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ABSTRACT shift from reactive information tools to proactive agents, and set

Artificial Intelligence (AI) solutions are becoming prevalent in al-
most all aspects of human life. However, their acceptance may be
limited by a lack of transparency of how the Al works. Explainable
AI (XAI) aims to provide the users of Al systems with an under-
standing of why decisions are made, increasing trust in the system.
To date, research into XAI has focused on the use of graphical user
interfaces, presenting numerical, textual or graphical explanations.
However, Al is increasingly being used in systems that include
physical devices, and hence the need for explainability in physical
or tangible user interfaces (TUI) is also increasing. We present an
initial conceptual framework for tangible explainable AI (TangXAI),
which identifies the potential approaches of communicating XAI
through physical artifacts, using the concepts of data physicaliza-
tion and tangible interaction. The framework provides a basis into
which ongoing research of tangible explainable Al can be mapped
and related research gaps identified.
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1 INTRODUCTION

Artificial Intelligence (AI) has rapidly grown to be a major theme in
the research and development of interactive systems. Al is expected
to be integrated to virtually all application domains across different
life sectors, and will affect people on both individual and societal
levels. When considering the field of human-computer interaction,
Al is expected to become one of the core components in the design
of future interactive systems. The characteristics of Al will drive a
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new challenges for human-centered design [32].

According to the European Commission Ethics Guidelines [15],
Al systems should empower human beings, allowing them to make
informed decisions and foster their fundamental rights. Indeed, the
European Union data protection law includes a right to explanation.
Human-Centered AI (HCAI) can be defined as an approach to strive
for ethical Al for common good, putting people and their needs at
the center of any Al solution, and considering their wider sociocul-
tural context [10, 36, 46]. One element in HCAI is the Human-in-the-
Loop approach, where the human and Al collaborate in the decision
making process, e.g. through the human providing feedback on the
machine’s decisions [48].

Intelligent computing systems are easily perceived as black boxes
by people interacting with or affected by them, and transparency
is a key quality criterion of human-Al interaction. Explainability is
associated with the notion of explanation as an interface between
humans and a decision maker that is both an accurate proxy of
the decision maker and comprehensible to humans [16]. Thus, ex-
plainable AI (XAI) helps users to understand the algorithms and
decisions of Al e.g. giving a reason for a particular decision [46].
Explainability can be considered as a bridge to avoid unwanted or
even unethical use of algorithmic outputs. From a social viewpoint,
explainability can be seen as the capacity to reach and guarantee
fairness in Al [7].

To date, research into XAI has primarily focused on the use
of graphical user interfaces, presenting explanations in numeric,
textual or graphical format, e.g. [2]. However, the penetration of
Al into physical systems — such as smart devices and embedded
systems - is increasing, and hence the need for explainability in
physical or tangible user interfaces (TUI) is also becoming apparent.
Research on tangible interfaces for explainable Al - which we refer
to as Tangible XAI (TangXAI) - is only just beginning to emerge.
For example, almost the only publication on the topic is a 2021
workshop ‘from explainable to graspable AI’ [13]. A further chal-
lenge for HCI design with XAl is that, so far, only initial research
linking the technical aspects of XAI and the concepts of HCI has
been made, e.g. [27]. Such mapping is needed in order to enable
structured design approaches.

In this paper, we present an initial conceptual framework high-
lighting how the fields of XAI and TUI can be brought together to
create intuitive interfaces for a variety of future smart devices. The
framework is constructed based on merging of the concepts from
existing XAI and TUI frameworks found in literature, specifically
the XAI framework by Belle & Papantonis [9] and the TUI frame-
work by Hornecker & Buur [20]. In the following, we first briefly
draw together the prior art on XAI and TUIs. After that, we present
the positioning of our work within the scope of Human-Centered
Al Finally, we present a conceptual framework how the different
XAI approaches can link to TUI design. This initial Tangible XAI
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Figure 1: Tangible XAI - highlighting the relevant domains
and their interconnections.
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(TangXAI) framework can be used to conceptualize and design for
different kinds of tangible interactions to help explain AI’s decisions
to users.

