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ABSTRACT 

In the management of a modern European railway system, spending is 
predominantly allocated to maintaining and renewing the existing rail network rather 
than constructing completely new lines. In addition to major costs, the maintenance 
and renewals of the existing rail network often cause traffic restrictions or line 
closures, which decrease the usability of the rail network. Therefore, timely 
maintenance that achieves long-lasting improvements is imperative for achieving 
competitive and punctual rail traffic. This kind of maintenance requires a strong 
knowledge base for decision making regarding the current condition of track 
structures. 

Track owners commission several different measurements that depict the 
condition of track structures and have comprehensive asset management data 
repositories. Perhaps one of the most important data sources is the track recording 
car measurement history, which depicts the condition of track geometry at different 
times. These measurement results are important because they offer a reliable 
condition database; the measurements are done recurrently, two to six times a year 
in Finland depending on the track section; the same recording car is used for many 
years; the results are repeatable; and they provide a good overall idea of the condition 
of track structures. However, although high-quality data is available, there are major 
challenges in analysing the data in practical asset management because there are few 
established methods for analytics. Practical asset management typically only 
monitors whether given threshold values are exceeded and subjectively assesses 
maintenance needs and development in the condition of track structures. The lack 
of advanced analytics prevents the full utilisation of the available data in maintenance 
planning which hinders decision making. 

The main goals of this dissertation study were to develop track geometry 
deterioration modelling methods, apply data mining in analysing currently available 
railway asset data, and implement the results from these studies into practical railway 
asset management. The development of track geometry deterioration modelling 
methods focused on utilising currently available data for producing novel 
information on the development in the condition of track structures, past 
maintenance effectiveness, and future maintenance needs. Data mining was applied 
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in investigating the root causes of track geometry deterioration based on asset data. 
Finally, maturity models were applied as the basis for implementing track geometry 
deterioration modelling and track asset data analytics into practice. 

Based on the research findings, currently available Finnish measurement and asset 
data was sufficient for the desired analyses. For the Finnish track inspection data, 
robust linear optimisation was developed for track geometry deterioration 
modelling. The modelling provided key figures, which depict the condition of 
structures, maintenance effectiveness, and future maintenance needs. Moreover, 
visualisations were created from the modelling to enable the practical use of the 
modelling results. The applied exploratory data mining method, General Unary 
Hypotheses Automaton (GUHA), could find interesting and hard-to-detect 
correlations within asset data. With these correlations, novel observations on 
problematic track structure types were made. The observations could be utilised for 
allocating further research for problematic track structures, which would not have 
been possible without using data mining to identify these structures. The 
implementation of track geometry deterioration and asset data analytics into practice 
was approached by applying maturity models. The use of maturity models offered a 
practical way of approaching future development, as the development could be 
divided into four maturity levels, which created clear incremental goals for 
development. The maturity model and the incremental goals enabled wide-scale 
development planning, in which the progress can be segmented and monitored, 
which enhances successful project completion. 

The results from these studies demonstrate how currently available data can be 
used to provide completely new and meaningful information, when advanced 
analytics are used. In addition to novel solutions for data analytics, this dissertation 
research also provided methods for implementing the solutions, as the true benefits 
of knowledge-based decision making are obtained in only practical railway asset 
management. 
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TIIVISTELMÄ 

Modernin rautatiejärjestelmän hallinnassa rahankäyttö kohdistuu valtaosin nykyisen 
rataverkon korjauksiin ja parannuksiin ennemmin kuin uusien ratojen rakentamiseen. 
Nykyisen rataverkon kunnossapitotyöt aiheuttavat suurten kustannusten lisäksi 
myös usein liikennerajoitteita tai yhteyksien väliaikaisia sulkemisia, jotka heikentävät 
rataverkon käytettävyyttä. Siispä oikea-aikainen ja pitkäaikaisia parannuksia 
aikaansaava kunnossapito ovat edellytyksiä kilpailukykyisille ja täsmällisille 
rautatiekuljetuksille. Tällainen kunnossapito vaatii vankan tietopohjan radan 
nykyisestä kunnosta päätöksenteon tueksi. 

Ratainfran omistajat teettävät päätöksenteon tueksi useita erilaisia radan kuntoa 
kuvaavia mittauksia ja ylläpitävät kattavia omaisuustietorekistereitä. Kenties tärkein 
näistä datalähteistä on koneellisen radantarkastuksen tuottamat mittaustulokset, 
jotka kuvastavat radan geometrian kuntoa. Nämä mittaustulokset ovat tärkeitä, koska 
ne tuottavat luotettavaa kuntotietoa: mittaukset tehdään toistuvasti, 2–6 kertaa 
vuodessa Suomessa rataosasta riippuen, mittausvaunu pysyy useita vuosia samana, 
tulokset ovat hyvin toistettavia ja ne antavat hyvän yleiskuvan radan kunnosta. 
Vaikka laadukasta dataa on paljon saatavilla, käytännön omaisuudenhallinnassa on 
merkittäviä haasteita datan analysoinnissa, sillä vakiintuneita menetelmiä siihen on 
vähän. Käytännössä seurataan usein vain mittaustulosten raja-arvojen ylittymistä ja 
pyritään subjektiivisesti arvioimaan rakenteiden kunnon kehittymistä ja 
korjaustarpeita. Kehittyneen analytiikan puutteet estävät kuntotietojen laajamittaisen 
hyödyntämisen kunnossapidon suunnittelussa, mikä vaikeuttaa päätöksentekoa. 

Tämän väitöskirjatutkimuksen päätavoitteita olivat kehittää ratageometrian 
heikkenemiseen mallintamismenetelmiä, soveltaa tiedonlouhintaa saatavilla olevan 
omaisuusdatan analysointiin sekä jalkauttaa kyseiset tutkimustulokset käytännön 
rataomaisuudenhallintaan. Ratageometrian heikkenemisen mallintamismenetelmien 
kehittämisessä keskityttiin tuottamaan nykyisin saatavilla olevasta datasta uutta tietoa 
radan kunnon kehityksestä, tehdyn kunnossapidon tehokkuudesta sekä 
tulevaisuuden kunnossapitotarpeista. Tiedonlouhintaa sovellettiin ratageometrian 
heikkenemisen juurisyiden selvittämiseen rataomaisuusdatan perusteella. Lopuksi 
hyödynnettiin kypsyysmalleja perustana ratageometrian heikkenemisen mallinnuksen 
ja rataomaisuusdatan analytiikan käytäntöön viennille. 
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Tutkimustulosten perusteella suomalainen radantarkastus- ja rataomaisuusdata 
olivat riittäviä tavoiteltuihin analyyseihin. Tulokset osoittivat, että robusti lineaarinen 
optimointi soveltuu hyvin suomalaisen rataverkon ratageometrian heikkenemisen 
mallinnukseen. Mallinnuksen avulla voidaan tuottaa tunnuslukuja, jotka kuvaavat 
rakenteen kuntoa, kunnossapidon tehokkuutta ja tulevaa kunnossapitotarvetta, sekä 
muodostaa havainnollistavia visualisointeja datasta. Rataomaisuusdatan 
eksploratiiviseen tiedonlouhintaan käytetyn GUHA-menetelmän avulla voitiin 
selvittää mielenkiintoisia ja vaikeasti havaittavia korrelaatioita datasta. Näiden 
tulosten avulla saatiin uusia havaintoja ongelmallisista ratarakennetyypeistä. 
Havaintojen avulla voitiin kohdentaa jatkotutkimuksia näihin rakenteisiin, mikä ei 
olisi ollut mahdollista, jollei tiedonlouhinnan avulla olisi ensin tunnistettu näitä 
rakennetyyppejä. Kypsyysmallin soveltamisen avulla luotiin puitteet ratageometrian 
heikkenemisen mallintamisen ja rataomaisuusdatan analytiikan kehitykselle Suomen 
rataomaisuuden hallinnassa. Kypsyysmalli tarjosi käytännöllisen tavan lähestyä 
tarvittavaa kehitystyötä, kun eteneminen voitiin jaotella neljään eri kypsyystasoon, 
jotka loivat selkeitä välitavoitteita. Kypsyysmallin ja asetettujen välitavoitteiden avulla 
kehitys on suunniteltua ja edistystä voidaan jaotella, mikä antaa edellytykset tämän 
laajamittaisen kehityksen onnistuneelle läpiviennille. 

Tämän väitöskirjatutkimuksen tulokset osoittavat, miten nykyisin saatavilla 
olevasta datasta saadaan täysin uutta ja merkityksellistä tietoa, kun sitä käsitellään 
kehittyneen analytiikan avulla. Tämä väitöskirja tarjoaa datankäsittelyratkaisujen 
luomisen ja soveltamisen lisäksi myös keinoja niiden käytäntöönpanolle, sillä 
tietopohjaisen päätöksenteon todelliset hyödyt saavutetaan vasta käytännön 
radanpidossa. 
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KEY TERMINOLOGY 

Asset management In the context of this dissertation, asset management refers to 
managing the maintenance, renewals, and life cycle of 
infrastructure assets, such as track structures, bridges, or 
signalling equipment. 

 
Data The word data is purposefully used in the uncountable form, 

as in data is available. It is acknowledged that the word data 
has origins in the Latin word datum, whose plural is data, but 
current dictionaries, like the Cambridge Dictionary (2022a) 
and Merriam-Webster (2022), accept the use of the word data 
as a singular and uncountable noun due to the diminished use 
of the original singular form, datum. 

 
Framework “A system of rules, ideas, or beliefs that is used to plan or 

decide something” (Cambridge Dictionary, 2022b) 
 
Long term and short term (behaviour, maintenance, predictions, etc.) 
 Long term is used to refer to time periods lasting one or more 

year(s). Conversely, short term refers to time periods lasting 
less than one year. 

 
Maintenance and tamping 
 Maintenance is used to refer to any methods of improving or 

sustaining the condition of in-use track structures. Tamping is 
regarded as one maintenance method, which can be 
accompanied or preceded by any number of other 
maintenance actions as well. When wording such as “tamping 
predictions” is used, it implies that at least tamping will be 
required, but other maintenance methods could be needed as 
well. 
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CMM Capability Maturity Model 
CMMI Capability Maturity Model Integration 
EN European Standard 
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FTIA Finnish Transport Infrastructure Agency (Väylävirasto) 
GPR Ground Penetrating Radar 
GNSS Global Navigation Satellite System 
GUHA General Unary Hypotheses Automaton 
ISO International Organization for Standardization 
ITDM Integrated Track Degradation Model 
LL Longitudinal Level 
MGT Million Gross Tons 
MSI Maintenance Success Indicator 
PI Prediction Interval 
R2 Coefficient of Determination 
RAMS Reliability, Availability, Maintainability and Safety 
RO Research Objective 
SD Standard Deviation 
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TGDA Track Geometry Deterioration Analyses 
UIC International Union of Railways (Union Internationale des 

Chemins de Fer) 
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1 INTRODUCTION 

1.1 Background and motivation 

More than half of all rail infrastructure expenditure in the European Union is spent 
on maintenance and renewals (European Commission, 2021). Therefore, increasing 
the efficiency of maintenance and renewals has a great impact on railway 
infrastructure spending, which is mostly (72%) funded by national budgets 
(European Commission, 2021). Therefore, saving taxpayer money on railway 
maintenance and renewals has widespread beneficial effects, as the savings can be 
reallocated to other areas of society as well. 

Railway maintenance and renewals have unique characteristics that are very 
different from, for example, roadworks. Rail traffic can rarely be rerouted to other 
track sections without causing major traffic capacity issues and temporarily diverted 
routes are immensely expensive to build. This means that the railway industry has a 
special interest in avoiding situations, in which maintenance and renewals are 
performed after structures have become defective, as this would lead to traffic 
disruptions or even line closures before track works are completed. Instead, railway 
maintenance and renewals must be planned ahead and performed within the time 
slots when trains are not running, so as not to disturb the rail traffic. 

Proactive and preventative maintenance is based on knowing the condition of 
track structures and being able to estimate the development in their condition. 
Perhaps the most crucial data source in railway asset management is the track 
recording car (Esveld et al., 1988). These cars are used to periodically measure the 
relative position of the rails because the rails do not remain in the same position as 
where they were initially installed but move due to deterioration and accumulated 
settlements in the structures below. Therefore, track (recording car) inspections are 
required to monitor, whether the track geometry is smooth enough to ensure safe 
rail traffic and detect irregularities that require maintenance, as these irregularities 
denote realised deterioration in the track structure. 

Track inspections are conducted regularly, thus producing time series data on the 
track geometry condition. Past research has shown that this track inspection time 
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series data can be used to investigate development in the condition of track 
structures (Andrade and Teixeira, 2015; Quiroga and Schnieder, 2012; Tanaka et al., 
2018), assess maintenance effectiveness (Audley and Andrews, 2013; Martey and 
Attoh-Okine, 2018; Soleimanmeigouni et al., 2018), and predict future maintenance 
needs (Caetano and Teixeira, 2016; Lee et al., 2020; Soleimanmeigouni et al., 2020). 
These research outputs enable proactive and preventative maintenance. 
Subsequently, the tracks can be maintained before dangerous track geometry 
irregularities occur, and track works can be planned to be performed when there is 
no train traffic. 

Nevertheless, the track inspection time series data from Finland has not been 
utilised in practical asset management to its full potential yet. Finnish practical asset 
management has had only static inspection reports (summaries provided in PDF 
format) to use for planning maintenance and renewals. Using only these types of 
reports makes maintenance planning difficult because assessing development in the 
condition of track structures is difficult and can only be done subjectively. Therefore, 
research on establishing suitable modelling methods for Finnish track inspection 
data is required to increase the efficiency of railway maintenance and renewals in 
Finland. 

With track geometry deterioration modelling, the locations and severity of 
defective track structures can be identified. Nevertheless, different types of defects 
require different repair methods. To select the correct repair method, the root causes 
of track geometry deterioration should be known to avoid treating the symptoms 
instead of the disease, figuratively. The root causes of track geometry deterioration 
can be very complex, as a defect in one part of a track structure might weaken 
another part, thus deluding analyses attempting to find the original cause of 
deterioration. Track geometry deterioration root cause investigations require 
rigorous data on various features of the track structure. However, as the amount of 
data sources increases, subjective data analyses become more and more challenging. 
Therefore, the use of novel data analysis methods is required to explore the available 
track asset data to investigate the root causes of deterioration. 

Finally, once track geometry deterioration modelling practices and data analysis 
methods are researched, they must be implemented into practical railway asset 
management. This is especially important as the greatest and most tangible benefits 
from these results can be obtained in practical operations. However, the 
implementation is not simple, because it will require large-scale software and 
organisational development. Therefore, the implementation of track geometry 
deterioration modelling and data analytics is required.  
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1.2 Research objectives and scope 

The three research objectives (ROs) of this study were as follows: 

• RO#1: Develop modelling methods for track geometry deterioration 
predictions and analyses using Finnish track inspection data. 

• RO#2: Apply data mining for investigating the root causes of railway track 
geometry deterioration using Finnish railway asset management data. 

• RO#3: Implement track geometry deterioration analyses into Finnish railway 
asset management practices. 

The ROs were investigated in Papers I–IV and discussed in this thesis in the order 
presented in Figure 1. 
 

 
Figure 1. Summary of the ROs. 

The first RO investigates answers to the following: How can track geometry 
deterioration be modelled using Finnish track inspection data? In practical terms, the 
modelling methods produce answers to where and how the track geometry 
deteriorates. These investigations have been reported in Paper I and section 3.1 of 
this thesis. 
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The second RO explores ways to answer the question: How can data mining be used 
to investigate the root causes of track geometry deterioration using Finnish railway asset data? The 
practical aspect of this RO is to use data to investigate why track geometry 
deteriorates. The available data depicts track geometry deterioration development 
and data on track structure features (see section 1.4). Studies relating to this RO are 
reported in Papers II–III and section 3.2 of this thesis. 

The third RO studies how to implement track geometry deterioration analyses into Finnish 
railway asset management, which is also the practical perspective of this part of the study. 
Paper IV and section 3.3 of this dissertation report the studies related to this topic. 

All the research objectives together enable more efficient planning and 
monitoring of track maintenance and renewals by utilising currently available data. 
All three research objectives investigate how to achieve this, meaning suitable 
methods are first investigated from a theoretical perspective and then their practical 
implementation is considered. 

The scope of this research is focused on using only currently available railway 
structure data from Finnish railway asset management for analysing the condition of 
track structures. New data was gathered for the practical implementation of these 
analyses by using interviews and workshops held in cooperation with relevant railway 
industry stakeholders, as is elaborated further in Paper IV. As the research was 
limited to concern the Finnish state-owned rail network, it is important to consider 
the way Finnish railway ownership and management responsibilities are divided. 
Figure 2 presents a graph of this division. 
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Figure 2. Division of responsibilities in the Finnish state rail network ownership and management (Paper IV). 

The Finnish state-owned railway infrastructure is owned and controlled by the 
Finnish Transport Infrastructure Agency (FTIA, Väylävirasto in Finnish), which is a 
government agency. The FTIA is strategically steered by the Ministry of transport 
and communication, which is a branch of the Finnish government. The permits for 
owning and operating the railway system are controlled by another Finnish 
government agency, Traficom. The FTIA outsources much of the daily operations 
and focuses on managing the operations through contracts and guidelines. The daily 
track asset management is outsourced to private consultant companies, who control 
four track asset management areas. Similarly, track maintenance is divided into 12 
areas, where private track construction companies are responsible for daily track 
maintenance operations. The track inspections are performed by one private 
company that uses one track recording car for the whole network. 

The scope of researching the implementation of track geometry deterioration 
modelling and data analytics is limited to planning and roadmapping the future 
development in Finland. This excludes research on change management during the 
implementation, which is left out of scope as it will be a topic of future research.  
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1.3 Research methodology 

The research strategy was based on applied empirical research, in which observations 
gathered during the research were used in the analyses. Nevertheless, the research 
design, type, and methods varied by RO. A summary of the used research designs, 
types, and methods is presented in Figure 3 and is subsequently discussed. The 
terminology is based on the book by Goddard and Melville (2001). 

 

 
Figure 3. Summary of the used research methods. 

The first RO, track geometry deterioration modelling, was approached with a 
quantitative research design; Data from track inspections was mathematically 
modelled to produce numeric data depicting the deterioration behaviour. The 
research type was considered descriptive and creative. Descriptive research studies 
specific situations to generate theories based on those situations. Correspondingly, 
actual track inspection data from multiple track sections was used to study a suitable 
modelling method. Additionally, the research was creative, as novel visualisations 
were generated from the modelling results to benefit practical railway asset 
management. As for the research methods, mathematical models were used both in 
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generating the models and creating the results visualisations. The assumption in this 
part of the research was that Finnish track inspection data could exhibit similar 
deterioration behaviour as has been noticed in past research on track geometry 
deterioration in other countries. It was also assumed that the modelling results would 
provide intuitive information and that only the means to produce this information 
were missing. 

The second RO, investigating the root causes of track geometry deterioration, 
was also approached with a quantitative research design. Data depicting different 
track structure features was used to find correlations between track structure types 
and track geometry deterioration behaviour. The descriptive part of the research 
concerned the initial data, which was actual measurement and asset data from in-use 
railway sections. Moreover, a case track section was used in testing the data mining 
results. The data mining used to find the correlations within the data was considered 
experimental research because the independent and dependent variables could be 
identified. The independent variables explaining the behaviour were the track 
structure features, and the dependent variable depicting the behaviour was the 
deterioration rate. The dependence between these two parameters was investigated 
using data mining, which is a form of mathematical modelling. The assumption was 
that the available track structure data would be sufficient to reveal interesting 
correlations between different track structure types and different deterioration 
behaviour. However, it was acknowledged that track geometry deterioration is a 
highly complex phenomenon and that the results will only imply correlations 
between structure types and observed deterioration behaviour. These correlations 
will only provide interesting hypotheses to investigate further with other research 
methods instead of elaborating on the actual structural mechanics. 

For the third RO, the implementation of track geometry deterioration analytics, 
a qualitative research strategy was employed. The research included creative and 
descriptive elements. In the creative research part, maturity models were applied to 
form a basis for a track geometry deterioration analysis development framework. 
The descriptive part of the research included investigating the development 
framework contents in cooperation with stakeholders in Finnish railway asset 
management. The research methods used to formulate the framework included 
semi-structured expert interviews and workshops with the stakeholders. Creating a 
framework for planning future development can also be considered as roadmapping 
in other terminology (Hirose et al., 2020; Kostoff and Schaller, 2001). In this 
dissertation, these are considered synonymous, as per the example of Kostoff and 
Schaller (2001), where it is mentioned that “roadmaps present a framework”. In analysing 
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the interview and workshop results, quantitive research elements were used when 
analysing the coded interview and workshop outputs. In studying the third RO, it 
was assumed that a maturity model could create a structure for the framework and 
that industry experts could provide the necessary domain knowledge to form its 
content. Additionally, it was acknowledged that the framework will be limited to only 
laying out a strategy for development, and that individual steps within the framework 
will require further defining and planning before practical implementation. 

1.4 Research data 

The research data included data depicting track geometry deterioration development, 
data on track structure features, and data produced in the interviews and workshops 
held as part of investigating the third RO. The research scope limited the use of track 
structure data to only currently available data. With that said, the case track sections 
were selected on the basis that sufficient data was available, and it should be 
considered that not all Finnish track sections have this much data readily available. 

The data depicting track geometry deterioration development originated from 
periodical track inspections of the Finnish state rail network. Three track sections’ 
data was acquired and used for different types of analyses. These track sections 
included Kouvola–Kotka (data from 2004–2017), Luumäki–Imatra (data from 
2008–2018), and Karjaa–Ervelä (data from 2007–2015). The track section between 
Kouvola and Kotka is approximately 54 km in length, and both cargo and passenger 
traffic are operated on the track section. The yearly traffic volume on Kouvola–
Kotka track section is 14–18 MGT depending on the location within the section. 
The Luumäki–Imatra (abbreviated as LUIMA) is approximately 65 km long and the 
yearly traffic volume is approximately 11 MGT. Lastly, the Karjaa–Ervelä 
(abbreviated as Rantarata) track section is about 29 km long and the yearly traffic 
volume is approximately 2 MGT. All track sections were inspected with the same 
track recording car, Plasser & Theurer EM120. This track recording car uses chord 
measurements from three bogies spaced 5 and 7 m apart, respectively. The track 
inspection data was acquired from Loram Finland Oy (formerly Roadscanners Oy), 
and the different measurement run signals had been aligned by Loram Finland Oy 
before handing over the data. 

The data on the features of track structures originated from multiple sources and 
concerned the previously mentioned track sections. Track geometry deterioration 
rates were calculated from the track geometry history to provide a parameter for 
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track deterioration behaviour. Track structure layer thicknesses and moisture indices 
were derived from ground penetrating radar (GPR) measurements. Laser scannings 
provided point clouds of the embankment surface, which was used to calculate ditch 
depth to provide data on drainage conditions. The GPR measurements and laser 
scannings were performed and analysed by Loram Finland Oy. Track deflection was 
measured using a continuous track stiffness device, which was developed in the 
Tampere University Research Centre Terra (Luomala et al., 2017). The deflection 
measurements also provided cant data, which could be used to differentiate straight 
track elements from curves. Other data included asset data from railway asset data 
warehouses, soil maps, maintenance records, and data identified from a video feed 
of the track sections. 

The data from interviews and workshops included their outputs and codings 
from the outputs. The interview outputs included the memos of the conversations, 
while the workshop outputs included mind maps, frameworks, and comments. 
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2 THEORETICAL BACKGROUND 

This section presents the relevant background and previous research for the studies 
presented in Papers I–IV and section 3 of this dissertation. 

2.1 Definition and measurement of track geometry 

Track geometry can be defined and measured in two parallel systems: absolute and 
relative (Sánchez et al., 2017; UIC, 2008). Absolute track geometry is measured and 
defined in a specified coordinate system, for example, the European Terrestrial 
Reference System (ETRS). This coordinate-based approach to track geometry is 
used mainly when designing and constructing railways when the shape and location 
of the track are created. In turn, relative track geometry is used in monitoring the 
condition of track geometry, meaning the deviations from an ideal shape. The 
relative track geometry is used for inspecting only the shape of the track geometry, 
not absolute coordinates (Sánchez et al., 2017). As demonstrated in Figure 4, the 
major difference between these absolute and relative systems is that relative 
measurements do not recognise uniform settlements or movements, as long as the 
original shape remains (Esveld, 2001). Other differences between absolute and 
relative track geometry include the measurement reference systems, measurement 
loading conditions, and measurement speed. 

 

 
Figure 4. Difference between absolute track geometry and relative track geometry. 
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Absolute track geometry measurements need to be fixed in a coordinate system 
via known reference points near the tracks (UIC, 2008). The fixed points are required 
because track geometry measurements based solely on the Global Navigation 
Satellite System (GNSS) are typically not accurate enough (UIC, 2008). Nevertheless, 
recent advances in GNSS systems have shown measurement results with high 
accuracy (Szmagliński et al., 2022), and it may be possible to obtain absolute geometry 
measurements using satellite technology in the future. The current devices used to 
measure the absolute geometry include total stations and lightweight surveying 
trolleys (Figure 5). These measurements provide very accurate information on the 
absolute track geometry (Chen et al., 2018; Sánchez et al., 2017). The downside is that 
the measurement speed is limited to walking pace and total station repositioning 
takes time (Sánchez et al., 2017). Therefore, it is impractical to frequently measure 
the whole rail network with absolute geometry measurements. Furthermore, 
absolute geometry measurements are performed using lightweight equipment, thus 
the geometry under seating load (Li et al., 2015; Sussmann et al., 2001) is not recorded. 
As mentioned before, the best uses of absolute track geometry measurements are in 
designing and constructing railways but using them for network-wide condition 
monitoring is not currently feasible. 

 

 
Figure 5. Lightweight track geometry measurement trolley and total station. Photo credit: Marko Happo and Mikko Sauni. 

The relative track geometry measurements depict the shape of the rails using the 
parameters described in European Standard (EN) 13848-1 (2019). The 
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measurements must be fixed to known coordinate and track location systems, but 
the accuracy requirements are lower than those of absolute geometry measurements. 
Therefore, GNSS accuracy coupled with reference points from track assets, for 
example, catenary poles, is sufficient. The relative geometry is usually measured using 
a specific track recording car (Esveld, 2001; SFS-EN 13848-2, 2020). This enables 
high measurement speeds of 160 km/h and up to 250 km/h (Lichtberger, 2005; 
Mermec, 2022; Plasser & Theurer, 2022a). The track recording cars measure loaded 
track geometry, which shows the effects of unsupported sleepers. Track geometry 
condition monitoring is generally based on recurrent relative track recording car 
measurements, because of the high measurement speeds. However, these 
measurements only provide information on the condition of track geometry, and 
absolute measurements are required for designing new track geometry for 
improvements and absolute tamping (UIC, 2008). 

From here on, this dissertation will discuss only relative track geometry, if not 
otherwise mentioned, because track geometry is periodically inspected only with the 
track recording car, which measures the relative track geometry. Expectedly, future 
condition monitoring will be able to incorporate absolute track geometry monitoring 
via GNSS (Szmagliński et al., 2022) or developed track recording cars (Plasser & 
Theurer, 2022b), but current collected data concerns only the relative track 
geometry. 

2.2 Track geometry maintenance 

Track geometry deteriorates when the forces subjected to the track structure exceed 
the capability of the track structure to resist those forces (Li et al., 2015). Track 
geometry deterioration is observed in track recording car measurements as 
irregularities in a designed ideal geometry. Track geometry irregularities exceeding 
given thresholds must be corrected to ensure the safety of train traffic. Track 
geometry is predominantly corrected using a tamping machine (Esveld, 2001; Li et 
al., 2015). Figure 6 presents the working principle of a single tie tamper. There are 
also multiple tie tampers whose working principle is similar to the single tie tamper, 
but, as per the name, more than one sleepers are tamped simultaneously (Plasser & 
Theurer, 2022c). 
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Figure 6. Tamping machine working principle. Photo credit: Mikko Sauni. 

The working principle of a tamping machine (presented in Figure 6) is described 
as follows. First (1) the tamping machine moves into place, and designed 
displacement and lift values are set as input data for the machine. Secondly, (2) the 
rails are lifted to the designed position using a roller, indicated by the red arrow, and 
tines are pushed into the ballast around a sleeper. Lastly, (3) the tines are pushed 
together and vibrated to compact the ballast material underneath the sleeper to attain 
a permanent lifted position for the sleeper and rails. Once the tines are lifted from 
the ballast, the machine moves over to the next sleeper and repeats the process. 
Tamping can also be done with hydraulic jacks and handheld tamping devices, or 
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tamping heads attached to excavators, but their use is not advisable for normal 
maintenance. These tamping devices are suitable when tamping only a few sleepers 
after minor track work. The handheld tamping devices may also be used together 
with a tamping machine when tamping turnout areas. 

Tamping can be preceded by any number of track works ranging from replacing 
the rails to renewing the whole superstructure of the track. At the very least, tamping 
often requires adding ballast material to account for the lifted track geometry. 
Regardless of the maintenance works preceding tamping, it is the predominant 
method for implementing the desired track geometry (Esveld, 2001; Li et al., 2015). 

Tamping is followed by profiling and, in some cases, stabilising (Lichtberger, 
2005). Dynamic stabilising of the ballast layer is performed using a special track work 
machine, a dynamic track stabiliser (Lichtberger, 2005). This machine induces 
vibrations to the track structure which causes the ballast particles to rearrange and 
lock into place (Li et al., 2015). Dynamic stabilising machines are reported to have a 
positive effect, especially on horizontal track stability, which is beneficial when traffic 
can resume at full speed after tamping instead of speed restrictions (Esveld, 2001; Li 
et al., 2015). However, dynamic track stabilisers are rare in Finland, and this phase is 
usually skipped, yet, speed restrictions after tamping are generally not applied. 
Profiling, conversely, can be performed with high rail excavators or special ballast 
regulators and is required almost always after tamping. Profiling forms the ballast 
shoulders and slopes that provide necessary horizontal track stability. 

Alternatives to tamping include stone blowing, use of adjustment plates inserted 
below the rails, and ballast layer adhesion. Stone blowing is a similar operation to 
tamping, but instead of compacting the ballast material beneath the sleepers, gravel 
or sand is blown in the void space under the sleepers to attain a lifted geometry (Li 
et al., 2015). Stoneblowing is criticised for inserting small grain material into the 
ballast layer; therefore, some consider that it fouls the ballast layer (Lichtberger, 
2005). However, if the ballast layer is already fouled, stoneblowing may provide a 
better alternative for maintenance than tamping. Nevertheless, no stoneblowing 
machines are currently available in Finland. Adjustment plates are inserted between 
the sleeper and rail to correct spot geometry defects. The adjustment plates are meant 
to be only a temporary solution until the track is properly tamped. Ballast adhesion 
should, in theory, retain the ballast layer in a fixed position and eliminate the need 
for subsequent tamping (D’Angelo et al., 2016; Jing et al., 2019; Kennedy et al., 2013). 
Nevertheless, if settlements do occur anywhere in the track structure or in the 
underlying subsoil after ballast adhesion, the adhesion can obstruct further 
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traditional maintenance, for example, tamping, and novel maintenance methods are 
required (Jing et al., 2019). 

Tamping is not a repair method in the sense that it does not improve the track 
structure; it only rearranges the ballast material to form a stable base for the sleepers 
and resets the designed track geometry (Audley and Andrews, 2013; Li et al., 2015). 
In fact, tamping is known to break the ballast material by crushing the ballast layer 
rock material, which weakens the condition of the ballast layer (Audley and Andrews, 
2013; Kumara and Hayano, 2016). Therefore, unnecessary tamping must be avoided, 
not only due to unnecessary maintenance costs but also to preserve the ballast layer 
condition. To avoid unnecessary tamping, the root cause of track geometry 
deterioration must be realised. This topic will be discussed in the next section. 

2.3 Causes of track geometry deterioration 

Track geometry deterioration can be caused by several track structure features, 
external sources, or their combinations. The track structure features contributing to 
track geometry deterioration are categorised as follows: 

• settlements in structures below the track 

• track structure stiffness variations 

• wear and damage in track components. 

The main external sources for aggravating track geometry degradation are as follows: 

• forces from rolling stock 

• forces of nature. 
 
Settlements in structures below the track 
 
Settlements in the earth structures below the track are reported to be the main 

cause of track geometry irregularities (UIC, 2008). Ballast layer settlements are often 
attributed to the rearrangement of ballast material, increased fines contents due to 
ballast fouling, mixing of structural layers, or fines infiltration from outside sources 
(Indraratna et al., 2013; Li et al., 2015). Subballast, a layer between the ballast and 
subsoil, is installed to separate and reduce stress on the subsoil and drain and insulate 
the track structure (Li et al., 2015). Subballast layers are usually made of granular 
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material and can be reinforced with, for example, bitumen, geogrids, and 
geomembranes (Biabani and Indraratna, 2015; Ferreira and Teixeira, 2012; Li et al., 
2015). Subballast settlements are considered rarer than settlements in other layers, as 
long as the material used is granular and well compacted (Li et al., 2015). By contrast, 
the subsoil (or subgrade) is generally considered the weakest and most variable part 
of the track structure and one that is difficult to repair (Li et al., 2015; Selig and Li, 
1994). Especially, fine graded subsoils are considered prone to settlements due to 
consolidation and repeated loading (Li and Selig, 1995, 1996). 

Besides earth structure settlements, damage and settlements in built structures 
can cause track geometry deterioration (Gou et al., 2019). These structures include 
mainly bridges and culverts, but other structures, such as pile foundations or 
retaining walls, can also exhibit similar problems. These structures may be founded 
improperly resulting in uneven settling and track geometry deterioration (Gou et al., 
2019). This problem concerns mainly older structures, as new structures have strict 
design and construction guidelines for foundations (Liikennevirasto, 2017). In 
addition to settlements, damage to built structures can cause track geometry 
irregularities, a problem, which is common, especially with old culverts and bridges. 
For example, rock and concrete culverts are formed of many pieces (square rocks or 
concrete rings), which may move in relation to each other. This will result in earth 
material entering the culvert from the formed cracks causing settlements in the track 
above as well as issues to the track drainage (Figure 7). 
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Figure 7. Concrete ring culvert where the rings have been displaced. Photo credit: FTIA asset management registry 
(Taitorakennerekisteri). 

