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Mathematical thinking and understanding 
in learning of mathematics 

We both editors have wondered and studied “What is mathematical thinking?” 
more than thirty years. At least the question could be recognized behind most of our 
research projects concerning studies in mathematics education from little school chil-
dren to university students. The concept “mathematical thinking” can be found in sev-
eral studies of mathematics education, in national curricula or in media during the 
decades all over the world. We searched words “mathematical thinking” from the da-
tabase of international scientific articles, and we found 456 707 mentions at first time. 
These are the main reasons why we have chosen “mathematical thinking” as the cen-
tral concept of the special issue. The other interesting question from our point of view 
is how a student can express his/her mathematical thinking? By answering this ques-
tion, we have made simple model for the teacher education purposes, and we call it 
“languaging” (of mathematical thinking). In the following, we lead to the above con-
cepts and prepare the presentation of articles in this journal.  

Sternberg (1996) has studied different approaches to the concept of mathematical 
thinking. He found at least five different points of view to describe the concept. They 
are anthropological, information process, mathematical, pedagogical, and psycho-
metric approach. For example, in the anthropological approach the central starting 
point is the surrounding culture (e.g. ethnomathematics d’Ambrosio, 1985), in the in-
formation process different types of knowledge in mathematics (e.g. Joutsenlahti, 
2009) or in psychometric the abilities in doing mathematics (e.g. Krutetskii, 1976). 
We can interpret that the pedagogical approach in the school context takes account 
on beliefs and problem solving (e.g. Pehkonen, 1998, 2007 and Hannula, 2004) in 
thinking processes. We have used the information process approach in describing the 
concept of mathematical thinking, and we described knowledge (meaningful infor-
mation) as conceptual and procedural (Hiebert & Lefevre, 1986). Student’s metacog-
nition guides his/her thinking. Oikkonen and Hannula have taken the viewpoint to 
mathematical thinking David Tall’s framework of the three worlds of mathematics in 
their article “The three worlds and two sides of mathematics and a visual construc-
tion for a continuous nowhere differentiable function”.  In their theoretical article, 
they further elaborate Tall’s framework and demonstrate this framework by discus-
sion on the definition of continuity. Kayan Fadlelmula’s article “A PRISMA System-
atic Review on Enablers and Obstacles in Teaching and Learning of Mathematics” 
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is systematic review on the current issues positively and negatively affecting teaching 
and learning in mathematics and the data was gathered from the studies published in 
the LUMAT -journal. Metsämuuronen’s and Ukkola’s article “Rudimentary stages of 
the mathematical thinking and proficiency - Mathematical skills of low-performing 
pupils at the beginning of the first grade” based on the national-level dataset (n = 
7770) at grade 1 of primary school in Finland and the focus is on those pupils whose 
preconditions are so low that they are below the first measurable level of proficiency 
in the common framework with reference to mathematics. 

When we were young teachers, we often thought How we can express math-
ematical thinking? and especially how we could encourage students to do it by 
many ways? Traditionally, in mathematics classes, students work quietly with their 
own textbook and asked for help only from the teacher. We didn’t often know what 
kind of thoughts our students had about the solutions processes of mathematics prob-
lems. Nevertheless, we finally understood that if we get a student to speak about math-
ematics – we get him/her to think mathematics and we can hear his/her mathematical 
thinking! Also, we can see it if the student does it by writing or/and drawing (see e.g. 
Morgan, 2001). We call this process languaging of mathematical thinking, which is 
based on a model of four “languages”. They are mathematical symbolic language, nat-
ural language, pictorial language, and tactile action language (Joutsenlahti & Kulju, 
2017; Joutsenlahti & Perkkilä, 2019). The most effective benefit of languaging for the 
student is that when the student expresses mathematical thoughts by his/her own 
words then he/she structures his/her thinking and by that way understands mathe-
matical concepts and procedures better. It is for the teacher easy to evaluate student’s 
thinking and give help if needed. When a student expresses his/her mathematical 
thinking (s)he can use different multimodal approaches (e.g. the four “languages”). 
Theoretically, the multimodal languaging model is related to multiliteracy (Kalanzis 
& Cope, 2012). When a student makes meanings for the mathematical text the lan-
guages can be seen as a multi-semiotic approach, where the different languages make 
it possible to construct many kinds of meanings for concepts in versatile contexts 
(Joutsenlahti & Perkkilä, 2019).  Björklund’s, Ekdahl’s, Kullberg’s and Reis’s article 
“Preschoolers’ ways of experiencing numbers” directs attention to 5–6-year-olds’ 
learning of arithmetic skills through a thorough analysis of changes in the children’s 
ways of encountering and experiencing numbers. The aim of Kaitera’s and Har-
moinen’s study was to map whether a teaching approach, which focuses on teaching 
general heuristics for mathematical problem-solving by providing visual tools called 
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Problem-solving Keys, would improve students’ performance in tasks and skills in 
justifying their reasoning in their article “Developing mathematical problem-solving 
skills in primary school by using visual representations on heuristics”. Francisco’s 
article “Supporting Argumentation in Mathematics Classrooms: The Role of Teach-
ers’ Mathematical Knowledge” addresses a documented need for a better under-
standing of the relationship between mathematical knowledge for teaching and in-
struction by focusing on how the knowledge influences teachers’ support of argumen-
tation. Rinneheimo concentrates on the use of languaging exercises in the engineering 
mathematics course in Finland in her article “I solved a derivative – but what does it 
actually mean? Languaging and conceptual understanding in engineering mathe-
matics.” 

We have thought about the relationship between conceptual understanding 
and mathematical thinking. The development of mathematical thinking is em-
phasized in the Finnish curricula of pre-school and school education. The main goal 
of the curricula is to develop a student’s mathematical thinking and understanding 
about mathematics. Hiebert and Lefevre (1986, p. 3—8) have defined conceptual and 
procedural mathematical knowledge. According to them, procedural knowledge refers 
to those procedures that are needed to solve mathematical tasks and problems. Con-
ceptual knowledge can be described as the richness of knowledge in relationships be-
tween things which 'can be thought of as a connected web of knowledge, a network in 
which the linking relationships are as prominent as the discrete pieces of information. 
Relationships pervade the individual facts and propositions, so that all pieces of in-
formation are linked to some network' (Hiebert & Lefevre, 1986, pp 3—4). Both defi-
nitions of procedural and conceptual knowledge share commonalities with Skemp’s 
definitions of similar concepts (Skemp, 1976). Hiebert and Lefevre's (1986) descrip-
tion of procedural knowledge resembles the definition of instrumental knowledge by 
Skemp (1976), which can be seen as the application of finished formulas and models 
to certain kinds of tasks. In the definitions of conceptual knowledge, both Hiebert and 
Lefevre (1986) and Skemp emphasize understanding about the connections made by 
mathematical concepts. When these connections between concepts are built purpose-
fully in teaching, students gradually develop an understanding about the network of 
mathematical concepts. Thus, a student does not use loose mathematical concepts; 
(s)he understands the whole system of them. The interactivity of the learning envi-
ronment, student’s timely support and received feedback and the process of becoming 
accepted as oneself contributes to the construction of a sustainable first-hand 
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mathematical knowledge and skills base, i.e. the building of mathematical compe-
tence. It is important that the learning community (teachers and students) have a feel-
ing let's do it together, talk and model mathematical solutions through the means of 
languaging. 

Early mathematical skills build a foundation for the individual's comprehending 
learning of school mathematics skills and mathematical knowledge. The level of de-
velopment and mathematical knowledge of students’ early mathematical skills meet 
no later than preschool. In order to develop the student's mathematical thinking 
skills, we need to understand how (s)he learns mathematics. Preschool age and ele-
mentary school students are on the concrete level of mathematical thinking, and it is 
reflected in their actions. Conceptual understanding develops best in a sociocultural 
context by collaborative working methods where students construct their own math-
ematical thinking through drawings, using mathematical symbolic language, concrete 
and verbal actions (e.g. Perkkilä & Joutsenlahti, 2021). This viewpoint is in line with 
Vygotsky’s theory, which emphasizes the sociocultural perspective. Building a math-
speaking community where everyone is a teacher and learner is crucial for students 
building a conceptual network in a particular math area. (e.g. Fuson, 2019.) This al-
lows all students from preschool to university to build their own mathematical think-
ing from their own mathematical skill level. By supporting the construction of stu-
dent’s mathematical thinking and conceptual understanding, we support sustainable 
development from the perspective of learning mathematics (e.g. Joutsenlahti & Perk-
kilä, 2019; Perkkilä & Joutsenlahti, 2021).  

Algebraic thinking is an important part of mathematical thinking. Both Sanna 
Wettergren and Inger Eriksson and Natalia Tabachnikova have studied how to pro-
mote young students’ algebraic thinking in their articles. Wettergren explored how 
teaching aiming to promote young students’ algebraic thinking can be designed in her 
article “Identifying and promoting young students’ early algebraic thinking”.  Eriks-
son and Tabachnikova have sought answers for the development of algebraic thinking 
with an example based on a case study that describes how young students can theo-
retically study and reflect some aspects of the equations in their article “IE “Learning 
models”: utilising young students’ algebraic understanding of equations”. Kam-
bara’s and Tossavainen’s articles focus on examining conceptual understanding in 
students studying to be a teacher. Kambara’s article “Understanding of "proportion" 
and mathematical identity: A study of Japanese elementary school teachers” ex-
plores and clarifies the level of conceptual understanding of “proportions” among 
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Japanese students who hope to become elementary school teachers in the future. 
Tossavainen’s article “Student Teachers’ Common Content Knowledge for Solving 
Routine Fraction Tasks” focuses on the knowledge base that Swedish elementary 
student teachers demonstrate in their solutions for six routine fraction tasks.  

We think that we have got very good sample of scientific articles to our Special Issue. 
Thank you for all the writers, you have done excellent work! 

Tampere and Kokkola 3.6.2022 
Guest Editors 
Jorma Joutsenlahti and Päivi Perkkilä 
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The three worlds and two sides of mathematics and 
a visual construction for a continuous nowhere 
differentiable function 

Juha Oikkonen1 and Jani Hannula2 

1 Department of Mathematics and Statistics, University of Helsinki, Finland 
2 Viikki teacher training school, University of Helsinki, Finland 

 A rigorous and axiomatic-deductive approach is emphasized in teaching 
mathematics at university-level. Therefore, the secondary-tertiary transition 
includes a major change in mathematical thinking. One viewpoint to examine such 
elements of mathematical thinking is David Tall’s framework of the three worlds of 
mathematics. Tall’s framework describes the aspects and the development of 
mathematical thinking from early childhood to university-level mathematics. In this 
theoretical article, we further elaborate Tall’s framework. First, we present a 
division between the subjective-social and objective sides of mathematics. Then, 
we combine Tall’s distinction to ours and present a framework of six dimensions of 
mathematics. We demonstrate this framework by discussion on the definition of 
continuity and by presenting a visual construction of a nowhere differentiable 
function and analyzing the way in which this construction is communicated visually. 
In this connection, we discuss the importance to distinguish the subjective-social 
from the objective side of mathematics. We argue that the framework presented 
in this paper can be useful in developing mathematics teaching at all levels and can 
be applied in educational research to analyze mathematical communication in 
authentic situations. 

Keywords: mathematical thinking, advanced mathematics, the three worlds of 
mathematics, secondary-tertiary transition, nowhere differentiable functions 

1 Introduction 

Research on mathematical thinking includes several approaches that focus on 
different aspects of the subject such as the pedagogical, cultural or cognitive 
(Sternberg, 1996). A recent review of research on mathematical thinking (Goos & 
Kaya, 2020) divides these different approaches into individual cognitive and 
constructivist perspective, cultural psychology perspective and discourse perspective. 
Mathematics education research has a long tradition in exploring the cognitive 
aspects of mathematical thinking (see e.g., Bingolbali & Monaghan, 2008; Fan & 
Bokhove, 2014; Tall, 1991). In this theoretical article, we draw upon that tradition and 
present a novel theoretical framework describing various aspects of mathematical 
thinking in mathematical discourse. We discuss the framework using examples from 
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university-level mathematics, although we also consider the significance of our 
theoretical elaboration for primary and secondary school mathematics teaching and 
learning. 

Several studies have described special features of the context of university 
mathematics. One of the main interests of such studies has been the secondary-
tertiary transition. The transition includes a change in mathematical content, 
sociomathematical norms and educational culture (Education Committee of the EMS, 
2013), and therefore causes both cognitive and pedagogical shocks to beginning 
undergraduates (Clark & Lovric, 2009). The secondary-tertiary transition has been 
found problematic for decades and consequently many beginning undergraduate 
become dropouts (Di Martino & Gregorio, 2019). Regarding cognitive aspects of the 
transition, a rigorous and axiomatic-deductive approach is emphasized at university, 
meaning that the transition includes a major change in mathematical thinking (Tall, 
2008). For this reason, some universities have, for example, developed special 
bridging courses to ease the transition to advanced mathematical thinking. 

Mathematics, however, is not only an art of axiomatic-deductive reasoning or 
manipulating symbols, neither in school mathematics nor in university-level 
mathematics. One influential framework to describe the variety of mathematical 
thinking is the framework of the three worlds of mathematics (Tall, 2013). Tall (2013) 
divides mathematical thinking into embodied world (pictures, gestures etc.), symbolic 
world (calculations, symbolic rules etc.) and formal world (axioms, proofs etc.). The 
interplay between these different worlds of mathematics has been found useful for 
developing undergraduate level mathematics teaching (Oikkonen, 2009), as well as 
teacher education (Hannula, 2018). That is to say, such interplay is important in terms 
of secondary-tertiary transition, as well as in terms of development of pre-service 
teachers’ mathematical knowledge for teaching (see e.g., Dreher & Kuntze, 2015). 

In this article, we elaborate the framework of three worlds of mathematics further. 
First, we shall discuss Tall’s framework and combine it with a distinction of two sides 
of mathematics, that is, the subjective-social and objective sides of mathematics. 
Together these ways of looking at mathematics will lead to a division of 6 = 2 x 3 
dimensions of mathematics. After discussing mathematical thinking in general, we 
present a discussion clarifying the definition of continuity and a construction for a 
continuous nowhere differentiable function. Such functions are related to advanced 
undergraduate level mathematics courses. The construction, and the way in which we 
present it, is a novel one and does not appear for instance in Thim’s extensive review 
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(2003) of continuous nowhere differentiable functions. David Tall has been using a 
construction which he calls the Blancmange function in many of his writings (see e.g., 
Tall & Di Giacomo, 2000; Tall, 1982). We use our construction as an example to 
demonstrate six different dimensions of mathematics and their interplay. 

The motivation of our theoretical considerations is connected to our experiences 
as a research mathematician and university lecturer (the first author) and as a 
mathematics teacher and teacher educator (the second author). In our work, we have 
found Tall’s framework extremely fruitful in developing teaching and conducting 
educational research. However, we have come to the conclusion that Tall’s distinction 
does not capture all aspects of mathematical discourse in authentic situations. 
Therefore, we find a theoretical elaboration of Tall’s framework useful in developing 
teaching and in educational research. In this article, we aim to 

1.  introduce a novel theoretical framework of the six dimensions of mathematics 
2.  demonstrate the framework in the cases of the definition of continuity and a 

construction of a continuous nowhere differentiable function 
3.  discuss the possibilities of the framework for educational research and 

development of mathematics teaching and learning. 

2 Theoretical framework 

We examine the broad concept of mathematical thinking from a cognitive viewpoint. 
In the following subsections, we first present a summary of frameworks describing 
cognitive aspects of mathematical thinking. Second, we discuss in more detail the 
framework of the three worlds of mathematics (Tall, 2013). Third, we present our 
distinction between subjective-social and objective sides of mathematics. Finally, we 
elaborate Tall’s framework further by combining the three worlds of mathematics 
with the distinction of two sides of mathematics. 

2.1 Cognitive frameworks of mathematical thinking 

Since the very beginning of the discipline, mathematics education researchers have 
presented several dichotomies and classifications of mathematical thinking and 
knowledge. Skemp (1976), for instance, divides mathematical understanding into 
instrumental understanding and relational understanding. Roughly speaking, 
instrumental understanding refers to how to carry out mathematical operations 
whereas relational understanding refers to why mathematical operations work. 
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Similarly, Hiebert (1986) divides between conceptual and procedural knowledge. 
Several similar dichotomies have been used in educational theories, and Haapasalo 
(2003), for instance, lists 20 such dichotomies presented in literature. Instead of 
discussing all these dichotomies, we summarize some of the most influential 
frameworks of mathematical thinking underlying present mathematics education 
research. 

One of the most established frameworks in mathematics education research is the 
distinction between concept image and concept definition (Tall & Vinner, 1981). (It 
seems that the origin of David Tall’s three worlds of mathematics lies there.) Concept 
image refers roughly to one’s understanding of a mathematical concept and concept 
definition to the official definition of the concept. Tall and Vinner (1981) define 
concept image as the total cognitive structure that is associated with a mathematical 
concept. Thus, concept image may include mental pictures, symbolic processes and 
axioms etc. 

Development of students’ concept images have been widely studied in literature 
especially from the viewpoint of processes and concepts. The term encapsulation, 
originating from Piaget, means a change in thinking in which learner starts to think 
the concept itself instead of the process (Tall, 2013). For instance, Sfard (1991) 
considers the dualism between the operational and structural sides of mathematics. 
The encapsulation process, according to Sfard (1991), occurs in three steps: 
interiorization, condensation and reification. Similarly, Gray and Tall (1991) speak of 
procepts referring to an ‘amalgam of process and concept in which process and 
product is represented by the same symbolism’ (Gray & Tall, 1991, p. 73). Additionally, 
one influential framework explaining the encapsulation process is APOS-theory 
presented by Ed Dubinsky and colleagues (Asiala et al., 1996; Dubinsky & McDonald, 
2002). 

Frameworks presented above focus mostly on learning of algebra and calculus. In 
case of geometry, for instance, van Hiele levels (Burger & Shaughnessy, 1986) give a 
widely used framework to analyze students’ learning. Some researchers have, 
however, presented more generic frameworks. Already in the 1960’s Bruner (1967) 
divided mathematical representations into enactive, iconic and symbolic. Similarly, 
Fishbein (1994) classifies intuitive, algorithmic and formal approach to mathematical 
activity.  

Furthermore, Viholainen (2008) separates mathematical reasoning into formal 
reasoning based on axioms, definitions and proven theorems, and informal reasoning 
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based on visual or physical interpretations of mathematical concepts. Some 
researchers, such as Joutsenlahti (2005), have studied the overall picture of 
mathematical thinking including students’ knowledge as well as their beliefs. In his 
doctoral dissertation, Joutsenlahti (2005) explored mathematical thinking from 
societal perspective, teacher’s perspective and student’s perspective. 

Influenced by many frameworks presented above, Tall presented his framework 
of the three worlds of mathematics first in a conference paper (Tall, 2004). In that 
paper Tall divides mathematical thinking into embodied, symbolic and formal worlds 
of mathematics. Tall’s framework aims to give an overall view to mathematical 
thinking and its development (Tall, 2013). Adapted from Chin (2013), some 
established frameworks of mathematical thinking are summarized in Table 1. 

Table 1.  Summary of frameworks adapted from Chin (2013) 

Researcher(s) Key concepts of the framework Focus 
Sfard operational – structural encapsulation process 
Gray & Tall procept procedural and conceptual knowledge 
Dubinsky et al. action - process - object - schema  cognitive development 
Van Hiele perceptions - operations - proofs levels of knowledge in geometry 
Bruner iconic - enactive - symbolic representations 
Fischbein intuitive - algorithmic - formal approaches to mathematics 
Viholainen informal - formal mathematical argumentation and reasoning 
Joutsenlahti knowledge - beliefs aspects of mathematical thinking 
Tall embodiment - symbolism - formalism modes of mathematical thinking 

 
The summary in Table 1 highlights the variety of frameworks describing cognitive 

aspects of mathematical thinking. In this article, we elaborate Tall’s broad framework 
of the three worlds of mathematics.  

2.2 The three worlds of mathematics 

The idea of three worlds of mathematics is based on humans’ capability to 
 

i) recognize regularities, similarities and differences, 
ii) repeat actions, and 
iii) use language to name concepts (Tall, 2013). 
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Based on these humans’ cognitive-physiological capabilities Tall divides 
mathematical thinking into conceptual-embodied, proceptual-symbolic, and 
axiomatic-formal worlds of mathematics.  Tall has discussed his worlds in a great 
number of writings and the concepts have developed somewhat over the years. 

In his book Tall (2013) gives an overall view of his work and describes the worlds 
as follows. 

A world of (conceptual) embodiment building on human perceptions and 
actions developing mental images verbalized in increasingly sophisticated ways 
to become perfect mental entities in our imagination; 
A world of (operational) symbolism developing from embodied human actions 
into symbolic procedures of calculation and manipulation that may be 
compressed into procepts to enable flexible operational thinking; 
A world of (axiomatic) formalism building formal knowledge in axiomatic 
systems specified by set-theoretic definition, whose properties are deduced by 
mathematical proof. (Tall, 2013, p. 133) 

Later, we refer to these worlds simply as embodied, symbolic and formal. 
The embodied world includes embodied thinking about mathematical concepts 

and processes such as pictures and physical objects, whereas the symbolic world 
includes symbolic thinking such as calculation rules. Formal world, on the other hand, 
includes rigorous mathematical theory including proofs and axioms. As an example, 
Tall (2013, p. 25) relates the system of the real numbers to these worlds. The real 
numbers have embodiment as a number line, symbolism as (infinite) decimals, and 
formalism as a complete ordered field (Figure 1). 

 

Figure 1.  The concept of real number and the three worlds of mathematics 

Although all these worlds are apparent in both school and university mathematics, 
the secondary-tertiary transition includes a change in emphasis from the embodied 
and symbolic world to the formal world (Tall, 2004; Tall, 2008). Therefore, the 
interplay between the different worlds is crucial in undergraduate mathematics and 
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teacher education (Oikkonen, 2009; Hannula, 2018). Although the worlds are 
hierarchical in regard to cognitive development, all of them are more or less present 
in mathematical discourse at all levels of education. 

Sfard’s (1991) framework has some resemblance to the three worlds of Tall, but 
the ordering makes a big difference. The doctoral thesis of Hähkiöniemi (2006) is 
interesting in this respect. Tall (2008) remarks that Hähkiöniemi (2006) considered 
the routes of students towards learning the derivative. Tall say that Hähkiöniemi 
‘found that the embodied world offers powerful thinking tools for students’ who 
‘consider the derivative as an object at an early stage’. According to Tall this questions 
Sfrad’s suggestion that operational thinking precedes structural. 

2.3 The subjective-social and objective sides of mathematics 

As discussed above, several dichotomies and distinctions of mathematical thinking 
and activity have been presented in literature. These frameworks focus, for instance, 
on representations and cognitive development (e.g. Bruner, 1967; Fischbein, 1994). 
On the other hand, many of these frameworks somehow distinct between formal and 
informal aspects (e.g. Tall, 2013; Viholainen, 2008) or conceptual and procedural 
aspects (e.g. Gray & Tall, 1991) of mathematical thinking. Our distinction, presented 
in this section, is somewhat different to prior distinctions, and can actually be seen as 
‘orthogonal’ to many of them. 

Our distinction is based on the observation that there are aspects in mathematics 
that are objective and others that are subjective or social. To the first belong printed 
formulas and pictures that one can find in textbooks etc. To the latter belong my 
mental images that I as the author had in my mind while writing formulas or making 
pictures appearing in printed material, and your mental images that you as a reader 
had in your mind while reading the text. We refer to this distinction by speaking about 
the two sides of mathematics. 

In our own work as university and schoolteachers, as well as mathematics and 
mathematics education researchers, such a division between two sides of 
mathematics has become important. But the emphasis seems to be somewhat 
different from those approaches referred to above. For us the division is related to 
what one does ‘here and now’ e.g., while working on a mathematical problem or 
teaching a mathematical concept: does one in the next moment speak about the ideas 
behind a mathematical concept or does one explicitly work with the formal definition 
of the concept. Our idea of the two sides was initially outlined several years ago 
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(Oikkonen, 2004) and it has been an important idea behind first author’s 
development of university mathematics teaching (Oikkonen, 2008, 2009). 

Let us consider as an example the continuity of a function 𝑔𝑔 at a point 𝑎𝑎. The idea 
is simple: 𝑔𝑔(𝑥𝑥) should be near 𝑔𝑔(𝑎𝑎) when 𝑥𝑥 is near 𝑎𝑎.  This is often visualized by well-
known pictures like Figure 2. 

Figure 2.  Continuity of g at a 

Pictures like that in Figure 2 can be argued to represent the embodied world of 
mathematics while the exact epsilon-delta definition represents symbolic world of 
mathematics. But if we look closer at how these pictures are used in teaching, we see 
an example of the interplay between the subjective-social and the objective sides of 
mathematics. 

We come now to our first main example. Consider an imaginary discussion 
between a teacher T and (a) student(s) S. The letters A to E refer to the pictures in 
Figure 3 (A-E). 
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Figure 3.  Discussion about continuity 

The discussion goes in the following way. 

T: Is f appearing in picture A continuous at a? 

S: No! 
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T: Is g in B continuous at a? 
 
S: Yes! 
 
T: Why f is not continuous, but g is continuous? 
 
S: g(x) goes near g(a) as x goes near a but f(x) does not go near f(a) as x goes 
near a. 
 
T: Can you elaborate / be more exact? 
 
S: ??? 
 
T: Let us draw horizontal lines shown in C and D. What can you see? 
 
S: g(x) appears between these lines as x is close to a but a part of f stays outside 
the lines no matter how close to a we are. 
 
T: Yes! For g we get in the bigger rectangle shown in E. (The graph of) g does 
not cut / go through the floor or roof of this rectangle. What happens if we draw 
new horizontal lines as in E closer to y = g(a)?  
 
S: We can draw new vertical lines and get a smaller rectangle so that g does not 
cut the floor or the roof. This appears in the smaller rectangle of E. 
 
T: Good! When the horizontal lines are near enough the line y = g(a) so that we 
can be sure of continuity? 
 
S: ??? 
 
T: Never. The point in continuity is that no matter however close we draw the 
lines, there always are the vertical lines making a box such that g does not cut 
the floor or roof of the box. Can you say this in other words? 
 
S: Could it work to say that for all horizontal lines…? 
 
T: Yes. And it is enough to speak about vertical and horizontal distances. 
Actually, this is exactly what the epsilon-delta definition in your textbook says! 

Pictures somewhat like Figure 2 appeared in the above discussion but here they 
had a role as a means of sharing thinking between the teacher and the student(s). 
Hence these pictures and the whole discussion are examples of the subjective-social 
side of mathematics. The discussion ends in a reference to the textbook of the students 
and the formal definition continuity. These are of course examples of the objective 
side of mathematics. 
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When combining the subjective-social vs. objective dichotomy to Tall’s three 
worlds, we can say that the main part of the previous discussion lives on the 
subjective-social side and in Tall’s embodied world.  

Continuity has also an objective aspect, the well-known epsilon delta definition 
appearing in textbooks and mentioned at the end of the above discussion. In Tall’s 
terminology, the definition belongs to the symbolic world, perhaps with a flavor of 
formal world. According to the definition, a function g is continuous at a, if (and only 
if) for every 𝜀𝜀 > 0 there is such a 𝛿𝛿 > 0 that |𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎)| < 𝜀𝜀 for all x satisfying 
|𝑥𝑥 − 𝑎𝑎| < 𝛿𝛿. 

One of the main purposes of an introductory course in analysis is to teach this kind 
of definitions and proofs of the main theorems of analysis based on such definitions. 
But it is not an easy task. This is not helped by the way how we too often begin 
solutions of examples or proofs of theorems: ‘Assume that 𝜀𝜀 > 0. Let 𝛿𝛿 = 3

7
𝜀𝜀...’

The first author’s experience in teaching analysis supports the idea that it is helpful 
to change the viewpoint from which we look at mathematics. This takes place by 
combining the formal definitions with an active use of teacher’s and students’ mental 
images like the one described above. By doing this it is also possible to reveal in 
teaching the way in which an expert mathematician thinks.  

In our experience this kind of an approach helps in making the content of a 
mathematics course meaningful and understandable to students. Thus, a course in 
mathematics is not only the polished formal content of the course but also – and to 
the authors essentially – the thinking and culture that lies behind the text. We believe 
that this approach explains partially the success shown in Oikkonen (2009). (There 
are also other pedagogical ideas involved in this paper.) 

The first author’s path to this kind of an approach results from the striking 
similarity between two seemingly quite different types of discussion on mathematics 
in which he has taken part: those taking place in math days in elementary schools and 
those taking place when experts discuss some problem in research mathematics. The 
‘here and now’ choice between different kinds of action that was mentioned above 
seems to be characteristic to such discourses. 

So, we have two sides of mathematics. But which of them is the correct one? Let 
us go back to continuity: which side is the correct one, the human (mental) images or 
the formal epsilon-delta definition? Our own answer is that neither of them is the 
correct one. The concept of continuity depends on both of its sides, and it is to us really 
a kind of interplay between these two sides. 
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2.4 There are six = 2 x 3 dimensions of mathematics 

Above we discussed the ideas of the tree worlds of David Tall and the two sides of 
mathematics. In this section, we elaborate on how these ideas can be combined into a 
new way of looking at mathematics and mathematical thinking.  We argue that this 
leads to new insight in mathematical thinking and communication. It may also help 
in better understanding of Tall’s three worlds. 

It seems to us that our distinction between subjective-social and objective and 
Tall’s division between embodied, symbolic and formal look at similar features in 
mathematical thinking from two different standpoints. Moreover, the resulting 2 x 3 
= 6 dimensions of mathematics help us to see some aspects more easily. Indeed, we 
shall consider some examples that show how each of Tall’s three worlds seems to 
divide into two sides. 

The case of the embodied world seems especially natural. Our own mental images 
of mathematical objects or situations are subjective embodiment. It becomes social 
when a group of people shares such images while working on a problem. Various 
objects like number sticks etc. made for teaching mathematics are examples of 
objective embodiment. 

A number line was mentioned above as an embodied version of the system of the 
real numbers. It can belong to either side depending on what we actually mean. The 
idea of a line of numbers belongs to the subjective-social side whereas an actual line 
drawn on a blackboard belongs to the objective side. 

But is the real line itself an objective ‘mathematical object’ belonging to the 
objective side of mathematics? What do we think about it and its existence? In a sense 
this is not an important question here. On the subjective-social side most 
mathematicians seem to behave as if the real line would actually ‘be there’. But to us, 
it seems that we cannot distinguish those mathematicians who really believe that the 
real line “is there in a Platonic universe” from those who only behave as if it existed. 
The theorems concerning the reals are proved using the axioms of the reals in the 
objective side of Tall’s formal world and they make no direct reference to the truth or 
meaning of the actual statement that the ‘reals exist’. In this sense formalism and 
platonism are not very far from each other. 

Moreover, it is not clear how to reply from a set-theoretic point of view to the 
question what the real line really is. Namely, there are different constructions 
(Dedekind-cuts of the rationals, certain equivalence classes of Cauchy sequences of 
the rationals etc.) leading to different sets. 
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The case of the symbolic world is more interesting. Rules for manipulating 
symbols and correct application of such rules belong to the objective side. These 
include long divisions in elementary school or solving equations or doing 
differentiation of expressions for functions in upper secondary school. Students’ own 
minitheories and systematic errors seem to belong to the subjective-social side of the 
the symbolic world.  

Perhaps also various routines applied in what is called street mathematics (see e.g. 
Resnick, 1995) in basic calculations can be seen also as examples of the subjective-
social side of the symbolic world. 

Written university level mathematics with its axioms, definitions and theorems is 
an example of objective side of the formal world of mathematics. Higher level strategic 
discussion on research mathematics belongs to the subjective-social side or the formal 
world. An example of this represents the comment ‘she mixed ideas from physics to 
analysis to solve the problem’. 

The step from the subjective-social side or the formal world to the subjective-social 
side of embodied mathematics with its mental images and gestures is very short. A 
nice example of this is in the Introduction of W. Hodges’ book (1985) where he tells 
about a difficulty with his own doctoral thesis. His supervisor C. C. Chang made an up 
and down movement with his hand and said: ‘This should help.’ (see Figure 4) 
According to Hodges, it helped. 

 

Figure 4.  Supervisor’s advice 

Chang’s gesture indicated a certain model theoretic back-and-forth construction 
and obviously Hodges understood Chang’s suggestion. (Such constructions are the 
main theme of Hodges’ book.) 

Before leaving this section, we shall have closer look at the concept of continuity 
of a function discussed above in connection to our two sides of mathematics. There 
we considered the appearing in Figure 2. 

The notion of continuity and the function studied is clearly embodied in such a 
drawing. (Of course, it is possible that there is no specific function that is considered 
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and that the whole discussion concerns the concept of continuity.) This drawing is 
clearly objective in the sense that everybody can observe it. So, the drawing belongs 
to the objective side and to the embodied world of mathematics. 

But these drawings are used either by oneself to think about continuity or by a 
group of people to discuss continuity. Such actions belong to the subjective-social side 
of the embodied world of mathematics. 

When one works with examples of assertions concerning continuity, one usually 
has to manipulate mathematical formulas. As long as one thinks or discusses how to 
proceed, one acts in the subjective-social side of the symbolic world of mathematics. 
When these formulas are actually written they become observable and thus objective 
and so one acts in the objective side of the symbolic world of mathematics. 

But usually, the real interest lies in understanding, teaching or using the ‘epsilon-
delta’ -definition of continuity, and so the subjective-social or objective side of Tall’s 
formal world is involved. 

As a conclusion, while discussing the continuity of a function, all six dimensions 
of mathematics may be involved (Table 2). 

Table 2.  The six dimensions of mathematics in the case of continuity 

Embodied Symbolic Formal 
Subjective-social What does one see in the picture 

and how is the picture used in a 
mathematical discussion? 

How are the formulas 
manipulated and how 
are the symbols used? 

How does one 
understand, teach and 
use the definition? 

Objective |𝑔𝑔(𝑥𝑥) − 𝑎𝑎| 
= |𝑥𝑥2 − 4| 
=  |(𝑥𝑥 + 2)(𝑥𝑥 − 2)| 
=  |𝑥𝑥 + 2||𝑥𝑥 − 2| 
≤ 5|𝑥𝑥 − 2|  

For every 𝜀𝜀 > 0 there 
is such a 𝛿𝛿 > 0 that 
|𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎)| < 𝜀𝜀 for 
all x satisfying |𝑥𝑥 −
𝑎𝑎| < 𝛿𝛿. 

This framework gives a viewpoint in which mathematical activity is an interplay 
between six dimensions of mathematics. 
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3 A continuous nowhere differentiable function and the six 
dimensions of mathematics 

In this section, we present a novel construction of a continuous nowhere differentiable 
function and discuss our construction from the viewpoint of six dimensions of 
mathematics. 

3.1 Continuous nowhere differentiable functions 

Continuous nowhere differentiable functions have an important role in the 
development of mathematics in the 19’th century. After the first discovery of a 
continuous nowhere differentiable function by Karl Weierstrass (1872), a great variety 
of constructions leading to such functions have been found (see e.g., Thim 2003). 
Being extremely counterintuitive such functions and their existence present also an 
interesting challenge for learning of the basic concepts of analysis and in 
mathematical thinking in general. For example, David Tall has been using a 
construction which he calls the Blancmange function in many of his writings (see e.g., 
Tall & Di Giacomo, 2000; Tall, 1982). 

Such functions are related to first year analysis courses in university mathematics. 
Mostly their existence is only mentioned in analysis courses without going to details. 

Our example of such a function is related to the use of pictures in communication 
mathematics. It seems that explicit reliance on Tall’s embodied world is of special 
interest in connection to such technical mathematics. We shall present a new 
construction of a nowhere differentiable continuous function. We shall first discuss 
the construction of the function and the proofs of its special properties on the level of 
pictures. These pictures are not machine-made graphs of the function. Instead, they 
present the thinking behind the construction and therefore can be used as a basis of 
argumentation. 

3.2 A visual construction of the function f 

We shall give a construction of a continuous nowhere differentiable function by visual 
means. The construction of our continuous nowhere differentiable function f and the 
discussion of its properties are written below so that the presentation suits for a group 
of students in a university course of analysis. Especially it is assumed that the students 
know in advance the basic properties of the real line including completeness and 
‘epsilon-delta’-definitions for continuity and differentiability. 
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Constructions of continuous nowhere differentiable functions usually rely on 
several theorems of analysis. The construction we present next is in this sense simpler. 
Besides the definitions of continuity and differentiability only a simple principle 
concerning nesting closed intervals will be used. 

We shall consider the function 𝑓𝑓 defined during the following imaginary 
discussion between a Teacher (T) and a Student (S). Originally the function will be 
defined for 𝑥𝑥 satisfying 0 ≤  𝑥𝑥 ≤  1. Later a simple way of extending it to the whole 
real line is indicated. 

In the discussion T and S look at the pictures appearing in Figure 5. While the 
pictures as such belong to the objective side of Tall’s embodied world, they are used 
on the subjective-social side of mathematics in the discussion. 

Figure 5.  Explanation of the definition of f 
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T: Let me show you a very interesting function 

S: Fine! What is the definition? 

T: Actually, I am not going to give a simple definition. Rather I use pictures to 
describe a process of adding information so that all the values will eventually 
be determined. 

S: Exciting! 

T: Look at picture A (of Fig. 5). We start with the information that f goes from 
the bottom left corner to the top right corner of the unit square.  

This means that at the beginning we know that 0 ≤  𝑓𝑓(𝑥𝑥)  ≤  1 for 0 ≤ x ≤ 1. 
Moreover, f(0) = 0 and f(1) = 1. In picture A, a sketch of a graph is drawn only 
to give a feeling of what kind of a function we have in mind. 

S: OK. But this does not tell much. 

T: Look at picture B. At the next step we cut the square horizontally into four 
and vertically into two. This gives the smaller rectangles shown in the picture. 
And the function goes through some of these small rectangles as the sketch of a 
graph indicates. 

So 0 ≤ f(x) ≤ 1/2 as 0 ≤ x ≤ ¼; ½ ≤ f(x) ≤ 1 as ¼ ≤ x ≤ 2/4 (= ½); ½ ≤ f(x) ≤ 1 
as 2/4 ≤ x ≤ ¾ and ½ ≤ f(x) ≤ 1 as ¾ ≤ x ≤ 1. Moreover, f(0) = 1, f(¼) = ½, 
f(2/4) = 1, f(3/4) = ½ and f(1) = 1. 

S: The function seems to be in all these smaller rectangles somehow similar to 
the whole function in the original unit square with the exception of the third 
one. 

T: Good! The third rectangle will be like the others, but everything is only upside 
down. 

S: OK! 

T: We know at this stage that we have rectangles in which the function goes 
from a left corner to the opposite right corner. To get more information we keep 
on cutting our rectangles to smaller. At each step we cut the rectangles 
horizontally in to four and vertically into two.  

Look at picture C. There the next step / third step is drawn. 

S: Yes, a similar idea seems really to repeat itself! But the small rectangles 
become all the time somehow different. 

T: Can you say how they become different? 

S: They become somehow more and more narrow! 
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T: indeed! Look at the ratio of the height to the width of these rectangles. Can 
you say what happens to it as our construction goes on? 
 
S: It seems to increase all the time! The function becomes all the time somehow 
steeper and steeper. 

To spare space, we end the dialogue and describe what happens. The above process 
is repeated infinitely many times. In cases where the function “goes from the upper 
left corner to the lower right corner” (which is above the case on the subinterval  
�1
2

, 3
4
� ), the picture is used “upside down” as in Figure 6. 

 

Figure 6.  One more detail in the definition of f 

Pictures can be used also for communicating proofs for the continuity and 
nowhere differentiability of 𝑓𝑓 – or at least for indicating the thinking behind the 
formal proofs.  

To do this, some notation will help. Notice that at each step n of the construction 
we use rectangles with certain width 𝑤𝑤𝑛𝑛 and height ℎ𝑛𝑛. Indeed, 

𝑤𝑤1  =  1 and 𝑤𝑤𝑛𝑛+1  = 1
4
𝑤𝑤𝑛𝑛; 

ℎ1 =  1 and ℎ𝑛𝑛+1  = 1
2

 ℎ𝑛𝑛. 

Especially, the form of these rectangles is characterized by the ratio  

ℎ𝑛𝑛+1
𝑤𝑤𝑛𝑛+1

  =  2𝑛𝑛. 
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The first immediate consequence of the construction is that whenever 

|𝑥𝑥 −  𝑡𝑡|  <  𝑤𝑤𝑛𝑛, 

the points (𝑥𝑥, 𝑓𝑓(𝑥𝑥)) and (𝑡𝑡,𝑓𝑓(𝑡𝑡)) of the graph of f must lie in the same or consecutive 
rectangles. (If we were discussing such pictures in front of us, it would be natural to 
show with one’s finger the points discussed. So, gestures appear naturally on the 
subjective-social side of mathematics.)  

Thus 

|𝑓𝑓(𝑥𝑥)–  𝑓𝑓(𝑡𝑡)| <  2ℎ𝑛𝑛. 

It follows from this observation that 𝑓𝑓 is uniformly continuous (see Figure 5, picture 
C). 

To prove the nowhere differentiability of 𝑓𝑓, we take a new look at the pictures used 
before and make a small addition to them. This is done in Figure 7. To show that 𝑓𝑓 is 
not differentiable at a certain point 𝑥𝑥0, we shall consider the difference quotients  

𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥0)
𝑥𝑥 − 𝑥𝑥0

 

for certain other values 𝑥𝑥. 
In every stage n of the construction, we can locate 𝑥𝑥0 in a picture like this. We can 

assume that f ‘goes’ from the bottom left corner to the top right corner. (The other 
case where 𝑓𝑓 ‘goes’ from the top left corner to the bottom right corner is quite similar.) 

Assume first that 𝑥𝑥0 is ‘in’ the rightmost quarter. Let the other value 𝑥𝑥 in the 
difference quotient correspond to the left bottom corner. For geometric reasons we 
see that the absolute value 

�
𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥0)

𝑥𝑥 − 𝑥𝑥0
� 

is at least the slope for the rising line drawn in the picture. Thus 

�
𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥0)

𝑥𝑥 − 𝑥𝑥0
� ≥

1
2
∙  
ℎ𝑛𝑛
𝑤𝑤𝑛𝑛

 .
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But this ratio can be made as big as we like by choosing 𝑛𝑛 big enough! Notice that if 
𝑥𝑥0 is ‘in’ any other part of the picture, we have the same estimate. (If 𝑥𝑥0 is ‘in’ the 
leftmost part, then we take 𝑥𝑥 to ‘correspond to’ the top right corner of the picture.) 

This observation gives us the following result: For every 𝑥𝑥0, every 𝜀𝜀 > 0 and every 
𝑀𝑀 >  0, there is x for which |𝑥𝑥 –  𝑥𝑥0|  < 𝜀𝜀 and  

�
𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥0)

𝑥𝑥 − 𝑥𝑥0
� > 𝑀𝑀. 

Especially, 𝑓𝑓 is nowhere differentiable since the difference quotient corresponding to 
any 𝑥𝑥0 cannot have a limit.  

 

Figure 7.  Why f is not differentiable 

(The picture is of course too wide here, but it is meant to express the idea.) 
One theoretical detail has been omitted so far. The reader may wonder how 

actually to prove that this construction leads to exact values 𝑓𝑓(𝑥𝑥). This follows from 
the simple principle that if we consider a nesting sequence of closed intervals 
[𝑎𝑎1,𝑏𝑏1], [𝑎𝑎2,𝑏𝑏2], [𝑎𝑎3, 𝑏𝑏3], … where 𝑎𝑎1  ≤  𝑎𝑎2  ≤  𝑎𝑎3  ≤  …  ≤  𝑏𝑏3  ≤  𝑏𝑏2  ≤  𝑏𝑏1 and where 
length 𝑏𝑏𝑛𝑛 − 𝑎𝑎𝑛𝑛 tends to 0 as 𝑛𝑛 increases, then there is a unique number lying in all 
these intervals. Indeed, this number is the supremum of 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, … 

This property is actually very interesting for several reasons.  It is rather obvious 
when we ‘look at’ the real line. Hence it is very close to our ‘visual image’ of the real 
line.  It is also rather easy to prove this property in an introductory course in analysis.  
Moreover, this property is a nice version of the compactness of closed intervals, and 
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it can be used to give a uniform way of proving the main consequences of compactness 
in an analysis course by ‘cutting closed intervals into to halves’. 

In this construction and in the arguments above the authors like especially the 
feature that all the thinking is completely visual (or embodied in the pictures, as will 
be said later in this paper). It would be wonderful to present this at a backboard! 

More exactly, the visual proof consists of the above pictures and a discussion while 
observing the pictures. This will suffice to convince most novices and experts. In case 
we would like to write a formalized proof, we could use such a discussion as a recipe.  

Since 𝑓𝑓 is continuous and nowhere differentiable, also that the function 𝑔𝑔(𝑥𝑥)  =
 𝑓𝑓(𝑥𝑥)  −  𝑥𝑥 is continuous and nowhere differentiable. This function has the additional 
property that 𝑔𝑔(0)  =  𝑔𝑔(1). Therefore, extending 𝑔𝑔 on the whole real line is especially 
simple: just put 𝑔𝑔(𝑥𝑥)  =  𝑔𝑔(𝑥𝑥 −  𝑛𝑛) when 𝑛𝑛 ≤  𝑥𝑥 <  𝑛𝑛 +  1. 

Finally, in Figure 8 there is a ‘realistic’ picture of the function 𝑓𝑓 produced by Maple 
using a code kindly written for us by Antti Rasila. 

 

Figure 8.  The portrait of the function 𝑓𝑓  
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3.3 The function f from the point of view of the six dimensions of 
mathematics 

We defined in the previous section a continuous nowhere differentiable function using 
pictures and dialogue. This was very much like the dialogue used earlier in connection 
to the notion of continuity. In this section we shall relate this to our idea of 2 x 3 (= 6) 
dimensions of mathematics. 

A continuous nowhere differentiable function is a very theoretical object. As such 
it seems to belong strongly to Tall’s formal world. There are many constructions of 
such functions in literature, and they are presented usually in a theoretical way. 

The function whose construction and properties were discussed in the previous 
section is essentially quite similar. But the main interest in the previous section was 
how to think and communicate about our function. This was done by means of sketchy 
pictures and a dialogue. 

The dialogue and thinking were strongly subjective-social. The pictures as part of 
the communication had also a subjective-social role. It is probable that the 
participants of the dialogue constructed several mental images of their own related to 
the pictures and sayings (and gestures) of the other participants.   

From the point of view of Tall’s worlds, this happened in the embodied world. 
Hence our construction was presented in the dimension of the subjective-social side 
of the embodied world.  

The pictures and a description of how to interpret them would belong to the 
objective side of Tall’s embodied world when printed. The meaning of the pictures as 
such would have been very hard to understand without the dialogue or a good written 
explanation.  

There was also an explanation of how to prove the continuity and nowhere 
differentiability of 𝑓𝑓. This used simple calculations on the proportions of the 
rectangles appearing in the construction. There we added aspects of the subjective-
social side of Tall’s symbolic world. And when printed, this addition was in the 
objective side of the symbolic world. 

Finally, if we would have continued the discussion to the meaning and interest in 
continuous nowhere differentiable functions, we would have entered the subjective-
social side of Tall’s formal world. And when printed, this would have happened in the 
objective side. 

So, all the 2 x 3 dimensions of mathematics had a role in what was done. 
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4 Conclusion 

We introduced a novel framework of six dimensions of mathematics by combining our 
view of two sides of mathematics with the framework of three worlds of mathematics. 
The idea of objective and subjective-social sides of mathematics does not as such 
appear in other distinctions presented in literature. However, the view of two sides of 
mathematics can be seen as an extension of many prior distinctions. Especially, the 
construction of the function 𝑓𝑓 presented in this paper supports the view that our two 
sides of mathematics and Tall’s three worlds of mathematics fit nicely together in a 
sense that they look at the same mathematical scenery from two ‘orthogonal’ 
directions. Both of our two sides correspond to aspects of most of Tall’s three worlds 
and each of Tall’s three worlds has aspects of both of our two sides. This holds even 
for the formal world for example in the sense that reading and making proofs belong 
to our subjective-social world. 

In terms of developing university-level mathematics teaching, we considered two 
main examples. First, we presented a discussion on the definition of continuity which 
shared the expert’s thinking with the students. Later, we analyzed this discussion 
using our theory of the six dimensions of mathematics. To the second we gave a 
construction of the function 𝑓𝑓 presented in this paper and used it to give insight into 
the variety of mathematical thinking behind advanced mathematics. Tall’s worlds can 
easily be seen as three steps of growth towards deeper and more abstract (expertise 
in) mathematics. But a more correct view seems to be that more than one of them are 
present in an expert’s relation to mathematics. However, the secondary-tertiary 
transition includes a change in mathematical thinking as the formal world is 
emphasized at university (Tall, 2008). Therefore, explicit interplay between different 
worlds of mathematics is crucial in university-level teaching (cf. Oikkonen, 2009). 
One of the most interesting features of the construction and argumentation 
concerning the function 𝑓𝑓 in this paper is that it serves as an example of an unusual 
route through the six dimensions of mathematics to present a piece of higher 
mathematics. 

Regarding school mathematics teaching and teacher education, we also suggest 
more explicit interplay between different worlds of mathematics. Both Tall’s three 
worlds and our two sides of mathematics are closely related to attempts to understand 
how mathematics can be made meaningful to people. Several studies show that use of 
multiple representations is crucial in teacher’s profession (e.g., Dreher & Kuntze, 
2015) and teacher education would benefit from more explicit links between 
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university mathematics and school mathematics (e.g., Hannula, 2018). Our 
framework is one viewpoint to develop such mathematical thinking both in pre-
service and in-service teacher education. 

Concerning further research, our framework can be utilized especially in analyzing 
mathematical discussion in authentic situations. For instance, the framework can be 
used in analyzing the elements of student groups’ (un)successful problem-solving 
processes of in undergraduate mathematics courses. In addition, the framework gives 
a new lens to widely studied themes of representations and teacher knowledge (cf. 
Hannula, 2018). Therefore, the framework can be applied also in school mathematics 
and teacher education related research projects. 
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This paper presents results of a systematic review of papers published at the 
LUMAT journal on the current issues positively and negatively affecting teaching 
and learning in mathematics, in concurrence with the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The analysis also 
offers insight into the most studied topics in mathematics education research, 
including key demographic and methodological characteristics such as year of 
publication, participants, education level, research methodologies, and research 
focus. Data was gathered from the studies published in the LUMAT: International 
Journal on Math, Science and Technology Education, starting from its first volume 
in 2013. So far, 225 articles were published in this journal, with 133 studies written 
in English and 51 studies related to mathematics. Although earlier studies support 
the notion that mathematics education is mostly traditional, this review suggests 
current research has thorough and positive outcomes, such that mathematics 
educators are likely to implement non-traditional approaches, encouraging student 
engagement, peer collaboration, and mathematical discourse. Certainly, in such 
learning environments, students tend to feel more motivated and less anxious 
about learning mathematics. They may also be more active and responsible in their 
learning, collaborate with peers, and get into mathematical discussions. Yet, there 
are also a number of difficulties and obstacles highlighted both in teaching and 
learning of mathematics. The findings might inspire several instructional 
implications for mathematics educators, curriculum developers, and researchers. 
Recommendations are given to add into what the existing literature claims and 
offer greater empirical evidence to support the verdicts.  

Keywords: mathematics education, mathematics learning, mathematics teaching, 
systematic review, PRISMA 

1 Introduction 

How do you remember being taught mathematics at school? If you were in school 
some decades ago, you could think of sitting in a row, watching the teacher quietly 
while s/he is solving a number of questions on the board, and then doing similar 
exercises (Rossi, 2015) until s/he thinks that the targeted learning outcomes are 
attained. How about nowadays? Is it still the same way? Definitely, with the increased 
knowledge of how students learn (Bransford, Brown, & Cocking, 2002), the 
recognition of ineffectiveness of traditional pedagogies (Hazari, Sonnert, Sadler, & 
Shanahan, 2010), and the availability of new educational technologies, this kind of 
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structured and teacher-centered approaches are not common nor desired practices in 
mathematics education (Milner-Bolotin, 2012). These days, learners are expected to 
be capable of more than applying arithmetic skills, but rather taking responsibility in 
learning process and possessing 21st century skills such as mathematical reasoning, 
critical thinking, and problem solving (Larmer, Mergendoller & Boss, 2015). 
Correspondingly, teachers are no longer expected to be transmitting knowledge, but 
rather acting as facilitator and engaging students in mathematical discourse 
structured around well-designed authentic activities (Markham, Lamer & Ravitz, 
2006).   

Especially, since the beginning of 1980s, problem solving has become an essential 
part of mathematics teaching and learning (Schoenfeld, 1985). According to Polya 
(1962), the term ‘problem solving’ refers to “finding a way out of a difficulty, a way 
around an obstacle, attaining an aim which was not immediately attainable” (p. v). 
More clearly, Mayer and Wittrock (2006) explain it as “when you are faced with a 
problem and you are not aware of any obvious solution method, you must engage in a 
form of cognitive processing called problem solving. Problem solving is cognitive 
processing directed at achieving a goal when no solution method is obvious to the 
problem solver” (p. 287). Here, it is important to note that the attribute “problem” is 
determined by the solver, more than the task itself, such that what might be a 
challenging problem for one solver can be just a routine exercise for other (Polya, 
1962). It is commonly acknowledged that solving problems, especially open-ended 
problems through classroom discussion, helps students share strategies, insights, and 
observations with each other, engaging them in a quality mathematical discourse 
(Boud, Keogh & Walker, 1985), deepening their mathematical thinking, enhancing 
creativity (Pehkonen, 2001), and promoting diverse and flexible thinking, as well as 
positively influencing attitudes and self-efficacy in mathematics learning (Lester & 
Kehle, 2003). 

More recently, project-based learning has taken the attention of educators and 
education researchers. In particular, it is, similar to problem solving, an active 
learning methodology which “engages students in learning knowledge and skills 
through an extended inquiry process structured around complex, authentic questions 
and carefully designed products and tasks” (Markham, Lamer & Ravitz, 2006, p. 4). 
It has been documented that when students learn mathematics through project-based 
learning, they are more capable of using mathematical knowledge in daily life 
situations (Drake & Long, 2009), remember the content longer (Wirkala & Kuhn, 



KAYAN FADLELMULA (2022) 

35 
 

2011), and have increased motivation toward learning mathematics (Larmer, 
Mergendoller & Boss, 2015). Beyond that, lately, in consent with unifying instruction, 
research on STEM (Science, Technology, Engineering and Mathematics) and STEAM 
(Science, Technology, Engineering, Art and Mathematics) education have spread 
comprehensively (Çiftçi, Topçu, & Foulk, 2020). Mainly, STEM and STEAM are 
interdisciplinary approaches that integrate the development of academic knowledge 
and skills beyond the specificities of the separate disciplines (Monkeviciene, 
Autukeviciene, Kaminskiene & Monkevicius, 2020). There is a growing body of 
research showing that incorporating mathematics education with other subject 
matters in a real, integral, and meaningful context evidently provides an effective 
platform for rich learning experiences (Brenneman, Lange & Nayfeld, 2019; García-
Holgado, Camacho, & García-Peñalvo, 2019; Lawson, Cook, Dorn, & Pariso, 2018). 

