have 

not shown consistent results, but some studies have suggested a protective effect of 

vitamin supplement use (73-74), which could potentially be related to the N-nitroso 

compound hypothesis, as some antioxidant vitamins (C and E) reduce formation of such 

compounds.  

 

5 Occupational risk factors 

Exposure assessment 
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Several large studies have used job titles as exposure indicators, in some cases 

only a single occupation was obtained e.g. from the death certificate. Very crude 

classification such as ‘electric occupations’ or farm-related occupations as proxies for 

pesticide exposure may lack both sensitivity and specificity. Even detailed classifications 

of occupational titles may fail to adequately classify people in terms of exposure to a 

specific agent. More detailed and comprehensive occupational histories are obtained from 

census data, but sufficient information for assessing presence, intensity, frequency and 

duration of exposure for a particular agent can be elicited primarily from personal 

interview, with information on specific tasks, locations and processes involved at work. 

Nevertheless, self-reported exposure data should be assessed in separate validation 

studies to evaluate the extent of misclassification and bias. In malignant brain tumors, the 

rapid disease progression and potential deterioration of recall and cognitive abilities pose 

additional challenges for retrospective collection of exposure data in case-control studies 

(75).  

The use of job-exposure matrices offers some refinement over occupational title, 

though level of information attainable depends heavily on the input to the matrix, i.e. 

level of detail in linking tasks, equipment and facilities to categories used. A key 

characteristic is homogeneity of exposure within occupational groups, as a small but 

highly exposed sub-group is difficult to place meaningfully within a broader stratum. For 

instance, a job-exposure matrix may accurately reflect exposure within a manufacturing 

plant, but could add little to a job title if applied to a nationwide study. Direct 

measurement of exposure at the relevant time-period can be regarded as the gold standard 

for exposure classification, but is achievable only in prospective cohort studies. 
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Few studies have been able to address the etiology of specific subtypes of brain 

cancers, particularly other than glioma, due to their rarity. In practice, the results of all 

studies pertain to astrocytic tumors, above all glioblastoma. In studies prior to the 1990s, 

brain cancer was rarely distinguished from other central nervous system tumors. 

 

Occupations and branches of industry 

Putative clusters of brain cancers have been reported from several workplaces 

including farming, physicians and several chemical industries, but generally 

investigations have failed to identify an agent that could account for the apparent excess. 

Exploratory analyses have given some indications for several job titles and 

branches of industry. The consistency of the findings across studies has, however, been 

low raising the possibility of false positive results owing to multiple comparisons (some 

studies have compared up to >100 occupations).  

Brain cancer risk among farmers and agricultural workers received attention after 

several studies had shown increased risks, in particular an early cohort study of pesticide 

applicators (76). Prior to the mid-1990s, at least a dozen studies were reported, but with 

equivocal overall results. Meta-analyses of some 30 studies conducted up to the mid-

1990s showed pooled rate ratios of 1.0-1.3, depending on inclusion criteria (77-78). 

Findings from the Agricultural Health Study do not show excess brain and nervous 

system cancer incidence or mortality (79-81).  

A related occupational group consists of workers involved in pesticide 

manufacture or spraying (applicators). The epidemiological studies on this population 
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have, however, been based on relatively small numbers of exposed cases and the results 

are not consistent (82-85). Contacts with farm animals have not been associated with an 

increased risk (86-89). 

Other studies addressing specific hypotheses have suggested increased risks in 

petroleum and pulp industries (90-92), but the results have not been consistent. Brain 

cancer risk among workers in the petrochemical industry was evaluated in more than 10 

studies in the 1980’s, but they failed to provide consistent evidence. A meta-analysis of 

cohort studies with 350,000 workers in various branches of the petroleum industry 

showed an overall SMR of 1.01 (95% CI 0.93-1.09) (93). An international collaborative 

cohort study with 60,000 workers in pulp and paper industries did not indicate increased 

mortality from brain cancer (94). 

Increased risks have also been reported for health care workers, mainly 

physicians, in several studies (90,95-101). Improved diagnostic ascertainment is unlikely 

to explain the finding for malignant tumors, though no specific agent has been identified. 

See also below for formaldehyde. 

Several studies have evaluated brain cancer risk related to employment in the 

rubber industry with exposure to dusts, fumes and solvents, as well as some other 

carcinogens including aromatic amines (95,102-104). In 1982, IARC concluded that the 

evidence for rubber industry was inadequate for brain tumors and in the latest evaluation 

brain cancer was not among the tumors linked to rubber industry (105). A review 

covering a total of 90 studies also concluded that the results concerning brain tumors 

were inconsistent (106). 
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Some studies have reported elevated risks in the metal industry, but these have 

been obtained mainly in large exploratory studies (90,98,107-108). 