Transitions from built structures to embankments are also prone to geometry 
deterioration because of differential settlements. Some of these settlements may be 
caused by subsoil consolidation or insufficient structural layer compaction causing 
consolidation after construction (Li and Davis, 2005). Besides consolidation 
settlements, stiffness variations have a major influence on transition zone track 
performance, and they are discussed next. 

 
Track structure stiffness variations 
 
Track structure stiffness variations can lead to differential track structure 

settlements (Esveld, 2001; Li et al., 2015; Sañudo et al., 2016). In this dissertation, 
stiffness variations are considered a distinct phenomenon from track structure 
settlements, because stiffness variations can cause differential settlements in places 
where settlements would not otherwise pose a problem. Track structure stiffness 
varies along a track section due to transitions between different structure types, often 
referred to as transition zones (Sañudo et al., 2016). For example, bridges provide an 
almost rigid foundation, whereas embankments built on soft soil are much more 
elastic (Li and Davis, 2005). Ideally, the track structure should be uniformly and 
sufficiently elastic as too rigid a foundation may cause excessive stresses to the 
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superstructure, and too elastic a foundation may cause settlements in the earth 
structures. A uniform deflection value of <0.25 inches or 6 mm is given as a 
prerequisite for a well-performing track (Li et al., 2015). Current Finnish guidelines 
determine that the maximum elastic vertical deflection should be <4 mm on 
structures not founded on peat (Liikennevirasto, 2018). However, smaller deflection 
values are more typical, for example, <2 mm deflection is common for good 
condition tracks in Finland (Luomala, 2019). 

The main issue in transition zones is the vicious cycle between dynamic loads and 
plastic deformations. First, the dynamic loads from the rolling stock are increased 
due to stiffness variations, which causes plastic deformations in the transition zone. 
Later, the cumulative plastic deformations increase the dynamic loads even further, 
deteriorating the track geometry much faster than in areas with uniform track 
stiffness. (Indraratna et al., 2019; Li and Davis, 2005; Sañudo et al., 2016) 

Transition zones are difficult to repair because only tamping the track does not 
usually cure transition zone problems. Instead, recurrent tamping may lead to 
aggravating the problem, as the rail height on the stiff structure side of the transition 
is increased and settlements continue on the soft side. An example of the end results 
of this type of action is demonstrated in Figure 8. A pile-founded rock culvert had 
been installed on soft soil, causing differential settlements around the culvert. The 
subsequent geometry faults have been corrected by tamping and adding ballast so 
many times that the ballast layer could not fit on top of the culvert anymore and 
ballast material had started to pour over the sides of the culvert. Instead of recurrent 
tamping, transition zones require much more extensive and costly repairs, for 
example, reinforced backfills, pile-supported slabs, or elastic superstructure elements 
(Li et al., 2015; Paixão et al., 2015; Sañudo et al., 2016). 
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Figure 8. Poor condition culvert with ballast falling over the edge. Photo credit: Mikko Sauni. 

Besides the structural layers, stiffness variations can be caused by the track 
superstructure (Andersson and Dahlberg, 2000; Dahlberg, 2010; Li et al., 2015; 
Lundqvist and Dahlberg, 2005). Discontinuity in the rails can cause impact loads 
1.5–3 times higher than the static wheel load (Andersson and Dahlberg, 2000; Li et 
al., 2015). Discontinuity in the rails and high impact loads are often encountered in 
rail joints (Figure 9) and turnouts (Andersson and Dahlberg, 2000; Suzuki et al., 
2005). Even rail welds cause discontinuity in the rails, as the welded area is softer 
than the rails and may have a geometrical discontinuity, causing increased dynamic 
loading to the rails (Li et al., 2015; Messaadi et al., 2021). High impact loads can 
damage the track components and cause a void space under the sleeper, a 
phenomenon referred to as hanging sleepers, which further deteriorates the track 
geometry (Dahlberg, 2010; Lundqvist and Dahlberg, 2005). 
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Figure 9. Poor condition insulated rail joint. Photo credit: Mikko Sauni. 

Wear and damage in track components 
 
Damage to rails, rail fastenings, and sleepers can have direct and indirect 

influences to track geometry deterioration (Ferdous and Manalo, 2014; UIC, 2002; 
Williams et al., 2016). Rails can be damaged in several different ways (UIC, 2002). 
Some rail defects are internal and do not appear in track inspections until the rail 
breaks (Kumar et al., 2008). Other rail defects appear on the surface of rails, for 
example, rail squat defects (Figure 10) (Grassie, 2012; Li et al., 2008). These can 
increase the dynamic forces from rolling stock as the contact surface between the 
rail and wheel is disturbed (Li et al., 2008). Therefore, many rail surface defects are 
detectable in track inspections. 
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Figure 10. Rail squat defect. Photo credit: Mikko Sauni. 

Rail fastenings and sleepers are also prone to failures noticeable in track 
inspections (Ferdous and Manalo, 2014; Williams et al., 2016). Poor condition rail 
fastenings can be noticed in track inspections as gauge widening. Furthermore, loose 
rail fastenings can induce high impact loads between the rail and sleeper. (Williams 
et al., 2016) 

 
Forces from rolling stock 
 
Forces from rolling stock can be static, quasi-static, or dynamic. The static 

component is the weight of stationary railway stock. Static loads are controlled by 
assigning allowable axle weights to track sections. In Finland, the allowable axle 
weights vary from 200 to 250 kN on different track sections, but the is aim to 
increase the maximum axle weights of certain track sections up to 275 in the future 
(Väylävirasto, 2020). The quasi-static component includes the uncompensated wheel 
loads in curves and increased wheel loads due to crosswinds. The dynamic 
component is the force increase due to abrupt changes in track geometry, 



 

22 

discontinuity in the rail running surface leading to wheel motion in relation to the 
rail running surface, and rolling stock defects, such as wheel flats. (Esveld, 2001) 

The dynamic loads can be difficult to estimate as they are dependent on the 
wheel–track interface and rolling stock speeds and weight (Li et al., 2015). Some 
studies suggest that dynamic loads can be 1.5–3 times that of static loads (Andersson 
and Dahlberg, 2000; Li et al., 2015). As track geometry irregularities cause increased 
dynamic loading, a vicious circle is formed, as mentioned earlier. 

The loads from moving rolling stock are not only static nor individual impacts 
but cyclic. Cyclic loading is applied every time a train axle passes a point in the track. 
The repetitive nature of the loading is rapid when compared with the reaction from 
the earth structures to the loads (Li et al., 2015). This means that the settlement and 
possible excess pore water pressure in the earth structure are not recovered before 
the next loading, which leads to increased cumulative effects in successive load 
repetitions (Li et al., 2015), as shown Figure 11. 

 

 
Figure 11. Cyclic train loading induced deflection measured from a stationary track monitoring station. 

Figure 11 presents a time–deflection graph from a stationary track monitoring 
station on a Finnish track section between Pori and Mäntyluoto. The graph shows 
how the second axle from a bogie causes more deflection than the first because the 
track structure does not have the time to recover from the settlement caused by the 
first axle. Similarly, the deflection is not recovered before a following car begins to 
load the structure. The repeated load settlement behaviour is affected by traffic 
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speed, rolling stock axle weight, and axle spacing. The effects of repeated loading 
can be reduced by lowering the speed or axle weight or by increasing axle spacing 
(Li et al., 2015). 

Besides traffic loads, vibrations from rolling stock can also degrade track 
structures (Mezher et al., 2016). At very high speeds, usually near or in excess of 200 
km/h, train vibrations can cause a shear wave that reaches a critical velocity on soft 
soils (Krylov et al., 2000; Li et al., 2015). At critical velocity, the train speed exceeds 
the speed at which the shear wave can advance in the soil which causes a sonic boom 
and results in ground settlements (Krylov et al., 2000). In addition to these large 
vibrations, smaller vibrations can occur in the superstructure if the ballast layer has 
deformed and the sleepers are hanging from the rails. Passing traffic can cause 
vibrations to the hanging sleepers which can degrade concrete sleepers and loosen 
rail fastenings (Lundqvist and Dahlberg, 2005). 

Lastly, irregular contact in the wheel–rail interface can cause rail faults, which can 
later manifest into track geometry defects (Barke and Chiu, 2005; Johansson and 
Nielsen, 2003). Especially, out-of-round wheels cause recurrent high impact loads 
that damage the track structure (Barke and Chiu, 2005; Johansson and Nielsen, 
2003). The effects of the impact loads can be much greater than the allowable static 
axle loads, as has been researched by, for example, Johansson and Nielsen (2003). 

 
Forces of nature 
 
In Finnish conditions, the major detrimental forces of nature to railway structures 

are seasonal frost (heave) and saturation of soils due to insufficient drainage. Frost 
is a particular feature of cold regions which does not necessarily degrade the 
structure. In fact, a solid frozen structure is very rigid and durable, more so than the 
equivalent un-frozen structure. However, frost can lead to two types of detrimental 
effects: frost heave and thaw-softening. (Andersland, 2004) 

Frost heave can have a lifting effect of several centimetres on the track geometry, 
and, in most severe cases, even over 10 cm (Akagawa et al., 2017; Miao et al., 2020; 
Pylkkänen and Nurmikolu, 2015). Frost heave is rarely uniform, so the lift is usually 
noticed as track geometry irregularities. To countermeasure frost heave, Finnish 
requirements for the thicknesses of non–frost-susceptible track structures are 
exceptionally high: between 2.0 and 2.6 m depending on how far north the track 
section is located (Liikennevirasto, 2018). However, old track structures rarely have 
structures as thick as required for new structures. In these cases, frost insulation 
boards can be installed underneath the ballast or subballast layer to attenuate frost 
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penetration (Figure 12) (Nurmikolu and Kolisoja, 2005). The downside of frost 
insulation boards is that the frost insulation boards can alter the stiffness properties 
of the track structure by increasing track deflection (Luomala et al., 2017). 

 

 
Figure 12. Frost insulation board installation in progress. Photo creadit: Mikko Sauni. 

Frost begins to thaw from the top down. This results in a situation called thaw 
softening, in which the top layer of the track structure has thawed and been saturated 
with water while the bottom part of the structure is frozen and prevents the water 
from draining out of the structure (Li et al., 2015). Consequently, excess pore water 
pressure can build up in the track structure under repeated loading which can 
degrade the track geometry at a considerable pace. Similar detrimental effects caused 
by trapped water in the track structure can result from heavy rains and poor drainage 
conditions (Latvala et al., 2016). Track structures on low embankments or in cuttings 
are especially prone to suffer from drainage issues (Latvala et al., 2016). 
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Ensemble of causes for track geometry deterioration 
 
Finding the exact reason or reasons for an irregularity in track geometry is a 

difficult task, because there are several reasons for failure, as mentioned earlier. This 
task becomes even more challenging as deterioration can progress from a failure of 
one component to the next. For example, the wheel spin of a stationary locomotive 
might cause wheel–burn damage to the rails. The damage to the rails increases the 
dynamic loads of all passing trains, which increases loads to the ballast layer and 
eventually fouls the ballast aggregate. The fouled ballast layer can result in 
unsupported sleepers increasing the stiffness variations of the track, thus increasing 
track settlements. As track maintenance does not have access to continuous data 
streams regarding the condition of the track structure, the first observation of this 
chain of events may be a track geometry irregularity noticed in the track recording 
car measurements, although the fault did not originate from the track structure. 

Moreover, neither the condition of the infrastructure nor the forces aggregating 
degradation are the only possible reasons for track geometry deterioration. 
Trackwork and routine maintenance can cause problems to track geometry 
unintentionally. For example, the installation of a new interlocking system requires 
constructing new cabling routes which means drilling pipes through the track 
embankment for the cables. If the embankment is disturbed during the drilling and 
settlements around the pipe occur, the deformation can be seen in track recording 
car measurements. 

Considering the varying, and to some degree even random, reasons for track 
geometry deterioration, determining its root causes requires a tremendous amount 
of information regarding the track structure, the rolling stock, and maintenance 
history. Yet, even if all this information is obtained, figuring out the causality of the 
deterioration requires rigorous analysis to form a timeline of the deterioration. 
Therefore, all parts of track sections with deteriorated track geometry cannot be 
rigorously investigated to find their root causes in practice, as there is simply not 
enough time or resources to do so. Some obvious problems can be observed and 
identified, but only the track geometry is generally monitored, and irregularities are 
mostly addressed by means of tamping if no other obvious reasons are observed. 
Therefore, track geometry deterioration is the most important source of information 
in railway maintenance and asset management. Consequently, to effectively 
investigate track geometry deterioration, its modelling is very important. 
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2.4 Track geometry deterioration modelling 

Track geometry deterioration is not an inherently random process but one that can 
be idealised and modelled (Esveld, 2001; Lichtberger, 2005). Certainly, it must be 
recognised that as demonstrated in section 2.3, there are many reasons why track 
geometry deteriorates and some of them may be random at times. Nevertheless, 
when completely random events are disregarded, the track geometry deterioration 
resulting from consistent traffic follows a theoretical path presented in Figure 13 
(Esveld, 2001; Jovanovic, 2004; Lichtberger, 2005). 

 
Figure 13. Theoretical track geometry deterioration (Paper I). 

Theoretical track geometry deterioration is usually based on the ballast settlement 
behaviour (Dahlberg, 2001; Lichtberger, 2005). As demonstrated in Figure 13, the 
first stage in theoretical track geometry deterioration is the initial settlement after 
construction or maintenance (Lichtberger, 2005). At this stage (1), the tack geometry 
deteriorates at a high pace, usually described in logarithmic or exponential behaviour, 
for a short period of time (Jovanovic, 2004; Lichtberger, 2005; Soleimanmeigouni, 
Ahmadi and Kumar, 2018). The initial settlement is sometimes referred to as ballast 
memory (Lichtberger, 2005). This is followed by the linear deterioration stage (2) 
until a maintenance intervention limit is reached (Jovanovic, 2004; Lichtberger, 2005; 
Soleimanmeigouni, Ahmadi and Kumar, 2018). If the tracks are not maintained 
when the maintenance limit is reached, the deterioration, caused by dynamic load 
increases due to track irregularities, may begin to grow at a considerably faster pace 
(3) (Lichtberger, 2005). Theoretically, the amount of initial settlement and the slope 
of the linear regression will increase with each maintenance cycle, thus reducing the 
maintenance interval length and track availability. When the maintenance 
interventions become too frequent for efficient track use, the track structure must 
be renewed. After a renewal, the deterioration/maintenance cycle (Figure 13) is reset 
and reinitiated. 
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There are two main methodologies for modelling track geometry deterioration: 
mechanistic and statistical (Higgins and Liu, 2018; Soleimanmeigouni et al., 2018). 
The main difference between the two can be coarsely described as follows: 
Mechanistic models use generalising formulae to create data imitating track geometry 
deterioration, whereas the statistical models describe actual measurement data on 
track geometry deterioration. 

Mechanistic models are usually derived from a combination of mechanical 
models and soil models, usually depicting track structure settlements (Dahlberg, 
2001; Ferreira and Murray, 1997; Soleimanmeigouni, Ahmadi and Kumar, 2018). To 
clarify, railway settlements are not synonymous with track geometry deterioration, 
but they both describe much of the same phenomenon (Esveld, 2001). The 
mechanistic models always produce the same results when initial data is constant. 
Therefore, the models require immense research on past behaviour for creating the 
formulae producing the results. Nevertheless, many mechanistic models have been 
created for railroad settlements (Dahlberg, 2001; Soleimanmeigouni, Ahmadi and 
Kumar, 2018). Traditional mechanical models implement initial parameters (such as 
traffic speed and volume, rail weight, and soil parameters) and apply them in 
generalising formulae (Dahlberg, 2001; Ferreira and Murray, 1997). Examples of 
such models are the Japanese settlement model (Sato, 1995) and the integrated track 
degradation model (ITDM) (Zhang et al., 2000). More recent mechanical models 
have adopted modern tools in modelling the deterioration behaviour, for example, 
finite element models (FEM) (Indraratna et al., 2019; Kalliainen et al., 2016; Li et al., 
2016; Paixão et al., 2021; Suiker and de Borst, 2003). These models can consider 
many features, such as three-dimensional loading (Kalliainen et al., 2016), cyclic 
loading (Suiker and de Borst, 2003), transition zones (Indraratna et al., 2019; Paixão 
et al., 2021), and heterogeneous track characteristics (Li et al., 2016). 

Mechanistic models can be considered theoretical, as they do not depict specific 
measured behaviour of certain locations. Instead, the output is based on the 
generalised history of several locations (Soleimanmeigouni, Ahmadi and Kumar, 
2018). Therefore, mechanistic models are best suited for studying different 
hypothetical structure types or loading conditions, for example, when planning new 
structures or increases to the allowable axle loads of current structures. Nevertheless, 
for asset management, these generalisations are not as helpful, as asset management 
is highly pragmatic and requires models depicting the actual measured deterioration 
of specific track locations, not generalisations based on past research 
(Soleimanmeigouni, Ahmadi and Kumar, 2018). 
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Statistical track geometry deterioration models are primarily based on time series 
data from track recording car measurements, which can be coupled with static asset 
data (Soleimanmeigouni, Ahmadi and Kumar, 2018). Many different statistical 
models have been applied to track geometry deterioration modelling, as presented in 
literature reviews by Elkhoury et al. (2018), Higgins and Liu (2018), and 
Soleimanmeigouni et al. (2018). The statistical models can be divided into simple and 
complex models. Simple models include deterministic models that apply curve fitting 
to time series data, whereas more complex models include, for example, artificial 
neural networks (ANNs), whose goal is to imitate past data patterns with great detail 
and investigate the influences of different features on the deterioration behaviour 
(Elkhoury et al., 2018; Soleimanmeigouni, Ahmadi and Kumar, 2018). 

Simpler statistical models are usually selected based on their goodness-of-fit, 
which can be parametrised with different approaches, for example, the (root) mean 
squared error. A typical approach is to fit linear models to maintenance intervals, as 
has been demonstrated by, for example, Andrade and Teixeira (2015), Audley and 
Andrews (2013), Caetano and Teixeira (2016), Vale and Lurdes (2013), Khajejhei et 
al. (2019), Lee et al. (2020), Li et al. (2019), Soleimanmeigouni et al. (2020), and 
Neuhold et al. (2020). Other studies have found exponential models to fit their data 
better, for instance, Famurewa et al. (2016) and Quiroga and Schnieder (2012). 

More complex statistical methods include the use of different stochastic models 
such as the Gamma process, Markov process, classification methods, ANNs, Bayes 
models, and various data mining methods (Andrade and Teixeira, 2012; Bai et al., 
2015, 2016; Guler, 2014; Meier-Hirmer et al., 2006; Mercier et al., 2012). The Gamma 
process is used to estimate track geometry deterioration rates while considering the 
uncertainty regarding the deterioration (Meier-Hirmer et al., 2006; Mercier et al., 
2012). Markov models have been utilised in predicting track deterioration based on 
four track irregularity categories (Bai et al., 2015). ANNs have been applied in 
providing deterioration rates based on input data concerning the track features (such 
as the geometry, rail type, and sleeper type) and traffic conditions (traffic loads and 
speed) (Guler, 2014). Bayesian models have been used to predict the development 
in deterioration rates and assess the uncertainty of the predictions for different types 
of track sections: switches, bridges, stations, and plain tracks (Andrade and Teixeira, 
2012). All these statistical models were used to create complex patterns from intricate 
data, whereas a mechanistic approach provides only generalisations. 

Choosing the track geometry deterioration modelling approach is based on the 
available data and the desired information. Mechanistic models are best suited when 
designing new structures or comparing remediation methods to current structures, 
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as these models produce estimations on deterioration even without measurement 
data from the actual structure. Contrarily, if the goal is to investigate how the track 
geometry is currently deteriorating and how maintenance is affecting it, statistical 
models and measurement data concerning the actual structure should be used. 
Therefore, the organisation modelling track geometry deterioration must clarify what 
the aims of the modelling are and what type of data is available. In the case of Finnish 
railway asset management, track geometry deterioration modelling has not yet been 
implemented. Therefore, the first steps were to identify and apply suitable modelling 
methods for the available data. These studies are reported in Paper I and section 3.1 
of this dissertation. 

2.5 Railway asset data analytics 

Railway asset data analytics can be difficult to differentiate from track geometry 
deterioration modelling. In fact, track inspection history is railway asset data and 
deterioration modelling is data analytics. However, for clarity, this dissertation 
separates railway asset data analytics from track geometry deterioration modelling 
with the following definition: track geometry deterioration modelling investigates 
how the track geometry deteriorates, whereas railway asset data analytics investigate 
why the track geometry deteriorates. This definition leaves room for some research 
approaches to be considered either one of these or even both. 

In practice, railway asset data can be analysed using available railway-secific data 
analysis software. For example, IRISSYS by ERDMANN Software, Optram by 
Bentley, RAMSYS by MERMEC, GeoEdit by ENSCO and Rail Doctor by Loram 
introduce the possibility for an asset manager to access their data easily. These 
programs are specialised in linear railway asset data analysis and deterioration 
analysis. In addition to practical asset management, railway data has been analysed 
in several scientific studies. 

Some studies have investigated the reasons for track geometry deterioration from 
track inspection history alone. These types of studies have investigated the different 
wavelengths of track geometry defects using fractal analyses (Hyslip, 2002; Landgraf 
and Hansmann, 2019). Landgraf and Hansmann (2019) demonstrated that different 
wavelengths of the longitudinal level (LL) deviation are correlated with defects in 
different parts of the structure. More specifically, the mid-wave fractal range was 
found to correlate with ballast condition, and the long-wave fractal range correlated 
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with the load bearing capacity, which implies the strength of the lower structural 
layers (Landgraf and Hansmann, 2019). 

Other studies have investigated the causes of track geometry deterioration using 
additional data sources together with track inspection data. These studies include the 
use of railway track stiffness measurements, GPR measurements, and data on track 
assets. 

Studies researching the effects of railway track stiffness on track geometry 
deterioration using data analytics include Grossoni et al. (2019), Megrali et al. (2020), 
and Nielsen et al. (2020). Grossoni et al. (2019) used log-linear models to assess the 
effects of vertical track stiffness variability on the deterioration of track geometry. 
Their models showed that support stiffness has the greatest influence on ballast layer 
settlement and deterioration rate (Grossoni et al., 2019). Mehrali et al. (2020) applied 
classification, decision trees, clustering, and filtering data mining to investigate the 
correlations between track geometry and stiffness data. The study found many 
correlations between track geometry parameters and support stiffness. For instance, 
clustering results indicated the track alignment irregularities had the strongest 
correlations to vertical displacements, and filtering techniques produced a high 
correlation between the LL and stiffness index (Mehrali et al., 2020). Nielsen et al. 
(2020) also investigated the correlations between track stiffness and geometry 
deterioration and found a strong correlation between low substructure stiffness and 
a high rate of track geometry deterioration. 

Similarly, correlations between GPR measurements and track geometry 
deterioration have been investigated by, for instance, Sussmann et al. (2003), Scanlan 
et al. (2018), and Yurlov et al. (2019). Sussmann et al. (2003) found that in more than 
half of their test sites GPR data could be used to indicate substructure problems 
causing track geometry deterioration. Especially, problematic conditions in the 
substructural layer moisture and thickness could be interpreted from the GPR 
measurements (Sussmann et al., 2003). Yurlov et al. (2019) created a probability 
model for track geometry defects utilising substructure parameters derived from 
GPR measurements. Yurlov et al. (2019) found that ballast fouling indices and the 
ballast layer thickness have strong correlations to track geometry irregularities. 
Conversely, Scanlan et al. (2018) did not find a large-scale correlation between track 
roughness (geometry quality) and ballast deterioration indices calculated from GPR 
measurements. However, Scanlan et al. (2018) mentioned that these results may be 
due to local variability in the ballast deterioration calculation outputs not 
corresponding to actual ballast condition. GPR measurements are used not only to 
investigate track geometry deterioration itself but also in many other indicators of 
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track condition. For example, ballast and substructure condition and frost 
susceptibility have been investigated using GPR measurements (Silvast et al., 2010, 
2013). 

Track asset data has also been used in investigating track geometry deterioration 
(Andrade and Teixeira, 2010; Sadeghi and Askarinejad, 2009). Andrade and Teixeira 
(2010) used asset data on turnouts, bridges, stations, and plain track to investigate 
whether the track sections with these assets exhibited differences in maintenance 
cycles. Their analyses were conducted using Monte Carlo analyses in the @risk 
software (Andrade and Teixeira, 2010). Andrade and Teixeira (2010) found that 
turnout areas and bridges have shorter maintenance cycles compared with plain track 
and stations, implying that areas with turnouts and bridges require maintenance more 
often than plain track or stations. Sadeghi and Askarinejad (2009) compared different 
defect densities of rails, sleepers, fastenings, and ballast with observed track 
geometry irregularities. They concluded that gauge deviations correlated with rail and 
fastening condition, whereas alignment deviations were correlated with sleeper and 
ballast condition, and the profile was influenced by ballast condition (Sadeghi and 
Askarinejad, 2009). However, variability in the results was rather high. 

As presented above, past research shows many correlations between different 
data sources and track geometry deterioration. For example, low stiffness, high GPR 
signal attenuation, and turnouts have been individually linked to high track geometry 
deterioration (Andrade and Teixeira, 2010; Nielsen et al., 2020; Sussmann et al., 2003). 
However, as the cause of deterioration can be attributed to several sources, 
investigating the causes for deterioration in practice can be difficult when using only 
one data source at a time. Therefore, combining several data sources is very 
important for investigating all possible causes of deterioration. Unfortunately, 
combining all data available data sources make the analyses more complex (Berggren, 
2010). Guler et al. (2011) investigated the causes of track geometry deterioration 
from multivariate data, revealing correlations between individual data sources and 
track geometry deterioration. However, investigating the effects of combinations of 
several different parameters was not in the scope of research by Guler et al. (2011); 
thus, the synergy of different features remained unknown. The synergic effects of 
several data sources can be subjectively analysed for individual spots on the track 
section, for example, by visualising all the data simultaneously. However, 
investigating the overall correlations of different structure types and track geometry 
deterioration becomes exhausting when done subjectively. Berggren (2010) 
approached the problem of investigating the root causes of track geometry 
deterioration from multivariate data using pattern recognition. A team of specialists 
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categorised problematic track sections into three combined classes representing 
problems that were 1) rail-related, 2) ballast-related, or 3) soil- or embankment-
related. With ample data from multiple sources, a pattern recognition algorithm was 
trained using specialist evaluations and the algorithm could indicate problem areas 
based on the training data. The research showed how the identification of known 
problem types can be performed using mathematics. (Berggren, 2010) 

However, sometimes the problem with vast multivariate data is that we are not 
sure what we should even be looking for. We may have unexplored data and we do 
not know whether it contains something interesting or not. This was the case in 
Finland, where accumulated multivariate data had been used for visualisations and 
subjective assessments, but the correlations within the data seemed too complex to 
resolve by human efforts. More specifically, there were more than 20 attributes 
concerning different track structure features that were available, which makes 
statistical analyses rather complex. Therefore, explorative data mining methods were 
studied for investigating the causes of track geometry deterioration from multivariate 
data in Papers II and III and section 3.2 of this dissertation. 

2.6 Maturity models 

The implementation of track geometry deterioration modelling and data analytics 
into practical railway asset management requires development in the technological 
and organisational capabilities of the asset management organisation. Depending on 
the initial capabilities of the organisation, this development might take several years 
to succeed. This huge amount of work can seem overwhelming if attempted all at 
once. Therefore, the development process should be strategically planned and 
divided into smaller segments that provide incremental goals. Otherwise, the 
development might become too ambitious and fall under its own weight, as has 
happened to many software development projects in the past (Errida and Lotfi, 
2021). 

Maturity models were developed for managing large software development 
projects (Humphrey, 1988; Paulk et al., 1993). The maturity models describe different 
maturity levels for a defined process, thus helping organisations control their 
development projects (Paulk et al., 1993). The capability maturity model (CMM) 
established by Paulk et al. (1993) can be considered one of the original maturity 
models, from which several derivatives have been created for different purposes 
(Albliwi et al., 2014; CMMI Product Team, 2010; Goncalves Filho and Waterson, 
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2018; Helgesson et al., 2012; Herbsleb and Goldenson, 1995; Poeppelbuss et al., 2011; 
Röglinger et al., 2012). 

Maturity models have been applied in the railway sector in asset management, 
safety, and security development. The International Union of Railways (UIC) (2016) 
has published a practical guide for International Organization for Standardization 
(ISO) 55001 asset management implementation, in which asset management 
maturity is depicted using a six-level maturity model. Fonseca and de Almeida Júnior 
(2005) extended the Capability Maturity Model Integration (CMMI) (CMMI Product 
Team, 2010) to incorporate European standards normalising railway system 
reliability, availability, maintainability, and safety (RAMS). Kour et al. (2019) applied 
a maturity model for assessing the cybersecurity capabilities of railway organisations. 

The basic idea of maturity models is to identify organisational maturity and set 
sensible goals for process improvement (ISO 33004, 2020; Paulk et al., 1993). This is 
achieved by creating a sequence of levels for maturity (Paulk et al., 1993; Röglinger et 
al., 2012). The CMM includes five maturity levels depicted in Figure 14 (Paulk et al., 
1993). 

 

 
Figure 14. CMM by Paulk et al. (1993). 

In the initial level (1) of the CMM (presented in Figure 14), processes are devised 
ad hoc during a project and there are no formal procedures or standard tools. The 
organisations or projects that operate on the initial maturity level tend to exceed their 
budgets and schedules, and the end-product quality is not consistent or predictable. 
However, projects or organisations at this level can produce successful results, but 
they are usually possible only due to employee heroics and competent management, 
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which, if lost due to personnel changes, will demolish the success. (Humphrey, 1988; 
Paulk et al., 1993) 

The success of an organisation or a process on the repeatable level (2) is based 
on past experiences with similar tasks. As long as the workflow, tools, and products 
remain constant, past experiences will suffice for creating a viable product. However, 
if a new product has to be produced, new tools have to be implemented, or the 
process is otherwise disrupted, the process may fail and cannot be re-established 
until experience with the new way of working is gained. (Humphrey, 1988; Paulk et 
al., 1993) 

The defined level (3) differs from the previous level in that processes are defined 
and documented (Humphrey, 1988; Paulk et al., 1993). However, although data 
concerning the process can be produced, its analysis is not common practice. 
Subsequently, in the managed level (4), an organisation will begin to analyse its 
processes based on the collected data and sets goals for products and processes 
(Humphrey, 1988; Paulk et al., 1993). Lastly, in the optimising level (5), the 
organisation can identify its weakest links and address them to fully optimise their 
operations (Humphrey, 1988; Paulk et al., 1993). The optimising level (5) can be 
summarised as the level of continuous improvement (Paulk et al., 1993). 

The process of creating a maturity model has been described in previous research 
(de Bruin et al., 2005; Maier et al., 2012). Maier et al. (2012) described the process in 
four stages, namely, 1) planning, 2) development, 3) evaluation, and 4) maintenance, 
whereas de Bruin et al. (2005) used six stages, namely, 1) scope, 2) design, 3) populate, 
4) test, 5) deploy, and 6) maintain. The planning, scoping, and design phases have 
many similarities, in that the background of why and how a maturity model should 
be created is established. After planning, the model is developed and populated 
which is followed by deployment and evaluation. Finally, the maturity model should 
be maintained to evaluate its effects and set further goals. 

Creating maturity models requires in-depth knowledge of current processes and 
future goals. This knowledge must be acquired from the industry experts using 
surveys, interviews, and workshops, especially, when the purpose of the maturity 
model is to raise awareness and improve performance (de Bruin et al., 2005; Maier et 
al., 2012). Some previous examples of gathering information concerning railway asset 
management practices include studies by Al-Douri et al. (2016), Dadashi et al. (2014), 
and Schraven et al. (2011). These studies approached data gathering using semi-
structured interviews. Besides semi-structured interviews, workshops as research 
methods are especially attractive in railway asset management as they have been 
reported to be effective ways of communicating complex topics to a wide audience 
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with very different backgrounds (Phaal et al., 2007). The stakeholders in track 
geometry deterioration modelling include maintenance personnel, asset managers, 
and maintenance directors; therefore, universally understandable communication is 
paramount. 

The perspective of maturity models can be descriptive, prescriptive, or 
comparative (de Bruin et al., 2005). Solely descriptive models only describe the 
current maturity of an organisation without providing plans for improvement. A 
prescriptive model focuses on indicating how improvement in maturity could 
increase business and enables future development roadmapping. Comparative 
models are for benchmarking practices across organisations. These different 
perspectives can be considered different phases of one maturity model, as the use of 
the maturity model must begin with describing the current maturity of an 
organisation before comparing or advancing it (de Bruin et al., 2005). 

Some of the most crucial aspects for successful maturity model implementation 
have been identified to be senior management commitment, staff involvement, 
process clarity, and training (Herbsleb and Goldenson, 1995; Niazi et al., 2005). 
Critical barriers preventing from realising the benefits of maturity models are 
(detrimental) organisational politics and a lack of awareness, support, formal 
methodology, or resources (Niazi et al., 2005). 

Maturity model evaluation is required to validate the model for practical use (de 
Bruin et al., 2005; Helgesson et al., 2012; Maier et al., 2012). Helgesson et al. (2012) 
present three types of evaluation: 1) evaluation only by the authors of the maturity 
model, 2) evaluation involving practitioners, and 3) evaluation through practical case 
use. Evaluation or validation is required to obtain feedback from the stakeholders 
before the actual implementation of the maturity model to find the weak points and 
improve on them (Helgesson et al., 2012). 

The benefits of maturity models have been studied, and it has been found that 
the vast majority (86%) of organisations that have adopted maturity models, have 
found maturity models valuable in setting future goals for improvements (Herbsleb 
and Goldenson, 1995). Other claimed benefits include increased project 
performance, reduction in fault rates, and decreases in costs (Jiang et al., 2004; 
Pitterman, 2000). Moreover, although maturity models aim to define and regulate 
processes, organisations have reported that maturity model implementation has 
actually reduced the amount of bureaucracy in higher maturity organisations 
(Herbsleb and Goldenson, 1995). 