2 PRIOR ART

To provide background to our research, we review prior works on
XAI concepts, tangible interaction and human-centered Al Figure
1 presents the positioning of each of the reviewed domains and
their connection with the human user.

2.1 Explainable AI (XAI) Concepts

Al in the form of intelligent systems, has become a ubiquitous -
and, for most people, mysterious - element in our daily lives. This
has raised issues of trust, control and transparency, spawning the
research field of Explainable AI (XAI) [26, 31]. By explaining, or
exposing the inner workings of Al systems, XAl aims to provide an
understanding of the reasons behind the system’s decisions, such
that users identify that the system is operating fairly, without bias
and providing correct outputs. Through this, users’ trust in the
system is increased [33].

The currently extensive amount of research ongoing on XAI
primarily focuses on either 1) developing XAI ‘algorithms’ to ad-
dress the trade-off between high prediction performance and ease
of explainability, e.g. from black-box models to transparent surro-
gate models [27, 28], or 2) presenting taxonomies of the problem
space, e.g. [6, 7, 9, 28]. Some recent works, e.g. Chromik & Butz
[12] build on this to present guidelines. However, there are only a
few works that present actual novel implementations of XAl inter-
faces, and fewer still that present their evaluation with end users.
Exceptionally, Hohman [19] demonstrates XAI implementations
using interactive online articles published in the parametric press.
Hohman’s works focus on “machine learning interpretability”, i.e.
explaining the underlying Al models and the potential for bias,
rather than addressing explainability during user interaction.

Belle & Papantonis [9] identify 4 general approaches to explain-
ability, simplified rule extraction, feature relevance, local explana-
tions, and visual explanations, and provide examples of the most
common techniques used in each category (Figure 2). Several works
have presented classification of XAI systems by their input and
output formats, e.g. Vilone et al. [43] categorize inputs as outputs
as numerical, rules, textual, visual, and mixed. Through a literature
review, the authors identified, e.g. that numerical output formats
are used primarily for global explanations, whilst textual formats
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are used for local explanations [43]. At high level, we aim towards
finding similar insights when tangible interaction is used as the
communication medium. Here, we note that whilst Vilone et al’’s
classification decouples the input and output formats from each
other, in tangible interaction the user experience often relies on
the close combination of input and output modes, i.e. real-time
feedback (see e.g. [20]).

2.2 Data Physicalization and Tangible
Interaction

Data physicalization transforms data beyond visual representation
on paper or screens and gives it a physical form, and, as a conse-
quence, transforms it from the virtual to the physical world [18, 22].
Physical representation of data also creates the possibility for users
to interact with the data, leveraging human cognitive skills learnt
from the natural world. Lupton [30] discusses the visceral benefits
of “feeling data”, acknowledging that “... humans, digital technolo-
gies and digital data participate and work together in feeling in
complex ways” (p. 13). In the context of XAI, data physicalization
can be leveraged to provide an intuitive means for users to inter-
act with a physical proxy representing the complex data in the Al
system model [39].

The scope of TUIs that may provide novel interface when cou-
pled with Al is broad, stretching from materiality, texture and shape
changing to spatial interaction [20]. The materiality of tangible user
interfaces has been a focus of study [44], e.g. introducing the con-
cept of computational composites [42]. Shape changing interfaces
[34] have, to our knowledge, not yet been connected with XAI
systems. However, e.g. Alexander et al. [1] highlight their potential
application areas, including creating adaptive affordances, augment-
ing users, and communicating information. From a study exploring
the embodiment of Al enabled voice assistants, such as Amazon
Echo, Spallazzo et al. [38] call for “..fostering a more natural in-
teraction, going beyond display-mediated interfaces”, echoed in
Chromik & Butz [12] XAl interface guideline of “complementary
naturalness”.

