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Abstract—The impact of tissue movements on
the accuracy of heart rate (HR) estimates is a
challenge in today's wearable technology. Tissue
movements are caused by muscle activity that
modifies the optical path of the reflectance
photoplethysmography (PPG), leading to motion
artifacts (MA) that mask the true HR. This kind of
MA is not always detected using accelerometers
(ACC).
In this study, we propose a method to increase
the PPG HR accuracy of a wristwatch using wrist
surface electromyogram (EMG) and ACC using
spectrum subtraction algorithms.

We collected the wrist EMG, wristwatch PPG,
ACC data, and the ECG from nine subjects. Data
were recorded during four frequent hand
movements and three activities (weightlifting and running/walking with and without holding a racket). The added value
of the EMG was studied. Visual results indicate that wrist EMG correlates well with the MA seen in the PPG signal and
provides additional information over the typically used ACC data. Our analysis showed that the proposed artifact
removal method using EMG and ACC decreases the HR estimation error on average by 49% compared to only ACC.
Our results showed that wrist EMG contains complementary information on the PPG artifacts and offers a novel signal
modality for improving optical HR estimation accuracy in smartwatches.

Index Terms—Electromyogram, Photoplethysmogram, Tissue Movement, Heart Rate, Motion Artifacts

I. INTRODUCTION
EART rate (HR) is one of the most monitored vital signs.
It provides the user with relevant information about health

status and their level of physical stress. In a medical context,
unexpected HR patterns might indicate changes in patient’s
health status [1]. From a consumer perspective, HR can inform
the monitored person about their exercise intensity, mental or
physical stress and recovery. An accurate and robust measure
of HR is thus important for health monitoring.
   Electrocardiography is a routine clinical method to measure
the heart's electrical activity. It is measured with multiple
electrodes placed on the skin. The electrocardiogram (ECG) is
considered the most accurate method for HR measurement.
However, its use for long term monitoring in everyday
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applications is uncomfortable and difficult to use [2].
    Photoplehtysmogram (PPG) uses an emitting light source
and a receptor to measure heart activity. As the heart pumps
blood to the tissue, the amount of detected light decreases [3]
and the modulation of the detected light can be used to estimate
the HR.

PPG-based HR measurement devices enable more
comfortable use and user-friendly form factors, such as
smartwatches [4]. However, PPG based HR measurement
devices are vulnerable to movement artifacts (MA), causing
distortions in the recorded signals. Wrist PPG is especially
sensitive to body movement artifacts making HR measurement
difficult. The use of the accelerometer to remove these MAs has
been extensively researched [5]–[12]. Its use is considered
efficient in removing the artifacts caused by larger movements.

Tissue movement artifacts are a less researched artifact type
referred to as micromotion artifacts [13], [14]. This type of
artifact originates from small movements caused by skeletal
muscle contractions, causing the tissue under the PPG sensor to
move. This movement causes changes in the contact force or
coupling between the sensor and the skin tissue and modifies
the optical path. Artifacts caused by this type of tissue
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movement cannot be detected reliably using the acceleration.
Previous research suggests that tissue movement artifacts
require additional reference signals and methods to improve the
HR [13]–[16].

I. RELATED WORK

Tissue movement artifacts are a known issue in wrist PPG
wearables. These are caused by muscle activations from hand
and finger movements that result in the movement of muscles
and tendons.

To our knowledge, few studies are addressing the tissue
movement artifact problem [13]–[16]. Zhang et al. used the
infrared (IR) wavelength as a motion reference [13]. The
authors used support vector machines to detect and remove low-
quality data. The higher sensitivity of IR wavelengths to this
type of artifacts allowed the authors to use this IR PPG as a
movement reference and use this reference in the spectrum
subtraction algorithm of the green PPG signal. The proposed
algorithm reduced the average errors of HR from 4.3, 3.0 and
3.8 BPM to 0.6, 1.0 and 2.1 BPM in periodic, random, and
continuous non-periodic motion situations, respectively.