In brief, in the last decades, with the shift from structured and teacher centered 
pedagogies to advanced and learner-centric pedagogies, there was a significant 
transformation by what means mathematics was taught in schools. Yet, along with all 
this transformation, students still perceive mathematics as a difficult subject matter 
(Fritz, Haase & Rasanen, 2019) and still several students do not achieve well in 
mathematics (Sun, 2018). The literature highlights numerous challenges related to 
both inner and external conditions of a learner. In particular, the inner conditions 
include cognitive, affective, and motivational factors (Op’t Eynde, De Corte & 
Verschaffel, 2006), such as lack of interest, poor motivation, negative attitudes about 
learning mathematics, and negative beliefs about their ability and potential (Walker, 
Smith & Hamidova, 2013). Likewise, the external conditions include teacher factors, 
such as teachers’ poor experience, subject knowledge, qualification (Holzberger, 
Philipp, & Kunter, 2013), as well as negative attitudes, interest, motivation (King-
Sears and Baker, 2014), and efficacy beliefs about teaching (Woodcock & Reupert, 
2016). In addition, the external factors consist of contextual factors, including under-
resourced and large sized classes (Chiwiye, 2013), and negative attitudes of family 
members, friends, and society (Boaler, 2015).  

If, as Pólya (1962) stated, mathematics is about inquiry, reasoning, and 
understanding how things fit together, then what could be added into mathematics 
instruction to help students deepen their mathematical thinking and sense making? 
How can mathematics learning happen in a concrete and playful way? How can 
students experience mathematics through creating, designing, and connecting 
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mathematical ideas? Which learning environments can inspire students to build their 
own mathematical thinking?  

This study aims to provide a portrait of research on mathematics education, 
highlighting multiple aspects of studies published in the LUMAT: International 
Journal on Math, Science and Technology Education, starting from its first volume in 
2013 so far. Specifically, the study aims to answer the following research questions: 

1.  What are the most studied topics in mathematics education research?  
2.  What are the enablers and obstacles in mathematics teaching? 
3.  What are the enablers and obstacles in mathematics learning? 

2 Methodology 

In this study, a systematic review was conducted on all the published papers in the 
LUMAT: International Journal on Math, Science and Technology Education, starting 
from its first volume at 2013 to volume 9 no 2 in 2021. While traditional literature 
reviews provide a review of knowledge on a general topic without applying a scientific 
methodology, a systematic review implies “a complete, objective and reproducible” 
(Linares-Espinós et al., 2018, p.502) synthesis of a clearly defined topic to answer 
particular research questions in a transparent (Gough, Oliver & Thomas, 2012), 
standardized, and systematic way (Higgins et al., 2021). Systematic review consists of 
identifying, selecting, analyzing, and synthesizing information derived from 
published studies, with explicit inclusion and exclusion criteria (Møller & Myles, 
2016). To ensure credibility, consistency, and transparency, the researcher followed 
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines and the four-phase flow diagram, addressing all the sections of a systematic 
review (Moher, Liberati, Tetzlaff, & Altman, 2009). 

2.1 Eligibility criteria 

The eligible studies in this review consist of all the articles published in this journal, 
since its first volume, including studies written in English and related to mathematics 
learning and teaching. So far, 225 articles were published in this journal, with 133 
studies written in English (59.1%) and 51 studies related to mathematics field (22.7%).   
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2.2 Information sources 

In June 2021, the researcher visited the website of the LUMAT: International Journal 
on Math, Science and Technology Education and accessed all the journal’s papers in 
the archives, as it is an open access journal.  

2.3 Search and study selection 

The search was done manually by the researcher, as the search option in the journal 
website was filtering the studies only by title or author. The researcher examined all 
the papers volume by volume, first identifying the publications in English, then 
screening the papers by the title, abstract, and keywords for the limiters ‘math’, 
‘mathematics education’, ‘mathematics learning’ and ‘mathematics teaching’. Figure 
1 illustrates the flow of the study selection process, including identification, screening, 
eligibility, and included studies. The retained papers are marked with an asterisk in 
the references list and summarized in the Appendix.  

Flow of Study Selection
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math teaching, math education. 82 papers were removed as the 

title, keywords and abstract were not related to math.

 

Figure 1.  Flow of the study selection 
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2.4 Data extraction process 

Data were extracted from the published papers about publication year, participants, 
education level, research methods, and research focus. Prior to extracting the data, 
the researcher established a coding protocol to analyze the data systematically. The 
variables and the codes are listed in Table 1.  

Table 1.  Data items and codes 

Year of 
Publication Participants  Level of Education Research Method Research Focus 
1. 2013 
2. 2014 
3. 2015 
4. 2016 
5. 2017 
6. 2018 
7. 2019 
8. 2020 
9. 2021 

1. K-12 students 
2. Undergraduate 
students 
3. Graduate 
students 
4. K-12 teachers 
5. Pre-service 
teachers 
6. Faculty 
members 
7. Parents 
8. Principles 
9. Others 

1. Higher education 
2. Secondary 
education  
(grades 10-12) 
3. Primary 
education (KG, 
grades 1-9) 
4. All 
5. Others 

1. Qualitative (e.g. case 
study, historical study, 
grounded study) 
2. Quantitative (e.g. survey, 
experimental, correlational) 
3. Mixed (e.g. explanatory, 
exploratory, multiphase) 
4. Conceptual (e.g. 
systematic review, reflection 
paper, opinion paper) 
5. Others 

1. Math teachers 
and teaching 
2. Math learners 
and learning  
3. Policy and 
curriculum  
4. STEM 
education 
5. Others 

3 Results and Discussion 

3.1 What are the most studied topics in mathematics education 
research? 

The analysis of most studied topics in mathematics education included examining key 
demographic and methodological characteristics, including year of publication
 participants, level of education , research method, and research focus. With regard to 
publication years (Figure 2), the results reveal that starting from the year 2013 so far, 
a total of 225 articles were published in this journal (in 2013  n=43, 19.1%, in 2014 n=
 25, 11.1%, in 2015 n=78, 34.7%, in 2016 n= 6, 2.7%, in 2017  n=4, 1.8%, in 2018 n= 15, 
6.7%, in 2019  n=22, 9.8%, in 2020 n= 14, 6.2%, and in 2021  n=18, 8%), with the 
highest number of publications in the year of 2015. In particular, 133 studies (59.1%) 
were written in English (in 2013  n=20, 15%, in 2014 n= 2, 1.5%, in 2015 n=45, 33.8%, 
in 2016 n= 3, 2.3%, in 2017  n=3, 2.3%, in 2018 n= 12, 9%, in 2019  n=21, 15.8%, in 
2020 n= 13, 9.8%, and in 2021  n=14, 10.5%), with the highest number of publications 
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in the year of 2015 as well. Among these studies, 51 studies (38.4%) were related to 
mathematics (in 2013  n=2, 3.9%, in 2015 n=13, 25.5%, in 2017  n=1, 1.9%, in 2018 n=
 5, 9.8%, in 2019  n=14, 27.5%, in 2020 n=9, 17.6%, and in 2021  n=7, 13.7%), with the 
highest number of publications in the year of 2019, and no publication in the years of 
2014 and 2016. 

 

Figure 2.  Publication Year 

Regarding participants (Figure 3), in most of the studies the data was gathered 
from teachers (n=28, 54.9%), in particular from K-12 teachers (n=15, 29.4%), pre-
service teachers (n=10 , 19.6%), and faculty members (n=3,  5.9%). In addition, 
information was also collected from students (n=19, 37.2%), specifically from K-12 
students  (n=15, 29.4%), and undergraduate students (n=4, 7.8%), with no focus on 
graduate students. In few cases, information were extracted from published materials 
(n=8, 15.7%), as well as principles (n=2, 3.9%) and parents (n=1, 1.9%).  
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Figure 3.  Participants  

Concerning level of education, the results show that in most of the studies a strong 
focus was on primary education which includes kindergarten and grades 1 to 9 (n=23, 
45.1%) followed by higher education (n=15, 29.4%) and secondary education 
including grades 10 to 12 (n=10, 19.6%). Moreover, a few studies included all levels of 
education (n=6, 11.8%). 

In terms of research methods, qualitative analysis was the most widely- used 
research methodology (n=22, 43.1%), followed by mixed (n=13, 25.5%), quantitative 
(n=9, 17.6%), and conceptual analysis (n=7, 13.7%). Lastly, in terms of research focus, 
in most of the studies the focus was highly on mathematics teachers and teaching 
(n=25, 49%), followed by mathematics learners and learning (n=20, 39.2%), and 
STEM education (n=5, 9.8%), with no emphasis on educational policy or curriculum.  

3.2 What are the enablers and obstacles in mathematics teaching? 

Across the fifty-one studies analyzed here, half of the research on mathematics 
education were related to internal and external factors positively or negatively 
affecting mathematics teaching. Overall, one of the main overarching themes 
identified from this analysis was that well-designed professional development 
activities and quality teacher training programs have a great impact on teachers’ and 
pre-service teachers’ knowledge, competence, and self-efficacy in teaching. Mostly, 
when there is a mutual trust among teachers and experts, a good teacher-expert 
collaboration and quality discussions, teachers tend to form a habit of personal 
reflection on their professional learning and look for solutions to make changes in 
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their mathematics teaching (Namsone, Čakāne & France, 2015).  
In this aspect, a study by Kuzle (2019) and Hannula (2019) show that after 

receiving a professional training about problem solving, pre-service teachers 
evidently improved their mathematical content knowledge and problem-solving 
competence. Likewise, a study conducted by Heikkinen, Hästö, Kangas and Leinonen 
(2015) reveal that after a one-day, on-site professional training event, most of the 
teachers started questioning and challenging their attitudes towards mathematics 
teaching. On the other hand, some teachers were still resilient to change their 
traditional teaching methods due to external factors such as “lack of time, equipment 
and ready-to-use materials” and “lack of colleague support who share their vision” (p. 
914). In addition, there were a number of internal factors, such as “lack of self-
confidence in changing teaching methods” and “fear of failure as a teacher” (p. 915). 
In like manner, a study conducted by Wadanambi and Leung (2019) suggest that 
“contextual factors such as examination-oriented expectations, time constraints and 
previous learning experiences” have a significant impact on teachers’ actual teaching 
practices. In this aspect, it is highly important that teacher education programs focus 
not only on enhancing teachers’ instructional preparedness but also on preparing 
them affectively with high levels of efficacy and confidence in teaching (Ekstam, 
Linnanmäki & Aunio, 2017). 

Another interesting outcome of this review is that problem solving appears to be 
one of the most commonly used method for teaching mathematics. Such as, a study 
by Koponen (2015) support the proposition that although implementing problem 
solving might be challenging and time consuming, it is an essential part of developing 
students’ mathematical thinking and problem solving skills. Especially, for an 
effective problem solving experience, it is highly recommended that instructors select 
problems for clear and pre-determined goals, ask students share their point of views 
with each other, and provide them appropriate guidance while working on finding the 
proper solution. Here, it is worth noting that while providing guidance, the type, 
number, and quality of teacher guidance have a great impact on students’ problem 
solutions (Kojo, Laine & Näveri, 2018). In particular, if a teacher provides too much 
help or reveals the solution, this ruins the problem solution process and turns an 
original problem into a standard task. Hence, research suggest that teachers learn 
how to properly guide their students with variety of probing and guiding questions. 
For example, teachers can ask probing questions (e.g. How did you solve this?) to lead 
students to explain their mathematical thinking and ideas. Next, they can ask guiding 



LUMAT 

42 
 

questions (e.g. Why do you think it is not valid?) to leads students to think about the 
problem in a different way or to justify their solution. Moreover, teachers can ask 
factual questions (e.g. How many solutions have you found?) to motivate students to 
progress in their thinking process. Likewise, a study conducted by Luoto (2020) show 
that when a teacher balances between dialogic and authoritative speech, giving all 
students equitable chances of practice, students get active and participate in more 
productive mathematical discourse. However, when a teacher holds on authoritative 
approach, seeing discussions as useless and believing that students need strict 
procedural guidance, students have very limited classroom discourse where the 
participation happens mostly with short answers.  

Similarly, in a study on problem solving with a STEM/STEAM focus, White and 
Delaney (2021) found that when teachers implement real-world project-based or 
problem-based learning, where students are in the center of their learning and learn 
by doing, students achieve higher learning outcomes, and develop positive attitude 
towards science and mathematics learning. As for research on problem solving, the 
findings are relatively straightforward, highlighting the importance of problem 
solving in enhancing students’ mathematics learning; it becomes highly important for 
mathematics educators to have a clear understanding on how they can enhance 
students’ problem-solving proficiency. In light of this, Chapman’s (2015) study 
suggests that it requires more than knowing how to solve a problem. Particularly, in 
addition to being proficient in problem solving, mathematics educators need to 
understand “what a student knows, can do, and is disposed to do” and “how and what 
it means to help students to become better problem solvers”, as well as “nature and 
impact of productive and unproductive affective factors and beliefs” (Chapman, 2015, 
p.31).  

Finally, in addition to the above mentioned aspects, the results of this systematic 
analysis suggest that, in most of the studies analyzed here, mathematics educators 
were likely to possess positive characteristics, such as being “a life-long learner, 
patient, soft, friendly, calm, joyful, self-confident, knowing, and able to withstand 
hard use when needed” (Portaankorva-Koivisto & Grevholm, 2019, p.107). In 
addition, in most of the studies, mathematics teachers were reported to be 
implementing non-traditional teaching approaches including cooperative learning, 
deductive approach, inductive approach, and integrative approach. According to a 
study conducted by Cardino and Ortega-Dela (2020), mathematics teachers were 
mostly applying cooperative learning, followed by demonstration and repetitive 
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exercise. The researchers suggested teachers to use think-pair-share, round table 
activities, and jigsaw discussions for enhancing cooperative learning in mathematics 
education. For inductive approach, they suggested using observation, generalization, 
testing, and verification. Furthermore, for integrative teaching, the researchers 
advised mathematics teachers to foster students’ creativity, use age appropriate 
materials, and generate new interdisciplinary ways for presenting old topics.  

3.3 What are the enablers and obstacles in mathematics learning? 

Regarding research on mathematics learning, the analyzed studies can be broadly 
consolidated into four key aspects, as learning mathematics via technology, impact of 
cognitive and affective variables on mathematics learning, influence of non-
traditional pedagogies on mathematical discourse, and issues related to STEM 
learning. To start with, as regards to usage of technology in mathematics learning, in 
a study, Milner-Bolotin, Fisher and MacDonald (2013) examined the implementation 
of technology-enhanced pedagogy in different learning settings and suggested that 
classroom response systems (clickers) evidently improve student engagement, reduce 
anxiety, and enhance students’ conceptual understanding in mathematics. Next, a 
study by Kuzle (2015a), on what learners could gain while working on geometry with 
a dynamic geometry software, revealed that with the use of software students could 
go beyond memorization. Indeed, they engaged in solving a wide variety of open-
ended problems, which helped them apply the theoretical facts into practical 
situations and increase their mathematical understanding. In a further study, Kuzle 
(2015b) examined problem solver’s cognitive and metacognitive behaviors while 
using the same dynamic geometry software. The findings suggest that the use of 
software supported the learner to engage in a variety of cognitive and metacognitive 
behaviors, such as gathering information, exploring, conjecturing, generating precise 
visual inputs, and finding possible solutions. In addition, the feedback provided by 
the software was assisted the problem solver to make effective decisions and actions. 
Lastly, in a study, Kaarakka, Helkala, Valmari and Joutsenlahti (2019) examined the 
impact of an online tool, called MathCheck, on students’ level of conceptual 
understanding. Briefly, what made this tool potent was that it was checking the 
problem solution step by step and providing detailed feedback to the problem solver, 
more than an incorrect/correct verdict. Overall, the findings support the proposition 
that using technology helps students in independent studying and enhance a deeper 
conceptual understanding in mathematics learning.  
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Next, regarding research on cognitive and affective aspects, a study by Nyman and 
Sumpter (2019) revealed that students possess both intrinsic and extrinsic motivation 
for learning mathematics. Indeed, there is a high association between students’ 
intrinsic and extrinsic motivation such that they are intertwined and hard to separate. 
In another study, Viholainen, Tossavainen, Viitala, and Johansson (2019) examined 
the challenges students face with respect to mathematics proof and proving. The 
results show that even though students were highly motivated to learn proof and 
proving, there were a number of factors hindering their proving skills, such as fear of 
making mistakes, lack of experience, low self-efficacy, and lack of knowledge about 
mathematical content. In this aspect, a study by Viitala (2015) suggest that even 
though in the existing education system students’ educational motivation, positive 
self-image and self-confidence do not have an influence on their mathematics grades, 
it is essential that educators consider “taking responsibility of own learning, 
expressing mathematical thinking and applying mathematics in different 
environments” as a part of the assessment criteria (p. 148).  

As for research on implementation of non-traditional pedagogies in mathematics 
learning, in a study, Rossi (2015) examined the impact of constructive teaching and 
technology on mathematics learning, and found that with non-traditional approaches 
it is possible to challenge and change students’ poor engagement and negative 
attitudes towards mathematics learning. In a similar vein, Ambrus and Barczi-Veres 
(2015) investigated traditional versus student-centered learning environments, and 
found that working in groups on open-ended math problems enhance collaboration 
and communication among students as well as improving their problem solving skills. 
In particular, when students worked in teams, they used more mathematical language 
to explain their ideas to each other. Specially, slow learners had more time to 
understand the given task and participated more actively in the problem solving 
process. However, in spite of being an effective learning tool, cooperative learning was 
reported to be time-consuming, causing a noisy environment, and disruptive for 
students who prefer to work alone. With a similar context, Viro and Joutsenlahti 
(2020) investigated the impact of project-based learning on students’ level of 
mathematics attainment, and proposed that problem-based learning significantly 
improves students’ grades in mathematics. Yet, the researcher also pointed out that 
the group formation is a critical issue in problem-based learning setting such that “a 
hard-working group can support and inspire a pupil to work and learn more, but on 
the other hand, a strong group may encourage a pupil to be a passenger” (p. 129). In 



KAYAN FADLELMULA (2022) 

45 
 

addition, when a student has most of his/her group members a lot weak, s/he may 
feel them as burden in his or her learning. Indeed, in an interesting research, Cardino 
and Ortega-Dela (2020) examined how students’ learning styles influence their 
academic performance, and found that most of the students had a combination of 
dependent, collaborative and independent learning styles, and among these learning 
styles, although most of the students were collaborative, only independent learning 
style had a significant impact on improving academic performance.  

In a study, Mason (2015) suggest that being stuck is a math problem could enhance 
learning about mathematics and mathematical thinking, as it opens the ways for 
inspiration and mindfulness. In this aspect, a study conducted by Laine, Ahtee, 
Näveri, Pehkonen, and Hannula (2018) focused on how students’ mathematics 
learning was challenged when their teachers requested them to write down their 
thinking while solving problems. Based on the results, it was evident that deep 
questioning activated students’ mathematical thinking, especially writing about their 
own thinking helped them “to remember and confirm new mathematical 
understanding” (p. 102). Hence, the researchers suggested that well-designed 
problem solving tasks, games, and class discussions are of high importance as they 
create a motivating context for learning and promote sharing of ideas, making sense 
and reasoning. Certainly, a study by Mononen and Aunio (2013) also suggest that 
when learners solve more problems and get more acquainted with mathematic topics, 
they performed better in exams, especially in problems related to numbers, listing, 
and arithmetic.  Furthermore, from a different aspect, Alfaro Viquez and Joutsenlahti 
(2020) examined the impact of languaging exercises on promoting understanding in 
mathematics. Particularly, during the languaging exercises, students were given 
opportunities to participate in the construction of their knowledge by using a 
combination of symbolic, natural, and pictorial languages. The results showed that 
using different languages enhanced “the acquisition of skills necessary to be 
mathematically proficient and are a useful tool for revealing students’ mathematical 
thinking and misconceptions” (p. 229). Likewise, a study by Luoto (2020) suggest that 
students’ participation in mathematics discourse improve their mathematics 
learning.  

As a final overarching aspect, in terms of research on STEM learning, Tomperi et 
al. (2020) investigated factors affecting students' attitudes towards learning 
mathematics and science. The results indicated that although female students realized 
the importance of science and mathematics for their future, male students were more 
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interested in career opportunities in the industry. Another interesting finding was that 
students who experienced innovative and student-centered teaching approaches were 
more motivated and less anxious about learning science and mathematics. Moreover, 
in a study, Cabello, Martinez, Armijo, and Maldonado (2021) investigated possible 
strengths and weaknesses of STEAM learning. Briefly, the study highlighted the 
strengths as promoting students’ interests, engagement and motivation for learning 
processes. Especially, working with diverse materials and having enriched 
experiences mostly supported by technology allowed students to view scientific work 
as an exciting endeavor. On the other hand, the main difficulty was reported as 
teachers' management of student emotions and behavior, suggesting that “keeping 
class time within the average attention span and closely monitoring of children's 
fatigue may help prevent episodes of disruptive behavior” (p. 50). Lastly, a study by 
Milner-Bolotin and Marotto (2018) focused on the effect of parental engagement on 
students’ STEM learning. The results highlighted the fact that although parents have 
a positive impact on students’ STEM engagement and achievement, due limited STEM 
knowledge and language issues, some parents have difficult time in supporting their 
children in their STEM journey. In this manner, “creating family-oriented STEM 
resources” and offering “school-related projects, homework assignments, out-of-
school science clubs and visits to science centres” are found to be assisting and 
motivating parents to engage in STEM learning with their children. (p. 53). In a follow 
up study, Marotto and Milner-Bolotin (2018) also suggested that “school-family, 
parent-teacher, and parent-child interactions” are important networks of 
communication in promoting STEM education (p. 81).  

4 Conclusion and Suggestions 

As a portrait of research on mathematics education, this systematic review highlights 
multiple aspects of studies published in the LUMAT: International Journal on Math, 
Science and Technology Education, starting from its first volume in 2013 so far. 
Searches were rigorously conducted on 225 existing studies and 51 articles were 
identified, analyzed and synthesized to examine issues positively or negatively 
affecting teaching and learning in mathematics. Moreover, the analysis offers insight 
into the most studied topics in mathematics education research, including key 
demographic and methodological characteristics such as year of publication, 
 participants, level of education , research methodologies, and focus.  
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Briefly, in terms of the most studied topics, the results show that although in the 
year of 2015 the journal had the highest number of publications, the studies related 
to mathematics education was mostly published in 2019. In respect of participants, 
data were mostly extracted from teachers, followed by students, with very few 
information gathered from principles and parents. Regarding level of education, 
several studies were related to primary mathematics education and higher education, 
yet studies at kindergarten level was very limited. Moreover, as regards of research 
methodologies, qualitative analysis was the most widely-used research method, 
followed by mixed, quantitative and conceptual analysis. Furthermore, in terms of 
research focus, most of the studies focused on mathematics teachers and teaching, 
followed by mathematics learners and learning, however no special emphasis was 
given to educational policies or mathematics curriculum.  

Regarding issues affecting mathematics teaching and learning, the results reveal 
that most of the existing studies have thorough and positive outcomes. In brief, 
research on mathematics teaching supports the notion that well-designed and good 
quality professional development programs positively influence teachers’ and pre-
service teachers’ knowledge, competence, and self-efficacy in teaching. Interestingly, 
in many studies, mathematics educators were reported to be implementing non-
traditional approaches in their teaching, including cooperative learning, problem-
based learning, project-based learning, and experiential learning. In particular, 
teachers were paying attention to encouraging student engagement, peer 
collaboration, and mathematical discourse. Certainly, in such positive and inspiring 
learning environments, students were found to be more motivated and less anxious 
about learning mathematics. Indeed, they were active and responsible in constructing 
their mathematical understanding, such that they were collaborating with their peers, 
using mathematical language to share their ideas, and getting into discussions and 
deep questioning. In that aspect, the results give signals that having a student-
centered approach in mathematics education with open-ended problems, think-pair-
share activities, Socrative questioning, as well as interactive games, online tools, and 
challenging tasks that include observation, testing and verification could be of high 
importance in promoting students’ mathematical thinking, conceptual 
understanding, and academic performance. This claim can be validated with further 
empirical investigation and studies using experimental designs to inspire the 
instructional implications for mathematics educators, curriculum developers, and 
researchers. 
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Definitely, there are also a number of difficulties and obstacles highlighted in the 
existing research in mathematics teaching and learning. For instance, although 
commonly non-traditional teaching approaches were reported to be having positive 
impact on student learning, they were also found to be causing a noisy environment, 
being time-consuming and disruptive especially for students who prefer to work 
independently. As for collaborative work, results suggest that while some group 
formations were supportive and inspirational in nature, some others were highly 
unproductive, turning even hard working students into passive observers. Here, 
research underlines the importance of the type, number, and quality of teacher 
guidance in such learning contexts, where too much help ruins the problem solution 
process, making an original problem just a standard exercise. Equally, it is important 
to consider teachers’ monitoring and management abilities, to keep the class time 
within student attention span and prevent disruptive behavior. Indeed, not every 
teacher is a fan of student-centric pedagogies. In particular, research show that some 
teachers were resilient to change their teaching approaches as they had limiting exam-
oriented expectations, time constraints and previous learning experiences. Next, 
some teachers stated having lack of self-confidence in making a change and fear of 
failure as a teacher. In that aspect, it is possible to recommend that teacher education 
programs and in-service activities should not only emphasize a number of theoretical 
aspects on instructional preparedness but also enhance educators’ practical 
experiences and develop self-efficacy and confidence in teaching.  

5 Limitations and Implications for Future Studies 

This systematic review is limited to the analysis of the papers published in this journal. 
A broader dataset in terms of number of journals, language, and research context 
would greatly improve the understanding of enablers and challenges in mathematics 
learning and hence support the development of mathematics education. Certainly, 
what is gathered in one study may not be the same or similar to what is gathered in 
other, as every research endeavor has its own characteristics. In order to add to what 
the existing literature claims and offer greater empirical evidence to support the 
verdicts, further studies can be conducted in mathematics education particularly by 
means of different settings and characteristics.   

Furthermore, while this review provides insights into what exists in the current 
literature, future studies can focus on specific issues to deepen our understanding of 
mathematics education. For instance, more research is needed on affective variables 
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such as teachers’ and students’ educational motivation, attitudes and self-confidence, 
as well as the influence of parents’ and friends’ attitudes toward mathematics 
learning. Next, research can be conducted on the relatively unexplored field of high-
performing or gifted students in mathematics, such as examining how to enrich the 
current educational materials and expand on the standard goals so high achievers and 
gifted learners get more opportunities to benefit from the formal mathematics 
curriculum. Furthermore, as research underlines the fact that traditional 
examinations are not correct ways for measuring the twenty-first-century skills (Bell, 
2010), more research is needed to investigate the validity of authentic assessments, 
such as portfolios, self-assessment, team work, and peer evaluations (Erdogan & 
Bozeman, 2015). Finally, whilst research on STEM and STEAM education is still in its 
infancy, further studies can be conducted to gather a more nuanced understanding of 
how to integrate these disciplines in mathematics education, especially starting in the 
early years.  
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proficiency: Mathematical skills of low-performing  
pupils at the beginning of the first grade 
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A national-level dataset (n = 7770) at grade 1 of primary school is re-analyzed to 
study preconditions in proficiency in mathematical concepts, operations and 
mathematical abstractions and thinking. The focus is on those pupils whose 
preconditions are so low that they are below the first measurable level of 
proficiency in the common framework with reference to mathematics (CFM). At the 
beginning of school, these pupils may not be familiar with, e.g., the concepts of 
numbers 1–10, they may not be aware of the consecutive nature of numbers, and 
they have no or very limited understanding of the basic concepts of length, mass, 
volume, and time.  A somewhat surprising finding is that the key factor explaining 
the absolute low proficiency in mathematics appeared to be a low proficiency in 
listening comprehension. This variable alone explains 41% of the probability of 
belonging to the group of pupils who are not able to show proficiency enough to 
reach the lowest level in any of the criteria. It is understandable that, if language 
skills are underdeveloped in general, a child is not expected to master the specific 
mathematical vocabulary either and, hence, the low score in a test of 
preconceptions in mathematics too. Other variables predicting the absolute low 
level or preconditions of mathematics are the decision on intensified or special 
support, status of Finnish or Swedish as second language, and negative attitudes 
toward mathematics.  

Keywords: mathematical thinking, mathematically low-achieving students,  
national assessment in mathematics, pre-primary education, primary education 

1 Introduction 

Mathematical competence is one of the key skills needed in modern society. From the 
viewpoint of socializing citizens to mathematical concepts and operations, as well as 
abstraction and thinking, teachers in schools are the key persons because pure 
mathematic is rarely a natural hobby of children, unlike sports, handicrafts, or 
reading. The main contents of mathematics are learnt, practically speaking, 
exclusively in or through the school: in the first grades, in mathematics lessons and 
while doing school homework (Metsämuuronen, 2013a). From this viewpoint, 
measuring the level of mathematical thinking and proficiency in mathematics in 
general makes sense at higher grades. Usually, in Finland, national assessments of 
learning outcomes are administered at grade 9 (Metsämuuronen, 2009) and the 
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international PISA (Programme of International Student Assessment) and TIMSS 
(Trends in International Mathematics and Science Study) comparisons at grade 8 
(e.g., PISA, 2019; TIMSS, 2020) or even later in adulthood (see the Programme for 
International Assessment of Adult Competencies [PIAAC], OECD, 2016). Hence, the 
end-product of the socializing the citizens in mathematics during the school years is 
well-known and well-followed-up.  

Although the systematic socialization to mathematics happens mainly in and 
through school, children have learned a lot matters that are related to mathematics 
even before the school age—7 years in Finland. These preconditions on mathematics 
are in the focus of this article. At the national level, it is very rare to see measures of 
mathematical thinking and competencies at the beginning of schooling, that is, large 
studies on what are the first stages of development of mathematical thinking and what 
kind of proficiency are largely lacking (see, however, e.g., Lerkkanen et al. 2012, where 
mathematics skill was assessed as a part of the First Steps study by the fluency in 
counting forwards and backwards number sequencies). In 2018, the Finnish National 
Education Evaluation Centre (FINEEC) launched a longitudinal assessment to 
measure the achievement level of pupils and students at different stages of their 
school years in mathematics and mother language. The first measurement was 
administered in the first weeks at grade 1 with a minimal effect of school in 
mathematical thinking (see methods in Metsämuuronen & Ukkola, 2019 and results 
in Ukkola & Metsämuuronen, 2019; Ukkola, Metsämuuronen, & Paananen, 2020). 
The dataset gives quite a unique possibility to study the outcome of early childhood 
development from the mathematic development viewpoint.  

In this article, this unique dataset of preconditions of mathematics at grade 1 (n = 
7770) is re-analyzed from the viewpoint of mathematical thinking by using the 
common framework with reference to mathematics (CFM) suggested by 
Metsämuuronen (2018). CFM divides the mathematics skills into three criteria: 
proficiency in mathematical concepts, proficiency in mathematical operations, and 
proficiency in mathematical abstractions and thinking. In Section 2, the factors 
affecting the development of mathematical skills in the early childhood are discussed 
which is followed by discussing the characteristics of CFM in Section 3 and 
methodological matters for the empirical section in Section 4. Section 5 combines 
these and presents results of proficiency of mathematical concepts, procedures and 
thinking at the beginning of the grade 1 in schools in Finland. The focus is, specifically, 
in predicting and detecting the children in whom mathematical skills are 
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underdeveloped or whose skill level is lower than the measurable level when they are 
at the age of starting school, that is, when they 7 years old. The main research question 
is, what variables characterize the pupils whose mathematical skills and thinking are 
very low—even below a measurable level, and which background factors could be used 
to detect such children. The main research question is divided to three sub-questions:  

1.  What kind is the overall distribution of preconditions in mathematics at the 
beginning of the first grade? 

2.   How do personal factors characterize the pupils with very low preconditions 
in mathematics at the beginning of the first grade? 

3.  How do family factors characterize the pupils with very low preconditions in 
mathematics at the beginning of the first grade? 

2 Some known factors affecting the development of 
mathematical thinking in the early childhood 

In comparison with many other countries, in Finland the children enter the school 
rather late, typically when they turn 7. Because the first 6 years may be radically 
different, children enter the school with a wide variety of mathematical skills (see 
Metsämuuronen, 2010; 2013a; Metsämuuronen & Tuohilampi, 2014; Ukkola & 
Metsämuuronen, 2019; Ukkola et al., 2020). This is caused by the fact that the 
preliminary concepts related to mathematics are learnt at home or during the 
preprimary education, and these conditions may vary dramatically (see Ukkola et al., 
2020). Hence, some children enter the school with no or very limited knowledge of 
basic mathematical concepts while some may be already at the level of grade 3 (Ukkola 
& Metsämuuronen, 2019; 2021). The reasons for this deviance are discussed here, 
focusing on the factors related to the child and the home background. 

2.1 Factors explaining the preconditions of mathematics in literature 

Several individual factors have been shown to affect the development in general and 
in mathematics in specific. Some of these are sex (see, e.g., Metsämuuronen 2017a; 
Niemi et al., 2020, 2021), and language background including medium of instruction 
being the mother tongue (first language, L1) or the second language (L2) (see, e.g., 
Kuukka and Metsämuuronen, 2016). Other important factors found to explain the 
competence are relative age of starting the school (see, e.g., Dhuey et al., 2019; 
Kivinen, 2018; Ukkola et al. 2020), attitudes toward school and self-efficacy (see, e.g., 
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Aunola, Leskinen, & Nurmi, 2006; Bandura, 2012; Lerkkanen et al., 2010, 2012; 
Tuohilampi and Hannula, 2013; see in-depth in Ukkola et al., 2020).  

 Three factors related to child’s home background are found to be important in 
explaining the pupil’s school performance: education of the parents (see, e.g., Kivinen, 
Hedman, & Kaipainen, 2012; OECD 2015), economic factors (see, e.g., Erola, Jalonen, 
& Lehti, 2016; Paju, 2020; Palomäki et al., 2016; Sirniö, 2016), and genetics including 
inheritance related to mathematics (see, e.g., Dilnot et al., 2016; Malanchini et al., 
2020). The first two are commonly combined as factors related to socioeconomic 
status (SES), and the latter has been important factors in explaining learning 
disabilities, for example (see, e.g., Eklund, 2017). 

All in all, many factors related to a child—of which many are given, and of which 
the child cannot affect at all—are related to the early childhood development in 
general and mathematics development in specific. In-depth discussion of all these 
matters is found in Ukkola and colleagues (2020). These are discussed further in the 
empirical section. 

2.1 What is known of the combined factors explaining the low level of 
preconditions of mathematics? 

Ukkola and colleagues (2020) collected quite a variety of possible variables explaining 
the high and low levels of preconditions in general at grade 1. They sought a simple 
model, a kind of check list type of presentation of the factors predicting the 
exceptionally low level of preconditions in the population. Based on logistic regression 
analysis (LRA) and decision tree analysis (DTA), they came up with five binary 
variables explaining the low performance in the test of preconditions in mathematics 
and language combined (Table 1). 

The strongest predictor for the low performance in the test of preconditions is 
whether the child was decided to be on intensive or special support even before the 
school age. The risk of these children to belong to the lowest quartile (Q1) is 4.6 times 
higher and to the lowest decile (D1) 5.3 times higher than when it is not the case. 
Second strongest predictor is the L2 status with 3.3- and 4.2-times risk, respectively. 
Other factors such as learning disabilities of the parents, relatively young school 
starting age, and guardians’ low education give 1.5- to 2.0-times risks for a child to 
belong to the group of exceptionally low preconditions in general. Notably, the 
explaining powers of the models are not very high (𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴2 = 0.12 − 0.13) referring to 

the fact that even though the tendency is clear, nothing is determined even if the child 
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happens to be born with less advantageous genes and a “wrong” time of the year or in 
a “wrong” country. 

Table 1.  Five main factors explaining the low level of preconditions in mathematics and language combined 
at grade 1 (Ukkola et al., 2020) 

Variables in the model1 B2 
risk to be at Q1 

(lowest quartile) 
risk to be at D1 
(lowest decile) 

Constant 547   
Support in three levels (1 =   decision on intensive or 
special support, 0 = general support meant for all 
pupils) -65 4.58 5.30 
Status for Finnish/Swedish as a second language (L2 
status) (1 = registered L2 status, 0 = no L2 status) -63 3.29 4.17 
Learning disabilities in the close family (1 = at least one 
type of learning disability in parents, 0 = no learning 
disabilities in the close family) -36 1.99 1.83 
Relative age of starting school (1 = months 9–12, 0 = 
other months) -35 1.76 2.01 
Education of the guardians (1 = both or either of the 
guardians have basic education or vocational 
qualification, 0 = other alternatives) -30 1.71 1.50 
predicted level if in group 1 in every factor 320   
Explaining power 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴2  0.12 0.13 0.13 

1) Variables are ordered by the risk related to Q1  
2) regresson weight 

3 Quest for common standards for mathematics 

Assessing the absolute level of mathematical skills or thinking is not as simple as 
sometimes it is thought to be. Specifically, the task is even more difficult when test 
takers are young and there is no obvious measurement stick which would tell what 
“good” or “high level” is. The most obvious challenge is that there is no commonly 
accepted general framework for proficiency in mathematics.  

Metsämuuronen (2018) suggested a common framework for mathematics (CFM) 
based on the levels used in the common European framework of reference for 
languages (CEF or CEFR; https://www.coe.int/en/web/common-european-
framework-reference-languages)—after all, mathematics is a kind of universal 
language, and mathematical skills tend to cumulate. In CFM, the domains are reduced 
to three elements: 1) proficiency in mathematical concepts (M1), 2) proficiency in 
mathematical operations (M2), and 3) proficiency in mathematical abstractions and 
thinking (M3). The rationale for the first two criteria is obvious: to master even the 

https://www.coe.int/en/web/common-european-framework-reference-languages
https://www.coe.int/en/web/common-european-framework-reference-languages
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simplest and most mechanical mathematical operation, a certain level of proficiency 
in mathematical concepts is needed: the concepts of numbers and their 
representations, consecutive nature of the numbers, and certain basic shapes such as 
the triangle, square, and circle.  The rationale for proficiency in mathematical 
abstractions and thinking is that the essence in mathematical proficiency (maybe 
except at a theoretical level) is to transform everyday life challenges into a 
mathematical form and solve the problems by using mathematical operations. 
Without proficiency in mathematical abstractions and thinking, the proficiencies in 
concepts and operations are largely useless; one may know how to do a mathematical 
operation (such as derivation) but have no idea when or why to use it.  

The basic mathematical concepts, operations, as well as the elements of 
mathematical abstractions and thinking are usually hierarchically organized in the 
normal educational process. For example, to manage powers, the procedure of 
multiplication is needed and to master multiplication, the procedure of addition is 
needed. Hence, we understand that it is wise to start teaching and learning 
mathematics with concrete things such as addition and subtraction of the natural 
numbers before introducing decimals and rational numbers.  

The standard levels in CFM are based on this logic which are divided into levels A, 
B, and C (Table 2). The level A refers to the elementary and basic level with the 
relevance to the everyday life, B refers to an advance level with relevance to the 
further studies in several professional areas like statistics, engineering, or economics, 
and C is the professional level mathematics needed either in practical fields (like that 
of statisticians, advanced researchers, economists, or engineers) or in the theoretically 
oriented fields (like that of professors or researchers of pure mathematics, physics, 
astronomy, or chemistry). 

As far as this article is concerned, only level A1 is relevant at the beginning of the 
school even though there may be some prodigies among the pupils. The descriptions 
and stages in CFM are based on the national core curricula of mathematics in Finland 
(EDUFI, 2004, 2014 for the basic education; EDUFI, 2003, 2015 for the upper 
secondary general education).  
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Table 2.  Brief descriptions of the CFM levels (Metsämuuronen, 2018) 

CFM level (main stages) CFM level Short Description 
A1 Elementary proficiency A1.1 First stage of elementary proficiency  
 A1.2 Developing elementary proficiency 
 A1.3 Functional elementary proficiency 
A2 Basic proficiency A2.1 Developing of basic proficiency 
 A2.2 Functional basic proficiency 
B1 Advanced proficiency B1.1 First stage of advanced proficiency 
 B1.2 Developing advanced proficiency  
B2 Functional advanced proficiency B2.1 First stage of Functional advanced proficiency 
 B2.2 Functional advanced proficiency 
C Professional level C1 Basic Professional level 
 C2 Advanced Professional level  

 

In CFM, the first measurable level is A1.1 (First stage of elementary proficiency) 
where the basic elements needed in mathematics such as the numbers and basic 
shapes related to geometry are identified. A1.1 refers to the level at which the 
rudimentary basic elements of mathematical proficiency are mastered. At this level, 
among others, one is familiar with the numbers, but the use in mathematical 
operations is very limited; one recognizes the basic two-dimensional shapes (circle, 
square, triangle) and their three-dimensional counterparts (ball, box, and pyramid) 
and can couple their name with pictures; one can express some limited mathematical 
expressions, such as the order of numbers; one knows the importance of numbers in 
stating amount and order; one knows how to write numbers but the proficiency in 
using formulated mathematic expressions is very limited.  

The empirical section is specifically about pupils below level A1.1. These pupils 
have the most disadvantageous start for their mathematical career although they may 
also give the most joy to the teacher when noticing how well they advance in school 
despite the low level at the beginning.  

If someone is at a level lower than A1.1, from the mathematical concepts viewpoint, 
he or she may not (adequately) know the numbers in the range 1–10; may not be aware 
of the consecutive nature of numbers; may not be able to name the basic forms of the 
circle, square, triangle, ball, box, and pyramid; and may have no understanding of the 
basic concepts of length, mass, volume, and time.   

From the mathematical operations viewpoint, a person below level A1.1 may not 
be able to recognize or write the numbers; may not understand the consecutive order 
of numbers; may not be able to categorize the basic shapes into groups without 
messing with different sizes, colors, and positions; may not be able to couple the 
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names of basic shapes with pictures; and may not know how to measure length, mass, 
and time in the everyday life.   

From the mathematical abstractions and thinking viewpoint, a person below level 
A1.1 may not have the basic understanding of the concepts of adding, subtracting, 
dividing, or multiplying; may not have the basic understanding of unseen numbers 
(for example, what number is missing in the consecutive order); may not have the 
basic understanding how to place things in order, to find opposites for things, to 
classify things according to different attributes, or to state the location of object for 
example by using the words above, below, on the right, on the left, behind, and 
between.  

Obviously, only a new-born baby may be at the stage where the mathematical 
thinking or understanding of concepts and operations would be non-existent—all 
children starting the school have some mathematical preconditions and skills as 
discussed above.  

4 Methodology 

The general methodological issues related to the dataset used in the empirical section 
are discussed in detail by Metsämuuronen and Ukkola (2019). Some points relevant 
to this article are highlighted in Section 4.1 about the sample and datasets while 
Section 4.2. is about the test of mathematic. Section 4.3 describes the procedure of 
standard setting and Sections 4.4 and 4.5 describe the practicalities related to the 
analysis itself. 

4.1 Sampling and data 

A dataset of n = 7770 pupils from grade 1 was collected in August 2018 from 264 
schools selected by using stratified random sampling. The selected schools comprise 
13% of all schools teaching grade 1 and the pupils are 19% of all grade 1 pupils in 
Finland. Swedish population was oversampled (28% of the Swedish-speaking 
schools) for a relevant analysis of this minority. Of the pupils in the target group, 
97.5% participated in the test.  

Part of the information concerning the child was provided by the guardians of the 
child. This dataset comprises n = 4,316 children (56% of the pupils) and it includes 
information of the parents as well as such information of the child that was difficult 
to extract from the child, for example, concerning their interests. Hence, some 
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analyses can be done by using the whole dataset while some other interesting variables 
are restricted to a smaller number of pupils and, in the latter case, the dataset is 
slightly biased toward higher-educated families; as usual, guardians with a higher 
educational level seemed to have been more active in answering the questionnaire 
(see closer Metsämuuronen & Ukkola, 2019). Relevant characteristics of the dataset 
are collected in Table 3. 

Using pupils’ ID numbers, relevant information was added to the dataset from the 
national KOSKI-database. This included information such as home language, L2 
status, and information concerning the 3-stage support. 

4.2 Test items, validity, and reliability of the test score 

The content of the mathematics test was based on content areas in the National core 
curricula for preprimary education (EDUFI, 2016) and for basic education (EDUFI, 
2014). Based on these norms, the contents of the mathematic test comprised of three 
main areas: geometry and measurement, numbers and calculation, and mathematical 
thinking (Table 4). From the construct validity viewpoint, the test comprises all areas 
of the “theoretical framework” from the core curricula.  

The sub-test of mathematics comprises 58 items totaling 62 points. The lower 
bound of reliability of the test was αR = 0.88 by coefficient alpha and, after correction 
for deflation by using Somers’ D instead of Pearson correlation in the coefficient (see 
Metsämuuronen, 2020, 2021, 2022a, 2022b; Metsämuuronen & Ukkola, 2019), αD = 
0.94. Hence, in general, the score is accurate enough to discriminate the test takers 
from each other. 

After a pre-trial, two task types were selected to the final test: “press” and “move” 
(see Figures 1 and 2). The pupils did the assessment tasks in the school’s language of 
instruction using a tablet or a computer. The tasks were speech-instructed. Each pupil 
logged into the testing system through a unique sequence of graphical symbols and 
selected an avatar (such as a robot) to lead into the test (and “speaking” the 
instructions). Children learnt quickly how to use these two task types by a training 
sequence before the test. Teachers were instructed to help the child if some technical 
challenges occurred but not to interfere with the answering process. After selecting 
the item, an arrow appeared automatically. The child pressed the arrow to move to 
the next task. 
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Table 3.  Characteristics of the datasets of grade 1 

Variable  
Whole 
dataset (n) 

Pupils  
n = 7770 (%) 

Guardians  
n = 4316 (%) 

Sex Girl 3875 49.9 49.9 
Boy 3895 50.1 50.1 

Instruction 
language 

Finnish 6902 88.8 91.1 
Swedish 868 11.2 8.9 

Syllabus 
Finnish 6405 82.4  
Swedish 834 10.7  
Fin/Swe as second language (L2) 531 6.8  

Regional state 
administrative 
agency 
 

South Finland  3015 38.8 38.2 
South-West Finland 917 11.8 11.8 
East Finland  732 9.4 8.7 
West and Middle Finland  1672 21.5 22.2 
North Finland  780 10 10.3 

Type of 
municipality  

City 5468 70.4 70.5 
Population density area 1184 15.2 15.7 
Rural  1118 14.4 13.8 

 L2 status No 7239 93.2 95.1 
Yes 531 6.8 4.9 

Three-stage  
support 

General support 6971 89.7 92.2 
Intensive support 521 6.7 5.7 
Specific support 278 3.6 2.1 

Learning 
disabilities in  
 

No learning disabilities 3125  72.4 

One type of learning disability 720  16.7 
parents Several types of disabilities 471  10.9 

Highest education 
in the family 
 

Basic education 48  1.1 
Vocational education 927  21.5 
Matriculation examination 343  8.0 
Polytechnic education 1346  31.2 
University education 1535  35.6 

 Else 111  2.6 
Level of 
preconditions Score in mathematic test 500  514 
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Table 4.  Contents of the mathematics test 

Domain Topic 
Number 
of items 

Reliability  
(𝛼𝛼𝑅𝑅) 

Reliability  
(𝛼𝛼𝐷𝐷 ) 

Mathematics as whole  58 0.879 0.940 
Geometry and measurement Geometry 9   

Measurement 10   

Time and Clock 4   
Numbers and calculation Calculation 17   

Numbers 8   
Mathematical thinking Oral tasks  17   

Reasoning 8   

Relations  17   
 

 

Figure 1.  A “Press” type of task (“Press the figure which has one bone less than the dog has”) 
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Figure 2.  A “Move” type of task (“Move the correct number to the queue”) 

4.3 Standard setting 

The original analysis (see Ukkola & Metsämuuronen, 2019; Ukkola et al. 2020) was 
based on norm-reference assessment. For the re-analysis, a standard setting was 
administered by using a method called 3TTW (Three-phased Theory-based and Test-
centered method for the Wide range of proficiency levels, Metsämuuronen, 2013b).  

At the first phase of 3TTW, items were classified on different bins of standard 
systemic based on the (theoretical) content of the item; first based on three criteria 
(concepts, operations, and thinking) and second, based on the standard level (A1.1, 
A1.2, and A1.3). Only in the criteria on mathematical abstraction and thinking, it was 
possible to find items that fit the level A1.3. These items were more demanding where 
a semi-complicated real-world problem was needed to be transformed into a 
mathematical form and to solve for instance in “In the morning, the thermometer 
showed +2 Celsius. During the school day, it dropped six degrees. What is the 
temperature after the school day? Press the correct number.” For a possible interest 
of a reader, in this type of item, 12.5% of the pupils of the grader 1 were able to give a 
correct answer at the beginning of school.  

 At the second phase, items belonging to a same bin were summed up. The sums 
were transformed into a form that indicated whether the test taker had reached the 
level of proficiency required for a specific level of standard in a specific criterion. For 
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this, a proper cut-off in the sums was set to mark the needed level of proficiency for 
the standard level. Usually, these boundaries are named as “weak pass”, “pass”, and 
“strong pass” (e.g., Van der Schoot, 2009)—strong pass may mean that one needs to 
score at least 80% of the total score in the bin. A minimum boundary was set to 50% 
correct, that is, to “weak pass”: to belong to a certain standard level, the test taker 
needed to solve at least 50% of the tasks correctly (see Figure 3).   

At the third phase, each test taker got his/her profile of passing and failing in the 
levels of standard systemic. In most cases, the profile was “pure” in a sense that if one 
was able to solve more-demanding tasks, also the less-demanding tasks were solved. 
Then, it is straightforward to conclude that if a test taker can show proficiency enough 
for levels A1.1 and A1.2 but not for A1.3, a credible proficiency level for the test taker 
is A1.2 (see detailed, Metsämuuronen, 2013b).  

Figure 3.  Distribution of proficiency in M3, level A1.1 items summed, 
and the boundary of a weak pass (50% correct) 

4.4 Variables used in the analysis 

The score of mathematics is formed of the raw score by one-parameter item response 
theory (IRT) modelling, that is, the Rasch modelling. The outcome (theta score) is a 
logistic transformation of the raw score. The original theta score is a standardized 
normal variable where the average scorer gets the value 0. This score is further 
transformed to a T10 form, that is, Y = 100 × X + 500 leading to a score where the 
average test taker gets the score 500 and the standard deviation is 100. The same 
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transformation and mechanics are used, for instance, in PISA- and TIMSS inquiries 
(see, e.g., PISA, 2019). In what follows, also some other test scores such as different 
sub-tests related to the medium of instruction of the school and attitude scales are 
used in analysis. Validity and reliability of these tests are described in 
Metsämuuronen and Ukkola (2019). 

For a re-analysis of the dataset, a standard setting was administered (see above), 
and those pupils were detected who showed the lowest absolute level of preconditions 
of mathematics at grade 1 in all criteria (n = 608; 7.8% of the pupils). In theory, these 
pupils are below the lowest measurable level of proficiency in mathematics at the 
beginning of grade 1. Naturally, they have some proficiency in mathematics—in some 
cases maybe almost half of the task solved—but not enough to reach the lowest 
standard level A1.1 in any of the areas on the criterion systemic. This dummy variable 
(later “below A1.1”) is mainly discussed in what follows.  

 The analysis is mainly exploratory in nature. Hence, relevant descriptive variables 
such as sex, relative age of school start, and family factors are used to profile these 
pupils with the least advantageous start of the mathematical studies in school. Finally, 
by combining the statistically significant predictors, a model parallel to Table 1 is 
formed to predict the grouping of the lowest level preconditions in an absolute sense, 
that is, the group “below A1.1”. 

4.5 Methods of analysis 

Three main analytical tools are used in the analysis: a data mining tool decision tree 
analysis (DTA), traditional logistic regression analysis (LRA), and traditional general 
linear modeling (GLM) in IBM SPSS environment. These methods are generally 
known and, hence, there is no need to describe them further (see, e.g., 
Metsämuuronen, 2017b). In LRA, standard statistical procedure with conditional 
selection of variables is used with Nagelkerke’s (1991) adjustment for the explaining 
power (𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴2 ). GLM is used mainly as one-way ANOVA; in post hoc analysis, Šidák’s 

(1967) procedure is used; in the case, it gives more plausible correction for p-values 
than the traditional Bonferroni correction (see discussion in Metsämuuronen, 2017b). 
For effect sizes, Cohen’s f (Cohen, 1988) is used; the classic, rough boundaries for 
small-, medium-, and large effect size are f < 0.1, f = 0.2–0.3, and f > 0.4, respectively. 
In DTA, CHAID algorithm (Kass, 1980) is used, and child nodes with three levels were 
allowed as is default in SPSS (see detailed, Metsämuuronen, 2017c).  
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5 Results 

5.1 Overall distribution of preconditions in mathematics at the 
beginning of the first grade 

Overall, the distribution of test score of preconditions in mathematics forms a slightly 
widened normal distribution (Figure 4) referring to the fact that whole population 
may be comprised of three to four different normal populations with slightly different 
means. This seems to fit what was previously noted by Metsämuuronen (2017a; see 
also Metsämuuronen & Tuohilampi, 2014): children starting the school in Finland 
seem to form four populations. Developing pupils have no or very thin idea of 
mathematical concepts or thinking—this group is very small in Finland. Beginner 
pupils have some academic preconditions and understanding of mathematical 
concepts and thinking although those may be very limited—this group is also rather 
small in Finland. The target group in this article consists mainly of pupils in these two 
groups. Normally developed pupils form the main population. They recognize or 
master basic concepts such as natural numbers in a limited range and can name basic 
forms such as triangle, circle, and square; they may be able to solve simple 
mathematical problems by using adequate mathematical operations; and they may 
have basic understanding of measuring mass and time, for instance. Advanced pupils 
form the highest performing segment of the cohort. Their mathematical performance 
at the beginning of school may already be partly at the level of grade 3. Some pupils 
in this group may be categorized as exceptionally advanced pupils. Notably, in the 
dataset the ultimately highest and lowest-performing pupils were boys. Also, in both 
extremes (scores < 200 and >800), the number of boys is twice that of girls. This fits 
with the greater male variability hypothesis discussed by, e.g., Baye and Monseur 
(2016), Johnson, Carothers, and Deary (2008), Machin and Pekkarinen (2008), and 
O’Dea and collegues (2018). However, the number of ultimately performing pupils is 
rather small. 
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Figure 4.  Distribution of the score of preconditions in mathematics at grade 1 

After the standard setting, the distributions of proficiency levels are as in Figure 
5. In criteria M1 and M3, 12–13% of the pupils fall in the category “below A1.1” while, 
in criterion M2, 51% of pupils fail to reach the level A1.1. This refers to the fact that, at 
the beginning of grade 1, pupils may know well the basic natural numbers and 
recognize and name basic shapes, and they may show some elementary mathematical 
thinking, but they cannot use much mathematical operations. This makes sense 
because the mathematical operations are not taught in the preprimary education in 
Finland; these are taught in school. 

By labeling the standard levels with ordinal 0, 1, and 2 in M1 and M2 and 0, 1, 2, 
and 3 in M3 and summing up the levels of different criteria, we get a rough 
distribution of absolute proficiency levels for each pupil (Figure 6). While 7.8% of the 
pupils fall into the category “below A1.1”, 22.5% of the pupils appeared to be at the 
levels A1.2 or A1.3 in all criteria. Notably, the proportion of pupils in the highest 
category is exceptionally high because the category consists, factually, of two 
categories, “A1.2 in all criteria” and “A1.2 in criteria M1 and M2 and A1.3 in criterion 
M3”. The middle levels are formed by varied combinations of the standard levels and, 
hence, their interpretation is ambiguous.  
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Figure 5.  Distributions of standard levels of different criteria in mathematics at grade 1 

 

Figure 6.  Distributions of combined standard levels in mathematics at grade 1 

The average score in the group “below A1.1” was 329 (std. dev. 54.57) and in the 
highest achieving group “A1.2 or more in all criteria”, it was 628 (std. dev. 58.50) 
(Figure 7). The difference between the groups is, obviously, statistical significant (F(6, 
7763) = 5422.54, p < 0.001) and the difference between the extreme groups is 
remarkable (f = 2.04). Also, the average scores in each level of ordered proficiency 
levels differ from each other statistically significantly (GLM, post hoc tests, all p < 
0.001).  



