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Topological random fractals
Moein N. Ivaki 1,2, Isac Sahlberg1,2, Kim Pöyhönen1,2 & Teemu Ojanen 1,2✉

The search for novel topological quantum states has recently moved beyond naturally

occurring crystalline materials to complex and engineered systems. In this work we

generalize the notion of topological electronic states to random lattices in non-integer

dimensions. By considering a class D tight-binding model on critical clusters resulting from

a two-dimensional site percolation process, we demonstrate that these topological random

fractals exhibit the hallmarks of topological insulators. Specifically, our large-scale numerical

studies reveal that topological random fractals display a robust mobility gap, support

quantized conductance and represent a well-defined thermodynamic phase of matter. The

finite-size scaling analysis further suggests that the critical properties are not consistent with

the expectations of class D systems in two dimensions, hinting to the nontrivial relationship

between fractal and integer-dimensional topological states. Our results establish topological

random fractals as the most complex systems known to support nontrivial band topology

with their distinct unique properties.
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S ince the discovery of the quantum Hall effect, the quantized
conductance, dissipationless currents and unconventional
edge excitations have captured the fascination of genera-

tions of physicists1–4. These remarkable properties, unlikely from
the point of view of traditional solid-state physics, ultimately
result from the topology of the electronic spectrum5. Recent
efforts have revealed that topological states in naturally occurring
materials are ubiquitous in nature6–8.

Currently, the research of topological states of matter has
moved beyond crystalline solids to amorphous and quasicrystal-
line systems9–36,36–42. While it is not yet clear whether these
states of matter exist in nature, they can be realized in artificial
designer systems43–46,46–49. Besides offering new avenues for
functional devices, these systems open a new chapter in the
physics of topological matter and the theory of Anderson loca-
lization. In this vein, the possibility of topological states in fractals
has stirred a new research direction. Despite reported signatures
of topology in a number of fractal lattices, many aspect of these
systems remains unclear or controversial50–62. The existence of
the spectral gap, possibility of supporting quantized responses
and anomalous dependence on system details, such as the coor-
dination number and connectivity of lattice sites, remain under
debate. Furthermore, since the studies are mostly restricted to
modest-size structures without systematic finite-size scaling
analysis, it is not clear whether the finite samples actually
represent a well-defined thermodynamic phase of matter.

The research on topological fractals so far has been limited to
deterministic self-similar structures. The organization principle of
these structures, as of quasicrystals, is completely deterministic
without any element of randomness. In contrast, in this work we
demonstrate a topological phase on fundamentally more complex
self-similar random lattices depicted in Fig. 1. These random
fractals are statistically self-similar, i.e. generated from a prob-
ability distribution, and characterized by a non-integer spatial
dimension63,64. Specifically, we study a symmetry class D
Hamiltonian on critical clusters of 2d square lattice percolation.
The geometry of the critical percolating cluster is characterized by
the fractal dimension df ¼ 91

48 < 2 (the number of sites within a
circle of radius r scales as rdf for large r) and a set of standard
critical exponents. Our main findings are summarized in the
following discoveries: (I) the studied topological random fractals
have in general a gapless energy spectrum but exhibit a well-
defined mobility gap protecting the topological phase, (II) the
studied system supports robust quantized conductance, (III)
finite-size scaling analysis show that topological random fractals
represent a well-defined thermodynamic phase of matter, (IV) the
localization exponent for class D random fractals is incompatible
with the universal value ν= 1 in two dimensions. The last
property suggests that, despite similarities with topological insu-
lators in integer dimensions where they are embedded, topolo-
gical random fractals represent a distinct state of matter.

