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Abstract
Interrupted time series analysis (ITSA) is a method that can be applied to evaluate

health outcomes in populations exposed to ionizing radiation following major

radiological events. Using aggregated time series data, ITSA evaluates whether the time

trend of a health indicator shows a change associated with the radiological event. That

is, ITSA checks whether there is a statistically significant discrepancy between the

projection of a pre-event trend and the data empirically observed after the event.

Conducting ITSA requires one to consider specific methodological issues due to unique

threats to internal validity that make ITSA prone to bias. We here discuss the strengths

and limitations of ITSA with respect to bias and confounding, data quality, and statistical

aspects. We provide recommendations to strengthen the robustness of ITSA studies and

reduce their susceptibility to producing spurious results as a consequence of arbitrary

modeling decisions.

1 Introduction
In the aftermath of major radiological events like releases from nuclear accidents, it is

necessary to assess health consequences for the affected population. Health

consequences to be considered include both direct effects from acute radiation exposure

or prolonged environmental contamination as well as indirect effects of societal

disruption. Epidemiological studies conducted after radiological incidents have

improved our knowledge on radiation-induced diseases as well as the understanding of

dose-response relationships. Some of these studies have had direct impact on the

current system of radiation protection [1,2]. However, conducting epidemiological

studies according to gold standard methods with individual-level information on

exposure, confounders, and endpoints takes years until results become available.
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Sometimes, such studies may not be feasible at all when data collection would involve a

prohibitive cost or is otherwise impractical.

In contrast, interrupted time series analysis (ITSA) is an observational quasi-

experimental method that can be based on aggregated data on health indicators from

publicly available sources. ITSA thus make studies more feasible to carry out and

provide faster results. ITSA has a long tradition in evaluating public policy interventions

[3,4], health research, and other fields in epidemiology [5–7]. Similar event study designs

were developed in econometrics [8,9]. ITSA uses a time period prior to an event as a

reference with which subsequent development is contrasted. The pre-event trend of the

chosen endpoint is modeled and projected onto the post-event period. The projected

post-event trend serves as a counterfactual baseline comparator in the sense of the

Neyman-Rubin model for causal inference [10]. The next step is to determine whether

the observed post-event data deviates significantly from this expected baseline.

Observed post-event trends can also be contrasted with those in unaffected control

regions.

In radiation epidemiology, ITSA has been repeatedly applied to assess the health

consequences of major radiological events [11–25]. Examples include ecological studies

on perinatal mortality following the nuclear accidents in Three Mile Island [11] or

Fukushima [20,21]. Another purpose of analyses similar to ITSA has been to check the

plausibility of earlier hypotheses on the magnitude of radiation risk by analogy to

historical time series data. Examples include childhood leukemia risk near nuclear

installations such as Sellafield and Dounreay in the UK, or nuclear power plants in

Germany [26–28].
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However, ITSA requires topic-specific methodological considerations, and also involves

limitations beyond those of ecological studies in general [29,30]. Previous accounts of

ITSA strengths and limitations have mostly been published in relation to specific

analyses [31–37]. Frequently, these discussions thus had a restricted scope. Therefore,

we here present methodological considerations and provide recommendations for

epidemiological ITSA studies in the context of major radiological events.

2 Methodological considerations

2.1 Bias and confounding
Ecological studies are based on aggregated data alone and have inherent methodological

challenges that severely impede causal inference, including bias due to the ecological

fallacy, and limited or absent confounder control [29,30]. Within-group misclassification

of exposure can be especially pronounced absent individual dosimetry or knowledge

about other sources of exposure, such as for medical purposes. While unaccounted

confounding may create spurious associations or hide real ones even in individual-level

epidemiological studies, ITSA in the context of major radiological events faces unique

additional threats to its internal validity.

Radiological events may involve changes in other risk factors for the chosen health

outcome concurrently with radiation exposure [38,39]. Most obviously following the

atomic bombings in Hiroshima and Nagasaki, but also after the nuclear accidents in

Chernobyl and Fukushima, radiation exposure was accompanied by major physical

destruction and ensuing disruptive changes to society. Catastrophic events with an

evacuation can traumatize people and create psychological stress as well as exhaustion.

Long-term consequences include deteriorated health service conditions after the
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complete or partial collapse of medical infrastructure, psychological stress from health

concerns and stigmatization, degraded social networks, homelessness, unemployment,

and material losses [38,40,41]. These stressors are all linked to adverse health effects.