In another study by Ferreira et al., ambient light measured by
the PPG sensor photodetector was used as a tissue movement
reference. The authors used adaptive filtering (least mean
squares algorithm; LMS) to filter the PPG signal. They reported
that their solution had +1.4/-2.0 BPM limits of agreement
compared to the ECG-based HR.

Lee et al. used a pressure signal from a piezoelectric
transducer as a reference and used spectrum subtraction to
compensate for these movements [16]. Their results
demonstrated that the pressure sensor transducer placed on the
wrist could detect repetitive finger and hand movements,
whereas the accelerometer was not able to detect them. In their
approach, the mean absolute error (MAE) and standard
deviation (SD) of the HR decreased from 3.75 ± 2.96 to 1.58 ±
2.96 BPM during treadmill running. They attributed this
improvement to the contraction of the forearm muscles during
running in some subjects. The principle of subtracting the
acceleration spectrum from PPG spectrum in order to enhance
HR frequencies has been earlier studied with good results.
Salehizadeh et al. [17] applied this approach on a 33-person
dataset consisting of running exercises and achieved an average
error of 1.86 BPM. Time frequency spectrum subtraction was
used also in study by Kong et al. [18] in which HR was
estimated from wristwatch and forehead PPG data of 22 people
during treadmill exercise. They achieved an average absolute
error of 2.94 BPM, which is less accurate than results by
Salehizadeh et al., but they argued that it is the cost for better
temporal resolution of the estimates. These solutions
demonstrate the potentials of artifact removal by spectral
subtractions, but the effectiveness in cases involving tissue
movement artifacts requires additional movement references
like in the study by Lee et. al.

Silverio et al. [14] used forearm EMG as their tissue
movement reference. They performed continuous wavelet
transform subtraction and adaptive LMS filtering to correct the
corrupted PPG signals from finger movements and hand
squeezing. Their results showed that the spectrum subtraction
with the EMG signal increased the Signal to Noise Ratio (SNR)

of the PPG and increased the correlation with a resting PPG
signal. Although the study did not evaluate the impact of the
increased SNR in terms of HR accuracy, they demonstrated the
use of EMG as a noise reference signal.

As a      follow-up to the study by      Silverio et al.      , in the
present study, the use of wrist surface EMG (S-EMG)—instead
of forearm EMG—to detect and reject tissue movement
artifacts were evaluated. The wrist S-EMG was chosen instead
of forearm EMG, as it would be easier to implement on wrist
worn devices. Also, unlike Silverio et al., the present study aims
at investigating the use of S-EMG during movement tasks,
better demonstrating the performance during exercise.  We
evaluated its efficacy using typical HR accuracy measures
during typical hand movements and activities using EMG and
acceleration. The principles of spectrum subtraction algorithms
demonstrated by Lee, Salehizadeh and Kong et al. are used to
implement HR estimation algorithms using both wrist
acceleration and wrist EMG as movement artifact reference
signals.

II. MATERIALS AND METHODS

The study was conducted in Huawei Technologies Finland
research center, Helsinki. Subjects were recruited from Huawei
Technologies research center using an internal mailing-list,
Helsinki. Inclusion criteria included 18–65 years and good
health. All volunteers agreed to participate in this research and
signed written informed consent. Data processing was
performed following a Data Protection Impact Assessment
(DPIA) approved by an EU privacy officer. Nine (9)
measurement subjects participated in the study.
Anthropometric measurements and the background information
on participant’s physical fitness      level were not collected due
to limitations of the DPIA used in this study.

A. Measurement setup
An ECG, wrist EMG, wrist acceleration, and reflective wrist

PPG were recorded. ECG was recorded as HR reference. To
detect hand muscle activations, EMG was measured from the
left wrist. The EMG electrodes were placed on the top and
bottom sides of the wrist (Fig. 1).

Fig. 1. Measurement setup illustrating the placement of the electrodes
and wristwatch.