METSÄMUURONEN & UKKOLA (2022) 

73 
 

 

Figure 7.  Relation of the test score and the combined standard levels in mathematics at grade 1 with 
observed distributions for selected levels 

5.2 Personal factors characterizing the pupils with very low 
preconditions in mathematics at the beginning of the first grade 

When focusing on the pupils below the lowest measurable standard level (n = 608), 
DTA suggests that these pupils scored low also in the general test that combined 
mathematics and the medium of instruction of the school (Finnish/Swedish). Hence, 
these pupils low-performed not only in mathematics, but they were at a lower level in 
preconditions for the school in general. Because the test score in the medium of 
instruction of the school correlates almost one to one with the total score (r = 0.996) 
caused by the fact that almost all items include a linguistic component (see 
Metsämuuronen & Ukkola, 2019; Ukkola et al., 2019), it is expected that deficiencies 
in proficiency in the medium of instruction may explain well the low performance in 
mathematics.  

 Of all 17 sub-tests related to proficiency in language (see Metsämuuronen & 
Ukkola, 2019), DTA suggests that the low score of proficiency in listening 
comprehension predicts inclusion in the low-achieving group the strongest; 68% (n = 
415) of the pupils in the group “below A1.1” came from the group where the score of 
the listening comprehension was below 372.19. By LRA, the main effect of the 
listening comprehension (dummied into lower and higher than score 372,19) is 
remarkable: the risk of belonging to the group “below A1.1” is 44,2 times higher if the 
pupil scored 372 or lower, and the explaining power of the simple model is high 
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(𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴2 = 0.408).  Also, in GLM, the effect size is high (f = 0.71). Notably, 72.6% of the 

pupils in this group were not immigrants with an L2 status. Logically, if the language 
skills are underdeveloped in general, the pupils are not expected to master the more 
demanding specific mathematical vocabulary either. Hence, they get a low score in 
mathematics too.  

L2 status also has its own—although small—main effect in predicting belonging to 
the group “below A1.1”. When L2 status is added to the model of LRA with the 
dummied score of listening comprehension, it still appeared to be a statistically 
significant independent predictor (p = 0.003), with the risk index 1.5. Then, it has an 
effect, but the effect is small in comparison with the low language comprehension. 

One obvious possible factor explaining the low absolute achievement level is the 
decision regarding intensified or special support. In Finland, this decision could be 
made during preprimary education based on the obvious signs for slow learning. 
Intensified and special support are given already before school and, in many cases, 
the need is still there when the school starts. In the dataset, the level of 3-stage support 
appears to explain significantly (GLM, F(2, 7767) = 219.14, p < 0.001) and remarkably 
(f = 0.24) belonging to the group “below A1.1”: in the group with a need for intensified 
support, 20% belonged to the group “below A1.1” and, to the group with a need for 
special support, 35%. For further analysis, these two groups are combined (Figure 8).  

 

 

Figure 8.  Proportions of pupils belonging to the group “below A1.1” at the levels of the 3-stage support 
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Attitudes and emotions are shown to be related to performance although the 
direction of the effect is not easy to determine unambiguously. Namely, we do not 
know whether high proficiency level creates a positive attitude, is it the other way 
around, or is it reciprocal. For grade 1 pupils, the attitude items related to 
mathematics were notably simple: “Counting is…” and “I can count” and “The tasks 
were easy” with smile faces with 5-point Likert type of scale anchored to 1–5 (see 
Metsämuuronen & Ukkola, 2019).  Still, “counting” may be rather concrete for many 
young children: they might think, for example, listing numbers in numerical order. 

Of the dimensions of attitude (the whole test, general attitude toward math and 
language, attitude toward mathematics, attitude toward language, and self-efficacy), 
the attitude toward mathematics appeared to be the factor explaining the best 
belonging to the group “below A1.1” in DTA. The lower is the mean in the attitude 
scale, the higher the probability to be found in the group “below A1.1”. Division of the 
attitude scale into four groups explains the belonging statistically significantly (GLM, 
F(3, 7457) = 53,62, p < 0.001) although not remarkably (f = 0.15). Again, we do not 
know how much the result is related to a factual realistic understanding of the child: 
“I really was not able to solve the tasks, hence, the tasks were not easy to me”. If so, it 
shows that the children even at the grade 1 seem to be able to do realistic evaluation 
of their capabilities. For the later use, the attitude variable is dichotomized from lower 
and higher than the score 3.333 as suggested by DTA. 

Of other personal factors discussed in the introduction, neither sex, more relative 
school starting age nor any of the hobbies—not even programming or reading in 
home (see the variables in Metsämuuronen & Ukkola, 2019)—did explain the 
belonging to the group “below A1.1” in this dataset. This may be partly explained by 
the fact that the information concerning the latter variables were provided by the 
guardians, and this reduced the number of pupils belonging to the group “below A1.1” 
from n = 608 to n = 246 pupils. 

5.3 Family factors characterizing the pupils with very low 
preconditions in mathematics at the beginning of the first grade 

Two relevant sets of variables related to parents and guardians in explaining the 
pupils to belong to the lowest achieving group are discussed here: guardians’ 
educations on the one hand and potentially inherited disabilities from the parents on 
the other. This information is obtained from the guardians’ questionnaire and reduces 
the number of pupils to almost a half and in group “below A1.1” from n = 608 to n = 
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246. 
 The educational background of two guardians (“mother or other guardian” and 

“father or other guardian”) was asked being at one of the five levels: basic education, 
vocational education and training, matriculation examination, polytechnic, and 
university degree. Few guardians also selected the alternative “other”—this alternative 
seems to be a more typical selection by guardians from immigrated families. From 
this information, several combinations of educational background were derived to 
explain the general level of preconditions in mathematics (see Ukkola et al., 2020). 
Here, the original variables are used.  

Mother’s education appeared to be a better predictor (𝜒𝜒2(2) = 41.82, p < 0.001) 
than that of father’s (𝜒𝜒2(2) = 29.37, p < 0.001). Although DTA suggests three groups 
for mother education (basic, secondary, and tertiary education), after the correction 
in p-values by using Šidák’s procedure, GLM suggests that only the group of mothers 
with just basic education (or “missing”) differs from the other groups (post hoc, p = 
< 0.001; for the other groups, p > 0.05). Of the children with this background, 16.8% 
belonged to the group “below A1.1” while in two other groups the percentage is 5–6%. 
Effect size is small though (f = 0.095).  

Another interesting family-related factor explaining the belonging to the lowest-
achieving group is the possibly inherited learning disabilities. Five different types of 
disabilities were given as alternatives in the guardians’ questionnaire: linguistic (such 
as dyslexia), mathematical (such as dyscalculia), concentration, perception, and social 
challenges. Of these, linguistic and mathematics disabilities did not explain the lowest 
performance although they may, in general, influence performance. However, pupils 
belonging to the group “below A1.1” were slightly more likely to have parents with 
concentration problems (23.6% vs. 11.4%, 𝜒𝜒2(1) = 31.99, p < 0.001). In LRA, it shown 
2.4 times risk although with low explaining power (𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴2 = 0.017). In GLM (F(1, 4314) 

= 32.21, p < 0.001), the effect size is small (f = 0.08). 

5.4 Outline of the results 

By combining the results from Sections 5.1–5.3, we may conclude that, of the variables 
used in the analysis, deficiencies in language—specifically a low level of 
understanding of spoken language, also indicating a lack of adequate vocabulary 
related to mathematics—is the most powerful factor explaining why the precondition 
level on mathematics in pupils remained lower than the lowest measurable level 
(below A1.1 in all criteria). This variable alone explains 41% of the variance in the 
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dataset. In what follows, all variables from the previous sections showing statistically 
significant prediction power are collected and dichotomized to make a simpler model 
in LRA. The variables in the modelling included the score below 372 in the test of 
listening comprehension, L2 status, decision on intensified or special support, 
attitude toward mathematics, mother’s education in three categories, and 
concentration problems of parents.  

During the modeling, mother’s education did not have a major effect and it was 
dropped in the statistical process. Also, using learning disabilities reduces the dataset 
to almost half which reduced the explaining power of the models. Hence, in the final 
model only four variables found from pupils’ dataset were kept. The outcome is 
summarized in Table 5. 

Table 5.  Four factors explaining the low level of preconditions in mathematics 

Variables in the model1 B Significance 
Risk to belong to the 
group < A1.1 EXP(B) 

Constant -3.877   
Score in the test of Listening comprehension (1 = 
score ≤ 372.19. 0 = score > 372,19  3.351 < 0.001 28.53 

3-stage support (1 = decision on intensive or special 
support, 0 = general support meant for all pupils) 0.777 < 0.001 2.176 

L2 status (1 = registered L2 status, 0 = no L2 status) 0.461 0.003 1.586 
Attitude toward mathematics (1 = mean score < 
3.333, 0 = mean score > 3.333 in the scale of 1–5) 0.457 < 0.001 1.579 

Explaining power 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴2  0.40   

1) Variables are ordered by the risk   

 

After knowing the score of the listening comprehension, the 3-stage support still 
gives 2.2 times risk, while L2 status and a low score in a simple test of attitudes toward 
mathematics have 1.6 times risk to belong to the group “below A1.1” in both 
mathematical concepts and procedures as well as in abstractions and thinking. The 
explaining power of the model is reasonably high (𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴2 = 0.40). Notably, low score in 
the test of listening comprehension, alone, had even higher explaining power (𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴2 =
0.41) with a higher risk value of 44.2. The reason for the non-intuitional higher 
explaining power by a smaller model is that other variables include missing values 
causing reduction in pupils included in the analysis. 
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6 Discussion 

An obvious conclusion of the analysis is that not all variables explaining the low level 
of general preconditions in mathematics and language (Ukkola et al., 2020; see Table 
1) are valid in explaining the absolute low performance in mathematics. A somewhat 
surprising although understandable finding is that low proficiency in listening 
comprehension appears to be a key factor in explaining the low proficiency in 
mathematics too. It is understandable that if the language skills are underdeveloped 
in general, the pupil is not expected to master the rarer, specific mathematical 
vocabulary either, hence the low score in mathematics too. These two phenomena, 
proficiency in mathematics and proficiency in listening comprehension are not totally 
independent in the dataset though; part of the items in the mathematics test were 
used also as part of listening comprehension; after all, nearly all mathematics items 
also included a component of understanding concepts of mathematics and all 
instructions were given orally. Hence, further studies of independent tests of 
mathematics and language would be beneficial. Anyhow, we may predict that all 
activities increasing the language skills, specifically, of the wider vocabulary in the 
early childhood may also increase mathematical comprehension. The specific 
vocabulary related to mathematics may need some conscious concentration from 
guardians and preprimary teachers. 

 An obvious limitation of the study is that relevant pieces of information 
concerning the child was collected from guardians and this information was given 
only for around half of the pupils and of these, more likely, for better performing 
children. Hence, with relevant variables explaining pupils belonging to the group 
“below A1.1”, the number of pupils was reduced from n = 608 to n = 246. In future 
phases of the longitudinal setting, it is aimed to collect more information from those 
families that did not answer the questionnaire in the first phase. Hence, the results 
reported in this article may get more power, specifically, when it comes to parents’ 
and guardians’ role in the early development of the child. 

 Teachers in the primary education are facing an interesting challenge at the 
beginning of the school: how to raise the standard of those who are at the lowest level 
in mathematics and, at the same time, to keep the lessons interesting also for those 
advanced pupils who may not learn anything new during the two first years. Earlier 
studies (Metsämuuronen, 2013a; 2017a; Metsämuuronen & Tuohilampi, 2014) 
indicate that the schooling and supporting system in Finland can turn the wide 
distribution of performances at grade 1 into a normal (at grade 3) and even a kurtic 
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normal (at grade 6) after which it, again, widens at grade 9 and even more at the end 
of secondary education when the national distribution is even wider than what is at 
the beginning of grade 1.  

One part of the challenge is, how to prevent pupils with very low (or even average) 
level of proficiency in mathematics to fall into an abyss of mathematic anxiety, low 
self-esteem in mathematics, and underachieving in the studies during the basic 
education. It may be valuable to try to detect those pupils who have real challenges 
related to dyscalculia or parallel learning disability related to mathematics. Maybe, at 
some point, some kind of numeracy screening tests such as functional numeracy 
assessment (Funa) test (see Funa consortium, 2019; Räsänen et al., 2021) could be 
used in an early phase, and relevant scaffolding techniques and teaching methods 
could be developed to help these children during the first stages of development of 
mathematical concepts, procedures, as well as abstraction and thinking—maybe even 
before the grade 1. 
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In this paper we direct attention to 5–6-year-olds’ learning of arithmetic skills 
through a thorough analysis of changes in the children’s ways of encountering and 
experiencing numbers. The foundation for our approach is phenomenographic, in 
that our object of analysis is differences in children’s ways of completing an 
arithmetic task, which are considered to be expressions of their ways of 
experiencing numbers and what is possible to do with numbers. A qualitative 
analysis of 103 children’s ways of encountering the task gives an outcome space of 
varying ways of experiencing numbers. This is further analyzed through the lens of 
variation theory of learning, explaining why differences occur and how observed 
changes over a prolonged period of time can shed light on how children learn the 
meaning of numbers, allowing them to solve arithmetic problems. The results show 
how observed changes are liberating new and powerful problem-solving strategies. 
Emanating from empirical research, the results of our study contribute to the 
theoretical understanding of young children’s learning of arithmetic skills, taking 
the starting point in the child’s lived experiences rather than cognitive processes. 
This approach to interpreting learning, we suggest, has pedagogical implications 
concerning what is fundamental to teach children for their further development in 
mathematics. 

Keywords: arithmetic, numbers, phenomenography, preschoolers, variation 
theory 

1 Introduction 

Research on early mathematics education from the last four decades provides 
multiple observations of children solving arithmetic problems, offering a 
comprehensive picture of the strategies children use and the common trajectory of 
arithmetic skills development (see e.g., Baroody, 1987; Baroody & Purpura, 2017; 
Fuson, 1992). This body of knowledge has influenced many curricula and guidelines 
for teaching mathematics in the early years (Cross et al., 2009; Sarama & Clements, 
2009). What has still not been revealed, however, is what children explicitly learn 
when developing a more advanced understanding of numbers that becomes useful in 
their arithmetic problem-solving. This calls for taking an educational perspective in 
interpreting children’s arithmetic skills. In this paper, we aim to contribute to filling 
this knowledge gap by offering an alternative approach to describing children’s 
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learning, starting from how numbers appear to them (in a phenomenological sense; 
see Marton & Neuman, 1990). This, we suggest, has implications regarding what is 
fundamental to teach for children’s mathematical development. More specifically, we 
aim to answer the following research questions: 

1.  How can preschool children’s ways of experiencing numbers in an arithmetic 
task be described? 

2.  What distinguishes changes in their ways of experiencing numbers over time? 

These questions are answered through empirical research involving 5–6-year-old 
preschool children solving an arithmetic task characterized as a “missing addend 
problem”. Through the lens of phenomenography and the variation theory of learning 
(Marton, 2015), we analyze the children’s encounter with numbers and how their ways 
of experiencing numbers differ and change over time. 

1.1 Learning arithmetic skills in the early years  

There are many documentations of children’s strategies in arithmetic problem-
solving and the trajectory of these strategies. Baroody (1987) is a researcher who is 
often referenced, describing the development starting with counting skills closely 
connected to physical countables (enumeration) and consecutively integrating other 
skills of significance for arithmetic problem-solving (such as the cardinality principle 
and the succession of numbers on the number line). In line with this way of describing 
development, when more skills are mastered, this allows the child to make use of 
mental representations such as the number line, without having to construct the 
number sequence every time by counting from one, alleviating the cognitive load. 
Crucial in the development of arithmetic skills is presumably the child’s ability to 
construct units and an understanding of numbers as compositions of units in a part-
whole relationship (Baroody, 2016). Nevertheless, there are empirical observations of 
children who do not develop these mental representations and continue constructing 
numbers by counting single units in all tasks they encounter. In other words, they do 
not invent efficient arithmetic strategies in which number relations (based on the 
composition of units) can be applied (Neuman, 1987; Ellemor-Collins & Wright, 
2009).  

The research based on cognitive science primarily emphasizes counting as the 
foundation for arithmetic development (Baroody, 1987; Fuson, 1992). However, an 
overemphasis on counting strategies may delay children’s development of more 
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advanced mathematical skills, according to Cheng (2012, p. 30), because “preschool 
children who receive continuous encouragement when using counting strategies are 
reluctant to try the new more advanced decomposition strategy. …, these children 
prefer to use such seemly easier and effortless counting strategy”. It has been shown 
that low-achieving students, even when they are older, often rely on counting 
strategies, which suggests that counting skills on their own will not develop arithmetic 
understanding and efficiency in problem-solving (Ahlberg, 1997; Christensen & 
Copper, 1992; Neuman, 2013). Determining the quantity of a missing part or 
difference when changes in quantities occur that cannot be enumerated (because 
missing parts are unknown, not “visible”), particularly in larger number ranges, 
demands a sense of numbers as constituting a part-whole relationship (Baroody, 
2016; Peters et al., 2012). 

The need to experience numbers’ part-whole relations was also confirmed in a 
recent study of preschool children’s arithmetic skills, concluding that children 
knowing the cardinality of numbers (e.g., the last number word said when counting 
items one-after-the-other means the whole set of counted items) and ordinality 
(numbers have internal relations to one another: adding one makes the next number 
in the counting sequence) is not sufficient for solving even simple arithmetic tasks. It 
is only when children realize that numbers (in addition to their features of cardinality 
and ordinality) can be seen as a triad of related numbers that they are able to solve 
arithmetic tasks or compare sets without concrete countables available (Björklund, 
Marton et al., 2021). Thus, learning to solve arithmetic problems constitutes the 
development of a complex of skills that might not be explained by solely constructing 
mental representations. As we suggest in this paper, the child’s perspective on 
numbers, and how numbers appear to them, may be a necessary addition to our 
knowledge of how children learn basic arithmetic skills. 

There have been attempts to describe how numbers are understood by children, 
not least by Piaget (1976/1929), who described intellectual development as qualitative 
changes in perceptions. His seminal work (Piaget, 1952) concerns how children 
structure their experiences into knowledge. The structuring process, in Piaget’s view, 
results in similarities and differences that constitute psychologically real entities. 
Such a psychological formal structure is assumed to be applicable to different 
concepts. However, Piaget’s thesis has been criticized for not explaining why a child 
is then able to express an advanced conception of some phenomenon presented in one 
situation but fails to do so in another, even though the encountered task or concept 
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seems to be similar (Smedslund, 1977). This way of describing children’s development 
of number knowledge places the focus on the child rather than the child’s experienced 
world. Starkey and Gelman (1982) present an alternative view to the Piagetian one, 
proposing that an early understanding of arithmetic is related to particular principles, 
and that the understanding of these principles proceeds through increasingly complex 
levels. This view involves the child perceiving not any phenomenon in general but 
rather numerical phenomena specifically. That is, attention to certain principles is 
necessary in order for numbers to be understood (see Gelman & Gallistel, 1978). What 
the research mentioned above focuses on is how knowledge is constructed and 
transformed in children’s development, from less effective toward more effective and 
valid knowledge. 

The interest in understanding children’s qualitatively different ways of 
understanding numbers can be found in several contemporary studies, while taking 
different theoretical perspectives to interpret what numbers mean to children. For 
example, Lavie and Sfard (2019) describe the development of children’s reasoning 
with quantities over a prolonged period of time and conclude that number words are 
indeed commonly used but bear different meaning in children’s problem-solving. 
That is, number words are not necessarily used for enumerating but often instead for 
estimating and comparing in a sense of “more or less”. Already in the 1980s, Neuman 
(1987) presented a study of children’s number knowledge with a strong emphasis on 
how numbers’ meaning appears to them. Based on interviews with school-beginners, 
she aimed to theorize children’s ways of creating concepts of numbers and described 
this as a trajectory starting from the prenumerical, moving through the early 
numerical, and ending in numerical concepts. Prenumerical concepts are expressed 
in children’s intuitive or learned gestalts of quantities, known as subitizing or 
recognizing patterns of, for example, two pairs making four, but if separated 
(spatially) the two pairs would be conceptualized as different. Early numerical 
concepts include several ways of attending to numbers, such as a primitive way of 
seeing number words as relating to quantities but lacking numerical meaning or 
making use of number words for “fair sharing”, meaning that partitioning is focal to 
the child in an intuitive sense but the exact quantity (number) is irrelevant; thus, any 
number word is possible as an answer. Furthermore, some children show an 
understanding of numbers as “names”, which means the number words are seen as 
names of objects: When adding 4+5 the child answers 5, as the fifth object is added, 
resulting in the last said counting word being the answer. According to Neuman, this 
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indicates that the number concept is purely ordinal in character and that 5 does not 
include 4 or any smaller number but is rather a label given to a specific object. Some 
of Neuman’s observations revealed that the size of a quantity is primary to a discrete 
number of items, a category called “estimates”. Number words, then, rather mean 
“much” or “a little”, and there are no computational strategies related to this number 
concept. Neuman states that these early numerical conceptions are integrated toward 
an indissociable meaning of cardinality and ordinality, thus leading to numerical 
concepts. The numerical conceptions Neuman found in her studies were “structuring” 
and “counting”, which allow the child to determine the answer to “how many” 
questions as an exact number of units. Counting is subordinate to structuring, 
however, as it is important to recognize and also be able to create patterns to represent 
part-whole relations. If the child’s conception of number is restricted to the counting 
category, according to Neuman’s studies this will lead to mathematics difficulties 
because numbers are then measured only in their smallest single units, which leads 
to difficulties in keeping track and the cardinal and ordinal meanings of numbers 
appearing as parallel, leaving the part-whole relation undiscerned. Here, Neuman 
highlights the theoretical basis of phenomenography, in which learning is regarded as 
changes in conceptions. For example, incorrect answers to simple arithmetic 
problems do not imply an absence of learning but can indeed reflect qualitatively 
different ways of understanding numbers. For instance, regarding “names” and 
“estimates”, which are error-prone conceptions, according to Neuman these are both 
important parts of children’s creation of number concepts that will eventually develop 
into more advanced number concepts. Similarly, children may very well be able to 
complete an addition task correctly, but their strategies reveal different conceptions 
of numbers, of which one (structuring) is a path to development and the other 
(counting) is not. 

What stands out in the research on early numerical learning and development is 
the (methodological) need to interpret children’s actions as expressions of awareness. 
Ahlberg (1997) clarifies this as two levels of descriptions: Strategies or ways of 
handling numbers are what can be captured in an observation, but what we need to 
make interpretations of is what a child is focally aware of in a problem-solving 
situation and how the child structures this information. How the latter is 
conceptualized, however, depends on the researcher’s theoretical perspective, which 
is why we sometimes find contradictory explanations of how children learn arithmetic 
skills (see Björklund, Marton et al., 2021). Ahlberg conducted a study similar to 
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Neuman’s, taking the same theoretical approach and finding similar categories. 
However, she takes the interpretation one step further, describing children’s ways of 
handling numbers and relating them to their ways of experiencing the meaning of 
numbers. She concludes (1997, p. 35) that “… using these different ways of handling 
number children’s awareness is directed towards various aspects of them. These 
different aspects of numbers presented in the children’s awareness constitute their 
understanding and consequently they understand the meaning of numbers in 
qualitatively different ways”. According to Ahlberg (1997), the different ways of 
understanding numbers are, as: i) number words, ii) extents, iii) position in a 
sequence, and iv) composite units. These different ways of understanding numbers 
are explained by what is foregrounded in the child’s awareness. In this sense, learning 
arithmetic skills entails experiencing and simultaneously perceiving these as different 
aspects of number. However, Ahlberg does not elaborate on how this is executed as a 
learning process that also includes the mathematical aspects (such as cardinality and 
ordinality). Even though Neuman and Ahlberg made great efforts to theorize 
children’s understanding of numbers based on the different ways in which children 
experience numbers, they did not fully come up with a theoretically driven conclusion 
regarding how children come to change their way of experiencing numbers (and thus 
develop their arithmetic skills). 

Regardless of whether one takes a cognitive or phenomenographic approach, 
children’s handling of numbers (their strategy use) is not in a one-to-one relation with 
a certain way of understanding, even though some clues can be revealed from their 
actions. In sum, while there is no lack of observations of children using numbers with 
different meanings, our aim is to contribute theoretically underpinned explanations 
as to why differences occur and how children learn arithmetic skills.  

2 Theoretical framework  

The theoretical lens we apply in our study is phenomenography and variation theory. 
Phenomenographic research investigates different ways in which the same 
phenomenon can be experienced by a group of people (e.g., Marton, 1981). Its goal is 
to find and systematize forms of thought by which people interpret phenomena in 
their surrounding world. This directs attention to an experiential perspective that 
highlights individuals and their ways of experiencing (or seeing, perceiving) 
phenomena they encounter. Phenomenography is a research orientation with the aim 
to describe, and what it describes is conceptions. “Conceptions” tell what the 
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phenomenon looks like to the individual (in our case, how numbers appear to the 
child), and have two intertwined features: the global meaning of the conceptualized 
phenomenon and a structural feature, which constitute the specific combination of 
aspects that are discerned and focused on. Thus, a conception (or a certain way of 
experiencing a phenomenon) is both a holistic experience of a phenomenon and at the 
same time constitutes a complex of discerned aspects of the same phenomenon 
(Marton & Pong, 2005). If some aspect that was previously undiscerned is suddenly 
discerned, this alters the global meaning to the person. Thus, in phenomenographic 
research, descriptions of conceptions are based on explorative forms of data 
generation and interpretative character of data analysis, resulting in qualitatively 
different categories (Svensson, 1997). This means that the results of a 
phenomenographic investigation comprise a group of persons’ knowledge; not in 
terms of what is considered objectively right or wrong but in terms of the meaning a 
phenomenon in the surrounding world has for these persons. In recent 
phenomenographic studies, this focus on describing conceptions is labelled ways of 
experiencing phenomena (Marton, 2015).  

The phenomenographic approach has significance for describing and investigating 
learning, taking its starting point in the meaning that appears to the learner. The 
phenomenographic research approach has been used for many years to describe 
students’ ways of experiencing different phenomena as a point of departure for 
understanding why participating in the same teaching situation can result in different 
learning outcomes (Marton & Booth, 1997). However, it is not enough to learn that 
children convey different ways of experiencing; in educational studies, it is significant 
to also know why these differences occur. In the phenomenographic approach this is 
not explained in terms of cognitive deficits, for example, but as being due to 
differences in how the learning object appears to the children. Even so, in order to 
explain learning and how to advance the ways the learning object appears to a child, 
one needs to distinguish what constitutes the different ways of experiencing the 
learning object. 

The main question in variation theory of learning (Marton, 2015) is what 
constitutes the learning of a specific content. A fundamental idea, based in 
phenomenography, is that learning entails changes in ways of experiencing a certain 
content, which is why a central question in the theory involves what the learner needs 
to “see” that will make this change. Ways of experiencing content constitute the 
learner’s differentiation of aspects of that content (cf., Gibson & Gibson, 1955). The 
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fundamental principle in variation theory is that the combination of the necessary 
aspects for handling numbers in an arithmetic task, arrived at by a particular child, 
defines his/her way of experiencing numbers. When a new (or rather, not previously 
attended to) aspect is discerned, this liberates a new way of experiencing numbers and 
thus what the child can do with numbers. In line with this way of reasoning, children’s 
strategy use in arithmetic problem-solving thereby involves expressions of certain 
ways of experiencing numbers, which in turn is a function of discerned aspects of 
numbers.  

3 Methods  

To deepen our knowledge of children’s learning of arithmetic skills, we studied how 
numbers are experienced by preschool children and what aspects of numbers appear 
to them that inform their use of arithmetic strategies. To gain these insights, we 
conducted interviews with 103 preschool children in their final year of preschool1. The 
interviews were conducted by researchers experienced in educational studies and 
interviewing children, and were held individually at the children’s preschools. Tasks 
were given orally, and the children were encouraged through follow-up questions to 
explain how they had come up with their answer. They were also encouraged to use 
their fingers if they wanted to, but no other manipulatives or tools were offered other 
than what was part of the task. Nevertheless, some children made use of objects found 
in the room to support their reasoning. 

All the children’s legal guardians had given their informed consent for the children 
to participate in the study. The interviews were video-recorded to allow detailed 
analyses of the children’s actions and utterances. If permission to video-record had 
not been given, detailed field notes were taken by an assisting researcher. The children 
participated in the task-based interview on two occasions (8-month interval). The 
children’s mean age was 5 years 3 months at Interview I and 5 years 11 months at 
Interview II. The participants, from three suburbs outside a large Swedish city, all 
spoke fluent Swedish and were of mixed socioeconomic backgrounds. 

 

1 Preschool is a voluntary pedagogical practice in Sweden for children 0-5 years of age, with a high attendance rate 

(95% of 5-year-olds the year of the study and 85% of all children aged 1–5).  
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3.1 Data 

In this paper we use responses to one task in the interview as our object of inquiry. 
The task was inspired by the “Guessing Game” task used in Neuman’s (1987) study, 
in which the interviewer hides a number of buttons in two boxes and asks the child to 
guess how many there could be in each box. A similar number decomposition activity 
is the “hidden item task” in Tsamir et al.’s (2015) interview study with 5-6-year-olds, 
in which seven identical items were used, one set visible in the interviewer’s hand and 
the rest hidden. The child was asked how many items were hidden in the closed hand. 
The task was repeated, altering the visible number of items.  

Our version of the task, also given orally, includes seven identical glass marbles. 
The child is initially asked to count the marbles, which are lined up on the table. The 
interviewer then hides the marbles in her two hands and thereafter the child is asked 
how many marbles could be in each hand. In the second step, the interviewer opens 
one hand and lets the child see some of the marbles and asks the child to figure out 
how many are hidden in the closed hand. After each answer, the interviewer asks 
follow-up questions to encourage the child to reason about how s/he came up with the 
answer. The child is given the task three times, altering the partitioning of the seven 
marbles.  

In the analysis we present here, we have selected only one part of the task – the 
interviewer shows four marbles in her opened hand and the child is to figure out how 
many are hidden (3) in the closed hand – and only the first round that the task is 
given. The task corresponds to common “missing addend” tasks in mathematics 
education, without relying on formal symbolic knowledge, and is thereby suitable for 
preschool children who have not yet attended formal arithmetic education. 

Data for analysis consists of 189 observations of the 103 participating children (92 
observations in Interview I and 97 in Interview II). Data was excluded if the child gave 
no response to the task. 

3.2 Analysis 

To answer our research question, we conducted two consecutive analyses. First, we 
did a qualitative analysis of the children’s ways of experiencing numbers in the task 
in both interviews (189 observations in total). The unit of analysis was the observed 
instances of children’s different ways of handling numbers, shown in both verbal 
utterances and gestures such as finger patterns. We followed the principles of 
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variation theory (Marton, 2015); that is, the child acts in accordance with aspects that 
are discerned at a particular moment, which defines the child’s way of experiencing 
numbers. For example, when shown four marbles in one hand, one child responds “If 
I add two it only makes six, so it has to be three” and another child “After four comes 
five, then six and seven, there are seven in the other hand”. Considering the first child, 
we interpret the response as the child experiencing numbers’ relation and thereby 
manages to handle the given part, the missing part and the whole as a cardinal set of 
composed units. The second child is interpreted to express a way of experiencing 
numbers as labels given to each item, why it is logical to that child that the last item is 
“seven”, however not expressing a meaning of numbers as composed units and 
thereby not related to one another in a sense of cardinality. Different acts reflect 
different ways of experiencing the meaning of numbers. The results from such an 
analysis are the phenomenographic categories of meaning that appear to the children. 
This is reflected in our descriptive categories “numbers are experienced as…”. These 
categories present an outcome space of a limited number of qualitatively different 
ways of experiencing numbers, and this variation is further explained in terms of 
discerned mathematical aspects. Thus, the analytical process is a constant 
interchange between interpretations of how numbers appear to the child and what 
aspects the child seems to discern, as expressed in words and gestures. The children’s 
expressions are sometimes very subtle; the video recordings allowed for reiterate 
viewing. Each observation has been coded and categorized by two or more 
researchers, followed by collective discussions within the research group. 

Initially, we coded each child’s answer according to which numbers they gave as 
their answer. Thereafter, we categorized the answers into groups with similar answers 
and compared the children’s ways of explaining their answers within each group. In 
some cases, children who answered with the same numbers were categorized 
differently as their different ways of experiencing numbers were identified based on 
their ways of explaining and reasoning about how they had come up with their answer.  

What counts as the “same” conception can be expressed in linguistically different 
ways, and what can be seen as different conceptions can be expressed in similar 
language (see Neuman, 1987). Thus, interpreting children’s conceptions or ways of 
experiencing numbers is a comprehensive process based on impressions from both 
verbal and gestural responses. For example: “After four comes three, maybe it’s three? 
You start with five (raising index finger), then comes four (raising middle finger), and 
then comes three (raising ring finger)”. The combination of verbal and gestural 
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expressions by the child thereby reveals what she discerns (the phenomenon’s 
structural features) and how numbers appear to her (the holistic meaning).  

Six categories were found empirically (also reported in relation to other tasks in 
Björklund, Ekdahl et al., 2021 and Björklund & Runesson Kempe, 2019), and are to 
some extent similar to previous findings in studies with 6- and 7-year-olds (Ahlberg, 
1997; Neuman, 1987). This means, the outcome space of the first analysis partly 
confirms earlier findings of children’s ways of experiencing numbers and partly adds 
new ones, not described before. In another group of children, it may be possible to 
find yet additional ways of experiencing numbers (or lack what has been found in our, 
Ahlberg’s or Neuman’s studies). The large number of observations do however ensure 
that our study covers those ways of experiencing numbers that are common among 
children attending the last year of Swedish preschool. 

Second, we selected 90 of the children for whom we had observations from both 
interviews in order to analyze the changes in their ways of experiencing numbers. This 
is presented in two ways: on a group level to give an overview of the trajectory of 
changes, and then on individual case level. The cases are analyzed on a micro-level to 
gain insights into what in particular constitutes their changed way of experiencing 
numbers in terms of discerned aspects of numbers. This micro-analysis contributes 
to our understanding of what the children actually learn to discern that changes their 
way of experiencing numbers. 

4 Results 

We present the results from our analysis in three sections: First, we describe the ways 
of experiencing numbers that appear in the empirical data. Second, we present 
changes in ways of experiencing numbers within the group of children, and third, we 
illustrate how changes are expressed empirically on an individual case level. 

4.1 Ways of experiencing numbers 

From all of the observations in both interviews, we find six categories of qualitative 
different ways of experiencing numbers that impact the children’s strategies in 
completing the Guessing Game (see Table 1). Differences between categories appear 
in terms of discerned aspects of numbers, but there are also differences within each 
category in terms of how the discerned (and undiscerned) aspects are coming through 
in the children’s acts and utterances.  
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Table 1.  Ways of experiencing numbers expressed in the Guessing Game. 

 

 
 
 
 

 
 

4.1.1 A: Numbers as Words  

Number words are used without having any meaning of cardinality or ordinality. 
Children know that number words represent a certain category of words that are used 
in situations in which groups of items are handled. They use random number words 
either solely or in a random sequence or repeat a counting word from the given task. 
In the Guessing Game we observed this way of experiencing numbers among children 
who answered with random number words, such as Kevin: “Five, seven, thousand”. 
Even though the moment before the child counted, or at least recited, the counting 
sequence while pointing at the marbles one-to-one, there is no numerical relation 
foregrounded in the child’s utterance when asked how the marbles may be 
partitioned. In the task, the number of objects also exceeds the subitizing range, and 
as the child does not discern numbers’ cardinality or ordinality, counting to determine 
quantities is not an option – it is a procedure you use when asked “how many”, but 
the number words used do not have the meaning of a composed set. 

4.1.2 B: Numbers as Names  

When experiencing Numbers as Names, number words are ordered in a sequence and 
thereby have some relation to each other in terms of ordinality. In this sense, number 
words can describe “the nth” object, as in an object following another object. However, 
there is no cardinal meaning involved, as in a consecutive word meaning “one more”. 
This has significant impact on how numbers are used and how a numerical task is 
encountered. Otto answers by first counting and pointing at the visible marbles – 
“One, two, three, six” – and then tapping on the knuckles and back of the interviewer’s 
closed hand: “One, two, three, four, six. Seven”. Otto’s actions indicate that numbers 
appear as single objects that are labelled with number words. He never answers with 

 Numbers experienced as: 

A. Numbers as Words 

B.  Numbers as Names 

C.  Numbers as Extent 

D.  Numbers as Countables 

E.  Numbers as Structure 

F.  Numbers as Known Facts 
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one word, as in labelling a collection, but always counts on the sequence starting from 
one. Another expression of experiencing Numbers as Names is observed when 
children answer with two consecutive number words: When one hand with four 
marbles is shown, Lydia confidently answers “Five there”, pointing at the closed hand. 
Giving two consecutive number words as an answer to how many objects there might 
be in the closed hand is a quite common response, even when the child confirms that 
there were seven marbles on the table from the start. The ordinal meaning appears in 
the foreground, for example by Sanna: “After four comes three, maybe it’s three? You 
start with five (raising index finger) then comes four (raising middle finger), and then 
comes three (raising ring finger)”. When experiencing Numbers as Names, the 
number words are closely connected to objects that are to be enumerated, which is 
why the words rarely exceed seven because the counting sequence and ordinality are 
foregrounded – the child labels objects starting from “one”. This sometimes leads to 
children answering “seven” when they see four marbles in the opened hand, even 
though they without difficulty enumerated the set of marbles to be seven when seeing 
them all on the table. When ordinality is foregrounded (and cardinality undiscerned) 
this makes sense to the child, as the marbles labelled one, two, three, and four are 
indeed visible in the opened hand and the marble known as “the seven” then has to be 
in the enclosed hand. When numbers are experienced as names, these cannot be 
added or subtracted from other names. Because the cardinal meaning is undiscerned, 
number words can not be seen as parts of a larger collection labelled with another 
word (or: the child is unable to see that four is part of the larger set, seven). Some 
children, like Malik, make attempts to operate with the names “After five comes four, 
after four comes three, it might be three there”, which indicates that the counting 
sequence supports him in maintaining attention on objects that are to be enumerated 
but are hidden in the interviewer’s closed hands (see Category D for advancements 
resembling of this way of operating with the counting sequence). 

4.1.3 C: Numbers as Extent  

When numbers are experienced as Extent, they have an approximate value that 
indicates that a cardinal meaning is discerned. The ordinality of numbers is not 
discerned, and the relation between numbers is limited to “more or less” in an un-
distinct meaning, like Agnes: “Perhaps a little bit more than these (pointing to the 
opened hand with four marbles)”. In the Guessing Game, this way of experiencing 
Numbers as Extent is observed when children give answers characterized by some 
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sense of plausible quantities related to the task. For example, Jamila says “I don’t 
know how many there are, I have to look to know, but I think three”. Some children 
give answers that are close but not correct. Characteristic of these instances is that the 
child does not give a reason for the answer or express his/her way of coming up with 
it; thus, there is no explicit relation between the numbers discerned that would enable 
the child to reason about why a certain number is a plausible answer. In cases in which 
the children motivate their answers they are described as guesses, which is likely 
because the lack of discerned ordinality hinders any proper operation with the 
numbers in the task. When children attempt to reason their way to an answer it is 
often directed at equality in their partitioning, such as Olivia suggesting “doubles”: 
“Equally many as in the first one [opened hand]”. 

4.1.4 D: Numbers as Countables  

In some children’s ways of experiencing numbers, we see a strong influence of the 
ordinal aspect of number and some idea that numbers can relate to each other. The 
child discerns numbers constituting a set of items, thus having a cardinal meaning as 
well, but this set is experienced as added units of “ones”. There is a clear difference to 
Category B, because here numbers are not connected to specific items but rather 
discerned as single units in themselves, which can be counted. Due to the dual 
meaning of numbers (cardinality and ordinality), it is possible to add and subtract by 
enumerating (and thus creating) sets in what is commonly known as the “counting 
all” strategy. William, for example, makes a finger pattern of four by raising and 
counting one finger at a time, then raising fingers on the other hand while counting 
all raised fingers from one, ending up with seven raised fingers together (four on one 
hand and three on the other), and then counting the last three raised fingers on the 
other hand. That is, he operates with the known numbers by representing them on his 
fingers but experiences them as added single units and has to create the numbers 
starting from one. It then becomes difficult to relate numbers to each other; they have 
to be operated on directly, and re-created, to be perceived. Another expression of this 
way of experiencing numbers is shown by Liam when answering: “Maybe there are 
five (pointing at the closed hand). Because there can be four, five, six. And seven, 
eight.” The last utterance indicates that the numbers constitute countable (single) 
units: He counts on the counting sequence, and then counts or perceives how many 
number words were said.  
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4.1.5 E: Numbers as Structure  

Experiencing Numbers as Structure is based on the child’s discernment of numbers 
constituting composite sets or units, which may simultaneously be related to other 
units in a part-part-whole relation. In the Guessing Game we observe that children 
sometimes use finger patterns to represent numbers, particularly to structure 
numbers’ parts and whole. This leads to their operating on the relation between parts 
and/or the whole simultaneously and finding the missing number (hidden marbles) 
through arithmetic reasoning (this differs from Category D, Numbers as Countables, 
in which numbers are single units constituting a set and adding two sets means that a 
new set is created from the single units of the two earlier ones). There are several 
actions that this way of experiencing numbers opens up for. One is shown by Sara, 
who creates some of the units by counting, “counting on”, taking as a starting point 
the given number (4), keeping the whole (7) in mind, and adding on (3) by raising one 
finger at a time until the finger pattern seven is visible. Also, without fingers as an aid 
for structuring numbers, we can see the same way of experiencing numbers in 
children’s reasoning toward their answer, such as Alex: “If I add two it only makes six, 
so it has to be three.” The difference to Category D here is that the child 
simultaneously keeps the parts and the whole in the foreground, thus relating and 
reasoning about the four being part of the larger seven, like Mary: “One, two, three, 
four (raising one finger for each number word, then simultaneously showing two more 
fingers on the other hand, folding down the first four raised fingers and raising the 
fifth finger, now holding the two fingers and the single finger close together) three!” 
Seeing numbers in this way can also be observed, for example, when children start by 
showing a finger pattern on one whole hand and the thumb and index finger on the 
other, then moving the thumb on the whole hand to make a gap between the rest of 
the (four) fingers and thus creating a unit of the thumb and the two on the other hand, 
showing four, three, and seven at the same time, in this case not created by counting 
but rather by recognizing the units that the fingers represent. 

4.1.6 F: Numbers as Known Facts  

Experiencing Numbers as Known Facts means that children instantly recognize 
numbers as a part-whole relation; that is, numbers can be partitioned in different 
ways, and smaller numbers are parts of larger ones. This is shown when children give 
an instant (correct) answer. Most children also explain their answer in terms of 
retrieved facts, like Christa: “Because three and four make seven”. This category 
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differs from Category E, Numbers as Structure, in that the children do not compose 
and decompose numbers, for example on their fingers or verbally reason their way to 
an answer, but simply “see” the number relations. 

4.2 Changes in ways of experiencing numbers on group level 

In the following, we describe how children’s ways of experiencing numbers (see the 
six categories described above) change over time on a group level. Table 2 gives an 
overview of how many observations were found within each category in Interviews I 
and II, only including children who responded to the task in both interviews (n=90).  

A comparison between the two interviews shows that the changes are mainly 
positive. Categories A-C, which involve ways of experiencing numbers that do not 
impose any operations based on numerical features except for guessing and intuitive 
estimations of the size of the amount, dominate the first interview (84.4%) but have 
decreased to 24.5% in the second one. In both interviews, Category D is rare. 
Categories E and F, which express an awareness of number relations and open up for 
children to operate with numbers as part-whole relations, are also quite rare in the 
first interview but in fact dominate in the second one (74.5%). This means that, over 
the course of one preschool year, the children in general have changed from 
prenumerical to numerical ways of experiencing numbers and are consequently able 
to solve the Guessing Game using arithmetic strategies when they finish their last 
preschool year.  

Table 2.  Children’s ways of experiencing numbers in Interviews I and II (N=90).  
Note: Percentages do not add up to 100% due to rounding error. 

 
 
 

  

 Interview I Interview II 
Category  Frequency Percent Frequency Percent 

A. Words 4 4.4 
  

0 0 
B. Names 28 31.1 8 8.9 
C. Extent 44 48.9  14 15.6 
D. Countables 2 2.2 1 1.1 
E. Structure 2 2.2 26 28.9 
F. Known Facts 10 11.1 41 45.6 
Total 90 100.0 90 100.0 
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In Table 3 we see how the changes in ways of experiencing numbers are 
distributed. There seems to be a hierarchy in the distribution, with all but five 
observations moving in the direction A toward E. The five exceptions involve four 
observations of children expressing their experience of Numbers as Extent (C) in 
Interview I and Numbers as Names (B) in Interview II, and one child expressing 
Numbers as Known Facts (F) in Interview I and Numbers as Structure (E) in Interview 
II. Ten children remain in the same category (4 in B and 6 in C). Nine children had 
already expressed Numbers as Known Facts in Interview I. 

Table 3 further shows that there is a difference in how ways of experiencing 
numbers develop toward Categories E and F; that is, an awareness of numbers’ part-
whole relations that leads to opening up for children to complete the arithmetic task. 
Experiencing Numbers as Words (A) or Names (B) is found to change into 
experiencing Numbers as Structure or Known Facts among 21 of the children (22.2%), 
while children who experience Numbers as Extent (C) or Countables (D, however 
rarely observed) more often (38.8%) develop into the advanced ways of experiencing 
numbers (E and F).  

Table 3.  Transition between the categories, Interview I to II, N=90.  

Note: Percentages do not add up to 100% due to rounding error. 

 

Interview I 

In
te

rv
ie

w
 II

 

 
A.  
Words 

B. 
Names 

C. 
Extent 

D. 
Count. 

E. 
Structure 

F.  
Known 
Facts 

Total 
Int. II 

A. Words - - - - - - - 

B. Names - 4  
(4.4%) 

4  
(4.4%) - - - 8 

 (8.9%) 

C. Extent 2  
(2.2%) 

6  
(6.7%) 

6  
(6.7%) - - - 14 

(15.6%) 

D. Countables - - 1  
(1.1%) - - - 1 

 (1.1%) 

E. Structure 2  
(2.2%) 

9 
 (10.0%) 

12  
(13.3%) 

2  
(2.2%) - 1  

(1.1%) 
26 

(28.9%) 
F. Known 
Facts - 9 

 (10.0%) 
21  

(23.3%) - 2  
(2.2%) 

9 
 (10.0%) 

41 
 (45.6%) 

Total Int. I 4  
(4.4%) 

28 
(31.1%) 

44  
(48.9%) 

2 
 (2.2%) 

2  
(2.2%) 

10  
(11.1%) 

90 
(100.0%) 
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4.3 Changes in ways of experiencing numbers on individual case level 

Table 3 shows that the categories Numbers as Names (B) and Numbers as Extent (C) 
were the most common ways of experiencing numbers in the first interview. In the 
second interview, most children in these two categories were categorized as 
experiencing Numbers as Structure or as Known Facts. In this part, we illustrate this 
change by analyzing four children’s ways of experiencing numbers on the two 
interview occasions and particularly the changes that have occurred. 

4.3.1 From Numbers as Names to Numbers as Structure  

The change from experiencing Numbers as Names to Numbers as Structure is 
significant to the child’s learning of arithmetic skills, because of the foregrounded 
cardinality and number relations that appear in the child’s awareness in the latter 
category. It seems critical that the child discerns how number words label not the 
concrete objects but rather a set that can be composed of any objects. This change in 
how numbers appear to the child opens up for relating sets to each other for a 
comparison of quantities, but also how sets (and thus numbers) relate in a part-whole 
fashion.  

The example of Mary will illustrate the specificity of the change from experiencing 
Numbers as Names in the first interview to experiencing Numbers as Structure in the 
second one:  

Excerpt 1: Mary, Interview I 
 
I:  (shows four marbles in her opened hand) If there are four there, how 
  many are there in this [closed] hand? 
Mary:  Seven. 

In Interview I, when Mary is shown four marbles in one hand and asked how many 
are in the other, she answers that there are “seven” in the other hand. This answer is 
typical of the children who experience Numbers as Names. We interpret her answer 
as an illustration of her discerning the ordinal but not yet the cardinal aspect of 
number – the marbles are labelled with number words, making the answer “seven” 
perfectly logical, as the seventh marble is indeed hidden in the interviewer’s hand. The 
lack of discerned cardinality meaning comes through in that she did count the marbles 
one-by-one before starting the game, but her “seven” does not constitute a set of seven 
items (if so, she would realize that there cannot be a set of seven marbles hidden when 
she sees four in the opened hand).  
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In the second interview, Mary approaches the game in a quite different way, using 
her fingers to structure numbers in a relationship of a whole and its included parts:  

Excerpt 2: Mary, Interview II 
 
Mary: Four. (Instantly identifies that there are four marbles in the opened 
  hand.) 
I:  There were four there. If you now know there are four there, how many  
  are there here then? 
Mary: Okay. (Raises four fingers one at a time on one hand (Picture a) and then 
  adds three fingers, showing one whole hand and two fingers. Thereafter, 
  she holds up only the three added fingers to the interviewer (Picture b).) 
  Three. 

(a)  (b)  

Mary handles the task in a way that shows her experiencing numbers in a more 
comprehensive way than before, now discerning more aspects of numbers, which 
allows her to handle numbers differently. Numbers are no longer names labelling 
objects, as she represents the marbles, even the hidden ones, on her fingers: Four, 
seven, and three thereby have cardinal meaning for her (see Picture a, in which she 
makes a pattern of four fingers) and not only ordinal (the fourth object). Thus, the 
number words do not address the marbles per se, but rather the representatives 
(fingers) that she is able to structure in order to determine the number of the hidden 
set of marbles. She does this by first structuring the numbers on her fingers, by which 
she discerns the relationship between the numbers, seeing four and the hidden part 
three in the total of seven (see Picture b). The difference between the first and the 
second interview is that in the second one Mary shows that she has now discerned not 
only ordinality but also cardinality, as well as the part-whole relation of numbers, and 
is able to keep these aspects foregrounded at the same time in order to complete the 
arithmetic task. She is also able to see units within units, for instance when she sees 
that one finger on her right hand and the two fingers on her left hand make a new unit 
of three (3/1/2), an additional indication of her experiencing Numbers as Structure. 
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Another example of a similar change in ways of experiencing numbers, but 
expressed somewhat differently, is done by Clara. In the first interview, she answers 
that there are “five” in the closed hand. This is interpreted as her likely experiencing 
Numbers as Names, as answering with a consecutive number indicates that ordinality 
is in the foreground of her awareness:  

Excerpt 3: Clara, Interview I 
 
I:  (Opens her hand with four marbles) How many is this? 
Clara: (Counts the marbles, pointing at them one-by-one) One, two, three, four. 
I:  Four. How many do you think there are in that hand, if there are four   
  there? 
Clara: Five, I think. 
I:  (Opens her other hand, showing three marbles). 
Clara: Three! 

A possible interpretation of how the numbers appear to Clara is that “five” 
represents a partition of an imagined number line up to seven, whereby five serves as 
a limit between “the four“and “the five”, in an ordinal sense. To some extent she is 
able to discern that a set of marbles comprises “three” in number, but this is isolated 
from any awareness of sets related to other sets. Thus, she can answer the “how many” 
question by either counting one-by-one or subitizing small sets but does not yet 
discern any number relations. This results in her experiencing numbers as isolated 
units and necessary to set to the concrete objects, or as in Excerpt 3 above, the 
counting sequence as an order of number words. This indicates, however, that 
numbers can be represented in an orderly fashion, which is indeed an important 
aspect to discern, but is not sufficient for forming a way of experiencing numbers that 
enables arithmetic reasoning. This, on the other hand, is something we can see 
evidence of in Interview II: 

Excerpt 4: Clara, Interview II 
 
Clara:  Four there, and three there. 
I:  Now I’m curious. Why do you think there are four there and three there? 
Clara: Because four plus three is seven (Models three and four on her fingers 
  (Picture c) and puts the fingers together to show seven (Picture d)). 
I:  Okay, let’s check. There were four there. How many are there there then? 
Clara:  Three. 
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(c)  (d) 

In the second interview Clara instantly answers that there are three in the closed 
hand and says “Because four plus three is seven”. She structures the numbers on her 
fingers to show the interviewer how three and four together literally make seven, even 
though her instant answer indicates that she experiences the number relation as 
Known Number Facts. 

The change in her ways of experiencing numbers is shown in what Clara is able to 
do with numbers. In the second interview she is able to show why three is the missing 
part by structuring seven on her fingers, showing the parts and the whole 
simultaneously. She sees the numbers involved as composite sets, and with this shows 
that she has discerned cardinality. She has also discerned ordinality, as she 
simultaneously relates numbers to each other in accordance with the counting 
sequence, adding smaller units to make the whole seven. Her way of moving the 
represented numbers (finger patterns) together is one way of structuring numbers 
that shows her awareness of the part-whole relation. That is, seeing how three and 
four are both parts of seven in a structural way is a powerful advancement from her 
earlier way of experiencing numbers. 

4.3.2 From Numbers as Extent to Numbers as Structure 

In the first interview, many children expressed their experiencing Numbers as Extent, 
which indicates that the ordinality aspect of numbers is undiscerned. These children 
do seem to have a sense of numbers’ manyness, but due to the absence of ordinal 
meaning they cannot organize numbers or sets according to quantity other than in an 
approximate sense. Consequently, they do not have any repertoire for operating with 
numbers, either to determine exact quantities, for instance in comparison, or to find 
a hidden or missing set. Nevertheless, they experience that numbers are related to 
“more or less”, which allows them to make guesses when asked “how many”. 

Sofie is categorized as experiencing Numbers as Extent in the first interview: 
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Excerpt 5: Sofie, Interview I 
 
I:  What do you think? 
Sofie:  (Looks around in the room) As many as, the cookies. 
I:   As many as the cookies there. How many cookies are there then? (Sofie   
  brings the cookies to the table and places them in a group).  
Sofie:  (Points at each cookie) One, two, three, four. Wait (Counts again) One,  
  two, three, four, five. 
I:  Five, you think there are five. 

In the first interview Sofie counts the marbles in the opened hand, thus having an 
idea of number words used in a procedure in which you point and say words in a 
consecutive order. However, when asked how many marbles there are in the other 
hand, she makes no attempt to account for the already visible ones, as related to the 
unknown set; instead, she looks around the room and at a bookshelf with toys near 
the table. We infer that she experiences some sense of cardinality, as she expresses 
quantity by saying “as many as the cookies”. As she does not discern any (numerical) 
relation between the set of marbles and the set of cookies, figuring out the quantity of 
a hidden set of items is not possible. The change in her way of experiencing numbers 
in the second interview is apparent, as she then clearly discerns exact numbers and 
relates them to each other in completing the Guessing Game: 

Excerpt 6: Sofie, Interview II 
 
I:  How many are there in that one? 
Sofie: Four (Shows four fingers on her right hand, then on her left hand raises 
   the little finger, and immediately after this the thumb and index finger   
  simultaneously). Three. (see Picture e) 

(e) 

 
Sofie immediately sees that there are four marbles in the opened hand, without 

counting. When asked how many marbles there are in the other hand, she shows a 
finger pattern of four and thereafter identifies the missing part as a set constituted of 
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one finger on the right hand and two more fingers on the left hand (in the same way 
as Mary does, above). She sees the numbers as composite sets that have cardinal 
meaning. She is able to compose a unit of three, from one finger on the right hand and 
two fingers on the left, indicating her discerning of the relation between and within 
the numbers and thereby having developed her way of experiencing Numbers as 
Structure. 

