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Abstract—The modeling of wireless communications channels
is often broken down into two distinct states, defined according
to the optical viewpoints of the transmitter (TX) and receiver
(RX) antennas, namely line-of-sight (LoS) and non-LoS (NLoS).
Movement by the TX, RX, both and/or objects in the surround-
ing environment means that channel conditions may transition
between LoS and NLoS leading to a third state of signal
propagation, namely quasi-LoS (QLoS). Unfortunately, this state
is largely ignored in the analysis of signal propagation in wireless
channels. We therefore propose a new statistical framework that
unifies signal propagation for LoS, NLoS, and QLoS channel
conditions, leading to the creation of the Three State Model
(TSM). The TSM has a strong physical motivation, whereby
the signal propagation mechanisms underlying each state are
considered to be similar to those responsible for Rician fading.
However, in the TSM, the dominant signal component, if present,
can be subject to shadowing. To support the use of the TSM, we
develop novel formulations for the probability density functions
of the in-phase and quadrature components of the complex
received signal as well of the received signal envelope. The offered
results are corroborated with results from respective computer
simulations, whilst it is shown that the proposed model is more
versatile than existing conventional models.

I. INTRODUCTION

S IGNAL propagation in wireless channels is often assumed
to take place through one of four physical mechanisms,

namely line-of-sight (LoS) propagation (or free space propa-
gation), reflection, diffraction, and scattering [1]. Determining
how these mechanisms interact and contribute to the overall
signal reception is non-trivial. In practice, it depends on a
number of factors including the geometrical configuration
of the transmitter (TX) and receiver (RX) relative to one
another, the characteristics of the operating environment, the
presence of blocking and scattering objects, and the frequency
of operation, to name but a few. Also, LoS propagation
and specular reflection tend to be the dominant processes in
terms of the overall power contribution [1], while diffraction
and especially scattering are critical for supporting commu-
nications in non-LoS (NLoS) scenarios where there may be

no dominant signal path between the TX and RX [2]. In
many practical wireless applications, the transition between
LoS and NLoS channel conditions is rarely discrete and
involves a third state referred to as quasi-LoS (QLoS) [3],
obstructed LoS [4]–[6] or near LoS [7], [8]. In this transitory
phase, there may be a reconstitution of the weighting of each
of the propagation mechanisms listed above as the channel
moves from LoS to NLoS and vice versa. For example, by
moving from LoS, through QLoS to NLoS, a reduction in
the power contributed by the dominant component can be
expected (through shadowing), meaning that the link will
become increasingly reliant on the mechanisms associated
with NLoS propagation. Furthermore, new contributing signal
components and changes in the direction of arrival (DoA) may
emerge as the geometrical propagation paths evolve.

The signal propagation picture described above is a compli-
cated one, even for each of the three states individually. Ac-
knowledging this, it is therefore unsurprising that researchers
tend to favor the use of statistical models [2], [9], [10]
as opposed to analytical models [11]–[13], which become
difficult to use beyond the simplest scenarios. The most com-
monly adopted models for LoS and NLoS propagation are the
Rician [9] and Rayleigh [2] fading models, respectively [14].
Nonetheless, for many emergent applications, this may lead
to an oversimplification of the signal propagation problem.
As a consequence, the realistic evaluation of the performance
of wireless communication systems with stringent quality of
service requirements becomes detrimentally problematic.

It has been observed through field measurements that the
complicated nature of propagation in applications such as in-
body area networks [15]–[17], device-to-device communica-
tions [17], [18], vehicle-to-vehicle communications [19], [20],
and unmanned aerial vehicle communications [21], [22] can
lead to multimodal behavior in their first-order statistics. Yet,
unfortunately, neither the Rayleigh nor Rician fading models,
in their native form, offer the flexibility to encapsulate the
transitionary behavior of the channel statistics observed in
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these use cases. In this context, a recently proposed amplitude
fading model that can encapsulate bimodal behavior in the
statistics of the channel model is the fluctuating two-ray model
[23], which considers two shadowed specular components
and a scattered signal component. Another model which is
bimodal in nature, is the alternate Rician shadowed (ARS)
fading model [24], which uses a mixture of two shadowed
Rician distributions to represent LoS and NLoS propagation
conditions, whereby the shadowing remains constant across
both. Although it was shown to provide a good fit to empirical
data, the assumption that shadowing will be constant across
both LoS and NLoS states, does not seem intuitive for most
practical scenarios. Markov processes have also been utilized
to model wireless communications experiencing transitionary
behavior, such as the Gilbert-Elliott (GE) model [25], [26].
The GE model is comprised of a two-state Markov process and
has been used to characterise burst-noise channels [25], [26].
However, using a two-state Markov process has limitations,
for instance when the received signal experiences dramatic
changes [27], [28]. As an extension, the finite-state Markov
channel (FSMC) model was proposed [27] and later used to
model Rayleigh faded channels [28]. Application of the FSMC
model is non-trivial and is hampered by the fact that this model
only considers Rayleigh faded states. This means that it will be
unsuitable for representing the more intricate fading conditions
that may arise in many emergent wireless applications, such
as those considered in the present analysis.