Results
Percolation-generated random fractal lattices. Percolation the-
ory provides a paradigmatic framework to study complex systems
in physics and many related fields65–67. In this work we consider
random lattices arising from a site percolation process on a
square lattice where each site is randomly occupied by probability
p. There exists a critical concentration 0 < pc < 1, known as the
percolation threshold, above which the random lattice has an
infinite nearest-neighbour-connected cluster in the thermo-
dynamic limit. Below the threshold, the system consists of dis-
connected finite clusters. When approaching the percolation
threshold, the characteristic length scale of the lattice ξ(p) (the
statistical correlation length) diverges as ξ(p)∝ ∣p− pc∣−4/3,

signifying that the percolating critical cluster becomes a scale-free
random fractal. The fractal dimension df ¼ 91

48 is universal for
both site and bond percolation in two dimensions and it can be
derived, for example, from a set of other universal critical
exponents67. A finite snapshot of a percolating network at p ≠ pc
appears indistinguishable from an infinite random fractal up to
the correlation length ξ(p).

On a square lattice, the percolation transition takes place at
pc ≈ 0.59365,68. In Fig. 1 we have illustrated three finite-size
realizations of the random fractals generated by the percolation
process (see “Methods” for details). The properties of the critical
percolation clusters have been studied in great detail in various
contexts65. In striking contrast to all 2d lattices, the fractal spatial
dimension of a critical cluster df < 2 means that they do not have
a well-separated bulk interior and boundary. As the topological
phases typically manifest in protected edge modes, the absence of
clear distinction between the interior and the boundary appears
disconcerting. Moreover, despite the statistical self-similarity,
random fractals exhibit wild sample-to-sample fluctuations. The
complexity of random fractals is underlined by the fact that
random fractals differ from deterministic fractals in much the
same way as amorphous lattices differ from regular lattices.
Remarkably, despite the controversial present understanding of

Fig. 1 Critical percolating networks are archetypal examples of random
fractals. a Here we see three finite snapshots of critical clusters with linear
size L= 250 and b the local density of states of the studied topological
lattice model at the centre of the mobility gap E= 0. Despite the seeming
absence of clear distinction between the bulk and edge modes, these
structures support robust quantized conductance.
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topology in deterministic fractals, our results establish that
random fractals can support robust topological states.

Model and phase diagram. Next we define a two-band tight-
binding model69–71 on critical square lattice percolation clusters.
The model is determined by the Hamiltonian

H ¼ ð2�MÞ∑
i
cyi σz ci

� t
2 ∑<ij>

cyi ηij cj � t2
2 ∑
�ij�

cyi ηij cj þ h:c:;

ð1Þ
where M is the onsite mass parameter and t and t2 represent the
hopping amplitudes between the nearest- and second-nearest-
neighbour sites on a square lattice provided those sites are present
in a given random realization. The matrix ηij ¼ σz þ i cos θijσx þ
i sin θijσy is determined by θij, which denotes the angle between
the x axis and the bond vector from site i to site j. The two-
component operators cyi ¼ ðcyi;1; cyi;2Þ create fermions at site i, and
σx,y,z are the Pauli matrices operating in the two-orbital space.
The model (1) breaks time-reversal symmetry and satisfies
particle-hole symmetry as σxH

�σx ¼ �H, hence belonging to
the symmetry class D71–73. On a square lattice in the clean limit,
the model supports topological phases with nonzero Chern
number. Potentially other symmetry classes may support topol-
ogy on random fractals as well; the choice to study class D here
was made to simplify the large-scale computing efforts, as a
minimal model proof-of-concept already poses a substantial
computational challenge. In the remainder of this paper, we set
t= 1 and express the other parameters in units of t. On a regular
lattice, a disordered class D model is known to host a metallic
phase which separates the two insulating topological phases. In
the case of anisotropic models, an intervening localized phase
appears. The localization exponents at metal-insulator and
insulator-insulator transitions are known to be νMI ≈ 1.4 and
νII= 1, respectively74–80.