5 Discussion 

In this paper we set out to describe preschool children’s ways of experiencing numbers 
in an arithmetic task and what might distinguish changes over time. We have 
approached these questions by suggesting that the child’s perspective on numbers and 
how numbers appear to them may be a necessary addition to our knowledge of how 
children learn basic arithmetic skills. Our qualitative analyses resulted in six different 
ways of experiencing numbers, distinguished by which aspects of numbers are 
discerned by the children. From a longitudinal perspective, we have shown how 
children’s ways of experiencing numbers change and, more specifically, which aspects 
become critical to discern in order to develop arithmetic skills. Some categories 
presented in this paper are comparable to previous findings in studies with 6- and 7-
year-olds (e.g., Neuman, 1987; Ahlberg, 1997). Particularly Ahlberg’s theorizing 
ambition has influenced the current study, that different ways of handling numbers 
mean that children’s awareness is directed at various aspects of numbers and that this 
constitutes their understanding of numbers. What Ahlberg did not determine in her 
research was how different ways of handling numbers are connected to ways of 
experiencing numbers and specifically discerned (or not discerned) aspects. Our study 
may contribute to fulfilling this ambition by specifically pointing out the difference in 
how children handle numbers depending on their discerning ordinality, cardinality or 
both of them and number relations simultaneously. 

Earlier studies (Björklund, Marton et al., 2021) have shown that which aspects of 
numbers children discern is linked to their repertoire of arithmetic strategies. Some 
strategies, according to the large body of research in the field, are known to be error-
prone, such as counting single units if it is the only strategy used by the student (e.g., 
Ellemor-Collins & Wright, 2009; Neuman, 1987). In our study, we rarely see any 
counting-based strategies among the preschoolers in either Interview I or II. This 
could be taken as an indication that it may not be necessary to introduce counting-
based strategies in early arithmetic education, as children obviously do not need to 
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experience Numbers as Countables at any particular point in time; they seem to be 
able to discern number relations and coordinate cardinality and ordinality meaning 
in numbers and thus learn to experience Numbers as Structure anyway. Or as 
Neuman (1987) would describe it, go from non-numerical to numerical conceptions 
without numbers appearing as countables. A consequence, then, would be that the 
children do not risk getting stuck in single-unit counting strategies, but instead 
appropriate numbers as constituting composite sets that can be de-composed and re-
composed as means in solving arithmetic tasks (e.g., Cheng, 2012). Taking one’s 
starting point in the child’s lived experiences rather than cognitive processes, the key 
might thus be not to primarily attend to children’s skills or abilities (such as frequency 
of using a certain strategy) but rather to focus on how numbers appear to them and 
support their discerning aspects that emphasize numerical units and relations. Our 
analysis of the variation in ways of experiencing numbers supports Neuman’s 
suggestion that children’s errors or success in completing arithmetic tasks may be 
induced by different ways of experiencing numbers; that is, experiencing Numbers as 
Words, Names, or Extent reflect very different ways of seeing numbers, while the 
result of completing a task may be the same number word. It is therefore necessary to 
highlight what appears as focal in the child’s way of experiencing numbers, in order 
to fully understand what (aspects of numbers) are critical for children’s ways of 
experiencing numbers to change into conceptions that allow for more powerful 
strategies to be used. For example, children who experience Numbers as Extent or 
Countables are in our study seen to more often develop more advanced ways of 
experiencing numbers as structure or known facts. This needs though to be the object 
of further inquiry, examining whether it indicates that experiencing Numbers as 
Extent is the path to more advanced ways of experiencing numbers or if it is merely 
an effect of a larger number of observations among this particular group of children. 
However, according to our observations we can draw the conclusion that during their 
last preschool year the majority of the children do learn to discern cardinality and 
ordinality as well as numbers’ part-whole relations. 

Observing children answering “how many”-questions, for example with random 
number words or irregular counting sequences, is not new; Fuson (e.g., 1992) and 
others have presented similar observations among preschoolers in several studies. 
What we wish to add to this field of research, however, is interpretations of what 
numbers mean to the children, how numbers appear to them. This would help us 
understand why children answer with random numbers when the moment before they 
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were able to point and recite the counting sequence and repeat the last uttered 
counting word as an answer to “how many”. At the beginning of this paper, we claimed 
that there is a lack in the field of knowledge concerning what it explicitly is that 
children learn when they develop a more advanced meaning of numbers, which 
consequently leads to their using powerful strategies in arithmetic problem-solving. 
This is partly discussed in Björklund, Marton et al. (2021) in terms of children needing 
to learn to discern certain aspects of numbers. What the current paper contributes in 
addition to this is how the discernment of some (but not all) aspects of numbers 
constitutes a variation in ways of experiencing numbers. This study of ours is 
theoretically grounded in phenomenography and variation theory. This leads to an 
emphasis on the emergence of “conceptions”, or ways of experiencing some 
phenomenon. This means that we use the theoretical framework to describe what the 
“numbers” phenomenon looks like to the individual, determined by both the global 
and structural meanings of the conceptualized phenomenon. In line with this, we have 
intended to describe the variation in ways of experiencing numbers (that is, the global 
meaning appearing to the child) and how a certain way of experiencing numbers is 
constituted (that is, the structural meaning of the phenomenon of numbers). The 
combination is our theoretical contribution, which adds to what, for example, 
Neuman (1987) and Ahlberg (1997) described and theorized some decades ago. 

The connection between discerned aspects of numbers and the way of 
experiencing numbers that is highlighted throughout the current paper is not only a 
theoretical contribution. We suggest that it is a key to early mathematics education, 
as it offers an explanation of children’s different ways of encountering arithmetic tasks 
and what they need support in discerning in order to develop their ways of 
experiencing numbers. In particular, it becomes evident that experiencing numbers 
as composed units that can be related, composed and de-composed is an essential 
aspect to discern in order to develop arithmetic skills, as shown in the empirical 
examples. Thus, what educational practices should facilitate is opportunities to 
explore and experience numbers as representing composed sets. What aspects 
children discern may be difficult to “see”, but how children experience numbers’ 
meaning might be the entrance point to understanding their knowledge and skills, as 
well as what support they need in learning to discern critical aspects. 
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Developing students’ skills in solving mathematical problems and supporting 
creative mathematical thinking have been important topics of Finnish National Core 
Curricula 2004 and 2014. To foster these skills, students should be provided with 
rich, meaningful problem-solving tasks already in primary school. Teachers have a 
crucial role in equipping students with a variety of tools for solving diverse 
mathematical problems. This can be challenging if the instruction is based solely on 
tasks presented in mathematics textbooks. The aim of this study was to map 
whether a teaching approach, which focuses on teaching general heuristics for 
mathematical problem-solving by providing visual tools called Problem-solving 
Keys, would improve students’ performance in tasks and skills in justifying their 
reasoning. To map students' problem-solving skills and strategies, data from 25 fifth 
graders’ pre-tests and post-tests with non-routine mathematical tasks were 
analysed. The results indicate that the teaching approach, which emphasized 
finding different approaches to solve mathematical problems had the potential for 
improving students’ performance in a problem-solving test and skills, but also in 
explaining their thinking in tasks. The findings of this research suggest that teachers 
could support the development of problem-solving strategies by fostering 
classroom discussions and using for example a visual heuristics tool called Problem-
solving Keys. 

Keywords: mathematical problem-solving, heuristics, proportional reasoning 

1 Introduction 

During the primary school years, students develop their understanding of concept of 
numbers and fluency in arithmetic skills (FNBE, 2016, p. 307). Learning 
mathematical procedures is important, but it is also crucial to equip students with 
strong problem-solving, reasoning, and thinking skills (e.g. Lester, 2003; Pehkonen 
et al., 2013) to give tools for functioning in a complex, unpredictable future. 
Mathematical problem-solving requires skills to apply variety of different solution 
strategies and models (Leppäaho, 2018, p. 374). It is not uncommon that while 
students may excel on routine exercises (those that they have already seen and 
practiced), they fail to solve problems that differ from those they have previously 
encountered (OECD, 2014). 
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Traditional teaching approaches often focus on learning mathematical facts and 
procedures. Teachers could take advantage on creating learning environments, which 
engage students in investigating problems and seeking solutions in an active manner. 
(Pehkonen et al., 2013, 13.) Näveri et al. (2011, p. 169) point out that if teachers rely 
on using routine tasks in mathematics lessons, also the learning of students stays on 
the routine level. Mathematical thinking skills can be developed via problem-solving 
(e.g. Schoenfeld, 1985; Lester, 2003, Leppäaho, 2018), and on the other hand, 
problem-based teaching methods can be used to foster deeper understanding. 

The importance of developing mathematical reasoning and problem-solving skills 
is also recognised in international assessments, such as PISA and TIMSS. In PISA the 
problem-solving competence is defined as “an individuals’ capacity to engage in 
cognitive processing to understand and resolve problem situations where a method of 
solution is not immediately obvious” (OECD, 2014, p. 30).  

As Leppäaho (2018, p. 368) points out, mathematical problem-solving is learned 
only by practising it repeatedly. Mathematics can actually be taught through problem-
solving (see for example Schoenfeld, 1985; Hiebert, 2003; Lester, 2013). This teaching 
method enables students themselves to engage with meaningful, rich problem tasks 
and instead of superficial procedure-learning, develop understanding of 
mathematical concepts and methods. Students should have possibilities to explore a 
variety of different and unfamiliar problems, even though they would not yet master 
certain methods or algorithms (Goldenberg et al., 2003, p. 28).  

Developing students’ mathematical thinking and problem-solving skills have been 
flagged as important goals in Finnish National Core Curricula for basic education 
(FNBE 2004; FNBE 2016).  Students should be guided not only to solving problems, 
but also finding and modifying them (FNBE, 2004, p. 158). According to the 
mathematics curriculum in Finland, instruction should “support the development of 
the pupils’ skills in presenting their mathematical thinking and solutions to others in 
different ways and with the help of different tools” (FNBE, 2016, p. 307). 

Expressing mathematical ideas and justifying thinking can be challenging for 
primary-school aged students, but as Finnish Curriculum (FNBE, 2016, p. 306) 
underlines, it would be important to learn to communicate ideas and collaborate with 
peers. Collaborative problem-solving situations, identifying and discussing ideas and 
participating in explanation-building discourse can help learners in developing their 
thinking skills (Scardamalia & Bereiter, 2014, p. 3). Collaborative problem-solving 
situations are excellent opportunities to explore also complex problems, because 
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different examples and explanations by group members enable better understanding 
(Sears & Reagin, 2013). 

In this research, fifth grade students were introduced general heuristics, which 
were understood to serve as stepping stones in solving non-routine mathematical 
problems. At the beginning of the school year, it appeared that many students seemed 
to struggle in mathematical tasks and especially in explaining their problem-solving 
processes in written form. Students were introduced to concrete tools called Problem-
solving Keys, which were modified from Strategy Keys based on work by Herold-
Blasius (2021). The aim was to provide students with a visual reminder of heuristics 
for mathematical problem-solving tasks. Similar heuristics were outlined also in the 
Singaporean Mathematics Syllabus 2013 and used as a reference when classifying and 
modifying the Keys for teaching purposes in Finland (Kaitera, 2021). 

The research aimed to map fifth graders’ skills and strategies before and after the 
intervention, which was designed to offer wide variety of mathematical problems and 
techniques to solve them. The interest was in finding out if the problem-oriented 
teaching approach influenced on how students solved mathematical problems, which 
required proportional reasoning.  

This research aimed to answer the following questions: 

1.  What kind of influence did teaching approach, which focused on 
mathematical problem-solving, have on students’ general performance in 
proportional reasoning tasks and abilities to explain thinking? 

2.  What kind of differences appeared in students’ use of erroneous and correct 
problem-solving strategies between pre- and post-tests? 

The study outlines possibilities to develop mathematics teaching towards a 
direction, in which students become more active participants in learning process and 
develop their mathematical problem-solving skills. Another aspect was to answer the 
21st-century demands for analysing the teaching practises and creating knowledge as 
a practicing teacher (see for example Niemi & Nevgi, 2014). The study includes 
features of a teaching experiment and in this report is referred to as such. 
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2 Theoretical framework 

2.1 Mathematical problem-solving: focus on heuristics 

In many countries, mathematics curricula emphasize the importance of exploring 
versatile problem-solving activities. These have been a part of mathematics 
classrooms for a long time, but there is still confusion on what it means in practice. 
Teachers often understand it as solving word problems (e.g. Lester, 2003; Näveri et 
al., 2011), or even solving simple, routine arithmetic tasks presented in mathematics 
textbooks (Näveri et al., 2011). In this study, students were provided with non-routine 
tasks, which require skills to devise and implement a plan (Polya, 1945/1973) and 
combine previously learned solution strategies in a novel way (Lester, 2013; 
Leppäaho, 2018). 

An ability to solve mathematical problems in different contexts is an important 
skill, which can, and should be taught at schools. To be able to invent and test 
strategies, students need to have basic skills and understanding of problem-solving 
processes. As Leppäaho (2018, 374–375) points out, in addition to mathematical skills 
(e.g. how students can use different strategies), for example motivational aspects and 
reading and writing skills play important roles in an individual’s capacity in 
mathematical problem-solving situations.  

Mathematical problem-solving techniques are often called heuristics (Polya, 
1945/1973; Schoenfeld, 1985; Goldenberg et al., 2003). Heuristics can be described 
as non-rigorous, general suggestions for strategies, which can be helpful when solving 
different types of problems. Learning these techniques and becoming familiar with 
different problem-solving methods helps students to tackle mathematical problems 
also in unfamiliar contexts.  

Heuristics were linked to everyday teaching by Polya in his book “How to solve it” 
(1945). Polya outlined a simple four-step problem-solving process, and the following 
phases are often referred to when defining heuristics:  

1. Understanding the problem: what is being asked? What is known, what is 
unknown?  

2. Creating a plan for solving the problem, considering whether the type of the 
problem is already familiar, choosing the most appropriate heuristic. 

3.  Solving the problem by carrying out the plan and assessing whether the steps 
are correct. 
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4.  Looking back and checking if the answer makes sense. (Polya, 1973, 5–6.) 

Important first steps of understanding a problem and choosing methods for 
solving the task are often forgotten when describing elements linked to mathematical 
problem-solving (Näveri et al., 2011, p. 169). School mathematics often emphasizes 
teaching certain algorithms to fit certain types of problems instead of providing a 
wider variety of general tools for problem-solving (Näveri et al., 2011; Leppäaho, 
2018). Another important aspect linked to problem-solving can be derived from 
Polya’s views: he outlined the function of the last phase as not only reviewing the 
process but also discussing it (1973, p. 6).  

Heuristics are not the same as algorithms: they rarely prompt a solution, while 
carrying out an algorithm, which is suitable for a certain type of mathematical 
problem, leads to a rather unambiguous solution. According to Polya (1973, p. 113), 
heuristics cannot be used as a tool for rigorous proof. Instead, heuristics belong to a 
problem-solving process as a part of it. Whereas algorithms are usually constructed 
of certain predetermined steps, heuristics involve a decision-making process. 
Students make assumptions on whether a certain approach would work or not and try 
out different ways to implement the method: for example, in this study, making first 
a diagram or table provides numerous chances to proceed in solving the problem. 

Heuristics can be learned and practiced (Schoenfeld, 1985; Bruder & Collet, 2011) 
and are generally more applicable in different types of mathematical domains and 
problems than plain algorithms. Due to the nature of transferability, learning 
heuristics also supports the development of confidence in mathematical problem-
solving (Goldenberg et al., 2003). The aim of teaching mathematics through problem-
solving is to equip students with skills to apply previously learned techniques in non-
routine and novel situations (Leppäaho, 2018, p. 379).  

Polya’s four-step model is still useful in today’s mathematics classroom and was 
referred to as a framework to underline different phases of problem-solving; 
mathematics is more than just filling in the textbook, it could be understood as an 
activity. Devising a plan and choosing the most appropriate heuristic were supported 
by visual tools called Problem-solving Keys, which are introduced in Chapter 3.2. 
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2.2 Proportional reasoning as a problem-solving domain 

Fifth graders’ problem-solving skills were mapped by proportional reasoning tasks. It 
is an excellent domain to solve mathematical problems linked to everyday life. For 
example, adjusting the recipe, preparing juice from a concentrate, calculating the 
most beneficial buy or comparing discounts between two products, calculating the 
consumption of the petrol in a car trip, or using a map and its scale to calculate the 
distance between two targets require skills to reason proportionally. Traditional 
symbolic representations or algorithms linked to proportional reasoning are not 
familiar for Finnish fifth graders and was therefore chosen as a domain to assess 
students’ intuitive problem-solving skills and strategies in non-routine problems. 

Proportional reasoning is often described as a cornerstone to higher mathematical 
and scientific thinking and cognitive development (e.g. Lesh et al., 1988; Lamon, 
2007; 2012). Understanding proportionality requires reasoning with ratios. In 
textbooks and mathematics dictionaries the word proportion is often defined as an 
equivalence of ratios or statement of equal ratios or fractions, written as follows:  

𝑎𝑎
𝑏𝑏

= 𝑐𝑐
𝑑𝑑

   or a : b  = c : d. 

Proportional reasoning requires skills to convey the same relationship for example 
in producing or comparing ratios or finding a missing value. Abilities to reason 
proportionally are a marker of a move towards more developed forms of reasoning 
and form a foundation for example for algebra. Previous research indicates that 
students are capable of solving proportional word problems already during their early 
years of primary school (e.g. Tourniaire, 1986; Van Dooren et al., 2005; Vanluydt et 
al., 2019). 

Understanding ratio and proportion requires the ability to reason with 
multiplicative relationships and distinguish them from relationships, which are 
additive in nature (Van Dooren et al., 2010; Son, 2013). In an additive approach, the 
student operates with an invariant difference between two values, whereas a 
multiplicative approach requires an understanding of an invariant ratio between two 
values (Van Dooren et al., 2010). Even if some proportional reasoning tasks can be 
solved by additive approaches, also in those situations students need to understand 
the co-varying situation of given values. Building-up or scaling-down by skip-
counting until the anticipated value is reached represents one of the strategies, which 
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often bases in additive reasoning. These types of solution methods can be supported 
as steps towards multiplicative and proportional strategies. 

Reasoning is an integral part of mathematical problem-solving and skills reach 
beyond solving routine problems. Reasoning requires logical and systematic thinking, 
being a process, which requires making conclusions on how to achieve certain goals; 
these conclusions guide problem-solving and decision-making behaviour (Leighton, 
2004; Grønmo et al., 2013). Students make notions on patterns and regularities and 
use that information on making decisions on problem-solving approaches. Reasoning 
involves skills to make conjectures, logical deductions based on assumptions and 
rules, and abilities to justify results. (Grønmo et al., 2013, p. 27.) Teachers can help 
students to develop these skills by presenting mathematical problems linked to 
unfamiliar contexts and providing opportunities to solve open-ended or multi-step 
problems (e.g. Grønmo et al., 2013). This has not been typically encouraged in school 
culture (e.g. Pehkonen et al., 2013). Close-ended textbook examples do not necessarily 
support students’ skills to apply the learned procedures or algorithms outside the 
school context, and the applications to real-world situations can seem rare to them.  

3 Teaching experiment: Heuristics for problem-solving 

Interest towards improving primary-aged students’ mathematical problem-solving 
skills was based on data, which was collected in Finland and Indonesia in 2014-2015 
for Kaitera’s doctoral research. A preliminary analysis of the mentioned data indicated 
that Finnish students had severe difficulties in explaining their thinking in tasks. This 
led to wondering whether these skills could be developed by implementing a teaching 
approach, which provided tools for solving a wide variety of out-of-the-textbook 
problems. The teaching experiment was carried out during the following academic 
year in a class of fifth graders. The learning environment was designed to support the 
development of students’ mathematical problem-solving skills. The quasi-
experimental design was conducted in real-world learning settings, attempting to 
discover aspects that could be useful for example for teachers aiming to develop 
mathematics teaching practices. 

Teaching heuristics for mathematical problem solving is often linked to working 
with students with challenges in learning mathematics (e.g. Gallagher Landi, 2001; 
Fuchs & Fuchs, 2003; Swanson et al., 2013). General heuristics are not associated 
directly to certain kinds of mathematical problems and therefore can facilitate 
integrating the given information with steps for action (Swanson et al., 2013, p. 170). 
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This report suggests that any student would benefit from getting familiar with a range 
of generalisable problem-solving approaches instead of just learning a variety of 
algorithms fit for certain types of mathematical problems. 

3.1 Participants and background for the research 

Research was carried out in a large urban school in Northern Finland with a class of 
25 fifth graders (12 boys and 13 girls). In the beginning of academic year 2015-2016, 
students’ skills and strategies were mapped by a pre-test with proportional reasoning 
problems. At that time, students’ mean age was 11 years and 2 months (range from 10 
years and 9 months to 11 years and 7 months). During the autumn semester, the class 
got familiar with a range of generalisable heuristics, which were used in solving a 
variety of mathematical problems. Participating class followed the guidelines of 
mathematics education outlined in the Finnish National Core Curriculum. Students 
had attended five years of elementary school, but not received any formal instructions 
in solving proportional reasoning tasks, which were the main domain for assessing 
the development of mathematical problem-solving skills in this research. The class-
teacher had a degree as a Master of Education and had been teaching for 10 years in 
primary and secondary schools. She was working on her Doctoral research on 
mathematical problem-solving, and the study described in this report was carried out 
of an interest towards developing students’ problem-solving skills.  

At the beginning of the fifth school year, it appeared that many students seemed 
to struggle in mathematical tasks and especially in explaining their problem-solving 
processes in written form. Students were introduced to concrete tools called Problem-
solving Keys, which were modified from Strategy Keys based on work by Herold-
Blasius (2021). The aim was to provide students with a visual reminder of heuristics 
for mathematical problem-solving tasks. Similar heuristics were outlined also in the 
Singaporean Mathematics Syllabus 2013 and used as a reference when classifying and 
modifying the Keys for teaching purposes in Finland.  

Fifth graders had three mathematics lessons every week. Mathematics textbooks 
were used, but in addition to those, during the autumn semester the class spent on a 
weekly basis on average one mathematics lesson on working with mathematical tasks 
in a practical context and learning a variety of general heuristics for problem-solving. 
Out-of-the-textbook problems were solved during the spring semester, too, but 
learning heuristics was not the focus anymore. Post-test data was collected at the end 
of the fifth grade in 2016 by using the same test than in the beginning of the school 
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year. At that time, the mean age of students was 12 years (range from 11 years and 7 
months to 12 years and 5 months).  

3.2 Framework for practicing mathematical problem-solving  

The central idea of study in a real-life context was to teach mathematics and general 
heuristics through solving a variety of out-of-the-textbook problems. Mathematical 
problems were sourced for example from everyday situations, children’s literacy, and 
local, national and international news. In addition to that, students created word 
problems for their peers and learned to solve them in various ways. Problems were 
often integrated into other subjects, such as Environmental Studies and other Science 
themes, Finnish as a mother tongue and Arts and Crafts.  

Exploration of mathematical problems followed a framework with different 
phases of problem-solving (Stein et al., 2008; OECD, 2014, p. 31): first, the task was 
presented by the teacher to the students (a launch phase), then students worked on 
problems either in small groups or individually (an exploration phase, planning and 
executing) and finally the outcomes were shared and discussed (a summarising and 
reflecting phase). In practice, the process was not a linear, step-by-step progressing 
path, but rather a flexible model for moving between different phases. Quite often 
discussing and sharing the ideas led to returning to the exploration phase and 
assessing the problem-solving approaches from new perspectives. Polya’s 
(1945/1973) four step model was followed especially during the exploration and 
summarising phases. Problems were solved in collaborative settings always when it 
was possible: this enabled discussion and made the importance of justifying thinking 
more visible.  

Heuristics or general techniques for solving mathematical problems were 
introduced to students by using a visual tool called Problem-solving Keys, which are 
based on for example Polya’s (1945/1973) and Bruder and Collet’s (2011) heuristics, 
and the same ideas were outlined in Singaporean Mathematics Curriculum 2013. 
These heuristics were modified into a concrete tool by Herold-Blasius and Rott (2016) 
and named as Strategy Keys. They describe these tools as “door openers” for a 
problem-solving process and reminders of general heuristics that students have 
learned (Herold-Blasius & Rott, 2016; Herold-Blasius, 2021).  

Keys were modified for teaching experiment purposes, translated in Finnish, and 
renamed as Problem-solving Keys. Keys that were used in this study were chosen 
based on their generalisability, transferability and fit for the mathematics curriculum 
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for this age group. The guidance progressed by introducing one or two keys 
(heuristics) at the time, linking them in a variety of out-of-the-textbook problems. As 
the new heuristic was introduced and practised, the key linked to that particular 
heuristic was added to a student’s personal “Problem-solving key chain”. Each key 
was linked to a mathematical problem, which was often open-ended, or at least had 
multiple different solution paths to choose from. The problem was chosen so that the 
heuristic in that Key worked well in solving a particular problem: for example, 
Gravett’s The Rabbit Problem (2009) was based in Fibonacci’s approach and used 
when practising the problem solving by using a table. Literature often offers an 
excellent context to bring abstract and complicated concepts closer to real-world 
situations. The following Figure 1 shortly illustrates the keys which were chosen as a 
focus area in this study, and some prompts, which were presented in guiding the 
learning processes. 

 

Figure 1.  Examples of Problem-solving Keys and prompts presented to students. 

In addition to the keys described in Figure 1, students had three additional keys, 
which were called “When I’m stuck” -keys:  
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• Read the task again, 
• Guess and check, 
• Solve part of the problem. 

These ideas often enabled either using other heuristics or continuing with other 
steps in the process. Key called “Solve part of the problem” turned out to be well used. 
Breaking the problem down into more approachable steps and solving even a small 
part of the problem opened new insights on how to proceed in tasks. The notion is not 
new: Duncker (1945, p. 8) linked “reformulation of the original problem” as one of the 
important characteristics in the problem-solving process and referred to this 
reformulation as a step or phase on a path towards solution. As Kilpatrick (2016, p. 
45) points out, it might be easier to solve the problem if it is broken into smaller pieces 
or modified into another form. 

It is important that teachers value attempts for intuitive problem-solving methods 
and will be able to guide the student forward. Children often use everyday logic and 
apply that also to mathematical problems. They can be invited to justify their thinking 
and invent proofs for their ideas. Later students should learn about mathematical 
proof and formalities. They need to recognise that there is a difference between a 
guess, a conjecture, and a proven assertion. It is important to encourage students to 
wonder why things are as they are and guide them in providing a logical chain of 
reasons as the explanation. (Goldenberg et al., 2003, p. 24.) An educated guess differs 
from a random guess by its metacognitive aspects. True mathematical problem 
solving is challenging, but at the same time rewarding for both students and the 
teacher, as Schoenfeld (1992, p. 354) points out.  

Students benefit from having opportunities to explain their thinking not only by 
using mathematical language, but also pictorial and natural language: possibilities to 
draw and write during the problem-solving process may strengthen the 
understanding of mathematical concepts and contribute to mathematical thinking 
skills (Joutsenlahti & Kulju, 2017).  Open-ended problems or planted error tasks are 
excellent domains for developing students’ skills in negotiating and articulating their 
mathematical ideas to others. According to D’Ambrosio and Prevost (2008, p. 276) 
“all contributions should be valued and respected“. By assessing students’ solution 
methods, also the self-generated ones, teachers can correct the ones which are 
mathematically acceptable, or guide students forward in partially constructed 
explanations. Classroom discussions provide crucial information on students’ 
understanding on topic and problem-solving processes. Effective teaching includes 
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listening to students’ ideas and explanations and using that information as a guide in 
making decisions on instruction (e.g. Lester, 2013; Ivars et al. 2020; Shaughnessy et 
al., 2021). These views were at the centre point of the study, because a variety of out-
of-the-textbook problems enabled interesting mathematical discussions in the 
classroom. Conversations were emphasized as important steps in learning problem-
solving. Students were advised and expected to show their thinking in tasks by writing 
down the calculations or drawing the stages in solving the problem in a 
mathematically understandable way. That can be surprisingly difficult even for the 
10-12-year-old students, who have already attended several mathematics lessons per 
week for multiple years. 

4 Mapping the problem-solving skills 

4.1 Data collection instruments 

Students’ performance was assessed by individually completed paper-and-pencil 
tests, which were taken in the beginning and in the end of fifth grade. Tasks included 
different types of proportional reasoning problems and are presented in more detail 
in Table 1 and Table 2. Students had a 45-minute lesson to complete the pre- and post-
tests, but most of them used 20-30 minutes for tasks.  

Multiple-choice questions 1-5 and 8 represented typical comparison problems, in 
which students needed to determine the relationship(s) of two or more ratios, for 
example by judging whether one ratio is greater or less than the other one(s) or are 
they equal. In task three with mixtures two of the given ratios were similar. The 
rationale for having two equivalent ratios in the task was to map whether students 
were favouring one of the choices over the other, in this case whether they took the 
first choice, 2:4 or rather chose 1:2, which is used in several everyday contexts. 
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Table 1.  Proportional reasoning tasks with ratios (multiple-choice questions) 

Item Description Context and 
source 

1.  
Lemon tea 

Mum is making lemon tea. She mixes tea and sugar in a jug.  
 
Which one tastes the most sweet? Choose. 
 1 glass of tea and 1 spoon of sugar 
 4 glasses of tea and 4 spoons of sugar 
 1 glass of tea and 3 spoons of sugar 

Comparing ratios 
in mixtures 
(qualitative 
comparison), 
adapted from 
Noelting (1980) 
and Kaput and 
West (1994) 2.  

Lemon tea 
Which one tastes the most sweet? Choose. 
 1 glass of tea and 2 spoons of sugar 
 2 glasses of tea and 2 spoons of sugar 
 2 glasses of tea and 1 spoon of sugar 

3.  
Lemon tea 

Which one tastes the most sweet? Choose. 
 2 glasses of tea and 3 spoons of sugar 
 1 glass of tea and 2 spoons of sugar 
 2 glasses of tea and 3 spoons of sugar 

4.  
Lemon tea 

Which one tastes the most sweet? Choose. 
 2 glasses of tea and 3 spoons of sugar 
 1 glass of tea and 2 spoons of sugar 
 1 glass of tea and 3 spoons of sugar 

5.  
Lemon tea 

Which one tastes the most sweet? Choose. 
 6 glasses of tea and 3 spoons of sugar 
 5 glass of tea and 2 spoons of sugar 
 5 glasses of tea and 3 spoons of sugar 

8. Paint-
mixture 

Green paint is made by mixing two buckets of blue paint and three 
buckets of yellow paint. The painter needs to get more paint. How 
many buckets of blue and yellow paint does he need to get the 
exactly same shade of green? Choose one option. 
 3 buckets of blue and 4 buckets of yellow paint 
 4 buckets of blue and 6 buckets of yellow paint 
 5 buckets of blue and 6 buckets of yellow paint 
 6 buckets of blue and 8 buckets of yellow paint 

Comparing ratios 
(quantitative 
comparison), 
similarity, 
adapted from 
Tourniaire 
(1986)  

 

Tasks 6A, 6B, 7 and 9 required proportional reasoning with ratios, inverse 
proportionality or similarity of mixtures. Students were explicitly asked to record 
their thinking in these tasks and explain their problem-solving processes by 
mathematical, pictorial and/or natural language in written form. 
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Table 2.  Tasks used in assessing strategies: Proportional reasoning tasks with ratios, inverse proportionality 
or similarity of mixtures 

Item Description  Context and 
source 

6A.  
Rectangles 

Students are building geometric shapes. They make two similar 
rectangles and triangles by using short and long sticks.  
  
How many sticks do they need in x? 

 

Determining a 
missing value with 
continuous ratio-
preserving, 
geometric 
similarity, idea 
adapted from Mr. 
Tall and Mr. Small 
tasks by Karplus et 
al. (1974), Lamon 
(1993) and 
research by Son 
(2013) 

6B.  
Triangles 

How many sticks do they need in x? 

 

7.  
Painters 

Six painters paint a house in three days. If they all work at the same 
speed, how many painters would be needed to paint the same 
house in one day? 

Inverse 
proportionality, 
item was created 
for this research  

9. Paint-
mixture 

Orange paint is made by mixing four buckets of yellow paint and one 
bucket of red paint. To get exactly the same shade of orange, how 
many buckets of red would the painter need to mix to six buckets of 
yellow? 

Comparing ratios 
(quantitative 
comparison), 
similarity, adapted 
from Tourniaire 
(1986)  

 
Timing of pre-test was before students were introduced Problem-solving Keys, 

and therefore they were not used while solving the items. Post-test was in the end of 
the school year and students were allowed to use their “key chain”, if they wished, in 
a similar way they could during the ordinary mathematical tests as well. None of the 
students felt that they needed the Problem-solving Keys at the post-test in June. The 
aim of this study was not to map the role or usage of these tools for heuristics but 
would be another interesting viewpoint for the future research (see Herold-Blasius, 
2021). Problem-solving Keys were on a very important role when teaching different 
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ways to approach a wide variety of non-routine mathematical problems especially 
during the autumn semester.  

4.2 Data analysis 

First, students’ overall test performance in tasks 1-9 was assessed by awarding points 
on correct and erroneous answers, but also on intermediate steps towards correct 
explanation. In multiple choice items 1-5 and 8, students received 1 point for a correct 
answer and 0 points for an erroneous one. In item 3, students were expected to choose 
both options A and B to gain 1 point, and 0,5 points were given, if they chose either A 
or B. Maximum points for multiple choice questions were 6. In items 6A, 6B, 7 and 9 
students were expected to explain their thinking, and their answers were serving as a 
base for building a framework for correct and erroneous strategies from intuitive to 
more sophisticated ones. Maximum points for these items were 2 points for each. The 
in-between marks were the following: 

• 0 points: erroneous explanation and/or answer, or no answer provided 
• 0,5 points: some explanation towards correct answer provided, answer 

incorrect 
• 1 point: no explanation provided, answer correct 
• 1,5 points: some explanation provided, answer correct 
• 2 points: correct explanation provided, answer correct. 

With this grading, it was possible to gain a maximum of 8 points in items 6A, 6B, 
7 and 9. This approach was close to rating used in school mathematics tests for this 
age group, and took also the partially correct answers into account. Numerical scores 
were used as indicators of overall performance and possible development between 
pre- and post-tests. Maximum points for the whole test were 14. 

Exploring and mapping the strategies that students used in task began by 
dismantling the data (students’ responses in items 6A, 6B, 7 and 9). This was done on 
a detailed level by creating codes based on how students justified their thinking and 
explained it by using numbers, drawings or written explanations. Coding was 
concluded with Grounded Theory methods, which provide systematic, yet flexible 
guidelines for collecting and analysing data (Charmaz, 2014; Birks & Mills, 2015; 
Chun Tie et al., 2019).  Written explanations were worked through in three phases of 
analysis (Charmaz, 2014), and the framework for coding was created by classifying 
similar responses to sub-categories (focused coding phase) and core categories 
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(theoretical coding phase). This scheme was used as the analytical tool to assess the 
strategies that students used in solving tasks and on the other hand, as an indicator 
on whether the teaching approach provoked a shift from intuitive to more 
sophisticated heuristics linked to proportional reasoning. 

Table 3 illustrates students’ correct answers in Task 6A, and how they were 
grouped as sub-categories during the focused coding phase. 

Table 3.  Dismantling the data during the initial coding phase and sub-categories in focused coding phase: 
example from correct approaches in Task 6A 

Initial coding phase: observable behaviour Focused coding phase: sub-category 
Student understands that the long side on the 
second rectangle is “three times longer” than the 
corresponding side on the first rectangle. 
Demonstrates thinking by addition: 20+20+20=60 
and 15+15+15=45, but cannot clearly explain 
where  ”three times” comes from. 

Demonstration of relative thinking between given 
quantities but failing to provide mathematically 
understandable explanations. 

Student understands that 20 long sticks = 60 short 
sticks by comparing corresponding parts but 
cannot explain how he/she gets x=45. 
Student calculates the ratio between the sides of 
the first rectangle and applies the same logic to 
another picture. 

Demonstration of relative thinking between 
quantities e.g. by using ratio as a unit in 
calculations, but not necessarily able to create 
generalisable formulas. Student calculates that on the first rectangle the 

vertical side is ¾ of the horizontal side and applies 
the logic to the second rectangle to determine x 
(for example by deducting ¼ from 60). 
Student understands that long sticks are three 
times longer than short sticks, and is able to utilize 
the knowledge to solve missing value x. 
Student works with both rectangles simultaneously 
by using the ratio 3:4 to solve the missing value 
(ability to form generalisable calculations). 

Use of formal operations based on ratio or use of a 
certain algorithm, such as cross-multiplication or 
“rule of three”. 
 Student uses a formula, such as a cross-

multiplication algorithm, “rule of three” or 
equivalent to solve the task. 

 
Consistency for the coding scheme was ensured by comparing the original data in 

several phases of the coding by student to another student, student’s answer to 
anticipated strategy and strategy by strategy. This involved repeated visits to original 
answers to ensure that they were understood and interpreted correctly. Final scheme 
for coding can be found in Appendix 1. 
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5 Results 

5.1 Performance in tasks 

Tasks 1-5 and 8 were multiple choice mixture tasks, and even though the student’s 
choice of option could give some indication on solution strategy as well, this report 
focuses on analysis and classification of solution approaches in tasks 6A, 6B, 7 and 9. 

Students’ performance in tests provided insights on whether the teaching 
approach, which focused on mathematical problem-solving, improved students’ 
general skills in solving also proportional reasoning tasks. In the beginning of fifth 
grade, the mean for total score in the proportional reasoning test was 6,1 points (SD 
2,5 p.). Boys (N=12) performed better than girls, their mean being 6,5 points (SD 2,1 
p., minimum 3,5 p. and maximum 11 p.), whereas girls (N=12, one being absent) had 
a mean of 5,5 points (SD 2,9 p., minimum 0,5 p. and maximum 12 p.).  

After getting familiar with a variety of different heuristics (but not explicitly 
algorithms) for solving mathematical problems, the post-test in June indicated 
positive results: the mean score of students had risen to 8,9 points (SD 3,6 p.). It was 
interesting to notice that this time girls performed better than boys. Female students’ 
mean had risen from pre-tests’ 5,5 points to 9,3 points (SD 3,3 p., min. 5 p. and max. 
13,5 p.). Male students also improved their performance: in the pre-test they had a 
mean of 6,5 points and in the post-test 8,4 points (SD 4 p., min. 0,5 p., max. 13,5 p.). 
Development of total points is illustrated in Figure 2. 

 

Figure 2.  Total points in pre- and post-tests. 
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The following Figure 3 visualises individual students’ performance. Blue marks 

indicate an individual’s total points in the beginning of the fifth grade, whereas orange 
marks are for post-test points in the end of the school year. Development of skills was 
visible especially among those students, who in the pre-test scored below the average 
points, but it seems that the intervention had a positive influence on skills of almost 
all students1.  

 

Figure 3.  Development of total points by individual students in problem-solving  
pre-test in August and post-test in July. 

Difficulty of tasks is often linked to the number structure and numerical 
complexity. For example, mathematical problems with small, integer ratios are easier 
than tasks with non-integer ratios (e.g. Tourniaire, 1986). For assessing the difficulty 
of items, students’ answers were combined with a larger set of data from Finnish fifth 
graders’, which completed the same test. Difficulty of items was done by assessing 
frequencies of correct and erroneous answers by 95 students. Items in the test sheets 

 

1 Student number 24 was absent during pre-test tasks 7-9 and the total points are not calculated. In the post-test, 
student 1 did not answer any of the questions 6-9, which affected the final score. Student 11 left several tasks 
unanswered, or it was not possible to determine the answer. 
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were designed to get gradually more challenging, but it seems that the difficulty of 
items in this test did not match students’ skills and therefore the interpretations on 
students’ performance need to be addressed with reservations. Tasks 1-5 were too easy 
for fifth graders, and on the other hand the success rate in tasks 6A, 6B and 9 was 20-
28%. With this setting, the difficulty of task 7 was fairly ideal (success rate 58%) and 
task 8 was almost too difficult. If the results of the post-test would be considered, too 
difficult items would appear to be more ideal also in tasks, which required skills to 
explain reasoning.  

Results indicate that there was no significant improvement in how students 
performed in multiple-choice mixture tasks in pre- and post-tests. High success rates 
suggest that tasks 1-5 were easy for fifth graders at the first place. Development of 
skills is visible in more difficult tasks 6, 7, 8 and 9, which are discussed in more detail 
in Chapter 5.2. These results indicate that the teaching approach with a focus on 
problem-solving may have had a positive influence on students’ abilities to solve tasks, 
which require proportional reasoning skills. 

Mathematical problems were usually not presented in a written form in a similar 
way as typical word problems in mathematics books. Students did not get any extra 
training in solving word problems and therefore the development of skills cannot be 
explained by them getting more fluent in solving mathematical problems presented 
in written form. A table describing students’ ability to solve tasks correctly can be 
accessed in Appendix 2 and will be discussed task by task in the next sub-chapter. 

5.2 Strategies in tasks 

One of the aims of the study was to find out if teaching approach, which offered tools 
for heuristics, improved students’ skills in explaining their thinking in mathematical 
tasks. In addition to getting familiar with problem-solving techniques, the practical 
aim for the intervention was to build up students’ mathematical self-confidence so 
that they would become active in describing their problem-solving processes. 
Questions 6A, 6B, 7 and 9 were assessed as indicators, if students were able to give an 
understandable explanation on how they processed the task. Informal techniques and 
strategies provided an insight on how students understood problem-solving concepts 
and were able to progress even in an unfamiliar type of a problem. Explanations and 
heuristics were also assessed to see if there were differences in students’ use of correct 
and erroneous strategies between the pre-test and the post-test.  
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In the beginning of fifth grade, students had major difficulties in describing their 
problem-solving path and often left the explanation completely out. Teaching 
approach, which encouraged students to describe their thinking even with partially 
complete explanations and solving problems one step after another, seemed to have a 
positive impact on their performance during the later phases of the academic year. 

5.2.1  Task 6A: Rectangles 

Tasks 6A and 6B represented typical proportional reasoning problems with a missing 
value. According to Karplus et al. (1983, p. 21), these types of problems involve 
“reasoning in a system of two variables between which there exists a linear functional 
relationship”. To maintain proportional values, students carry out parallel 
transformations within or between variables (Son, 2013). The relation between 
quantities is invariant, whereas the quantities in the problem co-vary.  

In task 6A, a correct approach required the ability to compare corresponding parts 
between two rectangles. 17 students (68%) provided an answer to the question 6A, 
and six students (24%) were able to solve the task correctly. 10 students out of 17 were 
able to explain their solution process, whether the answer was erroneous or correct. 
Almost a quarter of all students (N=6) were skilled enough to explain their thinking 
with the correct approach. Seven students provided an answer but did not explain how 
they ended up in that. Eight students (32%) did not answer the question at all. 

It appears that the problem-based teaching approach had a positive impact on 
students’ skills: in the post-test 92% of students (N=23) answered the question and 
68% (N=17) were able to provide a correct answer. 20 students out of 23, who 
answered the question, were able to explain their thinking in written form. Almost a 
half (N=12) of all students in the post-test approached the task with the correct 
strategy. Only three students answered the question but did not explain their thinking 
and two students (8%) did not answer the question at all. 

In pre-test 16% (N=4) were able to implement a correct ratio or unit factor 
approach in task 6A, demonstrating relative thinking between quantities in solving 
the unknown quantity. In post-test the number of students using a correct strategy 
had more than doubled, being 40% (N=10). Even though in many cases an 
explanation for the solution process did not include all the mathematically correct 
steps, students were demonstrating the understanding of long sticks being three times 
longer than the short sticks. 
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During the pre-test, the most common erroneous strategy was additive reasoning 
(16%, N=4). It was typical to focus on dimensions within one rectangle, for example 
reasoning that because the difference between the sides of the first figure was five (20-
15=5), the same difference applies for the second figure (60-5=55). In some cases, 
students calculated the perimeter of the first rectangle and tried to apply or modify 
the logic to find the missing value in the second rectangle. In both examples students 
failed to understand the relational nature of the task: if 20 long sticks equal the length 
of 60 short sticks, the same ratio should be maintained with 15 long sticks and x short 
sticks. According to the previous research, students often rely on additive strategies 
also in multiplicative situations (e.g. Tourniaire & Pulos, 1985; Nunes & Bryant, 1996; 
Van Dooren et al., 2010; Son, 2013). Still, it is not clear how students choose their 
preferations between additive and multiplicative relations (Vanluydt et al., 2019). 
Both approaches can be characterised as intuitive in nature, yet it is difficult to 
verbally describe reasoning; the given explanations are not necessarily in line with 
students’ actual solution processes (Degrande et al., 2020). 

Distinguishing multiplicative missing value problems from additive ones is 
challenging for students. Additive thinking is emphasized during the first years of 
school and the transition towards multiplicative ideas is not always straightforward. 
On the other hand, additive reasoning could support the development of 
multiplicative reasoning. Yet, the shift from additive to multiplicative thinking 
requires a qualitative change in thinking (e.g. Nunes & Bryant, 1996). In the beginning 
of the fifth grade, only one student approached the problem via multiplicative 
reasoning but ended up in an erroneous end-result. After the intervention, one fifth 
(N=5) of students turned into this approach. Even though these solution attempts 
were erroneous, they could be interpreted as a shift towards understanding the 
relative nature of the task. A more detailed description on the range of strategies that 
students used can be accessed in Appendix 3. 

Development of solution approaches and possible shifts between the strategies 
was visualised as individual students’ performance in tasks. In Figure 4, explanation 
categories are presented in an order, which suggests a hierarchy from erroneous and 
intuitive ones to more sophisticated and generalisable strategies. Light green area 
marks correct approaches. Opaque fill-ins in pre- and post-test markers indicate that 
the student was able to solve the task correctly. 
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Figure 4.  Individual students’ strategies in pre- and post-tests in task 6A. 

Correct solution approaches were rare in the pre-test, even though the task was 
relatively easy. In the end of the fifth school year the frequency for correct strategies 
had increased and students were able to approach the task by correct ratio or unit 
factor approach. 

5.2.2  Task 6B: Triangles 

Task 6B was more difficult than 6A. It would have been possible to solve the task only 
by focusing on dimensions on one triangle and using Pythagorean theorem, but that 
is a topic for Finnish secondary school curriculum and therefore not expected that any 
of the students would use that algorithm. In the pre-test 16 students (64%) answered 
task 6B and only two (8%) of them solved the task correctly. Seven students of 16 
explained their thinking process in writing, but only one of them was able to choose a 
correct strategy. Nine students gave an answer, but no explanation. Nine students 
(36%) did not answer the question 6B in pre-test.  

Before the intervention, students had difficulties in explaining their thinking, 72% 
of students (N=18) either leaving the explanation out (N=9) or not answering the 
question at all (N=9). By the end of the school year, the number of empty explanation 
spaces (36%, N=9) had decreased to half, even though the task was challenging. In the 



KAITERA & HARMOINEN (2022) 

133 
 

post-test 76% of students (N=19) answered the question and less than a quarter did 
not (N=6). 48% (N=12) of students were able to provide a correct answer. The 
majority, 16 students out of 19, tried to explain their thinking in a written form. Three 
students answered the question but did not provide any insights on the solution 
process. In the pre-test only one student was able to choose a correct strategy, but in 
the post-test the number increased to seven students (37% of 19 students answering 
this question). This was quite an interesting finding, because students had not 
encountered any similar mathematical problems during the academic year. 

In the pre-test, only one student was able to explain thinking by demonstrating 
mathematically correct reasoning. During the intervention the variety of correct 
solution strategies increased. Students came to conclusions by additive reasoning or 
more sophisticated multiplicative reasoning, and there were also some examples of 
abilities to create correct, generalisable formulas to solve these types of problems. 
None of the students solved the task by using ratio or unit factor. 

Students often relied on erroneous intuitive strategies, such as trying to solve the 
problem by random calculations on given numbers or basing the problem-solving 
process on visual observations on given pictures, and not mathematically valid 
concepts. The range of observable strategies in this task can be accessed in Appendix 
3. Figure 5 illustrates the changes in used strategies that individual students had 
between from the pre-test and to the post-test. 

 

Figure 5.  Individual students’ strategies in pre- and post-tests in task 6B. 
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As one can see from Figure 5, task 6B was more difficult than 6A for this student 
group. After the teaching experiment, successful students chose usually correct 
additive or multiplicative reasoning, but many students left the explanation out still 
during the post-test. 

5.2.3  Task 7: Painters 

Seventh task was based on inverse proportionality. Painting a house involved a 
situation, in which the time spent on painting was reduced from three days to one day, 
and students were calculating the number of people needed in painting work. In this 
task, it was crucial to understand that it would take three times as many painters to 
complete the work in 1/3 of the time. The analysis of students’ responses raised a 
question, whether many of them solved the task correctly without really 
understanding the concept. Due to the numerical structure in this task, it was possible 
to end up in a correct answer of 18 painters by simply multiplying the word problems’ 
given numbers, six and three.  

67% (N=16) of students in the pre-test solved the problem correctly, and in the 
post-test the frequency had increased to 80% (N=20). Only one student in both tests 
did not answer the question at all. In the pre-test 70% of students (N=16) who 
answered the questions also explained their thinking, but only one of them was able 
to choose a correct strategy. In the post-test 24 out of 25 students gave an explanation 
on their solution process, and at that point 83% (N=20) of them used the correct 
approach. In the post-test none of them left the explanation slot empty. High success 
rates in all student groups are possibly linked also to the possible bias caused by the 
number structure. Majority of students based their explanation on this particular task 
simply stating 3x6=18 but did not provide any additional information on how they 
were thinking, or where the numbers came from. Only a few of the participants with 
correct answers were able to express that they understood the concept instead of 
performing a random calculation. They, for example, reasoned the number of painters 
by building up or scaling down with the figures (e.g., 6 painters=3 days, 12 painters=2 
days, 18 painters=1 day) or used the addition or multiplication, but were rarely able 
to justify, why they chose certain procedures. Even though multiplicative reasoning 
was the most common correct strategy, it is difficult to assess whether the concept of 
inverse proportionality was really understood. Range of strategies in task 7 can be 
accessed in Appendix 4 and development of strategies between pre- and post-tests in 
Figure 6. 
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Figure 6.  Individual students’ strategies in pre- and post-tests in task 7. 

It is likely that the wording and the number structure of this task also guided the 
choice of erroneous approaches: students often relied on erroneous multiplicative 
reasoning, which was the most common erroneous strategy. To map the real 
understanding of inverse proportionality, the task could be worded for example by 
“Two painters paint the house in three days. If they all work at the same speed, how 
many painters would be needed to paint the same house in two days?” In this case, 
multiplying two by three would not result in a correct answer. 

5.2.4  Task 9: Paint-mixtures 

Task 9 was a mixture task, in which students had to maintain the same ratio of paint 
buckets per mixture to determine the missing value (number of red paint buckets) for 
the similar mixture. This was a difficult test item for fifth graders, but on the other 
hand, provided interesting insights on students’ development of problem-solving 
skills.   

During the pre-test 29% of students (N=7) did not answer the question at all, 
whereas the percentage in the comparison group was lower, 14% (N=7). In the post-
test, only two students did not answer the question and in both cases, they expressed 
their unwillingness to engage with the task at all. 
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17% of students (N=4) had a correct answer in pre-test, but clearly struggled in 
providing explanations on their reasoning processes: 12 out of 17 students, who 
answered the question, left the explanation out. Only one student was able to choose 
the correct strategy in this task, the other four relied on erroneous approaches. Post-
test results indicated significant improvement. 52% of students (N=13) ended up with 
a correct answer, and 10 out of 23 students answering this question also described 
their thinking with a correct strategy. 

When having a closer look on strategies that students used, in the pre-test only 
one student was able to provide an explanation while solving the problem correctly, 
turning into a building-up strategy. Development of skills was visible in the post-test: 
more students were able to not only explain their correct problem-solving process, but 
also use a more sophisticated strategy by working with the ratio. Even though students 
did not necessarily have skills to explain thinking with mathematically valid 
expressions, they became more confident in using different strategies. Figure 7 
illustrates the ratio approach, in which student proceeds one step at the time. In this 
example, the student correctly reasons that because there is one red paint bucket in 
every four yellow paint buckets, you need to add 1,5 buckets of red to six buckets of 
yellow. 

 

Figure 7.  Correct example in item 9 (student 42159 in post-test). 

During the pre-test, only one of the students was able to provide a correct 
explanation for the task, working with building-up strategy. In the end of the school 
year there were indications on improved skills of explaining thinking also visible: 32% 
(N=8) utilised either building-up or scaling-down strategy, ratio or unit factor 
approach (the most common) or even correct formal operations with generalisable 
formulas. In the post-test, five students (20%) were able to work through the task by 
expressing that for every two buckets of yellow you need 0,5 buckets of red paint.  

54% (N=13) of students gave an erroneous answer in the pre-test. Three students 
relied on multiplicative reasoning but failed to understand the relative nature of the 
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task. They multiplied the given amounts of yellow paint, 6x4=24 or only stated 
“Calculated by multiplication”, without providing a more detailed explanation.  

During the post-test the most common erroneous strategy was additive reasoning. 
24% (N=6) of students chose that strategy. They often based their reasoning on the 
idea that “you need three more yellow than red”, focusing on the difference between 
the given numbers in the original paint mixture and ignoring the need to maintain the 
same relationship for the second paint. More detailed frequencies for the strategies 
visible in task 9 can be accessed in Appendix 4. 

 

Figure 8.  Individual students’ strategies in pre- and post-tests in task 9. 

Assessing and classifying students’ strategies was not always straightforward. For 
example, student could state that multiplication was needed, but on the other hand, 
relied on additive reasoning when providing an answer: “Because in the beginning 
you needed three more yellow buckets than red buckets, so you just need to multiply 
it”, providing three as an answer. 
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5.2.5  Students with the lowest and highest points 

To have a closer look on possible development of strategies of so-called low- and high-
performing students, the performance of three students with lowest points and four 
students with the highest points in the pre-test were considered. Three low-
performing students gained a maximum of 3,5 points in the pre-test and four high-
performing students 8,5-12 points (for the overview of students’ performance, see 
Figure 3).  

 

Figure 9.  Development of strategies of three students scoring the lowest points in pre-test. 

These three students tended to leave the answers completely out in the beginning 
of the fifth grade. By the end of the fifth grade, frequencies for solving the tasks 
correctly increased. With some individuals the difference was remarkable: for 
example, student 7 got correct answers in the post-test, but would still have needed a 
bit of support in explaining thinking (see Figure 9).  After the problem-based teaching 
period, students were more willing to engage in attempts to solve mathematical 
problems, even though the strategies might not have been valid. With a correctly 
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timed intervention the teacher has a change to support the shift from erroneous 
strategies to correct ones. 

If lacking the skills to explain thinking with mathematically correct processes, 
students often started to explore the dimensions between the given values by 
implementing intuitive methods. Consider the explanation in Figure 10 that student 
22 gave in Task 6B: the answer was correct 40 sticks, and in this case, the student 
seemed to calculate the solution by exploring the given values and their relationships 
within the first triangle. This student calculated the difference between the 
hypotenuse and opposite side is multiplied by two to get the adjacent side. 

 

Figure 10.  It was not uncommon that the answers were correct,  
but not necessarily based on generalisable ideas. 