Regardless of the above-mentioned benefits, maturity models are not free of 
criticism. The criticism includes the difficulty of using maturity models based solely 
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on their documentation, oversimplification of complex processes, oftentimes a lack 
of empirical background, and a large amount of only conceptual research (Albliwi et 
al., 2014; Herbsleb and Goldenson, 1995; Niazi et al., 2005; Poeppelbuss et al., 2011). 
One of the major criticisms concerns the use of maturity models; it is believed that 
maturity models can identify only what needs to be done and not how it should be 
implemented (Albliwi et al., 2014; Herbsleb and Goldenson, 1995; Niazi et al., 2005). 
While it is true that maturity models include mostly information on what to do next, 
it must be recognised that a maturity model cannot be the only vehicle and driver 
for organisational change. Maturity models provide a way to formulate an achievable 
plan, but it should be up to the organisation to manage the change. 

Change management is a whole branch of science in itself, which is not in the 
scope of this dissertation except for maturity models. In the research for this 
dissertation, the maturity models were used to roadmap future development by 
creating a development framework based on the maturity model. It is acknowledged 
that only the maturity model or the framework will not actualise the change within 
Finnish railway asset management. But the research for creating the maturity model 
is believed to provide a basis, from which the change can begin. The work on utilising 
maturity models for implementing track geometry deterioration modelling and data 
analytics into Finnish railway asset management is reported in Paper IV and section 
3.3 of this dissertation. 
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3 MAIN RESULTS AND DISCUSSION 

This section summarises and discusses the main results obtained in the studies 
reported in Papers I–IV. Section 3.1 presents the methods for modelling track 
geometry deterioration using Finnish data and utilising the results in practical asset 
management (Paper I). Section 3.2 elaborates on the means for investigating the root 
causes of railway track geometry deterioration (Papers II and III). Lastly, section 3.3 
provides an outlook on the implementation of track geometry deterioration 
modelling and data analytics for practical asset management (Paper IV). 

3.1 Track geometry deterioration modelling using Finnish data 

The track recording car history provides a unique representation of what the 
condition of geometry has been at certain past instances when measurements have 
been performed. This history can be utilised as is for some condition analyses, like 
locating recurrent faults (Esveld et al., 1988). However, because the measurements 
represent only intermittent moments in history, it is difficult to elaborate on the 
deterioration progress using only the measurements. For effective and objective 
analyses, the track geometry deterioration process must be idealised with 
mathematical models. This modelling is possible because track geometry 
deterioration is not an inherently random process but one that can be idealised 
(Esveld, 2001; Esveld et al., 1988; Lichtberger, 2005). However, as elaborated in 
section 2.3, there are a great number of reasons that affect the way track geometry 
deteriorates. All the complexity and randomness in track geometry deterioration 
make it virtually impossible to reliably consider every influencing factor in the 
models. For example, no model can predict sudden extreme weather conditions or 
mistakes made in track maintenance. Therefore, a famous aphorism, generally 
credited to George Box, applies well here: All models are wrong, but some are useful. The 
task was, then, to find the most useful track geometry deterioration models for 
railway asset management with the least detrimental deficiencies. 
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3.1.1 Modelling process description 

Choosing the modelling method 
 
A statistical approach, robust linear optimisation, was selected for track geometry 

deterioration modelling of the Finnish state-owned rail network. The use of robust 
linear optimisation was based on the available data and the desired outputs. The 
available data included the track recording car measurement history. The goal was to 
obtain parameters describing the deterioration process, which meant choosing a 
statistical model that best describes the data. Choosing statistical methods over 
mechanistic was based on the domain, asset management. Mechanistic models are 
better suited for design and research purposes, as they provide only generalised 
information on the track performance, not the actual condition of structures 
(Soleimanmeigouni, Ahmadi and Kumar, 2018). A simple statistical model was 
preferred over complex models because the initial data and its behaviour could be 
elaborated using simple equations. Furthermore, it is almost impossible to observe 
the reasons why a complex model has produced its results, for example, in the case 
of neural networks. Thus, as the results are to be used in practice, it is important that 
the end results can be fully elaborated to verify the validity of the results. 

The historical LL standard deviation (SD) data from Finland was found to follow 
a linear deterioration path (Paper I). As an example, the 10 year track geometry 
history from the LUIMA track section was modelled using both linear and 
exponential models. Within the track geometry history, there were some cross-
sections, for which a reasonable exponential function could not be approximated 
due to fluctuation in the measurement results. When these cross-sections were 
ignored, the coefficient of determination (R2) was found almost identical between 
linear and exponential modelling, with linear models having slightly higher R2 values 
(Figure 15). In Figure 15, the boxplot demonstrates that the meadian and 25th and 
75th percentiles are very similar, as are the outliers presented in red. There are many  
outliers presented in the boxplot because the data includes R2 values from 682,233 
maintenance cycles with varying deterioration trends. 
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Figure 15. LUIMA track section R2 values for exponential and linear models. 

Obviously, the R2 is not the only way to determine model suitability, and it was 
considered that because some of the data was unfeasible to model using exponential 
models, which did not depict the data more accurately, linear models were found to 
be better alternatives. Linear models also offer practical benefits, for example, using 
the slope of linear regression as the deterioration rate is an intuitive solution that can 
be communicated easily to a wide audience. 

Similar to the decision to use linear deterioration modelling in Finland, many 
other researchers have based their models on linear deterioration paths (Andrade 
and Teixeira, 2015; Audley and Andrews, 2013; Caetano and Teixeira, 2016; Khajehei 
et al., 2019; Lee et al., 2020; Li et al., 2019; Neuhold et al., 2020). However, some have 
found that exponential models suit their data better (Famurewa et al., 2016; Quiroga 
and Schnieder, 2012), especially when initial settlements are highlighted in the 
measurement data, for example, when the measurement frequency is high. It may be 
necessary to revisit evaluating exponential models in Finland, if the track geometry 
measurement frequency is increased, for example, by using measurements from in-
service vehicles. 

Robust linear optimisation was chosen over other linear regression methods 
because the data occasionally exhibited initial settlements after tamping (Paper I). 
Although recorded initial settlements were not common, when observed, simple 
linear models, for example, least squares, can overestimate the long-term 
deterioration trends because of the initial settlements (Paper I). The robust linear 
optimisation of a tamping cycle is not affected by the initial settlement as greatly as 
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simple linear models are, making robust linear optimisation appropriate for long-
term track geometry deterioration modelling (Paper I). Figure 16 demonstrates how 
in the second tamping cycle (2011–2017) the least squares algorithm is affected by 
the initial settlement, whereas linear optimisation characterises the long-term 
behaviour better. It should be recognised that the initial settlements are not outliers 
in the sense that they should not be removed from data. Recorded initial settlements 
provide valuable information when calculating, for example, the maintenance 
effects; however, for track geometry deterioration modelling, their influence should 
be limited. 

 
Figure 16. Difference between linear optimisation and least squares in one cross-section (Paper I). 

The downside of robust linear optimisation is a longer calculation time compared 
with least squares, for instance. However, the calculation times are still reasonable 
when considering the measurement frequency. The calculation time for a 10 year 
biannual track geometry measurement history of the 65-km-long LUIMA track 
section was 1,5 h for robust linear optimisation versus 87 s for least squares. 
Calculations were performed with an office PC with an Intel(R) Core(TM) i7-8700 
CPU @ 3.20GHz and 32 GB of RAM. The most recent tamping cycle must be 
recalculated when new measurements are conducted, which means that 
recalculations should be done every two months on the most frequently measured 
lines. Considering this measurement frequency, even the longer calculation times are 
acceptable. However, if more frequent measurements were to be conducted, for 
instance, daily measurements, the importance of calculation times and the use of 
more powerful computers should be reassessed. 
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Modelling process 
 
Figure 17 presents the chosen track geometry deterioration modelling process. 

The deterioration modelling begins with acquiring time series data from track 
recording car measurements (Figure 17, Step 0). Of the parameters produced by the 
track recording car, the short-wave LL has been the most popular choice for track 
geometry deterioration modelling (Audley and Andrews, 2013; Khajehei et al., 2019; 
Neuhold et al., 2020; Nielsen et al., 2020). This is because the settlements causing 
short–wave defects in the LL drive the need for track maintenance, especially 
tamping (Soleimanmeigouni et al., 2020; UIC, 2008). Furthermore, some parameters 
like twist and cant can be considered derivatives of the LL, depicting the LL 
unevenness of one rail with the other rail as reference. However, although the 
modelling in this study concerned only the LL, other parameters following a linear 
deterioration path can be modelled with the presented methodology without 
reservation (Paper I). The LL 200 m SD is usually used for analytics and modelling, 
as the original LL signals are difficult to align and interpret due to signal fluctuation 
(Khosravi et al., 2021; Neuhold et al., 2020). The SD was calculated in sliding 
windows in Finland to provide the highest level of detail regarding the track 
geometry deterioration. 

 

 
Figure 17. Track geometry deterioration modelling process. 
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Aligning different measurement runs’ signals is perhaps the most important phase 
in track geometry deterioration modelling, as the reliability of any modelling result is 
based on correct input data. The differences in the alignment of different 
measurement runs’ signals are inevitable, as the track recording car wheels can slip, 
slide, or lock up, causing differences in consecutive measurement run lengths (Wang 
et al., 2018). Past research on signal alignment has shown many methods for 
alignment (Fellinger, 2020; Khosravi et al., 2021; Tanaka et al., 2018; Wang et al., 2018; 
Xu et al., 2015). These studies have shown how signals can be aligned with higher 
accuracy than the measurement interval (commonly 0.25 m), meaning that the 
measurements are practically perfectly aligned (Fellinger, 2020; Khosravi et al., 2021; 
Li et al., 2019; Tanaka et al., 2018; Xu et al., 2015). The track inspection data used for 
the studies reported in Paper I was aligned by Loram Finland Oy (formerly 
Roadscanners Oy) before delivering the data. Nevertheless, the importance of 
aligning the data is recognised, and there is ongoing research on different methods 
for aligning the data in Finland. 

Before the actual deterioration modelling, track geometry measurement data must 
be divided into tamping cycles, meaning the time periods between maintenance 
actions (Figure 17, Step 1). This could be done easily with maintenance records if 
reliable repositories were available. However, because comprehensive repositories 
do not exist in Finland throughout the complete measurement history, maintenance 
actions had to be identified from the measurement history, as has been the case in 
similar previous studies (Audley and Andrews, 2013). Past maintenance can be 
identified as a significant decrease in the LL SD values. However, not all decreases 
in the LL SD values are caused by maintenance. Other major reasons for decreasing 
LL SD values are inaccuracy in the measurement results and frost thawing. The 
measurement inaccuracy accounts for only small, random decreases in the LL SD. 
Frost thawing can decrease the LL SD values if there has been significant uneven 
frost heave and track geometry measurements have been conducted at that time. 
These incidents can cause more significant decreases in the LL SD, but they generally 
do not concern very long areas. Therefore, a threshold is required to separate 
measurement inaccuracy and frost thawing from past maintenance (Paper I). The 
threshold must be used along with an algorithm that evaluates whether the area, 
where the LL SD has decreased, forms a logical tamping area. With the threshold 
and algorithm, it is possible to back-calculate the past maintenance action timings 
(Paper I). To clarify, the back-calculated past maintenance timing does not reveal the 
actual timing, but the measurement interval when maintenance was performed. 
Therefore, if the measurement interval is two months, the maintenance could have 
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occurred on any given day within that timeframe. This causes uncertainty when 
estimating the numerical effects of maintenance. Moreover, the back-calculated 
maintenance timing does not express the types of performed maintenance actions. 
Furthermore, the algorithm accuracy could not be verified as there were no reliable 
maintenance records to use for the verifications. This is a source of future research, 
as comprehensive maintenance action reporting systems have been implemented 
into Finnish railway asset management in recent years. In the future, there will be 
enough maintenance data for testing the algorithm validity. 

Next, the tamping cycles are modelled with the chosen modelling method, robust 
linear optimisation (Figure 17, Step 2). The track section is modelled one cross-
section at a time, meaning that if track geometry data is collected every 25 cm, the 
modelling is done separately for every 25 cm (Paper I). The cross-section models are 
independent of one another making the modelling very responsive to abrupt changes 
in the deterioration behaviour along a track section. 

Finally, the linear models created from the latest tamping cycles are used to make 
predictions on future maintenance timing (Figure 17, Step 3). The predictions are 
simply extrapolations of the latest tamping cycles (Paper I). However, these alone 
are not informative enough, as the confidence of the predictions must also be 
calculated. The prediction confidence is calculated using the prediction interval (PI) 
(Paper I). The PI depicts the range in which future observations should occur at a 
given confidence level (Agresti, 2015). The PI will be wide after maintenance when 
there are only few observations, on which to base the linear optimisation. As the 
amount of data within a tamping cycle increases, the PI narrows. 

 
Modelling outputs 
 
As presented in Paper I, the outputs of the modelling include the following: 

• the track geometry deterioration rate (TGDR) 

• long- and short-term past maintenance effects 

• predictions of the next maintenance timing and prediction confidence. 

 
The TGDR is the slope of the deterioration regression within a maintenance 

cycle. This can be calculated in either the time dimension (mm/a) or the cumulative 
tonnage dimension (mm/MGT). When the traffic volumes are almost constant on a 
track section, the time dimension is preferred, because it is easier to communicate. 
For example, maintenance timing is more intuitive to communicate in time rather 
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than in tonnage. However, if yearly tonnages have high fluctuation, the deterioration 
trend may not be linear if calculated in mm/a. In these cases, the deterioration rate 
must be calculated and presented in mm/MGT. The TGDR is not a standardised 
parameter, and there is no established method for attaining it. Nonetheless, some 
TGDR values presented in past research are collected in Table 1 for comparison. 
The deterioration rates in Table 1 concern the LL 200 m SD except for Audley and 
Andrews (2013) whose deterioration rates concern the very similar LL 220 yard SD. 
The TGDR values in Table 1 were converted to mm/MGT if enough information 
was available in the referenced articles for doing so. 

  
Table 1. Different TGDRs reported in the literature. 

Reference Reported TGDR TGDR converted 
mm/MGT 

(Andrade and 
Teixeira, 2010) 

0–8 mm/100 MGT 
(plain track) 

0–0.08 mm/MGT 
 

(Audley and 
Andrews, 2013) 

Mean 0.000259 mm/d  
= 0.095 mm/a 

N/A 

(Caetano and 
Teixeira, 2016) 

0–10.5 mm/100 MGT 0–0.105 mm/MGT 

(Khouy et al., 2014) 0–0.14 mm/MGT 0–0.14 mm/MGT 
(Li et al., 2019) –0.1–0.2 mm/month 

(approximate range) 
0.03 mm/month 
(approximate mean) 
Passing annual tonnage of 245 
million tons 

–0.005–0.01 mm/MGT 
(approximate range) 
0.0015 mm/MGT 
(approximate mean) 

(Soleimanmeigouni 
et al., 2020) 

0–5.5 mm/year 
(plain track) 
0.75 mm/year 
(plain track approximate 
mean) 
Passing tonnage 20 MGT/year 

0–0.275 mm/MGT 
(range) 
0.04 mm/MGT 
(plain track approximate 
mean) 

 
The TGDRs reported in the literature vary between roughly 0 and 0.3 mm/MGT. 

In Finland, the TGDR for LL 200 m SD was observed to be roughly between 0 and 
0.5 mm/MGT (Figure 18). On a relatively good condition track section (LUIMA) 
with 11 MGT/a passing tonnage, the mean TGDR was 0.0074 mm/MGT. On a 
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track section that is considered more problematic (Rantarata) and with 2.6 MGT/a 
passing tonnage, the mean TGDR was 0.0855 mm/MGT. The difference in these 
track sections’ mean deterioration rates was tenfold, when calculated in mm/MGT. 
Even in deterioration rates in mm/a, the difference was almost threefold. However, 
it must be considered that the Luumäki–Imatra track section is 65 km long, whereas 
Karjaa–Ervelä is 29 km long. On short sections, the problematic areas are 
highlighted in percentual statistics, for example, the mean TGDR. Nevertheless, 
when compared with other research (Table 1), the Finnish TGDR values are only 
moderately different. However, this may be caused by modelling the deterioration 
of every cross-section in Finland as opposed to modelling 200 m segments as the 
smallest unit in some of the other studies. Modelling every cross-section increases 
the amount of significantly low and high TGDRs as the fixed 200 m windows can 
average out short sections of very low or high values. Furthermore, the different 
TGDRs found in the literature may imply different climate, loading, and structural 
conditions, or differences in the track recording cars. It is apparent from Table 1 and 
Figure 18 that the TGDR unit is not universal nor is the scale of the TGDR values. 
However, many of the TGDR figures from past research are within a similar range 
despite the differences. Nevertheless, the lack of consensus on the definition of the 
term TGDR and the lack of international statistics on the topic must be emphasised. 
These should be sources of future research and international collaboration. 
Moreover, the reasons why the TGDR values are so different on different track 
sections and different parts of the same track section should be investigated. These 
studies are reported in Papers II and II and section 3.2 of this thesis. 
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Figure 18ab. TGDR of two track sections in a) mm/a and b) mm/MGT. 

The effects of past maintenance can be examined in the short and long term 
(Paper I). The short-term maintenance effect is the immediate improvement in track 
quality achieved by tamping. This is denoted by, for example, a decrease in the LL 
SD after tamping. This number indicates, above all, the purposefulness and success 
of maintenance. If the short-term effect is low, maintenance has not had a significant 
effect on the geometry quality. This can be attributed to either good quality geometry 
before tamping, ineffective tamping, or acute deterioration after tamping. The long-
term maintenance effect is evaluated by comparing the TGDRs before and after 
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tamping (Paper I). An increased TGDR after tamping implies deterioration in the 
track structure that cannot be repaired solely with tamping. Contrarily, if the TGDR 
after tamping is decreased or invariable when compared with the TGDR before 
tamping, it implies that maintenance can improve or sustain the durability of the 
track geometry condition, respectively. 

Assessing the overall maintenance effect requires simultaneously examining both 
the short- and long-term maintenance effects as well as the prevailing condition 
before and after tamping (Paper I). However, it is impractical to subjectively examine 
multiple parameters at once. Therefore, an ensemble parameter, maintenance 
success indicator (MSI), was developed (Paper I). The MSI denotes whether 
maintenance has had 1) beneficial effects, 2) delaying effects, 3) no meaningful 
effects, or 4) negative effects on track geometry deterioration behaviour (Paper I). 
The MSI is based on the logical induction of four parameters: tamping effect on the 
TGDR and LL SD as well as the TGDR and LL SD after tamping (Figure 19). 

 

 
Figure 19. Maintenance success indicator (MSI) computation (Paper I). 

The assessment of MSI begins with evaluating the tamping effect on the TGDR. 
A decreased TGDR after tamping (high effect) is considered a positive outcome, as 
it means that the deterioration has slowed down. Next, the tamping effect on the LL 
SD is evaluated. Again, a high value (high effect) is desirable, because it means that 
the tamping has made the track quality better than before. Lastly, depending on the 
previous two evaluations, the LL SD after tamping or the TGDR after tamping is 
evaluated. A low LL SD and TGDR after tamping are considered positive outcomes. 
The values separating what is considered a high or a low effect are a source of future 
research, as this type of investigation will require vast data regarding track 
deterioration and track maintenance from multiple track sections (Paper I). 
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Previous research has also investigated the modelling of maintenance effects 
(Audley and Andrews, 2013; Li et al., 2019; Martey and Attoh-Okine, 2018; 
Soleimanmeigouni et al., 2018). These studies have modelled the recovering effects 
of maintenance based on the LL SD before maintenance. Soleimanmeigouni et al. 
(2018) reported the LL SD values before tamping and the recovery in the LL SD 
achieved by tamping. These values vary from 0.4–2 mm for LL SD before tamping 
and –0.1–1.2 mm LL SD for tamping recovery. Recovery values for the LL SD of 
two Finnish track sections mentioned earlier, LUIMA and Rantarata were calculated 
to be between 0 and 1.7 mm. 

However, further investigations on maintenance effects could not be reliably 
performed from the Finnish data, because it is not known whether past maintenance 
has included only tamping or also other repairs. All typical track superstructure 
maintenance, such as ballast cleaning or rail renewal, require tamping afterward. 
These types of maintenance actions have a profoundly different effect on the track 
geometry behaviour compared with tamping alone (Audley and Andrews, 2013). 
Additionally, the tamping strategy influences the maintenance effects, as tamping 
complete areas (also referred to as line tamping) has been found to improve the track 
condition more than tamping partial areas (also referred to as spot tamping) 
(Soleimanmeigouni et al., 2018). Therefore, data on the types of maintenance actions 
is required before maintenance effect modelling can be reliably calculated in Finland. 
Fortunately, the collection of such data has already started, and it is believed that in 
a few years, it will be possible to make these types of analyses. Additionally, fractal 
analyses of past track inspections could provide information on whether some 
structural remediations have been made (Landgraf and Hansmann, 2019). Fractal 
analyses should also be considered in future research on maintenance effects on track 
geometry in Finland. 

The track geometry deterioration modelling is also used to predict the next time 
maintenance is required (Paper I). However, track maintenance planning includes 
much more diverse information than track geometry deterioration alone, for 
example, the age of components, decay in components not reflected in track 
geometry, and available track downtime for repairs. Consequently, track geometry 
deterioration predictions are not maintenance plans but only initial data for creating 
such plans. Therefore, the implementation of deterioration predictions into practice 
must be controlled to prevent maintenance personnel from considering the 
predictions as ready-to-use maintenance plans. The implementation of track 
geometry deterioration modelling into practical asset management is discussed 
further in section 4.3. 
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Synthesis 
 
When initially selecting the modelling method, the goal was set to find the most 

useful track geometry deterioration model for railway asset management in Finland 
with the least detrimental deficiencies. The main benefits of the chosen modelling 
method, robust linear modelling, were as follows: 

• Only a few track inspections are enough to satisfy the minimum initial data 
required for modelling. 

• Modelling is based on linear behaviour, which has been verified to depict the 
track geometry deterioration behaviour well in multiple environments that have 
similar traffic and track geometry measurement processes. 

• Modelling closely imitates the actual past deterioration path of individual 
locations on a track section, responding to spatial variability along a track 
section. 

• Modelling results are intuitive for practical utilisation; the TGDR, maintenance 
effects, and predictions can be easily visualised. 

 
The practical use and benefits of the modelling are further discussed in section 4.1.2. 

The selected modelling process has its limitations, that is, the lack of data around 
the time of maintenance and the amount of data required for making predictions 
(Paper I). The deterioration process continues after the last periodical measurement 
before maintenance and continues after maintenance before the next measurement. 
However, no data from this period is obtained with periodical track inspections. 
Hence, the modelled maintenance effects are affected by the timing of maintenance 
in relation to track inspections. Therefore, the true maintenance effects are not 
captured, but rather the long-term effects of the maintenance. This limitation has 
little impact on the deterioration modelling itself but it means that the maintenance 
effects cannot be considered to be absolutely accurate. Moreover, maintenance 
effects should be estimated after a few measurements have been performed since 
the latest maintenance to capture the long-term effects of maintenance. 

Furthermore, the accuracy of the predictions is dependent on the available data 
from the current tamping cycle. Therefore, predictions made soon after tamping are 
generally inaccurate. However, this should not pose issues in practice, because the 
goal of tamping is to reset the deterioration cycle, postponing the need to plan the 
next tamping. High LL SD values in the inspection after tamping are not a desired 
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outcome, as maintenance effects are supposed to be durable. Therefore, 
deterioration modelling should not be the only way of monitoring rapid deterioration 
after maintenance. Automatic alerts should be created based on LL SD values after 
tamping to flag occurrences, where deterioration rates or LL SD values are 
exceptionally high after tamping. 

To summarise, the most notable limitations of robust linear modelling were the 
following: 

• Maintenance effect calculations are based on measurements whose timing varies 
relative to the maintenance. 

• Prognosis accuracy is highly dependent on the amount of data since the latest 
maintenance cycle. 

 
The limitations of maintenance effects cannot be overcome without using 

additional measurement data. The prognosis accuracy could be improved if previous 
tamping cycles were considered in the calculations (Andrade and Teixeira, 2014; 
Andrews et al., 2014). However, this is not advisable in Finland until reliable 
maintenance records are available, as the previous tamping may have been 
accompanied by other maintenance actions, which greatly influence the subsequent 
deterioration rate. Considering that the modelling is used for investigating the 
condition of track structures and long-term maintenance planning, the practical and 
intuitive outputs of the robust linear optimisation modelling process are thought to 
outweigh its limitations. 

Future research on track geometry deterioration modelling should include the 
verification of the tamping identification algorithm, fractal analyses of past track 
inspections, investigations of the MSI limit values, and defining of the TGDR on an 
international level (Paper I). The tamping identification algorithm can be verified 
soon, as there are enough recorded tamping actions in maintenance data repositories. 
Additionally, maintenance effects can be calculated more accurately, once the timing 
of maintenance is known. This will also enable investigations of the effects of 
different maintenance actions. Fractal analyses can also bring new information 
regarding past unrecorded maintenance actions, as these can reveal whether 
structural remediations have been made. The MSI limit values should be investigated 
using track inspection histories from multiple different track sections and 
environments together with respective maintenance records. Lastly, the term TGDR 
should be defined and multiple different operating environments and track types 
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should be researched for investigating their differences. This will require wide 
international collaboration of different infrastructure owners sharing their data. 

3.1.2 Practical use of modelling results 

Track geometry deterioration modelling results should benefit practical asset 
management. However, the models and the produced numerical results are not easily 
accessible to the asset management personnel, as it is not within their domain to be 
experts in mathematical modelling. Therefore, providing only the models and 
numerical modelling results will not make a tangible change in practical asset 
management. Therefore, research was focused on making the modelling results 
accessible for asset management personnel using data visualisation (Paper I). 

The visualisations were constructed to serve different user needs and depict 
different modelling outputs. The three output categories were past deterioration 
exploration, maintenance effectiveness, and maintenance predictions. These output 
categories were visualised for three different use-cases: 1) cross-section, 2) track 
section, and 3) network-level modelling results analysis (Figure 20) (Paper I). The 
cross-section level analysis is intended for investigating the track geometry behaviour 
of individual spots on a track section, for example, bridge transitions, turnout areas, 
and rail joints. The track section level analysis presents information on time–location 
axes, which enables visualising longer (e.g., 1–10 km) sections of track in one figure. 
However, even these visualisations have their limitations, as subjectively examining 
the time–location figure of, for example, 100 km of track becomes exhaustive. 
Therefore, a network-level analysis is required to provide illustrations for entire track 
sections or even track networks. The network-level illustrations do not exhibit the 
specific locations of problematic or good condition sections of track but on their 
quantity instead, which is important to know when considering the amount of 
resources required in the future. 
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Figure 20. Visualisations of track geometry deterioration modelling (Paper I). 

All three levels of observation have an intuitive meaning and a function in 
practical railway asset management (Paper I). The cross-section level caters to the 
needs of maintenance personnel, who require information on the history and 
prognosis of specific locations’ conditions to make decisions on spot maintenance. 
The track section level is useful for long-term maintenance planning, for example, 
when planning line tamping or superstructure renewal areas. The network-level 
benefits general asset management, in which the condition of whole track sections 
and the entire network is to be monitored. 

The practical use of track geometry deterioration modelling results is not widely 
discussed in past research. Some of the illustration concepts from Figure 20 are used 
in articles to present initial data or modelling results (Caetano and Teixeira, 2016; 
Famurewa et al., 2016; Neuhold et al., 2020; Nielsen et al., 2020; Soleimanmeigouni et 
al., 2020). Nevertheless, their implementation in practice has not been in the scope 
of past research. By producing easily accessible and categorised visualisations of track 
geometry deterioration modelling results, the gap between research and practice is 
narrowed and the tangible benefits of research can be obtained. 
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3.2 Investigating root causes of track geometry deterioration 
 
Defective track structures must be identified and restored to avoid unnecessary 
repetitive maintenance and track downtime. Defective structures can be located 
using track geometry deterioration modelling presented in section 3.1. However, 
these models rarely reveal the reasons for deterioration, which must be known for 
choosing the correct maintenance methods. Hence, this section explores ways to 
produce knowledge on the root causes of observed track geometry problems. This 
is approached by mining available railway asset data. 

3.2.1 Exploratory railway asset data mining 

The goal of exploratory data mining is to explain patterns found in data (Larose and 
Larose, 2015). The data pattern explained in this study was the occurrence of high 
TGDRs. Track asset data was used for creating the explanations. The initial data 
included the attributes presented in Table 2. The initial railway asset data was 
constructed so that each row in the data depicted a one-meter-long section of track, 
which was described by the columns containing the different attributes (Paper II). 

 
Table 2. Initial data and parameters for data mining. 

Data source Data attribute Data type 
Track recording car 
measurements 

TGDR Ratio 

GPR Track structural layer thicknesses and 
moisture indices 

Ratio 

Continuous laser 
scanning 

Embankment width and ditch depth Ratio 

Continuous track 
deflection measurement 

Track deflection mean and variance Ratio 

Soil maps Subsoil type and frost susceptibility Categorical 
Asset data warehouse Track asset (bridge, turnout, etc.) 

location and type 
Categorical 

Maintenance data Tamping history Categorical 
Video and visual 
assessment of data 

Foundation type and asset data 
corrections 

Categorical 
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The data mining method selected for exploring the railway asset data was General 
Unary Hypotheses Automaton (GUHA). The GUHA method is a descriptive data 
mining method that generates hypotheses based on the initial data and user questions 
(Hájek et al., 2010). The hypotheses are statements regarding correlations found 
within the initial data. The initial data used in GUHA can be versatile, as GUHA 
supports, for instance, text, numeric, binary, and categorical data (Berka, 2016). This 
is possible because GUHA is based on binary logic, in which the initial data is 
categorised and binary values present the categories the values belong to (Hájek and 
Havránek, 1978). The initial data used in GUHA can also contain partly 
contradictory or deficient data, as the GUHA logic allows obtaining results with 
varying confidence (Turunen, 2018). This is a major benefit for the railway domain, 
as it is common that not every attribute of every track structure is included in the 
initial data. 

GUHA is implemented in dedicated computer software, LISp-Miner (Berka, 
2016; Rauch, 2013; Turunen, 2018). The basic idea of using LISp-Miner is to form 
question about the initial data and search for hypotheses to those questions using 
GUHA. The generic process of using LISp-Miner in GUHA data mining is 
demonstrated in Figure 21.  

 

 
Figure 21. GUHA data mining process using LISp-Miner. 
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First, the user must compose analytical questions and then gather relevant data 
that can be used for answering said questions. The types of questions asked in data 
mining are intuitive, for example, “Are there attributes in my data set that almost 
always exclude the occurrence of some outcome?” 

After forming the initial analytical questions and gathering relevant data, these are 
translated and imported to LISp-Miner, respectively. The question formation in 
LISp-Miner begins with choosing a module and procedure (Berka, 2016). Different 
modules and procedures are for solving different tasks (Berka, 2016). For example, 
the 4ft-Miner can make insightful descriptions of concepts found in data, whereas 
the MCluster-Miner can segment the data into meaningful subgroups (Berka, 2016). 
When the module is chosen, the questions are translated into GUHA language using 
antecedents (φ), succedents (ψ), conditions (γ), and quantifiers (Berka, 2016). The 
antecedent, succedent, and condition can be any attribute, category of one attribute, 
or group of attributes from the initial data. The occurrences of these attributes are 
evaluated using quantifiers that assess their correlations using a contingency table. 
Different LISp-Miner modules can have varying contingency tables (Rauch, 2013). 
The general form of the 4ft-quantifier contingency table is presented in Table 3. The 
contingency table parameters indicate the number of rows from the initial data a + 
b + c + d = n, whose relationship is evaluated as follows: 

• a is the number of rows that satisfy both φ and ψ, 

• b is the number of rows that satisfy φ but not ψ, 

• c is the number of rows that satisfy ψ but not φ, 

• d is the number of rows that do not satisfy φ nor ψ (Turunen, 2018). 
 

Table 3. Contingency table for 4ft-quantifier. 

γ ψ ¬ψ ∑ 
φ a b r 
¬φ c d s 
∑ k l n 

 
Quantifiers assessing the contingency table have an intuitive meaning. For 

example, the above average dependence quantifier ~𝑞𝑞,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
+  tests a condition: 

 
𝐵𝐵

𝐵𝐵+𝑏𝑏 ≥ (1 + 𝑞𝑞) 𝐵𝐵+𝑐𝑐
𝐵𝐵+𝑏𝑏+𝑐𝑐+𝑑𝑑 ∧ 𝑎𝑎 ≥ 𝐵𝐵𝑎𝑎𝐵𝐵𝐵𝐵,  (1) 
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in which a, b, c, and d are contingency table frequencies; q is the user-defined 
dependence; and Base is a quantifier assessing the number of occurrences in the 
defined contingency table slot (Berka, 2016). This can be translated to an intuitive 
form: Is there a subgroup, with more than the Base amount of data, in which the 
antecedent and succedent are satisfied at least q + 1 times more often than the 
antecedent is satisfied in the whole data set? This can be used to investigate whether 
some track features occur much more frequently on sections with high TGDR than 
the whole data on average. 

After selecting the module, attributes, and quantifiers, GUHA data mining is run, 
which means the algorithm searches for hypotheses satisfying the preconditions. The 
result of GUHA data mining is a list of hypotheses. The hypotheses are answers to 
the user’s analytical questions. These hypotheses satisfy the conditions laid in the 
question formation. If the question formation has been too general, there will be an 
enormous number of hypotheses, which will be exhaustive to investigate further and 
most of the hypotheses will probably be trivial answers. Contrarily, if the question 
formation has been too strict, there will not be any hypotheses. Both outcomes 
should be avoided; the user should aim to obtain a reasonable number of hypotheses 
to investigate further. This amount can be considered between 10 and 100 in typical 
cases. Usually, the GUHA data mining process must be iterated by tuning the 
quantifiers to obtain a reasonable number of relevant hypotheses. When an adequate 
number of hypotheses is obtained, the user can begin to investigate the contents of 
the hypotheses further, selecting one hypothesis at a time. A hypothesis can be 
evaluated using the contingency table and the data that satisfied the preconditions. 
Examples of evaluating interesting hypotheses can be found in section 3.2.2 and 
Papers II and III. 