Notably, the characteristics of the received signal envelope
reveal only part of the overall channel picture since of critical
importance are also the statistics of the received signal phase
and those of the in-phase and quadrature components of the
complex received signal. Based on this, in this paper we make
significant contributions towards a unified model for short-
term fading1 in LoS, QLoS and NLoS signal propagation
scenarios. To the best of our knowledge a single amalgamated
model which encompasses these three channel states has yet
to be proposed in the open literature. Herein, we refer to
this novel fading model as the Three State Model (TSM).
Within each state of the TSM, the dominant component can
be perturbed by shadowing, as realistic communication scenar-
ios dictate. Also, anisotropic filtering of the scattered signal
contribution is accounted for through the TSM’s second-order
statistics where the direction of departure (DoD) and DoA are
modeled using the Von Mises distribution [29]. Additionally,
movement of the TX, RX or both is also considered in
the construction of the model. To promote the use of the
TSM, we develop many of its fundamental statistics including
the probability density functions (PDFs) of the in-phase and
quadrature components as well as the received signal envelope.
It is worth mentioning that although at first glance, some of
the expressions obtained for some of the fundamental statistics
may appear arduous, a key feature of the TSM is that it is
completely defined in terms of underlying Gaussian random
variables (RVs), meaning that unlike many other comparable
models, it has a strong physical motivation, and its simulation
is relatively straightforward.

1Or equivalently small-scale fading if considering distance instead of time.
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Fig. 1: The state-transition-rate diagram of the TSM.

II. PHYSICAL MODEL AND ANALYTICAL FORMULATION

The TSM characterizes scenarios where a fading channel
may transition between three states, namely LoS, QLoS, or
NLoS. Each state has an associated probability of occurrence,
pι, such that

∑
ι∈{L,Q,N} pι = 1, where the elements in ι

represent a state according to L = LoS, Q = QLoS, and
N = NLoS. The transitions between the three states within the
TSM can be modeled using a Markov process. The transition
from one state to the next corresponds to a change in the state
of the (direct) optical signal path between the TX and RX.
As depicted in the state-transition-rate diagram of Fig. 1, the
transition rate from the LoS state to the QLoS state and back
again is β0 and ν1, respectively. Likewise, the transition rate
from the QLoS state to the NLoS state and back is β1 and ν2,
respectively. Following from this, we may define the ratios,
A0 = β0/ν1 and A1 = β1/ν2, with both A0 and A1

being positive real numbers. This then allows us to write the
probability of occurrence of each of the three states as [30]:
pL = [1 + A0 + A0A1]

−1, pQ = pLA0, and pN = pLA0A1.
In addition to these mathematical relationships between the
transition rates and steady state probabilities, it is convenient
to establish some qualitative links between them. Letting S0,
S1 and S2 represent the LoS, QLoS, and NLoS respectively,
then for Ai = 1, the states Si and Si+1 are equally likely.
For Ai > 1, Si+1 is more likely than Si, and otherwise for
Ai < 1. The QLoS state can be interpreted as a transitionary
state, where the geometry, and hence statistics of the channel
are not fully described by either LoS or NLoS.