The ECG and EMG were recorded (sampled at 250 Hz) using
a Mentalab Explore (Mentalab, Germany) [19     ] device using



disposable adhesive gel electrodes (Ambu, Whitesensor
4500M-H) [20     ]. Before their attachment, the skin was
cleaned with an abrasive gel for better electrical coupling. The
EMG and ECG were measured using the following electrode
configurations:

𝐸𝐶𝐺 = −(𝛷𝐸𝐶𝐺 −𝛷𝑅𝐸𝐹) (1)

𝐸𝑀𝐺 = 𝛷𝐸𝑀𝐺2 −𝛷𝑅𝐸𝐹 − (𝛷𝐸𝑀𝐺1 − 𝛷𝑅𝐸𝐹) = 𝛷𝐸𝑀𝐺2 − 𝛷𝐸𝑀𝐺1 (2)

where 𝛷𝐸𝐶𝐺 , 𝛷𝑅𝐸𝐹 ,𝛷𝐸𝑀𝐺1, and 𝛷𝐸𝑀𝐺2 are the electrical
potentials in the electrode locations.

A custom-made smartwatch prototype was used to record the
PPG and acceleration sampled at 100 Hz. The device was
placed one finger from the distal end of the ulnar bone. The
green PPG signal was used because of its robustness against
MA [21     ]. ECG and EMG were streamed in real-time to a
laptop via Bluetooth® connection, and the PPG and
acceleration were recorded using a smartphone.

B. Measurement protocol
The subjects were instructed to perform a series of tasks and

activities during the session. The tasks and their descriptions are
shown in Table 1. The tasks were designed to contain tissue
and/or body movements to study the usefulness of acceleration
and/or EMG in individual and combined tasks for artifact
removal.

Hand, wrist, and finger activities were included because they
represent the most common movements during exercise and
sources of artifacts. Other tasks consisting of either hand or
finger movements were included to study how well the wrist
EMG was able to detect these types of movements. Finally, the
remaining tasks contain both tissue and body movement, e.g.
hand weightlifting and running with and without a floorball
racket in hand.

TABLE I
MOVEMENT TASKS PERFORMED BY THE SUBJECTS. THE DURATION

DESCRIBES THE TIMING OF THE PHASES OF EACH TASK AND FREQUENCY
RAMPS FOR THE TEMPO.

Task Duration Frequency / Pace
hand opening/closing
(Sitting, hand on table)

-15s rest
-180s repetitions
-15s rest

0.5 → 3 → 0.5 Hz
(30 → 180 → 30
BPM)

finger movement
(Sitting, hand on a
table, lifting and
lowering individual
finger from the
tabletop)

-15s rest
-20s per finger
= 100s
repetitions
-15s rest

0.5 → 4 → 0.5 Hz
(30 → 240 → 30
BPM)

wrist
flexion/extension
(Sitting, hand on table)

-15s rest
-180s repetitions
-15s rest

0.5 → 3 → 0.5 Hz
 (30 → 180 → 30
BPM)

hand squeezing
(Sitting, hand on table)

-15s rest
-180s repetitions
-15s rest

0.5 → 3 → 0.5 Hz
 (30 → 180 → 30
BPM)

Hand weightlifting
(Sitting. biceps flexion)

-15s rest
-60s repetitions
-15s rest

At start 0.5 Hz
Then the subject
can do as fast as
he/she can

Running / walking
with racket in hand
(Back and forth a
corridor. Racket at the
same hand with
measurement devices)

-15s rest
-120s of walking
-120s of running
-120s of walking
-15 seconds rest

1 → 2 → 1 Hz
(60 → 120 → 60
steps / minute)

Running / fast
walking
(Back and forth a
corridor)

-15s rest
-120s of walking
-120s of running
-120s of walking
-15s rest

1 → 2 → 1 Hz
(60 → 120 → 60
steps / minute)

The tempo of each task was adjusted during the
measurement. Subjects were provided with audio-visual cues
using a smartphone metronome App to change the tempo. The
tempo ranged from 0.5 to 3 Hz and returned to 0.5 Hz using the
metronome. These frequency ramps were included to ensure
that the artifact frequency overlaps the HR frequency during the
measurement. This overlapping is important because, at those
time instances, the HR estimation algorithm is most likely to
start to follow the artifact frequency.

In addition to a 2-minute resting PPG recording, each
measurement consisted of a simultaneous tap on the smartwatch
and the EMG electrode for synchronization purposes, 15
seconds of resting PPG followed by the repetitive task.