The results of data mining should be reacted to with deliberation, as the results 
only denote correlation, not causality or statistical significance. These are for the 
users of data mining methods to investigate with other methods. Causality cannot 
be investigated from static data as there is no temporal dimension. Currently, the 
only available temporal railway data was track inspection time series data, and other 
data was static. Static data does not generally enable causality investigations. For 
example, if track geometry problems are encountered on a track section with frost 
insulation boards, but the data does not reveal whether the problems have occurred 
prior to the boards’ installation, causality cannot be determined. Causality 
investigations using asset data would require much more rigorous asset data 
warehousing, which, fortunately, has been ongoing for a few years already in the 
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Finnish state railway asset management. However, causality investigations from asset 
data will require many years’ data, but the important first step of collecting the data 
has already been taken to enable these investigations in the future. Statistical 
significance is also important to investigate whether the results from one or more 
track sections are to be generalised to the whole network. However, it must be kept 
in mind that statistically significant phenomena may not be practically significant 
(McShane et al., 2019). Instead of relying only on statistical testing, the underlying 
phenomenon explaining some data patterns related to railway track geometry 
deterioration should also be approached with experimental (soil) mechanical 
research. Especially in investigating the root causes of track geometry deterioration, 
the role of data mining is to show the way forward for future experimental research, 
when there are too many influencing factors and combinations for testing all possible 
instances. 

3.2.2 Practical use cases for railway asset data mining 

Practical aspects of GUHA data mining 
 
The use of data mining in practice is rather conflicting; data mining methods are 

typically very complex to use, but they solve pragmatic issues. Therefore, data mining 
should be considered a precision instrument rather than an all-purpose tool. Mining 
railway asset data should be focused on revealing intricate correlations within 
extensive and diverse data sets. Therefore, simple tasks should not be approached 
with data mining methods. Tasks that are too simple for data mining include 
investigating the correlations between only a few parameters or investigations of 
isolated occurrences in data. Data mining can provide answers to these too, but it is 
too robust a method for the task, and it would take significantly more time and effort 
than, for example, data visualisation. 

As long as the initial data is versatile, success in data mining is achieved by asking 
interesting questions. Some generic examples of suitable question formats are as 
follows: 

• Which subsets (almost) always exhibit similar behaviour? 

• Which subsets behave very closely to the average behaviour? 

• Which subsets behave very differently from the average behaviour? 
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• Do some parameters have a significant correlation to some behaviour when the 
data is limited to a certain subset? 

• Can a change in one or only a few parameters have a major effect on the 
behaviour of some subset? 

 
These types of questions do not directly approach investigating a research 

question, like the root causes of track geometry deterioration. Instead, these 
questions narrow down the (combination of) attributes that are associated with 
certain types of outcomes. This information is then used to deduce the relevant 
attributes explaining the behaviour. Several different types of questions are required 
to approach the main research question from different angles. Paper II discusses the 
different modules and quantifiers used for investigating the root causes of track 
geometry deterioration. In summary, these were the following: 

• The 4ft-Miner module with the p-implication quantifier, which can be used to 
characterise the typical behaviour of certain track structure types. For example, 
on the Kouvola–Kotka track section, a high TGDR was observed on 87% of 
structures built on low embankments exhibiting high track deflection mean and 
variance (Paper III). 

• The 4ft-Miner module with the above-average quantifier, which can be used to 
reveal extraordinary correlations between track structure types and track 
geometry deterioration behaviour. For example, on the Luuamäki–Imatra track 
section, a high TGDR was observed 4.4 times more often than on average on 
track structures located on line sections without bridges or culverts, substructure 
moisture indices were high, and a frost insulation board had been installed in 
the structure (Paper II). 

• The AC4ft-Miner module with the p-implication quantifier, which can be used 
to investigate, which attributes have a dominant effect on the behaviour of some 
track structure types. For example, on the Luumäki–Imatra track section, when 
the track moisture index is very high and the number of past tamping actions is 
low, a high TGDR is observed on 79% of the structures where a frost insulation 
board has been installed and on 14% of track sections where no frost insulation 
board has been installed (Paper II). 

 
An exemplary data mining task 
 
One of the data mining tasks reported in Paper II is presented in Figure 22 and 

discussed further here to elaborate and illustrate the use of the GUHA method. The 
data mining task began with an analytical question: What kind of track structure 
attributes are associated with a certain type of track geometry deterioration rate with 
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more than four times above-average dependence? The available initial data 
concerned the Luumäki–Imatra track section and contained the attributes presented 
in Table 2. The analytical question was translated into GUHA language using the 
4ft-Miner module and above average dependence quantifier, which was elaborated 
in Equation 1. The Base quantifier was set above 2 000, which meant that the 
resulting hypotheses must be supported by at least 2 000 rows of data (or metres of 
track). The four-times above average quantifier meant that the resulting hypotheses’ 
correlation between cases, in which the antecedent and succedent are satisfied, must 
be at least four times that of the frequency the succedent is satisfied in the whole 
data. The antecedents could be any class or any combination of classes from all track 
structure features, whereas the succedent could be any class or combination of 
classes of the TGDR. No conditions were applied. 
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Figure 22. A GUHA data mining task and its results. 

The data mining task resulted in 163 hypotheses, which were presented on a list 
containing the antecedents, succedents, and strengths of the hypotheses. From this 
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list, one relevant hypothesis was chosen for closer inspection. This hypothesis stated 
that When the track section is located on a line section that contains no bridges or culverts, its 
substructure exhibits a high moisture index, and a frost insulation board is installed in the track 
structure, the highest class of TGDR is observed 4.4 times more often than on average in the whole 
data (Paper II). Figure 22 visualises the classes selected in the hypotheses. The 
percentages within the shaded areas indicate the amount of data within the class, for 
example, 83% of the entire length of the track section is located on line sections 
instead of stations. 

The correlation between the antecedents and the highest class of TGDR was 
61%, whereas the highest TGDR class is observed on 11% of the whole track 
section. In GUHA terminology, this denotes a 4.4 time above average dependence. 
Therefore, the hypothesis’ antecedents have a substantially higher correlation to the 
highest TGDR class than all structures overall. Of the antecedents, line sections, 
bridges, and culverts only slightly limit the data, as most of the track section is located 
on a line section, and there are few bridges and culverts. Nevertheless, the high 
moisture damage indices and frost insulation boards limit the data to a much greater 
extent; only 19% of structures exhibit high moisture damage indices and 9% of 
structures have frost insulation boards. Therefore, the interesting attributes in the 
hypothesis antecedents are the high moisture damage index and frost insulation 
boards. Coincidentally, frost insulation boards can disturb the GPR measurements 
causing increased moisture damage index values. Therefore, further data mining 
tasks should be conducted to investigate both the joint and separate correlations of 
these attributes to high TGDR values. These types of data mining tasks could be 
performed using the AC4ft-Miner, in which the effects of varying one attribute can 
be assessed. This one hypothesis cannot be used to draw conclusions about the types 
of structures correlated with high TGDRs. Instead, this hypothesis provided an 
interesting observation from the data, which can be used when designing subsequent 
data mining tasks. Further investigations can be found in Paper II. 

Paper III reported a case study, in which the GUHA method was applied to 
railway asset management decision making. This study used the GUHA method to 
find interesting track structure types that correlated with high TGDRs. Sampling 
points were assigned to areas where GUHA had indicated problematic track 
structure types and also to reference areas. The aim was to verify whether GUHA 
could point out deficient track structure types. The sampling revealed moderate 
differences between track structure soil material quality and the track geometry 
deterioration behaviour; areas, where subballast material did not pass current 
regulations, exhibited higher deterioration rates. Additionally, the data mining 
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implied problematic behaviour at locations where structural layer thicknesses were 
sufficient and yet frost insulation boards had been installed in the track structure. 
This peculiar observation stood out, and these sampling locations were found to 
contain fouled, moist ballast layers on top of the frost insulation boards. Thus, the 
study proved that with the available data and GUHA data mining, the sampling could 
be focused on these interesting areas and deteriorated structures were found. 
Subsequently, future research on the effects of frost insulation board installation 
depth and technique was initiated to investigate the mechanical reason for this 
behaviour. The data mining in this study was not used to make the final conclusions 
about the frost insulation board mechanics but to focus research on these interesting 
structure types. A similar approach is suggested for further research: data mining 
should be used to narrow the research focus to make further investigations more 
efficient. Therefore, the practical use case and benefit of explorative data mining in 
railway asset management is considered making further investigations more efficient. 

 
Synthesis 
 
In the context of railway asset management, exploratory data mining is most 

beneficial in the early stages of designing track structure restorations. Data mining 
results can guide designers to investigate particular structure types and locations that 
have been found to correlate with poor track performance. These results can be used 
to assign site investigations more efficiently, focusing primarily on the problematic 
areas. Additionally, deficient structure types can be identified from data across 
multiple track sections, and these structure types can be redesigned in future 
restoration projects. Therefore, data mining should be performed in the very early 
stages of designing or even before initiating designing to understand the current 
structure behaviour better. Later on, once the general structure behaviour is realised, 
specific track locations can be investigated with data visualisation and correlation 
analyses, besides to more traditional methods like sampling and field testing. 

Other researchers have also used exploratory data mining and data analytics in 
the railway domain (Liu et al., 2012; Mirabadi and Sharifian, 2010; Sammouri et al., 
2013; Zarembski et al., 2016). However, these studies have not investigated the root 
causes of track geometry defects, but rather the root causes of train equipment 
failures (Sammouri et al., 2013), the impact of track geometry quality on rail defects 
(Zarembski et al., 2016), and factors attributing to train accidents (Mirabadi and 
Sharifian, 2010) and derailments (Liu et al., 2012). Nonetheless, all these studies have 
a common starting point; some interesting but harmful event has been recorded in 
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data, and other relevant data is gathered to investigate features contributing to these 
events. Even the methods used to investigate correlations are rather similar: 
association rules and correlation analyses. Therefore, it appears that the GUHA 
method would be suitable for many other applications in the railway domain in 
addition to investigating the root causes of track geometry deterioration. 

The methodological limitations of GUHA data mining were discussed in Paper 
II. These were the method’s dependence on initial data and the amount of effort 
required for results analysis. First, if the initial data does not contain some important 
feature, data mining cannot consider that feature in the analyses. Therefore, the initial 
data must contain all relevant parameters depicting the track structure. This limits 
the use of exploratory data mining on track sections, from which little data is 
available. With that said, the possibility of using exploratory data mining to 
investigate root causes of track geometry deterioration should motivate the asset 
manager to collect enough of this type of data, as data mining has the potential to 
save money on expensive field investigations. Second, the practical limitation of 
using data mining in asset management is the complexity of the method and its 
results. A railway domain expert may not understand much about the data mining 
method or its initial results, but neither will a data scientist understand the meaning 
of the data mining results in the context of railway structures. However, it is possible 
to translate the hypotheses into human language and visualise their contents to ease 
results interpretation and communication between different domain experts. 
Therefore, data mining should be carried out in close cooperation with data analysts 
and railway asset managers making the best use of both domain experts. 

3.3 Implementing track geometry deterioration analyses (TGDA) 
into asset management 

Track geometry deterioration analyses (TGDA) should complement maintenance 
decision making processes by offering information regarding the development of the 
track structure condition. This information includes track geometry deterioration 
modelling results and data analyses, such as those described in sections 3.1 and 3.2. 
However, the implementation of TGDA into railway asset management is difficult 
because track geometry monitoring is a safety-critical process, which might be 
disturbed if development is rushed. In a worst-case scenario, the implementation of 
complex new systems might distract the personnel from noticing safety-critical track 
geometry faults, resulting in a train derailment. Therefore, a controlled process was 
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studied for the implementation of TGDA into practical asset management (Paper 
IV). This included the application of maturity models as the basis for development, 
investigating the current maturity level of an asset management organisation, and 
creating a framework for advancing maturity in TGDA (Paper IV). 

3.3.1 Maturity models as the basis for TGDA development 

Maturity models were selected as the basis for TGDA development because they 
offer a step-by-step structure for controlled development. Controlled development 
is vital for steering the development of a safety-critical process and sustaining 
organisational motivation for development by offering intermediate goals. These are 
common goals for maturity model applications (Goncalves Filho and Waterson, 
2018). The benefits of maturity models include spreading awareness of the different 
aspects of the analysed process, setting a frame of reference for systematic 
development, and ensuring quality throughout the process (Wendler, 2012). 

The maturity model for this study was adapted from the UIC Railway Application 
Guide for implementing asset management through ISO 55001 (2016). The maturity 
model presented by the UIC (2016) is a general maturity model with six levels (or 
states), and it is already in use in railway asset management. As presented in Figure 
23, the adapted maturity model consolidated the six maturity levels into four: 1) 
ensuring safety, 2) monitoring track quality, 3) track geometry management, and 4) 
optimising track geometry (Paper IV). 

 
Figure 23. General and adapted maturity models (Paper IV). 

The four levels (Figure 23) were adapted based on the different types of track 
geometry deterioration analysis types demonstrated in Paper IV. The initial level in 
the UIC guide (2016) maturity model was disregarded in the adapted model, as that 
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level is equivalent to having no regular track inspections, which is not an option for 
a responsible railway owner. Therefore, the first level in the adapted model was 
ensuring safety, which was defined as having reactive processes, in which track faults 
are repaired after they are noticed in track inspections. On the second level, track 
geometry is monitored by forming time series data and analysing it manually. 
Recurrent faults and progressive deterioration can be noticed with subjective 
assessments, but the means of quantifying these are not yet available on the second 
level. The third level, track geometry management, introduces track geometry 
deterioration modelling, which provides the means for quantifying the deterioration 
behaviour and planning maintenance. Moreover, track geometry databases and 
modelling results are connected to other asset data, which allows for investigating 
the correlations between track assets and track faults. The fourth level, optimising 
track geometry, incorporates the optimisation and prioritisation of maintenance 
resources. The excellent level in the UIC guide (2016) was not regarded, because, in 
track geometry management, having fully optimised maintenance is the furthest goal 
currently. 

The validity of the adapted maturity model was assessed in expert workshops 
where the maturity model was used as a basis for a TGDA development framework 
(Paper IV). Validity testing could include also, for example, quantitative surveys 
(Wendler, 2012). However, these were not deemed necessary, as this study aimed to 
only utilise the structure of the maturity model, the use of validation through expert 
assessment was considered sufficient (Paper IV). 

Indeed, the adapted maturity model was not the primary outcome of this study 
but a platform, on which the framework was later built (Paper IV). The sole purpose 
of the framework is not to move up on the maturity levels but to give the asset 
management organisation a depiction of future capabilities that might not be 
otherwise recognised and motivate the organisation to advance development (Maier 
et al., 2012). When an asset management organisation progresses its maturity level, 
the model should be revised to see if goals can be set even further than before. To 
conclude, the adapted maturity model here is not for academic purposes alone, but 
rather, the application of maturity models is seen as a way of establishing a systemic 
approach for planning TGDA development. 
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3.3.2 Investigating the current maturity level of TGDA 

The current maturity level of TGDA in Finland was investigated using semi-
structured interviews (Paper IV). The interviewees (Table 4) included 22 highly 
experienced professionals from track maintenance, track management, and the track 
owner. Most interviews were group interviews, often by the request of the 
interviewees to allow for colleagues to supplement each others’ answers. All 
interviews were conducted online over Teams due to the COVID-19 pandemic. The 
interviews were recorded, and comprehensive memos were made based on the 
recordings. The participants were given the opportunity to comment on the memos 
after the interview. The structure of the interviews is reported in Paper IV. 

 
Table 4. Summary of interviewees. 

  Track 
maintenance 

Track 
management 

Track 
owner 

Companies 3 4 1 
Experts 5 12 3 

Interviews 3 4 3 
Average years of 

experience 
18 18 18 

 
The complete, commented, and, in one case, revised memos were analysed using 

the ATLAS.ti 9 software. First, the interview memos were coded, and code groups 
were created. Altogether 1001 code references were created, which formed 67 unique 
codes in 9 code groups (Figure 24). The interview analyses were thoroughly 
researched for a comprehensive outlook on the practices related to track geometry 
measurements. The top three most common codes were maintenance contracts (n = 50), 
reactions to measurements (n = 49), and maintenance planning (n = 47), when the average 
number of references per code was 15. The most relevant findings included the 
current main use cases of TGDA, future development needs, biggest 
obstacles, and different user types. These are introduced in the following 
paragraphs. 
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Figure 24. Interview analysis code groups. 

According to the interviews, the current main use cases of TGDA in asset 
management are checking the current condition of track geometry, drafting 
tamping plans, and assessing track maintenance contract bonuses and sanctions. 
Further evaluation of the current condition and tamping planning is primarily done 
by conducting site inspections. The condition assessment and tamping planning is 
based on the experience and expertise of the personnel, and little to guide practical 
work is written in guidelines. Another frequently mentioned use case is track 
maintenance contract supervision. Track maintenance contracts include clauses 
determining acceptable track quality and response times for repairing observed track 
geometry faults. The track quality is tied to a bonus-sanction model, in which the 
contractor is awarded bonuses for achieving higher quality than required and 
sanctioned if the condition is poorer than required. 

The future development needs discussed in the interviews can be divided into 
three categories: 1) automation, 2) system development, and 3) new in-depth 
information. Development needs in automation included automatic alerts, flexible 
reporting, tamping optimisation, and automatic tamping plans. Automatic alerts are 
required to inform the user about abrupt changes between the last two 
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measurements, recurring faults, and measurement results exceeding threshold values. 
These alerts make results interpretation faster, as the user can prioritise focus on 
these interesting areas. Moreover, the system should automatically compare the latest 
measurement to previous measurements, which eases the human workload. Flexible 
reporting means that the user can freely select an area, which will be reported as a 
whole and for which graphs are drawn and key figures are calculated. Currently, the 
report content is fixed and is based on the measurement run length rather than user 
need. Tamping optimisation can be best described using a characterising example: If 
you have five kilometres of track that should be tamped and the resources to tamp 
only three kilometres, which three kilometres of the five should you tamp to achieve 
the highest overall quality with the available resources. Automatic tamping planning 
was often mentioned by maintenance personnel, and it refers to tamping plans being 
automatically created based on track recording car results. However, this 
development requires plenty of measuring system development as track geometry 
measurements are relative and tamping plans are drawn in absolute coordinates. 
Connecting these two measurement types will require major technical innovations. 
Nevertheless, this was considered the ultimate level of automation in TGDA by the 
maintenance personnel. System development needs mentioned in the interviews 
included mainly automatic data transfer between systems. Especially, track geometry 
faults should be transferred to maintenance databases automatically from 
measurements. This is currently done manually. Furthermore, asset data should be 
available when inspecting track geometry measurements, preferably, in 
geoinformation format so that assets and faults could be visualised on maps. 

The new in-depth information refers to information that has not been available 
before in Finland. This included track geometry history, maintenance history, 
parameters for maintenance effectiveness, guidelines on what track components 
different geometry faults refer to and how to fix them, and predictions on the 
required maintenance and investments. Once in practical use, track geometry 
deterioration modelling could provide the required basic information for these 
needs, namely, the track geometry history, maintenance history, and maintenance 
effectiveness. Guidelines on which track components different geometry faults refer 
to require a vast amount of further research on the causality of track faults, although 
some faults are more easily identifiable than others. For example, track gauge 
widening on wooden sleeper tracks can be considered to result from poor sleeper 
and fastening condition. Predictions on future maintenance and investments were 
mentioned often in the interviews and are considered a major factor in improving 
maintenance effectiveness. 
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The biggest obstacles for future development were considered unavailable 
numeric track inspection data and relatively short five-year maintenance contracts, 
which deter private companies from developing their own systems. This was an 
interesting observation as these two seem to contradict one another. The 
professionals in the field want to have the data to themselves, but they want the 
infrastructure owner to develop the analysis systems. This can be interpreted to mean 
that there is a great interest to use and learn more about the measurements, but the 
companies do not believe in their capabilities or do not wish to use their own 
resources for development. 

Three different user types were identified from the interviews: 1) track 
maintenance personnel, 2) asset manager, and 3) director. The first user type was 
track maintenance personnel. They require information on the types of faults found, 
the possible causes for the fault, and the type of remedy that should be appointed 
and when. These users are also interested in optimising maintenance to boost quality 
indices with the least possible maintenance efforts. The second user type was asset 
managers who oversee track maintenance. Their responsibility is to assess whether 
the decisions made by the maintenance personnel are valid and have meaningful 
effects. They also assess track maintenance contract bonus-sanction models, which 
are tied to track quality. The third user type, a director, is interested in general trends 
in track quality and maintenance effectiveness. These are generally area managers or 
infrastructure owner directors. What is noteworthy is that one person can exhibit 
traits from all types of users, meaning they require multiple different data analyses. 
However, some users require very little information, as some are satisfied with only 
checking overall track quality indices. Furthermore, some interviewees did not see 
the value of TGDA or any data analytics and instead considered site inspections 
more valuable. These observations suggest that the framework application must be 
flexible to users with different levels of demand and detail regarding TGDA. 
Moreover, there may be some change resistance among professionals who are 
content with the current processes. 

In conclusion, the findings from the interviews suggested that the maturity of 
TGDA is on the monitoring track quality level in Finland. Some more advanced analyses 
had been attempted by individuals, but these were not a part of official processes. 
The information from the interviews was also utilised in creating the framework for 
TGDA development. 

Similar studies using semi-structured interviews have been performed in the 
Netherlands, Sweden, and United Kingdom, where the infrastructure asset 
management challenges and improvements have been investigated (Al-Douri et al., 
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2016; Dadashi et al., 2014; Schraven et al., 2011). In the Netherlands, 12 semi-
structured interviews of public agency employees were conducted to increase the 
understanding of the challenges in infrastructure decision making (Schraven et al., 
2011). The study found challenges in, for instance, setting strategic objectives and 
measuring performance with subjective quality assessments (Schraven et al., 2011). 
The Swedish study interviewed eight experts to investigate whether the Swedish asset 
management has access to sufficient track information for efficient maintenance 
decision making (Al-Douri et al., 2016). The study found several technical aspects of 
track inspection and data analyses that needed to be improved (Al-Douri et al., 2016). 
Moreover, a lack of a long-term maintenance strategy was seen to hinder 
maintenance planning (Al-Douri et al., 2016). In the United Kingdom, 20 semi-
structured expert interviews were used to investigate the status of intelligent 
infrastructure in railway management (Dadashi et al., 2014). The purpose was to 
create a framework based on the observations. The study from the United Kingdom 
revealed three user types for intelligent infrastructure systems, two of which were 
very similar to the ones found in Finnish research: track workers/maintenance 
personnel and strategic analysts/directors. Contrarily to the findings from the 
Netherlands and Sweden, the results from the United Kingdom suggested little 
concern for the technological aspects of the development, as some interviewees were 
confident with the available technological advances. However, the implementation 
of intelligent infrastructure systems and their use in practice was considered to be a 
greater challenge. 

The development needs mentioned in past research from the Netherlands 
(Schraven et al., 2011), Sweden (Al-Douri et al., 2016), and the United Kingdom 
(Dadashi et al., 2014) concur with the observations made in Finland. Namely, the 
lack of data analysis systems for analysing the massive amount of asset data is a 
common issue. Moreover, the need to serve different user types and heuristic 
analyses is notable. These observations motivated research further into creating a 
framework for advancing TGDA. 

3.3.3 Creating a framework for TGDA development 

A framework for developing TGDA in Finnish railway asset management was 
created based on the previously reported adapted maturity model (Paper IV). The 
framework was created during three workshops with experts from track maintenance 
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companies, consultant companies, and the infrastructure owner. The design of the 
workshops is presented in Figure 25. 

 

 
Figure 25. Design of the workshops (Paper IV). 

The terminology in Figure 25 is defined as follows; maturity levels provide the 
structure for different development stages. Knowledge areas are the different topics 
that the framework concerns. Development paths contain the steps that must be 
taken to advance the knowledge area maturity toward its vision (Paper IV). 

The framework was accumulated over three workshops with all stakeholders and 
an intermediate workshop with only the infrastructure owner, FTIA (Paper IV). The 
first workshop concentrated on familiarising the participants with the work ahead 
and forming the knowledge areas, which structure the framework. There were 23 
participants who were divided into groups of three to four people, mixing people 
with different backgrounds into the same groups. Each group was asked to draft 
mind maps of the processes and topics that are affected by track inspections. After 
the workshop, the mind maps were analysed with ATLAS.ti 9 software. The analysis 
included coding the mind maps and creating code groups. The code groups were 
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modified into the knowledge areas for the framework. Based on the findings from 
the first workshop, six knowledge areas were created: 1) measurement analysis, 2) 
data systems, 3) maintenance, 4) asset renewal, 5) knowledge, and 6) contracts. 
Measurement analysis refers to the processes for receiving, transferring, 
modelling, and visualising the track geometry measurement results. Data systems 
include the software required for measurement analysis and data storage. 
Maintenance refers to planning, executing, and supervising the track work defined 
in the current maintenance contracts, for example, tamping and spot maintenance. 
Asset renewal, conversely, refers to track work not included in the current 
maintenance contract, for example, superstructure renewals. The term knowledge 
includes the skills needed for utilising TGDA, as well as training and guidelines. 
Contracts cover the required contracts for all parts of the process, for instance, 
maintenance, asset management, and data systems. 

The second workshop focused on creating the development paths for the 
established knowledge areas. The 17 participants were divided into six groups and 
each group was assigned one knowledge area and a preliminary vision for said area. 
Then, the participants edited the preliminary vision and filled a blank four-level 
maturity model with the required steps for achieving the revised vision. Once these 
were completed, the groups were rotated twice to enable commenting and 
supplementing of other groups’ work. At the end of the second workshop, six 
preliminary development paths had been created and commented on. 

Before the third and final workshop, a draft of the complete framework was 
presented to the infrastructure owner, FTIA, in an intermediate workshop. In this 
workshop, the framework draft was compared with the ongoing development 
projects to detect overlapping work. Fortunately, no projects overlapping the 
framework were identified, and the framework development could continue. 

The finalised framework was presented in the third and final workshop. The 16 
participants were asked to evaluate, comment, and supplement the framework. As 
well as giving the stakeholders (participants) a chance to comment on the framework, 
the final workshop was a way to present and engage the stakeholders on future 
development. 

The preliminary output of the workshops was a conceptual version of the 
framework. This conceptual framework included step-by-step development paths 
for each of the knowledge areas. The steps were individual technologies or actions 
reported in the workshops, such as a track inspection database or maintenance 
effectiveness assessments. These steps were connected with arrows indicating the 
order of progress. The connected steps formed chains of events, which demonstrate 
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the actions that must precede one another to keep progress logical. As an example 
of one chain of events, Figure 26 presents all the preceding steps for automatic 
maintenance plan drafting. 

 
Figure 26. Chain of events for automatic maintenance plan drafting. 

The arrows in Figure 26 indicate prerequisites for a step in the framework. For 
example, a prerequisite for track geometry deterioration modelling is a track 
inspection database, for which a prerequisite is traffic tonnage and so forth. The 
colour of the step denotes the maturity level in question. The division into 
knowledge areas has been omitted from Figure 26 to compact the image. These types 
of results can be used in practice by setting one step as a goal and making sure all 
necessary preceding steps are completed before attempting to implement the final 
step. To summarise all the different chains of events, all these individual steps were 
consolidated into a framework for advancing TGDA presented in Figure 27. 
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Figure 27. Framework for advancing TGDA (Paper IV). 
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The framework for advancing TGDA (Figure 27) describes the end state of each 
maturity level and knowledge area (Paper IV). This limits the amount of detail 
presented in the framework as all individual technological advancements are not 
mentioned. However, this goal-oriented framework was created to serve as a tool 
for strategic planning of future development projects. In strategic planning, 
individual technological advancements are not in focus. Instead, presenting the big 
picture of where development is heading and what the goals are is much more 
valuable. 

 
Synthesis 
 
The tangible benefit of the framework for TGDA development is the possible 

cost savings achieved with increased efficiency in track maintenance. The increased 
efficiency is achieved when more informed decisions can be made based on more 
robust data, which is produced by using advanced TGDA. The framework includes 
all relevant aspects for advancing TGDA in its six knowledge areas. The knowledge 
areas have distinct goals for each maturity level, dividing the progress into 
controllable segments. This enables creating a far-reaching vision for the future all 
the while overseeing current practical development. 

The framework was evaluated based on analysing the outputs from the 
workshops, in this case, the mind maps, development paths, and comments. Other 
methods for evaluating workshop outputs could include, for example, recording and 
analysing the workshop conversations or surveying the participants after the 
workshop (Thoring et al., 2020). The workshop results could be evaluated with these 
methods, or a combination of methods, referred to as triangulation (Thoring et al., 
2020). However, the workshop results in this study were evaluated only with output 
analysis, which means that for example, participant dialogues and interactions were 
not analysed. This is a limitation of the study but one that is justified by the aim of 
the workshops: to produce a framework. If the aim was altered toward the 
implementation of the framework or stakeholders’ willingness to incorporate TGDA 
within their organisations, then other evaluation methods could be required. 

The limitations of the framework are associated with the limitations of the 
workshops. In addition to the previously mentioned limitations in workshop 
evaluation, the limited number and homogenous background of the participants 
limited the input and feedback to the framework. All participants work in the Finnish 
railway operating environment; therefore, the applicability of the framework in 
different operating environments could not be validated. 
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Previous research has also produced frameworks, or roadmaps in other 
terminology, for railway technology. Dadashi et al. (2014) reported a data processing 
framework for intelligent railway infrastructure. This framework was based on four 
levels of understanding (cf. maturity levels). The outlook of their framework was 
similar to the conceptual framework created in the workshops. However, the 
framework by Dadashi et al. (2014) regarded a more general system architecture 
(intelligent infrastructure), whereas the present study focuses solely on TGDA. 
These two frameworks can be seen as complementing each other, one on a more 
general level (intelligent infrastructure) and the other on a specific level (TGDA). 
Other roadmaps in railway technology include the overall development of railway 
technology within a railway system (Blumenfeld et al., 2019; Dias et al., 2015). The 
scopes of these frameworks are much wider than that of the current study. Yet, the 
same ideology can be seen in these; intermediate steps are described and set as goals 
to segment large-scale development into a more controllable process. 

Future research regarding the framework for advancing TGDA should include 
studying its application to different operating environments and its further 
implementation. The framework was created in the Finnish operating environment, 
and although it is constructed in a general form, its applicability to different operating 
environments is not yet validated. In studying the further implementation of the 
framework, the stakeholder attitudes and willingness should be researched to reveal 
possible obstacles in its practical application. 
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4 CONCLUSIONS 

This research had three main purposes: 1) to model track geometry deterioration 
based on Finnish track inspection history (Paper I), 2) to investigate the root causes 
of track geometry deterioration using exploratory data mining (Papers II and III), 
and 3) to implement TGDA into practical asset management (Paper IV). This 
section concludes the main results, contemplates their significance and validity, and 
provides suggestions for future research. 

4.1 Research outcomes 

The research impact is discussed on two levels: scientific and practical. The scientific 
implications of this study include: 

• the testing and development of a robust linear optimisation-based method for 
modelling track geometry deterioration using Finnish track inspection data 
(Paper I). The linear models were found suitable for the Finnish track 
environment, and a typical TGDR range was found to be 0–0.5 mm/MGT for 
the 200 m LL SD. However, diverse TGDRs were found on different track 
sections and different parts of the same track section. The developed models 
and results’ visualisation techniques enable track geometry deterioration 
predictions, past deterioration analyses, and maintenance effectiveness 
quantification. The models are suitable for all track geometry parameters that 
follow a linear deterioration path. The results also added to the growing amount 
of research on track geometry deterioration modelling output values. 

• the novel application of a data mining method, GUHA, for exploratory railway 
asset data analysis (Papers II and III). These results and corresponding field tests 
demonstrated that track structure asset data can indicate defective track 
structure types when the data is analysed with appropriate means. For example, 
a correlation, stronger than four times above average, between certain defective 
structures with frost insulation boards was obtained. 

• a novel application of maturity models as the basis for a development 
framework (Paper IV). These results demonstrated that maturity models could 
be applied as the basis for a development framework for TGDA 
implementation. The framework presents four maturity levels that define the 
maturity of TGDA with respect to different aspects of asset management. 
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The practical impacts of this research impact different organisations. The primary 

beneficiary of this research is the infrastructure owner, which is the FTIA in the 
Finnish operating environment. Using the results, the infrastructure owner can 
predict and evaluate the condition of their track assets (RO #1), investigate the root 
causes for deterioration (RO #2), and the aforementioned can be implemented into 
practical asset management processes (RO #3). All these results aim at the same 
outcome: higher maintenance effectiveness. Higher maintenance effectiveness is 
achieved by allocating maintenance recourses more accurately, thus reducing 
unnecessary work. This is possible when asset management has access to data on 
track geometry deterioration behaviour and its causes. The infrastructure owner has 
the most to gain from this because besides saving on the maintenance costs, asset 
investment decisions will be based on more sound data, which enables optimising 
the life cycle of components. 

Track maintenance can also benefit from the results, as they can plan 
maintenance more accurately with better TGDA. Areas requiring maintenance can 
be identified more effectively and the timing of future maintenance can be estimated. 
These help track maintenance in planning their resources to eliminate unnecessary 
work, such as back-and-forth machinery relocation or repetitive ineffective 
maintenance. This benefits track maintenance, as they can achieve the required track 
quality with fewer resources than before. 