Defining a topological phase on a random fractal poses
conceptual challenges. While real-space methods for calculating
topological invariants exist, the fractal does not lend itself well to
these methods. A more critical issue is the fact that the known
methods are defined for integer dimensions, and there are
indications that they may not carry the same physical
consequences on a fractal of dimension 1 < df < 253,55,81,82. It is
even unclear presently whether the mathematical structures that
underline the topological classification in integer dimensions can
be generalized to fractal dimensions. We bypass these delicate
issues by focusing on the possibility of quantized two-terminal
conductance G, which we adopt as an operational criterion of
nontrivial fractal topology. This is physically motivated by the
fact that, irrespective of mathematical definitions, a quantized
two-terminal conductance carries direct observational relevance.
Furthermore, the only mechanism known to result in robust
quantized nonzero conductance plateaus in disordered systems is
nontrivial topology.

To numerically evaluate G we employ the KWANT software83,
which implements transport calculations using scattering
theory84 (see “Methods”). The resulting conductances are
calculated at the half-filling E= 0 when not stated otherwise.
Figure 2 displays the phase diagram in the (t2,M) plane obtained
by calculation of the configuration-averaged conductance. This
reveals the existence of a topological phase, which is characterized
by quantized conductance G= 1 in the thermodynamic limit, and
trivial, insulating regions. As discussed below in the context of
finite-size scaling, the topological phase is separated from the
trivial phases by a critical line which corresponds to critical

conductance Gc ≈ 0.65. The critical point at ðtc2;McÞ � ð0; 1:1Þ
signifies a meeting of three distinct phases, the topological phase,
a trivial spectral insulator and a trivial Anderson insulator. A
finite second-nearest-neighbour hopping ∣t2∣ > 0 opens up a
robust topological phase studied in detail below. In contrast to
the sharp spectral insulator-topological fractal phase boundary,
identifying the topological fractal-Anderson insulator phase
boundary is complicated in finite-size systems due to the fact
that both phases are gapless as seen below. The nature of the
transition between the trivial spectral and Anderson insulator
phases at the t2= 0 line is illustrated in Fig. 3. In Fig. 3(a), the
mid-spectrum density of states indicates the formation of a
spectral gap for M < 1.1, while for 1.1 <M < 2.9 the system is in a
gapless Anderson-localized phase. However, both phases sepa-
rated by the tricritical metallic point ðtc2;McÞ � ð0; 1:1Þ are
insulating, as seen in Fig. 3(b). The localization of states in the
Anderson insulating phase is further analyzed by the
configuration-averaged inverse participation ratio IPR ðEÞ ¼
∑iαjΨE

iαj4. As can be seen from the inset of the Fig. 3(b), the
inverse participation ratio in the region 1.1 <M < 2.9 shows great
enhancement around E= 0 everywhere in the Anderson-localized
regime, indicating that the spectrum is gapless but consists of
trivial localized states.

Topological random fractal phase. Having established the global
features of the phase diagram, we now study the properties of the
topological random fractal phase in detail. As seen in Fig. 4(a), at
the transition point between the spectral insulator and topological

Fig. 2 Topological phase diagram of the random fractals. a Phase diagram
of the studied systems as a function of the second-nearest-neighbour
hopping t2 and the mass parameter M, obtained by calculation of the two-
terminal conductance G for half-filled square-shaped systems with linear
dimensions L= 150. The dashed white line represents the approximate
critical surface Gc= 0.65, which encloses the topological regime where
G→ 1 in the thermodynamic limit L→∞. The blue star signifies the
tricritical point at t2= 0 and Mc≈ 1.1 and the colour bar indicates the value
of G. Data is averaged over 650 independent random realizations. b Same
as (a) but for an extended parameter regime. Here L= 120 and data is
averaged over 800 configurations.
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random fractal phase, the energy gap closes and remains closed in
the topological and Anderson insulator phases. Despite being
gapless, and in contrast to the studies of deterministic
fractals50,55,57, we uncover unambiguous and robust quantization
of conductance in the topological random fractal phase. The
formation of the quantized plateau as a function of finite t2 is
demonstrated in Fig. 4(b). At the tricritical point
ðtc2;McÞ � ð0; 1:1Þ, even a marginal increase of t2 leads to for-
mation of the topological phase with robust conductance quan-
tization. In Fig. 4(c), we have plotted the conductance as a
function of the energy (or the chemical potential of the leads) for
a number of individual random fractal realizations. All the
samples exhibit a finite quantized plateau around E= 0. While
the topological random fractal phase is gapless, the topology is
protected by a mobility gap. The width of the plateaus in Fig. 4(c),
which show sample-to-sample fluctuations, corresponds to the
value of the mobility gap. As long as the energy is located in the
mobility gap, the conductance (for samples larger than the
localization length) remains quantized.