Hornecker and Buur have presented a tangible interaction frame-
work, including the themes of expressive representation, tangible
manipulation, spatial interaction and embodied facilitation [20]. Ex-
pressive Representation focuses on the potential to convey expressive
meaning though the material qualities and digital representations
of a tangible interaction systems. Tangible manipulation focuses on
a user’s tactile interaction with physical objects, which are coupled
to computational systems. Hornecker and Buur highlight grabbing
and moving interface elements, rapid feedback during interaction
and the importance of metaphor between the interaction and its
effect [20]. Spatial interaction builds on humans natural understand-
ing of the spatial relationships of objects and our ability to move
within in, configuring the space around us. Embodied Facilitation
highlights the effect of objects placement and movement in space
to influence our social interactions.

2.3 Human Centered Al

Prior work has identified specific challenges in the design pro-
cess for human-Al interaction, e.g. difficulties in iterative prototyp-
ing and testing [47]. Hartikainen et al. [17] found in their study
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of company practices that there is a gap in developers’ end-user
understanding due to, among other things, different perspectives
of technical and human approaches. Echoing this, Giaccardi and
Redstrém [14] call for a new paradigm in human-centered design
methods, to address the challenges of Al One key approach in a
human centered Al system is the inclusion of human-in-the-loop,
i.e. the outputs of the Al model are tuned based on user inputs. By
including human-in-the-loop approaches as part of an XAl inter-
face, i.e. users providing feedback on the correctness of individual
predictions [26] or on the model as a whole [11], the performance
of the Al system can be improved [25]. In particular, research has
noted the benefits of real-time iterative feedback in AI systems
[4, 5] - this is exactly one the strengths of TUIs.

3 CONCEPTUAL FRAMEWORK FOR
TANGIBLE XAI RESEARCH

To provide an initial understanding of the potential for tangible
interaction as a communication channel for XAl, we present an
initial framework that overlays the two domains (Figure 2). Based
on this, research can begin to identify the most promising connec-
tions between the domains. To build insights into the potential
combinations of XAI and TUI we make an initial review for each of
the explainability categories identified by Belle & Papantonis [9].
When considering the application of tangible interaction to XAlI,
we consider initial focus on on the more fundamental themes of
expressive representation and tangible manipulation will be most
suitable. The themes of spatial interaction and embodied facilitation
address higher level interaction concepts and typically build on
top of the other themes. In the following we make no distinction
regarding the accuracy of the explanation produced by each XAI
approach, as this requirement will be dictated by each specific use
case (and possibly user). Rather we propose an direction towards
‘usable explanation’ (c.f. usable security [3]), where the overall user
experience with the interactive system is considered, rather than its
technical performance. Following this, Table 1 presents examples
of possible XAI - TUI combinations for an Al that predicts if an
individual is diabetic.

Ly
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Figure 2: TangXAI conceptual framework combining explain-
able AI approaches (from Belle & Papantonis [9]) to be com-
municated by tangible interaction themes (extracted from
Hornecker & Buur [20]).
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Feature Relevance. With feature relevance based explanation,
the influence of each input parameter on the model’s outputs is
given a score. Those parameters with higher scores are the most
important in making the decision. Shapley values (SHAP) are the
most popular method for extracting feature relevance [29]. One
weakness of feature relevance approaches is that they ignore pos-
sible interaction effects between parameters. In some approaches
only those parameters with highest scores are presented as an
explanation [8].

Graphically, feature relevance can be straightforwardly visual-
ized as a bar chart, with each parameter’s score presented as the
bar’s length. Such visualizations maybe directly ported to tangible
interfaces, e.g. representing each parameters with a physical object
with dimensions based on the parameter’s influence. With a tangible
manipulation approach, the explainability output maybe combined
with the parameter input mechanism. For example, with parameter
value input using a set of physical sliders, parameters with higher
relevance provide higher friction to slider thumb movement.

Local Explanations. Local explanations explain a particular
decision by focusing on the model’s behavior nearby the decision,
i.e. they do not provide a full explanation of the AI model over its
entire range of inputs. In simple terms, a local explanation answers
a user’s question ‘why did the Al give this decision?’. Local expla-
nations may be particularly suited for communication by tangible
interaction, as they enable solutions with closely connected input
and output modes, which can be designed as naturally engaging
experiences.