Finally, improving the efficiency of track maintenance impacts society as a whole. 
Railway maintenance requires considerable tax revenue in Finland. Therefore, 
minimising spending while maximising track availability is one of the most important 
tasks in railway ownership in Finland. The results of this study provide the means to 
make well-informed decisions on track maintenance, thus saving taxpayer money 
and track downtime. Additionally, the end-customers, who are either passengers or 
cargo transporters, have better access to railway traffic. The service and reliability of 
railways increase when the track downtime required for maintenance can be 
decreased with better maintenance planning and disruptions become rarer as there 
are fewer unexpected track faults. These make rail traffic a more attractive means of 
transport as a whole, which is important not only for industrial competitiveness but 
also for promoting environmentally sustainable transport. 
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4.2 Validity, reliability, and limitations 

The validity of robust linear track geometry modelling in predicting and depicting 
the development in track geometry quality is well established. Many studies from 
different environments have found the linear modelling suitable for describing track 
geometry deterioration behaviour (Andrade and Teixeira, 2015; Audley and 
Andrews, 2013; Caetano and Teixeira, 2016; Khajehei et al., 2019; Lee et al., 2020; Li 
et al., 2019; Neuhold et al., 2020). However, considering the validity of using track 
(geometry) inspections as a way of depicting the condition of the railway track is 
more complex. As discussed in section 2.3, deterioration in many different parts of 
a track structure is shown in track geometry. However, not all deterioration is shown 
in track geometry, for example, internal cracking in rails, until the deterioration 
progresses to a dangerous level. Additionally, different faults may be observable 
through different track geometry indices, for example, settlements are shown in the 
LL, but cracked concrete sleepers may be shown in the track gauge. Therefore, track 
geometry deterioration modelling should not be the only way of monitoring the 
overall condition of railway tracks in practice. For example, visual inspections and 
ultrasonic rail inspections are also required. As for reliability, the robust linear track 
geometry deterioration modelling was tested on three different track sections. These 
track sections are considered rather high-class railroads with moderate to high traffic 
volumes. Consequently, the modelling of low-class track sections with low traffic 
volumes was not tested, which is a limitation of this part of the research. Other 
limitations include the lack of testing regarding other track geometry parameters than 
the LL and unsystematic maintenance records. Both these limitations are caused by 
the lack of available historical data, but recently implemented measurement and data 
storage systems will ensure that future research will be able to address these. 

Using GUHA data mining in investigating the root causes of track geometry 
deterioration can be considered valid when the implication of the results is 
deliberately considered. The GUHA method can reveal interesting correlations 
within large data sets. The correlations are based on logic; hence there are no 
prediction or estimation errors involved with the method, as the correlations are 
based solely on the initial data. However, therein lies the major limitation of the 
method: dependency on initial data. If some important feature is missing from the 
initial data, it cannot be considered in the results. Therefore, the initial data should 
contain all relevant parameters depicting the researched behaviour. Furthermore, the 
correlations do not imply causality, as was discussed in section 3.2.2. However, if 
these limitations are acknowledged, the method can produce remarkable results; the 
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GUHA method could reveal interesting correlations between track structure features 
and the TGDR to investigate further with other methods. 

Semi-structured interviews and workshops were used as the research methods for 
creating the framework for TGDA development. Semi-structured interviews have 
been used in past railway research and can be considered a valid research method 
for investigating a particular process, especially when the number of experts working 
on the matter is low (Al-Douri et al., 2016; Dadashi et al., 2014; Schraven et al., 2011). 
Workshops as a research method are not as prevalent as interviews, even less so in 
railway research. However, workshops as a research method have been investigated 
and found beneficial in research relating to strategic planning (Phaal et al., 2007; 
Thoring et al., 2020). The reliability of the interviews and workshops is based on the 
representativity of the participants. All participants were from Finland and all 
relevant organisations participated in the research. Thus, the results can be 
considered reliable in the Finnish operating environment. However, the group 
interviews and interorganisational workshops may have prevented the participants 
from revealing all weaknesses in current processes, for the fear of being judged by 
their colleagues. Therefore, there may be some details in the framework that have 
not been discovered yet and future implementation should prepare to adapt the 
framework should these arise. Furthermore, the reliability of the results in other than 
the Finnish environment was not tested, and, therefore, should be a topic of future 
research. 

4.3 Suggestions for future research 
 
Suggestions for future research been have provided throughout the text in 

previous sections. These suggestions are composed in this section. 
In future research on track geometry deterioration modelling, the verification 

of the tamping identification algorithm, calculations on the effects of different 
maintenance actions, and international definition and comparison of different 
TGDRs should be top priorities. The tamping algorithm can be validated as soon as 
reliable maintenance data has been gathered over a few years. Then, the tamping 
areas identified by the algorithm can be compared with the actual maintenance data. 
Following this, the effectiveness of different types of maintenance actions can be 
calculated, as the maintenance data will also indicate the type of performed 
maintenance. Relating to this, the MSI limit values should be investigated using data 
from multiple different track environments. Maintenance effectiveness calculations 
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can enable quality control for past maintenance as well as making predictions on 
future maintenance effectiveness. Lastly, the TGDR should be defined and its range 
in different operating environments should be investigated internationally. 
International comparison of TGDRs from different environments would form the 
basis for standardising and creating limit values for track geometry deterioration, 
which would greatly benefit asset management decision making when defining 
whether a track section is in good condition or not. 

As for investigating the root causes of track geometry deterioration, future 
research should focus on investigating the causality of the correlations found using 
exploratory data mining. First, the methods and available data for investigating the 
causality in the obtained correlations between track structure features and track 
geometry deterioration should be researched. This includes forming time series data 
on track structure features and comparing it with track geometry deterioration 
modelling results. This time series data should include the timing and type of past 
maintenance and the timing and contents of past renewals. These would enable 
investigating the effects of different maintenance actions and renewals on various 
types of track structures. This would provide more insight into what types of 
maintenance actions and renewals have had meaningful effects on particular track 
structure types. 

Future research on the framework for advancing TGDA should include further 
implementation of the framework and testing the framework in different railway 
asset management organisations. Further implementation research on the TGDA 
development framework should include research on change management. The 
framework provides a strategy for future development, but the practical aspects of 
changing the way organisations utilise TGDA still require applied research. This is 
an exceptionally important step, as several studies have indicated that most 
organisations fail in implementing changes (Errida and Lotfi, 2021). Lastly, the 
framework should be tested in different asset management organisations to assess 
the contents of the framework and identify possible missing steps. If the framework 
is found suitable in the other railway asset management organisations, the framework 
should be implemented into those as well and for good reason. As this dissertation 
has demonstrated in many ways, railway asset management organisations can obtain 
tangible benefits when advancing their abilities in analysing track geometry 
deterioration. 
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Advancing Railway Asset Management Using Track
Geometry Deterioration Modeling Visualization
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and Tapio Nummi4

Abstract: Railway tracks need to be monitored to ensure safe operations and cost-effective maintenance. The monitoring is commonly
conducted using a track recording car that describes deviations from an ideal track geometry. Over time, the measurements provide time series
data that can be used to model the observed track geometry deterioration process. However, without simplification, the modeling results are
generally too complex to be utilized to their full extent in track asset management. Therefore, this study aimed to implement visualization
techniques for track geometry deterioration modeling results analysis which benefit track asset management. The best practices on track
geometry deterioration modeling were studied and applied to the track geometry history of a track section located in Finland. After testing the
establishing modeling principles, proposals were made regarding the use of the results in practice. This paper presents visualization tech-
niques that use the modeling results of individual cross-sections to generate information about longer sections of track and even whole rail
networks. These visualizations digest the massive amount of information from the modeling and present it in an informative way for practi-
tioners to utilize and benefit from. Thus, this study fills the gap between research and practice in railway track geometry deterioration
modeling. DOI: 10.1061/JTEPBS.0000626. This work is made available under the terms of the Creative Commons Attribution 4.0
International license, https://creativecommons.org/licenses/by/4.0/.

Introduction

Multiple studies have demonstrated that track geometry deterioration
is not a random process, but one that can be idealized and modelled
[see Higgins and Liu (2018) and Soleimanmeigouni et al. (2018) for
literature reviews]. Fig. 1 presents the idealized track geometry
deterioration behavior of one cross section, which is always tamped
at the exact same longitudinal level (LL) deviation value, and tamp-
ing always corrects the geometry to the original level. The figure
demonstrates the theoretical diminishing effect of tamping due to
fouling of ballast (Shenton 1985; Dahlberg 2001; Lichtberger
2011). In Phase 1 of Fig. 1, initial settlements increase deviations
at an exponential pace. This is sometimes referred to as ballast
memory. Following the initial settlement, Phase 2 describes a linear
deterioration path that generally ends when a tamping intervention
limit is reached. This is followed by a theoretical failing phase (3),
which describes the track end-of-life, but in practice, this phase is
avoided either by conducting maintenance or ceasing traffic.

Neuhold et al. (2020) provided a foundation for modeling
track geometry deterioration based on actual track geometry car

measurements. This approach was based on modeling the behavior
of one cross section, thus providing results for a localized point on a
track section, as longer sections of track were out of scope in that
research. The current study extends the work of Neuhold et al.
(2020) and demonstrates how track geometry deterioration model-
ing of cross sections can be utilized for investigating the behavior
of not only cross sections, but also of longer sections of track and
even the whole rail network.

Modeling track geometry deterioration based on track geometry
car measurements provides highly practical information about the
development of the condition of railway tracks. However, the real-
world benefits of track geometry deterioration modeling can be
obtained only if the modeling results are made accessible and
understandable to practitioners in asset management. For this pur-
pose, the results need to be generalized into key figures and
representative visualizations that serve the heuristic nature of deci-
sion making in track asset management. Otherwise, the results
achieved in academia will not have an impact in practice. The, this
study also investigated indicators and visualizations created from
track geometry deterioration modeling that would be beneficial
to practical track asset management. The purpose was to ease
the interpretation of the modeling results by providing summarized
information for decision making, thus filling the gap between re-
search and practice on track geometry deterioration modeling.

Two research questions were formed based on these re-
search gaps:
1. How to use cross-section-based track geometry deterioration

modeling for longer sections of track and for the whole rail
network?

2. How to present track geometry deterioration modeling results in
a way that practitioners can easily interpret and benefit from?
The scope of this paper is limited to visualizing stochastic long-

term modeling of longitudinal deviations measured periodically
using a track geometry measurement car. The purpose of this paper
is to adapt the best current practices of track geometry deterioration
modeling and bring them closer to practical application using

1Doctoral Researcher, Research Centre Terra, Tampere Univ., Korkea-
koulunkatu 7, Tampere FI-33720, Finland (corresponding author). ORCID:
https://orcid.org/0000-0002-7034-5835. Email: mikko.sauni@tuni.fi

2Project Manager, Research Centre Terra, Tampere Univ., Korkeakou-
lunkatu 7, Tampere FI-33720, Finland. ORCID: https://orcid.org/0000
-0002-7113-3527. Email: heikki.luomala@tuni.fi

3Professor, Research Centre Terra, Tampere Univ., Korkeakoulunkatu 7,
Tampere FI-33720, Finland. Email: pauli.kolisoja@tuni.fi

4University Lecturer, Faculty of Information Technology and Commu-
nication Sciences, Tampere Univ., Kalevantie 4, Tampere FI-33100,
Finland. Email: tapio.nummi@tuni.fi

Note. This manuscript was submitted on June 28, 2021; approved on
September 30, 2021; published online on November 24, 2021. Discussion
period open until April 24, 2022; separate discussions must be submitted
for individual papers. This paper is part of the Journal of Transportation
Engineering, Part A: Systems, © ASCE, ISSN 2473-2907.

© ASCE 04021106-1 J. Transp. Eng., Part A: Systems

 J. Transp. Eng., Part A: Systems, 2022, 148(2): 04021106 



visualization techniques, not to create completely new modeling
techniques or to validate current models.

Track Geometry Deterioration Modeling

The best practices for preparing data for track geometry deteriora-
tion modeling were elaborated by Neuhold et al. (2020). This study
follows these established practices as closely as possible, but some
adjustments needed to be made to suit the data measured in
Finland. The purpose was not to advance the methods presented
by Neuhold et al. (2020), but rather to alter the methods for the
available data. Table 1 summarizes the slight differences between
the track geometry deterioration modeling described by Neuhold
et al. (2020) and the methods used in this study. The following sub-
sections further elaborate these differences.

Initial Data

The data used for the demonstrations in this paper consists of a ten-
year semi-annual track geometry car measurement history from a
track section, Luumäki–Imatra, in Finland. The examined section is
a 53 km long mixed traffic single line track section with a maxi-
mum speed of 140 km=h for passenger trains. The yearly gross ton-
nage of freight traffic is around 12 megatons. The measurements
were preformed using an EM120 track recording car (Plasser &
Theurer, Linz, Austria), which uses chord measurements from three
bogies spaced 5 and 7 m apart. The data is recorded every 0.25 m.
No major renewals were reported during this time period; only rou-
tine maintenance. Neuhold et al. (2020) used similar data, but their
initial data was much more extensive, albeit measured more
sparsely. Nevertheless, these differences do not matter, as the pur-
pose of this study is to visualize the results, which does not require
such a vast initial data set that statistical analyses require.

Track Geometry Parameter and Index

For long-term track geometry deterioration modeling, the LL stan-
dard deviation (SD) is commonly the chosen parameter, as most of
the gradual displacements occur in the vertical direction (UIC 2008;
Vale and Calçada 2014). SD provides a smooth depiction of the
original deviation signal, and is defined as follows:

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼i ðxi − x̄Þ2
N − 1

r
ð1Þ

where xi = the current value of a signal; x̄ = the mean value of a
signal; and N = the number of values in a sample (Eurocode
EN13848-6 2014). Neuhold et al. (2020) opted for a modified
SD, in which both the left and right rail were considered simulta-
neously, and the result was multiplied by 1.35 to make the result
comparable with a conventional SD. This approach could not be
adopted for this study, because reliable data repositories were avail-
able only for the left rail. This does not affect the end results of this
study, as the applied visualization techniques are applicable to ex-
amining each rail individually or simultaneously.

SD can be calculated in fixed (also referred to as segmented) or
rolling (also referred to as moving or continuous) windows, using
any distance. Fixed SD calculation windows tend to be easier to
communicate, but they misrepresent information when deviations
occur in the edges of windows or if there are only local irregu-
larities in the middle of otherwise stable track, as demonstrated
by Neuhold et al. (2020). The use of rolling windows was found
suitable for the data in Neuhold et al. (2020), as well as for this
study.

Adjusting the length of the rolling window influences the sharp-
ness with which the SD follows the original signal (Fig. 2). The
appropriate rolling SD calculation window length can be consid-
ered to be roughly between 10 and 200 m, based on the lengths
used in previous research (Andrade and Teixeira 2011; Tanaka et al.
2018; Neuhold et al. 2020; Audley and Andrews 2013). A shorter
window SD more sharply follows the original signal, but too short
a window might result in the same problems as those encountered
when using only the original signal, namely, instability in align-
ment and a fluctuating signal. Too long a window may cause sim-
ilar problems to those faced when using fixed windows, where
some irregularities may be hidden due to adjacent smooth track.

This study opted for a 200 m SD window, as there were some
alignment issues between sequential measurements, as presented in
Fig. 2. Neuhold et al. (2020) experienced similar problems and
opted for a 100 m SD window. Furthermore, this study preferred
the 200 m over the 100 m SD, because the 200 m SD is recognized
by the European Standard 13848-6 (2014), which gives a good ba-
sis for standardizing the modeling principles and results.

Core Modeling Methods for Track Geometry
Deterioration

Modeling the track geometry deterioration rate (TGDR) on a large
scale requires a general depiction of past behavior, for example,
when analyzing the decade-long behavior of a track section. There-
fore, tamping intervals are usually adopted as the minimum interval
length for a deterioration period. This leads to a simplification of
the TGDR by using some mathematical idealization. The core
mathematical approaches to LL SD deterioration modeling are

1 2

3

1 Initial settlement
Linear geometry deterioration2
Failing deterioration3

Time or MGT

Lo
ng

itu
di

na
l l

ev
el

LL of one cross section
LL after tamp initial settlement

T
am

p

T
am

p

Tamp intervention limit

T
am

p

Fig. 1. Theoretical behavior of track geometry.

Table 1. Differences in track geometry deterioration modeling between Neuhold et al. (2020) and this study

Modeling principles Neuhold et al. (2020) This study

Initial data 16-year track geometry car history from 4,400 km in
5 m increments

10-year track geometry car history from 60 km in
0.25 m increments

Geometry index LL 100 m continuous modified SD LL 200 m continuous SD
Alignment correction None None
Modeling method Linear regression Robust linear regression
Outlier handling Outlier detection algorithm MAD Robust linear regression
Tamping activity identification Tamping records and negative TGDR Negative TGDR and tamping area identification

algorithm
Prognosis accuracy measure Prediction and real end quality comparison Prediction interval
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linear and exponential modeling. Linear modeling of track geom-
etry deterioration is the most popular modeling approach, based on
the literature (Caetano and Teixeira 2015; Khajehei et al. 2019; Lee
et al. 2018; Li et al. 2019; Neuhold et al. 2020; Nielsen et al. 2020;
Soleimanmeigouni et al. 2020). In addition, it provides the best fit
for the available data in Finland. However, it has been argued that
exponential models suit some data sets better than linear models
(Quiroga and Schnieder 2012; Famurewa et al. 2016). The use
of exponential models can be justified by their ability to take
the initial settlement into account. Generally, these models are
suited better for track sections with high traffic volume and frequent
(e.g., daily) track geometry measurements (Tanaka et al. 2018).

Real world measurements often provide outliers that need to be
accounted for in modeling. Neuhold et al. (2020) used the mean
absolute deviation (MAD) to identify and erase outliers. In this
study, outliers could not be removed as in Finnish conditions they
might indicate frost heave or other abrupt occurrences, which
should be presented to asset managers. Therefore, outlier handling
was considered when choosing the linear modeling method, not as
a separate operation.

The linear regression modeling of geometry deterioration can be
conducted using either simple or robust techniques. Simple tech-
niques include algorithms such as least squares. These algorithms
provide fast calculation times but tend to be influenced by outliers.
However, outlier detection and removal algorithms can be run be-
fore using simple algorithms to improve the results. Robust algo-
rithms, such as linear programming, generally produce numerous
possible estimations and choose the best-fitting one. A plot of the
differences between the algorithms (Fig. 3) depicts how in the sec-
ond tamping interval (measurements between 2011 and 2017) the

robust algorithm better describes the long-term behavior than least
squares, when the initial settlement is not regarded.

The major critique of all linear models is that they fail to capture
the initial settlement behavior after tamping. The initial settlement
lasts only days on a track section with heavy traffic, whereas the
track geometry measurements are conducted every 2–6 months.
Therefore, the probability of capturing the initial settlement caused
by tamping in a track geometry measurement is low. This is not to
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say that it does not exist, but the recorded cases are few, and the
effect of initial settlement on increasing deterioration is negligible
when modeling on a large scale.

Fig. 3 presents a noticeable initial settlement captured by the
track geometry measurements in 2011. However, the effects of
the initial settlement on the linear regression can be eliminated
by using a robust linear programming algorithm instead of simple
techniques. Removing the effect of the initial settlement on linear
regression modeling can be justified by arguing that capturing the
long-term trend of the track geometry deterioration is more valu-
able than portraying the initial settlement. Furthermore, the initial
settlement does not provide useful information about the deterio-
ration, as the realized effect of tamping is the level of deviation after
the initial settlement, as depicted in Fig. 1. Robust linear modeling
ignores the initial settlement in the model, as is intended, but unlike
outlier removal techniques, the outlier is left visible in the data,
which is important, as these outliers can provide useful information
to asset managers about the successfulness of tamping.

Tamping Identification

There are two main causes for a decreasing TGDR, namely, meas-
urement inaccuracy and tamping (with or without other mainte-
nance actions). The measurement inaccuracy usually accounts
for only the slightest deterioration decreases, which are most likely
to occur when the TGDR is close to zero. In these cases, the fluc-
tuation in the measurement results is mostly attributed to the meas-
urement technique rather than an improvement of the physical track
geometry. These deterioration rates should be considered as zero in
deterioration modeling. The decreasing deterioration due to tamp-
ing is usually clearly noticeable, especially in cases where the
TGDR is not close to zero. However, modeling the tamping,
i.e., the decreasing deterioration rate due to tamping, is very diffi-
cult due to multiple and generally unknown variables related to the
timing and reason for tamping.

Solving the problem of what constitutes as tamping instead of
measurement noise in the track geometry data is important, as
tamping intervals form the basis for track geometry deterioration
modeling. This problem can be overcome by systematically record-
ing tamping data, but when the records are be incomplete or

missing altogether, such as is the case in Finland, the solution must
be applied in track geometry deterioration modeling.

The simplest solution for revealing tamping in track geometry
measurement data is to set a threshold for the decrease in the track
geometry that will be considered tamping, as proposed by Neuhold
et al. (2020). The threshold can be a fixed value or be dependent on
time or deterioration level. A threshold value is adequate for
detecting tamping that has had a significant effect on the irregularity
level, which is suitable especially for segmented track geometry in-
dices. However, when the LL SD is low before the tamping or the
tamping has little effect on the LL SD, a threshold value will not
consider these cases as tamping. This modeling case is common
when modeling track geometry using a rolling SD. This issue is best
demonstrated when the effect of tamping has roughly the same value
as the limit for detecting tamping (Fig. 4). In these cases, on some of
the cross sections in the tamped area a tamping is noticed, but on
others, it is not. This leads to undesirable results, which are apparent
when the sum of tamping times per cross section and the cross sec-
tion LL SD histories are plotted (Fig. 4). These results will not be
altered even with the use of a threshold dependent on the time or the
irregularity level. All fixed thresholds for determining tamping will
fail to separate tamping from measurement fluctuation in the cases of
low irregularity levels, as the tamping effect on the irregularity is
about the same amount as the measurement fluctuation. For that rea-
son, an algorithm is required to determine these cases.

The algorithm created in this study searches the data for small
individual areas with corrections in track geometry and disregards
them as tamping if they are not associated with an adjacent tamped
area. The generic form of the code is displayed in Fig. 5. The algo-
rithm does not consider areas to be tamped if the area is less than a
minimum length, which was set at 20 m in this study. Shorter areas
with negative TGDRs were considered to have been caused by
measurement inaccuracy. The accuracy of the algorithm could
not be numerically verified, as there are no systematic historical
tamping records in Finland. Verifying and improving the tamping
detection algorithm is a source of further research.

Tamping Effect Quantification

The decrease in the level of irregularity calculated from track geom-
etry car measurements before and after tamping indicates whether
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the tamping has successfully provided a stable ballast layer for the
trains to pass, or whether the initial settlement cancelled much of
the smoothness provided in the tamping. For example, in Fig. 6,
tamping has had a meaningful effect on the level of irregularities,
but in Fig. 3, irregularity has returned to the original state after one
measurement in the second tamping interval, albeit the irregular-
ities have stayed at a low level throughout the history.

The effects of tamping, without considering the initial settle-
ment after tamping, can be calculated using the information ob-
tained from a robust linear regression model. A robust model is
not prone to outliers, which means that if the initial settlement
is captured in the first measurement after tamping, it will not be
regarded in the results. Thus, the tamping effect describes the effect
the tamping has had when regarding the long-term behavior.

The effect is calculated by extrapolating the regression lines be-
fore and after tamping to the time of tamping and calculating the
difference in their irregularity level (Fig. 7). By doing so, the effect
of tamping on the level of deterioration σt is

σt ¼ σtb − σta ð2Þ
where σtb denotes the level of deterioration calculated from the line
equation before tamping at the time of tamping Δσn−1ðttÞ; and σta
denotes the level of deterioration calculated from the line equation
after tamping at the time of tamping ΔσnðttÞ. If the exact time of
tamping tt is not known, it can be assumed that reasonable results
can be obtained by

tt ¼ ttb þ ðtta − ttbÞ=2 ð3Þ

where ta denotes the time of the first measurement after tamping;
and tb denotes the time of the last measurement before tamping.

The TGDR after tamping is another important measure for de-
termining the effectiveness of tamping. Tamping effectiveness can
be determined by examining the deterioration rates before and after
tamping. Higher deterioration rates after tamping indicate that
problems continue after tamping, and thus, other maintenance ac-
tions together with tamping might be required in the future. Ap-
proximately equal deterioration rates before and after tamping
indicate that tamping has reset the deterioration trend to a lower
level, but the deterioration continues to develop as before. Deterio-
ration rates that are lower after tamping than before tamping indi-
cate that the tamping has had a remedial effect on the track
structure.

The change in the TGDR (Δσt) can be assessed by comparing
the slopes of the linear track geometry deterioration models before
and after tamping. There are three approaches to comparing the
deterioration rates:

Absolute comparison

ΔσtAbsolute ¼ Δσn−1 −Δσn ð4Þ

Relative comparison

ΔσtRelative ¼ Δσn−1=Δσn ð5Þ

Normalized absolute comparison

ΔσtNormalized ¼ ðΔσn−1 −ΔσnÞ=Δσn−1 ð6Þ

whereΔσn denotes the deterioration rate of tamping interval n; and
Δσn−1 denotes the deterioration in the previous tamping interval.
Because deterioration rates before and after tamping can be close to
zero, relative or normalized absolute comparisons can result in very
large or small values, due to the divisor or the dividend being close
to zero, respectively. As an alternative, the absolute comparison
does not suffer from this mathematical nuisance. However, because
the absolute comparison does not normalize the deterioration
rate of the previous tamping interval, the results should always
be presented with knowledge of the level of the deterioration rate.
Otherwise, the tamping effect might seem optimistic, if the deterio-
ration rate before tamping has been very high. If information about
the level of deterioration is incorporated, the absolute comparison is
the most practical comparison to use. Otherwise, relative or normal-
ized absolute comparison yields more informative results.

Fig. 5. Generic algorithm for detecting tamped areas.
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Evaluating past tamping effectiveness requires examining
several figures simultaneously: the values of LL SD and TGDR
after tamping, and the change in LL SD and TGDR due to tamping.
Because simultaneous examination of four figures is not practical,
an ensemble parameter representing their possible combinations is
required. The ensemble parameter, named maintenance success in-
dicator (MSI), can be assigned to represent four different outcomes
of a tamping (Fig. 8): (1) beneficial, (2) delaying, (3) not meaning-
ful, or (4) negative.

The logic behind MSI is presented in Fig. 8. The evaluation be-
gins by assessing the effect of tamping on the TGDR (Δσt). If the
effect on the TGDR (Δσt) is high, it means that the deterioration
rate has slowed down, and vice versa. Next, the tamping effect on
the deterioration level (σt) is evaluated. A high effect is the desir-
able outcome. Finally, the tamping interval after tamping is evalu-
ated by assessing either the level of deterioration after tamping (σn)
or the TGDR after tamping (Δσn), where low values are the desir-
able outcome. The limit values separating high and lowΔσt, σt, σn,
and Δσn can be assessed using the allowable LL SD and limit val-
ues for TGDR. However, defining the limit values for these is out of
scope and a source of future research, as the initial data for assess-
ing the limit values should be much larger than the one available for
this study.

A desirable outcome for the MSI is to have as much Class 1
(beneficial effects) tamping and as little of other classes. Areas with
Class 3 or 4 effects should be closely investigated. The MSI Class 1
denotes that tamping has slowed down the TGDR and significantly
reduced the LL SD, thus making the track behavior better than be-
fore tamping. MSI Class 1 can also be achieved, if the effect of
tamping to TGDR or LL SD has been only slight if the TGDR
and LL SD after tamping have been low. This implies that these
values were low before tamping, therefore, they could not have
been improved any further by tamping. Class 2 MSI implies that
while the tamping has restored the LL SD, the TGDR is still high,
meaning the tamping has been successful, but the remediation will
not last. MSI Class 2 highlights areas where tamping is successful,
but other maintenance actions are also required to obtain a lasting
remediation. MSI Class 3 denotes that tamping has not made a sig-
nificant difference, and perhaps the planned tamping areas should
be revised, if possible. MSI Class 4 suggests that errors have been
made in the tamping or that the track has suffered damage after
tamping, and the area should be further investigated. Special cases,
where a section is tamped before and after a measurement, must be
considered separately as not applicable areas (n/a), as a TGDR can-
not be calculated from a single track geometry measurement. The
practical use of the MSI is presented in a later section, Visualizing
Track Geometry Deterioration Modeling Results.

Prognosis and Prognosis Accuracy Measures

Predicting future LL SD values using linear regression models is
simple. Extrapolating the linear regression model of the newest
available tamping interval usually provides reasonably good re-
sults. However, if an area has been recently tamped, the insufficient
number of measurements after tamping may not accommodate lin-
ear regression. In these cases, the linear regression model can be
based on the previous tamping interval.

However, while the predictions of future LL SD values based on
linear regression are simple to make, the predicted values them-
selves are not informative enough. The reliability of the predictions
must be described as linear estimations have varying degrees of
uncertainty. Neuhold et al. (2020) assessed prognosis accuracy
by comparing the predicted and real end quality. However, this
study could not adopt such a method, as the prognosis accuracy
needs to be expressed for a future prediction.

The best way to describe the reliability of future predictions is
by using the prediction interval (PI). The PI offers a simple way to
describe where future observations (LL SD values) produced by the
model will occur, with a specified confidence. The PI can be de-
scribed in a generic form as

PI ¼ μ̂� tα=2;n−ps
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x 0

0ðXtXÞ−1x0

q
ð7Þ

where μ̂ denotes the predicted timing of reaching a LL SD limit
value; t is the quantile of t-distribution having df ¼ n–p; α is
the specified confidence level (for example 90%); s is the square
root of the residual sum of squares; ðXtXÞ−1 is the covariance ma-
trix of parameters; and xo is a column vector of the particular values
of interest (LL SD limit value), at which the prediction is calculated
(Agresti 2015).

The PI does not provide a probability for a future observation
but instead describes the level of confidence of the model predic-
tions. For example, a 90% PI provides the range where approxi-
mately 90% of future observations produced by the model
should occur. The PI can be communicated easily by plotting
the range until a maintenance limit value is met. For example,
in Fig. 9, the 90% PI indicates that the set maintenance limit of
1 mm LL SD is met between 2020 and 2022, and the most likely
timing for reaching the limit is in 2021.

Visualizing Track Geometry Deterioration Modeling
Results

Asset management requires simple-to-use information that pro-
vides a good overall representation of the track conditions. The
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information from track geometry deterioration modeling should be
reported for asset management in three categories: past deteriora-
tion exploration, past maintenance effectiveness evaluation, and fu-
ture tamping need predictions. The scope of observation for each
category should consider at least three levels:
1. Cross section level
2. Track section level,
3. Network level.

The following sections elaborate what the different scopes and
categories are used for and what novel information they produce.

Cross Section Level

The cross section level scope provides the necessary tools for ex-
amining the track geometry deterioration of localized areas on a
track section. The cross section here represents the 200 m LL
SD values around that area. The analyses provide specific informa-
tion about short problematic areas, for example, transition zones,
which are more typical than long sections of poor condition track.
The behavior of cross sections can be visualized in a time–LL SD
perspective (Fig. 10). From these illustrations, the deterioration his-
tory can be observed, which includes the past changes in the TGDR
and the past tamping times and their effects, and also, the timing of
the next tamping can be predicted.

With these illustrations and results, the asset manager can an-
swer, for instance, the following questions:
• Is the cross section problematic (high TGDR)?
• When had the problematic behavior begun?
• Are there seasonal differences in the TGDR?
• Has tamping been effective in maintaining good track

geometry?
• When will the area around the cross section require further

maintenance?
By examining the past track deterioration behavior, mainte-

nance effectiveness, and the predicted next maintenance interven-
tion timing, the asset manager can guide maintenance by choosing
the correct approach for remediation and time the remediation. In
practice, the illustrations show whether the location has been
tamped multiple times with no lasting improvement to the track
geometry. In these cases, the asset manager can assign further in-
vestigations to determine appropriate spot repair to remedy the
problem instead of tamping the area once again with futile effects.
Furthermore, the asset manager can investigate the origins and

development of problematic behavior, like seasonal differences
or sudden increases in the deterioration rates caused by track work
or extreme weather conditions. The asset manager also attains in-
formation on when the next maintenance action should be taken at
that location.

Track Section Level

The track section-level scope of observation provides information
on how the deterioration behavior differs within a longer section of
track. The longer section of track is commonly between 1 and
10 km long, because even longer sections become difficult to
assimilate. The goal is to detect problematic zones, so that the
analysis can focus on those areas. The heatmaps of LL SDs
[Figs. 11(a and c)], and tamping effects [Fig. 11(b and d)] can pro-
vide useful ways for analyzing the history of longer sections of
track. The tamping effects here refer to the decrease in the LL
200 m SD.

These figures should be examined together, as examining them
separately does not provide sufficient information for reliable
analysis. For example, in Fig. 11, the LL SD in the area around
265þ 0300 and 265þ 0500 remained at a rather high level until
tamping in 2016, after which the LL SD has been moderately high,
but tamping has not been required. This would lead to the conclu-
sion that this area poses no concerns currently. Conversely, even
though the LL SD in the area around 265þ 0600 and 265þ
0800 is moderate, the frequent tamping suggests that some prob-
lems do exist, but the tamping interval is so short that the track
geometry measurements do not capture the actual behavior. This
area should be closely monitored in future measurements.

In addition to assessing past deterioration behavior, predictions
of the future tamping areas and their timing should be kept updated
for asset management. The predicted tamping areas can be plotted
with the principle presented in Fig. 12. The x-axis indicates the
location, whereas the y-axis indicates the timing. The plot is
color-coded to represent the PI of the predicted timing of the next
tamping; a darker color indicates a more likely timing of the next
tamping.

In track maintenance, the tamping timing prediction illustra-
tions, like the one shown Fig. 12, can be utilized to plan future
tamping areas. The graph also provides a general idea about the
reliability of the predictions. For example, in Fig. 12, the LL
SD in the area between 254þ 0450 and 254þ 0650 reaches a
maintenance limit value at around 2022, and the PI is quite narrow.
This would be a good indicator to plan tamping at that area for that
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year. As an example of another type of case, the area around 254þ
0000 and 254þ 0100 has a very wide PI, and it is predicted that
tamping will be required around the year 2030. This area should not
require tamping in the near future, but because the predictions are
still ambiguous, the area should be focused on when new track
geometry measurements are performed, and the predictions are
updated.

With the information provided from the track section level
analysis, the asset manager can answer the following questions:
• Where are the problematic areas located on a track section, and

how severe are they?
• For how long has the problematic behavior been observed, and

is it seasonal?
• How has past maintenance affected the track geometry deterio-

ration on the track section?
• When will different parts of the track section require tamping or

other maintenance?
The information obtained from illustrations following the prin-

ciples shown in Figs. 11 and 12 can be used to guide maintenance
by assessing the systemization of past maintenance, drafting tamp-
ing plans, and conducting the same analyses as for the cross section
level, only now for a longer segment of track (e.g., 1–10 km). Past
maintenance performance can be evaluated by visualizing the past
tamping areas. Tamping areas disconnected from each other and
frequently tamped areas indicate that tamping planning should
be revised. Future tamping plans can be drafted using the illustra-
tions by connecting areas with similar timing estimations for the
next tamping. In addition, all the analyses mentioned for cross sec-
tion level are valid for the track section level as well.