Since only one of the three states may occur at a time,
S = Rι exp(jΘι) represents the complex signal envelope at
a particular instance, where Rι is the received signal envelope
and Θι is the phase of an individual state. In many signal
propagation scenarios, especially in short range applications
the geometry of the propagation problem is such that dominant
signal paths may exist even in what would be considered a
NLoS channel (e.g., via a strong specular reflection from a
smooth wall or similar surface). In such scenarios, any domi-
nant component which may be present could be subjected to
shadowing. Any shadowing affecting the dominant component
in each state is described through an independent shadowing
process, causing the dominant component to fluctuate. Letting
Xι and Yι represent the in-phase and quadrature components
of a state respectively, it follows that S = Xι + jYι,
R2

ι = X2
ι + Y 2

ι , Θι = arg(Xι + jYι), Xι = Rι cos(Θι),
Yι = Rι sin(Θι). Thus, the received signal power of each
state, can then be modeled as

R2
ι = (Csca−i,ι + ζιCdom−i,ι)

2 + (Csca−q,ι + ζιCdom−q,ι)
2,

(1)
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where Csca−i,ι and Csca−q,ι are mutually independent Gaus-
sian random processes with E[Csca−i,ι] = E[Csca−q,ι] = 0,
E[C2

sca−i,ι] = E[C2
sca−q,ι] = σ2

ι , where E[·] denotes statis-
tical expectation. Cdom−i,ι and Cdom−q,ι represent the time-
varying amplitudes of the in-phase and quadrature components
of the dominant signal respectively, with the variation related
to the embedded Doppler effect [31], and ζι models the
fluctuations of the dominant component. The Rician k factor
of each state represents the ratio between the total power of
the dominant component, δ2ι = C2

dom−i,ι + C2
dom−q,ι, and

the total power of the scattered components 2σ2
ι , with

2σ2
ι =

r̄2ι
1 + kι

, (2)

where r̄ι =
√
E[R2

ι ], that is kι = (C2
dom−i,ι +

C2
dom−q,ι)/(2σ

2
ι ). By also defining ϖι = arg(Cdom−i,ι +

jCdom−q,ι) as a phase parameter, we can write

Cdom−i,ι =

√
kι

1 + kι
r̄ι cos(ϖι), (3)

Cdom−q,ι =

√
kι

1 + kι
r̄ι sin(ϖι). (4)

The normalized term, ζι, simultaneously impacts both the
in-phase and quadrature components. It accounts for any
fluctuations of the dominant component in each individual
state caused by shadowing, and follows a normalized Rician
distribution with PDF given by [32, eq. (2.62)], namely

fζι(ζι) =
2ζι (1 + kSι) exp (−kSι)

exp (ζ2ι (1 + kSι))
I0

(
2ζι
√
kSι (1 + kSι)

)
,

(5)
where I0(·) denotes the modified Bessel function of the first
kind with order zero [33, eq. (8.447.1)] and E[ζ2ι ] = 1.
The parameter kSι controls the severity of the shadowing of
the dominant component, with kSι → 0, indicating severe
shadowing whereas the shadowing vanishes as kSι → ∞.

III. THREE STATE MODEL STATISTICS

In what follows, we derive the distribution of the in-phase
and quadrature components of the complex received signal and
the distribution of the received signal envelope.

A. Distribution of the In-phase and Quadrature Components

Let either Zι = Xι, & λι = Cdom−i,ι or Zι = Yι

& λι = Cdom−q,ι, as required to represent either the in-
phase or quadrature components of the complex received
signal, respectively. The model presented in (1) implies that
when Zι is conditioned on ζι, it follows a Gaussian distri-
bution [34, eq. (2.3-8)]. To find the PDF of the in-phase or
quadrature components for each of the individual states, ζι is
averaged over in the conditioned Zι, similar to [35], yielding

fZι(zι) =

√
1 + kι
π r̄2ι

∫ ∞

0

fζι(ζι)

exp
(

(zι−ζιλι)2(1+kι)
r̄2ι

) dζι. (6)

The integral in (6) can be solved by substituting (5) into (6),
along with [33, eq. (8.447.1)], and applying the identities [33,
eq. (3.462.1)] and [33, eq. (9.240)] sequentially to give (7),

where ηι = r̄2ι (1 + kSι) + λ2
ι (1 + kι), with Γ (·) denoting the

gamma function [36, eq. (06.05.02.0001.01)], and 1F1(·; ·; ·)
the confluent hypergeometric function [33, eq. (9.210.1)].