C. Signal processing pipeline
Data synchronization between the two measurement devices

was done by matching the sensor tapping events in the EMG
and acceleration signals. The resulting EMG signal was down
sampled to 100 Hz to match the PPG and acceleration signals.
The average rectified value (ARV) of the resulting signal was
calculated similarly to Guo et al. [20]:

𝐴𝑅𝑉 =
1
𝑁

|𝑥𝑖|
𝑁

𝑖=1

(3)

where 𝑁 is the number of samples in the window and 𝑥𝑖  is the
sample at the 𝑖th index of the calculation window. An average
filter of𝑁 = 15 was used (150ms). The ARV was then highpass
filtered from 0.8 Hz to eliminate the low-frequency components
introduced by the absolute averaging window. The formation of
ARV from EMG signal is demonstrated in Fig. 2:



Fig. 2. Tissue movement signal formation. Top panel:  filtered
EMG, middle panel: rectified electromyogram (EMG), bottom
panel:  high pass filtered averaged rectified value (ARV) signal.

The ARV, acceleration, and PPG signals were filtered using
a 4th order band-pass Butterworth IIR filter at cut-off
frequencies of 0.8 and 4 Hz, corresponding to an HR of 48 and
240 bpm. This was done to factor out physiologically
improbable HR during exercise. The algorithm could easily be
modified to support the lower heart rates in resting state. Also,
the      watch could have different modes for exercise and non-
exercise HR.  The ECG was filtered with a 0.5 Hz high pass and
a 50 Hz notch filter.

After pre-processing, the data were processed using an eight-
second window with a six-seconds overlap, which resulted in
one HR estimate every two seconds. The ARV, acceleration,
and PPG signals spectrum was estimated using a Fast Fourier
Transform (FFT) using 12500 zero-padding over the estimation
window. Zero padding enables smoother transitions between
frequency bins, enabling higher resolution in the HR estimation
after the spectrum subtraction algorithm. The resulting
frequency resolution was 0.008 Hz or 0.48 BPM time
resolution. The spectrums were converted to power and
normalized between one and zero. A Hanning window was used
prior to the FFT. The FFTs were calculated with a SciPy Python
library function [23     ] that uses Cooley-Tuckey FFT algorithm
[24     ].

The aim of the spectrum subtraction algorithms is to remove
the frequency components related to artifacts from the
corrupted PPG signal, resulting in a clearer PPG spectrum. The
subtracted signals from the PPG frequency spectrum were the
acceleration and EMG ARV frequency spectrums. This can be
denoted as:

𝑃𝐸 ≈ 𝑃𝑠 − 𝑃𝑟 (4)

where𝑃𝐸  is the estimation of the clear PPG frequency spectrum
after the subtraction of the artifact spectrum from the corrupted
PPG spectrum 𝑃𝑠. The artifact spectrum 𝑃𝑟  can be divided into
EMG and acceleration spectra components.

𝑃𝐸 ≈ 𝑃𝑠 − 𝑃𝑟 =
𝑃𝑠 − 𝑃𝑟
𝑃𝑠

𝑃𝑠 = 𝑊𝑃𝑠 (5)

As there are the two artifact components, the weight vector can
be denoted as two separate components:

𝑃𝐸 ≈
𝑃𝑠 − 𝑃𝐴𝐶𝐶

𝑃𝑠

𝑃𝑠 − 𝑃𝐸𝑀𝐺
𝑃𝑠

𝑃𝑠 = 𝑊𝐴𝐶𝐶𝑊𝐸𝑀𝐺𝑃𝑠 (6)

By substituting the 𝑃𝑠 term from both weights, the equation gets
a form of a Wiener filter [23]:

𝑃𝐸 ≈= 𝑊𝐴𝐶𝐶𝑊𝐸𝑀𝐺𝑃𝑠 =
𝑃𝐸

𝑃𝐸 + 𝑃𝐴𝐶𝐶

𝑃𝐸
𝑃𝐸 + 𝑃𝐸𝑀𝐺

𝑃𝑠 (7)