In Fukushima, profound lifestyle changes were observed after the nuclear disaster [39].

These included changes in dietary habits and sedentary behavior which can affect the

risk of diabetes, cardiovascular health, and other health outcomes in the population.

Other possible lifestyle changes concern alcohol and tobacco use which both are

relevant risk factors for a number of diseases. Furthermore, contaminated areas may

experience differential migration patterns as younger age groups may show mobility

away from affected areas. Such changes to the population under study can introduce

bias analogously to differential drop out in study arms of longitudinal controlled trials.

Due to broad effects of maternal age, reproductive outcomes often analyzed in radiation-

related ITSA studies [11,16–24] may be particularly sensitive to changes in population

structure. Furthermore, intention to conceive is affected by societal disruption, and

pregnant mothers are especially prone to psychological distress from health worries

[40]. In addition, the maternal health status can vary with healthcare quality [42] and in

turn affects children’s health endpoints.

ITSA requires selecting a study time period. Since the projected pre-event trend serves

as the counterfactual [10] expectation of the post-event baseline, selection of the pre-

event time window influences the post-event expectation and may thus introduce bias if

not entirely appropriate. This is illustrated in Fig. 1 where the projection of the

appropriate fitted model correctly indicates a positive level shift (c) whereas the

projection of a more complicated model with slightly better fit to pre-event data

incorrectly indicates a negative post-event level shift (d). The projection from an
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appropriate model fitted to data from a restricted pre-event time period incorrectly

indicates no post-event level shift (e). As official population statistics cover long periods

of time, and therefore provide many possible choices, it is especially important to have

stringent principles for choosing the pre-event time period for analysis.

One method to enhance the internal validity of ITSA studies is to compare the observed

time trend of the region affected by the radiological event with that of control regions.

This requires classifying regions according to the assumed exposure of their

populations. When reliable information on exposure levels is unavailable, a classification

may only be possible based on spatial proximity to the source of exposure as a surrogate

measure. The use of an exposure proxy introduces additional uncertainty besides

within-group heterogeneity.

In order to avoid distorted comparisons, the selected control regions must satisfy the

following requirement: temporal trends of the analyzed health indicators would have

been the same in the control regions as in the exposed region if, counterfactually, the

radiological event had not occurred [5,6]. Unless explicitly accounted for in the model,

all other time-varying risk factors for the health outcome are thus presumed to affect

study regions in the same way, independently of the radiological event. However, this

assumption may not hold in the context of a large-scale radiological disaster that

involves radiation exposure, psychosocial consequences, and societal disruptions.

2.2 Data quality
ITSA can require much less resources than individual-level studies because it usually

relies on routinely collected data from official statistics or disease registries. Among

others, endpoints can include mortality, cancer incidence, perinatal mortality, and sex
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ratio at birth. In particular, demographic data are usually collected consistently, with

high completeness, and covering long time periods as well as many different

geographical regions. Nevertheless, in the case of large-scale catastrophes, ITSA

investigators should demonstrate that reporting quality and coverage of the included

data did not differ across the compared regions and were not affected by the event.

Access to official aggregated data is typically feasible, such that it is possible to define

comparison periods and regions without being limited by data availability. Moreover,

routine demographic data collection can typically be assumed to be unbiased even when

some parties with suspected or actual vested interest in particular study results exist.

The availability of official statistics makes samples accessible that are larger than what

may be achieved in individual-level studies, thus improving statistical power and

precision.

However, disease-specific endpoints like incidence of cancer or congenital

malformations depend on the intensity and on the quality of the diagnostic process.

Diagnostic procedures, disease definitions, and coding standards may be highly variable

across regions and time periods, impeding valid comparisons. Examples include

establishing high-quality population-based cancer registration or the implementation of

breast cancer screening programs. In some cases, the radiological event triggers changes

in data collection with respect to diagnostic methods, record keeping, or implementation

of screening programs, thus increasing the risk of information bias. For example,

medical surveillance and special health check-ups for exposed persons increased after

the Chernobyl accident [43]. Another example is thyroid cancer screening after the

Fukushima nuclear accident. While thyroid cancer screening in general increases

diagnoses of papillary carcinoma [44], the program introduced in Fukushima also used
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technologically advanced ultrasound devices that were more sensitive than devices

already in standard use [39]. Consequently, epidemiological comparisons of data

generated with varying methods may provide limited insight into the actual study

question. A sensitivity analysis excluding the time period after introduction of a cancer

screening program is an example how investigators checked their study’s robustness

against such an effect [25].