From the physical model of the TSM it is clear that the
associated TSM first-order statistics are a combination of the
three individual state first-order statistics in proportion with
their probability of occurrence (i.e., pL, pQ and pN ). Now
letting r̄g =

√
E[R2], where r̄g =

∑
ι∈{L,Q,N} pιr̄ι and

using a transformation of variables (zι = z/r̄g), the PDF
of the in-phase or quadrature components of the TSM is
fZ(z) = r̄g

∑
ι∈{L,Q,N} pιfZι(z × r̄g), where fZι(·) denotes

the PDF of the in-phase or quadrature components for the
relevant state as presented in (7). The PDFs of the in-phase
and quadrature component are re-normalized to r̄g , the overall
rms signal level, to ensure Z has unit power. In order to
corroborate our new expressions, Monte Carlo simulations
have been carried out by generating 107 samples of each of
the underlying random processes, Csca−i,ι, Csca−q,ι, and ζι
and evaluating (1).

A closed-form solution to (7) is found by taking (7),
then using the primary definition of the confluent hyper-
geometric function [36, eq. (07.20.02.0001.01)], and [36,
eq. (06.10.27.0001.01)], along with the definitions [37,
eq. (1.3.22)], and [37, eq. (1.3.28)] provides (8), where
F ·:·;·

·:·;·

(
· : · ; · ;
· : · ; · ; ·, ·

)
denotes the generalized Kampé de Fériet

function [37, eq. (1.3.28)] and Ψ2(·; ·, ·; ·, ·) is the confluent
Appell function [37, eq. (1.3.22)].

B. Distribution of the Received Signal Envelope

Following the mathematical model for the individual states
of the TSM given in (1), the PDF of the received signal
envelope, Rι, can be expressed as [38, Appendix A]

fRι(rι) =
rι

σ2
ι exp

(
r2ι
2σ2

ι

) ∫ ∞

0

I0

(
ζιδιrι
σ2
ι

)
exp

(
ζ2
ι δ

2
ι

2σ2
ι

)fζι(ζι) dζι. (9)

The integral in (9) can be solved by substituting (5), and
using [33, eq. (8.447.1)], along with the necessary trans-
formation of variables, and the identities [33, eq. (6.643.2)]
and [33, eq. (9.220.2)]. Based on this and knowing (2) and
δ2ι = 2σ2

ι kι, (10) is obtained.
The PDF of the received signal envelope in each state, Rι,

is found to be

fRι(rι) =

∞∑
i=0

2r1+2i
ι kiι(1 + kι)

1+iµι exp (−kSι)

i!r̄
2(1+i)
ι (1 + kι + kSι)i

× exp

(
−r2ι (1 + kι)

r̄2ι

)
1F1

(
1 + i; 1; kSιµι

)
,

(10)

where µι = (1 + kSι) / (1 + kι + kSι). Notably, as kSι → ∞,
(i.e., as the impact of shadowing on the dominant components
vanishes), the PDF given in (10) approaches that of the Rician
distribution. Secondly, when kSι → 0 or kι = 0, (10) reduces
to the Rayleigh PDF.

Using a transformation of variables (rι = r/r̄g), the PDF
of the received signal envelope of the TSM is shown to be

fR(r) = r̄g
∑

ι∈{L,Q,N}

pιfRι(r × r̄g), (11)
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fZι(zι) =

∞∑
i=0

√
1 + kι (1 + kSι)

1+i
kS

i
ιr̄

2i
ι exp (−kSι)

√
πη

3
2+i
ι Γ(1 + i)i! exp

(
z2
ι (1+kι)

r̄2ι

) [
r̄ιΓ (1 + i)

√
ηι1F1

(
1 + i;

1

2
;
(zιλι(1 + kι))

2

r̄2ι ηι

)

+ 2zιλι(1 + kι)Γ

(
3

2
+ i

)
1F1

(
3

2
+ i;

3

2
;
(zιλι(1 + kι))

2

r̄2ι ηι

)]
.

(7)

fZι(zι) =

√
1 + kι (1 + kSι)√

πηι
exp

(
−kSι −

z2ι (1 + kι)

r̄2ι

)[
2zιλι (1 + kι)√

ηι

×Ψ2

(
3

2
;
3

2
, 1;

(zιλι(1 + kι))
2

r̄2ι ηι
,
r̄2ι kSι(1 + kSι)

ηι

)
+ r̄ιF

1:0;0
0:1;0

(
1 : −;−;

− : 1
2 ;−;

(zιλι(1 + kι))
2

r̄2ι ηι
,
r̄2ι kSι(1 + kSι)

ηι

)]
.