The denominators of the weights can be substituted with the
estimate from the previous estimation window 𝑃𝐸(𝑖 − 1) as the
clear PPG spectrums of two consecutive time windows should
be close to each other. This leads to the final form of the
spectrum subtraction equation:

𝑃𝐸(𝑖) ≈
𝑃𝐸(𝑖 − 1)

𝑃𝐸(𝑖 − 1) + 𝑃𝐴𝐶𝐶(𝑖)
𝑃𝐸(𝑖 − 1)

𝑃𝐸(𝑖 − 1) + 𝑃𝐸𝑀𝐺(𝑖)
𝑃𝑠(𝑖)

(8)

The use of the previous window estimate in the next window
means that the first estimation window should be a relatively
clean PPG. The assumption that the estimation in the previous
windows is close to the next (8) can lead to erroneous estimates
when fast HR changes occur. Fast HR changes lead to larger
differences between two consecutive windows preventing the
algorithm from following the HR. To address this problem, the
final spectrum estimate is formed as the average of the spectra
from Equations 6 and 8. Equation 6 adds up more weight on the
more recent heart rate related information in the PPG spectrum,
while Equation 8 keeps the focus in the right frequency region.
The recursive spectrum subtraction algorithm follows the same
principles as in the study by Lee et al. [16], while averaging the
spectra from Equations 7 and 9 is a novel adjustment on the
algorithm. The result of the spectrum subtraction in a single
time window is visualized in Fig. 3.

Prior to the subtraction algorithm, both reference spectra are
normalized. In practice, this means that both spectra have the
same amplitude and effect in the subtraction algorithm.
However, normalization also means that weak signals have the
same magnitude of filtering effect as strong signals, which is a
potential source of errors in stable measurement conditions
when the PPG does not contain any artifacts. In this case, the
PPG spectra would be subtracted with movement reference
spectra containing non-related movement noise. To address this
scenario, a threshold of the power of both signals was used to
decide whether the PPG is corrupted with artifacts the PPG
should be subject to be corrected. This threshold was selected
based on experience. The same threshold was used for all test
subjects.

After spectrum subtraction, the most probable HR frequency
peak was estimated. This is initiated with a proprietary peak
detection and selection algorithm. The peak selection starts with
the search—in the 8-second window—of the dominant peak
frequency around the previous HR estimate frequency. The
dominant frequencies that are less than 0.15 Hz (9 BPM) of the
prior estimate were chosen. This corresponding window size
was selected because a change of 9 BPM is the maximum
plausible physiologically difference between two consecutive
8-second windows. If there are no detected peaks in the search
window, the estimate of the previous estimation window is
chosen. When the peak selection stage chooses the previous
estimation result multiple times consecutively, it becomes more
probable that the HR has already moved outside the 0.15 Hz



window around the previous HR peak frequency (±9 BPM). To
address this problem, the algorithm counts the number of times
the previous estimate. If this count is three, the dominant
frequency in the whole analysis 8-second window band is
chosen as the HR frequency estimate.

Fig. 3. Spectrum subtraction example: Corrupted
photoplethysmogram (PPG) spectrum (First panel), the
acceleration spectrum (second panel), electromyogram (EMG)
spectrum (third panel), and the resulting PPG spectrum after
the subtraction algorithm (fourth panel). After spectrum
subtraction, the true HR frequency is dominant.

D. Statistical analyses
The HR estimates from the spectrum subtraction algorithm

are compared with the reference ECG-based HR using an 8-
second estimation window as in the PPG HR. The R-peaks of
the ECG are detected, and the RR-intervals are calculated. The
reference HR is calculated through the average RR-interval:

𝐻𝑅𝐸𝐶𝐺 = 60/
∑ 𝑅𝑅(𝑖)𝑁
𝑖=1

𝑁
(9)

where𝐻𝑅𝐸𝐶𝐺 is the ECG HR estimate, 𝑅𝑅(𝑖) is the RR-interval
of 𝑖𝑡ℎ R-peak pair, and N is the number of RR-intervals.