In these kinds of examples, which are very common in primary school, students 
would benefit from opportunities to discuss their ideas with the teacher or with a peer; 
what is the purpose of short and long sticks in this task, and how should that 
information guide the solution process? If the strategy works with the given values, 
can that be generalised to all triangles with a 90-degree angle? How about all types of 
triangles? 

Findings of the study indicated that especially students with lower points 
benefited from exploring different problems and heuristics to approach them. 
Students with high points in the pre-test were able to develop their skills in explaining 
their ideas and on the other hand, to move towards more advanced strategies (see 
Figure 11). 
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Figure 11.  Development of strategies of four students scoring the highest points in pre-test. 

Problem-oriented teaching approach, which emphasized the importance of 
discussing and explaining ideas, no matter even if they are just partially constructed 
or immature, seemed to have a positive influence on how students communicated 
their thinking in written tasks. By the end of the school year there was a significant 
improvement on students’ reasoning skills, use of heuristics and abilities to explain 
their thinking. Some limitations on these observations needs to be addressed: with 
this research design, it is not possible to assess, whether the skills would have been 
improved by more traditional teaching approach as well. Another challenge is linked 
to the test items: several of them appeared to be too easy for Finnish students and 
tasks were completed in a shorter time than expected. A test with a wider variety of 
difficulty and more items would provide more reliable information on possible 
development of skills and strategies. 

6 Discussion 

The study focused on exploring whether students benefitted from a problem-solving 
focused teaching approach, which introduced them to a general set of heuristics as a 
concrete tool called Problem-solving Keys. This tool worked as visual reminders of a 
variety of generalisable approaches for mathematical problems. The study aimed to 
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explore whether this kind of an active, heuristics-based teaching approach would 
improve fifth graders’ performance and use of strategies and develop students' skills 
in explaining their thinking in mathematical tasks.  

The analysis indicated that skills to explain thinking improved. Before the 
intervention, students generally relied on intuitive strategies or opted to leave the 
justification completely out. After getting familiar with concrete tools for general 
heuristics, students became more confident in expressing their ideas and justifying 
their strategies and were also willing to help the others by explaining solution 
methods. Mathematical discourse helps students not only to develop their 
understanding of mathematical ideas, but also to build a personal relationship with 
mathematics on an emotional level (D’Ambrosio & Prevost, 2008). After the 
intervention students’ variety of heuristics increased and they were able to choose 
more sophisticated ones when solving different tasks. This can be interpreted as a 
positive development. This development was visible also in situations, in which the 
student still worked by implementing an erroneous strategy: in many cases, there was 
a shift from an intuitive approach towards a more sophisticated, yet erroneous 
approach. For example, an ability to base decisions on multiplication and 
demonstrate some understanding of the relative nature of the task can be interpreted 
as a step towards proportional reasoning, even though the student would not be able 
to expand the idea to cover the whole concept on a certain task. Findings of this study 
suggests that also the erroneous approaches can be viewed as hierarchical steps 
towards more sophisticated skills and correct reasoning. Teacher has a crucial role in 
recognising these small steps, for example student’s transition from erroneous 
intuitive approaches (for example drawing) towards additive and multiplicative 
reasoning and emerging skills in understanding relational nature of proportional 
reasoning tasks. 

In Polya’s model (1945/1973), the last phase of “looking back” provides 
opportunities to assess and discuss ideas that emerged during the problem-solving 
process. This research underlines the importance of discussing different approaches 
and heuristics already during the earlier phases of problem-solving. This increases 
students’ confidence in presenting also the partially correct ideas, which can be seen 
as steps forwards. Teacher’s role is to make sure that students are not left with the 
impression that any answer is mathematically valid, and to guide them towards 
correct methods and mathematically correct language. 
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By teaching heuristics, students learn to solve complex word problems, reason 
mathematically in everyday situations and develop their thinking skills. Heuristics 
should be understood as general guidelines, methods, or possibilities to approach a 
diverse set of mathematical problems. Still, learning heuristics does not alone help 
students, and heuristics as such should not be reduced to learning certain techniques 
or sets of algorithms to choose from. Learning to describe and justify thought 
processes is equally important. It can be asked whether school mathematics in 
primary schools supports students’ development in explaining their thinking, or is the 
focus still on finding the correct answer? This is problematic when considering the 
transition to secondary school, where students are expected to be able to explain their 
thinking by using mathematical language. Teaching approach, which guides students 
in justifying their ideas by using various methods, develops mathematical problem-
solving skills and creates an excellent foundation for learning more complex 
mathematical concepts. Classroom discussions enable the teacher to make decisions 
on which state students benefit from teacher’s guidance, and when it is more fruitful 
to let them find out the solution by themselves. 

A few limitations of this study need to be addressed. The data for this research was 
collected from one sub-urban, monolingual primary school in Northern Finland. With 
a larger sample from Finnish schools, it would have been possible to gain more 
generalisable results on whether the students’ performance and use of certain 
strategies would follow similar trends in schools in different areas. Another limitation 
is linked to the development of problem-solving skills and the possible effect that the 
teaching approach had on the results: it would have been beneficial to have the same 
pretest-posttest setting with a group of students without the intervention. At the point 
of implementing the teaching approach and collecting the data, this was not the main 
focus of the research, but the aim was to develop and assess the heuristics-based 
teaching approach, practicing teacher being also the researcher (e.g. Niemi & Nevgi, 
2014). Further research is needed to understand the natural development of problem-
solving skills and strategies, and whether and what kind of “out-of-the-textbook” 
approaches in mathematics classrooms could enhance these skills. 

Students should be provided rich mathematical problems and taught a variety of 
problem-solving heuristics to tackle the demands of the 21st century. Mathematics 
should work as a tool, which would help in facing everyday situations. Even though 
not everyone becomes a mathematician, students’ fluency as mathematical thinkers 
and problem solvers can be supported by paying attention in developing their skills 
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already in primary school. Mathematics curriculum in Finland offers flexibility to shift 
from arithmetic “fill-in-the-book” exercises towards a meaningful problem-solving 
teaching approach. Teaching mathematics through problem-solving provides 
opportunities to develop a wide variety of problem-solving strategies and heuristics. 
Problem-solving Keys are one easily accessible tool to enhance these skills. 
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Reform movements in mathematics education advocate that mathematical 
argumentation play a central role in all classrooms. However, research 
shows that mathematics teachers at all grade level find it challenging to 
support argumentation in mathematics classrooms. This study examines the 
role of teachers’ mathematical knowledge in teachers’ support of 
argumentation in mathematics classroom. The study addresses a 
documented need for a better understanding of the relationship between 
mathematical knowledge for teaching and instruction by focusing on how 
the knowledge influences teachers’ support of argumentation. The results 
provide insights into particular aspects of teachers’ mathematical 
knowledge that influence teachers’ support of students’ development of 
valid mathematical arguments in mathematics classrooms and suggest 
implications for research and practice. 

Keywords: mathematical knowledge for teaching, argumentation, mathematical 
arguments, collective argumentation, teacher support of argumentation 

1 Introduction 

Reform movements in mathematics education advocate that mathematical 
argumentation play a central role in all classrooms. In particular, mathematics 
classrooms should become communities of inquiry in which students seek, formulate, 
and critique the validity of each other’s conjectures and arguments (See e.g., National 
Council of Teachers of Mathematics [NCTM], 2000; CCSSM, National Governors 
Association Centre for Best Practices [NGA] & Council of Chief State School Officers 
[CCSSO], 2010). Yet, research shows that teachers find it challenging to support 
argumentation in mathematics classrooms (See. e.g. Ayalon & Even, 2016; Bieda, 
2010). Furthermore, teachers’ mathematical knowledge plays an important role in 
their support of this practice in mathematics classrooms (Cengiz et al., 2011; Yackel, 
2002). The study examines aspects of teachers’ mathematical knowledge that 
influence teachers’ support of argumentation. There is a documented need for a better 
understanding of the relationship between teachers’ mathematical knowledge and 
aspects of instruction (See e.g. Cengiz et al, 2011). This study examines the 

ARTICLE DETAILS 

LUMAT Special Issue  
Vol 10 No 2 (2022), 147–170 

Pages: 24 
References: 45 

Correspondence: 
jmfranci@umass.edu 

https://doi.org/10.31129/ 
LUMAT.10.2.1701 

https://creativecommons.org/licenses/by-nc/4.0/
http://www.luma.fi/en
https://www.helsinki.fi/en
mailto:jmfranci@umass.edu
https://doi.org/10.31129/LUMAT.10.2.1701
https://doi.org/10.31129/LUMAT.10.2.1701


LUMAT 

148 
 

relationship between mathematical knowledge and teachers’ support of 
argumentation in classrooms. Processes involved in argumentation are similar to 
those involved in mathematical thinking. Therefore, supporting argumentation is 
supporting mathematical thinking, the topic of this special issue. 

2 Theoretical Background 

2.1 Argumentation in mathematics teaching  

In the mathematics education community, argumentation is considered an important 
disciplinary practice that should be promoted in all classrooms. The Principles and 
Standards for School Mathematics of the National Council of Teachers of 
Mathematics (NCTM, 2000) emphasize reasoning, proof, and communication, three 
essential components of argumentation. The Common Core State Standards for 
Mathematics (CCSSM, 2010) state that students should be able to “Construct viable 
arguments and critique the reasoning of others” (p. 7). There are several reasons for 
promoting argumentation in mathematics classrooms. Students’ ability to justify 
claims, which is part of argumentation, is considered a key indicator of students’ 
mathematical thinking (CCSSM, 2010). Argumentation is a natural part of doing 
mathematics since mathematics is a proving science and mathematical 
argumentation is central to proving (Ubuz, Dincer, & Bulbul, 2012). Argumentation 
can also help promote equitable learning opportunities in classrooms. This is because 
argumentation is a central construct to discourse and classroom discourse influences 
students’ access to mathematics. Teachers can promote equity in learning by 
providing all students with opportunities to produce and defend their arguments in 
classroom discussions (Bieda, 2010). 

Research on argumentation in mathematics classrooms has examined the 
classrooms conditions and the role of the teacher in facilitating the process (Ayalon & 
Even, 2016; Conner et al., 2014; Douek, 1999; Forman, Larreamendy-Joerns, Stein, 
& Brown, 1998; Maher, 1998; Mueller et al., 2014; Yackel, 2002). This research shows 
that teachers can play a central role in supporting argumentation. They can negotiate 
classroom norms that foster argumentation as the core of students’ mathematical 
activity, support students as they interact with each other to develop arguments, and 
supply argumentative supports (data, warrants, and backing) that are either omitted 
or left implicit (Yackel, 2002). When supporting students working collaboratively to 
develop mathematical arguments, teachers can prompt students to establish claims 
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and justifications, encourage them to critically consider different arguments, present 
to students what constitutes acceptable mathematical arguments, and model ways of 
constructing and confronting arguments (Ayalon & Hershkowitz, 2017).  

Despite its importance for mathematical learning, the implementation of 
argumentation in mathematics classrooms is not common practice (Bieda, 2010; 
Bleiler, Thompson, & Krajcevski, 2014; Staples, Bartlo, & Thanheiser, 2012). Research 
shows that teachers find it challenging to incorporate this practice in classrooms 
(Ayalon & Even, 2016; Bieda, 2010). They find it challenging to engage students in 
constructing and critiquing arguments (e.g., Ayalon & Even, 2016) and their 
interpretations of facilitating argumentation may not be aligned with those of 
reformers such as assuming that mathematical argumentation can occur with 
relatively little scaffolding by the teacher (Kosko et al., 2014). There is a general 
consensus that research on teacher support of argumentation is still in its infancy and 
more needs to be known about teacher knowledge and practice of argumentation 
(Kosko et al., 2014; Mueller et al., 2014). This study addresses this issue by examining 
aspects of mathematical knowledge that influence teacher’s support of 
argumentation. 

2.2 Mathematical argumentation 

Research on argumentation in educational settings frequently uses Toulmin’s 
(1969/2003) scheme of argumentation as an analytical tool. According to this scheme, 
the core of an argument consists of three essential parts: claim, data, and warrant. 
The claim is the assertion of which an individual is trying to convince others. The data 
are the evidence that the individual presents to support the claim. The warrant is the 
explanation why the claim follows from the data. Members of a group may not be 
convinced that a claim follows from the data and question the validity of the warrant. 
In such cases, the individual may present a support or backing for the warrant. The 
model has two additional components: a modal qualifier, which refers to the degree 
of confidence about a claim, and a rebuttal, which refers to the conditions under 
which the conclusions may or may not hold. The restricted version of Toulmin’s 
scheme is considered sufficient to analyze arguments at school level (Knipping and 
Reid, 2015; Krummheuer, 1995). However, Inglis et al.  (2007) showed that 
considering the additional components can provide a more comprehensive 
description of individuals’ argumentation and reasoning processes and helps 
investigate arguments similar to those made by mathematicians. 
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Krummheuer (1995) extended Toulmin’s notion of argumentation from an 
individual to a collective notion by distinguishing between situations where one 
individual tries to convince an audience about the validity of a claim and situations 
where two or more individuals interact to attempt to establish a claim, which 
Krummheuer called collective argumentation. Collective argumentation thus 
becomes an interactional discursive accomplishment and an argument can no longer 
be analyzed solely by considering a sequence of statements that are made. The 
functions that various statements serve in the interaction of participating individuals 
become critical to making sense of the argumentation that develops. What constitutes 
data, warrants, and backing is no longer predetermined, but rather negotiated by the 
participants in the interaction. This makes collective argumentation a useful construct 
for analyzing mathematical activity characterized by collective problem solving (see, 
e.g., Whitenack and Knipping, 2002; Van Ness and Maher, 2019). In particular, this 
makes collective argumentation a useful construct for analyzing the teacher’s role in 
facilitating argumentation as the teacher interacts with students to support the 
development of valid mathematical arguments (Yackel, 2002). In this study, teachers’ 
support of argumentation refers to teachers’ discursive role in supporting students’ 
development of valid mathematical arguments to support their solutions as they work 
collaboratively on challenging mathematical problems.  

2.3 Mathematical knowledge for argumentation  

It is generally accepted in the mathematics education community that the quality of 
mathematical teaching depends on subject-related pedagogical knowledge that 
teachers bring to bear on their work and this type of knowledge goes beyond what one 
acquires as a student of mathematics (Adler & Davis, 2006; Ball et al, 2004; Ball, 
Lubienski, & Mewborn, 2001). However, there is no universal agreement on one 
widely-accepted framework for describing this knowledge (Petrou and Goulding, 
2011). Several conceptualisations or models have been proposed over the years (See 
e.g., Shulman, 1986; Fennema and Franke, 1992; Rowland, 2005; Rowland, 2007; 
Rowland, Huckstep, & Thwaites, 2003). Petrou and Goulding (2011) provide a 
comprehensive review of the models focusing on their meaning, importance, 
limitations, implications for research and teacher development, and the political 
context in which they were developed. They note that the models elaborate rather than 
replace Shulman’s (1986) well-known conceptualisation of content-related categories 
of teacher knowledge, particularly the categories of Subject Matter Knowledge (SMK) 



FRANCISCO (2022) 

151 
 

and Pedagogical Content Knowledge (PCK).  
One model is the Mathematical Knowledge for Teaching (MKT) framework 

proposed by Ball et al. (2008). The model distinguishes among three SMK 
subcategories. Common Content knowledge (CCK) is the mathematical knowledge 
held by people who have not taught children mathematics. Specialized Content 
Knowledge (SCK) is the mathematical knowledge specific to teaching and includes 
being able to examine alternative representations, provide explanations, and evaluate 
unconventional methods. Knowledge at the Mathematical Horizon is the “awareness 
of how mathematical topics are related over the span of mathematics included in the 
curriculum.” The MKT framework also distinguishes among three PCK subcategories. 
Knowledge of Content and Students (KCS) is knowledge of how students learn 
specific mathematical ideas and concepts, students’ common conceptions and 
misconceptions, and what students are likely to do in specific mathematics tasks. 
Knowledge of Content and Teaching (KCT) is knowledge of effective strategies for 
teaching particular content, and includes useful examples for highlighting important 
mathematical issues, and the advantages and disadvantages of using particular 
representations to teach specific ideas. There is also Knowledge of Curriculum (KC) 
which is provisionally placed in PCK category.  

In this study, teachers’ mathematical knowledge refers to MKT knowledge for 
supporting argumentation. Research shows that having strong knowledge in MKT 
areas enhances teachers’ support of students’ mathematical learning (Hill et al. 2005, 
2004). However, the relationship between knowledge in MKT areas and instruction 
remains unclear (Ball et al, 2001; Cengiz et al. 2011; Tirosh and Even 2007). This 
study examines the relationship between teachers’ MKT knowledge and teachers’ 
support of argumentation in mathematics classrooms. The focus is on identifying 
aspects of MKT in the areas of SCK, KCS, and KCT that help teachers support students’ 
development of valid mathematical arguments. The following research questions 
guided the study:  

1.  What aspects of mathematical knowledge for teaching (MKT) in the areas of 
SCK, KCS, and KCT support teachers in facilitating students’ development of 
valid mathematical arguments in collaborative problem solving?  

2.  How do such aspects support teachers in promoting argumentation in 
mathematics classrooms? 
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3 Method 

3.1 Research context 

The three-year after-school classroom-based Informal Mathematical Learning 
project (IML) provided the context for the present study. The goal of the project was 
to understand how students reason in building mathematical knowledge as they 
worked collaboratively on challenging mathematical tasks. The project was 
implemented in an economically depressed urban district in the Northeast coast of 
the United States. Ninety-eight percent of the students were African American or 
Latin. Approximately twenty-four sixth-grade students, all African American or Latin, 
volunteered to participate in the project. During IML research sessions students 
worked for sixty to ninety minutes on mathematical tasks selected from several 
mathematical content strands including combinatorics, proportional reasoning, early 
algebra, and probability with dynamic software. Students worked in particular 
conditions: they were encouraged to work collaboratively and to always justify their 
solutions to problems to each other. Their contributions were encouraged and always 
received positively. They were asked to evaluate their claims based on whether or not 
they were convinced that they “made sense” and they were given extended time to 
work on tasks. Follow-up interviews with students were conducted after sessions to 
gain an in-depth understanding of the students’ reasoning.  

Seven elementary school mathematics teachers participated as interns in the IML 
project. Their participation was part of a professional development program designed 
to help teachers develop knowledge to promote mathematical reasoning and 
justification in teaching. During the first year of the project, the teachers observed 
researchers lead research sessions with a class of sixth-grade students. During the 
second year, partner teachers led similar sessions with a new cohort of sixth-grade 
students, implementing the same content, while other teachers, researchers, and 
graduate students observed. At the end of each paired teacher implementation 
session, one-hour debriefing meetings were held for reflection and discussion of 
challenges in supporting students’ thinking. 

3.2 Data source 

All research sessions and debriefing meetings in the IML project were videotaped and 
digitized. Several cameras captured students’ mathematical activity in small groups 
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and whole class discussions as well as teachers or researchers’ exchanges and 
interactions with students and facilitation of conversations about students’ 
presentations on an overhead projector for sharing of student work. One camera 
captured the debriefing meetings. Data for this study was selected from videos of IML 
student sessions led by teachers in the second year of the IML project and of 
debriefing meetings held at the end of the sessions and attended by teachers and 
researchers. Examining videos of IML sessions showing teachers’ pedagogical actions 
and videos of debriefing meetings showing teachers reflecting on their actions is 
consistent Shulman’s observation that the knowledge base for teaching is 
distinguished by ‘‘the capacity of a teacher to transform the content knowledge he or 
she possesses into forms that are pedagogically powerful’’ (1987, p. 15; emphasis 
added) and the distinction by Ball (1988) between knowing mathematics ‘for yourself 
’and knowing in order to be able to help someone else learn it (emphasis added). This 
suggests that mathematical knowledge for teaching is reflected both in teachers’ 
utterances/reflections (Debriefing meetings) as well as their actions (IML sessions) 
while teaching. There were approximately twenty IML sessions and an equal number 
of follow-up debriefing meetings during each year of the project.  Data for this study 
consisted specifically of videos of six teacher-led sessions and debriefing meetings 
held at the end of the sessions, all involving versions of the Tower Problem, a task that 
was part of the counting strand. The statement of the Four-Tall Tower Problem when 
choosing from two colors read as follows: 

You have two colors of Unifix cubes available to build towers. Your task is to 
make as many different looking towers as possible, each exactly four cubes high. 
Find a way to convince yourself and others that you have found all possible 
towers four cubes high, and that you have no duplicates. 

Other versions of the Tower Problem used in the IML project included the Two-
tall tower problem when choosing form three colors and the three-tall tower problem 
when choosing from three colors. The tower problem is reasoning-rich. Students often 
use different strategies and types of reasoning to solve the problem (See e.g., Maher 
et al, 2010). This and the fact that in IML students were asked to justify their solutions 
to each other and to teachers/researcher helped create a learning environment for 
studying teacher support of argumentation. This is a case study. Stake (1994) defines 
an instrumental case study as a form of research where “a particular case is examined 
to provide insight into an issue or refinement of theory.” The six teacher-led student 
sessions and corresponding debriefing meetings involving versions of the Tower 
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Problem were (the instrumental case that) was examined to gain insight into aspects 
of mathematical knowledge for teaching that help teachers support argumentation in 
mathematics classroom (issue of interest). 

3.3 Analysis 

Data analysis combined video analysis methodologies (see, e.g., Powell, Francisco and 
Maher, 2003; Erickson, 2006) and analytical approaches for studying argumentation 
(See e.g., Krummheuer, 1995; Knipping et al, 2015). The analysis had two parts 
corresponding to the two types of data used in this study: (1) analysis of the IML 
teacher-led sessions and (2) analysis of the debriefing meetings that followed the 
sessions. In both cases, the analysis involved several iterations of three sequential and 
interrelated main steps. First, all videos were viewed several times to have a sense of 
the data as a whole. Second, the videos were viewed again and parsed into episodes. 
Third, all episodes were analyzed for insights into aspects of teachers’ MKT knowledge 
that support teachers’ actions to promote argumentation. In the case of IML sessions, 
the episodes consisted of instances of sustained interaction between teachers and 
students where the teachers tried to support students in establishing claims. In the 
case of debriefing meetings, the episodes were instances in which teachers reflected 
on their interventions during IML sessions. Analysis of the episodes from IML 
sessions involved (1) coding students’ developing arguments using Toulmin’s model, 
(2) open coding for aspects of mathematical knowledge for teaching in the areas of 
SCK, KCS, and KCT reflected in teachers’ actions to support argumentation and (3) 
describing how those aspects influenced teachers’ support of argumentation, 
particularly in responding to or eliciting valid mathematical arguments supported by 
those aspects. The challenges of using the MKT framework for characterizing 
teachers’ knowledge base have been documented in the literature. Cengiz et al (2011) 
found it difficult to distinguish between CCK and SCK and chose to collapse the two 
categories into one category: Common Content knowledge (CCK). Similarly, Petrou 
and Goulding (2011) noted it may be difficult to distinguish between SCK and PCK in 
the MKT framework. Also, the Mathematical Horizon and Knowledge of Curriculum 
(KC) domains remain under-conceptualized and require further refinement and 
investigation (Ball et al., 2008; Lesseig, 2016; Petrou and Goulding, 2011). For this 
reason, the study focused on the three categories of SCK, KCS, and KCT and defined 
them as follows: 
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1. SCK – knowledge of argumentation as a mathematical process, including its 
components, structure, and function (e.g., Toulmin’s scheme, types of 
arguments, valid and invalid argument and functions and roles of arguments) 

2. KCS - knowledge of students’ typical conceptions and misconceptions as well as 
what they can do when engaging in argumentation (e.g., typical Harel and 
Sowder’s (2007) proof schemes that student may use to determine if an 
argument is convincing or not) 

3.  KCT – Knowledge of interventions for (1) eliciting and (2) responding to 
students’ arguments (e.g., how to help students transition from authoritarian or 
empirical justification toward more analytical types of arguments; how to 
challenge invalid arguments; how to support generalization of arguments) 

Analysis of debriefing meetings was used to corroborate the analysis of IML 
sessions. The analysis of both kinds of data helped get a more accurate interpretation 
of teachers’ actions for supporting argumentation. All coding and interpretations were 
discussed within a research team until disagreements were resolved to enhance 
reliability. 

4  Results 

Data analysis revealed several aspects of teachers’ mathematical knowledge for 
teaching that support argumentation. These are described below along with how they 
influenced teachers’ support of students in building valid mathematical arguments. 

4.1 Argumentation as a discursive activity 

In the episode below students were working on finding towers two-tall with exactly 
two colors, blue (B) and yellow (Y). Martina was working with two other students. She 
built four towers [BY, BY, YB, YB] and continued to build more towers despite having 
duplicates. When the teacher asked her how many towers there were in total, Martina 
said, “It depends on how many blocks [sic unifix cubes] you have.” This prompted 
teacher to intervene:  

Marina Did you say two colors? 
T1:   Two different colors, two tall. How many towers can you build? 
Martina:   I guess it depends on how many blocks [sic unifix cubes] you have 
T1:   Well, okay. Suppose you had more blocks? Here is another one 
   (points at a tower the student had built). You built that one. (Asks all  
   students) What happens if she builds that one? 
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Students 1 and 2: They are all the same. 
Student 2:   (Talking to Martina) You gotta take one of each of them out, like this. 
    (removes duplicates from Martina’s towers and leaves only the 

           towers BY and YB) 
T1:   So, you can only make two different towers, two colors, two tall. [to  
   all students] Do you agree? 
Student 1 and 2: Yes. 
T1:   (Asking Martina) Do you agree, Martina? (Martina nods). Right. 
   Because what happens? Even if you had more blocks, what happens? 
Martina:  It is still going to be the same. 
T1:   Correct. So, you start building the same thing. So, it’s a repeat. Good. 

Using Toulmin’s scheme, Martina’s argument can be coded as follows: any two 
cubes stuck together make a tower and there can be least four towers (data). Since 
more towers can be built if more cubes are available (Implicit Warrant), the total 
number of towers that can be built depends the number of unific cubes available to 
choose from (claim). Martina’s argument is not valid because the data in her argument 
includes duplicate towers, which is not consistent with the specifications of the 
problem since it requires that she builds different-looking towers. The teacher 
successfully challenges Martina’s argument and two moves were crucial in her 
intervention and provide nights into the role of MKT in supporting argumentation. 
First, the teacher tells Martina to pretend that she has as many towers as she wants 
and, as Martina tries to build more towers, the teacher points at duplicates in 
Martina’s set of towers (“Here is another one”, “You built that one”). Second, the 
teacher tries to involve the other students in the group in examining Martina’s 
argument by asking questions not only Martina but also to the students (e.g., “What 
happens if she builds that one?” and “Do you [Martina] agree [with them]?”). The two 
moves provide insights into the role of MKT in supporting argumentation. The first 
move shows that the teachers understood that Martina’s argument is not valid 
because it includes incorrect data (SCK). However. this was not enough to help 
Martina realize the mistake in her argument. It is the second move that effectively 
helps Martina realize the mistake in her argument as the other students in the group 
tell Martina that her set of towers includes duplicates (“they are all the same”) and 
one student even removes the duplicates from her set of towers. This highlights the 
importance of the view of argumentation as a social practice which emphasizes social 
and cultural aspects and persuasion as its main function, compared to a view of 
argumentation that emphasizes structural or cognitive aspects and validation as the 
main function of the process (SCK). In this episode, the view of argumentation as a 
social practice allowed the teacher to use students’ collaboration in the evaluation of 
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a mathematical argument as a strategy for supporting argumentation (KCT). The 
strategy helped Martina realize abandon an invalid argument. 

4.2 Counterexamples to challenge arguments 

In IML sessions, students eventually arrived that at the correct solution that there are 
in total sixteen towers four-tall when choosing from two colors. The teacher 
challenged the students to justify the solution. One student, Gabriel (Gabe) built four 
groups of four towers and then said that there are sixteen towers in total because “four 
times four is sixteen,” (See Figure 1).  When the teacher asked the student why he said 
“four times four?” the student said “you can divide the sixteen towers into groups of 
four towers each.” The teacher was not convinced by the student’s explanation, but 
did not know how to challenge it and walked away. In the debriefing meeting that 
followed the session, the teacher shared with the audience her difficulty in challenging 
the 4x4 argument admitting that she did not know how to “elicit the convincing 
argument” from the student: 

T1:  Gabe said, “Sixteen divided by four is four.” I am like, “Well, what does 
  that have to do with what we are doing?” So, the question I have as a  
  facilitator is, what do I do in order to elicit the convincing argument?  
  Because even with Yonnie, he is getting at a point where he is getting 
  annoyed with me because I keep saying, “How do you know?” 

One teacher in the audience suggested asking the students to write their solutions 
on posters and then share them and discuss in class. However, the researcher who 
was facilitating the meeting proposed a different idea. She suggested first asking the 
students to predict how many towers there would be three-tall when choosing from 
two colors and then asking them to investigate empirically if their prediction was 
correct. The researcher explained how she thought the students’ reasoning would 
unfold. The students would predict nine towers by analogy with the 4x4 argument and 
then, when trying to build them, they would not find nine towers and would find only 
eight. They would also notice that every tower has an opposite-looking tower and 
would conclude that the total number of towers had to be even and would abandon 
their prediction: 

Researcher:  The way I frequently address that is to say, “Okay, how many 
[towers] do you think there would be if they were just three tall with two colors 
to choose from?” And Yonny [student] is going to say “Nine.” And I say, “Hm … 
that does work with your prediction. How are you going to test that one out?” 
And Yonny is going to say, “I guess I can build them.” Then I say, “But don’t 
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mess up your fours [four-tall towers they built].” Make sure they don’t destroy 
their four ones in order to do the three ones. And then when they can’t find 
them [the nine predicted towers] …there is a little bit of disequilibrium…Also, 
“what do you think it’s going to be for five?” Then they’re going to say “Twenty-
five.” Many people say, you know, “We know it’s going to be even. So, it can’t 
be nine. So, it must be one less.” People of all ages stay with the four by four 
but modify it because we know there are opposites. It’s got to be an even 
number of them. Eight is one fewer than nine. So, it’s got to be twenty-four. I 
would keep pushing them in all the ways you are thinking about. That is just my 
suggestion.  

In the following session, the teachers implemented the researcher’s suggestion 
and events unfolded exactly as the researcher had predicted. Several students 
predicted that there would be “nine” towers three-tall when choosing from two colors. 
One student, Mohamed, said, “Maybe nine because three times three equal nine.” 
However, the students could not find 9 towers. They found only eight towers. Also, 
Martina, the student in the previous episode, noticed that every tower had a “double” 
and concluded that that there could not be nine towers because the total number of 
towers had to be an even number: 

Martina: I said if it was 9 there would be like double of them because of the 
   opposite of one another. Like this one blue (BBB) and this one is  
   yellow (YYY) there would be another one. Except there would be an  
   opposite. So, it has to be an even number.  

Based on Toulmin’s scheme, Gabe’s argument can be coded as follow: For towers 
four-tall there are four groups of four towers each (data). Therefore, the total number 
of towers must be sixteen towers (claim) because the total number of towers must 
“height x height” (implicit warrant).  The implicit warrant in Gabe’s argument is 
supported by the students’ prediction that there would be nine towers three-tall when 
choosing from two colors because “three times three equal nine,” where “three” is the 
height of the towers. However, is not valid as a general warrant as it did not work for 
the three-tall towers problem when choosing from two-colors. This episode highlights 
the importance of counterexamples in supporting argumentation. The three-tall 
towers problem when choosing from two colors served as a counter-example to the 
“height times height” general warrant implicit in the “4x4” and “3x3” arguments. If 
the warrant was correct, there would be 3x3=9 towers three-tall when choosing from 
two colors. However, the students could not find nine towers and could not support 
the “height x height” warrant implicit in the 4x4 argument. Knowledge of 
counterexamples that challenge particular arguments can be considered an example 
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of SCK. This episode shows that such knowledge can help support argumentation by 
challenging invalid mathematical warrants (KCT). 

 

Figure 1.  Gabe (on left) built for groups of four towers each when choosing from two colors 

4.3 Knowledge of Students’ argumentative strategies 

In the 4x4 argument above the researcher introduced her suggestion by saying “The 
way I frequently address that is to say...”, “Yonny is going to say…,” and “Many 
people say...” This suggests that the researcher was using her knowledge of how 
students reason when working on the tower problem to come up with the suggestion. 
The researcher knew that students often came up with invalid warrants such as the 
“height x height” embedded in the 4x4 argument and designed interventions to 
challenge them using counterexamples such as the three-tall tower problem when 
choosing from two colors. In contrast, in another episode in which students were 
asked to build towers three-tall when choosing form three colors, Yonny, the student 
mentioned in the 4x4 argument above, used a reasoning-by-cases strategy and a 
“diagonal strategy” to prove that he has built all towers within the cases (See diagonals 
in Figure 3). An example of the application of the diagonal strategy to prove that all 
towers with three reds and one yellow (3R and 1Y) have been found is to show that the 
yellow cube has occupied all possible positions in the tower forming a (yellow) 
diagonal. Teacher T5 explained during the debriefing meeting that he was familiar 
with the use of the strategy when building towers from two colors, but was surprized 
to see it being used with towers with three colors: 

T5:  I don’t know why in my mind I didn't think it would work when I went  
  around to see his. At first, I didn’t say anything to him. I’ve learned that.  
  But I just looked at it and asked him to explain it, but now it makes sense.
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The statement suggests that not knowing that the diagonal strategy could be used 
with towers with three colors constrained the teacher’s support of Yonny’s reasoning 
process (I didn’t say anything to him…. But I just looked at it and asked him to 
explain it). This and the way the researcher introduced het suggestion in 4x4 episode 
highlight the importance of KCS in supporting argumentation. It shows that having 
knowledge of argumentative strategies that students are likely to use when making 
argumentation (KCS) can help teachers design effective strategies for support 
argumentation. In the 4x4 argument, knowing that students could use the “height x 
height” argument helped the researcher come up with a counterexample to challenge 
the argument. However, T5 did not know that students could use the diagonal strategy 
with three-color towers and this limited the teacher’s ability to support a student in 
developing of a valid argument based on this strategy. Overall, knowledge of students’ 
typical reasoning or argumentation support strategies for promoting argumentation 
that build on students’ argumentative reasoning (KCT). The three-tall tower problem 
when choosing from two colors was carefully designed task to be a counterexample to 
the “height x height” argument in 4x4 episode. 

4.4 Representation 

While working on finding all towers 3-three cubes tall when choosing from three 
colors, Yonny came up with the tower arrangement displayed in Figure 2. The 
arrangement shows “opposite” groups of towers (i.e., towers in one group are 
opposites of towers in the other group) and diagonal lines in different colors running 
through all groups except the groups of single-color and three-color towers. Yonny 
told the teacher that there were 27 towers in total because “I can’t find [any more of] 
them.”  The teacher said, “that’s not a proof” and Yonny responded, “I used opposites” 
and explained his idea using the diagonal lines: 

T1:   Wait. What do you mean? So, these are opposites?  
Yonny: Yeah. 
T1:   Explain it to me why? 
Yonny: Because like I said before. You got the yellow in a little line here  
   [traces the yellow diagonal in towers 2R1Y]. You got the red in the  
   little line here [traces a red diagonal in the opposite group of towers] 
T1:   What do you call that line? 
Yonny:  A diagonal line 
T1:   Ok, so you are saying there is a yellow in this diagonal [towers 2R1Y]  
   and a red in this diagonal [towers 2Y1R]? So, what does that mean?  
Yonny:  They are opposites. So, you got yellow and the red on both sides [of 
   the diagonal] 
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The teacher turned her attention to the pairs of towers with three colors in the 
arrangement. The teacher started to put the towers together and then stopped and 
asked if the towers could form a group. Yonny said “No. because there is no other 
similar [sic opposite group],” indicating that the group would not have an opposite 
group. The teacher then turned her attention to the diagonals and pointed out that 
there were no diagonals in the group of towers with three colors. Yonny stared at the 
towers for a little bit and then all of a sudden had an “aha” moment. He reorganized 
the towers into two opposite groups of three towers each and revealed red diagonals 
running in opposite directions in the groups (Figure 3): 

T1:   Would you put these [towers with three colors] together? Are they  
   similar in any? 
Yonny: No because there is no other similar [i.e. Opposite group] [puts the 
   towers back into pairs of opposite towers] 
T1:   Well, ok. All right. I see why these [YYY; BBB; RRR] would go  
   together. Tanisha [student seating at the same table], you see his  
   diagonals here? He’s paired them up in these groups where he has 
   these diagonals going down? [Turns back to Yonny] What about 
   these here [towers with three colors]?  
Yonny:  Those no… oooh. I think I got something. I think I got something. Oh. 
   I am so smart. Like that [reorganizes the towers with 3 colors in two  
   groups of three towers: BYR; BRY; RYB and RBY; YRB; YYB. A red  
   diagonal running through each group]. Like that? Cause see… Oh  
   shoot. See [explains how the groups are opposites] you got the two  
   yellows and the [two] blues switch and you got these [red cubes]  
   going in the same diagonal. You got these and blue right here and you  
   got.  
T1:   [Staring at the towers with three colors] Well, I see the diagonal here 
   [in one of the groups] but I don’t see [a diagonal there in the other  
   group…]. Ooohhh it [the diagonal run] in the opposite way. Cool.  
   Hum. Hum. Very cool. 

Yonny presents a proof-by-cases argument. He built 9 groups/cases of towers with 
3 towers each (data). Since he believes he has all possible groups and all towers in 
each group (warrant), he concludes, by the proof-by-cases argument (implicit 
backing), that there must be 27 towers three-tall in total (claim). The “opposites” 
strategy helps Yonny account for all cases/groups and the diagonals assures him that 
he has all towers in each case/group. However, Yonny does not initially apply the 
“opposite groups” and the “diagonal” strategies consistently across the arrangement. 
The towers with three colors are not (1) organized in opposite groups and (2) there 
are no diagonals running through them as is the case with other towers in the 
arrangement. The teacher’s intervention helps Yonny addresses these challenges and 
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it shows the importance of attending to how mathematical arguments may be 
represented in supporting argumentation (SCK). During the episode, the teacher pays 
close attention to the tower representation. This allows the teacher to see that towers 
with three colors are organized in opposite groups and there are no diagonals running 
through them as the other towers in the arrangement. The teacher then challenges 
Yonny organize the towers as a group (Would you put these together? Are they similar 
in any?) and to show diagonals running through the towers (What about these here 
[where are the diagonals]?). Yonny addresses these challenges successfully and is 
finally able to apply his proof-by-cases argument consistently to the entire tower 
arrangement. The previous episode showed that understanding students’ arguments 
is key for supporting argumentation. This episode shows that attention to students’ 
representations can help teachers identify and find ways to best support students’ 
arguments (KCT). 

 

Figure 2.  Yonny ’s initial arrangement of towers for his solution to the 3-tal 3-colors problem 

 

Figure 3.  Yonny ’s final arrangement of towers for his solution to the 3-tal 3-colors problem 
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4.5 Challenging arguments based on abductive reasoning 

In IML sessions, there were several instances in which students justified their 
solutions by simply describing the models they were able to build to solve the tower 
problem. In the 4x4 argument above Gabe argues that there are in total sixteen towers 
four-tall when choosing from two colours because he built a model with four groups 
of four towers. In example below also involving the four-tall tower problem when 
choosing from two colors, James and Tanisha built four pairs of opposite towers and 
argued that there are eight towers in total because “4x2” equals eight: 

T1:   So, how can you prove to me that you have all of them? 
James: I was thinking that you have to multiply four by two because there 
   are four cubes in a tower and there are two colors. I mean, you have  
   to multiply the height by the [number of] colors [in a tower]  
Tanisha: And I said that’s how you can find out how many towers we got. You  
   can say two [opposite towers] times four [times] equals eight  
   [towers]. 

James’ and Tanisha’s explanations simply describe the models they built. They 
built four pairs of opposite towers, which equals 4x2 or eight towers. When the teacher 
helped them see that they could build at least two more towers (YYYY and RRRR), 
bringing the total number of towers to ten, James said that the two extra towers “don’t 
count’ and Tanisha said “You will do five times two:”  

T1:  Now you agree that there are ten (towers). But what happens to that two 
  times four is eight and four times two is eight, that mathematical thing  
  that you were talking about? 
Tanisha: [Reorganizes her towers into five pairs of opposite towers] I get the  
  same. Because you still can do it my way, but it will just be five on the  
  side and two. You will do five times two. 
James: Now I am saying that these two [the extra towers], they are the same 
   colors. They really don’t count. 

James and Tanisha continue to present explanations that describe the models that 
they built. James says that the two extra towers “don’t count,” which preserves his 
original explanation by applying it to the group of towers with two colors. Tanisha 
says “you still can do it my way…You will do five times two,” which is simply a way of 
counting the new set of five pairs of opposite towers that she was able to build with 
the addition of two extra towers. The students’ emphasis on models that they were 
able to build suggests that the warrant supporting their arguments is empirical. For 
example, the 4x2 argument can be coded as follows using Toulmin’s’ scheme:  There 
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are be at least four pairs of opposite towers (data). Since no more towers were found 
despite trying (implicit empirical warrant), there must be only eight towers in total 
(claim). The empirical warrant is evident in Tanisha’s response “you will do five times 
two” when she finds out that there can be two extra towers. She adjusts her response 
to the new set of towers that she has been able to find. 

The 4xx and 4x2 episode shows the importance of knowing how to challenge 
abductive forms of reasoning (KCT). In abductive reasoning students present the best 
or most plausible explanation to support their claims and it can be the model they 
were able to build if it supports the claim that they want to make. In the 4x2 episode, 
four pairs of opposite towers (or 4x2) does equal to eight towers which the students 
believe to be the total number of towers because they could not find more towers. The 
challenge in countering arguments based on abductive reasoning is that it can be 
difficult to cause a cognitive disequilibrium in the students reasoning because the 
explanations presented are plausible or fit the argument that they are trying to make. 
However, the 4x4 episode above may suggest ways for challenging this type of 
reasoning. The teacher uses a suggestion from a researcher to ask the students to 
empirically investigate the validity of their prediction that there would be 3x3=9 
towers three-tall when choosing from two colors based in their 4x4 model. The 
prediction does not hold which challenges the warrant in the 4x4 argument. This 
suggests that asking students to (1) empirically investigate the validity of general 
warrant that follow from their argument and/or (2) using counterexamples (the two-
tall three-color tower problem) can help successfully challenge arguments based 
abductive forms of reasoning.  

5 Discussion 

This study examined the relationship between subject-related pedagogical knowledge 
and mathematical instruction using the Mathematical Knowledge for Teaching (MKT) 
framework. Specifically, the study examined how aspects of mathematical knowledge 
for teaching in the areas of SCK, KCS, and KCT that support teachers in promoting 
argumentation in mathematics classrooms. The results reveal several aspects 
including (1) knowledge of counterexamples, (2) a view of argumentation as a 
discursive process, (3) knowledge of (students’) typical argumentative strategies, (4) 
representation of mathematical arguments and (5) knowledge how to challenge 
arguments based on abductive forms of reasoning. These aspects can help teachers 
elicit valid mathematical arguments from students in collective problem solving. The 
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results offer important insights into teacher knowledge and practice of argumentation 
in mathematics classrooms.  

There are several definitions of argumentation, which reflects different 
perspectives on argumentation and its function (Schwarz et Hershkowitz, 2010). 
Some perspectives emphasize cognitive and structural aspects and validation as the 
main function of argumentation. Other perspectives empathize social and discursive 
aspects and persuasion as the main function of the argumentation (See., van Eemeren 
et al, 1996; Krummheuer, 1995; Baker, 2003). In a study that examined how teachers 
select tasks to promote argumentation, Ayalon and Hershkowitz (2017) found that 
teachers emphasized socio-cultural aspects of argumentation including student-
teacher interactions and collective processes of argumentation (where arguments are 
constructed and critiqued). Ayalon and Hershkowitz used this finding to recommend 
incorporating this dimension into current frameworks for examining the effectiveness 
of textbook tasks for promoting argumentation, which they argue tend to focus mainly 
on structural and cognitive aspects of argumentation. The results of this study provide 
further support for an emphasis on the socio-cultural view of argumentation, showing 
that it can help teachers support argumentation in mathematics classrooms by 
allowing them to engage students in mathematical discussions that help challenge 
invalid arguments.   

Studies show that introducing representations or contexts that are familiar to 
students and using counter-examples are two of the least frequent instructional 
actions in mathematics classrooms (Cengiz et al, 2011). In this study, a teacher was 
able to identify elements of an emerging reasoning-by-cases argument by examining 
a student’s tower representation (groups/cases of towers and a strategy for proving 
that all towers in a case were found) and then use it to challenge the student to apply 
the argument consistently across all cases and complete the argument. In another 
episode, the same teacher used a counterexample to successfully challenge an invalid 
warrant in a student’s argument. This shows that students’ representations and 
counterexamples can be important tools for supporting argumentation in 
mathematics classrooms and need to be emphasized more in mathematical 
instruction. 

In many episodes in this study, supporting argumentation involved attending to 
and building on students’ particular reasoning or arguments. A researcher suggested 
a counterexample that was used to challenge an invalid warrant based on her 
knowledge of how students reason when working on the Tower Problem. The attempt 
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by teacher T5 to support a student, Yonny, in building an argument to support a 
solution to the three-color tower problem was constrained by the teacher’s lack of 
familiarity with the use of the “diagonal” strategy in the problem to prove that all 
towers of a particular were found. In contrast, teacher T1 successfully helped the 
student develop a complete proof-by-cases argument after identifying aspects of the 
argument in the students’ tower representation. These episodes highlight the 
importance of teachers’ understanding of students’ mathematical reasoning in 
supporting argumentation and suggest that the supporting argumentation is more 
likely to be effective when it builds on students’ argumentative reasoning.  

The results of this study show the challenges of countering arguments based on 
abductive forms of reasoning. In mathematics classrooms this type of reasoning is 
common and one way students often engage in such arguments is by offering 
explanations that simply describe the models that they built to solve a problem. The 
challenge in countering such arguments is the difficulty to cause cognitive 
disequilibrium in students’ thinking because the models often support the solution. 
The results of this study suggest that teachers can challenge abductive types of 
arguments by inviting students to empirically investigate the validity of general 
warrant that support the particular argument through counterexamples. As students 
find out that the general warrant is not valid, they begin to question the validity of 
their argument.  

The results may emphasize individual aspects of MKT knowledge in the areas of 
SCK, KCS, and KCT that help teachers support argumentation in mathematics 
classrooms. However, as some episodes suggest, a combination of aspects in the three 
areas is more likely to help teachers successfully support argumentation in 
mathematics classrooms. Being able to make sense of students’ mathematical 
reasoning and arguments (KCS) can help teachers design appropriate interventions 
for supporting the students’ development of valid arguments (KCT). However, making 
sense of students’ mathematical reasoning and arguments may require teachers’ 
understanding of and skills in argumentation as a mathematical process (SCK). The 
episode involving the counterexample helps illustrate the idea. The researcher 
suggested the counterexample (KCT) based on her knowledge from experience of 
students’ reasoning when working on the tower problem (KCS) and also her 
understanding of the general warrant that was implicit in the student’s 4x4 argument 
(SCK). The combination of aspects from the three knowledge categories helped 
successfully challenge the argument.  
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The results of this study have implications for practice and research. First, the 
results emphasize the importance of building on students’ mathematical reasoning in 
supporting argumentation. This suggests that professional development programs 
need to particular attention to teachers’ understanding of students’ mathematical 
reasoning and argumentation if they are to prepare teachers to support the practice 
more effectively in mathematics classrooms. Second, teachers can build knowledge of 
students’ mathematical reasoning and argumentation from experience. However, in 
this study a researcher came up with the counterexample used to challenge a student’s 
argument based on the researcher’s knowledge of how students’ reason when 
engaging in the tower problem. This suggests that close collaboration between 
practitioners and researchers can help create important synergies for generating 
important knowledge of students’ mathematical reasoning that can help teachers 
support argumentation in mathematics classrooms. Third, the results emphasize the 
importance of teachers paying more attention to students’ mathematical 
representations and using more counter-examples in instruction. These are two of the 
least frequent instructional actions in mathematics classrooms. Yet, this study shows 
that they can help for support argumentation in classrooms.  Finally, this study 
suggests that a potentially important area for research could be the extent to which 
professional development models such as the IML project involving a close 
collaboration between teachers and researchers in after-school settings can be 
successful in supporting teachers in building the knowledge they need to support 
argumentation and thoughtful mathematical activity in mathematics classrooms.  
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The ability to apply mathematical concepts and procedures in relevant contexts in 
engineering subjects sets the fundamental basis for the mathematics competencies 
in engineering education. Among the plethora of digital techniques and tools arises 
a question: Do the students gain a deep and conceptual enough understanding of 
mathematics that they are able to apply mathematical concepts in engineering 
studies? This paper introduces the use of languaging exercises in the engineering 
mathematics course ‘Differential Calculus’ during the spring semester 2020, at 
Tampere University of Applied Sciences, TAMK. In this study, the students’ 
conceptual understanding and learning of differential calculus is researched. In the 
learning process, the languaging method is used to deepen the conceptual 
understanding of the concepts of differential calculus. Pre-test/post-test setup was 
used to see the possible gain in conceptual understanding. During the course, 
students did online assignments, which included languaging exercises. Students 
described the concepts of differential calculus using natural language, pictures, or 
a combination of them. The students were also asked to fill in a self-evaluation form 
to collect their perception of their own knowledge of mathematical skills. Mid-term 
and final exams summarized the acquired knowledge. The study aimed to enhance 
the learning outcomes and to gain a deeper understanding of mathematical 
concepts by exploiting the languaging method.  

Keywords: languaging, mathematics, engineering, conceptual understanding 

1 Introduction 

The way we teach and learn mathematics has changed in the past few decades. 
Technological tools have enriched the resources available for teaching and learning 
through ‘computer aided’ devices, through appropriate software, and through 
learning platforms. Today’s students are more accustomed to learning with the help 
or the aid of state-of-the-art technologies. Using tools and calculators to solve 
exercises speeds up the calculations and provides usually more accurate results. 
Among this plethora of digital techniques and tools arises several questions: Do the 
students gain a deep and conceptual enough understanding of mathematics that they 
are able to apply mathematical concepts in engineering studies? Do the students just 
master the tools without understanding what they are doing and what does the result 
mean, e.g. I solved a derivative – but what does it actually mean?   

ARTICLE DETAILS 

LUMAT Special Issue  
Vol 10 No 2 (2022), 171–189 

Pages: 19 
References: 26 

Correspondence: kirsi-
maria.rinneheimo@tuni.fi 

https://doi.org/10.31129/ 
LUMAT.10.2.1729 

https://creativecommons.org/licenses/by-nc/4.0/
http://www.luma.fi/en
https://www.helsinki.fi/en
mailto:kirsi-maria.rinneheimo@tuni.fi
mailto:kirsi-maria.rinneheimo@tuni.fi
https://doi.org/10.31129/LUMAT.10.2.1729
https://doi.org/10.31129/LUMAT.10.2.1729


LUMAT 

172 
 

According to the literature (Woods et al., 1997; Bok, 2006) and the authors’ own 
experience, students seem to be able to mechanically repeat the known procedures to 
solve problems, to carry out assignments quite well – but they do not necessarily learn 
to think. In engineering mathematics, the foundation of learning mainly evolves from 
thorough understanding of mathematical concepts and the ability of exploiting 
abstractions to solve engineering problems. The fundamental aim of mathematics in 
engineering education is mathematics competencies, which means the ability to apply 
mathematical concepts and procedures in relevant contexts (Alpers et al., 2013).  

This paper presents how the method of languaging is implemented to clarify 
mathematical concepts and to promote deeper learning. By making concepts of the 
subject more concrete to students, the aim is to clarify mathematical expressions and 
lead to the students’ better understanding of the subject.  

In a previous study it was shown that languaging exercises do have an effect on 
knowledge of the theory (Rinneheimo et al., 2020). In that study, an independent-
samples t-test was conducted to compare if the students gain a better knowledge of 
the theory with the help of the languaging exercises. As a result, there was a significant 
difference in the scores for using the languaging exercises during the course and not 
using the languaging exercises during the course.  

In this paper, a deeper view on the understanding of the concepts with the help of 
languaging method and self-evaluation has been taken. This paper focuses on 
promoting higher understanding of concepts by utilizing languaging exercises. 

2 Theoretical background 

2.1 Mathematical thinking and languaging exercises 

Mathematical thinking is usually expressed with symbols, expressions, calculations 
etc. (by symbolic language). Languaging in mathematics refers to expressing a 
student’s mathematical thinking through different ways, such as writing/orally using 
natural language, by pictures, or by a combination of these (by natural language, 
mathematical symbolic language, or pictorial language) (Joutsenlahti, 2010; 
Joutsenlahti et al., 2013). O’Halloran (2015) has presented that language assists in 
reasoning the mathematical process and its results. Symbols describe mathematical 
relations and visuals present images to concretize mathematical relations 
(O’Halloran, 2015). In this study, the languaging of mathematics forms an approach 
to making meanings of mathematical concepts and procedures. This meaning-making 
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process enables the students’ mathematical thinking and knowledge construction 
(Morgan, 2001; Schleppegrell, 2010; Joutsenlahti et al., 2017). Solving a 
mathematical exercise or presenting the solution to a mathematical exercise by using 
different languages assists a student to organize their own mathematical thinking and 
eventually gaining a better understanding of that mathematical concept or procedure 
(Joutsenlahti et al. , 2015; Joutsenlahti et al., 2017). 

There are different types of languaging exercises and the exercises used in this 
study are presented in Table 1. 

Table 1.  Languaging exercises (Joutsenlahti, 2010; Joutsenlahti et al., 2013; Joutsenlahti et al., 2014) 

Type of the languaging exercises Description of the exercises 

Argumentation of the solution. 
 

Student writes or selects a natural language explanation for 
the solution in place of using symbolic language (or vice 
versa). Pictorial language could also be used.  

 
Explaining in your own words.  

 
Student provides an explanation by using natural language.  

    

Adding missing parts of the 
solutions  

The problem solution is uncompleted, and the student adds 
the missing parts. 
  

Seeking errors.  
Student has to find errors or missing items in the given 
solution and to correct the errors.  

 
Some examples of the languaging exercises used in the Differential Calculus course 

are presented in Figures 1 – 3. In Figure 1 is presented two languaging exercises where 
student interpreted the graph. From the graph of the function h(t) (height h (m) is a 
function of time t (s)) the students were asked to explain in their own words: 1.) what 
is the difference between the markings h(1) and h´(1), 2.) how would they define the 
derivate for the function at the point t = 3 graphically, numerically and symbolically. 
They also needed to think about the unit for each reply. From the graph of the function 
f(x) the students were asked a) what is the average rate of change of the function f(x) 
from x = 0 to x = 3 and b) what is the rate of change of the function f(x) at the instant 
that x = -1 and x = 1. 
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Figure 1.  Examples of the languaging exercise interpreting the graph. 

In Figure 2 is an example of the languaging exercise “Seeking errors”. Students 
have to find errors or missing items in the given solution and to correct the errors. 
The exercise has been modified from task 10 of the longer mathematics course 
matriculation exam from spring 2017. 

 

Figure 2.  An example of the languaging exercise seeking errors (Ylioppilastutkintolautakunta, 2017). 
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In Figure 3 is a part of the languaging exercise “Adding missing parts of the 
solutions”. In this kind of exercise, the problem solution is uncompleted and the 
students add the missing parts. 

 

Figure 3.  An example of languaging exercise adding missing parts. 

The use of languaging has given good results in mathematics education 
(Joutsenlahti et al., 2013; Joutsenlahti et al., 2014; Sarikka, 2014; Joutsenlahti et al., 
2016). Languaging exercises make the student think about what they are doing, not 
only mechanically calculate the exercise (Rinneheimo et al., 2019). One challenge of 
mathematics teaching is how to describe mathematical thinking and how to make it 
visible. The languaging exercises enable making the students’ mathematical thinking 
processes visible and also support the development of these processes (Joutsenlahti 
et al., 2017). 