 

Specific agents 

Ionizing radiation 

 Ionizing radiation refers to particles or waves with sufficient energy to remove 

electrons from atoms or molecules, consequently inducing a charge (examples include 

gamma rays and X-rays).  Unlike chemical and viral agents, ionizing radiation is 

unaffected by the blood-brain barrier and other cellular and tissue boundaries and 

independent of the presence or absence of specific cellular receptors.  Exposure to 

ionizing radiation in humans occurs in variety of settings, including fractionated high-

dose exposures (e.g. patients undergoing cancer radiotherapy), moderate to high dose 

exposures (e.g. Japanese atomic bomb survivors); chronic low-dose exposures (e.g. 

radiation workers) and fractionated low dose exposures (e.g. x-rays in diagnostic medical 

examinations).  Currently, the primary sources of ionizing radiation to the population at 

large are through natural background radiation (e.g., residential radon) and from medical 

procedures and diagnostic tests (e.g., computed tomography (CT) scans). Occupations 

that involve exposure to higher than average levels of ionizing radiation include airline 

crew, physicians and medical technicians, uranium miners, nuclear workers and 

laboratory researchers. Occupational exposure tends to be very low dose and highly 

fractionated. The magnitude of risk associated with these types of exposures, particularly 

for rare outcomes such as brain cancer, is difficult to estimate in epidemiological studies. 
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Biological damage by ionizing radiation occurs when energy absorbed by 

biological tissue interacts directly or indirectly with atoms of critical targets.  As radiation 

moves through the tissue, energy is deposited along the track, causing ionization along 

the track as well as some clustering at the ends.  Direct action occurs when the radiation 

itself causes ionization of the critical target(s).  The majority of damage, however, is 

caused by indirect action that occurs when radiation interacts with other atoms or 

molecules in the cell, such as water, to produce reactive free radicals that can break 

chemical bonds and damage critical target(s). This initiates a series of biological events 

that eventually leads to cancer or other disease outcomes (109). 

In 2000, the International Agency for Research on Cancer (IARC) classified 

ionizing radiation as a Class 1 Carcinogen (110). It is noteworthy that this conclusion was 

based primarily on studies of medical and environmental exposures in childhood, rather 

than occupational or adult exposures.  

At the time of publication of the 2000 IARC monograph, the authors reported an 

absence of convincing evidence of a significant excess of brain or CNS cancer associated 

with radiation in any occupational study (110-113). Since then, several more 

occupational cohorts have been analyzed and published. Although there was some 

indication of increased brain cancer mortality in radiologic technologists that reported 

performing or conducting fluoroscopically -guided interventional procedures (Rajaraman 

2016), a cohort-wide analysis of occupational dose to the brain in the same cohort 

showed no association with malignant tumor mortality (Kitahara, 2017).   Other 

independent studies and reviews have also indicated null findings for the association 

between occupational radiation exposure and brain cancer risk. across a wide range of 
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professions including nuclear workers, airline crew, physicians/medical technicians (114-

118)[Table 2]. These have also indicated null findings for the association between 

occupational radiation exposure and brain cancer risk. 

The concept of variability in individual sensitivity to radiation has long been 

supported by data from patients with some rare hereditary conditions such as Ataxia 

Telangiectasia.  Consequently, there has been increasing interest in extending the 

characterization of radiation risk beyond traditional assessment by epidemiologic 

methods to incorporate the biological evaluation of differences in susceptibility between 

individuals.  Empirical studies of gene-radiation interactions, however, have yielded no 

convincing signals to date (119).  As tools for characterizing biological effects improve, 

it will be important to continue monitoring the possibility of increased risks in susceptible 

subgroups. 

 

Non-ionizing radiation 

Non-ionizing radiation is lower energy than ionizing radiation and includes the 

radiofrequency fields produced by mobile phones and extremely low frequency range 

electromagnetic fields (EMF).  

While not explicitly an occupational risk, the association between cellular phone 

use and brain cancer has been studied extensively. In 2011, based mainly on 

epidemiologic evidence of increased risk of gliomas and vestibular schwannomas in 

heavy cell phone users, the IARC monograph program deemed radiofrequency 

electromagnetic fields a Class 2B, i.e. “Possible” carcinogen largely based on studies of 

cellular phone use and brain tumors (120). Studies published since the monograph have 
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had mixed findings. Two case-control studies reported an association between self-

reported cell phone use and risk of glioma (121-122), but large cohort studies in Denmark 

and the UK did not replicate the findings (123-124). No association or dose-response 

association was reported between mobile phone use and malignant brain cancer risk in 

either cohort study. Possible risks associated with occupational exposures to RF-EMF 

have been evaluated in both cohort studies [Table 5] and case-control studies [Table 6]. 

Results of cohort studies have been consistently negative and case-control studies have 

shown some hints of increased brain tumor risks, but no consistent or convincing 

evidence overall. 