Network Level

Network-level track geometry deterioration assessment needs to re-
present complete track sections in generalizing figures and illustra-
tions. The network-level analysis is intended to apply to tens or
even hundreds of kilometers of track. For this purpose, the analysis
turns to the statistics of the selected network. The past track geom-
etry deterioration behavior of a network can be evaluated using a
histogram displaying the number of track meters where a certain
mean TGDR has been observed (Fig. 13).

The histograms of the TGDRs observed on the track sections
can be compared by plotting them in the same figure and then
examining them. In addition to the visual examination of the

histograms, key figures from the histograms can be produced to
enhance the evaluation. The suggested approach is to report the
median (50%) and 90% quantile of the distribution. The metrics
on skewness should also be reported, as the histograms are often
skewed to the right due to problematic areas exhibiting significantly
larger deterioration rates compared to the median.

As an example of an analysis, Fig. 13 demonstrates two TGDR
histograms from the same 60 km section of track: one containing
the modeling of the complete 10 years’ measurements, and the
other containing the modeling of the last three years’ measure-
ments. At first glance, the last three years seem to be more to
the left than the complete history, indicating that the conditions
have improved on this section of track. This is supported by the
lower median (50% quantile) and 90% quantile of the last three
years compared with the complete history. However, the higher
skewness on the history of the last three years suggests that the
parts of the track enduring very poorly continue to be a problem.

The network-level modeling result analysis should also review
the past maintenance effectiveness by presenting the amount of ef-
fective tamping on the network. For this purpose, the MSI of tamp-
ing should be summarized by calculating the total amount and
percentages of different MSIs on the network. Fig. 14 demonstrates
how the tamping history of the MSI assessment is used for
network-level analysis. The time–location view shows when and
where tamping has occurred, and the color represents the MSI
of the tamping. The pie chart shows a summary of the proportion
of different MSIs on the observed section. If the MSI Categories
3 or 4 are overrepresented in the network summary pie chart, the
asset manager can examine the areas where tamping has not been
effective and further investigate those areas. This principle can be
used for the network level, but for readability, the example contains
only a two-kilometer long section of track. The information from
the histograms and MSI summaries can be used to guide asset man-
agement in deciding when the next major renewal should be carried
out, instead of performing routine maintenance. If the TGDR histo-
gram shows a major part of the track section having a high TGDR,
and MSI summaries imply that routine maintenance has had little
effect on retaining sufficient track geometry, the asset manager
should start preparing for track renewals.

The network-level analysis also requires assessments of future
tamping needs. These are best presented by a bar chart depicting the
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number of meters of track to be tamped in future years (Fig. 15).
From illustrations like the one presented by Fig. 15, the asset man-
ager can assess the need for maintenance funding and resources for
the years to come. For example, if maintenance contracts are to be
tendered, the asset manager can inform bidders about the expected
amount of tamping required so that the amount of maintenance
work and the number of tamping machines can be estimated. Fur-
thermore, if the asset manager wants to represent the uncertainty in
the estimations of future tamping needs, uncertainty can be calcu-
lated using, for example, a Monte Carlo simulation, as the linear
models and PIs contain the necessary input data for simulating fu-
ture observations; however the practical application for this is left
for future research.

By combining the network level illustrations, the asset manager
can answer the following questions:

• What are the mean and extreme TGDR values on the network?
• How has the TGDR evolved on a network level, and how do

different networks compare?
• Has tamping been effective on the network?
• What is the expected amount of tamping on the network for the

years to come?

Conclusion

This paper presented visualization techniques that help bring track
geometry deterioration modeling from research into practice. In
everyday asset management, the problem has been that track geom-
etry deterioration modeling results are generally too complex and
difficult to handle in daily operations. Therefore, this paper provided
suitable visualization techniques, with which track geometry deterio-
ration modeling results can be utilized by practitioners in asset man-
agement. This paper also demonstrated howmodeling based on cross
section data can be used for examining the track geometry behavior
of longer sections of track and even for the whole rail network.

This study adapted the principles of track geometry deteriora-
tion modeling from the work of Neuhold et al. (2020), by slightly
altering some aspects to better suit the data measured in Finland.
The modeling approach was a robust linear model of a rolling
200 m LL SD. Future observation prediction accuracy was esti-
mated using the PI, and past maintenance success was measured
using the MSI. The proposed modeling methods are best suited
for the LL SD, as it is generally observed to exhibit linear deterio-
ration behavior. Other indices could work just as well, providing
they follow linear deterioration behavior.

The main innovation of this study, i.e., how to connect suitable
track geometry deterioration visualization techniques to different
practical situations in asset management, is summarized in Fig. 16.
The visualizations provide the following benefits:
• The cross-section level analysis helps to analyze isolated de-

fects, their history and future development.
• The track section-level analysis provides a way to analyze lon-

ger sections of track to identify problematic areas and explore
maintenance history, along with future maintenance timing.

MSI = 1: 48.9%

MSI = 2: 13.1%

MSI = 4: 29.1%

n/a MSI: 8.9%

MSI = 3: 0%

25
5+

00
00

25
5+

02
00

25
5+

04
00

25
5+

06
00

25
5+

08
00

25
6+

00
00

25
6+

02
00

25
6+

04
00

25
6+

06
00

25
6+

08
00

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

25
7+

00
00

Y
ea

r

Distance (km+m)

Fig. 14. Illustrations of MSI for a two kilometer section of track.

2022 2023 2024 2025 2026

P
re

di
ct

ed
 n

um
be

r 
of

 m
et

er
s 

to
 b

e 
ta

m
pe

d

Year

Fig. 15. Demonstration of an illustration of future tamping needs.

© ASCE 04021106-10 J. Transp. Eng., Part A: Systems

 J. Transp. Eng., Part A: Systems, 2022, 148(2): 04021106 



• The network level analysis summarizes the condition, past
maintenance effectiveness, and future maintenance needs of
complete track sections or even rail networks, into simple illus-
trations that help to make strategic decisions and allocate
resources.
Lastly, several needs for future research were identified:

• A reliable method for detecting tamping areas in the track geom-
etry history without the use of tamping records should be estab-
lished to enhance the accuracy of linear regression modeling.

• The initial settlements after tamping should be further investi-
gated to determine their duration in different circumstances and
effect on relative and absolute track geometry.

• Region-specific research on TGDRs and suitable limit values
for them should be conducted to provide comparable TGDRs
from different environments.

• Uncertainty measures for the estimated amount of required fu-
ture tamping should be defined.

Data Availability Statement

Some or all data, models, or code generated or used during the
study are proprietary or confidential in nature and may only be pro-
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Railway track geometry deterioration indicates degradation in the underlying track
structures. Monitoring and predicting this behavior are important as is investigating the
root causes contributing to the deterioration. Without knowing the causes, assigned
remediation might not result in a long-lasting correction. However, there is little
research regarding the pragmatic aspects of investigating the root causes of track
geometry deterioration utilizing real-world data sources. For this purpose, a new
method was explored. After reviewing methodologies, the chosen approach was an
association rule data mining method: General Unary Hypotheses Automaton (GUHA).
The initial data used in data mining comprise data from asset management and
multiple measurement systems, including a track geometry measurement vehicle, a
track stiffness measurement device, ground penetrating radar, and lidar. The results
of the GUHA data mining are hypotheses based on the initial data and can be used
to indicate the most common and uncommon types of structures regarding their track
geometry deterioration behavior and the attributes governing the behavior of a certain
structure type. Therefore, the GUHA method was found to be a suitable method
for investigating the root causes of track geometry deterioration from comprehensive
railway track structure data.

Keywords: association rules, condition monitoring, data mining, railway track, track geometry deterioration

INTRODUCTION

Railway track structures endure harsh conditions and countless damaging loading cycles in their life
cycle. During this life cycle, which usually lasts many decades, the structures degrade and require
intermediate maintenance. However, the need formaintenance is not generally homogeneous along
the length of a track section: Some areas require much more frequent maintenance than others. If
the heterogeneous nature of degradation is not accounted for, dangerous conditions regarding train
safety can occur. Furthermore, if the uniform maintenance for the whole track section is assigned
according to the needs of the weakest parts of the track, plenty of unnecessary maintenance will be
conducted, and money will be wasted. Therefore, the condition of the whole track section needs
to be monitored.

The condition monitoring of track structures is widely conducted using track geometry
measurement vehicles that measure deviations of track geometry using onboard measurement
systems (Esveld, 2001). The deviations indicated by the measurement systems indicate wear or
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movement in the track structures. These measurement systems
continue to be developed, and new technologies are applied,
for example, conducting measurements from in-service vehicles
(Weston et al., 2015).

The track geometry measurements require detailed analyses to
ensure train safety, and they are traditionally done by comparing
the measurement results to limit values set by the track owner.
Many different techniques can be used in this type of results
analysis as described by Berawi et al. (2010).

Analyzing the condition of track geometry using more
sophisticated methods has been a popular branch of science
as is evident from the number of different approaches for
track deterioration modeling (Higgins and Liu, 2018). Especially,
track geometry deterioration modeling has been popular. Track
geometry deterioration is the process of uneven settling of track
structures, which is observed by obtaining increasing deviations
in track geometry, when new measurements are conducted and
time progresses. If this process is modeled with great detail,
either with a deterministic or a stochastic model, the required
maintenance can be planned in advance, which leads to better use
of the track availability and reduced maintenance costs.

Track geometry deterioration modeling is a worthwhile
exercise as it has been proven to reduce costs in assetmanagement
(Andrews et al., 2014). However, deterioration modeling is
solving only half the problem. Another important aspect to
consider is investigating the root causes of track geometry
deterioration. These root causes are here defined as the track
structure features associated with increased track geometry
deterioration rates, for example, insufficient drainage or subgrade
deformation issues. Fixing these types of problems for the long
term might require maintenance activities that are different from
routine maintenance.

The most common maintenance activity for correcting track
geometry deviations is tamping. Tamping is the process of lifting
the rails and ties while compacting the ballast under the ties being
lifted. Tamping can level the track geometry to provide a smooth
running surface for trains. However, the effects of tamping
are not permanent (Audley and Andrews, 2013). Furthermore,
tamping does not increase the resilience of structures per se, but
only provides temporary correction of geometry. Deteriorated or
defective track structures continue to cause the track geometry
to rapidly deteriorate to the state before tamping. Therefore, to
attain a more lasting effect, the root causes for track geometry
deterioration must be investigated to assign suitable remediation.

This aspect of investigating root causes for track geometry
deterioration has been researched far less than track geometry
deterioration modeling. Guler et al. (2011) used neural networks
to predict track geometry deterioration based on certain track
asset data. Sadeghi and Askarinejad (2009, 2012) have provided
stochastic approaches to analyzing the effects of track structure
conditions and track components to track geometry.

Although these studies have modeled the effects of different
components and conditions, they do not strictly assess the root
causes of track geometry deviations. For example, the severity of
some features is assessed in these studies, but the commonness of
a problem type is not. To advance the investigation of the root
causes of track geometry deterioration, new methods have to be

tested and applied. For this purpose, a method is explored: first,
by searching a promising method by type, and second, by testing
the chosen method using actual railway track structure data.

Choosing a method for investigating the root causes of track
geometry deterioration can be taken in steps. First, it must
be decided whether to create a deterministic model or use
a stochastic approach. Using a deterministic model requires
many experimental values and knowledge of the chain of events
leading to deteriorated track geometry. Although many track
settlement models are available (Dahlberg, 2001), their use for
this purpose may not be suited as these models rely greatly on
detailed descriptions of different loading and support conditions.
This information is practically impossible to provide for all the
different types of structures on a track section.

Stochastic models, on the other hand, can utilize already
available data, and inarguably, there is a great volume of data
recorded from track structures that can be utilized. This data, in
the case of Finland, includes the track geometry measurement
history; ground penetrating radar (GPR) measurements that
can provide a continuous thickness and moisture index for
different structure layers; laser scanning (lidar) results to
indicate embankment shape, from which drainage depth can be
assessed; track asset data, such as bridges, turnouts, and culverts;
and continuous track deflection measurements conducted as
demonstrated by Luomala et al. (2017).

Therefore, the next step should be to select one stochastic
approach, from which there are many to choose. Considering
the complexity of the multivariate heterogeneous initial data, the
search should be pointed to data mining methods that can digest
this type of data.

Data mining can be understood in many ways and
terms. Terms, such as machine learning and deep learning,
are associated with the subject and are sometimes used
interchangeably. Even though there is no single conclusive
definition of data mining, one well-established way to define it
is to use the terminology provided by Fayyad et al. (1996). In
this terminology, data mining is a step in a larger process that
is knowledge discovery from data (KDD). KDD begins with raw
data, and after many steps in preprocessing the data and applying
data mining methods and expert judgment, knowledge can be
retrieved as the result. In this process, data mining is the step
in which data analysis and discovery algorithms are applied to
produce patterns or models from the data (Fayyad et al., 1996).

Data mining is in itself a whole branch of science, from which
there are many methods to choose. As previously mentioned,
the terminology in the field is not irrefutable, but some
generalizations can bemade. Datamining can be divided into two
categories with different primary goals: predictive or descriptive
methods (Fayyad et al., 1996). The predictive or supervised
methods, in other terminology (Tsui et al., 2006), focus on
learning past behavior and predicting future observations based
on a given input. Descriptive or unsupervised methods, in other
terminology (Tsui et al., 2006), find patterns or relationships
within the provided data, thus giving new insight about the data
that could not be observed with human effort. Most methods
do not belong to one category absolutely but generally exhibit
stronger ties to one than the other (Fayyad et al., 1996).
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Of these two methodologies, descriptive data mining is the
more fitting choice because finding root causes of track geometry
deterioration is closely related to finding novel patterns and
relationships from data and presenting them to the end user.
Descriptive data mining methods can be classified to include
clustering, summarization, association rules, and sequence
discovery (Dunham, 2003) of which clustering and association
rules provide the best descriptions of the relationships between
different data sources, whereas summarization and sequence
discovery are more useful in cases such as text mining or
customer purchase tracking, respectively.

Clustering is organizing the data into groups that represent
data points that are more similar to data inside the cluster than
outside it (Jain et al., 1999). Association rules provide insight on
which data sources are most associated with other data sources
with a specified confidence, often using Boolean logic (Agrawal
et al., 1993). Of these two tasks, association rules better fit the
purpose of this research.

To enhance current practices regarding track geometry
deterioration analysis, the ability to investigate the root causes
of track geometry deterioration using the association rule
data mining algorithm General Unary Hypotheses Automaton
(GUHA) was tested. The choice of the method was based on
the reviewed methodologies and tasks. GUHA provides a way
to assess the relationship of different input data attributes. In
practical terms, using GUHA, associations between available
railway track structure data sources and developments in track
geometry can be investigated.

MATERIALS AND METHODS

Initial Data
The initial data used in the data mining presented in section
“Results from Applying GUHA to Railway Track Structure Data”
concern the Luumäki–Imatra track section located in Eastern
Finland. The track section was initially built in the 1960s and
was renewed at the beginning of the 21st century. The track
section is a 65-km-long electrified single-track line, which has
both passenger and cargo traffic. A major renewal is being
planned on the track section in question because faster and
heavier trains are required to increase the line’s efficiency. The
condition of the track section varies: Some sections of the track
exhibit problematic structures, whereas others have required little
maintenance during their life cycle.

The initial data available from the structures of this track
section were conformed into a single matrix (CSV spreadsheet),
in which a row of data depicts a 1-m-long section of track that is
described by the columns representing the features of the track
structure. The initial data matrix contained 65,142 rows and 25
columns. Of the 25 columns, 24 contained attributes used in data
mining, and one column contained location information in the
form of track meters. This was used only for locating interesting
occurrences, not for data mining. Figure 1 presents a snapshot of
the initial data, and Table 1 elaborates the attributes of the data.

The initial data were essentially either ratio or nominal data
depending on the data origin. Ratio data, in this context, refers

to data having a true zero, order, and quantifiable differences
between data points. Nominal data, in this context, refers to
categorical or binary data in which no ordering, direction, or
distances for the data points are present.

The attribute for track geometry deterioration rate is further
elaborated in section “Track Geometry Deterioration Rate”.
Track deflection was measured using a continuous track
deflection measurement device presented by Luomala et al.
(2017). Two attributes were created from the track deflection
measurements: deflection level (mean) and variations (variance)
in deflection. Furthermore, track deflection measurements
provided geometry cant data, which were used to identify track
geometry elements such as curves and straights.

GPR measurements provided the structural layer moisture
indices and layer boundaries, using which layer thicknesses
were calculated. The structural layer thicknesses were calculated
for ballast, subballast, and embankment. Furthermore, an
attribute for the whole structure thickness, a combination of the
aforementioned, was provided. GPR measurements also revealed
bedrock depths in places where the bedrock level was shallow.

As a peculiarity, Finnish track structures are relatively
thick compared with structures in warmer regions. The lowest
allowable new track structure thickness using frost-resistant
materials varies between 2.0 and 2.6 m, depending on the
region. If the required track structure thickness is not met or
if frost heave problems are observed on old track sections,
frost insulation boards can be installed in the track substructure
to reduce frost penetration. These frost insulation boards are
extruded polystyrene boards that can withstand high pressure.
Before the 2000s, some expanded polystyrene (EPS) boards
were installed in track structures, but these did not endure
well, and the use of EPS boards in track structures has
since been banned.

As presented in Table 1, ditch depth was calculated from
the laser scanning point clouds. Soil maps and historical data
were used to assess the frost susceptibility of the subgrade.
Asset data included binary and categorical attributes for frost
insulation boards, stations, level crossings, bridges, culverts,
turnouts, cuttings, and wayside signaling equipment. Some of
the asset data were retrieved from the railway asset management
data warehouse, and some of the data were created using
the video feed of the track section combined with the GPR
interpretations and laser point clouds. Accordingly, track assets
could be accurately located.

The used initial data exhibited missing values. However, due
to the GUHA method’s ability to handle them and their small
quantity, the missing values were left in the data. Some missing
data were intentionally left blank and was handled in the software
as an attribute category. For example, an empty value for a bridge
implies the non-existence of a bridge. The actual missing values
included ballast thickness on bridges without a ballast layer and
ballast moisture in some turnouts where GPR measurements
were distorted by the frog.

Track Geometry Deterioration Rate
The process for calculating the track geometry deterioration rate
is not unambiguously defined throughout literature. Therefore,
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FIGURE 1 | Snapshot of the initial data.

TABLE 1 | Attributes used in data mining.

Data origin Data attribute Data type Data preprocessing

Track geometry car Track geometry deterioration
rate

Ratio Annual 20 m SD growth

Continuous track deflection measurement Track deflection mean Ratio 20-m mean

Continuous track deflection measurement Track deflection variance Ratio 20-m variance

Continuous track deflection measurement Geometry elements straight
and curve

Binary Calculation of cant indicating a curve

GPR Structural layer moisture indices Ratio Signal attenuation calculations

GPR Structural layer thicknesses Ratio Signal rebound calculations

Continuous laser scanning point cloud Ditch depth Ratio Minimum value from 4 to 8 m
perpendicular to the track centerline in
a 20-m distance

Soil maps Subgrade frost susceptibility
assessment

Categorical Subjective classification

Photos and visual assessment of data Foundation type Categorical Subjective classification

Asset data and visual assessment of data Asset data Categorical and
binary

Subjective classification

Tamping records Tamping history Categorical Subjective classification

it is pertinent to fully elaborate how the calculations have been
conducted, especially as the track geometry deterioration rate is
used as the predominant measure of durability.

The track geometry measurement data were produced using
a track recording vehicle, Plasser and Theurer EM 120 (Ttr1

51), which uses relative measurements from three bogies
to determine track geometry deviations. The measurement
data contained biannual measurements from 2008 to 2018.
Longitudinal geometry deviations were used in calculating the
deterioration rate because the longitudinal geometry is mostly
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affected by themovements in the structures below the track rather
than only by the rails or sleepers themselves.

Different chord lengths and parameters were tested calculating
the track geometry deterioration rate. A 20-m running standard
deviation (SD) calculated from longitudinal deviations (LD)
was chosen as it best described the original longitudinal
geometry deviation signal. The SD values obtained from
the consecutive measurements were used to calculate the
annual increase or decrease in track geometry deterioration.
The mean of the increased annual values was used to
describe the track geometry deterioration rate. If the SD
values significantly decreased from 1 year to another, the
reduction was ignored in the track geometry deterioration
rate because a large reduction in the deviation implied
tamping or other maintenance and repair actions. The track
geometry deterioration rate was calculated for each point in
the track section in 1-m intervals to be in conformity with the
other initial data.

The average deterioration rate for the Luumäki–Imatra track
section was 0.103 mm/a. Track geometry deterioration rate was
lower than average on 70% of the track section, meaning that
problematic areas were not as common as non-problematic areas
but exhibited much higher deterioration rates than the non-
problematic areas. This result was expected because problematic
areas are not generally long sections of the track.

Figure 2 presents an example of the track geometry
deterioration rate of two cross-sections in which the y-axis
represents 20 m SD values of LD. The deterioration behavior
of the two cross-sections is very different. The cross-section at
track kilometer 260 + 390 is at the edge of a section having
frost insulation boards. The cross-section at track kilometer
260 + 360 is approximately 20 m away from the section having
frost insulation boards.

The track geometry deterioration rate for cross-section
260 + 390 was 0.35 mm/a, whereas the corresponding value
for cross-section 260 + 360 was 0.05 mm/a. Tamping can be
observed to have taken place before the 2012 and 2016 winter
measurements. Surprisingly, the 2012 tamping has increased
deviations at cross-section 260 + 360, which might be due to
uneven ballast settlement after tamping. However, the effect
is nearly negligible because the deviations at cross-section
260 + 360 do not tend to grow, and the 2016 tamping has
restored the deviations to their original level. In the spring of
2011, the track geometry was measured both in April and May.
These measurements produced different results at cross-section
260 + 390. Winter of 2010–2011 was especially cold in Finland,
and the measurements indicate the time before frost thaw and
after frost thaw as deviations have significantly increased between
the two measurements.

The calculated track geometry deterioration rate was
visualized and compared with other available data. The
deterioration indicates the condition of a track structure.
Known problem areas, such as bridge transitions (Li and
Davis, 2005) and stiffness variations (Dahlberg, 2010), could
be detected based on the deterioration rate. In addition,
tamping and frost heave problems could be observed
from the track geometry history as large reductions or

fluctuation in the deviations. The track geometry deterioration
rate was generally used as the succedent attribute in
GUHA data mining.

GUHA Method
The GUHA method was initially developed in the 1960s and
1970s, and its background was elaborated by Hájek and Havránek
(1978). An up-to-date and comprehensive presentation of the
method can be found in Jan Rauch’s Observational Calculi and
Association Rules (2013). The GUHA method is considered a
descriptive data mining method. Hence, it is not used to make
deductions or predictions, but to describe and present input data
in new ways to users by producing hypotheses.

The GUHA method is based on logic formalism: the
statements about data are either true (data support a statement)
or false (data do not support the statement). The user provides
general questions about the data. Typical data can produce
millions of statements, among which only a few are true and
interesting to the user. True statements, referred to as hypotheses,
are considered to be answers to the user’s questions.

Data mining was conducted using the LISp-Miner program,
an application of the GUHAmethod (Rauch, 2013). The practical
aspects of using LISp-Miner have been elaborated by Berka
(2016). The GUHA method and its application, LISp-Miner,
have considerably evolved since their discovery and are still
being further developed (Novák et al., 2008; Hájek et al., 2010;
Piché et al., 2014).

Figure 3 presents the generic process for using the GUHA
method and the LISp-Miner program. This process begins
with collecting and formatting data into an initial data matrix
that is suitable for data mining. In the initial data, rows
contain observations, and columns contain attributes (also
called predicates), meaning the properties the observations
have. In GUHA data mining, the key is to set relevant
questions, called analytical questions, related to the data. These
questions can be translated into the GUHA language. Then,
GUHA data mining produces various hypotheses based on
the input data. The hypotheses are automatically generated
according to boundary conditions that are selected by the
user. The hypotheses can vary from trivial to interesting in a
single data mining task. The user can choose the meaningful
ones and further explore them by assessing their contingency
tables and associated predicates. After analyzing the results,
the user can subjectively translate the numeric results into
comprehensible human language.

The boundary conditions of the predicates assigned by the
user include antecedents, succedents, conditions, and quantifiers,
which adjust the preconditions and consequences of data mining.
Adjusting these boundary conditions influences the types and
number of results produced. The user should intend to achieve
a limited number of results to reveal the strongest correlations
within the data.

Antecedents, succedents, and conditions are attributes from
the initial data. Any attribute can be set as an antecedent,
succedent, or a condition, and any number or combination
of attributes can be chosen. Furthermore, the assessment of
attribute categories can be adjusted by choosing the coefficient
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FIGURE 2 | LD 20-m SD of two cross-sections.

FIGURE 3 | Principle of the data mining process using LISp-Miner.

type and length. This process adjusts how many attribute
categories are regarded in one category and how the combined
categories are comprised.

The results (hypotheses) in the LISp-Miner program are
presented to the user as contingency tables (Table 2). Based
on the contents of the contingency tables and hypotheses, the
user can assess the meaning and importance of the hypotheses
and also subjectively examine the initial data and determine the

rows from the data that support a hypothesis and those that
oppose a hypothesis.

InTable 2, n is the number of initial data matrix rows regarded
in a contingency table (n = a+ b+ c+ d), when a is the number
of objects satisfying both ϕ and ψ; b is the number of objects
satisfying ϕ, but not ψ; c is the number of objects not satisfying
ϕ, but satisfying ψ; and d is the number of objects not satisfying
ϕ nor ψ (Turunen, 2018).
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Ten data mining modules have been implemented into
the LISp-Miner software, two of which were applied in the
investigation of root causes for track geometry deterioration.
In the 4ft-Miner module, several quantifiers can be used to
evaluate the contingency table antecedent’s (ϕ) relationship
to its succedents (ψ) when condition (γ) is satisfied. In the
AC4ft-Miner (action miner) module, two contingency tables
are assessed and compared when some attributes remain stable
and others change (called flexible attributes) between the tables
(Berka, 2016). Pairs of rules specific for each quantifier are
available to test the contingency tables’ data.

GUHA quantifiers have an intuitive meaning, for example,
“often implies,” “almost equivalent,” and “above average.”
Association rules based on quantifiers founded implication (also
called p-implication or PIM) and above-average dependence
were applied in both modules used. Founded implication assesses
the commonness of the relationship p between contingency table
parameters a and b. This can be expressed by,

a
a+ b

≥ p and a ≥ Base (Rauch, 2013). (1)

By adjusting p, the user can choose to inquire hypotheses for
which the antecedents and succedents are fulfilled in 0 < p ≤ 1
of cases (Rauch, 2013). For example, the query may involve
asking in which cases the antecedent ϕ and succedent ψ are
simultaneously fulfilled in more than 90% of cases. In other
words, the association between ϕ and ψ is supported by the data
if at least 90% of the cases in which ϕ is satisfied alsoψ is satisfied.

The association rule based on the above-average quantifier
tests how much more common succedent ψ is among the
antecedents ϕ in relation to all the instances of ψ in the whole
data set. This is defined more explicitly by

a
a+ b

≥ (1+ p)
a+ c

a+ b+ c+ d
and a ≥ Base (Rauch, 2013).(2)

when p > 0. Now, by adjusting p, the user can choose how
many more times above-average dependence must appear for the
hypothesis to be accepted. For example, by choosing p = 1, the

TABLE 2 | Contingency table satisfying condition γ (Berka, 2016; Turunen, 2018).

γ ψ ¬ψ �

ϕ a b a + b = r

¬ϕ c d c + d = s

� a + c = k b + d = l n

software will search the cases in whichψ appears two times more
often in relation to ϕ than ψ appears in the whole data.

Frequencies related to quantifiers are also implemented into
the modules. These regulate the Base value: the number of
occurrences in different contingency table slots. For example, a
quantifier for the contingency table parameter a ≥ Base = 1000
can be given. Then, LISp-Miner will not present any hypotheses
for which fewer than 1000 cases have fulfilled the antecedents,
succedents, and conditions regardless of other chosen quantifiers.

Examples of how analytical questions are formed to GUHA
questions and how hypotheses found by LISp-Miner procedures
are interpreted into comprehensible language can be found in the
next section.

RESULTS FROM APPLYING GUHA TO
RAILWAY TRACK STRUCTURE DATA

In this section, the application of the GUHA method to railway
data is demonstrated by conducting three different exemplary
GUHA data mining tasks. The demonstrations show how the
software is used and the types of results that can be obtained.
This section only presents the data mining queries and their
results. The results’ domain knowledge interpretations and the
possible broader implications to railway domain applications are
presented in the discussion.

In the demonstrations, analytical questions about the
development of the track structure condition are formed and
translated to GUHA language in LISp-Miner, and answers
(hypotheses) to the questions are presented. The analytical
questions were inquired using the data concerning the Luumäki–
Imatra track section. The technical information concerning the
queries and their results is composed into Table 3.

Analytical Question 1:What kind of track structure attributes
are associated with a certain type of track geometry deterioration
rate with more than four times above-average dependence?

The first query was conducted using 4ft-Miner module.
Base parameter for contingency table parameter a ≥ 2000
and quantifier over four times above-average dependence were
applied. All attributes except for the track geometry deterioration
rate could be chosen for antecedents, but the program was
limited to choose 2–5 attributes. The only succedent was the track
geometry deterioration rate, for which 1–4 sequential classes
could be chosen by the program. No conditions were applied.

The query concerning analytical question 1 resulted in
112,059,584 verifications (contingency tables), of which 163 were
in accordance with the preconditions (antecedents, succedents,
conditions, and quantifiers). These hypotheses were displayed

TABLE 3 | Technical information of queries.

Query Module Quantifier Base quantifier Verifications Number of hypotheses

1 4ft AAD ≥ 4 a ≥ 2000 112,059,584 163

2 4ft PIM ≥ 0.9 a ≥ 5000 111,967 50

3 AC4ft State before PIM ≥ 0.7 State before a ≥ 1000 2070 40

State after PIM ≤ 0.4 State after a ≥ 300
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TABLE 4 | Contingency table for analytical question 1 and 2 hypotheses.

Hypothesis 1 Hypothesis 2

Succedent ¬Succedent Succedent ¬Succedent

Antecedent 2106 1338 5350 415

¬Antecedent 5247 56,451 28,948 9,441

TABLE 5 | Attributes for analytical question 1 hypothesis.

Antecedent Class

Liner or station Line

Culvert No

Bridge No

Substructure moisture index >50 (%)

Frost insulation board Yes

Succedent Class

Track geometry deterioration rate >0.20 mm/a

to the user. One of the 163 hypotheses is presented below. Its
contingency table is presented in Table 4, and attributes are
presented in Table 5.

Hypothesis that is one answer to analytical question 1
(statement supported by the data): When the track section is
located on a line section that contains no bridges or culverts, its
substructure exhibits a highmoisture index, and a frost insulation
board is installed in the track structure, the highest class of track
geometry deterioration rate is observed 4.4 times more often
than on average.

No conditions were set for the analytical question 1
query, so the whole track section, composed of 65,142
(=2106 + 1338 + 5247 + 56,451) rows of data, is presented in
the hypothesis and contingency table.

Analytical Question 2:What kind of track structure attributes
have the highest correlation to some types of track geometry
deterioration rate on a line section without track structure
discontinuity or frost insulation boards?

Analytical question 2 query was also conducted using the 4ft-
Miner module. Base parameter a ≥ 5000 and founded quantifier
PIMmust be over 90% (p≥ 0.9) were used. Antecedents included
all track structure attributes aside from the track geometry
deterioration rate, discontinuity attributes, stations, and frost
insulation boards. The succedent included the track geometry
deterioration rate, from which the program could choose 1–4
sequential classes. Sections with signaling equipment, stations,
culverts, bridges, level crossings, turnouts, and frost insulation
boards were excluded using conditions.

Analytical question 2 query resulted in 111,967 verifications,
of which 50 were in accordance with the preconditions. One of
the 50 hypotheses is presented below. Its contingency table is
presented in Table 4, and attributes are presented in Table 6.

Analytical question 2 hypothesis (statement supported by the
data): A lower than average track geometry deterioration rate is
observed on 93% of the track structures that are founded on an
embankment, exhibit 300- to 500-mm-thick ballast layers, exhibit

a low structure moisture index, are located on straights, and have
low track deflection variance.

Because conditions were used to exclude certain types of track,
only 44,154 (=5350 + 415 + 28,948 + 9441) rows are now
presented in the contingency table, meaning that 20,988 rows
contained discontinuities, stations, or frost insulation boards and
were not included in the data mining task.

Analytical Question 3: If some track structure attributes are
stable, how does a change in the attribute for frost insulation
boards affect a certain type of track geometry deterioration rate
on a line section without track structure discontinuities?

The third analytical question was conducted using the 4ft-
Action Miner (AC4ft). Base parameter a ≥ 1000 for the before
state and a ≥ 300 for the after state were used. Founded
implication p ≥ 0.7 for the before state and p ≤ 0.4 for the
after state were applied. Antecedents’ stable part included all
track structure attributes except for frost insulation boards,
track geometry deterioration rate, stations, and discontinuities.
Antecedent attribute part included frost insulation boards. The
succedent stable part was the track geometry deterioration rate
from which the program could choose 2–4 sequential classes. In
the conditions, signaling equipment, stations, culverts, bridges,
level crossings, and turnouts were excluded.

Analytical question 3 query resulted in 2070 verifications,
which led to 40 results. One of the 40 results is presented
below. Its two adjacent contingency tables are presented in
Table 7, and attributes are presented in Table 8. There were
47,881 rows of data that met the conditions and were examined
in the hypothesis.

Analytical question 3 hypothesis (statement supported by the
data):When the trackmoisture index is very high and the number
of tamping times is low, a high track geometry deterioration rate
is observed on 79% of the structures where a frost insulation

TABLE 6 | Attributes for analytical question 2 hypothesis.