There are several different approaches to probe the model’s be-
havior around a decision, including counterfactuals, anchors and
deletion diagnostics. Counterfactuals demonstrate the minimum
change in input parameters needed to change the decision, i.e. to
cross a decision boundary. In an example TangXAI interface, a
tangible ‘phicon’ [21] could be rotated to move input parameters
across decision boundaries. In an anchors based approach, the deci-
sion boundary is simplified and a simple rule describing moving
from the current decision to cross the decision boundary is created.
Another way to demonstrate moving across a decision boundary is
by deleting specific data points from the training data, i.e. ‘deletion
diagnostics’. Tangible interface implementations could, e.g. present
a set of physical toggle buttons through which data points could
be removed.

Simplified Rule Extraction. With this XAl approach, a simpler
transparent proxy model is created from a black box model. The
developer of the proxy model can select a suitable balance between
the model’s accuracy and its complexity to suit the intended use
case. In its simplest form, the proxy model can be one or more
“if-then” rules, e.g. arranged in a decision tree. For simple proxy
models, expressive representation based approaches could include,
e.g. a dynamically textured touchable surface, where the user is
able to feel the path through the decision tree. Similarly, variations
on Ishii and Ullmer’s well known marble answering machine could
present a tangible manipulation based approach for an interactive
decision tree [21]. For communicating more complex proxy models,
tangible tabletops, employing a combination of digital displays and
tangible manipulation, present perhaps the most promising format,
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Table 1: Examples of possible XAI - TUI combinations for an Al that predicts if an individual is diabetic, based on factors
including body mass index (BMI) and age. The XAI guides the user to the reasons for the model’s classification.

XAI Approach Potential TUI
Feature Relevance Tangible Bar Chart [40]

Glucose 1T e

BMI

Features

Age
Insulin
Blood pressure

Importance

The influence of each input parameter on the model’s outputs is scored. Those parameters with higher scores are the most important in
making the decision, e.g. Shapley values (SHAP) [29]. Such values could be presented through tangible interaction using a physical bar
chart interface [40]. Explainability output may be combined with the parameter input mechanism, e.g. parameters with higher relevance
have higher friction resistance to movement.

Local Explanations Tangible Tabletop [23]

Decision Boundary

Normal ! Diabetic

-
1
I Increase BMI

' by3andage
Increase \ by 2years
BMiby3

From the Al model’s output value (x) a minimal set of changes needed to change the output category are identified (counterfactuals), i.e.
why did the AI give this decision? An interactive tabletop such as Jorda et al’s ReacTable [23] could provide an intuitive interface for
exploring local explanations. Local explanations may be particularly suited for communication by tangible interaction, as they enable
solutions with closely connected input and output modes, which can be designed as engaging experiences. The related XAI approach of
deletion diagnostics illustrates the effect of removing a data point.

Simplified Rule Extraction Smart Playing Cards [35]
Glucose < 100
no yes
|BMI<26 ‘ |BMI<29 ‘
no yes
Age <30 Blood pressure < 90
no \yes no \yes
Diabetic Normal Diabetic Normal

To explain the black box AI model, a simplified proxy decision tree model is created. An interactive card game with smart playing cards
could provide an intuitive tangible interface for exploring the decision tree, e.g. [35]. For communicating more complex proxy models,
tangible tabletops combining digital displays and tangible manipulation, present a promising format, e.g. Kubicki et al’s TangiSense
tabletop [24].

Visual Explanations AR Sandbox [45]

Individual Conditional

m Expectation (ICE) Plot
i r : : and Partial Dependence

[

(PD) plot (thicker line)

S —

Age

Predicted diabetes
probability

o

The Individual Conditional Expectation plot (ICE) fixes all factors except the one of interest (age in the example plot) and plots one line
per instance. The mean of all instances is the partial dependence (PD). Such plots could be presented through tangible interaction, e.g.
using an AR sandbox type interface [45], where the user can physically manipulate piles of sand which are augmented with projected
colors based on their height.
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e.g. employing interaction similar to the TangiSense interactive
table [24].