Hiebert and Lefevre (1986) divided the mathematical knowledge to conceptual 
knowledge and procedural knowledge. Conceptual knowledge has been defined 
as understanding of the principles and relationships that underlie a domain, and 
procedural knowledge consists of the symbol representation system of mathematics 
and the algorithms and rules for completing mathematical tasks (Hiebert et al., 1986). 
Kilpatrick, Swafford and Findell (2001) described students’ mathematical proficiency 
with five components as follows: 

• conceptual understanding – comprehension of mathematical concepts 
• procedural fluency – the ability for flexible, efficient, accurate and appropriate 

calculation 
• strategic competence – problem solving 
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• adaptive reasoning – ability for logical thinking, reflection, explanation and  
• justification 
• productive disposition – habitual inclination to see mathematics as sensible, 

useful, and worthwhile, coupled with a belief in diligence and one’s own efficacy. 

These five components of the mathematical proficiency can be seen as one way of 
describing the features of the mathematics. This study focuses on the skills’ 
conceptual understanding and procedural fluency as follows: the student has the 
ability to use mathematical concepts in the right context and manages the procedures 
behind the concepts. In this study, these skills are discussed as conceptual 
understanding and the capability has been studied with the languaging exercises, as 
illustrated in Figure 4. 

 

Figure 4.  Building the conceptual understanding. 
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The languaging exercises have been formed using three languages (Joutsenlahti, 
2010; Joutsenlahti et al., 2013). The exercises form an approach to making meanings 
of mathematical concepts and procedures (Morgan, 2001; Schleppegrell, 2010; 
Joutsenlahti et al., 2017), which contributes to conceptual understanding (Kilpatrick 
et al., 2001). 

2.2 Meaning making and conceptual understanding 

The purpose of using languaging exercises that express a student’s mathematical 
thinking through three languages (natural language, mathematical symbolic 
language, and/or pictorial language), is to develop the student’s own meaning making 
process and lead to the conceptual understanding. Boudon (2016) pointed out in his 
study that writing mathematics does not only strengthen the student’s conceptual 
understanding, but can also develop their ability to communicate the meaning of such 
concepts. According to Morgan (2001), writing and the use of natural language in the 
solutions of mathematical exercises develop conceptual understanding, the attitudes 
of the learners towards mathematics improved, and they also facilitate the assessment 
work of teacher.  

Also, according to Moschkovich (2015), explaining meanings, constructing 
arguments and justifying procedures leads to conceptual understanding. Research 
has shown that the use of natural language and drawings helps most students in 
solving mathematical exercises (Joutsenlahti et al., 2016). Languaging exercises and 
presenting mathematics in writing enables a student to structure and clarify their 
mathematical thinking (Joutsenlahti, 2010; Kangas et al., 2011). 

3 Research process 

3.1 Research questions 

In this study, the students’ conceptual understanding of differential calculus concepts 
is researched, and the capability has been studied with the languaging exercises. In 
this article, we concentrate on the following research questions: 

1.  How does the students’ languaging ability develop throughout a course? 
2.  How did the mathematical languaging clarify mathematical expressions? 
3.  How did develop the conceptual understanding? 
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In the following chapter, we present the data collection process and the analysis of 
the data. The key idea in the teaching process and data collection was collect data from 
several sources during the whole course. 

3.2 Data collection and analysis 

This paper introduces the use of languaging exercises in the engineering mathematics 
course ‘Differential Calculus’ taught at Bachelor’s level during the spring semester 
2020 at TAMK. In this study, there were two engineering student groups and the 
number of active students was altogether 64. Course materials were a book, a formula 
book, a symbolic calculator and as additional material, online exercises and timetable 
in Moodle learning platform.  

The data was gathered from the several sources:  
At first pre-test/post-test setup was used to see the possible gain in conceptual 

understanding. In the tests, students described, by natural language or by interpreting 
a graph, the concepts of differential calculus.  

Secondly during the course, the students had six compulsory online assignments 
to be completed as homework. These assignments were prepared by using different 
question types in Moodle and most of the exercises in these online assignments 
were languaging exercises. This study compiles 14 languaging exercises from these 
online assignments. The topics of the assignments used in this study were graphical, 
numerical, and symbolic differentiation, and applied exercises. In the exercises, the 
students were asked to explain course concepts in their own words, or to seek errors 
and explain in their own words the correction to the error. Also, students interpreted 
graphs and in some exercises the solution to the problem was explained with natural 
language and the student was asked to complete or select from the list the missing 
calculations or symbolic presentations. Examples of the used languaging exercises are 
presented in Figures 1–3. 

Students were also asked to fill in a detailed self-evaluation form weekly to collect 
their perception of mastery of that week’s topics. In the form, each week’s learning 
objects were described using natural language. The then students typed a letter a - d 
to the cell according to their perception of the mastery of the topics (a = green: I have 
learnt this so well that I could teach it to my peers. b = blue: I feel I understand this 
topic. c = orange: I think I have understood this partially, but it is partially unclear. d 
= red: I need more practice to understand this.). Part of the form is presented in Figure 
5. 
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Figure 5.  Self-evaluation form (Peura, 2018). 

During the course there were two exams (mid-term and final), which summarized 
the acquired knowledge. The first exam contained mechanical calculations, such as 
differentiate the given function, and a languaging exercise, which asked the students 
to interpret a graph. The second exam also contained a languaging exercise, where 
students explained, with their own words, mathematical concepts of the course. The 
second exam mainly consisted of applied exercises where the students first needed to 
invent the mathematical model of the assignment and then to solve it. The data 
collection is summarized in Table 2. 

Table 2.  Collection of the data. 

Data sources Languaging exercises N 

1) Pre-test/post-test  6 (Figure 6, in chapter 4.1) 53 

2) Online assignments  14 64 

3) Self-evaluation form  In the form each week’s learning objects were described using 
natural language (in Figure 5 is part of the form). 59 

4) Exams  

mid-term: included languaging exercise, which asked the student 
to interpret a graph                                                                               
final: included languaging exercise, where students explained 
with their own words’ mathematical concepts of the course 

64 

 
The data were analyzed by mixed methods. The MS Excel program was used for 

typical statistical analysis (e.g., in comparing distributions, arithmetic mean, 
variation, median, correlation, frequencies). The qualitative analysis was made by 
theory guided content analysis (e.g., categorizations). Classification into the four 
categories was used while analyzing the students’ answers to pre-test/post-test, online 
assignments, and exam replies as follows: wrong/do not know (0 points), just a little 
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right/only some idea of the task (1 point), partly correct (2 points) and correct (3 
points). Self-evaluation form’s replies were categorized as follows: 0 = I need more 
practice to understand this, 1 = I think I have understood this partially, but it is 
partially unclear, 2 = I feel I understand this topic and 3 = I have learnt this so well 
that I could teach it to my peers.  

Based on the data it was possible to interpret what kind of meanings the students 
constructed for the given mathematical expressions, and to evaluate how had they 
understood the mathematical concepts. The students were also asked to fill in a self-
evaluation form to summarize their perception of their own knowledge of 
mathematical skills. 

The students were aware of this study while data was collected during the course. 
They were able to choose whether their answers could be used in the study. All 
students gave permission to use their answers in the study. The students were 
informed that at all stages the processing of data is completely confidential and from 
the results of the study, the information provided by an individual student could not 
be identified. While students filled in a detailed self-evaluation form they used 
nicknames as the table was visible to all students. Students informed the teacher of 
their nickname. This research data will be used (in an anonymous manner) in this 
publications and in correspondence author’s dissertation research/ when all the 
necessary data-based research has been done and then the data will be destroyed. 

4 Results 

This chapter presents the results of using languaging exercises on the course. 
First, the pre-test and post-test results are investigated for finding out how the 
students perceive their learning of the course topics. Second, the correlation between 
languaging skills and learning outcomes is investigated. Third, students’ skills in 
different types of exercises (symbolic calculus, languaging and applied mathematics) 
are presented in relation to final grade. And finally, the self-evaluation form is used 
to analyze the students’ perception of their own mathematical skills. 

4.1 How does the students’ languaging ability develop throughout the 
course? 

On the course, the pre-test/post-test setup was used to see the possible gain in 
conceptual understanding, but these tests did not affect the final grade. The test was 
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exactly the same in the beginning and the end, and it consisted of six languaging 
exercises, where students explained in their own words the concept of derivative, 
interpreted a graph, and explained how the derivative of the given function is defined 
graphically, numerically, and symbolically. The exercises are shown in Figure 7. 
Figure 6 presents a word cloud of students’ answers to open-ended question about 
derivative. For this figure the number of correct keywords in students’ answers were 
analyzed. 

 

Figure 6.  Word cloud of how the students understood the concept of derivative (N = 53). 

From Figure 6 we can perceive that languaging through writing has improved 
during the course. The students are able to formulate the concept of derivative at the 
end of the course in a more versatile and correct way. Pre-test shows that at the 
beginning of the course the most common reply was that derivative is related to a 
function. There were many blank and Don’t know/remember answers in the pre-test 
and only a few in the post-test. 
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Figure 7.  Gain chart. 

In Figure 7 are the averages of responses of 53 students to pre-test (left end of the 
line) and post-test (right end of the line). The left end of the line is the result of the 
responses to the exercise averaged over all respondents and the right end the 
responses to the final test, accordingly. Thus, the length of the line represents the 
average “amount of learning” during the course. It can be seen that explaining 
derivative symbolically, graphically, and the concept of derivative improved the most 
during the course. The exercise explaining in their own words the derivative 
graphically relates to the last exercise, where the students were actually asked to 
interpret the derivative of the function at the given point from a graph. In both 
exercises, the students improved very well during the course. Pre-test reveals that 
explaining in one’s own words what numerical derivative means was the least known 
matter and the learning outcome was also low here. The likely reason for this was that 
numerical solving was not practiced more than in a couple of exercises during the 
course. The second question had been answered well in pre-test and also in post-test. 
This question had three answer options, so this was a different type of question from 
the others, where the students had to explain in their own words or interpret the 
graph. 

These results (Figure 6 and 7) indicates that the students’ ability to correctly 
express mathematical concepts by writing has improved. When students express their 
thoughts out loud and by writing, they remember things better and they are able to 
apply them later (Lee, 2006). 
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4.2 How did the mathematical languaging clarify mathematical 
expression and how did develop the conceptual understanding?  

Next, the correlation between the online exercises that were languaging exercises 
and the exam points (Figure 8) was calculated. Figure 8 shows the exam points (y) as 
a function of points of languaging exercises (x). The Pearson's correlation coefficient 
r = 0,68 (N = 64) tells a moderate positive linear correlation between the final 
assessment and languaging exercises. Exactly the same online languaging exercises 
were used on the Differential Calculus course during spring semesters 2018 and 2019. 
Also, the final exam on those years was delivered in a similar way with similar kinds 
of exercises and the correlation (Pearson's correlation coefficient) between 
the grading and languaging exercises was as follows: 2018 r = 0,62 (N = 58) and 2019 
r = 0,62 (N = 73).   

 

Figure 8.  Correlation between the exam points and languaging exercises (N = 64). 

For a more in-depth study of how languaging exercises effects learning of 
concepts, the exercises in the final exam were investigated further (Figure 9). Figure 
9 presents the average points of the exam exercises in different final grade categories 
from 0 (fail) to 5 (best). The blue line describes the average points in symbolic 
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calculations, orange line in languaging exercises, and grey line in applications. The 
orange line shows a clear step between grade 0 and 1 (increased 35 %). After this step, 
the curve shows only a minor increase in grade categories 1 - 5. Based on this shape of 
the curve, the competence of the languaging exercises has a clear effect on passing the 
course. This raises the question whether acquiring a certain level in languaging skills 
forms a threshold for understanding mathematics. To investigate more this very 
interesting finding, the current data was supplemented with data from two previous 
years. The languaging exercises were exactly the same every year and the exercises in 
the exams were similar. Even with this three times larger data set the result is the 
same: there is a clear step in the languaging category between the grade 0 and 1 (36 
%, N = 195). 

 

Figure 9.  Exam exercises in three category (N = 64). 

Research questions 2 and 3 (see page 8) dealt with the questions if mathematical 
languaging clarifies mathematical expressions and does that lead to the students’ 
better conceptual understanding of the subject, which would help them to apply 
mathematics. Students, who did not pass the course, were able to do some mechanical 
calculations (symbolic) but did not get many points from the languaging exercises and 
even fewer from the applications (Figure 9). From Figure 9 we can also perceive that 
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students with a grade of five (5) stand out from other students in terms of competence 
in application exercises. They also got the best points in all categories. It seems that 
exercises where the students needed to apply their knowledge (grey line) has the 
highest discrimination power. 

The students were also asked to fill in a detailed self-evaluation form weekly to 
collect their perception of their own knowledge of mathematical skills. The table was 
visible to all students. Therefore, only nicknames were used on the table. This table 
served many pedagogical purposes: it made the students evaluate their own 
knowledge about the key issues of the week, it made them think through languaging 
of the covered concepts, as the subjects of the week were explained by using mainly 
natural language, it showed them that others are perhaps struggling with the same 
topics as well and for the teacher, it showed which topics students had found the most 
difficult. The teacher then had the possibility to give extra guidance for the subjects 
that were found difficult. 

Table 3 presents the averages of self-evaluations regarding the specific topic. The 
average of self-evaluations is calculated by first substituting the phrases (designated 
with letters a, b, c and d) with numbers 0 - 3 and then calculating the averages. Table 
3 shows the same thing as Figure 9: the students estimated that they are good at doing 
mechanical calculations (symbolic calculations) and application tasks are more 
demanding. 

Table 3.  Averages of self-evaluations (scale from 0 (I need more practice to understand this) to 3 (I have 
learnt this so well that I could teach it to my peers.), N = 59 

Topic 
Average (and standard 
deviation) of self-evaluations  

Regression and limit 2,15 (0,79) 
Introduction to derivative (what is derivative - graphically, numerically 
and symbolically)  2,40 (0,64) 

Symbolic calculations (derivative rules) 2,35 (0,77) 

Applications (partial derivatives and error estimation) 2,11 (0,76) 

Applications (finding maxima and minima using derivatives, Max-Min 
problems) 2,10 (0,83) 

Applications (the derivative as a rate of change, tangent line, rates of 
change per unit time) 1,72 (0,69) 

 
The Pearson's correlation coefficient between the final exam points and self-

evaluation was a moderate positive linear correlation (r = 0,61, N = 59). The students 
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with higher grades (4 – 5) showed only slightly better self-evaluations compared with 
the group average.  Students, who did not pass the course, seem to be overconfident 
of themselves, whereas the best ones seem to be somehow unsure of their knowledge 
and skills. Thus, the students seem to evaluate their knowhow “average”. Similar 
results have been found in another study of engineering students’ self-evaluations 
(Suhonen, 2019). This explains the rather small differences between averages in Table 
3. Nevertheless, the Table 3 shows which topics are the most difficult ones to the 
students.   

5 Discussion 

In this study was presented the use of languaging method, in which the ways to 
express mathematical thinking are expanded beyond mathematic symbolic language. 
The objective was to observe how engineering students understand the concepts of 
differential calculus based on this method. 

The use of languaging exercises on the mathematics course enables the teacher to 
interpret in more detail the students’ thinking and provides also a way for the teacher 
to evaluate the students’ understanding of the concepts. Also, the self-evaluation form 
provided the teacher valuable information of the difficulties the students encountered 
at the time while the subject was being covered, and thus the teacher was able to react 
and try to help the students proactively. 

The analysis from the pre-test/post-test setup indicates that the students had 
learned expressing the meanings of the mathematical concepts by natural language. 
The findings also indicate that the students, who passed the course, were able to 
express mathematical concepts by natural language and to explain the meaning of the 
concepts. 

Languaging exercises enable various types of ways to enhance the students’ 
mathematical thinking. Consequently, using different ways to express the 
mathematical concepts gives students a much clearer overall understanding of the 
mathematical concept in question. It seems that this helps especially those students, 
who struggle with mathematics (threshold of passing the course). Joutsenlahti and 
Kulju (2017) suggested that broadened ways of expressing mathematical thinking may 
help especially those students who have difficulties with mathematics and for whom 
mathematical symbolic language is difficult to comprehend. 

The course Differential Calculus used various methods for learning mathematics 
alongside the languaging exercises, such as videos, visualizations, and learning 
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analytics. According to Moschkovich (2013), exercises that provide opportunities to 
participate in mathematical activities, which use multiple resources to do and learn 
mathematics support, among others, the mathematical reasoning and conceptual 
understanding. Kilpatrick, Swafford and Findell (2001) have pointed out that 
conceptual understanding is the ability to present mathematical solutions in different 
ways and the ability to evaluate how to utilize different presentations for different 
purposes. The understanding of mathematical concepts and the relationships 
between concepts will create sustainable development from the point of view of 
learning, which leads to the students being able to apply the mathematics later on in 
their engineering studies. 

In the EDUCAUSE Horizon Report (2021), Horizon panelists were asked to 
describe key technologies and practices they believe will have a significant impact on 
the future of postsecondary teaching and learning. Six items rose to the top of a list as 
follows: Artificial Intelligence (AI), Blended and Hybrid Course Models, Learning 
Analytics, Microcredentialing, Open Educational Resources (OER) and Quality 
Online Learning. Three of these six technologies and practices identified in the report 
(learning analytics, OER, and AI) are returning entries from previous years’ reports. 

Learning analytics is a growing trend in all education. Many higher education 
institutions use digital learning management systems to deliver their courses, as was 
the case also in this study with the Differential Calculus course. These systems collect 
large sets of data about learners and their actions on the platform. Learning analytics, 
the data, offer a  view, for example, to studying and learning activities, but learning 
management system cannot record such activities as reading the course book or 
carrying out calculations on paper. The data is a very valuable source of information 
to teachers, instructional designers, and the students themselves. However, it mostly 
tells about studying and does not reveal what has been actually learned and what is 
the student’s perception of their own learning. In this study, the learning analytics 
view was combined with student self-evaluation, analysis data of online languaging 
exercises, and the actual learning outcomes. This forms a more comprehensive 
manner to look at the studying and learning and offers a way to try to find patterns 
and correlations. Further research is needed, but languaging exercises could be seen 
usable while creating education materials for learning and teaching mathematics, 
with the help of learning analytics and online learning to reveal mathematical 
thinking and conceptual understanding.  
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Algebraic thinking is an important part of mathematical thinking, and researchers 
agree that it is beneficial to develop algebraic thinking from an early age. However, 
there are few examples of what can be taken as indicators of young students’ 
algebraic thinking. The results contribute to filling that gap by analyzing and 
exemplifying young students’ early algebraic thinking when reasoning about 
structural aspects of algebraic expressions during a collective and tool-mediated 
teaching situation. The article is based on data from a research project exploring 
how teaching aiming to promote young students’ algebraic thinking can be 
designed. Along with teachers in grades 2, 3, and 4, the researchers planned and 
conducted research lessons in mathematics with a focus on argumentation and 
reasoning about algebraic expressions. The design of teaching situations and 
problems was inspired by Davydov’s learning activity, and Toulmin’s argumentation 
model was used when analyzing the students’ algebraic thinking. Three indicators 
of early algebraic thinking were identified, all non-numerical. What can be taken as 
indicators of early algebraic thinking appear in very short, communicative micro-
moments during the lessons. The results further show that the use of learning 
models as mediating tools and collective reflections on a collective workspace 
support young students’ early algebraic thinking when reasoning about algebraic 
expressions. 

Keywords: early algebraic thinking, learning activity, mathematical thinking, 
primary school, Toulmin’s argumentation model 

1 Introduction 

This article contributes an analysis of young students’ potential to develop algebraic 
thinking. In a research review on mathematical thinking, Goos and Kaya (2020) point 
out that two broad aspects of mathematical thinking are mathematical problem-
solving and mathematical reasoning. Translated to algebra, problem-solving and 
reasoning are activities in which indicators of algebraic thinking can be explored in 
the form of students’ communicative actions. In this article, I will consider algebraic 
thinking as a part of mathematical thinking (e.g., Blanton et al., 2015; Cai & Knuth, 
2011; Kaput, 2008; Kieran, 2004).  

A basic condition for developing knowledge in different areas of mathematics is 
students’ theoretical understanding of algebra (Davydov, 1990, 2008). Thus, algebra 
has a special position in mathematics since it is found in all other mathematical areas. 
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Both general reasoning in arithmetic, proof in number theory, and geometric 
formulas for area and volume use algebra as a working tool. In the form of equations, 
algebra is used in problem-solving in almost all mathematics. It is argued that a robust 
knowledge of algebra makes it easier for students to succeed in their further studies 
(Kieran et al., 2016; Matthews & Fuchs, 2020; see also Schoenfeld, 1995). However, 
many students find algebra difficult to learn (e.g., Carraher & Schliemann, 2007; 
Kieran, 2007; Matthews & Fuchs, 2020), and many teachers find it difficult to teach 
(Chick, 2009; Kilhamn et al., 2019; Röj-Lindberg, 2017; Röj-Lindberg et al., 2017). 
Algebra is also the mathematical area in which students perform poorly in all Nordic 
countries (Hemmi et al., 2021). Since it is regarded as challenging mathematical 
content, in the Western world algebra has tended to be introduced rather late, often 
as late as lower secondary school (see e.g., Bråting et al., 2019; Hemmi et al., 2021; 
Kilhamn & Röj-Lindberg, 2019; Stacey & Chick, 2004).  

However, for several decades now there has been substantial interest in the 
youngest students’ algebraic thinking, including their reasoning and problem-solving 
capabilities (e.g., Blanton et al., 2015; Bråting et al., 2019; Eriksson et al., 2019; Kaput, 
2008; Lins & Kaput, 2004; Schmittau, 2004, 2005). Kaput et al. (2008) argue that it 
is not only possible but also beneficial to early develop students’ algebraic thinking, in 
addition to their arithmetic thinking. In today’s Nordic school mathematics curricula, 
Grades 1–6, algebraic content such as patterns, equalities, and equations are 
introduced (Børne- og Undervisningsministeriet, 2020; Skolverket, 2019; 
Utbildningsstyrelsen, 2020; Utdanningsdirektoratet, 2020; see also Bråting et al., 
2019).  

In the field of early algebra, reference is made to the so-called Davydov 
curriculum1 in mathematics as a promising model for the development of algebraic 
thinking (Kaput et al., 2008; see also Cai & Knuth, 2011; Schmittau, 2004, 2005; 
Venenciano & Dougherty, 2014). This curriculum, with its roots in the Vygotsky 
tradition, is based on learning activity aimed at developing students’ theoretical 
thinking in mathematics, and foremost their algebraic thinking (Davydov, 1990, 
2008; Schmittau, 2004, 2005). Central to the Davydov curriculum is mediating tools, 
what he calls learning models, and collective reflections, which are used as a means 
for supporting students’ theoretical work (Davydov, 2008; Gorbov & Chudinova, 
2000; Repkin, 2003; Zuckerman, 2003). 

 
1 The Davydov curriculum is also referred to as Davydov’s programme, and the El’konin-Davydov curriculum (ED 
curriculum). 
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Less is known about how young students’ algebraic thinking emerges during 
classroom work and how it can be identified (Goos & Kaya, 2020). There is thus a 
need for empirical examples of how early algebraic thinking among young students 
can be identified and promoted, and what in the design of tasks, tools, and 
communicative resources has the potential to enhance students’ early algebraic 
thinking (e.g., Goos & Kaya, 2020). Given that thinking cannot be analyzed as such 
(Radford, 2008a, 2010), there is a need to use, for example, the students’ tool-
mediated communicative actions as indications of their algebraic thinking. 

1.1 Aim and research questions 

In this article I analyze young students’ communicative actions on algebraic 
expressions2 to identify indicators of early algebraic thinking and discuss what in a 
learning activity promotes students’ opportunities to explore algebraic expressions. 
The aim is specified in two research questions (RQs): 
 

RQ1  What in young students’ tool-mediated communicative reasoning can 
be taken as indicators of their early algebraic thinking? 

RQ2 What in the learning activity promotes young students’ early 
algebraic thinking when exploring algebraic expressions?  

2 Background and research on algebraic thinking 

Several researchers in the field of early algebra argue that challenges concerning 
algebraic thinking may be due to algebra usually being introduced through arithmetic, 
for example in the form of tasks focusing on equalities in which the value of an 
unknown number is requested (e.g., Kieran, 2006; Kieran et al., 2016; see also Lins & 
Kaput, 2004; Stacey & MacGregor, 1999). This may be a reason that difficulties arise 
later in algebra learning, where students often get stuck on numerical solutions (see 
e.g., Kaput, 2008; Kieran, 2006; Radford, 2010). Therefore, it is argued that the 
introduction of algebra should promote algebraic thinking from the beginning of 
primary school (Lins & Kaput 2004; Roth & Radford, 2011). Kieran (2004) suggests 
that students need to work theoretically in different ways at an early stage. Thus, they 

 
2 In this article, an algebraic expression refers to a meaningful composition of mathematical symbols (Kiselman & 
Mouwitz, 2008). This implies, for example, that x + y – z and yx + z, but also the inequality  
x < y and the equality (or equation) x = y + z, are expressions (James & James, 1976). In the study on which this article 
is based, we have used algebraic expressions in the form of equalities of the type a = b + c. 
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need to encounter tasks and problems that promote algebraic thinking; for example, 
they need to have the opportunity to explore algebraic structures (Blanton et al., 2015; 
Bråting et al., 2018; Kieran et al., 2016). 

To promote the development of algebraic thinking, teachers need to create 
conditions for students to develop abilities such as reasoning algebraically, making 
algebraic generalizations, and using algebraic representations, rather than teaching 
several procedures (Greer, 2008; Kaput, 1999; Usiskin, 1988). Mediating tools can 
furthermore play a crucial role in developing a so-called “non-counting” approach, 
whereby students work with problem-solving tasks (Schmittau, 2004; Venenciano & 
Dougherty, 2014). Algebraic thinking can involve theoretical work with letter symbols 
or other relational resources in the students’ analysis of, for example, relations 
between quantities, structures, and patterns. This also includes working with 
justifying and proving (Kieran, 2004). 

Kaput (2008, p. 11) highlights two core aspects that account for algebraic thinking: 
“(A) Algebra as systematically symbolizing generalizations of regularities and 
constraints. (B) Algebra as syntactically guided reasoning and actions on 
generalizations expressed in conventional symbol systems”. Thus, the development of 
algebraic thinking includes, among other things, the exploration of general, 
fundamental, and theoretical relationships and structures (see also Blanton et al., 
2015; Davydov, 1990, 2008; Venenciano & Dougherty, 2014).  

Matthews and Fuchs (2020) point out the relational aspect in the equal sign as an 
especially important component of algebraic thinking, referring to it as a “big idea” in 
mathematics (Matthews & Fuchs, 2020, p. e15). Instead of understanding the general 
structure, students often understand it as an operator that implies a sum or a result. 
Thus, the students need to develop a relational view of the equal sign and interpret it 
as “the same as” (Matthews & Fuchs, 2020, p. e15; see also MacGregor & Stacey, 1997; 
Warren & Cooper, 2009). Schmittau and Morris (2004) state that it is possible for 
young students, by comparing quantities, to theoretically work with inequalities and 
equalities. When children write  

“If C<P by B, then C = P−B and C+B=P”; the notation indicates that they can 
move from an inequality to an equality relationship by adding or subtracting 
the difference, and that addition and subtraction are related actions. 
(Schmittau & Morris, 2004, p. 81)  

Also, Blanton et al. (2015) point out the relational understanding of the equal sign as 
important and include this in the big idea of equivalence, expressions, equations, and 
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inequalities (EEEI). Further, Blanton et al. (2015, p. 43), as part of EEEI, include 
“representing and reasoning with expressions and equations in their symbolic form 
and describing relationships between and among generalized quantities that may or 
may not be equivalent”. 

Ventura et al. (2021) argue that young students can use the function of variables 
in algebraic expressions (see also Venenciano et al., 2020). In a Nordic context, 
however, few studies have explored algebraic thinking with symbols and relational 
material. Eriksson et al. (2019) used non-numerical examples, in the form of                        
a = b + c, when introducing algebraic expressions in grades 1 and 5 (see also Eriksson 
& Jansson, 2017; Wettergren et al., 2021). Given that algebraic expressions are central 
aspects of algebra, the use and understanding of indeterminate quantities is 
considered crucial for the development of algebraic thinking (Ventura et al., 2021). In 
the study on which this article is based, the tasks have been constructed in line with 
Kaput’s (2008, p. 13) description: “the initial symbolization uses letters to denote 
quantities, thereby embodying generality in the symbolic expression of specific (but 
unmeasured) cases involving, say, comparisons of lengths”. 

3 Learning activity as a theoretical framework 

According to Vygotsky (1986), a prerequisite for developing theoretical thinking is a 
teaching in which children are allowed to encounter scientific (theoretical) concepts 
at an early age, compared to being introduced to everyday (empirical) concepts. With 
reference to Vygotsky, Schmittau (2004, p. 39) argues that “in order to learn 
mathematics as a conceptual system, it is necessary to develop the ability to think 
theoretically”. Thus, students need to develop theoretical thinking early, through a 
teaching that offers them opportunities to engage in work with concepts and their 
relations and structures.  

The Davydov curriculum in mathematics and learning activity is based on the idea 
of “ascending from the abstract to the concrete” (Davydov, 2008, p. 106). He argues 
that students first need to work with general structures and relations in, for example, 
algebraic expressions in order to later use them in concrete numerical operations. A 
basic principle of learning activity is that theoretical thinking related to mathematical 
concepts needs to be explored with the help of mediating tools, in learning activity 
referred to as learning models (Davydov, 2008; Gorbov & Chudinova, 2000; Repkin, 
2003). Learning models can be seen as materialized representations of the abstract 
(Repkin, 2003). These can be constructed of physical representations (e.g., Cuisenaire 
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rods3), symbols (e.g., in the form of variables), schemes represented with lengths  
(I––––I), and graphs (e.g., in coordinate systems). According to Davydov, learning 
models have different functions that aim to enable students to theoretically explore 
the abstract (structural) aspects of a given object of knowledge (Davydov, 1990, 2008; 
Davydov & Rubstov, 2018; Gorbov & Chudinova, 2000). Davydov emphasizes that 
“not just any representation can be called a learning model, but only one that 
specifically fixates the universal relation of some holistic object, enabling its further 
analysis” (Davydov, 2008, p. 126). The intention of a learning model is to make certain 
aspects of an object visible, and it functions as a tool when students work on a 
problem. A learning model can also function as a tool for classroom communication 
(Davydov, 2008). Radford (2008b, p. 219) argues that the tools “are not merely aids: 
their mediating role is such that they orient and materialize thinking and, in so doing, 
become an integral part of it”. In other words, learning models can visualize students’ 
thinking and thus constitute a mediating tool in the work with concepts. 

Another basic principle in learning activity is that students be given the 
opportunity to participate and engage in collective reflections (Zuckerman, 2003, 
2004). Thus, the mathematical content can be made visible, explored, and developed 
as a conceptual understanding. Students’ experienced motive for engaging in 
theoretical work can be made possible when groups of individuals are allowed to work 
together and share or borrow each other’s experiences and knowledge (Vygotsky, 
1986; Zuckerman, 2004). Thus, reflection is not seen as an individual process but 
rather takes place collectively. The starting point for collective reflections is that 
students, by engaging with other students’ suggestions and explanations, can 
understand their own thinking (Zuckerman, 2003).  

To realize a learning activity, for example, regarding algebraic expressions, the 
teacher has to enable and pursue an elaborative discussion among the students 
(Zuckerman, 2004). When planning for a learning activity, the teacher’s choice of a 
task framed as a problem situation, as well as considerations of how the structural 
aspects can be visualized, are crucial (Repkin, 2003). Thus, students should encounter 
a problem situation that requires work and that can result in the development of their 
theoretical thinking. Such a problem situation must be perceived by the students as 
meaningful; that is, they should experience a need to explore the problem. The 
students’ exploration of the problem situation comes about through collective 
reflections together with the teacher and can take the form of class discussions. These 

 
3 Cuisenaire rods are a relational laboratory material that consists of rods of different lengths and colors, with each 

length being a certain color (Küchemann, 2019).  
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can take place on what can be understood as a collective workspace, for example when 
the representations and symbols are displayed on a whiteboard, which has a decisive 
function in this respect (Eriksson et al., 2019). 

4 Method 

This article is based on a study which took the form of a design experiment (e.g., 
diSessa & Cobb, 2004). In this study, we, four researchers and five teachers worked 
collaboratively. That is, the researchers and teachers iteratively planned, adjusted, 
and refined the lessons and problem situations together (Carlgren, 2012; Eriksson, 
2018). The study’s focus was on developing mathematics teaching; more precisely, on 
promoting young students’ early algebraic thinking and their reasoning about 
algebraic expressions through a collective and tool-mediated teaching situation. 

4.1 Data 

The study was conducted at two municipal schools, with 550 and 1150 students 
respectively, and from preschool class to Grade 9. The five participating teachers had 
between 15 and 23 years of teaching experience. The all signed up to the project 
voluntarily. Four of the teachers had a Grade 1–6 teaching qualification and one had 
a Grade 4–9 teaching qualification. Forty-two students across grades 2 to 4 
participated in the various research lessons (Table 1).4  

Table 1.  Research lessons conducted 2015–2017 

School 
year Grade 

Students in 
research lesson 1  

Students in 
research lesson 2  

Students in 
research lesson 3  

Total students in the 
research lessons 

2015–2016 25 66 6   12 
2016–2017 3 6 6  6  18 
2016–2017 4 4 4  4  12 

 
Inspired by learning study (Marton, 2005, 2015; Runesson, 2017), eight research 

lessons were conducted in grades 2, 3, and 4 (students aged 7–10) at two schools 
during the period 2015–2017. One research lesson cycle in each grade was held with 

 
4 The research lessons were conducted within the context of the mathematics network at Stockholm Teaching & 
Learning Studies (STLS).  
5 Only two research lessons were carried out in Grade 2 
6 Research lesson 1 in Grade 2 has been excluded due to administrative complications. 
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different groups of students in the same grade. The cycles were conducted iteratively 
over the school year. The research lessons, lasting between 26 and 44 minutes, were 
video recorded. Altogether, the lessons amounted to 251 minutes. None of the student 
groups had previously worked with algebraic expressions or formal equations during 
the school year in which the data were collected. The data in this article are taken from 
the second research lesson in each grade since the students’ collective reasoning on 
the general structures and relational aspects of the algebraic expressions was rich.  

The jointly planned lessons, all in the form of whole-class discussions, were 
conducted by one teacher in each grade. The other teachers in attendance were 
responsible for the data collection, such as video recording and observation. As the 
focus of the recording was the joint activities on the whiteboard in front of the class, 
the video camera was mostly pointed at the whiteboard. The research lessons were 
transcribed in their entirety according to Linell’s (1994) description: word-for-word, 
speech-neutral text, organized in dialogic form.7 Interaction in the form of gestures 
and concrete manipulations, when these appeared in the video, are also described in 
brackets in the excerpts since they can be seen as part of the argumentation (Nordin 
& Boistrup, 2018). The students were given fictitious names.  

4.2 The design of the research lessons 

The design of the research lessons was inspired by learning activity (Davydov, 2008) 
and the previously mentioned concepts of learning models (Repkin, 2003) and 
collective reflections (Zuckerman, 2003). In addition, special attention was paid to 
enabling joint work on the collective workspace (Eriksson et al., 2019; cf., Liljedahl, 
2016); that is, on the classroom whiteboard.  

The overarching aim of each lesson was for the students to discern the relations 
between quantities, structures, and general patterns in algebraic expressions. 
Therefore, the problem situations they were to explore and reason in relation to 
consisted of contrasting examples of visualizations of algebraic expressions. Having 
the students encounter problem situations with alternative solutions and asking them 
to reflect on and explain someone else’s solution made it possible for them to take 
another person’s perspective (Zuckerman, 2004). Also, in the design of the teaching, 
learning models were used as mediating tools. These took the form of Cuisenaire rods 

 
7 As the research lessons were conducted in Swedish, the transcripts have been translated into English.  
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(Küchemann, 2019).8 Line segments drawn on the whiteboard and symbols for 
variables were also used as learning models. To promote students’ algebraic thinking, 
the teachers planned the possible types of responses they could employ depending on 
the situation and took into account that students’ discussions could either stop or take 
a less desirable direction than had been hoped. Considering that students’ 
participation in a learning activity should be characterized by their agency, how the 
teacher responds is important. For example, asking “how did xx think here?” instead 
of addressing the individual student and asking, “how did you think here?” can lead 
to different results.  

The overall structure of the research lessons was the same. The lessons started 
with the presentation of a learning model in the form of line segments or Cuisenaire 
rods visualizing a relation that was to be collectively reflected on. The teacher worked 
with the students at the whiteboard. Also, each student had access to tools in the form 
of rods on the table in front of them. The teacher was responsible for maintaining the 
students’ collective reasoning through questions and provocations. Occasionally, the 
students approached the whiteboard when they were to present their suggestion or 
solution to the given problem situation. 

4.3 Analysis 

Toulmin’s model of argumentation (Toulmin, 2003) was used to analyze the class 
discussions for possible indications of algebraic thinking. Toulmin’s model is a 
theoretical model of an argument and has most commonly been used in research on 
interaction within mathematics education, for example, proof (e.g., Hemmi et al., 
2013), often in the reduced version introduced by Krummheuer (1995). The reduced 
model consists of four elements, three of which—claim, data, and warrant—are 
regarded as the core of an argument, along with a potentially fourth element, backing. 
A claim is a statement that is grounded in data, and the warrant functions as a bridge 
between data and claim. According to Toulmin (2003), the data supporting the claim 
can answer the question “What have you got to go on?” (Toulmin, 2003, p. 25) and 
the warrant would answer “How do you know?” (Toulmin, 2003, p. 210). In an 
analysis of the interaction, the argument and each of the four elements can be created 
by more than one individual. The elements do not need to be expressed in a specific 
order and can be expressed in many ways, for example verbally, with written symbols, 

 
8 The Cuisenaire rods used in the study were comprised of various materials, some wooden and some magnetic, the 

latter designed to be used on a whiteboard. 
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drawings, or gestures, or using manipulatives, in this case Cuisenaire rods (Nordin & 
Boistrup, 2018). 

The analysis began with a reading of the transcripts for the research lessons in 
each of grades 2, 3, and 4 in their entirety. In each transcript, sequences were 
identified. Here, a sequence is the time between the teacher’s presentation of a new 
problem situation with an algebraic expression or a learning model visualizing an 
algebraic expression, and the presentation of the next problem situation. Within each 
sequence, I searched for various reasonings that used arguments with claims and 
highlighted them. I then searched for data supporting each claim. If I found data 
supporting the claim, I searched for the warrant. In some cases, the students also gave 
non-mathematical suggestions; for example, the variables needed to be in 
alphabetical order, or a specific value had to be requested. Therefore, an additional 
delimitation of an argument concerning algebraic thinking was that it should focus on 
the relational and general aspects. The initial analysis was also discussed with the 
participating teachers, a process described by Wahlström et al. (1997) as negotiated 
consensus. All video recordings and transcripts were reviewed.  

When the elements of an argument were identified, a reconstructed argument was 
written. To clarify the reconstructed argument in the excerpts below, I have written 
the elements claim, data, and warrant in brackets. I present the excerpt, followed by 
a reconstructed argument following Toulmin’s reduced model. After the 
reconstructed argument, I interpret the indicator of early algebraic thinking. 

Reconstructing the arguments indicated early algebraic thinking in the students’ 
arguments. Following Radford’s (2008a) idea that students’ communicative actions 
can be understood as a form of reflections of thinking, aspects of the students’ 
theoretical work were identified. However, while students’ communicative actions are 
not to be equated with theoretical thinking, they can serve as indicators of theoretical 
thinking, in this case early algebraic thinking. 

5 Results 

I present the results from the analysis of the research lessons below. Three empirical 
examples, not age-specific, are chosen to exemplify indications of students’ early 
algebraic thinking, one each from grades 2, 3, and 4. The chosen examples represent 
the focus in the class discussion in each grade.  
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5.1 Grade 2: Establishing equalities 

In Grade 2, the teacher introduced algebraic expressions by presenting a make-believe 
café where the students were to work. This café sold goods such as buns, chocolate 
bars, and sandwiches. Initially, the students were to construct a price list for the 
goods. There was no ordinary money; the prices of the goods had to be represented by 
something else and the teacher suggested Cuisenaire rods. The teacher said: “in this 
café that you work in, a bun costs a purple rod, like this [holding up a purple rod] ... 
You do not have regular money here; we only have rods like this.” The rods were on a 
table in front of the students, and the teacher had placed corresponding rods in the 
form of magnetic strips on the whiteboard. In establishing the price list, the teacher 
said that a bun cost one purple rod (Figure 1). 

 

Figure 1.  Two buns cost four red rods.9 

Excerpt 1 (60 seconds)  

Teacher:   So, if you were to come to me and buy a bun, what would you pay 
then? Karin, what would you pay?     

Karin:   A purple [rod]. [data] 
Teacher:   A purple [rod]. And Seydou [the teacher points to the student], 

what do you think? What would you pay for a bun? 
Seydou:   Are there also others [referring to the rods on the whiteboard]? 
Teacher:   How do you mean? 
Seydou:   Could it also be that money [referring to other rods on the 

whiteboard] ... with some others too? 
Teacher:   The bun costs just that [points to the horizontal purple rod]. 

[data] But did you want to pay with something else? 
Seydou:    Yes.  
Teacher:   Some other rods like this? [points to all the rods on the 

whiteboard].   Which [rod] would you like to pay with, then? 
Seydou:   Four red [rods]. [claim] 

 
9 “Bulle” and “Chokladkaka” are the Swedish words for “bun” and “chocolate bar”, respectively. 
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Teacher:       Four such [places four red rods, horizontally, centered under the 
purple rod to the right of the word "bun"]. How did you think 
now, can ... why do you want to pay with four red [rods]? 

Seydou:   Because look, two are one ... [in his intonation indicating that two 
red rods correspond to one purple rod] [warrant] ... I wanted to 
buy two buns [with an indication of emphasis in his tone]. 
[claim] 

First, Seydou indicates an understanding that a bun which costs one purple rod 
corresponds with two red rods. Second, in his argument he elaborates with the new 
value and currency of the bun (two red rods) when he argues that he intends to buy 
two buns and therefore wants to pay with four red rods. With his claim and warrant, 
Seydou demonstrates an understanding of the principle of equality. In the following, 
the reconstructed argument for why two buns cost four red rods is presented (Figure 
2). 

 

Figure 2.  Reconstructed argument for why two buns cost four red rods. 

The reconstructed argument shows how Seydou implicitly uses the learning 
models when pointing out the relation between the different rods, with their lengths 
set to have a non-numerical value, by choosing rods that equal the purple one. The 
indicator of early algebraic thinking in this case involves establishing equalities. 
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5.2 Grade 3: Adjusting inequalities to equalities 

In the Grade 3 research lesson, the group had previously worked on a problem 
situation in which they created equalities that would correspond to the expression         
z = x + y. This was done using learning models where the students worked with rods 
on the tables and the teacher drew corresponding vertical line segments on the 
whiteboard. Based on the student examples, several alternatives were created, all of 
which corresponded to the algebraic expression. In connection with this, the group 
had a shorter discussion where it was stated, among other things, that the 
constructions needed to have the same length [data]. The teacher then drew new line 
segments on the whiteboard, with the one on the left representing z and on the right 
a combined line segment representing x and y (Figure 3). 

 

Figure 3.  Constructed model of line segment z and line segment x and y. 

This constructed a learning model in which the line segments were no longer equal 
[data], even though they related to the same algebraic expression as before                           
(z = x + y). The students collectively expressed that this was not correct and came up 
with some suggestions for how to make the line segments and the expression match. 
One of the students, Sisay, was given the floor: 
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Excerpt 2 (1 minute 16 seconds) 

Sisay:    You could also ... above z, draw a small “block” [referring to a 
small rod shaped like a cube on the table in front of her] that we 
name w or something, eh ... [starting a claim] 

Teacher:   [Measures with thumb and index finger as a distance above z so 
the line segment on the left will be as long as those on the right] 
so that they become equal [draws a new line segment, which she 
calls w so that the left now consists of two line segments (z and 
w)] [warrant]  

Sisay:    Because then ... in that case it will be z plus w is equal to x plus y.  
  [claim] 

Teacher:   Like this, z plus w is equal to x plus y [writes z + w = x + y below 
the line segments on the whiteboard] (see Figure 4). Mm. What 
does Elsa think of this? 

Elsa:    Eh ... yes. 
Teacher:   Or do you think, what do you think? Do you agree ... do you 

understand what Sisay means? Do you think that one can do 
this? 

Elsa:    Mm. 
Teacher:   Why can you do that, then? You know, yes ... but this is what we 

think we can do, but what is it that makes us think we can do it 
like that? What makes it feel like it’s right when you do it like 
that? Lisa. 

Lisa:    That they’ll have the same length. x plus ... [warrant] 
Teacher:   They’re the same length [points to w and z in the line segments to 

the left]. 
Lisa:    Yes, x plus y and z plus w will be equal in length. [warrant] 

An indication of early algebraic thinking is when Sisay adjusts the learning models 
(Figure 4), that is, the line segments on the whiteboard, from an inequality to an 
equality. In doing so she adds a new symbol, which she decides to name w. 

 

Figure 4.  The expression z + w = x + y and adjusted model for the corresponding expression. 
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Thus, the line segments need to have the same length in order to be equal. When 
adding a new length and naming it “w” the line segments become equal. However, it 
is not enough to only adjust the line segments, also the expression needs to be 
complemented to z + w = x + y to correspond. In the following, the reconstructed 
argument for why you need to add "w" is presented (Figure 5). 

Figure 5.  Reconstructed argument for why you need to add “w”. 

The reconstructed argument visualizes Sisay’s and Lisa’s respective 
understandings of both the equal sign and the functions of variables when adjusting 
inequalities to equalities.  

5.3 Grade 4: Generalizing equalities 

During the lesson in Grade 4, the group worked collectively on the algebraic 
expression a = b + c. The teacher wrote the expression on the whiteboard [data], 
after which the students constructed variations of the expression with the rods, as a 
learning model, on a table. The students then were asked to display their 
constructions on the whiteboard (Figure 6). 
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Figure 6.  The students’ constructions of the expression a = b + c. 

The first construction to the left and the fourth construction to the right used rods 
of equal length to represent a, while the second and third constructions in the 
middle of the whiteboard used rods longer than those in the former constructions 
(also of equal length) to represent their a. The lengths of the rods represen-
ting b and c varied in all constructions. Thus, four different representations of the 
equality a = b + c appeared [data], all of which were valid representations of the 
algebraic expression a = b + c [warrant]. After a short discussion in which the 
students expressed that all the alternatives were correct, the teacher asked why a 
might differ. 

Excerpt 3 (50 seconds) 

Teacher:   Mm, why might they, the a’s, differ [with reference to the fact 
that there are different large a’s in the rod constructions on the 
whiteboard]? [data] 

Johan:  Eh ... 
Teacher:   Okay, Johan. 
Johan:   It depends a bit on what we think a can be ... because we should 

still build a ... that a ... describe with these, [with reference to the 
rods on the whiteboard] [warrant] that a is equal to b plus c 
[claim], [referring to earlier discussion] so I suppose we could 
choose a template ... kind of like this length [refers to a rod he 
lays in front of him on the table] and then we take b ... in other 
words, another [puts a rod next to the newly laid rod] ... plus ... 
we can take something completely different here ... then we 
choose b plus c [starts adding a third rod above the last laid rod] 
... sorry, now I have the wrong rod [referring to the rods he has 
on the table which result in an inequality], but if you think about 
mine over there [points to his rod construction on the 
whiteboard], one ... one b plus c ... one ... so we kind of made a 
new “a” of two other pieces. [claim] 
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Indication of early algebraic thinking is the reasoning about general structures in 
Johan’s utterances: “It depends a bit on what we think a can be,” “I suppose we could 
choose a template,” and “we can take something completely different here.” When 
there are not enough rods on the table, he chooses to relate to his own construction 
on the whiteboard after initially starting with a randomly selected rod. In the 
following, the reconstructed argument for why a can differ in length and still have 
the value of a is presented (Figure 7). 

Figure 7.  Reconstructed argument for why a can differ in length and still have the value of a. 

The reconstructed argument above shows that the same variable can have 
different lengths. That is, the student apparently does not need to decide the value of 
b and c as he reasons about the algebraic expression without determining the value of 
the variables. The indicator of early algebraic thinking in this case involves 
generalizing equalities. 

6 Discussion 

As presented above, the results give a set of indicators of early algebraic thinking 
among young students, empirically exemplified in the excerpts. The results also 
exemplify how early algebraic thinking can be identified. It could be argued that the 
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small number of students in each group in the study does not represent a realistic 
teaching situation, where the student groups are typically much larger. However, the 
communicative actions analyzed in this study contribute to knowledge about 
identified indicators of early algebraic thinking among young students in micro-
moments, which can be overlooked in daily teaching in whole-class settings or 
situations. The results also point to the importance of planning the teaching situation 
(that is, the problem situation, learning models, and the teacher’s responses) to 
engage the students in an explorative algebraic learning activity.  

In the next sections, I discuss the results more closely in relation to the aim of the 
article and earlier research. 

6.1 Indicators of early algebraic thinking 

In line with research on early algebra, the results confirm an emergence of young 
students’ early algebraic thinking when working with general structures and 
relationships in algebraic expressions (Blanton et al., 2015; Bråting et al., 2018; 
Kaput, 2008; Kieran, 2006; Kieran et al., 2016). Above all, two of the three core 
concepts of students’ early algebraic thinking that Ventura et al. (2021, p. 4) highlight 
were found: “the relational understanding of the equal sign” and “generalizing and 
representing indeterminate quantities in algebraic expressions”. 

However, as the results show, it was only during short moments that an indicator 
of early algebraic thinking could be identified. The indicators identified in this study 
are: 1) establishing equalities, 2) adjusting inequalities to equalities, and 3) 
generalizing equalities. The student in Grade 2, while elaborating on/with the 
learning models, was able to establish an equality. In doing so, Seydou expressed an 
understanding of equality when he argued that two buns could be bought with four 
red Cuisenaire rods. An understanding of the equal sign is something that Matthews 
and Fuchs (2020) mention as important for students to interpret. Besides exhibiting 
the important ability to interpret “the same as” (Matthews & Fuchs, 2020, p. e15), the 
students in Grade 3 also adjusted an inequality given in the learning models by adding 
a length and naming it with the symbol “w”. Also, the expression z = x + y was adjusted 
to z + w = x + y. In doing so, they moved from an inequality to an equality, which 
according to Schmittau and Morris (2004) is an example of algebraic thinking (see 
also, Eriksson & Jansson, 2017; Kieran et al., 2016). Johan, in Grade 4, showed 
indications of Kaput’s (2008) core aspects; that is, when generalizing on the equalities 
he reasoned algebraically. Kieran (2004) highlights justifying and proving as 
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examples of actions that involve algebraic thinking. In addition, the result indicates 
that the students collectively developed their understanding of the concept of 
variables through the learning models. While they did not use the term variable, they 
demonstrated their understanding through everyday language and gestures. 

6.2 Promoting early algebraic thinking 

The collective reflections in the research lessons were made possible through the joint 
tool-mediated theoretical work on which the reasoning was based. The learning 
models visualize, or as Radford (2008b, p. 219) argues “orient and materialize” the 
students’ theoretical thinking on the relational structure in the algebraic expressions. 
Further, the learning models on the collective workspace visible to everyone 
contributed to these reflections (Eriksson et al., 2019). In the collective reflections, 
the teachers’ responses were crucial in establishing and maintaining the learning 
activity. For example, the teachers were not content when a student gave a correct 
answer. Instead, they questioned the student’s answer by saying “I don’t understand,” 
“[c]an this really be true?” or asking another student to explain the given solution. 
Also, the collective reflections made it possible for the students to, so to speak, borrow 
knowledge from each other which enabled them to qualify their reasoning.  

In the Grade 2 lesson, the teacher used the student’s suggestion to challenge him 
to engage in the theoretical work. That is, the teacher’s question “[w]hich [rod] would 
you like to pay with, then?” required a claim that needed to be substantiated. In Grade 
3, the teacher created an example in which the learning model did not correspond to 
the given algebraic expression. This required that students explore the problem 
situation, and they collectively manipulated the line segments to create an equality, 
not by extending the existing line segment named z but by adding a new one that Sisay 
decided to call w. In Grade 4, the teacher’s question along with the students’ rod 
constructions on the whiteboard challenged the students and promoted algebraic 
thinking. Although all the different examples corresponded to the algebraic 
expression, the teacher was not “satisfied” with/did not settle for this. Instead, by 
departing from the students’ different constructions, the teacher prompted them to 
argue for how the different equalities in the rod constructions could all correspond to 
the same algebraic expression.  

6.3 Concluding remarks 

Algebraic thinking is a part of mathematical thinking, and the results illustrate how 
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collaborative tool-mediated reflections can promote the development of students’ 
early algebraic thinking. It should be noted that, according to the teachers, the 
participating students had not worked with this type of algebraic expression 
previously during the current school year. Moreover, aspects of the teaching situation 
were new to them. An example of the new teaching situation was that the teacher did 
not directly confirm whether the students’ suggestions were correct. Another example 
was the problem situations upon which the students were expected to elaborate, since 
they all consisted of non-numerical but tool-mediated examples. The students were 
also unaccustomed to collectively working at the whiteboard and elaborating on the 
theoretical content in front of the student group (Zuckerman, 2004) as well as to 
working with learning models (Repkin, 2003). The establishment of a learning 
activity in which students can experience a motive, create a learning task, and 
collectively explore the theoretical content has the potential for developing students’ 
relational agency (Edwards, 2005). However, learning activity is fragile, so to speak, 
and whether students establish a learning activity (Davydov, 2008) depends on 
several factors. For example, the subject-specific teaching situation in the form of a 
problem situation needs to highlight theoretical content and be designed to enable the 
students to perceive that there is a real problem to solve (Repkin, 2003). Furthermore, 
teaching based on the central principles of learning activity differs from much of the 
mathematics teaching in Swedish classrooms (Bråting et al., 2019; Hansson, 2011; 
Johansson, 2006; Larsson & Ryve, 2012).  

These results allow reflection on what can promote and enhance young students’ 
early algebraic thinking and the identified indicators exemplify what teachers can pay 
attention to when striving to develop students’ algebraic thinking when working on 
algebraic expressions.  
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The overarching aim of this article is to exemplify and analyse how some algebraic 
aspects of equations can be theoretically explored and reflected upon by young 
students in collaboration with their teacher. The article is based upon an empirical 
example from a case study in a grade 1 in a primary school. The chosen lesson is 
framed by the El’konin-Davydov curriculum (ED Curriculum) and learning activity 
theory in which the concept of a learning model is crucial. Of the 23 participating 
students, 12 were girls and 11 boys, approximately seven to eight years old. The 
analysis of data focuses on the use of learning models and reflective elaboration 
and discussions exploring algebraic structures of whole and parts. The findings 
indicate that it is possible to promote the youngest students’ algebraic 
understanding of equations through the collective and reflective use of learning 
models, and we conclude that the students had opportunity to develop algebraic 
thinking about equations as a result of their participation in the learning activity. 