(8)
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Fig. 2: The PDF of the TSM received signal envelope (lines)
and corresponding simulation results (shapes) are shown for
pι varying. The Rician PDF (dashed line) is shown for K = 5,
r̄ = 1, and the Rayleigh PDF (dotted line) is shown for r̄ = 1.

where fRι(·) represents the PDF of the received signal enve-
lope for each of the individual states as given in (10). The
PDF of the received signal envelope is re-normalized to the
overall rms signal level to ensure R has unit power.

By using [36, eq. (07.20.02.0001.01)] and the identities [36,
eq. (06.10.27.0001.01)] and [37, eq. (1.3.22)] in (10), a closed-
form solution for the PDF of the received signal envelope in
each state is found to be

fRι(rι) =
2rι(1 + kι)µι

r̄2ι
exp

(
−kSι −

r2ι (1 + kι)

r̄2ι

)
×Ψ2

(
1; 1, 1;

r2ι kι(1 + kι)

r̄2ι (1 + kι + kSι)
, kSιµι

)
.

(12)

which, similarly to (8), is expressed in terms of fully conver-
gent special functions with extensively studied properties.

IV. NUMERICAL RESULTS

Fig. 2 provides plots of the theoretical PDFs of the in-phase
and quadrature components along with respective results of
simulations for an example TSM fading scenario. It should
be noted that for all examples presented in this section, the
transition ratios A0 and A1, have been conveniently chosen

to yield specific values of pL, pQ and pN . For illustrative
purposes, ϖ is considered to be time-invariant for all examples
presented in this section. In this example the LoS state occurs
most often with pL = 0.4, a strong dominant component exists
such that kL = 15, which suffers from negligible shadowing
characterized by kSL = 10, and ϖL = π/2 rad. The QLoS
state occurs between that of the LoS and NLoS states with a
probability of pQ = 0.3, it has a weaker dominant component
compared to the LoS state with kQ = 5, moderate shadowing
with, kSQ = 1, and ϖQ = −π/2 rad. Lastly, the NLoS state
has a probability of occurrence of pN = 0.3, a weak dominant
component exists that suffers severe shadowing resulting in
kN = 0.2, kSN = 0.15, and ϖN = 0 rad.

It is also noted that for all states r̄ι = 1. The figure shows
that the PDFs of the in-phase and quadrature components
of the complex received signal of the TSM can be vastly
different even when experiencing the same fading conditions.
For instance, the in-phase component appears to be unimodal,
whilst the quadrature component is not. The effect pι has on
the PDF of the TSM received signal envelope is now examined
in Fig. 2, using the same fading conditions which provided
the results in Fig. 3 with pι now varying. In this example, the
LoS state resembles Rician fading due to the strong dominant
component and the weak shadowing, whilst the NLoS state
resembles Rayleigh fading.

V. CONCLUSION

In this paper, for the first time, we have unified LoS,
QLoS and NLoS signal propagation under the umbrella of
the proposed Three State Model. To this end, the TSM has
been shown to have a strong physical motivation in relation
to realistic scenarios encountered in practical communication
scenarios. More precisely, within each of its constituent states,
fading is assumed to follow that described by the Rician fading
model, with one significant departure. That is the optional
presence of a dominant component, which may or may not be
shadowed. The shadowing in this case is assumed to follow
a separate Rician distribution, allowing the TSM to be fully
defined in terms of underlying Gaussian random variables.
This has the benefit, that simulation of the TSM is relatively
straightforward, further advocating its adoption as a compre-
hensive fading model. We have also derived important first-
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Fig. 3: The in-phase and quadrature PDFs of the TSM (lines)
and corresponding simulation results (shapes).

order statistics necessary for a complete characterization of
the complex received signal envelope. A number of examples
have been provided for these statistics alongside respective
simulated results to demonstrate their validity.

Future work related to the proposed model is concerned
with the derivation of additional first-order and second-order
statistics of the proposed fading model, including the PDFs of
the joint envelope-phase, phase and received signal envelope
as well as the complex ACF, which will be of particular im-
portance in understanding and simulating its time correlation
properties. Also, the properties and overall suitability of the
proposed fading model will be experimentally quantified in
the context of realistic communication scenarios in emergent
technologies such as off-body communications.
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