2.3 Statistical modeling
ITSA assumes piecewise smooth trends of the chosen health indicator that are separated

by an abrupt structural break at a specific time point related to the radiological event.

Different types of trend change can be modeled, among them a discontinuous jump in

the average level, or a continuous change in the trajectory or slope over time [3]. There

are specific statistical requirements for ITSA studies. Time series data typically exhibit

serial correlations which can bias the estimated variance of parameters unless

accounted for by using heteroscedasticity- and autocorrelation-consistent estimators of

the variance-covariance matrix [5]. In addition, non-stationarity and periodicity must be

considered by including appropriate secular trends and seasonality components [5].

ITSA model building involves several choices that can strongly impact the results. These

include the functional form assumed for the secular pre-event trend of the endpoint as a

result of long-term changes in natural risk factors or population demographics. When

data is noisy or the time series is not long enough, methods to select the most

appropriate model for the pre-event period may not have sufficient power. The

investigator then cannot reliably identify the proper baseline trend among, e.g., linear,

log-linear, linear-quadratic, or polynomial, with or without seasonality. Consequently,

these baseline trends can result in substantially different post-event projections.
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Therefore, the same pre-event data can often be used to equally justify very different

post-event projections. Some of these projections may be statistically consistent with the

observed post-event data while others are significantly different from it. This can result

in spurious findings, especially when the pre-event time window or the employed model

do not capture the actual long-term secular trend, but instead only capture a short-term

seasonal component (Fig. 1 e, f).

By including many ad hoc statistical parameters to capture patterns of the observed

time series, the modeled pre-event trend can closely approximate the observed data.

Examples include seasonal trends of different periodicity or higher-order polynomial

terms. However, this improvement in nominal model fit may come at the expense of

worse generalizability to new data when the model essentially chases noise that is

incidental to the observed data. To assess the amount of such overfitting, special cross-

validation or bootstrap techniques for time series data can serve to estimate the out-of-

sample prediction error when the model is applied to independent data.

Depending on the health endpoint, the assumed effect of radiation exposure may be

assumed to emerge early or with a delay of months to years. The assumed effect then

may be considered as permanent or temporary with convergence back to the projected

baseline. When the onset of the assumed effect after the radiological event has an

uncertain delay, different choices for the structural breakpoint of the time trend can be

justified. For example, the vulnerable phase for in-utero radiation exposure during the

gestation period may not be precisely defined for a given endpoint, leading to

uncertainties about the calendar date or time period when health effects in live births

would be expected. Similar situations may occur when the latency of the assumed

radiobiological process is uncertain.
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For short-term radiation effects, the behavior of the post-event time trend of the health

outcome should be related to trends of post-event exposure levels which may change

due to weather-related fallout patterns, decay of radionuclides, migration of

radionuclides in soil, or remediation and decontamination efforts.

Whenever there are no compelling a-priori principles to guide necessary modeling

choices, decisions on the model implementation may be data-driven or made arbitrarily.

However, even small changes to a model that are inconsequential individually can

strongly affect the overall conclusion when taken together [45]. An even worse situation

arises when modeling choices are made ad hoc depending on the available data. Since all

data-driven modeling decisions represent implicit statistical tests, they create issues of

multiple testing, and thus increase the risk of false positive results beyond the nominal

significance level [46]. Moreover, data-driven modeling creates the potential for p-

hacking, i.e., selectively making modeling choices that lower the final p-value [47]. This

problem may be exacerbated by publication bias. Since there are few financial,

organizational, or regulatory barriers to conducting ITSA based on publicly available

data, the number of studies that can be carried out quickly is large. As a consequence,

there may be statistically significant results that are due to chance, but nevertheless

have better publication odds than null results. Studies that replicate the exact methods

of an earlier study in a different geographical context may help counter this problem.

For example, a study on infant leukemia after the Chernobyl accident conducted in

Germany [13] used the methods from an earlier study from Greece [15].

One method to evaluate the risk of detecting spurious associations are sensitivity

analyses which use slightly different, yet plausible choices for unconstrained model

building decisions. Additional analyses can use sham outcomes or zero controls. These
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are features included in the analyses with no a-priori evidence to suggest an association

with radiation exposure, and therefore with a null effect as the expected result, as

illustrated in a study on cancer incidence after the Chernobyl accident [25].