Keywords: The El’konin-Davydov Curriculum, learning activity, learning models, 
algebraic thinking 

1 Introduction 

Algebraic thinking is argued to be a key ability that children need to develop from an 
early age for their understanding of formal algebra in later years (Venenciano et al., 
2020). In many countries, curricula and mathematical policy documents stipulates a 
teaching that promotes the youngest students’ algebraic thinking (Cai & Knuth, 2011, 
see also Venenciano et al., 2020). Kieran et al. (2016, p. 1) explains that 
“[m]athematical relations, patterns, and arithmetical structures lie at the heart of 
early algebraic activity”. At the beginning of 2000, four ways of addressing the issue 
of early algebra were defined as “(i) generalizing related to patterning activity, (ii) 
generalizing related to properties of operations and numerical structure, (iii) 
representing relationships among quantities, and (iv) introducing alphanumeric 
notation” (Kieran et al., 2016, p. 5). Representing relations among quantities as a 
teaching model refers to a curriculum developed by El’konin and Davydov (ED 
Curriculum) in which students’ understanding of part-whole relationships is at the 
core (Schmittau, 2003, 2004, 2005). The ED Curriculum, with its roots in the cultural 
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historical tradition of Vygotsky (1987), Leontiev (1978) and Galperin (1968), has been 
described within the research field of early algebra as a curriculum model with 
potential for developing young students’ algebraic thinking (e.g. Dougherty, 2004; 
Kaput, 2008; Kieran et al., 2016; Carraher & Schliemann, 2014; Venenciano et al., 
2020). However, Kieran et al. (2016) argue that more research and empirical 
examples of how such a curriculum can be realised in an everyday teaching setting are 
necessary. This article seeks to contribute with such an example based upon a case 
study depicting how some aspects of equations can be theoretically explored and 
reflected upon by young students. The students were invited to use a graphic model 
as a mediating tool (a learning model) in a teaching situation framed by the 
curriculum designed by El’konin and Davydov and its complementary learning 
activity theory (Davydov, 2008; Repkin, 2003; Schmittau, 2003, 2004).  

In the two following Sections (1 and 2) we provide the framework for our aim and 
research questions. In Section 3, we provide a more detailed description of the 
learning activity and its central concepts. Methodology is presented in Section 4, 
followed by the result, divided into two parts and presented in Sections 5 and 6. The 
article ends with concluding remarks in Section 7. 

1.1 Early algebra – realising a written curriculum 

The field of early algebra is interested in the development of students’ algebraic 
thinking and problem-solving abilities (Kieran, 2018; Radford, 2012, 2018; Radford 
& Barwell, 2016; Warren et al., 2016). This is sometimes related to teaching in which 
students are to be engaged in algebraic or theoretical work (Kieran et al., 2016). In 
developing these skills and abilities early, some researchers believe they are tackling 
a known problem with the commonly-used arithmetical foundation of algebra (Kaput, 
2008; Lins & Kaput, 2004; Radford, 2006, 2010). As previously mentioned, the ED 
Curriculum is regarded as a promising alternative route when attempting to alter a 
teaching tradition that introduces students to algebra based on an arithmetic 
approach (Carraher & Schliemann, 2014; Kaput, 2008; Kieran et al., 2016). 

1.1.1 Teaching for algebraic thinking  

For very young students, the ED Curriculum comprises a series of deliberately 
sequenced problems of measurements that require students to expand known 
problem-solving methods and tools to develop their understanding at a theoretical 
level (Davydov, 1962, 2008; Schmittau, 2004, 2005; Sophian, 2007; Zuckerman, 
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2004, 2005). The idea of introducing numbers and mathematical operations through 
measurements is thus central. Schmittau (2004) argues, in line with Vygotsky, that 
relational analysis of quantities must precede the development of the concept of 
numbers. In a discussion of algebraic thinking, Schmittau and Morris (2004) claim 
that the ED Curriculum: 

[d]evelop[s] children’s ability to think in a variety of ways that foster algebraic 
performance. First, it develops theoretical thinking, which according to 
Vygotsky comprises the essence of algebra. For example, the children develop 
a habit of searching out relationships among quantities across contextualized 
situations, and learn to solve an equation by attending to its underlying 
structure. … Their ability to interpret a letter as “any number” allows the 
teacher to introduce children to the kind of general argument that is the 
hallmark of algebraic justification and proof. (Schmittau & Morris 2004, p. 23) 

Kieran (2004) provides the following definition of algebraic thinking: 

Algebraic thinking in the early grades involves the development of ways of 
thinking within activities for which letter-symbolic algebra can be used as a tool 
but which are not exclusive to algebra and which could be engaged in without 
using any letter-symbolic algebra at all, such as, analyzing relationships 
between quantities, noticing structure, studying change, generalizing, problem 
solving, modeling, justifying, proving, and predicting. (Kieran, 2004, p. 149)  

Radford (2018, p. 8) highlights that a definition of algebraic thinking such Kieran’s 
also needs to include a requirement that the students be able to treat “indeterminate 
quantities in an analytical manner.” Thus, teaching aimed at developing algebraic 
thinking must support an analytical approach. Radford (2012, p. 119) argues that  

[w]ithin the theory of knowledge objectification, thinking is considered a 
relationship between the thinking subject and the cultural forms of thought in 
which the subject finds itself immersed. More precisely, thinking is a unity of a 
sensing subject and a historically and culturally constituted conceptual realm 
where things appear already bestowed with meaning and objectivity. 

1.1.2 Teaching and development of theoretical thinking 

The ED Curriculum draws theoretically on Vygotsky’s idea that “teaching should take 
a leading role in relation to mental development” (Chaiklin, 2003, p. 169). From this 
perspective, the development of theoretical thinking requires a specially-organised 
practical activity – a learning activity in which students can reconstruct mathematical 
concepts, norms and values and thus learn to master culturally and historically 
developed theoretical ways of knowing. In mathematics, theoretical thinking is often 
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exemplified by algebraic thinking (Krutetskii, 1976; Radford, 2021). Central to 
learning activity is the idea of ascending from the abstract to the concrete (Davydov, 
2008). He claims that, if students first work theoretically on an object of knowledge 
to find embedded structural and general aspects of a concept as well as its conceptual 
relations, they can later find concrete instances of the theoretical knowledge. Dreyfus 
(2015, p. 117) argues:  

According to Davydov’s ‘method of ascent to the concrete,’ abstraction starts 
from an initial, simple, undeveloped and vague first form, which often lacks 
consistency. The development of abstraction proceeds from analysis, at the 
initial stage of the abstraction, to synthesis. It ends with a more consistent and 
elaborated form. It does not proceed from concrete to abstract but from an 
undeveloped to a developed form. 

However, the abstract structural and relational aspect of an object of knowledge is 
not available to the students through a teacher’s direct instruction (Davydov, 2008; 
Schmittau, 2004), and thus, in realising a learning activity that enhances students 
algebraic thinking, a mediating tool – a learning model1 (Gorbov & Chudinova, 2000) 
– that students can manipulate, change and examine when elaborating on and 
discerning the abstract content of an object of knowledge is necessary. Within 
learning activity theory, a learning model “fixates the universal relation of some 
holistic object, enabling its further analysis” (Davydov, 2008, p. 126).  

2 Aim and research questions 

Education realised through tool-mediated learning activities is thus a foundation of 
the ED Curriculum. However, realising this type of teaching places substantial 
demands on the teacher when, for example, designing tasks, initiating a problem 
situation or supporting student collective theoretical reflective work in the classroom 
(Kieran, et al., 2016). Even though there is research within the field of early algebra 
that seeks to develop teaching in line with the ED Curriculum (e.g., Dougherty, 2004; 
Schmittau, 2003; Sophian, 2007; see also H. Eriksson, 2021; I. Eriksson et al., 2021), 
we still do not have a substantial body of empirically-based knowledge about how to 
realise such teaching. Furthermore, there are few empirical examples of how teachers 
in a Western context can use learning models and collective reflections to support 

 
1  A learning model must not be understood as a mathematical model but a form of tool for visualising and elaborating 

core ideas.  
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student learning of algebraic ideas. There are even fewer empirical examples of how 
the ED Curriculum is realised in the experimental school – School No. 91 where it was 
designed (see below).  

Given this, and based on a case study from School No. 91, our aim is to provide a 
concrete example of how a specifically-designed teaching can promote the youngest 
students’ algebraic thinking. The aim is also to analyse which algebraic or structural 
aspects of equations are made available when the students and their teacher 
collaboratively uses a learning model as a mediated tool in a learning activity. The 
analysis is guided by the research questions (RQs):  

• RQ1: What algebraic thinking on the relationship of the whole and its parts and 
the unknown in equations, can be discerned through a learning model in a 
lesson framed by principles of learning activity?  

• RQ2: What, in student and teacher tool-mediated joint action, promotes 
exploration of the algebraic aspects of equations? 

3 Learning activity 

Learning activity theory must be understood in relation to specific theoretical content. 
For example, the ED Curriculum, as it is known in the West, is designed to realise 
learning activities in mathematics (Davydov, 2008; Dougherty, 2004; Schmittau, 
2003, 2004; Schmittau & Morris, 2004; Sophian, 2007; Venenciano & Dougherty, 
2014; Venenciano et al., 2020). The basis of the curriculum for the youngest students 
is measurement and units of measurement. This curriculum was developed 
experimentally at School No 91 in Moscow where, in 1958, El’konin and Davydov, in 
line with Vygotsky theoretical assumptions (Davydov, 2008), began their 
experimental research on the influence learning processes exert on student cognitive 
development.2 Based on their experiment, El’konin, Davydov and their team 
proposed new content and new methods for learning and teaching mathematics and 
language in primary school. 

 

 
2  As aforementioned, a learning activity is theoretically built on Vygotsky’s (1987) cultural historical theory and 

Leontiev’s (1978) activity theory. Thus, Davydov and El’konin further developed the work begun by Gal’perin 
(1968) and formed two learning activity curriculums for reading and writing and mathematics, respectively. 
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3.1 Learning activity and learning models 

In learning activity, the overarching goal is the development of student theoretical 
thinking and agency, that is, their capability to act and participate in a new and 
independent manner in different content-specific activities (Davydov, 2008; El’konin, 
1999; Repkin, 2003; Rubtsov, 1991; Zuckerman, 2003). In order to invite the students 
into a learning activity, the teacher usually introduces a problem situation (Repkin, 
2003) which must contain some abstract but central structural or theoretical aspects 
of specific content (an object of knowledge) that the students need to become 
conscious of. The teacher cannot merely present a problem and tell the students to 
solve it. In order to become involved in a learning activity, students must, through 
analysis of the situation, develop a motive for engaging in the activity, and then 
transform the problem into a learning task. The first step of student analytical work 
includes joint reflection on what previous knowledge and known tools (i.e. learning 
models) they can test (Davydov, 2008; Rubtsov, 2013; Zuckerman, 2004). Repkin 
(2003, p. 27) explains that students need “new modes of actions”. Students must 
transform the initial problem situation into a learning task that implicitly leads them 
to discover new methods, or new tools, to solve the problem and the teacher 
encourages them to collectively reflect upon and defend and expand their solutions. 
The discussion does not end until the students have reached a conclusion they 
consider correct or plausible (Davydov, 2008; Schmittau, 2003, 2005; Sophian, 
2007). However, the youngest students must learn how to work within a learning 
activity and are thus dependent on the teacher as a more knowledgeable other 
(Vygotsky, 1934/1963, 1987). A learning activity can make it possible for students to 
work within what Vygotsky (1934/1963) described as a zone of proximal development 
(ZPD). 

To make it possible for students to explore “the abstract” of a specific object of 
knowledge, Davydov and his fellow researchers suggest that each learning activity 
must be realised with the help of learning models as visual mediating artefacts. The 
purpose of a learning model is to visualise the structural aspects of an object of 
knowledge and make it possible for the students to manipulate it during their 
analytical work. A learning model can take the form of a scheme, for example, depicted 
by line segments (such as in this article), or as a semiotic system, as for example, 
A=B+C. Davydov (2008, p. 95) explains that  

the structure of semiotic systems reproduces or copies the structure of the 
object. For example, a chemical formula has semiotic mediated function since 
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its connections and sequence of elements convey the character of an actual 
chemical relation, the structure of a chemical compound. Of course, as in any 
other form of model, this reproduction is approximate, simplifying and 
schematizing the actual object.  

A learning model may also be in a physical form, but in that case is mostly in 
combination with a symbolic model on the blackboard (Gorbov & Chudinova, 2000).  

4 Data and methods of analysis  

In this article, we present the results of a case study (Flyvbjerg, 2011; Yin, 2014) 
conducted in School No. 91 based on Inger Eriksso’n (Author I) visits to the school. 
Each visit, in 2013, 2016, 2017 and 2019, consisted of 5–9 hours of classroom 
observations in mathematics, a total of 27 lessons. Most of the lessons observed were 
conducted in the primary grades and several were taught by Ms Natalia Tabachnikova 
(Author II). As is characteristic of a case study, there were multiple sources of data 
(Merriam, 1998). All classroom observations were documented using video 
recordings, complemented with digital photos of student work and the blackboard 
text, and audio recordings or field notes from formal and informal follow-up 
discussions with the teachers, especially those who taught mathematics. During each 
lesson observed an interpreter provided in situ Russia-to-English, while some 
members of the local research team also attended the lessons and complemented with 
contextual comments. The main interest of a case study is what can be learned from a 
specific case or more precisely, how to gain new insight into local practice (Flyvbjerg, 
2011). In this case, the interest was the function of the learning models in the students’ 
collective exploration of structural aspects of equations. By choosing a single lesson, 
it is possible to make a more detailed analysis of the tool used and constituent actions. 
In order to understand what learning is made possible in a particular situation, for 
example during a single lesson, it is vital to become familiar with the daily teaching in 
a broader sense (Stake, 2005). The use of a learning model and the communicative 
actions in the lesson chosen is considered as representative for the lessons observed 
in total.  

On the one hand, Author II, who taught the lesson chosen as the example for this 
article (see below), has an insider perspective on the practice analysed in this article. 
On the other hand, Author I, through her recurring visits to the school, has gained an 
outsider perspective. During the visits, Author I had several opportunities to discuss 
the principles of teaching, and the learning activity theory together with Author II, her 
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colleagues and the local researchers. Further, the first author is familiar with the ED 
Curriculum through her own research (see e.g. Eriksson et al. 2021; Eriksson & 
Jansson, 2017; Eriksson et al., 2019; Wettergren et al., 2021). Milligan (2016) 
addresses the issue of researchers’ positioning as an insider or an outsider and 
suggests that it is possible to develop a position of an inbetweener. We find this 
concept useful when describing our collaboration. 

4.1 Data 

The data for this article is from the observation of a typical ED Curriculum first grade 
lesson (7–8 years old). The 45-minute lesson was video-recorded by Author I in April 
2017, when the first graders had been in school for approximately 7–8 months. Of the 
23 participating students, 12 were girls and 11 boys. As a complement, some of the 
student worksheets were photo-documented. The video recordings, as the main 
source of data, were translated and transcribed into English by a researcher familiar 
with School No. 91 and learning activity theory. Author II reviewed the film and the 
first draft of the transcript. Finally, the transcript was jointly reviewed, and 
clarifications made, by Author I and Author II. The transcription captured all oral 
communication, complemented by gestures and intonation in situations where they 
provided meaning (Radford, 2010; Roth & Radford, 2011). The transcription was 
verbatim, speech neutral and organised dialogically (Linell, 1994). In the translation, 
nuances of the classroom interactions may have been missed in some cases (see 
Radford, 2010; Roth & Radford, 2011). Unfortunately, the sound quality was not 
always optimal, which may also have led to omissions, and the classroom atmosphere 
was not easy to capture in a transcript – at times the students were unable to sit still 
and wait to be called on. The atmosphere was intense and lively. To compensate for 
this, we repeatedly reviewed the transcript, the translation and the video/photo 
documentation of student actions, gestures and facial expressions. 

Central to this lesson was the learning model depicting an algebraic structure of a 
whole and parts in the form of a line segment scheme  with which the 
students were familiar. The ‘whole’ was marked with a curved line on the upper or 
lower part of the model, and the parts were correspondingly marked with two shorter 
curved lines (illustrated below). In this lesson, the line segment model was presented 
in three drawings on the blackboard. Author II explained, in line with the ED 
Curriculum, that the overarching aim of the lesson was to stimulate student analytical 
and theoretical thinking, in this case in relation to the algebraic structure of equations.  
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4.2 Analysis 

The results of the analytical work are divided into two sections (5 and 6). In order to 
establish an empirical foundation for analysis in relation to the two research 
questions, a narrative of the unfolding learning activity was constructed which 
comprised five identified sequences that captured the key events during the lesson. 
To identify the beginning and end of a sequence, focus was directed towards the 
teacher’s communicative verbal and non-verbal actions that signalled such 
transitions, e.g. saying: “Look at the blackboard, please” [while she puts one forearm 
on top of the other—a known signal that students should be quiet].” Of the five 
identified sequences, three (first, third, and fourth) were the focus of this analysis. 
The second sequence was omitted due to silence while students worked individually. 
The fifth sequence was omitted mostly due to space constraints but also since this 
sequence repeated much of the action in the already selected sequences. Sequence 1 
(approximately ten minutes) involved an introduction to the problem situation with 
the discussion prompt, Three drawings: What is similar? In Sequence 3 
(approximately six minutes) the students wrote an equation for their problem: 
Writing a programme for a calculator. Finally, in Sequence 4 (approximately six 
minutes), the students reflected on the puzzling fact that there were three equations 
on the board but several problems presented by the students: Three solutions but 
several problems. The lesson concluded with Sequence 5, an additional task in which 
the teacher wrote 120 – x = 15 on the board and asked the students to visualise this 
equation using the same line segment learning model from the previous task. An 
engaging discussion based on this new equation followed but is not included in this 
article. The narrative of the three chosen sequences is presented in Section 5. The 
second step in the analysis, presented in Section 6, aims to provide a more elaborated 
answer to the two research questions. 

The analysis of the empirically based narrative was inspired by concepts related to 
learning activity (Davydov, 2008). From that perspective, human actions are 
understandable if it is possible to discern who does what (what are they doing), why 
(the goals of the actions), and with what tools (implied that all actions are tool-
mediated)? In such an analysis, both oral and written speech, combined with the 
teacher and student intonations and gestures, provided analytical information when 
trying to capture what constitutive tool-mediated, goal-directed actions are occurring 
(Roth & Radford, 2011). In relation to research question 1, special attention was paid 
to which understanding of the constituent parts of an equation was made available 
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through the joint tool-mediated actions. In relation to research question 2, special 
attention was placed on what in the tool-mediated joint actions enabled discernment 
of structural aspects. 

4.3 Ethical considerations 

Because School No. 91 is an experimental school, parents of students enrolled there 
provide consent for researchers and teachers to experiment with the curriculum, 
observe and videotape lessons and to study student learning. The researchers and 
teachers were permitted to use the videotapes and results of this study for only two 
purposes: scientific articles and teacher-training courses. In the transcripts, 
pseudonyms were used for the children and photographs were selected or retouched 
to reduce the possibility of identifying individual students. Individuals who know the 
students may, however, recognise them. 

5 A narrative of the unfolding learning activity 

The following sequences from the chosen lesson were described narratively and 
chronologically as the activity unfolded. 

5.1 Sequence 1. The problem situation built into the three drawings: 
what is similar? 

As the students enter the classroom, there are three drawings on the board (Figure 1), 
each based on the type of line segment model that the students are familiar with.  

 

Figure 1.  The three drawings on the board 

The teacher asks the students to compare the three drawings and try to determine 
what they have in common. There is eager mumbling and several students raise their 
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hands. The teacher asks a student to come forward and indicate her suggestions. The 
first thing that the student identifies is the x in each drawing and the teacher checks 
that everyone agrees on this assertion. 

Excerpt 1. 

Teacher:   Please look at the board. We see three drawings. What do you 
think these three drawings have in common? ... 

Katya:   [Goes up to the blackboards and points] There is x.  
Teacher:   Who agrees with Katya? Aha… All saw it. Wonderful! What else is 

common in all three drawings? 
Students:   x 
Olechka:  The three drawings have an x 
Teacher:   Olechka, what is x?  
Students:   Unknown. 
Teacher:  The unknown. Dimitra, have you noticed anything else? Mila, 

what have you found? 

The teacher asks for other similarities and various students come forward to show 
what similarities they have found, some mention the numbers in the drawings, others 
the structural aspects of a whole and two parts. The teacher then signals verbally and 
with gestures that there can or must be more similarities.  

Excerpt 2. 

Stepka:   Look, they are all similar! Here, they have a large part, a medium 
part and a small part [shows the first drawing]. Here is a large, 
medium and small [second drawing] and here too [third drawing].  

Teacher:   Good. And you, what do you want to show us? ... Mila? You also 
found something they have in common ... 

Dimitra:   I realised that in all three drawings the whole consists of two parts. 
In this they are similar. 

Teacher:   So, children [turning to the class] do you understand what Dimitra 
means? 

Dimitra:  I wanted to say that there is a whole and two parts in all the 
drawings.  

Teacher:   Do you agree with that? 
Children:   Yes, yes... but Stepka did say that… 
Teacher:   I think Stepka said something else? Right Stepka? 
Stepka:   I said all had a large, a medium and a small.  
Teacher:   Yes. And Dimitra said that there is the whole, which consists of 

two parts. And all three are like that. 

The teacher is obviously satisfied when Dimitra identifies the algebraic structure 
of the relationships between the whole and the parts in the different drawings. A 
structure can be expressed in various ways, as for example, a+b=c or schematically as 
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in the drawings. Using what can be seen as an imaginary playful format she then asks 
students to examine the structure in more detail: “You know, one boy from another 
class said one thing… He said that he thinks that two drawings are much more similar 
to each other than the third one. Which one is different?” During this sequence, 
several students come to the board simultaneously – all engage in explaining and 
arguing. Some students work together with the teacher, and some work in pairs 
(Figure 2). 

 

Figure 2.  The teacher signals ”I don’t understand.” Some of the students give an explanation and the 
teacher signals that she does not understand by lifting her shoulder and holding out her hands in a 

questioning gesture as she says: “Can that be?” or “Is this right?” 

Excerpt 3. 

Teacher:    Raise your hands, please, who found the two drawings and sees 
their similarity and how the third is different? Michail. [Michail 
goes to the board and points to the first and second as similar]. So, 
these two [teacher points] are similar, and this one is completely 
different? [Teacher turns to the class and asks…] Yes? Who 
understood what Michail means? [the intonation in the teacher’s 
voice suggests that she doesn’t understand] ... Who can show and 
explain what these two drawings have in common? [A boy goes to 
the board and indicates …] 

A student:  Here is [pointing] x, and here is x, here is 24, and here is 24. 
Teacher:   Michail. Did you mean this? [Michail nods] 
Teacher:   And who was thinking of something else? 

On several occasions, the teacher involves the whole class by saying, for example, 
“Did he guess correctly?” and turns away from the students who have given the 
suggestion. The students are apparently used to participating in such collective 
discussions characterised by signals and gestures related to “agree” or “don’t agree”. 
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Excerpt 4. 

Varya:   [Pointing to the first and second drawing] If we turn them over, it 
will be the same…  

Teacher:   Have you also thought about these two? [pointing to the first and 
second drawing]. 

Varya:   Yes. 
Teacher:   Varya agrees with you. And who had the other two [drawings] in 

mind? ... What do you think? And you? And you? [the teacher 
addresses different children. A girl goes to the board and indicates 
the other two drawings – the second and the third]. 

A student:  These [pointing to the different parts – each line segment – of the 
second and third drawing] are similar, because here x is large [first 
drawing] and here [second and third] x is small. 

From the video it is possible to note that many (if not all) students are involved: 
some are standing, while others have their hands raised and are eagerly calling out 
their suggestions. The atmosphere is intense and engaging. 

Excerpt 5. 

    [Several students are at the board, pointing and explaining] 
Student:   These are similar because here x is large [first drawing] and here 

[second and third] x is small.  
    [Another girl goes to the board and they both indicate]: Here x is 

big, and here, and here it is small.  
    [A third girl comes up to them and says, while pointing to the 

second and third drawing…] 
Olechka:  Here the x is a part [second and third drawing], and here the x is 

the whole [first drawing] 
Katya:   [Pointing to some numbers] And here and here it is four. 
Teacher:   Yes. Four is good. But it’s more important to understand where x 

is the whole, and where it is the part. 

The episode ends, and the teacher gives the students an assignment related to 
continuing their exploratory work with the learning models. The students are asked 
to copy one of the drawings on the board into their workbooks, but without telling 
anyone which one. When they have copied one of the drawings, the teacher asks 
everyone to write a story (see below) in relation to their chosen drawing – a problem 
in the form of a story using the whole and its parts in their drawing. When observing 
the students as they started to write their stories it was obvious that they were used to 
this type of work. 
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5.2 Sequence 3: A programme for a calculator – finding a concrete 
solution 

After a while, the teacher invites several students to the front of the class to read their 
stories. In relation to the second drawing (see Figure 1), one of the students read: 

On his birthday Peter was presented with 15 new cars [Hot Wheels]. And now 
he has 24 Hot Wheels cars. How many Hot Wheels cars did Peter have before 
his birthday? (“Story” read by a student) 

In relation to the third drawing (see Figure 1), another student read:  

There were 40 children on the school bus. 28 children are seven years old, the 
rest are eight. How many 8-year-old children are there on the school bus? 
(Story read by another student) 

Next, the teacher asks the other students to guess which drawing the story is about. 
The duration of this process is approximately eight minutes, after which the teacher 
again calls for the students’ attention. Under each drawing, she draws “x =” and asks 
the students to do the same under their chosen drawing. 

Excerpt 6. 

Teacher:   How will you find x? And, we need to make an action plan i.e., 
write an equation such as x = a + b or x = d + e or x = 8 - 5. If 
someone cannot calculate the result, that’s not a big deal. We will 
choose a student who counts well, someone who will be a 
‘calculator’ and they will count for everyone who has difficulties. 
For us it is important to just make an action programme for a 
calculator, all right?  

With these instructions, student work takes a new direction. The teacher wants the 
students to write an equation for each of the three drawings that could be used to 
program an [imaginary] calculator, stressing that it is not necessary to figure out the 
answer, simply to write the ‘program’ in relation to the drawing they have chosen and 
the problem (story) they have written. In doing so, she uses what van Oers (2009) 
describes as a playful format to manage the fact that not all the students are able to 
solve the equation. The students immediately seem to grasp the imaginary calculator 
idea. 
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Excerpt 7. 

A student  [calls out]: 24 + 15 = 39 [pointing to the middle drawing on the 
board]. 

Teacher:   You have already calculated! 24 + 15 = 39. Stand up, please, those 
who also have [points to the middle drawing]. There are so many 
of you! Two… no, four. Varya, please, what have you written? 

Varya:   x is 15… [stops]. 
Teacher:   So, you think an unknown [x] plus 15 is 24? 
Olechka:   No! [protesting] May I? [goes to board]. 
Teacher:   OK. Write. 
Olechka:   [Writes and says] 24 - 15 = 9. 
Teacher:   Aha. Look here, what Varya meant: how much should I add to 15 

to get 24? But you did not write a programme for the calculator. 
How much should I add so that I get…? We should write a 
programme for the calculator to make it clear.  

Mila:    [Now two girls are writing—almost on top of each other—on the 
board] x = 24 -15 = 9 … 

The teacher then asks for the students who have written an equation and a solution 
to the second and third drawing.  

Excerpt 8. 

Teacher:   Ok. Thank you. Now, who was solving this one [referring to the 
second drawing]? ... Michail, come to the blackboard. Dina, you’ve 
been here already… ok, you may come and support Michail. [The 
boy writes behind the “x =” that was already on the board]: x = 40 
– 28. 

Teacher:   Let Mila continue. 
Mila:    18 [writes “=18”]. 
Michail:   [Turns from the board to the teacher and says quietly while 

signalling with his finger] “I don’t agree”. I think it is 12. 
Teacher:   You think it is 12… [looks inquiringly at the class]? [Children nod 

affirmatively and signal consent].  
    [Mila writes 12] 
Teacher:   [Turning to Mila] Don’t worry. You wrote the correct programme 

for the calculator. That is very important. And it will help us 
calculate. Thank you! 

Teacher:   You have written very different programmes for the calculator 
with very different numbers and different answers. Here, two 
groups wrote minus in the programme for the calculator [points to 
two drawings on the right], others wrote plus [points to the 
drawing on the left]. What do you think? Why? Explain to me, 
please, when to subtract, and when to add.  

At the end of the exercise, the teacher asks the students how it is possible that 
some of the programmes they have written for the calculator use minus and some use 
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plus, which gets them to consider the algebraic relational structure of the whole and 
its parts and possible operational functions. 

5.3 Sequence 4: Three solutions but several problems 

The students are fully occupied with their assignment of writing programs for the 
calculator and explaining why subtraction or addition is required in some 
programmes, when the teacher gives them a question about how many problems they 
have created together and how many solutions are possible. At first, the students 
apparently struggle to understand what the teacher is asking for. 

Excerpt 9. 

Teacher:  ... What do you think? How many solutions are written on the 
blackboard? [referring to the three equations with their respective 
solutions that the students have calculated on the board]. Show 
me with your fingers, how many. [Several students show three 
fingers in the air; the rest join them]. I can even count them. One, 
two, three… Yeah. And how many problems have we designed 
altogether [referring to the stories that the students had created 
earlier]? ... 

Teacher:   If you want to answer, raise your hand. Why did this happen? Were 
there 12 (or 15) tasks and only three solutions? 12 tasks, then 12 
solutions? 

Students:   [In chorus] No! 
Teacher:   Well ten at least…  
A student:  [Approaching the board with hesitation] Because every task has 

one solution! 
Teacher:   I don’t understand. One solution? But here are three of them. 

Look: one, two, three. But there were 15 problems! How did this 
happen? 

A student:  Because there are many people in the classroom! 
Teacher:   There are many people in the classroom, that’s why there are 15 

problems, but solutions? 
A student:  Everyone has their own answer! 
Teacher:   Aha, so we have 15 answers?  
Students:   No… 
Teacher:   No… That is what I’m talking about. So, we have 15 problems and 

only three answers. Why? 
Student:   Because everyone has his own answer, everyone wants to share his 

own knowledge! 
Gavril:  Because we composed our problems for these three drawings. 

Therefore, there are three solutions… 
Teacher:  I really liked what Gavril said. So, someone came up with a puzzle 

[a story] for this drawing [pointing to the first drawing], other 
children for the second [pointing to the middle drawing]. And 
which of you wrote a story for this drawing [points to the drawing 
on the right]? Therefore, we got only three solutions for many 
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different problems. [Finally, it seems the children realise how they 
got only three solutions for the 15 problems they compiled]. 

Teacher:  Well done. Everyone did a good job. 

In this episode, the teacher puts forward a problem that is difficult for the students 
to understand. “How can there be so many problems but only three solutions?” The 
teacher repeatedly encourages the students to provide an explanation for the 
mysterious fact that there are several problems or stories but only three solutions. 
First, when the teacher asks which students have created a story for the first drawing, 
and which for the second and third, it is possible for them (or most of them) to 
understand that one equation with its solution can match several concrete problems 
or stories. 

6 Utilising young student algebraic thinking about equations  

In this section, we analyse the narratively-depicted learning activity and its evolving 
in relation to the two research questions.  

6.1 Algebraic thinking of the relationship of the whole and its parts 
and the unknown in equations 

The first research question addresses the idea that algebraic thinking of the 
relationship of the whole and its parts and the unknown in equations can be discerned 
through a learning model in a lesson framed by learning activity.  

In the basic line segment learning model exemplified in the three drawings (see 
Figure 1 above) the selected numbers and the placement of the x was important for 
making algebraic ideas related to equations possible to collectively discern and reflect 
upon. In one of the drawings, x represented the whole, and in the other two drawings 
it represented a part of the whole. How the teacher posed the questions and how she 
let the young students contribute different suggestions supported by gestures and 
language played a critical role when the students explored the three drawings. This 
made it possible for the them to discern that: 

 

a) The symbol x can be used to symbolise something unknown that can be either a 
whole or one of the parts.  

b) The problem embedded in the three drawings mathematically describes a 
relation between the whole and its parts (i.e. what the learning model with its 
line segments and the arches depicts).  
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In the following sequence, the students first secretly chose one of the drawings, 
wrote a story in relation to it, and read it aloud so that the other students could guess 
which model the story was written to describe. The students then wrote a “program 
for a calculator,” that is, they wrote an equation that modelled the relationships. The 
teacher emphasised that it was not necessary to find the answer to ‘the program’ 
because the imaginary calculator could do that. However, we observed that all the 
students managed to find the answer to their equation. Using the learning model in 
this manner, the students had the opportunity to discern at least the following that: 

c) A story or a visual representation (i.e. the learning model) can be ‘translated’ 
into an algebraic equation. 

d) In an equation, the relational structure between a whole and its parts may vary, 
and the unknown can be either the whole or any of the parts (the exemplification 
of the learning model in the three drawings made it possible for the students to 
discern this). 

e) A problem, when translated into a mathematical problem as a first step towards 
a solution can be formulated as an equation that will make it possible to 
determine the unknown – the value of x. 

In the third sequence, when the students had written the programme for the 
calculator in their workbooks and on the board and calculated x in the three drawings, 
the teacher confronted them with a new problem. She asked the students how there 
could be so many problems (in the different stories created by the students) but only 
three solutions. In this situation the teacher addressed a topic that was apparently 
difficult for the students to figure out. The teacher, however, was persistent and posed 
the questions several times in various ways even though it seemed as if the students 
had more or less provided the same type of explanation. First, when the teacher called 
students to the board, and then in relation to each of the calculations the students 
demonstrated that the question could have an answer, some of the students wrote 
their problem for only one of the drawings. This contradictory question from the 
teacher made it possible for the students to discern that: 

f) An expression or equation can represent different contextual problems or 
situations. 

This can be described as an emerging algebraic thinking of the generality of 
equations and thus a first step in being able to ascend from the abstract to the 
concrete. 
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6.2 The student and teacher tool-mediated joint actions 

The second research question addresses what in the student and teacher tool-
mediated joint actions promotes exploration of the algebraic aspects of equations. 

The three original drawings on the board with the question “How are all these 
three drawings similar?” can be considered the introduction to the first problem 
situation. The students were to identify and analyse different relational aspects built 
into the problem situation with the help of the learning model used in the three 
drawings. The analytical or theoretical work was conducted jointly, and the students 
apparently challenged each other to find more similarities.  

g) Student theoretical work was collectively realised by those at the board and the 
others who remained at their desks through (previously agreed-on) hand signals 
of agreement or disagreement. Several students also verbally expressed whether 
they agreed or not. This joint labour, as Radford (2018) describes it, made it 
possible for the students to both see and hear others’ suggestions and 
explanations while simultaneously expressing their own understanding. This 
can be described as a collective reflection (Zuckerman, 2004).  

h) While students at the board used the learning model and its components to 
make their thinking and suggestions accessible to others assessment the teacher 
often acted as if she did not really understand what the students were trying to 
say and mostly signalled this with gestures and by asking other students to 
explain. This promoted the students to elaborate the content further. 

i) The teacher’s ‘unwillingness’ to understand, combined with the way the three 
drawings were designed (based on the line segment learning model), allowed 
the students to elaborate on the algebraic ideas of the whole and its parts, and x 
symbolising the unknown. Understanding that the unknown symbolised by an 
x can be any part of an equation, the whole or one of the parts. 

To summarise, this can be described in terms of materialising student collective 
algebraic thinking (Radford, 2006, Venenciano et al., 2020). The learning models and 
the problem situation, combined with the communication prompted by the teacher, 
made it possible for the students to reflectively take the others’ position while 
simultaneously better understanding their own ideas (Zuckerman, 2003, 2004).  
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7 Concluding remarks – teaching that enables and enhances 
algebraic thinking 

The learning activity realised in second author’s classroom can be described as 
analytical and reflective. The structure and use of the learning model combined with 
the teacher’s prompts and her ability to take advantage of student answers and 
questions, created opportunities for the students to analytically reflect upon others’ 
suggestions and explanations. That is, the students could use each other’s thinking 
(visualised with the help of the learning model) to further their own thinking 
(Zuckerman, 2003, 2004). Furthermore, the opportunities for the students to act and 
express their ideas and to have these elaborated by others appeared to promote the 
development of their agency (Davydov et al., 2003). 

Following students’ joint actions from Sequence 1 through Sequence 3, there are 
indications that they increasingly expressed themselves analytically and 
mathematically (Radford, 2018). First, the three relational aspects embedded in the 
drawings were not discerned by the students. They talked about smaller and bigger 
parts, but not of how they were related to each other. Thus, the students did not 
initially reflect upon what the whole was and what the parts were and what in that 
structure was known and what was not. Second, the analytical work that was required 
of the students when asked to create a word problem and an equation for one of the 
drawings made a mathematically-relevant understanding possible. Given these 
aspects, because of the student participation in the learning activity, it was possible 
for them to develop complex relational thinking regarding, for example, possible 
structures of equations, the unknown and the relationship between equations and 
contextual situations. Regarding quantities – as mentioned in the introduction, 
Radford (2018) addresses the need to consider student analytical work as an indicator 
of algebraic thinking. If a student merely guesses or uses a trial-and-error strategy 
and produces relevant answers, this does not count as algebraic thinking. Thus, it 
seems plausible that the students had opportunity to develop complex relational 
thinking because of their participation in the learning activity. 

In a learning activity such as that that evolved during this lesson, several aspects 
must occur simultaneously. Because the object of knowledge embedded in the 
problem situation and the learning model may at any moment, be at risk the teacher 
and student co-actions are significantly important. In particular, the teacher needs to 
consciously address individual student suggestions and explanations, making them 
available for the other students to continued exploration. 
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This study may be considered as limited in that only one lesson was analysed. 
However, the lesson chosen out of 27 observed lessons is representative in relation to 
the aim of teaching and the use of learning model as a mediating tool for students’ 
problem-solving theoretical work (Larsson, 2009). Thus, we hope that our analysis 
can provide some indication that it is possible to illuminate algebraic ideas through 
the collective and reflective use of learning models. This may be regarded as a way to 
allow for complex relational thinking (Davydov, 2008) to take a materialised form 
that others are able to reflect upon (Radford, 2018, 2021; see also H. Eriksson & I. 
Eriksson, 2020; Eriksson et al., 2019). 
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1 Introduction 

On December 26, 2019, an editorial in the Mainichi Shimbun, a daily newspaper in 
Japan, asserted that the sinking teacher applicant ratio is putting the future of Japa-
nese children at risk: “There were on average 2.8 applicants competing for each 
available position at Japan’s public elementary schools in this academic year’s em-
ployment exam cycle, tying a record low ratio set in 1991, according to the Education 
Ministry.” 

This demonstrates the high expectations regarding quality assurance in elemen-
tary school teacher training in Japan. In particular, the role of private universities is 
significant because, as of 2017, the number of universities with accredited programs 
for a first-class license to teach in elementary school stood at 183 private universities, 
52 national universities, and four public universities. However, the teacher training 
programs at private universities in Japan face several challenges; in particular, few 
students choose mathematics as part of their university entrance exams. There is also 
a shortage of subjects related to mathematics and arithmetic at these universities, and 
the ratio between employment examinations and other examinations available to pro-
spective teachers is decreasing. For these reasons, a method for examining the math-
ematics education curricula which is being used to train elementary school teachers 
at private universities in Japan is urgently needed. 

In Japanese elementary school curricula, simple unit fractions, such as 1/2 and 
1/3, are taught in the second grade. The meaning of fractions and decimals—other 
than unit fractions—is taught in the third grade. In the fourth grade, addition and 
subtraction of equal denominators, doubling with decimals, addition and subtraction 
of decimals, and proportions for simple cases are taught. Multiplication and division 
of decimals, addition and subtraction of different denominators, proportions of two 
different quantities, and percentages are taught in the fifth grade. Finally, multiplica-
tion and division of fractions, proportions, and ratios are taught in the sixth grade. 
More specifically, in the fifth grade, students systematically learn multiplication and 
division of decimals, addition and subtraction of different denominators, the ratio of 
two different quantities, and percentages, whereas, in the sixth grade, students learn 
multiplication and division of fractions, proportions, and ratios. In the fifth grade, the 
concept of multiplication can be used in a broader range of situations and meanings 
by considering its relationship with division and when the multiplier is a decimal. In 
other words, students learn that A = B ✕ p (second usage). However, middle school
students and beyond do not have any units specifically on proportions. Instead, they 



KAMBARA (2022) 

241 
 

work only on problems involving fractions, decimals, ratios, and proportions in units 
that focus on equations, shapes, and the use of data. Because these older students no 
longer study proportions, the level of understanding proportions among prospective 
teachers in Japan may be inadequate, which can affect their mathematical identity. 
This study seeks to explore and clarify the level of conceptual understanding of “pro-
portions” among students who hope to become elementary school teachers in the fu-
ture and who are attending a private university to undergo training and obtain sug-
gestions for forming students’ mathematical identities. 

2 Theoretical framework 

2.1 Mathematical identity 

Studies on identity in mathematics education include those that view identity from 
the perspective of participation and positionality—constructed through participation 
and involvement in social groups (Rabe & Wenger, 1993). Others regard identity as a 
narrative (Sfard & Prusak, 2005), while a final group includes affective constructs 
such as emotions, attitudes, and beliefs (Bishop, 2012). Aguirre et al. (2013) define 
mathematical identity as “dispositions and beliefs about the development of the abil-
ity to use mathematics in mathematical and life contexts” (p. 14). 

In Japan, Takahashi (2020) defines this identity as the self-awareness of arithme-
tic and mathematics held by elementary school students, while Nishi (2017) hypothe-
sized that a positive identity would be an outcome of mathematics education, in a 
study conducted among first-year university students in the faculty of education at 
Hiroshima University. This study examines mathematical identity among current and 
prospective elementary mathematics teachers in Japan in two contexts: the context of 
understanding arithmetic and mathematics for students who aspire to become ele-
mentary school teachers; and the context of their transition from being a student to a 
teacher. Mathematical identity is a concept that includes self-awareness of arithmetic 
and mathematics, the subjective awareness and sense of what the job of a teacher of 
arithmetic and mathematics entails, how one is performing or wants to perform, con-
firmation of identity through one’s occupation as a teacher, and professional attitude 
and ability to utilize and nurture one’s identity. Kambara (2021) defines the mathe-
matical identity of students who want to become elementary school teachers as “a 
sense of self and habits formed through learning arithmetic and mathematics, as well 
as a professional attitude that makes the most of one’s own personality and sense of 
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independence in teaching arithmetic as an elementary school teacher” (p. 334). It is 
also necessary to understand mathematical identity as a concept that includes confir-
mation of identity through one’s profession as a teacher and professional goal, to max-
imally benefit from and nurture the identity. This study identifies the following needs: 
(1) to help students develop a healthy mathematical identity that allows them to pos-
itively experience mathematics and find new ways to learn the subject; (2) to trans-
form their attitude about mathematics from a teacher-driven, standardized view of 
the classroom; and (3) to deepen their understanding of mathematics.  

In this study, I use the case of “proportions” to explore some of the issues pertain-
ing to points (1) and (3) in more depth. First, the teaching of proportions has been a 
longstanding issue in arithmetic education in Japan, and despite the availability of 
many studies and practices, a few problems with respect to the understanding of pro-
portions have been noted (Kumakura et al., 2019; Yoshizawa, 2019). Second, for those 
who aim to become elementary school teachers, understanding the meaning of pro-
portions and its appropriate teaching methods is mandatory. The purpose of this 
study is to clarify and investigate the level of understanding regarding the concept of 
“proportions” among students who want to become elementary school teachers and 
are undergoing training at a private university and obtain suggestions for the for-
mation of students’ mathematical identities.  

2.2 The concept of proportions 

In mathematics, the concept of proportions is fundamental to many topics. A propor-
tion, p, expresses the number of times when quantity A is compared with quantity B, 
where A and B are two similar types of quantities. B is called the base quantity, and A 
is the quantity to be compared. Proportions include the following relations: 

• p = A/B (first usage),  
• A = B ✕ p (second usage),  
• B = A/p (third usage).  

The topic of proportions includes sub-topics, like percentages and “buai,” and number 
representations, such as decimals and fractions. To express A as a percentage of B, 
base quantity B is considered in terms of 100 units. A percentage is a ratio that com-
pares a number to 100, and its symbol is %. Under the sub-topic “buai,” base quantity 
B is considered in terms of 10 units; and special terms like “wari,”, “bu,”, and “rin,”, 
are used. In Japan, students learn that 1% is 0.01 and do not relate it to fractions. This 
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study will mainly focus on proportions expressed as percentages (%). 
Understanding the knowledge level of mathematics teachers is an international 

endeavor. Even in the last decade, there has been much research on teachers’ 
knowledge of proportions and ratios (e.g., Howe, 2013; Monteiro, 2003; Olanoff et 
al., 2014). In Japan, most studies on the semantic understanding of proportions have 
been conducted in elementary schools. A keyword search on CiNii for “understanding 
of proportions, junior high school students, high school students, and university stu-
dents” demonstrated only two papers by Higuchi (2005) and Kumakura et al. (2019). 
The former was a study of college students, but it compared the results of one written 
test to find the rate of increase using the first usage of the ratio with the results of 
additive calculus of different denominators and fractions, and the basic knowledge of 
information literacy. It did not investigate the semantic understanding of percentages 
among college students. The latter study was conducted on junior high school and 
high school students, and the items were developed based on previous studies to in-
vestigate students’ “deep understanding of proportion,” and detailed discussions were 
carried out. Following this study, I decided to investigate the situation regarding the 
understanding of the concept of “proportion” among students who want to become 
elementary school teachers through survey questions taken from the survey con-
ducted by Kumakura et al. (2019; Tables 1 and 2). 

3 Research method 

3.1 Measures 

I investigated the situation regarding understanding percentages among students 
who want to become elementary school teachers. In doing so, I referred to the ques-
tionnaire and survey questions by Kumakura et al. (2019; Table 1). This quantitative 
study employs a descriptive-research survey method. The survey questionnaire by Ku-
makura et al. (2019) was used to collect data pertaining to students’ understanding of 
proportions.  

The questionnaire by Kumakura et al. (2019; Table 1) consisted of eight items (I) 
that measured understanding of “proportions” on the following dimensions: the need 
to understand proportions or utility of proportions (I1 and I2), the meaning of pro-
portions (I3–I5), and attitude toward proportion problems (I6–I8). The investigator 
added a question on “confidence in teaching proportions,” so the final questionnaire 
had a total of nine items, which were used to investigate the students’ mathematical 
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identities with a special focus on proportions. The author then compared the data 
from the college students with the data from high school students in Kumakura et al. 
(2019) to clarify university students’ understanding. 

Table 1.  Mathematical identities with a special focus on proportions  

For the following nine items related to proportion, please select the option that best expresses your re-
sponse to the questions: 
(a) Strongly agree (b) Agree (c) Don’t think so (d) Don’t think so at all 
 
(1) The concept of percentages (%) is applicable to subjects other than mathematics. 
(2) Knowledge of percentages (%) is necessary for daily life. 
(3) If you express something as a percentage (%), you can see how much of the whole it is. 
(4) Expressing results in terms of percentage (%) shows changes such as increases and decreases. 
(5) We can compare two quantities by expressing them as percentages. 
(6) Solving percentage (%) problems is fun. 
(7) I am good at solving percentage (%) problems. 
(8) I may try to solve problems in daily life by using the concept of percentages I have learned (%). 
(9) I am confident in teaching percentages (%). 

Source: Author’s addition to Kumakura et al. (2019) 

 

The survey also included a questionnaire consisting of six major questions related 
to different types of proportions: Questions 1 and 2, respectively, correspond to the 
second and third usages described in section 2.2. Question 3 asks the respondent to 
contrast quantities. Questions 4 and 5 are pp-type questions (these are questions in 
which the reference quantity [A] is multiplied by the percentage [p] to obtain the com-
parison quantity [B]; then, the reference quantity [B] is multiplied by the percentage 
[p’] to obtain a new comparison quantity [C]). Finally, question 6 is a p/p-type ques-
tion (in this type, the comparison quantity [B] is divided by the percentage [p] to ob-
tain the reference quantity [A]; then, the comparison quantity [A] is divided by the 
percentage [p’] to obtain the reference quantity [C]). The questions are illustrated in 
Table 2.  

Two survey rounds were conducted. In the first survey (2019), I analyzed the per-
centage of correct answers to explore the understanding of percentages among stu-
dents who want to become elementary school teachers. The second survey (2021) used 
the same questionnaire as the first, and I qualitatively analyzed the writing of survey 
question 6. Through these surveys, I tried to get a deeper understanding of the 
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students’ percentage understanding and gain a perspective to guide them. Further-
more, I tried to obtain suggestions for fostering their academic identity.  

Table 2.  Survey questions  

Q1. If a cake with a regular price of 2000 yen is sold at a 30% discount, what is the price after the discount? 
Solve the question and mention all the steps. 

Q2. Answer the following question: 

A company is selling 180 g of canned salmon, the weight of the salmon is 20% more than that sold in the 
previous year. What was the weight of the canned salmon sold in the previous year? 

(i) Solve the question mentioning all the steps, with special reference to how you calculated the content 
of the can sold in the previous year. 

(ii) If you were to give an easy-to-understand explanation to a friend who did not understand how to 
solve the question, how would you explain it using a diagram, table, or figure? Draw/write this below. 
However, it is not necessary to use all the figures, tables, and pictures. 

Q3. The following table shows the approximate land areas of Finland and Japan: 

Country name  Finland Japan 

Land area   34 (million km2)   38 (million km2) 

  (i) Write an equation to find the approximate percentage of the land area of Finland with respect to the 
land area of Japan. However, you do not need to find the answer. 

(ii) Write an equation to find the approximate percentage of the land area of Japan with respect to the 
land area of Finland. However, it is not necessary to find the answer. 

Q4. At Junior High School A, 30% of the students commute to school by bicycle, and 60% of them are boys. 
What percentage of the school students are boys who ride bicycles to school? Solve the question with 
complete steps. 

Q5. We looked at the annual number of visitors to the zoo from 2015 to 2017; the number of visitors in 
2016 increased by 10% compared to the number of visitors in 2015. How did the number of visitors in 
2017 compare to the number of visitors in 2015? Choose one correct answer from the options given 
below, circle it, and write the reason for your choice. 

a. Increased   b. No change  c. Decreased 

Q6. What is the ratio of forest area to total area in town A? Write the answer and how to find it in a way 
that elementary school students can understand. The forest area in the present year is the same as it 
was 10 years ago. 

Source: (Kumakura et al., 2019) 
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3.2 Procedure 

The first survey was a collective survey conducted in May 2019. It was administered 
in person at the university where it was also answered and collected. The data col-
lected from university students were then compared to high school students who want 
to become teachers. In the second round, a survey was conducted in July 2021, with a 
slight modification to question 6 from “Write the method and answer” to “Write the 
method and answer in a way that elementary school students can understand.” This 
was changed to a more pedagogical and practical expression to measure the mathe-
matical identity of prospective elementary school teachers. However, the answers to 
the question remained the same. Handouts containing practice exercises were distrib-
uted to the students present on campus. The survey questionnaires were distributed 
among the students. The students then prepared their answers at home and submitted 
them a week later. Both surveys were administered to students who were attending 
the same university. 

3.3 Participants 

The first survey was conducted with 86 third-year students at private universities 
studying to be elementary school teachers who agreed to participate in the research. 
The only arithmetic course taken by these students was arithmetic content theory in 
their first year. Some of the results of this first survey were reported by Kambara 
(2019). The second survey was conducted with 110 third-year students working to-
ward a Bachelor of Education at the same private university who agreed to participate 
in the study. These were from a total of 135 students aspiring to become elementary 
school teachers at that private university. Private university A is a traditional school 
that has produced many teachers, and the number of graduates from here who find 
jobs as teachers is one of the highest among universities in the Kansai region of Japan. 

In accordance with the code of ethics, the participants were asked to submit a con-
sent form. All participants were provided details regarding the purpose of the research 
and confidentiality. 

3.4 Statistical analysis 

First, I calculated the percentage of positive responses for each question item (1–8) in 
the questionnaire. Each item was answered using a four-point Likert scale. Because 
the data were obtained on an ordinal scale and not on an interval scale, the scores 
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were assigned as follows: (a) Strongly agree = 6; (b) Agree = 5; (c) Don’t think so = 2; 
and (d) Don’t think so at all = 1. A multiple regression analysis using the stepwise 
method was then conducted. Referring to Table 1, item 9, “I have confidence in teach-
ing percentages (%),” was used as the objective variable, and items 1–8 were the ex-
planatory variables. The implications for identity formation were then discussed. 

For the survey questions on percentage comprehension, we calculated the percent-
age of correct answers and the average number of correct answers for the college stu-
dent participants. We then compared these to the percentage of correct answers 
among high school students in Kumakura et al. (2019). Because we did not have access 
to the primary data from Kumakura et al. (2019), we did not test for differences in the 
means. 

4 Results and discussion 

4.1 Mathematical identity survey (2019) 

4.1.1 Results 

The percentage of affirmative responses (option a or b) in the questionnaire survey is 
illustrated in Table 3. 

Table 3.  Positive responses to the questionnaire survey (2019) (n = 86) 

Item No. Items Percentage 

1 Concept of percentages (%) finds application in subjects other than mathe-
matics. 94.2 

2 Knowledge of percentages is necessary for daily life. 97.7 

3 Expressing it as a percentage (%) to see how much of the total it is. 96.5 

4 Expressing the results in terms of percentage (%) shows the changes such as 
increase or decrease. 91.8 

5 We can compare two quantities by expressing them as percentages. 82.5 

6 Solving percentage problems is fun! 48.3 

7 I am good at solving percentage problems. 26.7 

8 I may try to solve problems in daily life by using the concept they have 
learned. 60.4 

9 I am confident in teaching percentage (%). 15.2 
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The above table illustrates the percentage of affirmative responses to items 1 and 
2, which pertain to the “necessity of proportions,” and items 3 to 5, which pertain to 
the “meaning of proportions.” Each of these items, with the exception of item 5, was 
found to be above 90%. The reason that the positive responses to item 5 (82.5%), 
which pertains to “comparing two quantities,” tended to be lower than those for items 
3 (96.5%) and 4 (91.8%) could be because proportions are not used as often when 
comparing two quantities on a daily basis. The affirmative responses to items 6 to 8, 
which pertained to “attitude toward solving proportions,” were low, ranging from 20 
to 60%. This indicates that the target students, those aspiring to become elementary 
school teachers, dislike proportions.  

The percentage of affirmative responses to item 9, “I am confident in teaching per-
centages (%),” was also low at 15.2%. On this item, 29.1% of the respondents an-
swered, “I don’t think so at all,” revealing that they have a strong sense of discomfort 
with respect to teaching percentages. A stepwise multiple regression analysis was car-
ried out with item 9 as the objective variable and items 1–8 as explanatory variables 
(Table 4). The results revealed that item 7, “I am good at solving percentage prob-
lems,” had a significant positive effect on item 9, while the others had no effect. 

Table 4.  Determinants of confidence in teaching percentages 

Variable Item 9 95% Lower limit 95% Upper limit VIF 

Item 7 .404** .213 .594 1.045 

R2 .253**    

Note: **p < .01，VIF: Variance Inflation Factor 

4.1.2 Discussion 

Students who aspire to become teachers mainly encounter mathematics and arithme-
tic during primary school education, and they form their current “mathematical iden-
tity” through various experiences, such as meeting instructors and other students who 
are also pursuing the study of mathematics and arithmetic along with them. This 
mathematical identity is not immutable. Rather, it develops because of the motivation 
to become a teacher, the relearning of arithmetic and mathematics at university (by 
engaging in learning through activities requiring mathematical inquiry), and through 
relationships with others. Therefore, focusing on enabling students to feel confident 
about being good at solving proportion problems will lead to the formation of their 



KAMBARA (2022) 

249 
 

identity as instructors. Nevertheless, the knowledge gained through rote memoriza-
tion—training students to repeatedly derive the correct answers to problems they 
learned in elementary school—will eventually be forgotten. Thus, it is necessary to 
improve students’ skills in understanding the essential meaning of proportions. To 
achieve this, it is important for instructors to devise an appropriate method to teach 
proportions. It is necessary to have a university education plan that integrates a unit 
on the concept of proportions that includes developing each hour’s instructional plan, 
mock lessons, and handouts for practice exercises. 