 Occupational groups believed to have the potential for high exposure to magnetic 

fields include electronics, electrical and electric utility workers. Early studies of electrical 

workers reported increased risk of brain cancer compared to the general population (125-

128). These studies were criticized for a lack of information about individual-level 

exposures to EMF and incomplete accounting for other possible risk factors such as 

soldering fumes and solvents. More recently conducted cohort studies that included 

transportation workers and welders and used job exposure matrices and cumulative 

exposure measures have not found a significant association (129-133). However, one 

Swedish cohort study reported a potential association between occupational EMF 

exposure among women, but not among men, and two case-control studies, one focusing 

on occupational exposure (134), reported increased risk of brain cancer within a specific 

exposure category (≥3.0 mG average dose and glioblastoma risk)(135) and latency (1-4 

years prior to diagnosis)(136). These specific findings amidst otherwise null results 

suggest potential Type I error as a result of multiple testing, but may nevertheless merit 
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further exploration. It has been hypothesized that occupational EMF exposure may 

influence brain cancer risk as an effect modifier of chemical exposure risk (e.g. to 

inorganic lead), but this has not been heavily explored or conclusively established (137). 

[Tables 3-4] 

 

Chemical agents 

Pesticides. Perhaps the most extensively studied class of occupational chemical 

exposures thus far is pesticides. Evaluation of the carcinogenicity of most pesticides by 

IARC has classified evidence as inadequate, due to lack or insufficient human data. An 

international study of nearly 70,000 workers exposed to phenoxy herbicides found no 

excess of brain cancer mortality (138). Also, some indirect exposure indicators (not 

washing or changing clothes after handling/spraying) have been associated with glioma 

risk, but this could be due to recall bias (89). However, with a substantial number of 

studies, with refined research hypotheses pertaining to specific classes or agents, the 

balance of evidence seems to weigh against an increased risk [Table 7].  

Other chemical exposures. Some studies have suggested an increased risk of brain 

cancer related to occupational exposure to various organic solvents, mainly 

organochlorides or chlorinated hydrocarbons (chemically related to several pesticides), 

but overall the results do not indicate clearly increased risks (139-144). 

Vinyl chloride is used in the plastics industry and classified as a human 

carcinogen based on increased risk of liver angiosarcoma. A large US cohort showed an 

increased brain cancer mortality of borderline significance, but this was not seen in a 

European study (145-146). A meta-analysis of five studies gave a pooled SMR of 1.26 
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(0.98-1.62) for brain cancer deaths, which excludes a large excess risk but leaves open 

the possibility of a slight increase (147).  

The epidemiological evidence regarding occupational exposure to lead has failed 

to lend consistent material support for the hypothesis of increased risk of brain cancer 

(145,151-155). The potential excess risk was originally proposed in a study with 

measured blood lead concentrations but only 16 cases (152). Possible gene-environment 

interaction has been proposed that might modify the susceptibility to glioblastoma in 

relation to lead exposure (156). 

Acrylonitrile is widely used (e.g., in the plastics and rubber industries) and has been 

shown to cause nervous system tumors in experimental animals. Several epidemiological 

studies have evaluated brain tumor incidence or mortality among workers exposed to 

acrylonitrile. The largest was a US cohort with more than 25,000 subjects with an 

average of 21 years of follow-up (153). It did not find an association between exposure to 

acrylonitrile and brain cancer mortality. A meta-analysis with 12 studies and a more 

recent summary of the later research also confirmed the lack of excess risk (154,155).  

Formaldehyde is widely used in several industries, but exposure also occurs in 

farming as well as certain occupations in health care and biomedical research. A nested 

case-control study of funeral workers showed some indication of increased risk of brain 

cancer with any exposure to formaldehyde in embalming, but no dose-response in terms 

of duration or cumulative formaldehyde exposure (156). A meta-analysis reported no 

excess among industrial workers exposed to formaldehyde, but an increased mortality 

from brain cancer was found for professionals, mainly pathologists (157). 
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A large cohort study (92) suggested possible risks related to occupational exposure 

to mercury, but the result was confined to men, with no excess risk among women. 

Smaller earlier studies have not revealed an association with inorganic mercury. 

Concluding remarks 

In summary, occupational etiology of adult brain cancers has not been well 

established. Increased brain cancer risks have been reported in agricultural occupations 

and among physicians. However, the specific agents that could explain the excesses have 

not been identified. High doses of ionizing radiation increase the risk, but the role of the 

doses within the current workplace regulations is unclear, with the effect size predicted 

by linear extrapolation from higher doses being very low. Despite considerable efforts, no 

consistent evidence linking occupational exposure to electromagnetic fields or pesticides 

with brain cancer risk has been obtained. Large epidemiological studies with detailed 

assessment of exposure to specific agents and refined diagnostic classification appear to 

provide the best approach to advance knowledge in the area.
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