To evaluate the performance of the PPG-based HR estimates,
the absolute error (AE) for each estimation window is
calculated:

𝐴𝐸(𝑖) = |𝐻𝑅𝑃𝑃𝐺(𝑖)−𝐻𝑅𝐸𝐶𝐺(𝑖)| (10)

where 𝐴𝐸(𝑖) is the absolute error in the window index 𝑖,𝐻𝑅𝑃𝑃𝐺
is the PPG HR estimate, and 𝐻𝑅𝐸𝐶𝐺  is the reference gold
standard HR using the ECG device.

To measure the general performance, we used the mean
absolute error (MAE) and was calculated as:

𝑀𝐴𝐸 =
∑ 𝐴𝐸(𝑖)𝑁
𝑖=1

𝑁
(11)

where N is the total number of estimation windows and 𝐴𝐸(𝑖)
is the AE in the window index 𝑖. The spread of MAEs measures
the accuracy differences between subjects. This is measured the
standard deviation of MAEs:

𝑆𝑑𝑀𝐴𝐸 =
∑ (𝑀𝐴𝐸(𝑖)− 𝑀𝐴𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒)2𝑁
𝑖=1

𝑁

(12)

where 𝑆𝑑𝑀𝐴𝐸 is the standard deviation of mean absolute errors,
N is the number of data subjects, and 𝑀𝐴𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒 is the average
of the mean absolute errors of all subjects. The sdMAE is the
standard deviation of the MAEs of the subjects for a given task,
showing the deviations in accuracy between people.

To measure the precision and spread of the estimates, the
standard deviation of the absolute errors (SdAE) for each
subject's task. It was calculated as:

𝑆𝑑𝐴𝐸 =
∑ (𝐴𝐸(𝑖)− 𝑀𝐴𝐸)2𝑁
𝑖=1

𝑁 − 1

(13)

The pooled standard deviation of absolute errors (𝑆𝑑𝐴𝐸𝑝𝑜𝑜𝑙)
is used to estimate the average spread of data points of different
groups around their means. In practice, it is the average of
standard deviations of absolute errors for a given task. As the
pooled standard deviation is calculated for each independent
task containing the same amount of HR estimates each, the
equation for pooled standard deviation becomes:

𝑆𝑑𝐴𝐸𝑝𝑜𝑜𝑙 =
𝑆𝑑𝐴𝐸1

2 + 𝑆𝑑𝐴𝐸2
2 +⋯+ 𝑆𝑑𝐴𝐸𝑁

2

𝑁

(14)

where 𝑁 is the number of data subjects, and SdAE is the
standard deviation of absolute errors of the subject of a given
task.
      To investigate the statistical significance of the results, a
Wilcoxon signed-rank test is used to further analyze the error
differences. This is calculated with a SciPy Python library
implementation of the Wilcoxon signed-rank test [26     ]. The
changes in estimation errors are considered to be statistically
significant if the p-values are under 0.05.



TABLE II
RESULTS USING INDIVIDUAL AND A COMBINATION OF THE ACC AND EMG DURING THE DIFFERENT TASKS.

Error metrics Hand
opening

Fingers Wrist
flexion /
extension

Squeezing Weight Running Running +
racket

EMG

+ACC

MAE (BPM) 6.74 6.60 6.69 6.35 7.18 2.83 9.12
SdMAE (BPM) 3.81 4.37 4.45 3.10 3.52 3.22 7.60
SdAEpool (BPM) 8.95 10.02 4.72 7.32 6.60 6.06 8.94

ACC MAE (BPM) 17.33 15.28 12.68 10.38 9.20 8.04 18.29
SdMAE (BPM) 23.27 13.91 5.33 12.65 6.00 9.74 10.53
SdAEpool (BPM) 21.32 18.66 12.12 10.83 8.17 11.33 13.49

EMG MAE (BPM) 12.51 10.52 10.94 6.57 9.35 7.33 15.88
SdMAE (BPM) 8.08 12.22 5.26 3.47 5.22 11.03 7.97
SdAEpool (BPM) 16.12 14.24 9.40 7.46 8.56 12.17 13.96

MAE: mean absolute error, BPM: beats per minute, SdMAE: Standard deviation of MAE, SDAEpool: standard deviation of the absolute error; EMG:
electromyography, ACC: acceleration.