4.2 Survey on the understanding of the “percentages” (2019) 

4.2.1 Results 

In this portion of the survey, we investigated the students’ understanding of the con-
cept of percentages (%). The percentage of correct answers and the average number 
of correct answers are illustrated in Table 5.  

Table 5.  Percentage (%) of correct answers 

Problem 
University  
students 
(n = 86) 

Second-year high-
school students 

(n = 536) 

Q1. Second usage 100.0 95.4 

Q2. Third usage 67.4 74.0 

Q3. Contrastive type 80.2 69.9 

Q4. pp type 80.2 73.0 

Q5. pp type 66.3 61.2 

Q6. p/p type 32.6 41.6 

Average number of correct answers 4.3 4.2 

Note: Data presented in Table 5 on second-year high-school students (high school sophomores [n = 536 
students]) were derived from the results of the survey conducted by Kumakura et al. in 2019. 
 
 

The percentage of correct answers to questions 1, 3, and 4 was more than 80%, 
while the percentage of correct answers to questions 2, 5, and 6 was lower than 70%. 
Questions 4 and 5 both refer to the same pp-type, but as Kumakura et al. (2019) stated, 
the percentage of correct answers to question 5 was lower than that of question 4. Pp-
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type problems are written problems that can be solved by multiplying a percentage by 
a proportion, while p/p-type problems are written problems that can be solved by di-
viding a percentage by a proportion. 

About 25% of the students interpreted the percentage increase/decrease “10% in-
crease/10% decrease” in the same way as increase/decrease in quantity/number “10 
person increase/10 person decrease.” In other words, a quarter of the students 
seemed to be unable to distinguish between percentages and physical units, such as 
liters (L), grams (g), or pieces (pcs). Question 6 had the lowest percentage of correct 
answers (32.6%), and there were many wrong answers (e.g., the percentage of defor-
estation is 60% or 20%). Students who answered “60%” did not correctly understand 
the meaning of the percentage, while those who answered “20%” did not sufficiently 
understand the meaning of the percentage because they arrived at the answer by 
simply subtracting the percentages (50% – 30% = 20%). 

4.2.2 Discussion 

In Japan, ratios are taught in elementary school but not at the secondary level. The 
trend in the percentage of correct answers of university students and high school stu-
dents, who differed in terms of age, region, and academic distribution, was highly 
similar. It seems unlikely that the understanding of proportions will improve natu-
rally when these elementary school students become adults with more life experience. 
Additionally, the difficulty level of the problems increased with respect to the question 
order: second usage [(Q1)] → contrastive type [(Q3)], pp-type (no change in standard 
quantity) [(Q4)] → third usage [Q2], pp-type (with change in standard quantity) [Q5] 
→ pp-type [(Q6)]. This indicated that students might not naturally deepen their un-
derstanding as they progressed through the grades. Therefore, it is necessary to en-
sure that students understand that proportion problems are of varying difficulty levels 
and can be used for teaching “proportions.” 

4.3 The understanding of “question 6” (2021) 

4.3.1 Results 

Among the 110 students, 93 (84.5%) answered question 6 correctly (i.e., 40% of the 
deforested area). Table 6 depicts the qualitative classification of the students’ answers, 
focusing on their expressions. 
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Table 6.  Evaluation criteria for categorizing students (n = 110) 

Evaluation criteria Number of  
respondents 

Type A: The meaning of proportions is expressed correctly and described without 
logical leaps. 

15 (13.6%) 
 

Type B: The meaning of proportion is expressed correctly and described almost log-
ically. Some leaps are made, with some examples not being close to reality. 

12 (10.9%) 
 

Type C: There is some problem understanding the meaning of proportions, and the 
explanation is insufficient. 26 (23.6%) 

Type D: There is a problem understanding the meaning of proportions, and there 
are many inadequate explanations. 40 (36.4%) 

Type E: There is a problem understanding the meaning of proportions, and the an-
swer is wrong. 17 (6.4%) 

 
 

A total of 27 students (24.5%) were included in Types A and B, while 66 students 
were in Types C and D, which is not a small number. This indicates that many students 
could answer the question correctly but could not provide an appropriate explanation. 

A typical example of a Type A response (13.6%) is as follows:  

Let the total area of town A be 1. Ten years ago, the forest area was 50% of the 
total area, and thus it was 0.5. This year’s forest area is 0.3 because it is 30% of 
the total area of Town A. Based on the area of the forest 10 years ago, we know 
that this year’s forest area has decreased by 0.5-0.3 = 0.2. Based on the area of 
the forest 10 years ago, we know that the forest area has decreased by 0.2/0.5 
= 0.4, or 40%. The forest area decreased by 40%. 

Students whose responses were categorized as Type A were able to state reference 
quantities in their explanations, for example, “Let the total area of town A be 1.” 

A typical example of a Type B response (10.9%) is as follows:  

Let the total area of town A be 100 m2. Ten years ago, 50% of the total area was 
50 m2. This year, it is 30% which is equal to 30 m2. Based on the area of the 
forest 10 years ago, the area of the forest this year is 50-30 = 20, indicating a 
decrease of 20 m2. If we express 20 m2 as a percentage, we obtain 20/50 × 100 
= 40, that is, a 40% decrease.  

Thus, the 11 members of Type B proceeded to discuss the total area of Town A as 
100 m2. The remaining members assumed that the total area of Town A was 200 m2. 
This indicates that these students described the area of a town as being about the same 
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size as a classroom. Additionally, the description ignored the fact that the discussion 
of the assumed area was not generally applicable. 

A typical example of a Type C response (23.6%) is as follows: “Based on the forest 
area 10 years ago, this year’s forest area is 30% of that, 0.3/0.5 = 0.6, which is 60%, 
and 100 - 60 = 40, which is 40%.” The example demonstrates that the standard quan-
tity is misrepresented; the standard quantity value is unclear, and the calculation pro-
cedure is not explained. Most of the responses in Category C ask for the solution as 
“percentage - percentage = amount of decrease.” However, it is not clear whether the 
fact that the reference quantity A has not changed is implicit or due to a lack of un-
derstanding; in any case, it is not expressed correctly. 

A typical example of a Type D response (36.4%) is as follows: “Let 50% be 1. If we 
replace 50% with 100%, then 30% is 60% of 50%; 100-60=40, thus a 40% decrease.” 
Thus, the explanations in Type D do not adequately state the relationship between 
proportions, reference quantities, or comparison quantities. Additionally, students do 
not express themselves with the awareness that they are explaining to elementary 
school students. A lack of explanatory language is another characteristic of Type D. 
Type E (15.5%) refers to those who answered 60%, 20%, or 50% as their answers. 
There were nine, seven, and one student in this category, respectively. 

4.3.2 Discussion 

As described above, p/p-type problems are not easy, even for students who wish to 
become elementary school teachers. Even those students who answered correctly had 
difficulty providing appropriate explanations and presenting the right amount of in-
formation for the situation. In arithmetic and mathematics learning, the ability to use 
proper mathematical language and have an appropriate sense of quantity are im-
portant qualities and competencies that we want children to acquire. Deepening the 
understanding of ratios among students aiming to become instructors and fostering 
the ability to explain the use of mathematical expressions and sense of quantity are 
issues that need to be addressed. Since the ability to provide correct explanations is 
inextricably linked to understanding mathematics, we must provide guidance for stu-
dents to help them understand the content and refine their mathematical expressions. 
We believe that such guidance will help students develop a sound mathematical iden-
tity. In particular, proportion is an important topic because it is a significant concept 
when considering quantities per unit and in the functional domain. Additionally, 
“proportions” involve a mathematical concept that most students find difficult; thus, 
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using this topic as a reference for refining students’ understanding and methods of 
expression might be an effective way of helping them form a sound mathematical 
identity. 

5 Conclusion 

The purpose of this study was to clarify and investigate the level of understanding of 
the concept of “proportions” among students who want to become elementary school 
teachers and are undergoing training at a private university and obtain recommenda-
tions for the development of students’ mathematical identities.  

Of the survey participants, 15.2% responded positively to the question about teach-
ing proportions. When it comes to teaching proportions, it was found that many stu-
dents have a negative mathematical identity as instructors. Therefore, we investigated 
the determinants of “confidence in teaching proportions.” A stepwise multiple regres-
sion analysis was carried out with item 9, “I am confident in teaching percentages 
(%),” as the objective variable and items 1–8 as explanatory variables (Table 4). The 
results revealed that item 7, “I am good at solving percentage problems,” had a signif-
icant positive effect on item 9. In other words, it was found that being good at solving 
proportions could lead to a positive mathematical identity as a teacher. 

Next, because it is necessary to understand the status of students’ understanding 
of proportions, I examined the status of proportion-related problem solving and 
found the following: Examining mathematical identity and understanding propor-
tions among college students who wanted to become elementary school teachers at 
University A revealed that the difficulty level of the numerical problems increases in 
the order of the second usage → contrast type, pp-type (no change in standard quan-
tity), third usage, pp-type (with change in standard quantity), and p/p-type. Particu-
larly, students had problems understanding the third usage and cases where the 
standard quantity was unknown (p/p-type). As such, students must acquire 
knowledge about these problems. This is similar to the results obtained by Kumakura 
et al. (2019) for high school students, suggesting the need for universities to provide 
students with opportunities to relearn proportions. In particular, for p/p-type prob-
lems, many students could not explain the correct reasoning, even when they could 
derive the correct answer. This suggests that there is a need for students to learn how 
to explain the problem-solving process. Because the ability to provide correct expla-
nations is inextricably linked to understanding mathematics, it is essential that we 
provide guidance to students on the content and how to refine their expression. We 
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believe that such guidance will help students develop a positive mathematical identity. 
Deepening the understanding of ratios among students aiming to become instructors 
and fostering their sense of quantity and ability to explain the use of mathematical 
expressions are also issues that need to be addressed. 

This survey was limited to students at a private university in Japan who wanted to 
become elementary school teachers. In the future, the survey should be conducted at 
other universities worldwide to assess if the results differ depending on the differ-
ences in curricula in each country. Additionally, considering that the descriptive sur-
vey for question 6 was a collection and distribution survey, it is expected that the re-
sults would have been lower than the present results if a group survey had been con-
ducted. 
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This study focuses on the knowledge base that Swedish elementary student 
teachers demonstrate in their solutions for six routine fraction tasks. The paper 
investigates the student teachers’ common content knowledge of fractions and 
discusses the implications of the findings. Fraction knowledge that student teachers 
bring to teacher education has been rarely investigated in the Swedish context. 
Thus, this study broadens the international view in the field and gives an 
opportunity to see some worldwide similarities as well as national challenges in 
student teachers’ fraction knowledge. The findings in this study reveal uncertainty 
and wide differences between the student teachers when solving fraction tasks that 
they were already familiar with; two of the 59 participants solved correctly all tasks, 
whereas some of them gave only one or not any correct answer. Moreover, the 
data indicate general limitations in the participants’ basic knowledge in 
mathematics. For example, many of them make errors in using mathematical 
symbol writing and different representation forms, and they do not recognize 
unreasonable answers and incorrect statements. Some participants also seemed to 
guess at an algorithm to use when they did not remember or understand the 
correct solution method. 

Keywords: common content knowledge, elementary school, fractions, student 
teacher, teacher education 

1 Introduction 

Teaching and learning of fractions has shown to be a challenging area in mathematics 
(e.g., Charalambous & Pitta-Pantazi, 2007; Cramer et al., 2002; Löwing, 2016; Ma, 
2010; Newton, 2008). As Lamon (2007, p. 629) expresses, fractions like ratios and 
proportions are “the most protracted in terms of development, the most difficult to 
teach, the most mathematically complex, the most cognitively challenging, the most 
essential to success in higher mathematics and science.” Nevertheless, fractions are 
an essential part of school mathematics and an important part in the development of 
algebra and proportional reasoning. Elementary school students’ knowledge of 
fractions and division can even predict their algebraic skills and performance in 
mathematics several years later (Siegler et al., 2012). 

A deep understanding of rational numbers requires knowledge of different 
fraction interpretations such as the operator model and linear models (see e.g., 
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Kieren, 1993; Lamon, 2007, 2020). However, student teachers seem to favor the part-
whole model that has traditionally been connected to fractions and taught in 
elementary schools, and they struggle with other fraction interpretations (Lamon, 
2020; Olanoff et al., 2014). Developing skills with fractions also requires the ability to 
perform fraction operations and to build up some degree of fraction sense. According 
to Lamon, 

This means that students should develop an intuition that helps them make 
appropriate connection, determine size, order, and equivalence, and judge 
whether answers are or are not reasonable. Such fluid and flexible thinking is 
just as important for teachers who need to distinguish appropriate student 
strategies from those based on faulty reasoning. (Lamon, 2020, p. 143) 

In Sweden, the national curriculum for the compulsory school states the core 
content related to fractions first as parts of a whole and as parts of whole numbers, 
which should be compared and named as simple fractions in grades 1-3 (Skolverket, 
2011). Further, in grades 4-6, the knowledge requirements include an understanding 
of rational numbers in fraction, decimal and percentage form. The main calculation 
methods for fractions are included in the curriculum for grades 7-9. Even though 
efforts have been made to improve learning results in mathematics, studies show that 
Swedish elementary school students still have deficiencies in fulfilling the above 
knowledge requirements (Löwing, 2016; Skolverket, 2016, 2019). Therefore, it is also 
important to focus on student teachers and to study their knowledge of fractions 
thoroughly. 

Previous studies (e.g., Ma, 2010; Tirosh et al., 1998; Zhou et al., 2006) have shown 
the important role of teacher education in developing student teachers’ fraction 
knowledge and the need for further research and international comparisons in this 
topic (Olanoff et al., 2014). The present study is a part of a more comprehensive 
research project that seeks to respond the research needs in this field by expanding 
the view to the Swedish teacher education context. The aim of this paper is to 
investigate Swedish elementary student teachers’ common content knowledge (CCK) 
of fractions by analyzing errors and difficulties in their solutions for routine fraction 
tasks. The research question of this study is: 

How is CCK reflected in student teachers’ fraction solutions and especially in their 
errors and difficulties with routine fraction tasks? 
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2 Previous research on student teachers’ fraction knowledge 

A number of studies investigating different aspects of student teachers’ fraction 
knowledge have been published in mathematics education research. Olanoff et al. 
(2014) present a summary of 43 research articles focusing on student teachers’ 
mathematical content knowledge in the area of fractions. These studies conducted, 
e.g., in Australia, Taiwan, Turkey and in the USA between the years 1989 and 2013, 
show that student teachers’ fraction knowledge is relatively strong in performing 
fraction procedures. However, when including all basic operations of arithmetic and 
using basic fraction tasks that can be found in elementary school mathematics 
textbooks some studies also show limitations in student teachers’ knowledge of 
fraction operations (e.g., Newton, 2008; Young & Zientek, 2011). 

For example, Newton (2008) identified several error patterns when studying 
elementary student teachers’ knowledge of routine fraction tasks in the USA. For 
addition, and especially when the denominators were different, the most common 
error was adding across numerators and denominators. In the subtraction of 
fractions, student teachers had difficulties changing forms, they subtracted across and 
left blank. In multiplication, they made whole-number errors with mixed numbers, 
cross-multiplied fractions instead of multiplying across, kept the common 
denominator in the answer, added numerators or denominators, and made errors in 
changing forms as well. Student teachers in Newton’s study were most uncertain 
about dividing fractions, and even more error patterns were found for that operation: 
(a) finding a common denominator and keeping it in the product, (b) leaving blank, 
(c) reciprocals, (d) flipping the dividend instead of the divisor, (e) making mistakes 
with whole number facts, (f) cross-dividing or cancelling, and (g) adding or 
subtracting numerators or denominators. Newton (2008) concluded that the most 
common error in the operations with the routine fraction tasks was keeping the 
denominator the same even though it was not suitable.  

A few years later, Young and Zientek (2011) showed that student teachers’ 
competence vary by fraction operation; division and multiplication are the most 
difficult operations for student teachers. Moreover, student teachers’ knowledge of 
fraction operations was partly rule-based and, for example, they tended to 
overgeneralize the rule of converting fractions to have like denominators for 
multiplication as well. Many of the student teachers’ error patterns seemed to be 
based on incorrect memories of algorithms they had learned before which led them to 
inappropriate use of procedures; in some tasks they used correct procedures and in 
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some other tasks with the same operation they chose the incorrect ones. Thus, Young 
and Zientek (2011) concluded that student teachers in their study were not able to 
accurately judge their abilities to correctly perform the fraction operations.    

Previous research have also reported on student teachers’ difficulties 
understanding the meanings behind fraction procedures and why the procedures 
work (e.g., Ma, 2010; Marchionda, 2006; Olanoff et al., 2014). Tirosh (2000) 
concludes that many student teachers in Israel are not capable of explaining the 
fraction division procedure even though they are able to use it. Similarly, the 
American final-year student teacher in Borko et al.’s study (1992) showed a weak 
understanding of both multiplication and division of fractions at the end of her 
teaching practice after completed a mathematics methods course; her knowledge of 
fraction division was based on a rote understanding of the invert-and-multiply 
algorithm and she lacked any knowledge of other representations such as visual 
representations of fractions she could use to demonstrate the division solution. 
Moreover, student teachers seem to lack flexibility in moving away from procedures 
and using fraction number sense, for example, when converting a fraction to a decimal 
(Muir & Livy, 2012; Olanoff et al., 2014). This may be one reason many student 
teachers have difficulties solving fraction story problems and creating their own 
fraction word problems (e.g., Ball, 1990; Tirosh, 2000; Toluk-Uçar, 2009).  

Researchers in previous studies have also concluded that the relationship between 
student teachers’ conceptual and procedural knowledge of fraction operations is 
weak, and that their fraction knowledge reflects the misconceptions that children have 
when working with fractions (e.g., Lin et al., 2013; Van Steenbrugge et al., 2014; 
Young & Zientek, 2011). Similar to children, many student teachers make errors based 
on prior knowledge of whole numbers, and when misapplying algorithms, especially 
the multiplication algorithm, student teachers’ errors can also relate to their prior 
knowledge of fractions, e.g., to cross-multiplying which can be used when comparing 
fractions (Newton, 2008).  

Student teachers are assumed to have a certain level of competence in using 
fractions when they are admitted to teacher education. However, Van Steenbrugge et 
al. (2014) concluded that one reason Flemish student teachers perform at a low level 
with fractions is the limited time spent on fractions in teacher education. Teacher 
education does not seem to have an impact on student teachers’ common content 
knowledge of fractions, which reveals a need to develop mathematics teaching in this 
area (Van Steenbrugge et al., 2014). 



LUMAT 

260 
 

Even though the multiple challenges related to the teaching and learning of 
fractions are widely recognized in many international studies as shown in the 
examples above, there seem to be few recent studies focusing on student teachers’ 
fraction knowledge in the Nordic countries. One such study focuses on Icelandic 
student teachers’ mathematical content knowledge showing that they have 
considerable difficulty with fractions; their knowledge is procedural and relates to 
“standard algorithms” learned in elementary school (Jóhannsdóttir & Gíslandóttir, 
2014). A study of Norwegian student teachers (Jakobsen et al., 2014) shows that they 
have difficulties when solving fraction word problems; the student teachers seem to 
lack familiarity with mathematical notions of fractions, and they have difficulties 
interpreting elementary students’ solutions and giving sense to fraction solutions 
different from their own. Furthermore, a study conducted in Finland indicates that a 
large number of those applying for teacher education have challenges in solving 
fraction algorithms (Häkkinen et al., 2011). As stated in many previous studies in the 
field, researchers in these Nordic studies as well highlight teacher educators’ 
responsibility in ensuring the quality of student teachers’ fraction knowledge and the 
need for further research in this area. The present study contributes to the field by 
taking the topic to Swedish teacher education and presenting an analysis of student 
teachers’ CCK of fractions in a Swedish context. This gives an opportunity to see some 
worldwide similarities and national challenges in student teachers’ fraction 
knowledge.  

3 Theoretical framework 

Over the last few decades, an increasing research interest has been given to subject 
matter knowledge as an important part of teaching (e.g., Shulman, 1986). In his 
original work, Shulman (1986) suggests three categories of teacher knowledge: (a) 
subject matter content knowledge, (b) pedagogical content knowledge, and (c) 
curricular knowledge. Subject matter knowledge includes not only the knowledge of 
the content of a subject area but also knowledge of substantive and syntactic 
structures. By these, Shulman refers to the varying ways the basic concepts, principles 
and facts of a discipline are organized and identifies the legitimate rules in that 
domain. Successful teaching requires also pedagogical content knowledge, what 
Shulman (1986) calls “the ways of representing and formulating the subject that make 
it comprehensible to others” (p. 9). 
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In mathematics, there has been a lack of agreement about definitions, language, 
and basic concepts within teaching-specific mathematical knowledge (Hoover et al., 
2016). Ernest states that 

the teacher’s knowledge of mathematics is a complex conceptual structure 
which is characterized by a number of factors, including its extent and depth; 
its structure and unifying concepts; knowledge of procedures and strategies; 
links with other subjects; knowledge about mathematics as a whole and its 
history. (Ernest, 1989, p. 16) 

 Many studies concerning student teachers’ knowledge base have focused on the 
differences between their conceptual and procedural knowledge (e.g., Lin et al., 2013; 
Marchionda, 2006). Conceptual knowledge is knowledge that is rich in relations 
(Hiebert & Lefevre, 1986). When it comes to fractions, it includes the understanding 
of the definition of fractions and other relevant number sets, fundamental facts about 
these numbers, and how the essential facts are related in the context of fraction tasks. 
Procedural knowledge about fractions concerns computational skills that are needed 
for solving fraction tasks and familiarity with the proper ways to denote fractions and 
their operations, for example, how to use appropriate rules and notations for the 
division of fractions (Hiebert & Lefevre, 1986). Maciejewski and Star (2016) conclude 
that flexible procedural knowledge is a key skill, which can be a way to improve 
students’ conceptual knowledge as well. However, as Newton (2008) states, 
“dichotomizing mathematical knowledge into procedures and concepts does not 
account for its complexity” (p. 1105). 

Even though teacher knowledge base has been regarded as an essential part of 
effective teaching, scholars have argued whether and how it contributes to students’ 
learning. Thus, several studies have been conducted to examine the extent to which, 
for example, the mathematical knowledge for teaching framework (MKT) relates to 
learning (e.g., Charalambous et al., 2020). When analyzing the mathematical 
demands of teaching, Ball et al. (2008) identified the mathematical knowledge that is 
needed for teachers to effectively perform their work. They present the MKT 
framework based on Shulman’s (1986) knowledge categories by using domains of 
subject matter knowledge and pedagogical content knowledge, and suggest that many 
teaching tasks included in the subject matter knowledge domain require 
mathematical knowledge that is not dependent on the content in the pedagogical 
domain. 
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This study focuses on the common content knowledge (CCK) category of the 
subject matter knowledge domain. Ball et al. (2008) define CCK “as the mathematical 
knowledge known in common with others who know and use mathematics” (p. 403). 
This knowledge and skill are used in a wide variety of settings in day-to-day work, and 
is thus not unique to teaching. CCK can be regarded as a basic competence in 
mathematics since it includes, e.g., performing calculations correctly, carrying out 
mathematical procedures, recognizing wrong answers, and using definitions, terms 
and notations correctly as well as understanding fractions (Ball et al., 2008). CCK 
covers mathematical tasks and questions that can be answered by anyone with a 
general knowledge of mathematics. 

A robust CCK is a requirement for specialized content knowledge (SCK), which 
contains mathematical knowledge and skills that are used in teaching settings and are 
typically not needed for purposes other than teaching. As Ma (2010) concludes, “in 
order to have a pedagogically powerful representation for a topic, a teacher should 
first have a comprehensive understanding of it” (p. 71). SCK includes abilities like 
explaining why common denominators are used when adding fractions and what is 
the procedure behind the invert-and-multiply algorithm in dividing fractions or 
determining whether a nonstandard approach would work in general to solve a given 
problem (Ball et al., 2008). In other words, this is knowledge of how to make 
mathematics understandable to students. However, in some cases it can be difficult 
to differ CCK from SCK. For example, detailed knowledge of different fraction 
representations such as symbolic and pictorial representations can be regarded as 
specialized knowledge, but it can also be common knowledge for others in their daily 
work (Ball et al., 2008). 

Based on Ball et al.’s (2008) description of CCK, the present study investigates 
elementary student teachers’ CCK by analyzing their fraction solutions and their 
errors and difficulties with routine fraction tasks. The concept error is chosen for this 
study instead of, e.g., misconception or misunderstanding, and its definition for this 
study is presented later in this paper. The concept difficulty is also used since it was 
assumed that not all findings in the analyzed fraction solutions could be categorized 
as obvious errors. However, this paper does not intend to explain why specific errors 
appear. As Radatz (1979) states, “errors in the learning of mathematics are the result 
of very complex processes. A sharp separation of the possible causes of a given error 
is often quite difficult because there is such a close interaction among causes” (p. 164).  
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4 Methodology  

4.1 Participants 

The participants in this study were 59 university students in Swedish elementary 
school teacher programs, which are meant for to prepare teachers for the preschool 
class and grades 1-6 of compulsory school. Most of the participants were in the third 
academic year of their four-year programs, and they had already passed their first 
mathematics course in teacher education. One of the key aims of this mandatory 
course is to deepen student teachers’ mathematical knowledge and strengthen their 
computational skills. During the first mathematics course, fraction content that is 
studied before entering teacher education and included in the curriculum for the 
compulsory school, e.g., calculating with fractions by using all operations, simplifying, 
reducing and extending fractions, and converting fractions to decimal, percent and 
mixed number forms, is recalled and repeated with all student teachers. At the time 
of the present study, the participating student teachers were starting their second 
mathematics course, which had a focus on the didactics of mathematics.  

4.2 Data collection 

Data for this study were collected by using a printed questionnaire. The voluntary 
participants were given 90 minutes to answer it before the first lecture of their 
mathematics didactics course at the university campus. They were asked for some 
background information (part 4 in the questionnaire), to write about the concept of 
fraction (part 1), and to describe how they might teach a fraction addition task to 
elementary school students (part 2). This paper focuses on six routine fraction tasks 
that were included in the questionnaire as well (part 3, see Appendix A). The 
instruction for the tasks was presented as follows: ‘Calculating with fractions. Solve 
the following tasks as well as you can without using a calculator. Show all the steps 
you use.’ With the instruction ‘show all the steps’, the participants were indirectly 
guided to show their fraction knowledge using mathematical algorithms, which they 
had been repeating in the previous mathematics course in teacher education and 
which can be regarded as CCK for mathematics teachers. It was also possible to use 
other representations such as pictures or decimal forms since the instruction was 
written: ‘Solve the following tasks as well as you can’. Detailed knowledge of fractions 
and their correspondence to different representations is also knowledge that 
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mathematics teachers need in their daily work (Ball et al., 2008). 
The six fraction tasks used in this study were based on similar tasks that can be 

found in Swedish mathematics books and support materials for grades 4-6 
mathematics. All four operations, i.e. addition, subtraction, multiplication and 
division, were included in the tasks with different types of fraction content: (a) 
addition with common denominators, (b) addition with different denominators, (c) 
subtraction with different denominators, (d) subtraction with a whole number, (e) 
multiplication with different denominators, and (f) division by a whole number. The 
participating student teachers were already familiar with this kind of tasks, and the 
tasks were defined as routine tasks since the operations were written without any 
context (c.f. Newton, 2008).  

4.3 Data analysis 

In this study, elements from Radatz’s (1979) information-processing classification 
were used to categorize the errors in the participants’ solutions. Three error types 
were of interest in the analyzed routine tasks: errors that are due to (1) lacking 
knowledge of prerequisite skills, facts, and concepts, (2) incorrect associations or 
inflexibility in thinking, and (3) application of irrelevant rules or strategies. Radatz 
(1979) states that category (1) “includes all deficits in the content- and problem-
specific knowledge necessary for the successful performance of a mathematical task” 
(pp. 165-166), and he continues by elaborating “Deficits in basic prerequisites include 
ignorance of algorithms, inadequate mastery of basic facts, incorrect procedures in 
applying mathematical techniques, and insufficient knowledge of necessary concepts 
and symbols” (p. 166). The error type (2) includes negative transfer from similar tasks 
even though the conditions for the tasks are different. In the last category, the errors 
are mainly based on successful experiences when applying comparable rules or 
strategies in other content areas. However, making a clear distinction between those 
error types mentioned above is often difficult because many of the causes interact 
during the learning process (Radatz, 1979). 

When analyzing the participants’ solutions, the answers were first coded as correct 
or incorrect. As a correct answer, it was assumed in this study that the answer was 
converted to a mixed number when possible or that it was presented in the simplest 
fraction form. This decision was based on the instructions and examination of the 
previous mathematics course, which the participants had passed in their teacher 
education. In Sweden, simplifying and extending fractions are considered to be 
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prerequisite skills for the addition and subtraction of fractions (Löwing, 2016). Thus, 
giving the answers for fraction tasks in the simplest fraction form or as a mixed 
number is also encouraged in Swedish compulsory school mathematics books, and it 
is often expected that the answers are primary given as a fraction and not as a decimal 
or percent, which might be mathematically correct as well. However, providing an 
answer in these forms was not mentioned in the instruction since in another part of 
the questionnaire it was examined whether the participants were able to provide these 
fraction-related concepts themselves. 

After the first round of coding, a qualitative analysis focusing on the solution 
methods was conducted. It was investigated whether there were solution methods 
used other than mathematical symbol representations and what kind of errors were 
included in the solutions. However, using other methods than mathematical 
algorithms was not classified as an error. Following Young and Zientek (2011), errors 
were defined as technical and procedural errors, where the latter consist of obvious 
errors in using fraction operations. This was in the cases where the participants were 
misusing the procedures, for example, adding across numerators and denominators 
in addition. This refers to Radatz’s (1979) first error type. Also, if their methods 
seemed inefficient or misleading when used in teaching settings, and if there seemed 
to be a lack of number sense or negative transfer from similar tasks in the solutions, 
the operations were classified as including errors in this study. For example, this was 
done in the cases where the participants were using unnecessary long solution 
methods or big common denominators, or they were using common denominators 
when unnecessary. This classification has a connection to Radatz’s error type (2) 
presented above. 

Before deciding on the final error categories, the errors were coded several times 
to ensure the reliability of the coding. The rating of the errors was also discussed with 
an additional researcher and after that, the primary errors were coded by using 
symbols E1, E2, E3 etc. (see Appendix B). The errors were categorized altogether as 
seven error types. Three of them are related to fraction operations (procedural errors): 
errors in addition or in subtraction (E5), errors in multiplication (E6), and errors in 
division (E7). These categories include several subtypes of errors that were made by 
individual or multiple students. 

Technical errors in this study are related to presenting the answer (E1), 
mathematical writing (E2), mathematical facts (E3), and leaving the task blank in the 
research questionnaire (E4). These errors include also solutions that can be regarded 
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as correct in contexts other than this study. For example, E1 category consists of five 
subcategories that describe the solutions, which were counted to be incorrect in the 
context of this study even though the answers may otherwise be mathematically 
correct, i.e. presenting the answer as decimal or not as a simplified fraction form. E2 
includes partial computation and missing solution steps as well as illogical 
mathematical symbol writing, and E3 consists of minor errors in calculation. Despite 
mathematical writing errors in the procedures, the participants’ solutions have been 
counted as correct in the analysis if they produced a correct answer for the fraction 
task. 

The findings of the study were analyzed in terms of the number or percentage of 
participants who successfully performed the fraction tasks by providing correct 
answers or those who made errors in their solutions. Otherwise, the main data 
analysis was based on a qualitative description of the student teachers’ solutions for 
the tasks. When analyzing the solutions, the anonymous participants were given 
number codes according to the order their  questionnaires were analyzed. These 
number codes are used as references in the figures presented in the next section. 

5 Results 

The research question of the study ‘How is CCK reflected in student teachers’ fraction 
solutions and especially in their errors and difficulties with routine fraction tasks’ will 
be answered next. This section begins by describing the participants’ fraction 
solutions in general; their errors and difficulties with the different tasks will then be 
described in more detail.  

5.1  On student teachers’ solutions for the routine fraction tasks 

Table 1 shows the number of student teachers giving correct answers for the fraction 
tasks, using pictorial representations and making the most common technical errors 
E1, E2 and E4. As can be seen in Table 1, there is a wide difference between the student 
teachers when solving the routine fraction tasks. Two of the 59 participants gave 
correct answers to all six tasks, whereas on the other end of the spectrum, there were 
participants that gave only one or not any correct answer. The participants with all 
correct answers used mathematical symbol representations and wrote their solution 
steps in the algorithms in such a way that it was easy to follow the procedures they 
used. The participants with the least correct answers made errors with all operations, 



TOSSAVAINEN (2022) 

267 
 

and they had difficulties in simplifying the fractions and converting them to mixed 
numbers. Only one of these student teachers seemed to demonstrate knowledge in 
using the different algorithms and writing the mathematical steps; otherwise, the 
participants with the least correct answers did not seem to notice the errors they made 
with the operations.  

Table 1.  A summary of the participants’ solutions for the fraction tasks 

Number of  
correct answers 

Number of  
participants 

Number of 
participants 
using 
pictures 

Number of  
participants 
making  
errors in 
presenting 
the answer (E1)  

Number of 
participants 
making 
mathematical 
writing errors 
(E2)  

Number of 
participants 
leaving 
blank (E4) 
   

6 (all correct) 2 0 0 0 0 
5 11 2 4 8 2 
4  17 3 8 13 3 
3 16 2 14 10 3 
2 5 0 3 3 4 
1 4 0 4 3 1 
0  4 0 2 1 3 
Total 59 7 35 38 16 

 
In general, the participating student teachers did not show a robust CCK in 

presenting mathematical algorithms and solutions steps. Almost a half of the 
participants failed to follow the instruction to show all their solution steps at least with 
one of the tasks. This may indicate that they had difficulties in mathematical symbol 
writing or that they did not notice where or how to write more details in their 
solutions. This was most common in the case of division where only six participants 
presented a logical mathematical solution by using fractions. For example, the step 
showing how to do the change to common denominators is missing in the next 
solution even though the mathematical writing is done correctly and the right answer 
is found: 4

5
+ 2

3
= 12

15
+ 10

15
=  22

15
= 1 7

15
 . Furthermore, the participants using pictorial 

representations did not present any steps with their solutions. However, they 
provided more often the correct answers for the tasks than those who used 
mathematical algorithms incorrectly in their solutions.  

Moreover, the participants’ CCK in using different representations in their fraction 
solutions seemed limited. Some participants used decimals but they made errors in 
giving correct answers; one of them used decimals for all the tasks without ending to 
any correct answer. Pictorial representations were used most often to solve the 
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division task. The multiplication task 3
4
∙ 2
5
 was not solved with pictures, which may 

indicate that the multiplication procedure is more challenging to present with pictures 
than the other fraction operations in the analyzed tasks. Also, it seemed that the 
participants used pictures for the tasks that were easier to visualize with pie charts; 
for example, not for the addition task with different denominators 5 and 3. Moreover, 
when the participants used two separate circles for subtraction, the circles (pie charts) 
in their solutions seemed to represent the fractions rather than the subtraction 
procedure (see Figure 1). In the case of addition, two circles can easier be used to 
illustrate the procedure as well (see Figure 2). To summarize, it seemed that the 
participating student teachers’ CCK knowledge for using pictorial fraction 
representations to demonstrate solution procedures was limited.  

 

Figure 1.  A subtraction solution with pie charts (participant 16) 

 

Figure 2.  An addition procedure illustrated with pie charts (participant 22) 

Many participants also made different kinds of obvious E3 errors in their 
solutions. These errors in mathematical facts did not seem to be directly related to 
fractions but were rather simple mistakes in calculation, like 12+10=24 and 3·3=6. 
Some participants also made multiple error types in their solutions, e.g., they used 
illogical mathematical writing for a wrong solution method and made calculation 
mistakes as well (see Figure 3). 

 

Figure 3.  A solution with multiple errors (participant 41) 
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The most common technical error types were E1, E2 and E4 (see Table 1). Most of 
the participants who had difficulties in mathematical writing (E2) did not use 
mathematical notations correctly throughout their solutions; many of them used the 
equal sign incorrectly presenting their solutions often as separate calculations and 
ignoring whether the equal sign was written between the solution steps or not. The 
thinking model behind these solutions can often be understood, but mathematically, 
this kind of partial writing results in illogical statements (see Figures 3 and 4). 

 

Figure 4.  A solution with illogical writing (participant 27) 

Several participants also used the division sign incorrectly and, in particular, they 
seemed to have difficulties in making a distinction between dividing and simplifying 
the fractions with their notations (see Figure 5). 

 

 

Figure 5.  Examples of errors in using the division sign (participants 47 and 48) 

It seems that the participants who provided the solutions above were using 
division while meaning to simplify the fraction 6

20
, which should have led to an answer 

that was different from the one they provided. However, some participants were able 
to use the mathematical notations correctly, writing, for example: 3

4
∙ 2
5

= 6 2⁄
20 2⁄

= 3
10

. 

More than half of the participating student teachers made errors  concerning the 
proper form for the answer (E1), and their uncertainty and illogical use of different 
fraction forms could be found in many solutions: in some tasks they provided the 
answer as a simplified fraction or a mixed number while in other similar cases, they 
did not. If neglecting these technical E1 errors, the total number for correct answers 
in the tasks would have been greater; still, it would not have led to all answers correct 
in any of these routine fraction tasks, and only seven participants would have correctly 
solved all tasks.  
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Several participants also left at least one of the tasks blank. This leaving blank 
error (E4) was made in all types of the fraction tasks except addition with common 
denominators, and it was most common for multiplication and division, which were 
both left blank by 10 students. Leaving blank may indicate uncertainty in using the 
procedures when the participants did not remember the correct algorithms.  

5.2 Student teachers’ errors and difficulties with the routine fraction 
tasks 

The number of participants giving correct answers and making different error types 
E1-E7 in the analyzed six fraction tasks are summarized in Appendix B. An analysis of 
their errors and difficulties with the fraction tasks is presented below in the same 
order as the tasks existed in the questionnaire.  

Addition with common denominators: 𝟐𝟐
𝟑𝟑

+ 𝟐𝟐
𝟑𝟑
. Altogether, 42 participants 

(71%) gave the correct mixed number answer for this task. Five of them showed 
detailed steps in their solutions, writing, for example, 2

3
+ 2

3
= 2+2

3
= 4

3
= 1 1

3
. Some 

participants may have perceived this task so simple that there was no need to show 
detailed solution steps, and four participants used a pictorial representation (circles 
or rectangles) as a method to find the correct answer. 

Most errors here were technical E1 errors. Six participants gave the answer as an 
improper fraction 4

3
 instead of converting it to a mixed number, and one participant 

gave the answer as a decimal, i.e. 1.33. Four student teachers seemed uncertain and 
wrote their mixed number answers within parentheses or as an unfinished answer in 
two parts 1 + 1

3
 or they gave even two alternative answers, 4

3
 or 1 + 1

3
. Moreover, nine 

participants made a procedural E5 error by adding across the numerators and 
denominators. After adding incorrectly, three of them also simplified the fraction 4

6
 to 

2
3
 without noticing that this was not a reasonable answer when adding 2

3
+ 2

3
.  

Addition with different denominators: 𝟒𝟒
𝟓𝟓

+ 𝟐𝟐
𝟑𝟑
. Compared with the first 

addition task, a smaller amount of participants, 37 of 59 (62%), performed correctly 
this task. Those who had difficulties in the previous task made similar E1 errors in 
presenting the answer here as well. One participant converted his/her improper 
fraction solution again to a decimal number (1.466). However, all these participants 
as well as those with the answer in the correct mixed number form, showed their 
mathematical solution steps: they found the common denominator for the given 
fractions and used a proper solution method. Some participants made minor 
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computational errors (E3), and two student teachers left this task blank (E4). 
Interestingly, the other of them solved correctly the previous task (addition with same 
denominators) and the next one (subtraction with different denominators). Thus, it 
seemed that he/she was uncertain about the role and use of denominators in these 
fraction tasks. 

Technical error E2 was the most common error type here since several 
participants used incorrect mathematical notations, and had partial computations or 
missing solution steps. However, there were even more procedural E5 subtype errors 
in the addition operation. Ten participants used a total of seven different faulty 
methods for the addition operation, which led to as many different incorrect answers. 
Three of these student teachers found the common denominator 15, but they 
multiplied only the denominators, adding the fractions as follows: 4

15
+ 2

15
= 6

15
. One 

participant used an unnecessarily large common denominator, 30, instead of 15. Even 
though mathematically correct, this method seemed inefficient and it can also be 
interpreted as a lack of number sense. Two participants added across numerators and 
denominators; the other of them did this even though he/she did not add the like 
denominators in the first addition task. Four participants used varying multiplicative 
methods, for example, they cross-multiplied or multiplied across the numerators and 
denominators. One student teacher cross-added twice and ended up with the solution 
presented in Figure 6. In the solution, the participant added across the common 
denominators, which he/she did with the previous addition task as well. 

 

Figure 6.  An incorrect solution for addition (participant 40) 

One participant seemed to demonstrate uncertainty when presenting two 
alternative solutions. The other solution procedure and the resulting answer 1 7

15
 were 

correct, but he/she had marked the following method as the correct one: 4
5

+ 2
3

= 4+3
5+3

+
2+5
3+5

= 7
8

+ 7
8

= 14
8

= 1 6
8
. In general, the participants who made errors with their addition 

solutions did not seem to notice that their answers were unreasonable. For example, 
when adding 4

5
+ 2

3
, it is not possible to get 1

5
 as an answer because it is smaller than 4

5
. 

The number of different incorrect solution methods in this task may indicate that 
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when the participants did not remember or understand the operation procedure they 
seemed to guess an algorithm to use for the solution.  

Subtraction with different denominators: 𝟑𝟑
𝟒𝟒
− 𝟏𝟏

𝟐𝟐
. This task was correctly 

performed by 47 participants (80%); four of them used pie charts to present their 
solutions while the others showed their solutions with some mathematical steps. One 
participant converted the fractions first to percent and then after calculating the 
answer it was converted to the correct fraction form, which was an example of using 
different representation forms to find the solution. Moreover, two participants used 
decimals, and one of them arrived at a right decimal form answer. Three participants 
left this task blank. 

Several participants made technical E2 writing errors also with this task. 
Procedural E5 errors were made as well, and the most common of them was the use 
of unnecessarily large common denominators: seventeen participants multiplied both 
fractions in order to get 8 as the common denominator. This may indicate a lack of 
number sense related to whole numbers or a poor understanding of the subtraction 
operation since it was not necessary to multiply both fractions since the denominators 
were 4 and 2. Moreover, one participant found the common denominator 8 but kept 
multiplying the numerators following the same logic as he/she did in the latter 
addition task as well. Two student teachers who added across in addition used a 
similar method here as well. Thus, they subtracted across the numerators and 
denominators and wrote the problem out as: 3

4
− 1

2
= 2

2
= 1. Here, again, it can be seen 

that the participants did not seem to notice that it was impossible to give 1 as a 
reasonable answer. 

Subtraction with a whole number: 𝟏𝟏 − 𝟐𝟐
𝟔𝟔
. Unlike the first subtraction task, 

only 27 participants (less than 50%) gave the correct answer for this task. However, 
the most common error (E1) occurred when 29 participants left their answer as 4

6
 

without simplifying it. Thus, most of the participants were able to work through the 
subtraction procedure, but they did not present the answer in such a form, which was 
defined as correct in this study. One student teacher simplified the fraction first from 
2
6
 to 1

3
, but after subtracting 1 − 1

3
, he/she gave the answer in decimal form (0.666). 

Two participants used colored circles, and one of them arrived at the correct answer. 
One participant left the task blank. 

Mathematical writing errors E2 were also common with this task; ten participants 
used mathematical symbol writing incorrectly, and some had missing steps in their 
solutions. Moreover, three participants used a procedurally correct but an 
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unnecessarily long solution method (E5): 1 − 2
6

= 1
1
− 2

6
= 1∙6

1∙6
− 2∙1

6∙1
= 6

6
− 2

6
= 4

6
= 2

3
. 

After converting the whole number 1 to a fraction form, they multiplied both fractions 
to get 6 as a common denominator, even though there was no need to multiply the 
latter fraction by 1. This seemed inefficient, and the participants seemed to do this 
routinely without thinking about the meaning of multiplying by 1. 

Multiplication with different denominators: 𝟑𝟑
𝟒𝟒
∙ 𝟐𝟐
𝟓𝟓
. Only 22 student teachers 

(37%) gave the correct answer by showing some mathematical steps in this task. Three 
participants used decimals, but they arrived at three different incorrect answers. Ten 
students left this task blank, which may indicate that they were more uncertain with 
multiplication than with the operations in the previous tasks.  

The difficulty with the multiplication operation was seen also with the number of 
participants making procedural E6 errors. Eleven participants cross-multiplied the 
numerators and denominators, which they did in two different ways: 3

4
∙ 2
5

= 4∙2
3∙5

= 8
15

 or 
3
4
∙ 2
5

= 3∙5
4∙2

= 15
8

= 1 7
8
. Interestingly, one participant used a correct multiplication 

algorithm first but then crossed it out and used the latter of the faulty methods 
presented in previous the example. 

Another E6 error in the multiplication operation was the use of common 
denominators, even though this was unnecessary. Altogether, seven participants 
multiplied both fractions to get 20 as the common denominator. One of them gave 120

400
 

as an answer; the others kept 20 as the denominator after multiplying the numerators 
and arrived at a procedure as follows: 3

4
∙ 2
5

= 3∙5
4∙5
∙ 2∙4
5∙4

= 15
20
∙ 8
20

= 120
20

= 60
10

= 6. Again, the 

participants seemed to be uncertain about the role and use of denominators, and they 
did not notice that a whole number solution was an impossible answer for this task. 

Interestingly, none of the participants who correctly solved the multiplication 3
4
∙ 2
5
 

used the option of simplifying the numbers 2 and 4 before multiplying across the 
numerators and denominators. This can be interpreted as a rote understanding of the 
algorithm or a limited number sense when seeing multiple numbers. 

Division by a whole number: 𝟑𝟑
𝟒𝟒
 / 𝟑𝟑. Similar to the results in multiplication, 22 

participants gave the correct answer for the division task. Six of them used the 
mathematical invert-and-multiply procedure and showed the steps that led to the 
correct solution. Two participants first converted the divisor 3 to fraction form and 
then wrote the correct answer. However, it was not possible to find out whether they 
followed the correct division procedure or whether they just divided across since they 
wrote as follows: 3

4
/ 3 = 3

4
 / 3

1
= 1

4
.  Moreover, five participants used decimals in their 
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solutions; two of them arrived at the correct answer in fraction form and one gave a 
right answer as decimals. Like in the previous tasks, the participants using pictures 
were more successful in finding the correct answer than those who used mathematical 
symbol representations but made errors in them. However, it was difficult to find out 
the mathematical thinking model behind the correct answer in these pictorial 
representations as well. For example, it is unclear whether the answer in Figure 7 
refers to one of the colored parts in the rectangle or to the remaining white part. 

 

Figure 7.  A pictorial solution for the division task (participant 11) 

In general, solving the fraction division task by showing their solution steps 
seemed challenging for the student teachers. A total of eighteen participants made 
mathematical writing errors (E2), and similar to the multiplication task, ten 
participants left the division task blank; four of them did this in the case of 
multiplication as well. In addition to these technical errors, even six different error 
subtypes that were made altogether by twenty participants were found for the division 
operation. The most common of these procedural E7 errors occurred when the whole 
number divisor 3 was converted to fraction form. Some participants seemed to prefer 
having the same denominators for both the dividend and divisor even though it was 
unnecessary, and thus, eight of them converted the divisor to 12

4
 and one incorrectly 

to  4
4
; four participants also changed the divisor 3 to the form 3

3
. Interestingly, only two 

of those who used the form 12
4

 went further in their solutions but they arrived at the 

different incorrect answers presented in Figure 8. 
 

 
 
 

Figure 8.  Incorrect solutions for division (participants 15 and 49) 

As can be seen in the examples above, the participants made multiple errors in 
their solutions; in the example on the left, the student teacher has obviously divided 
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the numerator 3 by 12 and kept the denominators to get 4
4
, whereas the other student 

teacher seems to use the invert-and-multiply procedure, but then incorrectly divides 
48 by 12. Other procedural errors for the division operation were (a) dividing the 
numerator or both the numerator and denominator by the whole number divisor, (b) 
first multiplying the numerator and denominator by the divisor and then dividing the 
new fraction by it, (c) dividing across by a fraction form divisor, and (d) cross-
multiplying by the inverted divisor. Similar to addition with different denominators, 
the number of different incorrect solution methods in the division task seems to 
indicate that the participants are guessing the solution methods when they do not 
remember or understand the correct algorithm; some participants even wrote on the 
research questionnaire that they did not remember how to divide fractions. 

In this section, the participating student teachers’ solutions for fraction tasks were 
described in general and in terms of their errors and difficulties with the six routine 
fractions tasks. The analysis revealed several limitations in their CCK on fractions and 
also some other limitations in their basic knowledge of mathematics; these findings 
were not directly connected to their knowledge of fractions. In the next section, the 
most important results of this study will be summarized and discussed.  

6 Discussion and conclusions 

In this study, student teachers’ CCK on fractions was investigated by analyzing their 
fraction solutions and their errors and difficulties with routine fraction tasks. Many 
of the findings concerning their procedural errors in fraction operations are in line 
with findings in previous studies (e.g., Newton, 2008; Van Steenbrugge et al., 2014; 
Young & Zientek, 2011). In other words, the participants in this study had difficulties 
with all fraction operations and especially with division and multiplication. Many of 
them seemed to have a rule-based and rote understanding of the algorithms, and they 
used several incorrect methods for their solutions. Moreover, they seemed to lack 
knowledge of using other representations when not being able to use a correct 
algorithm. It was also seen in this study that student teachers have difficulties in using 
fraction number sense.  

Different problems concerning the teaching and learning of fractions have been 
reported for decades, and the need to develop student teachers’ knowledge of fractions 
has also been reported earlier (e.g., Van Steenbrugge et al., 2014). This study is 
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consistent with the previous findings about student teachers’ limited CCK of fractions. 
In addition, the study reveals some other limitations in their mathematical CCK.  

In general, it was surprising that so many of the participating student teachers 
made several types of errors and that there was so wide difference between the 
participants when solving the fraction tasks. The participants were expected to be 
familiar with the routine tasks and the fraction content included in the tasks, since 
they had recalled and repeated this content in their previous mathematics course in 
teacher education. The uncertainty that many participants demonstrated in their CCK 
was seen in the number of tasks left blank and, for example, in their lack of using 
different fraction forms coherently throughout the solutions. Moreover, showing how 
to solve a routine task step-by-step seemed to be challenging for most of the student 
teachers; the more steps needed to find a solution, the more difficult it became to write 
out the procedures and the more errors the participants made. Like student teachers 
in Jakobsen et al.’s study (2014), many participants used in their solutions incorrect 
mathematical notations and moreover, they used separate solution steps that formed 
illogical statements without constructing a logical solution procedure.  

The participants in this study also demonstrated limitations in their basic 
knowledge concerning mathematical symbol writing and the use of different 
representation forms. This is an important finding since these errors did not seem to 
be directly connected to fractions but rather they seemed to be general limitations in 
student teachers’ CCK, which may have an effect when student teachers work with 
fraction as well. For example, some of the student teachers were misusing the equal 
sign, and they made errors in differentiating the symbols to simplify a fraction and to 
divide it. Making this kind of errors in their mathematics teaching might be confusing 
for elementary school students. Unlike Newton’s study (2008), where none of the 85 
participants used pictures to solve routine fraction tasks, seven participants in the 
present study used pictures to find the correct answers. However, it seemed that 
pictorial representations were used with tasks where the participants were uncertain 
about the correct algorithm, and many of the pictures that they presented could be 
seen as they mental images of the fractions and not as representations of the solution 
procedures needed for the tasks.  As Moss et al. (1999) have stated, especially the use 
of pie charts may be misleading in elementary mathematics teaching. Thus, it seems 
that the becoming teachers need to learn how to better use pictorial representations 
to visualize abstract mathematical procedures. Moreover, a robust knowledge of 
correct mathematical algorithms is needed as well since pictorial illustrations with 
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simple fractions such as 3
4
 and 1

2
 work well, but the use of pictures becomes complicated 

for fractions like 13
41

 and 11
21

. Some participants in this study used also decimals 

throughout the fraction tasks but they did not seem to notice the errors that occurred 
in their solutions when they converted improper fractions to decimals (c.f. Muir & 
Livy, 2012).  

Moreover, many student teachers in this study did not notice their incorrect 
statements and unreasonable answers even in the simplest cases. However, 
determining equivalence and judging the reasonability of answers are essential parts 
of fraction number sense (Lamon, 2020) and CCK for mathematics teachers in their 
daily work (Ball et al., 2008). This finding like the previous one concerning 
mathematical symbol writing and using different representation forms may not be 
connected to fraction tasks only and should therefore be researched further. 

Further, an interesting finding was that the participating student teachers seemed 
to guess at which algorithm to use when they did not remember or understand the 
correct solution method. Often, they seemed to remember some separate steps of the 
algorithms instead of understanding the procedures as a whole. Also, as Newton 
(2008) states, it seems that even though student teachers remember many 
procedures, they use them in inappropriate ways with fractions. For a mathematics 
teacher, a robust CCK goes beyond rote learning and memorization of algorithms 
since “teaching requires knowledge beyond that being taught to students” (Ball et al., 
2008, p. 400). 

Although student teachers do not need to hold a level of expertise equivalent to 
that of an experienced elementary mathematics teachers, they should not be regarded 
as novices in their mathematical CCK. However, student teachers may enter their 
studies in teacher education with different prior mathematical knowledge and with 
different kinds of experiences in mathematics teaching and learning. As seen in this 
study and in previous research (e.g. Newton, 2008), not all student teachers are 
competent in their basic knowledge of fractions, and the limitations found in their 
CCK may not predict success in teaching of fractions in their future profession as 
elementary mathematics teachers (Van Steenbrugge et al., 2014). Thus, teacher 
educators need to pay attention to student teachers’ individual differences and to be 
aware of their different error patterns (Young & Zientek, 2011). Especially, the results 
in this study reveal that student teachers need a deep knowledge of fractions and 
mathematical symbol writing and the meaning of the procedures as well; it is not 
enough to be able to produce correct answers for mathematical tasks. To enhance this 
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knowledge and student teachers’ ability to interpret others’ mathematical solutions as 
well student teachers should be given fraction tasks to be solved in different ways like 
Jakobsen et al. (2014) and Maciejewski and Star (2016) conclude in their studies.  

The present study, conducted in the Swedish context, confirms the results from 
other countries during recent decades. Thus, it can be stated that there is still much 
to do when developing student teachers’ CCK on fractions and other mathematical 
content as well. Since the present study concerned only a group of student teachers in 
one Swedish university, a limitation of the study is the inability to generalize the 
results beyond this population. However, some errors did occur across the 
participants, and this may rise questions about general difficulties in student teachers’ 
CCK. For example, student teachers’ use of mathematical symbol writing and 
mathematical representations for topics other than fractions could be addressed in 
further research. Moreover, maybe the biggest challenge in teacher education is how 
to address student teachers’ individual differences and their various difficulties in 
mathematics. 
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