Antecedent Class

Foundation type Embankment

Ballast thickness 300–500 mm

Structure moisture index 10–40 (%)

Straight or curve Straight

Track deflection variance <0.01 mm

Succedent Class

Track geometry deterioration rate <0.10 mm/a

Condition Class

Signaling equipment No

Straight or curve Straight

Foundation type Embankment

Culvert No

Bridge No

Level crossing No

Turnout No

Frost insulation board No
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TABLE 7 | Contingency tables for analytical question 3 hypothesis.

Frost insulation board No frost insulation board

Succedent ¬Succedent Succedent ¬ Succedent

Antecedent 2014 533 371 2216

¬Antecedent 4996 40,338 6639 38,655

TABLE 8 | Attributes for analytical question 3 hypothesis.

Antecedent Class

Structure moisture index >50 (%)

Number of tampings 1–2

Frost insulation board Flexible attribute

Succedent Class

Track geometry deterioration rate >0.14 mm/a

Condition Class

Signaling equipment No

Straight or curve Straight

Foundation type Embankment

Culvert No

Bridge No

Level crossing No

Turnout No

board has been installed and on 14% of track sections where no
frost insulation board has been installed.

DISCUSSION

Case Track Section Data Mining
The hypothesis for analytical question 1 presented the
combination of parameters that were more commonly associated
with high track geometry deterioration rates, meaning that the
track section is abnormal as regards track geometry deterioration,
and the hypothesis attributes should be investigated further.

The attributes of the hypothesis include common attributes,
such as line sections instead of stations and the exclusion of
bridges and culverts. These do not create a distinct attribute
combination as the vast majority of the track section shares
these attribute types. The other two antecedents are far more
infrequent in the data: high substructure moisture index and
frost insulation boards. However, these two attribute values
are connected due to the GPR measurement technique. Frost
insulation boards increase the GPR moisture index of the
substructure layer because they cause the GPR signal to deflect
and give high readings that would normally indicate the
appearance of moisture. Therefore, it is reasonable to deduct
that the frost insulation boards are playing a major role in this
hypothesis. Based on this information, the areas located on line
sections in which frost insulation has been installed should be
further investigated. Such investigations have been reported in
Sauni et al. (2020).

The analytical question 1 hypothesis has good confidence as
more than 2 km of track support the statement, and about 1.3 km
of track oppose it. If the same hypothesis were to be created for
the rest of the track section, only around 5.2 km of track would
support it, and more than 56 km oppose it. Considering these
lengths, the behavior of the track section in accordance with the
hypothesis antecedents is unusual to say the least.

The hypothesis for analytical question 2 demonstrated the
highest correlation to a particular type of track geometry
deterioration rate. The result implied that almost all cases (93%)
of track sections in accordance with the antecedents exhibit only
low track geometry deterioration rates. This correlation does
not deviate from the average correlation (75%) of the rest of
the track section as much as the correlations in hypothesis for
analytical question 1. Nevertheless, this hypothesis showed that
the correlation is particularly strong as more than 5 km of track
satisfying the antecedents behaves almost uniformly.

The antecedents of the hypothesis for analytical question 2
exhibit properties traditionally associated with good structures
such as low moisture and low deflection variance. The results
are intuitive and demonstrate that the presumptions regarding
the properties presented in the antecedents are justified.
Furthermore, when all the hypotheses for analytical question 2
were examined, it was apparent that all hypotheses’ succedents
were related to low track geometry deterioration rates. This
may be the result of opting out track discontinuities and frost
insulation boards from the antecedents.

A difference could be observed between the types of
hypotheses obtained from analytical questions 1 and 2. Analytical
question 1 produced results concerning abnormal behavior of
track structures, whereas analytical question 2 produced results
concerning typical behavior.

The third analytical question provided a comparison of
two populations that differed by one antecedent class: frost
insulation boards. According to one produced hypothesis, the
existence of a frost insulation board divides track sections
consisting of track built on embankment without discontinuities.
On these structures with frost insulation boards, high track
geometry deterioration rates are observed on 79% of structures.
When only the attribute for frost insulation boards is changed
to no frost insulation board, the commonness of high track
geometry is practically converse at 14%. This result highlights
the major effect of frost insulation boards on the track geometry
deterioration rate.

Prospective of GUHA in Railway Track
Structure Condition Monitoring
In this section, the use of the tested LISp-Miner GUHA data
mining modules and quantifiers is discussed in a broader context
regarding railway track structure condition monitoring.

Stochastic analysis of railway track structures inherently leads
to handling heterogeneous data that originate from multiple
sources. The requirement for an analysis method and software
to handle this type of data is met using LISp-Miner, as text,
numerals, binary, and categorical data can all be used as they are.
Furthermore, missing data and outliers can be handled within
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the LISp-Miner software when creating attribute categories.
Thus, the GUHA method and LISp-Miner software provide an
adequate basis for track structure data analysis.

From the heterogeneous track structure data, the GUHA
method could be used to ask questions related to correlations
between variables and their combinations. Three different types
of questions were asked, for which different module-quantifier
combinations were used.

The 4ft-Miner module with the PIM quantifier can be
used to inquire about the most common types of attribute
combinations. For the investigation of the causes of track
geometry deterioration, these questions help in understanding
the most common types of track structure behavior. This helps
in identifying structures, i.e., the combination of attributes that
generally exhibit only a certain type of behavior.

The 4ft-Miner module with the above-average quantifier
can be used practically for the contrary of purpose as 4ft-Miner
with PIM. The above-average quantifier provides extraordinary
correlations between variable combinations when compared with
other variables’ correlations. In the context of investigating the
causes of track geometry deterioration, this approach can be
used to detect abnormal behavior of some structure types. This
information is of value in detecting the peculiar structure types
that exhibit problematic behavior.

The AC4ft-Miner module with the PIM quantifier approach
investigates the effects of changing one or some of the attribute
classes in a hypothesis. In practice, this method can reveal which
attributes have the dominant effect on a certain type of structure’s
behavior. This feature can be used to individually detect the
attributes contributing to geometry deterioration rate.

The encountered limitations of the GUHA method were the
dependence on initial data and the amount of effort required for
result analysis. The dependence on initial data stems from the
descriptive nature of the method. If the input data do not entail
the features affecting the behavior of the structure, the method
cannot produce results that exhibit such features. The initial data
available for the case track section were vast. However, such data
sets are not readily available for all track sections. To ensure
reliable and interesting results, the method should be used only
if extensive data are available.

The other encountered limitation was the difficulty to
communicate the results to people not familiar with GUHA. The
contingency tables and attributes can be subjectively translated
into comprehensible language, which aids communication.
However, some of the translated hypotheses can be difficult to
fully comprehend as they might contain many variables and
details. To counter the difficulties, visualizing the results should
be further researched.

CONCLUSION

Successful condition monitoring of track geometry requires
not only measurements and maintenance responses to
deviations but also investigations into the root causes for
its deterioration. For the investigations, an approach with
flexible data handling and good generalization ability is

required. Thus, stochastic models were examined instead
of deterministic models as the latter requires much too
specific input information, which is not usually available in
asset management.

From the stochastic models, an association rule data
mining method, GUHA, was selected to be tested. The
method is a descriptive data mining method, meaning that
it describes the input data and presents it to the user in an
informative way. The GUHA method is applied in software,
LISp-Miner, which can handle multivariate heterogeneous
data and produces hypotheses that are statements generated
from the input data.

The use of the GUHA method was tested on actual track
structure data from the Finnish state rail network. Three GUHA
module-and-quantifier combinations were examined. The results
from the data mining were used to generalize the types of domain
information that can be investigated using the GUHA method.
Three following applications for approaches were identified:

• 4ft-Miner and PIM quantifier identifies the structure
types (attribute combinations) that correlate strongly to
a certain track geometry deterioration rate.

• 4ft-Miner and above-average quantifier identifies the
structure types that exhibit behavior, which differs from
the typical behavior of structures.

• AC4ft-Miner module and PIM quantifier identify the
structure attributes affecting the behavior of structures
when changed.

Using the information obtained from these approaches, the
causes of track geometry deterioration can be investigated
from asset data. The method points out the structure types
correlating to certain behavior and identifies the attributes
governing the behavior. The main limitation of the method
is the dependence to the input data. If a feature is not
depicted in the initial data, it cannot be present in the
results either. The GUHA method and LISp-Miner contain
many more approaches in addition to the three tested
ones. Exploring the applicability of these in the future
would be valuable.
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Abstract. In railway track asset management, limited funding is available to en-
sure safe and punctual train traffic on an aging rail network. Assessing railway 
structure problems, their severity and extent is a difficult and laborious task to 
which different methods have been applied. Further, determining problematic ar-
eas and identifying their rehabilitation needs are two separate operations. 
In this research, data mining and data analysis of railway track structure data was 
used to identify different types of track behavior and corresponding substructure 
conditions. A descriptive data mining method, Generalized Unary Hypothesis 
Automata (GUHA), was adopted. Soil samples were taken and tested on the basis 
of the conducted analyses. The purpose was to see whether deductions made from 
the data, concerning the condition of the track substructure, could be confirmed 
with soil sampling and related soil sample laboratory tests. 
The research was carried out in three parts. First, multiple data sources were used 
to comprise an initial data matrix, which was used in data mining and data anal-
yses. After the analyses, fifty subballast and ten ballast sampling points were 
chosen according to the findings from data mining and data analysis, and samples 
were taken and tested. The last part of the research was to see how the laboratory 
test results corresponded with the analyses made from the data. 
The research showed that GUHA data mining and data analysis can be used to 
detect sections of track with problematic substructures, but further research is 
required to improve the initial data. 

Keywords: Data Analysis, Data Mining, GUHA Method, Railway, Sampling. 

1 Introduction 

Designing remediation for aged railway structures can be challenging, especially when 
using limited resources to do so. Design should begin with finding problematic areas, 
identifying different types of problems, and assessing remediation to those specific 
problems. Track geometry deterioration due to track structure degradation is observed 
at different rates in different sections of track. However, there is often uncertainty in 
explaining why some sections of track are more problematic than others. 
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Some problems of track structures may be more easily explained than others. Prob-
lems related to discontinuity in the rail or the track structure can be obvious, for exam-
ple, problems with stiffness variations in bridge transitions. On the other hand, sub-
structure problems can be difficult to detect because the problems might be invisible 
and dependent on seasons for example. For example, treating subgrade problems with 
just tamping will not fix the long-term problems of track geometry [1]. In this paper, 
track substructure and its components are defined according to Li et al. [2]; subballast 
is defined as the granular layer below the ballast and above the subgrade. 

Plenty of data can be produced during the life cycle of a railway line including track 
geometry history, ground penetrating radar (GPR) measurements, track deflection 
measurements, and laser scanning point clouds, for example. However, the information 
about the track structure can be overwhelming to address manually. 

Data mining and data analyses can be used to reveal interesting patterns in vast 
amounts of data. Data mining and data analyses have been used in the railway sector, 
for example to predict track geometry deterioration, optimize track maintenance, and 
model track asset management [3–6]. 

The Generalized Unary Hypothesis Automata (GUHA) data mining method can be 
used to describe an available data set. The method produces hypotheses based on the 
data, which are statements which the data either supports or does not support. The 
GUHA method can be used on historical data of the track structure to determine, for 
example, what has been the observed condition of the track structure on certain types 
of track structures. 

In this research, the railway track structure condition of an old railway line in Finland 
was assessed using GUHA data mining and data analysis. Substructure material sam-
pling points were determined according to data mining and data analyses results. The 
taken soil samples were tested for grain size distribution and capillary rise. The goal 
was to assess the applicability of the GUHA method to railway data and the validity of 
data currently available concerning railway substructures. 

2 Background 

2.1 Track Structure Degradation 

In an ideal situation, newly constructed railway structures would settle uniformly, and 
the track geometry would remain undisturbed apart from descending. This situation 
cannot be achieved because the track structure nor the dynamic traffic loads on practi-
cally any given track section are homogenous and differences in settlements occur. Dif-
ferences in track settlements cause the deterioration of track geometry on track sections 
and even in individual cross sections [7]. 

Shenton [8] has provided a comprehensive explanation for track geometry deterio-
ration with six interacting factors: 1) dynamic forces 2) rail shape 3) sleeper spacing 4) 
sleeper support 5) ballast settlement 6) substructure differential settlement, in addition 
to all of the combinations and interactions of the aforementioned. Shenton has also 
provided causation, in which factors 2–6 increase dynamic loading if a train is moving 
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at a reasonable speed. Shenton’s explanation is encompassing, but it does not explicitly 
elaborate what causes differential settlements in the substructure. 

Li & Selig [9] have provided their explanation on the problems of earth structures, 
which consist of four factors and their interactions: 1) excessive loading (self-weight 
and repeated dynamic loading) 2) fine graded soils 3) high moisture 4) freezing and 
thawing. 

Later, Li et al. [2] have identified the track substructure as the single most crucial 
element related to track performance. According to Li et al., a good track substructure 
has a strong resistance to plastic deformation and provides uniform elastic defor-
mations, which can be achieved by having a well-drained layer consisting of angular 
and durable particles that resist abrasion. A poor substructure is described by a high 
moisture and high fines content [2]. 

According to these explanations, track structure degradation and its manifestation as 
track geometry deterioration can result from several reasons. However, if discontinuity 
in the rail or track structure and faults in the superstructure can be excluded with avail-
able information, problematic substructures should be detectable when fine graded soil 
materials or high moisture contents are observed. 

2.2 GUHA Data Mining 

Data mining, in general, is a collection of computer aided data analysis techniques that 
focus on discovering and modeling meaningful information in big data masses. 

GUHA, an acronym for Generalized Unary Hypothesis Automata, is a logic-based 
method of a descriptive data mining procedure implemented to LISp-Miner software 
[10–12]. Given a large data matrix, in this research of 32 columns and 52,907 rows, 
acquiring answers to questions related to the data is possible. An encompassing de-
scription of the initial data used in this research is provided in section 3.2 and Table 2. 
Briefly summarized here, the columns in the data matrix represent properties (called 
predicates or attributes) the examined objects have, and each row characterizes an ob-
ject; it either has the properties, does not have the properties, or the cell is empty. Ex-
amples of columns (predicates) in this research are structural thickness (12 categories 
with 0.2 m intervals), structural moisture index (7 categories), and data on assets such 
as bridges (3 categories) and culverts (binary categories).  

Analytic questions are presented by using generalized quantifiers such as usually 
implies, above average, almost equivalent, etc. There are dozens of generalized quan-
tifiers implemented in the LISp-Miner software. The software goes through the data 
where applicable and outputs dependencies that the data supports. Some of the answers 
may be already familiar to the user, but there may also be some interesting new ones. 
Next, three different LISp-Miner procedures used in this research are presented, as well 
as some interesting results found in the initial data. 

Founded implication quantifiers are used to find dependencies: ‘The presence of A 
implies the presence of B with confidence p and support n’.  One of the questions pre-
sented in data mining was what kind of track structures exhibit a high track geometry 
deterioration rate with over 80% confidence when at least 700 rows of data support the 
statement. After 10,703,034 verifications, 238 hypotheses were supported by the data, 
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e.g., a hypothesis: a high track geometry deterioration rate is observed on 86% of struc-
tures that exhibit high moisture indices and high track deflection variance. 

Above average quantifiers are used to find situations where among cases satisfying 
A, there are at least 100*p% more objects satisfying B than there are cases satisfying B 
in the whole data. This approach was used to get an answer to inquire, for example, 
which track structure properties or their combinations have an above average correla-
tion to some type of track geometry deterioration rate. After 15,762,789 verifications, 
278 hypothesis were supported by the data, e.g., a hypothesis: the observed track ge-
ometry deterioration rate is high on 96% of track structures that are less than 1.4 m 
thick, no frost insulation board are installed, and the track deflection mean and variance 
are high. The corresponding correlation is 17% on other structures. 

In the Action mining approach, the idea is to find dynamic features in data; some 
predicates are considered stable attributes and some others are flexible attributes. One 
of the analytical questions examined in this research is the following: how do changes 
in the ballast moisture index influence the observed track geometry deterioration rate 
when other parameters are stable. After 715,806 verifications, 437 hypothesis were sup-
ported, e.g., when the track substructure thickness is 1.0–1.6 m and ballast thickness is 
< 500 mm, a low track geometry deterioration rate is observed on 75% of structures 
with a low ballast moisture and on 15 % of structures with a high ballast moisture. 

The hypotheses are translated into comprehensible language from the contingency 
tables that the method and program produce. In practice, LISp-Miner tests 2x2-contin-
gency tables obtained from the data matrix. For example, for the above average quan-
tifier, to accept a dependence ‘A among those cases that satisfy B is 4 times more fre-
quent than A in the whole data’, a condition  

 a/(a+b) > (1+p)((a+c)/(a+b+c+d)  (1) 

must be satisfied by the data in Table 1. For A ‘Track structures thickness < 1.4 m, no 
frost insulation board, track deflection mean is high, deflection variance is high’ and B 
‘High track geometry deterioration rate’, the corresponding 2x2-contingency table is 
presented in Table 1; direct calculation shows that the data supports this dependence. 
Of course, every quantifier has its own condition for acceptance. The quantifiers and 
their formulas are presented in detail by Rauch [11]. 

Table 1. An example of a contingency table. 

 B not B 
A a = 501 b = 19 

not A c = 8,821 d = 43,466 

3 Research Process 

3.1 Case Track Section Kouvola–Kotka 

The case study track section in this research, Kouvola–Kotka, is located in the south-
eastern coastal area of Finland. The track section is a double track from Kouvola to 
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Juurikorpi and a single track from Juurikorpi to Kotka, with respective lengths of 35 
km and 18 km. 

The case study track section was originally completed as a single line track in 1890, 
and the double track sections have been built in the 1950s and 1990s. The age of the 
track section implies that the structures may not be fully compliant with today’s stand-
ards. For example, the required minimum thickness of non-frost susceptible materials 
in a track structure on this area is 2 m, whereas the mean thickness of all structures is 
1.96 m. This means that there are plenty of undersized structures along the track section. 
Further, the materials used may not be compliant with today’s requirements. 

Frost insulation boards are often installed into old track structures in Finland to re-
duce frost penetration into the track structure. On the case study track section, frost 
insulation boards have been installed on over 16 km of the 54 km track section. Frost 
insulation boards should be installed in the subballast 300 mm below the ballast layer, 
according to Finnish guidelines [13]. However, if frost insulation boards are installed 
when the ballast is undercut and cleaned, frost insulation boards are installed directly 
below the ballast layer. Unfortunately, documented information about the installation 
of frost insulation boards is rarely available. 

3.2 Initial Data 

The initial data included track geometry car measurements, GPR interpretations, track 
deflection measurements, laser scannings, and asset data (Table 2). The initial data was 
comprised into a single matrix, where the rows represented one-meter long sections of 
the track, which are described by their properties presented in the columns. 

Table 2. Initial data sources, processing, and usage. 

Data origin Pre-processing Data used for Data type 
Track geometry car 
measurements  

Annual growth of running 20 m 
chord standard deviation 

Track geometry dete-
rioration rate 

Ratio 
1 variable 

GPR Signal rebound calculations Structural layer 
thicknesses 

Ratio 
4 variables 

GPR Signal attenuation calculations Moisture damage in-
dex MDI 

Ratio 
7 variables 

Continuous laser 
scanning 

Minimum elevation 2–6 m per-
pendicular from track center line 

Ditch depth (both 
sides individually) 

Ratio 
2 variables 

Continuous track de-
flection measurement 

Running 20 m chord mean value Track deflection Ratio 
1 variable 

Continuous track de-
flection measurement 

Running 20 m chord variance Track deflection var-
iation 

Ratio 
1 variable 

Soil maps Interpretation Subsoil classification Categorical 
1 variable 

Video and asset data 
warehouse 

Visual inspection Track assets 
(bridges, turnouts, 
culverts, etc.) 

Categorical 
and binary 
7 variables 
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The initial data was gathered in the same way over the entire length of the track section. 
On the double track section, the measurements and analyses concern the western track 
only. Continuous measurements included track geometry, GPR, laser scanning, and de-
flection measurements. Soil maps and asset data were homogenous too over the entire 
length of the track section. Video of the track was also provided, but it was used only 
to confirm and validate other data.  

The initial data contained little missing values. The missing values were imputed 
using other available data. For example, an empty value for a bridge was set to mean 
that there was no bridge and video of the track was used to validate the imputation. 

The input data for track geometry deterioration rate calculations was the track ge-
ometry car (Ttr1 51) semiannual measurements from 2008 to 2018. The track geometry 
deterioration rate was calculated using the annual growth of a 20 m chord standard 
deviation of the measurements. The mean of the track geometry deterioration rate for 
the whole track section was 0.14 mm/a. Over 75% of the track section displayed a track 
geometry deterioration rate less than the track section’s average. This indicates that 
there are few sections of track where the track geometry deterioration rate is high, but 
on those sections, the rate is very high. 

GPR measurements provided information on the substructural layer thicknesses and 
perceived moisture of the substructural layers. Layer thicknesses were used both inde-
pendently and as a sum to indicate combined ballast, subballast, and embankment thick-
ness. A moisture index was calculated separately for the ballast, subballast, and sub-
grade. Also, a combined value of the aforementioned, as described by Arnold et al. 
[14], representing the moisture content of the whole substructure and moisture damage 
index (MDI), was provided. 

A laser scanning point cloud was used to calculate the ditch depth, in order to provide 
information about drainage conditions. The minimum depth 2–6 m perpendicular to the 
track center line was calculated. Further, a 20 m chord minimum of the aforementioned 
was calculated to reduce error due to foliage and wayside equipment. This value de-
picted the ditch depth and was calculated individually for both sides of the track. 

A continuous track deflection measurement car, as presented in more detail by 
Luomala et al. [15], was used to measure track deflection. A 20 m chord mean and 
variance values were both used: the former to indicate the level of deflection and the 
latter to indicate changes in the deflection. 

Other sources, such as soil maps, asset management data warehouses, and a video 
check were used to identify track assets that influence the performance of track struc-
tures. The track asset data included bridges, culverts, turnouts, level crossings, frost 
insulation boards, stations, cuttings, and subsoil assessments. This data was either bi-
nary or conformed to classes using dummy values such as 0 for embankment, 1 for rock 
cutting, and 2 for soil cutting. 

3.3 Applying GUHA Data Mining 

The initial data was used as an input in the LISp-Miner program, which is an application 
of the GUHA method. Questions about the correlations between track structure prop-
erties and the track geometry deterioration rate were inquired. Both outcomes, high and 
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low track geometry deterioration rates, were inquired from several viewpoints. Quanti-
fiers p-implication (PIM) and above average dependence were used in modules 4ft-
Miner, SD4ft-Miner, and Ac4ft-Miner, but only relevant queries were reported. The 
data backing the hypotheses was visualized, and video from the areas was checked to 
verify that no other explaining features outside the hypotheses’ data could be observed. 

 All of the queries used track structure variables as antecedents and the track ge-
ometry deterioration rate as the succedent. Conditions were applied in query 5 and 6 to 
eliminate unwanted variables from data mining. Several other queries were also con-
ducted and many hypotheses per query were generated, but only the relevant queries 
and relevant hypotheses to this research are presented. Altogether, 69 queries were 
made and thousands of hypotheses were generated. 

The following queries about the data were conducted and reported. Detailed infor-
mation about formation and outcomes the queries is provided in Table 3. 

1. What kind of combination of track structure variables is associated with a cer-
tain type of track geometry deterioration rate with more than 90% confidence? 

2. What kind of combination of track structure variables is associated with a 
higher than average track geometry deterioration rate with more than 80% 
confidence? 

3. How does a change in the variable for structure moisture affect a certain type 
of track geometry deterioration rate when other track structure variables are 
stable? 

4. How does a change in the variable for overall structure thickness affect the 
most common type of track geometry deterioration rate when other track struc-
ture variables are stable? 

5. How does a change in the variable for overall structure thickness affect a cer-
tain type of track geometry deterioration rate when other track structure vari-
ables are stable, and structures founded only on embankments or soil cuttings 
are examined? 

6. How does having a frost insulation board affect a certain type of track geom-
etry deterioration rate when only structures that are 1.6 m to 2.4 m thick are 
examined? 

The relevant non-trivial hypotheses are presented below. The hypothesis number 
corresponds to the query number, for example, hypothesis number one is a result of 
query number one. 

1. Track geometry deterioration rate is low on 92% of structures that are built on 
embankments, over 2.8 m thick, and have over 650 mm thick ballast layers, low 
moisture indices, and little track deflection variance. 

2. Track geometry deterioration rate is high on 87% of structures that are built on 
embankments, have a low embankment thickness (< 0.5 m), and the track de-
flection mean and variance are high. 

3. Track geometry deterioration rate is low on 86% of structures with low moisture 
indices, whereas the corresponding percentage is 38% on structures with high 
moisture indices, when in both cases structures are built on embankments and 
do not have a frost insulation board in their structure. 
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4. A high track geometry deterioration rate is as common (about 84% of structures) 
on structures less than 1.4 m thick as a low track geometry deterioration rate is 
on structures 1.6–2.0 m thick, when the track is built on an embankment, there 
is no frost insulation board in the track structure, and the ballast layer is less 
than 450 mm thick. 

5. Track geometry deterioration rate is low on 74% of structures less than 1.4 m 
thick, whereas the corresponding percentage is 36% on structures 1.8–2.4 m 
thick, when in both cases structures have a frost insulation board in their struc-
ture, and the track deflection mean and variance are low, and only structures 
founded on soil cuttings or embankments are regarded. 

6. On structures that have deep ditches, track deflection is low, and a less than 550 
mm thick ballast layer, the track geometry deterioration rate is low on 79% of 
structures that do not have a frost insulation board, whereas the corresponding 
correlation is 16% on equivalent structures that have a frost insulation board, 
when structures only 1.6–2.4 m thick are regarded. 

Table 3. List of the reported LISp-Miner data mining tasks. 

Query/ 
hypothesis 

Module Statistical quantifier 
Frequencies quan-

tifier 
Verifica-

tions 
Number of 
hypotheses 

#1 4ft PIM > 0.9 a > 1,500 3,934,998 45 
#2 4ft PIM > 0.8 a > 700 10,703,034 238 

#3 Ac4ft 
PIM before > 0.7 & 
PIM difference > 0.4 

a (before) 
> 2,000 

134,344 48 

#4 Ac4ft 
PIM before > 0.8 & 

PIM after > 0.8 
a (before and  
after) > 400 

69,071,100 2 

#5 Ac4ft PIM difference > 0.3 a (before) > 1,000 45,736 25 
#6 Ac4ft PIM difference > 0.4 a (before) > 500 19,926 233 

The hypotheses indicated that the moisture content, deflection variance, the thickness 
of track structure, and frost insulation boards affect the perceived performance of the 
track structure. The higher moisture content the structure displayed, the more track de-
flection the structure exhibited, and the thinner the structure was, the higher the track 
geometry deterioration rate was. These results are in line with the literature review in 
section 2.1. 

Frost insulation boards produced somewhat conflicting results. Structures less than 
1.4 m thick have performed well when a frost insulation board was detected in the 
structure. However, the data indicated poor performance on structures which were 1.6–
2.4 m thick and had a frost insulation board in the structure. These structures would not 
generally require a frost insulation board if the materials used to build the subballast 
are not frost susceptible. 
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3.4 Data Analysis 

The initial data was visualized in the Rail Doctor® program so that interesting struc-
tures could be located and sampling points planned. Using the information gained from 
literature (section 2.1) and data mining (section 3.3), structures with above average 
track geometry deterioration rates, structures with high moisture indices, thick struc-
tures with frost insulation boards, and structures with high deflection variation were 
targeted. The sampling points were manually selected using the above-mentioned cri-
teria and avoiding discontinuity areas.  

An example of data visualization is presented in Fig. 1. The x-axis represents track 
kilometers, and track structure data is represented on the y-axis. Starting from the top, 
the y-axis contains structural layer boundary depths, asset data, MDI in color maps, 
relative structural moisture in graphs, subgrade soil classification assessment, the track 
geometry deterioration rate, and track deflection. 

 
Fig. 1. Visualization of data in Rail Doctor®. 

In Fig. 1, three areas are bordered by dashed lines. The left most bordered area exhibits 
high subballast and subgrade moisture on an over 2 m thick embankment. On that area, 
the track geometry deterioration rate is lower than average, and no track deflection var-
iations are detected. The right most bordered area contains a soil cutting, where slightly 
moist subballast is observed, the track geometry deterioration rate is high, and track 
deflection is locally high, which is indicated in the mean and variance of track deflec-
tion. These two bordered areas are of interest with regard to subballast sampling. 

Discontinuity in the rail or the track structure, such as bridges, turnouts, and culverts, 
could easily be detected when the data was visualized. Some of these areas were inter-
preted to be problematic due to their geometry history and deflection, which differed 
vastly from other sections of the track. An example of a problematic bridge transition 
can be found in the dashed area in the middle of Fig. 1. Two peaks in the track geometry 
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deterioration rate are observed in the transitions to the bridge, and track deflection fluc-
tuates. Track discontinuity areas, while interesting, were not the subject of this research. 

3.5 Sampling and Laboratory Tests 

Fifty subballast and ten ballast sampling points were selected along with 15 and 2 back-
up points for subballast and ballast, respectively. Various substructural conditions were 
required, therefore the subballast sampling points were selected as follows: 10 well 
performing points with a low moisture content, 10 well performing points with a high 
moisture content, and 30 problematic areas possibly due to substructure conditions. The 
ballast samples were selected from structures that were interpreted to be problematic 
according to the initial data. 

The subballast samples were taken from two depths: 300–600 mm and 600–900 mm 
below the track bench (adjacent to the ballast shoulder). Some additional samples were 
taken from varying depths if a clear soil layer boundary was detected while taking the 
samples. Altogether, 118 subballast samples were taken. 

All subballast samples were subjected to sieving in accordance with SFS-EN 933-
1:2012 [16]. The grain size distribution and natural water content of all samples were 
investigated. Also, the coefficients of uniformity Cu and curvature Cc were calculated. 

The grain size distributions were surprisingly similar throughout the track section. 
There were 33 samples in which the coefficient of uniformity Cu was less than 5, mean-
ing that the range of particle sizes was narrow. Thirty-one samples exceeded the limit 
values given in Finnish guidelines for subballast materials on the fine graded side of 
the grain size distribution scale. Nevertheless, only six samples exceeded the fines (≤ 
0.063 mm particle size) content limit of 4%. In some samples, a clear presence of the 
ballast material was detectable, but this was an expected result because the same obser-
vation was already determined while taking the samples. 
 The capillary rise test was subjected to 60 subballast samples which were taken 
mainly from the lower depth. Capillary rise was tested by placing samples in plastic 
tubes in shallow water for one week and measuring the highest visible waterline in the 
sample. This value represented the sample capillary rise. The average capillary rise of 
all samples was 31.5 cm. 5.5 cm and 66 cm were the minimum and maximum values, 
respectively. All samples exhibited very low fully saturated zones. 

The ballast samples were retrieved and sieved according to a Finnish national guide-
line for ballast material sampling. The ballast sample was retrieved 30–40 cm below 
the bottom of the rail. A sample weighing 6–8 kg was taken, using a shovel, from be-
tween two sleeper ends from an area the size of 20 cm by 20 cm and 10 cm deep. Ballast 
samples were sieved, and material found on 1 mm, 8 mm, and 25 mm sieves was rec-
orded. A ballast fouling index, described by the sum of the percent finer by weight on 
each of the aforementioned sieves, was used in determining sample quality. According 
to Finnish guidelines, if the ballast fouling index exceeds the limit value of 90, the 
ballast layer must be renewed or cleaned [17]. All ballast samples exhibited low ballast 
fouling indices, which were between 7.2 and 21.9. This means that all tested ballast 
materials are, according to the guideline, in very good condition. 
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4 Results and Discussion 

4.1 Soil Sample Laboratory Test Result Analysis 

Correlations between the soil sample laboratory test results and the initial data were 
investigated. Obtained relevant results are presented in this section. Fig. 2 and Fig. 3 
show box plots of different property classes’ track geometry deterioration rate of all 
samples and samples taken only from structures that do not have frost insulation boards. 
Fig. 4 presents a box plot of different property classes’ d50 grain size concerning all 
samples. The boxes in the boxplot represents the second quartile of the data. The verti-
cal lines (whiskers) represent the lowest and highest data points within the 1.5 inter 
quartile range of the lowest or highest quartile, respectively. Outlier points can be found 
outside the whiskers as empty dots. The crosses in the box plot are means and the hor-
izontal lines are medians. 

The properties in the graphs include capillary rise, frost insulation boards, MDI, d50 
grain size, sample depth, material consistent with guideline grain size distribution for 
subballast (pass or fail), and coefficient of uniformity. Samples from structures with 
frost insulation boards were ignored in MDI boxes, because the GPR results beneath 
frost insulation boards are disrupted by the boards and do not represent true values. 

 

Fig. 2. Box plot of the track geometry deterioration rate of all samples. 
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Fig. 3. Box plot of the track geometry deterioration rate of samples taken from structures that 
have no frost insulation boards. 

Fig. 2 denotes that material properties had no practical effect on the track geometry 
deterioration rate if all samples are examined. Notable differences in the track geometry 
deterioration rate are observed only with regard to the MDI and frost insulation boards. 
High MDI and frost insulation boards are associated with a high track geometry dete-
rioration rate. The effects of frost insulation boards, however, appear to be more dom-
inant to the track geometry deterioration rate than subballast material properties. 

If structures that have frost insulation boards are ignored, the influence of subballast 
material quality in the track geometry deterioration rate can be observed. In Fig. 3, the 
most distinct result in the sample material quality is that samples consistent with grain 
size distribution guidelines clearly exhibit lower track geometry deterioration rates 
compared to samples inconsistent with guidelines. The result, though, is not as notable 
as the effects of frost insulation boards in Fig. 2. 

Further, in Fig. 3, a higher MDI, a smaller d50 grain size, and higher coefficient of 
uniformity values appear to have some correlation to higher track geometry deteriora-
tion rates. Unexpectedly, a low capillary rise appears to have a slightly higher track 
geometry deterioration rate compared with a high capillary rise. 
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Fig. 4. Box plot of d50 grain size of all samples. Outlier points are outside of the graph range in 
all categories except ‘Capillary > 40 cm’. 