Another approach to provide an overall understanding of the
model is the presentation of representative example data points
from the training data [41]. For example, with this approach a
pressure based interface could be used to dynamically vary the
number or representative data points presented.

Visual Explanations. In principle, plotting the AI model’s out-
put for the full range of input values can provide a picture from
which some insights into the model’s operation can be drawn. How-
ever, in most cases the resulting plot is too complex to be understood
and hence some limitations need to be applied. In individual condi-
tional expectation (ICE) plots, all the input parameters except one
are fixed to a certain instance, and thus a simple chart of decision
output as a function of the parameter of interest is created. Simi-
larly, partial dependence plots (PDPs) average out all the model’s
parameters except the one of interest. Tangible chart representa-
tions have been a common form of tangible interface e.g. Taher et
al’s EMERGE 10x10 tangible bar chart [40]. Such TUIs can support
both expressive representation and tangible manipulation aspects
of tangible interaction.

The four approaches of XAI and the possibilities of tangible in-
teractions within those form an initial framework we have named
TangXAL This conceptual framework can help designers and devel-
opers choose suitable combinations of tangible XAI concepts and
implementing them for the users and their tasks in the contexts at
hand. Table 1 provides examples of possible XAI - TUI combinations
for an Al that predicts if an individual is diabetic, based on factors
including body mass index (BMI) and age. The XAI guides the user
to the reasons for the model’s classification.

4 DISCUSSION AND CONCLUSION

Al solutions are becoming prevalent in almost all areas of human
life, but people using or affected by those solutions are not always in
control of the Al. Human-in-the-loop approach has been promoted
in recent years, e.g. [37], to ensure that users of Al applications can
guide and direct the functioning of the AL AI has special charac-
teristics such as proactiveness and dynamic outcomes, leading to
unpredictability from the user’s viewpoint [32]. Such characteristics
caused by complex Al algorithms and vast amounts of data intro-
duce non-transparency to the user interfaces of Al systems (ibid.).
This calls for new human-entered design approaches - however,
guiding frameworks for this are largely missing [17].

Explainable AI (XAI) is advocated as the approach to overcome
the challenges of opaque Al systems [12]. While the recent XAI re-
search has focused on graphical user interfaces, the everyday world
is still largely tangible. The domain of tangible user interfaces (TUI)
has been well established as a research field for several decades,
and an extremely broad set of prior work, as well as commercial
products exists. The capabilities of tangible interaction to create
natural, intuitive user interfaces for complex data can be applied
to provide interfaces to the complex and often abstract domain of
explainable Al systems. As a topic within TUI, data physicalization
is showing promise in making abstract concepts concrete to the
users [1, 30].
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In this short paper, we introduce a “merging” of the concepts of
XAI and tangible interactions with Al and propose an initial frame-
work, TangXAI to help create understanding between the more
technical explainability approaches and the viewpoint of the hu-
man user who acts in the world in an embodied manner. Hornecker
and Buur’s tangible interaction framework [20] overlaid on Belle &
Papantonis’s four general approaches to explainability [9] provides
a comprehensive platform for understanding the possibilities of
tangible and physical interactions for XAL To our knowledge, this is
the first time that the concepts of XAI and TUI have been connected
on a conceptual level. In our framework we have illustrated the
addition of an explainability layer to an Al system and how it could
be combined with physical and tangible interaction. Through this
framework, we aim to help developers improve the transparency
and understandability of Al decision making, as well as enabling
new forms of human-in-the-loop AL

To further develop and evaluate the framework, a set of tangible
interactions should be implemented and evaluated to identify those
best suited to convey explanations of decisions of Al systems in
our physical realm. In out future work we aim to conduct studies of
real-world cases. Two especially prominent application domain for
tangible XAI user interfaces are industrial machinery and personal
health, in which Al outputs are based on a large and dynamic sets
of input data, and in which the users have high stakes to remain in
control.
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