TABLE III
MAE AND SD IN BPM AND PERCENTAGE CHANGE WHEN ADDING EMG REFERENCE AND ACCELERATION REFERENCE.

    Task
∆

Hand
opening

Fingers Wrist
flexion /
extension

Squeezing Weight Running Running +
racket

∆MAE (BPM) -10.59 -8.68 -5.99 -4.03 -2.017 -5.21 -9.16
∆MAE (%) -61.09 -56.80 -47.27 -38.84 -21.92 -64.82 -50.12
∆ SdMAE (BPM) -19.46 -9.54 -0.88 -9.55 -2.48 -6.52 -2.93
∆ SdMAE (%) -83.63 -68.62 -16.48 -75.53 -41.37 -66.93 -27.86
∆ SdAEpool (BPM) -12.38 -8.63 -7.40 -3.51 -1.57 -5.28 -4.60
∆ SdAEpool (%) -58.04 -46.27 -61.07 -32.41 -19.25 -46.55 -33.72

MAE: mean absolute error, BPM: beats per minute, SdMAE: Standard deviation of MAE, SDAEpool: standard deviation of the Absolute error, EMG:
electromyography, ACC: acceleration.

TABLE IV
P-VALUES FOR EACH TASK CALCULATED FROM COMPARISON OF MAES OF USING ONLY ACC REFERENCE AND USING ACC + EMG REFERENCES

Hand
opening

Fingers Wrist flexion /
extension

Squeezing Weight Running Running +
racket

p-value 0.027* 0.0039* 0.0039* 0.0078* 0.20 0.012* 0.012*
* Indicates a significant value (p ≤ 0.05). EMG: electromyography, ACC: acceleration

TABLE V
P-VALUES FOR EACH SUBJECT FROM ALL TASKS CALCULATED FROM COMPARISON OF MAES OF USING ONLY ACC REFERENCE AND USING ACC + EMG

REFERENCES

Subject1 Subject2 Subject3 Subject4 Subject5 Subject6 Subject7 Subject8 Subject9

p-value 0.031* 0.047* 0.016* 0.58 0.016* 0.16 0.016* 0.047* 0.016*
* Indicates a significant value (p ≤ 0.05). EMG: electromyography, ACC: acceleration
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III. RESULTS AND DISCUSSION

Artifact removal was applied to the measurements taken
from the test subjects. For comparison, the algorithm was used
with both movement references—EMG and acceleration—
individually and with both references combined.

The proposed HR estimation method was tested on two
minutes of clear PPG from all subjects. The MAE and SdAEpoo
were 1.12 and 1.02 BPM, respectively, when compared to the
ECG-derived reference HR. This sets the highest possible
accuracy to which the other measurements are compared.

Results are shown in Table I and depicted in Fig. 4. The
reported MAE values are averages of all subjects from a given
task, showing the average performance of the method.

When comparing the results using different movement
reference signals, the use of EMG as movement reference
improves the HR estimation accuracy. The solution with both
EMG and acceleration signals reached the lowest errors in all
movement tasks. Also, the deviation between different subjects
is smaller.

On average, EMG alone performed better than using only an
acceleration signal as a movement reference. This is probably
because the accelerometer does not detect tissue movements as
reliably as the EMG [13]–[16]. However, even though there is
no actual EMG activity, the EMG signal also contains
acceleration related artifacts. Nevertheless, the inclusion EMG
adds additional and complementary movement artifact
information when compared to the accelerometer signal.

In total, there is an average MAE decrease of 5.21 BPM in
the running task when EMG is added in addition to the
accelerometer as the movement reference. However, closer
inspection shows that some subjects exhibited hand muscle
activity during their running task, which induced tissue
movement artifacts to the PPG signal. Similar observations
were noted by Lee et al. [16]. As expected, adding a floorball
racket to the running measurement introduced more hand
muscle activations, which led to worse estimation accuracies.

As seen in Table 3, the percentage decrease in the HR
estimation error is significant when EMG is added as a tissue
movement reference. The MAE decreased on average by 49%,
and the standard deviation of MAE decreased by 54%. In
addition, the SdAEpool decreased by 43%. Thus, the general
robustness of the HR estimation improved considerably with
the addition of the EMG movement reference.