Fig. 4 represents the distributions of d50 grain size with regard to other parameters. 
Outlier points are present even out of the plotting range (14–35 mm) due to ballast 
material found in the subballast material, which increases the mean values in all bars 
except the > 40 cm capillary rise. d50 grain size and capillary rise correlated intuitively; 
A lower capillary rise was detected on samples that had larger size particles and vice 
versa. Structures with or without frost insulation boards did not exhibit much variation 
in their d50 grain size distributions. Higher MDI values had a higher mean d50 than 
lower MDI values, even though the medians and upper and lower quartiles were similar. 
Samples taken from a lower depth had slightly smaller d50 grain sizes, but again, the 
medians and upper and lower quartiles were quite uniform. Material in accordance with 
design guidelines was clearly coarser than material that did not meet the guideline lim-
its. 

In many cases, though, GPR interpretations can indicate a significantly moist sub-
ballast layer, yet no major variation in the subballast material moisture content or qual-
ity was detected in the samples taken from these locations, even when structures with 
frost insulation boards are ignored. This may indicate that GPR interpretations are in-
fluenced by the prevailing conditions of the track, which are dependent on many more 
factors than just the subballast material. Another factor influencing the correlation be-
tween GPR interpretations and subballast sample test results is the representativeness 
of samples taken from the slope of the embankment in relation to the material directly 
beneath the center line of the track. 

4.2 Findings from Sample Locations 

The GUHA data mining indicated that frost insulation boards were associated with 
problematic structures when installed in thick structures. However, the materials found 
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in structures having frost insulation boards did not differ much from the non-problem-
atic structures without frost insulation boards. 

For instance, samples taken from around the 218-kilometer pole had no practical 
difference in their grain size distribution, natural water content, or capillary rise. How-
ever, the measured track geometry had deteriorated more than twice as fast on the sec-
tion with frost insulation boards than that on the whole track section on average. As 
track structures or sub soil conditions do not vary much on this section, the only variable 
in the track structure is the frost insulation board. 

Sampling revealed an extruded polystyrene foam frost insulation board installed di-
rectly underneath the ballast. The frost insulation board itself was in good condition, 
but the structure above and below the board was moist. Further, the board was covered 
with a fine graded material, which was most likely fouled ballast (Fig. 5). 

 
Fig. 5. A frost insulation board underneath ballast at sample point 216+068. Photo credit: Toni 
Saarikoski. 

The results indicate that more attention should be paid to the installation of frost insu-
lation boards. The drawbacks of installing a frost insulation board directly under the 
ballast layer instead of installing it in the subballast should be investigated further be-
cause detrimental effects regarding structures’ long-term performance may occur. Frost 
insulation boards may have a fouling effect on the ballast material due to increased 
stiffness variations in addition to drainage conditions that may be compromised. 

Further, the ballast material of the sample point 216+068 was tested in accordance 
with guidelines in effect today in Finland. According to the results, the ballast material 
is of very good quality even though fouling is clearly detectable as presented in Fig. 5. 
This controversy results from taking the sample too high up in the ballast layer where 
a little amount of the fouled material can be found. These results give a good reason to 
review the guidelines in effect in Finland concerning ballast sampling and testing. 
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5 Conclusions 

GUHA data mining and data analyses were used to assess the railway substructure con-
ditions. Subballast and ballast sampling points were chosen according to the data min-
ing and data analyses results. The material properties of the subballast samples and the 
initial data were used to examine substructural conditions and their effects on the track 
geometry deterioration rate. 

The following conclusions were made in this research: 
 The GUHA method is a novel approach to analyzing railway data. The practical 

benefits of using GUHA in analyzing railway data are best obtained in the early 
stages of designing maintenance or rehabilitation of an old railway structure, 
when maintenance data is abundant. 

 The GUHA method could point out specific types of substructures to be problem-
atic. The results from the GUHA data mining were in line with literature concern-
ing explanations for track structure degradation. 

 Using the knowledge gained from the GUHA method, the sampling can be fo-
cused on problematic structures, which would increase efficiency in design. 

 The analyzed sampling data combined with the initial data indicated that frost 
insulation boards displayed a dominant correlation to the track geometry deterio-
ration rate; structures with frost insulation boards were found to be more prob-
lematic than structures without frost insulation boards, even when the subballast 
material or substructure formation did not differ. 

 However, if structures with frost insulation boards were ignored, material quality 
did exhibit correlations to the track geometry deterioration rate. In that case, a 
distinct correlation was detected between the subballast grain size distribution and 
track geometry deterioration rate. If the subballast sample grain size distribution 
was found to be consistent with current guidelines, a lower track geometry dete-
rioration rate was observed. 

 Individual material properties also resulted in an effect; coarse and well graded 
materials displayed a minor correlation to low track geometry deterioration rates. 
Further, a high MDI interpreted from GPR measurements displayed a considera-
ble correlation to a high track geometry deterioration rate. 

 GPR interpretations of soil moisture content did not always correlate with the 
subballast sample test results; some GPR interpretations indicated individual high 
substructure moisture contents in places where the substructure material was 
found to be dry and had a low fines content. This phenomenon was observed even 
when no GPR signal disturbing structures, such as frost insulation boards, were 
detected. 

 Ballast sampling conducted in accordance with current Finnish guidelines did not 
give a true representation of the ballast material found in the structure, due to the 
fouled ballast material located lower than where the sample is to be taken. 

 Future research should focus on depicting substructural conditions more explic-
itly in the initial data, especially the idea that parametrization of drainage condi-
tions should be incorporated into future track maintenance data. 
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Abstract

Purpose – Recent research outputs can be difficult to implement into ongoing safety critical processes. Hence,
research is well beyond current practices in railway assetmanagement. This paper demonstrates the process of
creating tangible change within a railway asset management organization by introducing a framework for
advancing track geometry deterioration analyses (TGDA) in practice.
Design/methodology/approach – The research was conducted in three parts: (1) maturity models were
reviewed and adapted as the basis for the framework, (2) the initial maturity level was investigated by
conducting semi-structured expert interviews, and (3) a framework for development was created in cooperation
with stakeholders during three workshops. The methodology and findings were tested and applied in the
Finnish state rail network asset management.
Findings – The main output of this study is the framework for advancing TGDA in railway asset
management. The novel framework provides structure for controlled incremental development, which is
essential when altering a safety critical process.
Practical implications – The research process was successfully applied in Finland. Following the steps
presented in this article, any organization can apply the framework to plan their development schemes for
railway asset management.
Originality/value – Full-scale implementation of novel models and methods is often overlooked, which
prevents practical asset management from obtaining tangible benefits from research. This research provides
an innovative approach in narrowing the overlooked research gap and brings research results within the reach
of practitioners.

Keywords Asset management, Railway, Track geometry, Deterioration, Framework, Maturity model

Paper type Research paper

1. Introduction
The majority of rail infrastructure funding in the EU gets spent on maintenance and renewals
(M&R) (Commission, 2021). This is because railway tracks endure strenuous loading and harsh
weather conditions in daily operations, resulting in structural deterioration. Furthermore, as
railways are safety critical infrastructure with regard to, for instance, high-speed passenger
traffic and hazardous cargo, their safety needs to be closely monitored. The primary means of
monitoring the condition and safety of railway tracks include conducting track geometry
measurements using a specific track recording car. The track recoding car measures the relative
position of the rails, thus providing detailed information on the condition of the tracks and the
safety of operations. Recently, track recording car measurements have become a source of
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increasing research interest. The literature reviews by Higgins and Liu (2018) and
Soleimanmeigouni et al. (2018b) present the growing amount of research published on the
topic. One driving force for the interest in track recording car measurements is the advances in
data analytics. Novel data analytics method and software are incorporated across all industries,
railways being no exception. The data from track recording cars are usually time series data from
several yearswith high accuracy and decentmeasurement alignment, making the data attractive
for further analysis. Track recording car data analyses have been used, for instance, to analyse
the effectiveness of maintenance (Soleimanmeigouni et al., 2018a), predict unplanned
maintenance needs (Andrade and Teixeira, 2014) and investigate root causes of problematic
track deterioration behaviour (Sauni et al., 2020). All this information is vital to successful asset
management, for example, in selecting the timing and means of M&R.

However, it is exactly here, in the implementation of research results into practical asset
management, where the development lags. In some organisations, practical asset
management revolves more around the personnel’s expertise and experience rather than
on a systemic process. Systemic refers to a documented data-based process in this context.
The problem is that if practical asset management does not utilize track geometry
deterioration modelling, the maintenance actions may be timed poorly or have little impact,
which will lead to repetitive and inefficient M&R. Therefore, it is important to investigate the
maturity of current practices on track geometry deterioration analyses (TGDA) and form a
framework tailored for advancing them. With a controlled process and a documented
framework for advancing TGDA, M&R can be allocated more efficiently in the future. This
type of controlled process development is made possible by applying maturity models
(Albliwi et al., 2014; Helgesson et al., 2012). However, there are no currently available maturity
models for TGDA process improvement, and the available generic maturity models are
typically too general for this specific task, as they are created for organization-wide
development.

The aim of this study was, therefore, to create a framework for implementing TGDA
development in railway asset management. The study was divided into three goals:

(1) Adapt a maturity model for advancing TGDA

(2) Investigate railway asset managers’ maturity level in TGDA

(3) Provide a tangible framework with which railway asset managers can advance their
maturity in TGDA

Consequently, the study was conducted in three parts (Figure 1). First, a generic maturity
model for track geometry management was developed according to literature on asset
management maturity models. Following this, semi-structured interviews of track asset
management professionals were conducted to define the current maturity level. Finally,
workshops were held with track maintenance and asset management professionals to
create concrete steps for incrementally advancing the maturity of track geometry
management. The studywas done in the context of Finnish railway asset management, and
Finland was used as a case example of implementation in parts 2 and 3 of this study. The
main contribution of this paper is the framework for advancing the maturity level of TGDA
in railway asset management. This study also provides a means for determining the
maturity level of TGDA in a railway asset management organization. The rest of this paper
is organized as follows. First, the background of Finnish rail network ownership and
management is elaborated to bring context to the case examples. Also, the background on
TGDA is elaborated. Second, the three-part process is presented. Finally, findings and
conclusion are provided.
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2. Background
2.1 Finnish rail network ownership and management
The reader must consider that this study was done in the context of Finnish rail network
ownership andmanagement. Even though the framework created in this study is meant to be
generic, the underlying organizational arrangements inevitably affect the way the
framework is used. Therefore, this section is dedicated to elaborating the basic structure
of Finnish rail network ownership and management.

The state-owned rail network in Finland is around 6,000 km long. The track network is
mostly single track, and around half the length of the network is electrified. The maximum
axle weight is primarily 22.5 tonnes; however, some lines have 20 or 25 tonne maximum axle
weights. The maximum speed for passenger trains is 220 and 120 km/h for cargo trains, but
most of the network is limited to slower speeds than the maximum. The division of
responsibilities for managing the Finnish state-owned rail network is presented in Figure 2.
Management of the state-owned rail network is run by the Finnish Transport Infrastructure
Agency (FTIA) or V€ayl€avirasto in Finnish. The FTIA is steered by the Ministry of transport
and communications (LVM), which is a branch of the Finnish government. The permits to run
the rail network are controlled by the Finnish Transport and Communications Agency,
Traficom. The FTIA’s role is to be the infrastructure owner and organize transportation on
the network in accordance with LVM steering while satisfying Traficom’s requirements.

The FTIA outsources its daily track management and M&R to private companies. The
FTIA sets the guidelines on which the operations are based. The FTIA also tenders and
supervises the contracts for track management, track maintenance and track geometry
measurements. Track managers are private consultant companies who are responsible for
managing and supervising daily M&R. Daily M&R is conducted by private rail construction
and maintenance companies. Track geometry measurements are conducted by a private
company. Periodical measurements are performed using one track recording car for the
whole network. A new contract for the track recording car was tendered in 2016, and in 2021,
the new track recording car started commercial operation. Therefore, analysing the track
geometry measurement results is very topical in Finland, as new policies and practices are
being formed.

2.2 Track geometry deterioration analysis
Track geometry describes the position and location of the rails. Track geometry can be
measured using either absolute or relative measurements. Absolute measurements are
generally performed using a total station or a GPS measurement device to provide
coordinates for the rails in a specified coordinate system. Relativemeasurements, on the other
hand, provide measurement data about deviations from an ideal geometry, thus describing

Figure 1.
Research methodology
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the smoothness of the track geometry. Relative measurements are usually performed using a
track recording car. Relative track geometry measurements are predominantly used for
statistical TGDA because they are conducted recurrently, continuously, and they offer
information about the quality of the structures rather than positioning information. Therefore,
analyses based only on relative track geometry measurements are discussed from hereon. It is
also worth mentioning that instead of using track geometry measurements, track geometry
deterioration could also be approached with mechanistic models. However, their use is not
regarded in this study, as they are better suited for individual structure resilience analyses
rather than complete sections of track with varying structure types (Elkhoury et al., 2018).

The basic use cases for (relative) track geometry measurements are the inspection of
safety and quality of the tracks. If the measurements reveal deviations exceeding a safety
threshold, traffic is restricted and immediate maintenance actions are taken (Figure 3a). If the
measurements reveal only poor quality, but the safety limits are not exceeded, maintenance is
planned to be conducted soon, but not immediately. The limit values for safety and
maintenance limits are presented in the international standard series EN-13848, and they are
usually specified further in national guidelines.

More advanced use of the track geometry measurements includes collecting data from
several measurements and forming time series data. Typically, the standard deviation (SD) of

Figure 2.
Division of
responsibilities in
Finnish rail network
ownership and
management
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the vertical track geometry measurement signal, or in different terminology, the longitudinal
level (LL) is used in the time series data analyses (Higgins and Liu, 2018). The SD provides a
smooth parameter, which is easy to interpret and align amongst different measurements. The
LL SD values can be plotted and examined manually, and interesting trends can be observed
with suitable tools, for example, individual cross section measurement histories or heatmaps
(Figure 3b and c). However, for more detailed analyses, track geometry behaviour is modelled
using some mathematical idealization. The basic modelling methods include linear,
exponential and logarithmic models (Neuhold et al., 2020). In these approaches, the
maintenance intervals need to be defined first, either from the maintenance history or by
evaluating decreases in the LL SD (Sauni et al., 2022). Additionally, some more complex
models, such as stochastic and probabilistic models, have also been used to model the
behaviour of track geometry (Elkhoury et al., 2018; Higgins and Liu, 2018). Regardless of the
model used, the result of track geometry deterioration modelling is generally a numerical
description of the track geometry deterioration behaviour. The numerical values
representing the behaviour can be used to compare the track geometry deterioration rate
of different areas and time periods, or to evaluate past maintenance effectiveness (Figure 3d).
This information can be combined with other asset data to investigate the root causes for
track geometry issues (Figure 3e) (Sauni et al., 2022). Track geometry deterioration modelling
can be used to predict future behaviour based on the track geometry deterioration history
(Figure 3f) (Sauni et al., 2022). The predictions can be used to prioritize maintenance and
optimise resources before safety limits are exceeded (Figure 3g and h). Prioritizing
maintenance based on track geometry deterioration modelling is necessary, as there are
usuallymore repair needs than there are available funding. After themaintenance needs have

Figure 3.
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been prioritized, maintenance resources (track work machines and timetables) can be
optimized. Maintenance prioritization and resource optimization can be combined in some
organizations, if the maintenance is conducted by the track owner, see for example (Bressi
et al., 2021). Otherwise, if a company, responsible only for track maintenance but not track
ownership, performs the prioritization and resource optimization, they can emphasize
resource optimization to ease their work schedule, instead of focusing on which segments of
the track require the most immediate attention. All the analyses mentioned above are
summarized in Figure 3.

2.3 Maturity models
Maturity models provide a good basis for controlled incremental development, as their
background is in managing large software projects (Paulk et al., 1993). The capability
maturity model (CMM) can be considered one of the original maturity models, from which
many variants have been developed, each with their own characteristics (Albliwi et al., 2014;
CMMI Product Team, 2010; Helgesson et al., 2012; Paulk et al., 1993; Poeppelbuss et al., 2011).
These maturity models have been used, for instance, in setting future goals for development
with high success (Herbsleb and Goldenson, 1995).

Nonetheless, the models are not without criticism. One major critique is that the
readymade models, such as the CMM (Paulk et al., 1993), do not cover every aspect of an
organization (Albliwi et al., 2014). Furthermore, Poeppelbuss et al. (2011) present three general
challenges associated with using maturity models: (1) vastness of theoretical research, (2)
empirical assessment of maturity levels and (3) the lack of one linear sequence for
development in practice.

In this study, the comprehensiveness of maturity models is not as important as their
adaptability in defining the maturity levels within these models. This is due to the research
focusing on a clearly defined process, TGDA, rather than a whole organization. As for the
general challenges associated with maturity models, this study applies only the principles of
past maturity models, which eliminates the need for a readymade model (challenge 1). The
assessment of maturity levels was based on the interviews andworkshops held with relevant
stakeholders which provided a comprehensive assessment (challenge 2). Finally, the end
results, a framework for TGDA development, will be based on a maturity model, but the
process will not be strictly linear (challenge 3). Rather, the process will describe the order of
the steps required for advancing TGDA.

The process of creating a maturity model has been reported in previous studies (de Bruin
et al., 2005; Maier et al., 2012). This includes, at least, phases for planning, developing,
evaluating and maintaining the model (Maier et al., 2012). Planning and developing a
maturity model require vast domain knowledge thatmust be obtained from industry experts,
by conducting surveys, interviews and workshops (Maier et al., 2012). Model evaluation can
be done in different ways: evaluation by themodel authors, evaluation involving the industry
experts and evaluation through practical case-use (Helgesson et al., 2012). The created model
must also be maintained by re-evaluating the current maturity level and revising goals.

Similar to the current study, the supporting ideals ofmaturitymodels have been applied to
different applications in previous research, for example, building information models (Eadie
et al., 2015) and railway cybersecurity (Kour et al., 2019). Maturity models have even been
integrated into railway operations in the International union of railways (UIC) application
guide for asset management (UIC, 2016). However, the maturity model reported by the UIC
covers the overall maturity of an entire asset management organizationwhich is too general a
starting point for specific process development, such as TGDA. Therefore, this study applied
and modified the established maturity model as the basis for TGDA development, as is
reported in section 3 of this paper, to fill this gap in research.

BEPAM
12,6

876



The principal justification for using amaturity model as the basis for TGDA development
was the possibility of assessing current maturity and setting intermediate goals for tracking
development. These strengths have been observed in previous research on the topic (Hirose
et al., 2020). Incremental evolution rather than sudden revolution is preferred also in this case
because the development concerns an ongoing safety critical process, which cannot be
disturbed. More specifically, track geometry measurements are used to determine whether it
is safe to conduct rail traffic. If this process is seized, or the results interpretation is disturbed,
this might result in unacceptable track irregularities going unnoticed, which can cause train
derailments. Furthermore, incremental development helps to form logical progress for the
development as the next maturity level should not be pursued until the conditions of the
current maturity level are satisfied. This prevents, for example, implementing elaborate
deteriorationmodels before data production and pre-processing are in order. Finally, it should
be noted that the primary objective of this research is not only to create a maturity model but
also to develop the competence of an asset management organization. To achieve this result,
maturity models are utilized as the vehicle for implementing development.

3. Research process
3.1 Part 1: adapting a generic maturity model for TGDA development
In this study, thematuritymodel fromUIC (2016) was applied to track geometry deterioration
management. The initial version of the TGDA specific maturity model was created by the
authors of this paper based on the different types of TGDA (cf. Figure 3). The further
development and evaluation of the model were performed with industry stakeholders in the
workshops reported in part 3 of this research. A consensus over the contents of the maturity
model and the respective framework was reached during the workshops.

The generic maturity model was modified into a four-level model with the following levels
(Figure 4). The first level is ensuring traffic safety, as chaotic track geometry management is
not an option for a responsible asset manager. Ensuring safetymeans periodically measuring
track geometry to reveal locations with deviations exceeding safety thresholds and requiring
immediate maintenance. The next level is monitoring track quality, which includes, for
instance, collecting measurement time series data in a database. These data can be analysed
subjectively to reveal areas with recurrent problems and progressive deterioration. The third
level, track geometry management, includes connecting other asset management systems
and data to track geometry measurement databases and modelling track geometry
deterioration. With these advancements, for example, the root causes of track geometry
anomalies can be investigated. The last level, optimizing track geometry, contains optimizing
and prioritizingmaintenance according to available maintenance resources, track repair time
and track class, for instance. The excellent level was not considered because excellence can be
defined as having fully optimized maintenance.

Figure 4.
A generic maturity

model applied
to TGDA
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The TGDA specific maturity model was used as the basis for investigating the maturity
level in Finland (part 2 of this study) and for determining a detailed framework for future
development (part 3 of this study). Detailed contents for each level in thematurity model were
researched in part 3 of this study.

3.2 Part 2: investigating the maturity level in TGDA
The aim of this part of the study was to find a suitable way of assessing the current maturity
level in TGDA. The current maturity level must be investigated first because it is pertinent to
create the framework based on actual needs from the industry, as the framework is to be
implemented in practice. Thus, the current processes and development needs for TGDAmust
be investigated by interviewing experts in the field. In the case of Finland, the interviewees
included experts from all private companies that had either trackM&R or trackmanagement
contracts with the FTIA and FTIA’s own personnel. Most interviews were group interviews
comprise experts from the same organization. The interviewees were a representative sample
of Finnish railway asset management as all track management areas and organizations were
represented. The interviewees included:

� 5 track maintenance experts from 3 track construction companies

� 12 asset management experts from 4 track asset management companies

� 5 track inspection and maintenance experts from the infrastructure owner

The interviewees were highly experienced with 18 years of experience from the railway
sector on average.

The interviews were conducted as semi-structured interviews. The rationale behind
choosing semi-structured interviews as the mode of surveying included:

� Low number of interviewees, n 5 22

� Exploratory nature of the interviews

� Possibility of group interviews

The low number of interviewees was due to the limited number of people working closely
with track geometry data in Finland. Furthermore, the interviews were exploratory as there
was little written about current practices in Finland. Also, many participants wished to be
interviewed in groups alongwith colleagues from their organization to allow for colleagues to
supplement their answers. Semi-structured interviews allowed for taking all these into
consideration while still having some control on the topics that were discussed in the
interviews.

All interviews followed the same format. The interviews were segmented into three
themes with relevant subquestions. The subquestions were used to generate discussion and
to guide conversation if needed, but the participants were free to answer as they pleased, and
follow-up questions not belonging to the standard form were presented as conversations
diverged. The themes and questions were identical for every interviewee regardless of their
position or organization. The basic structure of the interviews is presented in Table 1. The
interviews were conducted, reported and analysed in Finnish, but the form and conclusions
were translated into English for this paper.

The interview structure had a larger number of simpler questions introduced first to get
the interviewees talking and relaxed about answering. Later in the interview, the questions
were more open ended and there were fewer of them to allow the interviewee to answer in
greater length, and possibly even wander off topic. The purpose of theme 1 and its
subquestions was to investigate the current use of track geometry measurement results and
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describe the general process of handling the data in the organization. This theme was
especially important because the framework was to be built upon current practices, which
were unknown beforehand. Theme 2 discussed the analysis of track geometry measurement
results in a narrower focus. Special attention was paid to the further handling and refining of
the results by the interviewees. The ways interviewee have had to work around and
complement the current processes would tell a lot about what deficiencies current processes
have. Questions 6, 7 and 9 had examples within them, which could be interpreted to be leading
the interviewee on. However, thiswas a deliberate choice to have the examples presentedwith
the questions, as an expert on the matter, that can consider the examples to be self-evident
and not mention them otherwise. Theme 3 focused on getting the interviewee to reflect on
what the limitations to the current analyses really are, what could be done to change them and
what would be the effect.

3.3 Part 3: creating a framework based on the TGDA maturity model
Once the maturity model and current maturity level were investigated, it was time to create a
framework for advancing TGDA development. The framework was designed in a set of three
workshops. The topics of workshops were (1) knowledge areas, (2) development paths and (3)
implementation plan. Knowledge areas refer to the categories which form the structure of the
framework. Development paths refer to the tangible contents of maturity levels. The
workshops were held with 2-month intervals in the winter of 2021–2022. The contents of each
workshop regarding the framework are shown in Figure 5.

The goal of the first workshop was to determine the knowledge areas that will structure
the framework. The workshop was held online on Teams, and the group work was done on

Theme Sub questions

T1: Current use of track
geometry measurement
results

Q1: Forwhat purpose do you use track geometrymeasurement results in your line
of work, and what information do you require from them?
Q2: Who handles track geometry measurement results in your organization, and
are there differences between the use-cases of different personnel within your
organization?
Q3: Which guidelines do you follow in analysing track geometry measurement
results, and what other guidance do you know of related to the topic?
Q4: Are there deficiencies in the guidelines related to your use?
Q5: What procedures, related to your work, are conducted/ordered in different
circumstances according to track geometry measurement results?
Q6: Do you use track geometry measurement results for some other purposes
besides analysing the condition of the track, for example, contractual purposes or
work planning?

T2: Procedures for
analysing track geometry
measurement results

Q7: Do you refine the track geometry measurement results (e.g., with statistics,
models or key figures) in addition to the results provided to you?
Q8: Do you know of some methods for refining the measurement results that
would be suitable for your use but are not currently in use?
Q9:What other sources of information do you use when analysing track geometry
measurement results (e.g., plans, maps, photos and reports)?
Q10: What other sources of information would you require to aid track geometry
measurement result analysis, but they are not currently available?

T3: The potential of track
geometry measurement
result analysis

Q11:What could be achieved by analysing track geometrymeasurement results if
current problems did not exist?
Q12: What do you wish to be changed in the processes of analysing track
geometry measurement results?
Q13: What directions for future development do you know of, or would hope to
see, regarding track geometry measurement analysis?

Table 1.
The structure of the

interviews
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the whiteboard application Flinga, which could be operated freely by any participant. There
were 23 participants and four organizers who were divided into groups of 3–4 people, each
group with their own whiteboard. The participants were divided into groups based on their
affiliation so that infrastructure owners, asset managers and maintenance personnel were
mixed and represented as diversely as possible in different groups. The participants were
first asked to come up with possible knowledge areas by answering a supporting question:
“What areas or processes are affected by or connected to track geometry measurements in
your line of work?” From here on, the participants created mind maps of the most essential
knowledge areas and operations related to them. These mindmaps were the result of the first
workshop. The mind maps were later analysed using ATLAS.ti to identify the most
frequently mentioned topics. Overall, 323 observations in 65 codes and 8 code groups were
created. From these codes and code groups, six knowledge areas were created to be further
developed in the second workshop.

The goal of the second workshop was to create development paths to the six knowledge
areas obtained from the first workshop’s results. The knowledge areas were presented to the
participants alongwith preliminary visions for the future of said areas. The participants were
divided into six groups, and each group was given one knowledge area. The first task was to
challenge and supplement the given preliminary visions. After this, blank four-level maturity
models, as described in part 1 of this study, were given, and participants were asked to fill in
the models with concrete actions for each stage. Then, the groups were rotated twice so that
they could comment and supplement the previous groups’ work.

Before the third workshop, an implementation planwas developed in cooperation with the
asset manager. The implementation plan included placing the steps from the framework on a
timeline within a relevant process, whether it be a development project, contract or guideline.
In this way, the contents of the framework could be implemented concretely as the next

Figure 5.
The design of the
workshops
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developmentmilestones for said processes. The thirdworkshop concentrated on commenting
and supplementing the framework and implementation plan. In addition to getting much
valued feedback on the framework and implementation plan, the final workshop played a role
in presenting the results and engaging different organisations in the forthcoming
development.

4. Results and discussion
In part 1 of this study, a maturity model was adapted for incremental advancement of TGDA
in railway asset management. The developed four-level maturity model functions as the
basis, onwhich the frameworkwas built in part 3 of this study. The new knowledge produced
concerned the application of maturity models into a novel domain, TGDA in railway asset
management. The purpose of this maturity model was only to create the structure for the
developed framework, not to be tested and validated as a stand-alone maturity model, as is
common with applied maturity models (Helgesson et al., 2012). The validity of the maturity
model and consensus over the contents of the model were verified during the industry
stakeholder workshops.

The interviews, held in part 2 of this study, were successful in determining the current
maturity of TGDA in Finland. The exploratory nature of the semi-structured interview
provided a systematic way of collecting data while enabling leeway for the interviewees’
answers. The interviews revealed different use-cases and user types, which helped in
designing and supplementing the framework. This novel information was utilized in
constructing the initial framework for part 3 of this study.

As a conclusion from the interviews, the maturity level of TGDA was primarily at the
monitoring track quality level (Figure 6). In Figure 6, the observations in the green area
indicate that the level is satisfied to that degree. The observations in the red area indicate that
the level is not satisfied with regard to the comments. Figure 6 does not depict the maturity of

Figure 6.
The initial maturity

level of TGDA in
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asset management throughout the asset management organization but only the maturity of
the TGDA. There were some observations of more developed analyses made by individuals
on their own. The individual more developed analyses included assessing what quality levels
could be achieved with different tamping plans and connecting asset data to recurring
problem areas. However, overall, current practices in the industry are more focused on the
monitoring track qualitymaturity level. The focus in TGDA has been in identifying problem
areas on track sections and to plan their remediation. For example, numerical track geometry
measurement data are not shared, there are no methods in use for modelling track geometry
deterioration, and asset data are not generally connected to track geometry
measurement data.

The end-result of the workshops was the framework for advancing TGDA in Finland
(Figure 7). The framework included six development paths: Measurement result analysis (1)
referred to the process after measurement when visualizations and analytics are produced for
the user. Data systems (2) covers the software needed to store data and create the analytics.
Maintenance (3) refers to designing, conducting and supervising the maintenance actions
included in the current maintenance contracts, whereas asset renewals (4) indicate repairs
and investments not included in current maintenance contracts (e.g. large-scale track
renewals). Knowledge (5) includes the ability to utilize the results as well as the required
guidelines and training. Lastly, there are the contracts (6) needed to acquire the services
required to achieve a certainmaturity level. Each development path has a vision depicting the
ultimate goal of said path and four maturity levels presenting incremental steps in
progressing towards the vision. The maturity levels increase to the right. A maturity level
contains all the requirements from previous levels, thusmaking the development cumulative.
Before advancing to the next maturity level, all development paths should satisfy the current
maturity level. In this way, the development is incremental and builds upon implemented
practices, which is important in creating tangible progress during development. Also, as
track geometry condition monitoring is a safety critical process, new features must be
implemented one-by-one while making sure the current process is not disturbed.

The framework is a tool for advancing TGDA in railway asset management. The
framework enables examining the development in the present and distant future at the same
time, all the while maintaining focus on the correct order for the development. This is
achieved by following the development paths in the framework. This was found very helpful
when turning visions into actual development projects.

The workshops yielded valuable information to supplement the framework. If the
framework was created using only available literature, many pragmatic aspects would have
been overlooked. For example, the diversity of different TGDA user types and use cases
would not have been uncovered without the workshops. Additionally, the workshops
engaged the stakeholders in the development. As the framework was developed in the
workshops with the stakeholders, the development was transparent, and the stakeholders
had an influence on the framework. This is believed to reduce resistance to change and
provide community support for the succeeding development projects. Similar observations
regarding the benefits of workshops have been made in previous research (Ørngreen and
Levinsen, 2017; Phaal et al., 2007).

The limitations of this framework concern the influences of the Finnish railway operating
environment on the study. The perspective in the framework was a buyer–supplier model, in
which the infrastructure owner acts as the buyer who has the responsibility for implementing
the development. Additionally, the participants were solely from Finland, limiting the
different operating environment experiences obtained in the interviews and workshops.
Nevertheless, the steps within the framework were designed to be universally applicable, but
the global validation of the framework was left as a source of future research. It is also worth
noting that the steps within the framework are not equal in effort. Therefore, the
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implementation of a step must be individually planned, as one step may require years of
development, whereas others only slight amendments to guidelines. The framework should
not be seen as a development project but as a tool for turning a vision into a series of
development projects.

The practical implications of theTGDAdevelopment framework include improvements to
the way data are utilized in safety and condition monitoring in railway asset management.
Currently, much of the data are subjectively assessed, which creates opportunities for human
error. With advanced TGDA, human errors in safety and condition monitoring can be
avoided with, for example, automatic alerts and predictive analytics. Furthermore,
maintenance can be planned more efficiently, thus reducing costs by eliminating
redundant maintenance. These benefits are obtainable by any asset management
organization that increases their capabilities in data analytics.

5. Conclusion
In recent years, research on TGDA has evolved greatly, and novel information on the
condition of railway tracks can be produced to streamline the use of maintenance resources.
However, the implementation of TGDA into railway asset management is lagging due to the
complexity of altering ongoing safety critical processes. Therefore, the implementation of
TGDA requires in-depth research to narrow the gap between research and practice to obtain
tangible societal benefits from previous research.

In this study, a framework for implementing TGDA into railway asset management was
developed. The framework was developed, tested and applied in the Finnish state rail
network asset management. The framework was established in three parts: (1) a maturity
model was adapted as the basis for the framework, (2) semi-structured interviews were
conducted to evaluate the current maturity level and (3) workshops were held to construct the
detailed content of the framework.

The main contribution of this study is the novel framework presented in Figure 7. When
an asset manager identifies their placement within the framework and applies the framework
into designing their development projects, they can create a vision that can be reached with
incremental development. This is especially useful when the asset manager wants to create a
long-term strategy for TGDA development, while keeping the implementation of
development highly practical. Furthermore, the incremental and cumulative progress
achieved with using the framework is much easier to communicate to stakeholders and
implement than abrupt revolution.

The practical implication of this study is the possibility for an asset manager to advance
their TGDA, thus improving the efficiency of condition monitoring, which reduces safety
risks and maintenance costs. The framework was successfully tested and applied in Finnish
state rail network asset management; The current maturity level in TGDAwas identified and
development paths were tailored. However, the limitation of this study was that the
framework was validated only in the workshops in a Finnish operating environment, even
though the framework was designed to be universally applicable. The validation of the
framework into different operating environments is a source of future research. Further
research on the topic could also include different asset management processes, for example,
the life-cycle management of track components.
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