In diagrams depicting non-parametric smoothed trend estimates, the integration

bandwidth or sliding window size affect the smoothness of the curve, and thus its

susceptibility to local sudden changes like breaks or jumps. Visual cues such as vertical

lines indicating the exposure event can be suggestive, making it difficult to assess

whether placing other break-points independent of the exposure event would be equally

compatible with the data (Fig. 1 a). Smooth trend-lines added to diagrams of raw data

can be suggestive and impede visual evaluation of how consistent the natural variability

of the data would be with other kinds of trends or temporal patterns. We therefore

recommend parsimonious and thoughtful use of such graphical elements. When

estimated trend-lines are shown, uncertainty bands are necessary to provide an

impression of the range of consistent trend-lines.

3 Discussion
Even though ITSA has inherent methodological limitations, the approach to use time

periods and geographical regions as surrogates for individual exposure may also have

advantages. Official statistics and publicly available data enhance the feasibility of

studies that may serve as a plausibility check for more elaborate epidemiological

research. ITSA may – in principle – generate hypotheses about effects of radiation

exposure that remain undetected in conventional studies due to low sample size. Since

the current understanding of low-dose radiation effects on different endpoints is still
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insufficient, study designs that can potentially contribute to the evidence base should be

carefully considered.

However, the potential advantages of ITSA must be weighed against the risk for

producing spurious associations caused by bias, confounding, and capitalization on

chance. Due to inherent limitations in the ecological approach [29,30], the presence of

many potential confounders, and a large number of arbitrary modeling decisions, the

risk of producing spurious associations is particularly high in ITSA.

While methods to control for time-dependent confounders are severely limited in

ecological studies, it is nevertheless important to carefully evaluate the risk of

confounding. Therefore, a discussion of established causal factors acting on the endpoint

is necessary, including time trends of these factors during the study period. This

facilitates identifying alternative explanations for any observed association between

exposure-level surrogates and the endpoint. Some confounders like socioeconomic

status (SES) have surrogates for aggregated data such as neighborhood SES whose

inclusion in an ecological study may improve its robustness [25].

ITSA results should be checked for plausibility in light of previous epidemiological

evidence, in particular, when some data on environmental or population radiation

exposure levels are available. Authors should then assess whether the effect size

suggested by the identified temporal or regional patterns in health indicators are

compatible with existing dose-response models or with results from landmark studies

[1]. When ITSA results are at odds with these studies, it should be noted what changes to

exposure estimates, dosimetry methods, or to dose-response models would be required

to accommodate the ITSA results. Consideration should also be given to the possibility
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that discrepancies that seem to call for re-evaluation of scientific knowledge underlying

current radiation protection guidance may instead reflect shortcomings of the ITSA.

4 Conclusion
Anticipating future exposure incidents that will trigger new time series modeling studies

investigating health effects, it is necessary to pre-emptively limit the number of

arbitrary choices that can lead to selection bias and capitalization on chance. Following

best practices across scientific disciplines, we therefore recommend basing ITSA on a

study protocol and statistical analysis plan. This helps to pre-constrain the study

implementation and statistical modeling as much as possible. Analysis principles that

can be specified ahead of time can include criteria for classifying exposure events as

major or relevant, criteria for choosing control regions and time periods, as well as

criteria for selecting statistical models, the functional form of time trends, and

sensitivity analyses. Aside from following relevant reporting guidelines [48,49]

publications should transparently describe choices made in model selection. They

should also include scientifically motivated sensitivity analyses to examine the impact of

such choices on study findings.
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7 Figures
Figure 1: Simulated noisy time series data of an arbitrary outcome that follows a

decreasing log-linear secular trend with a periodic cycle and an abrupt level shift at

2019-01-01. a) Simulated data. b) Data with true mean (grey) and indicator for the time

of the incident. c) Data with fitted (solid black) pre-event mean and projected (dashed

black) post-event mean from log-linear model. d) Data with fitted (solid black) pre-event

mean and projected (dashed black) post-event mean from log-linear-quadratic model. e)

Data with fitted (solid black) pre-event mean and projected (dashed black) post-event

mean from log-linear model restricted to a subset of pre-event data. f) Data with fitted

(solid black) pre-event mean and projected (dashed black) post-event mean from log-

linear-quadratic model restricted to a subset of pre-event data.
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