The statistical significance of MAE reduction was
investigated by means of calculating p-values for MAE pairs
with and without the EMG motion reference. From           the p-
values in Tables 4 and 5 it can be seen that the p-values are
under 0.05 for most tasks, making them statistically significant.
Only in the weightlifting task no statistically significant
improvement was achieved with p-value of 0.20. This is
understandable, as the weightlifting movement is easily
detectable with accelerometers and addition of EMG does not
provide supplementary information. Also, the results from
subjects 4 and 6 are not statistically significant with p-values of
0.58 and 0.16 respectively. This is due to the fact that the EMG
signal amplitudes were low compared to the acceleration signal,
so that the EMG reference did not provide additional
information on the movement artifacts.

In contrast to Silverio et al. [14], the EMG was measured
from the wrist instead of the forearm, which contains less
muscle, leading to smaller amplitude signals. Nevertheless, as
seen in Fig. 5, the acceleration and tissue movement artifacts
occurring at different frequencies are visible in the
spectrograms. The frequency estimates calculated from the
acceleration and EMG are marked with blue and orange color,
respectively (Fig. 3). While the acceleration can detect the
swinging motion of the hand during running, the EMG can
detect the muscle contractions of the hand squeezing the
floorball racket. The addition of EMG proves to be the most
effective when the body movement and tissue movement
happen at different frequencies. However, as the statistical test
by subject shows, the wrist EMG does not provide statistically
significant improvement for all people. Inter subject differences
in wrist anatomy and muscle mass can affect the effectiveness
of the wrist EMG use as artifact reference.

Despite the effectiveness of the EMG as a reference signal,
future work could lead to further improvement. Our algorithm
implementation had some shortcomings: First, when there was
a low PPG SNR, or the PPG HR-frequency power was weak,
the algorithm was not able to recover the PPG HR frequencies,
leading to discontinuities in the spectrograms and increasing the
MAE. Second, when the artifact and HR frequencies
overlapped, the algorithm would subtract the HR frequency as
an artifact leading to additional frequency discontinuities in the
spectrograms. These discontinuities could be avoided by
disabling the spectrum subtraction algorithm when the tracked
artifact frequencies overlap with the HR frequencies.

Based on the current study the smart watch EMG could be
used to enhance HR estimation in activities involving tissue
movements. Implementation of EMG sensing in smart watch
form factor would somewhat increase the complexity       and
the power consumption of the device.       However, given the
observed benefit in the current study, the implementation
challenges could      be justifiable     .

Finally, the study has the following limitations: subjects'
availability led to a small sample. In practice, the use of
adhesive electrodes in wristwatches is not feasible. Thus, our
results might not match precisely an EMG-equipped wristwatch
without adhesive electrodes because these electrodes might
have mitigated movement-related artifacts. Also, the present
study did not consider irregular movement artifacts, which are
relevant in several activities in real use. For being efficiently
addressed, irregular movement artifacts most likely require
other than frequency domain-based signal processing
approaches. The used algorithm considered only frequencies
above 0.8 Hz, which disregards heart rates under 48 BPM. This
would lead to erroneous estimates to people with HR lower than
48 BPM. Thus, future research is needed.



Fig. 5. Recording of a subject running while holding a racket.
Spectrograms of the original photoplethysmogram (PPG)
(top panel), the original PPG with acceleration artifact
(blue) and tissue movement artifact (orange) (middle panel),
and the PPG signal after spectrogram subtraction (bottom
panel).

IV. CONCLUSION

The use of EMG as a tissue movement reference to improve
the HR estimates of a reflective PPG in a wristwatch was
investigated. The results indicate that EMG is a specific tissue
movement reference and contains additional and
complementary information on the PPG artifacts. Furthermore,
the addition of both EMG and acceleration in the spectrum
subtraction algorithm decreased the estimation error by 49%
compared to using only acceleration. EMG thus provides a
novel and effective modality for improving the performance of
the optical HR estimation from the wrist.
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