As a testament to the remarkable robustness of the topological
states, as the system size grows, the conductance quantization
becomes accurate despite the great complexity and variation of

different random fractal realizations. As illustrated by histo-
grams in Fig. 4(d), well inside the topological regime, over 90% of
configurations with the linear size L= 1600 display conductance
quantization with 1% accuracy or better. As seen in Fig. 4(e), the
quantization develops rapidly when moving from the tricritical
point towards the topological phase. Larger systems exhibit on
average more precise quantization, indicating that the random
fractal phase is a well-defined thermodynamic phase of matter.

To illustrate that topological random fractals constitute a well-
defined thermodynamic phase of matter, we carry out a finite-size
scaling study. According to the theory of topological localization
transitions, near the transition one expects that the configuration-
averaged conductance obeys a single-parameter scaling hypoth-
esis in the large system limit. This hypothesis predicts that the
conductance curves for different system sizes collapse to a
universal curve G ¼ f L1=νζ

� �
, where ζ represents a parameter that

drives the transition85. The scaling function f approaches 0 (1) at
large negative (positive) arguments. The scaling behaviour
indicates that the system undergoes a sharply-defined topological
phase transition at ζ= 0 in the thermodynamic limit, separating
two distinct phases of matter. The localization length critical
exponent ν is expected to be universal for all systems with the
same spatial dimension and symmetry class. In particular, for
symmetry class D in two dimensions the exponent is ν= 179,80. A
high-precision determination of the critical exponents in the
topological random fractal is beyond the scope of the present
work. However, by calculating the conductance as a function of
the second-nearest-neighbour hopping, to explore the validity of
the scaling hypothesis G ¼ f L1=νðt2 � tc2Þ

� �
, we can show that the

standard two-dimensional class D scaling does not match the
numerical evidence. In Fig. 5(a), we employ the value ν= 1
expected for the insulator-insulator phase transition for class D
systems in two dimensions. The curves do accurately cross in a
single point, indicating that sufficiently close to the critical point,
the system sizes L= 300− 1100 are in the single-parameter
scaling regime, but the data clearly do not follow a single curve.
As a contrast, as seen in Fig. 5(b) for a higher value exponent
ν= 2.4, the curves collapse to a single curve near the critical
point. While not yielding a high-precision numerical value for the
exponent, the data supports the conclusion that the transition
obeys scaling behaviour. The observed substantial departure of
the critical exponent from its universal 2d value further suggests
that, despite bearing similarities to its integer-dimensional
counterpart, the random fractal phase is a genuinely distinct
phase of matter with unique critical properties. Additionally, as
the curves are accurate near the critical point we can extract the
critical conductance Gc ≈ 0.65, which provides the basis for the
white dashed line as an approximate phase boundary in Fig. 2.

Discussion
In this work we introduced an electronic state of matter, topological
random fractals, and established its central properties. The studied
system, supporting robust quantized conductance protected by a
mobility gap, constitutes of the first example of a non-integer-
dimensional system defined on a random lattice and, in this sense,
is the most complex realization of nontrivial band topology known
to date. The finite-size scaling results suggest that the topological
random fractals belong to a different universality class than their
integer-dimensional parent states, calling for further studies on
topological fractals. Besides the fundamental interest, there is rea-
son for optimism that such systems will become available
for experimental studies in the near future. Technological
advances have enabled fabrication of artificial and quantum
simulator systems realizing quasicrystalline and fractal electronic

Fig. 3 Spectral insulator-Anderson insulator transition. a Configuration-
averaged normalized density of states ρ(E) for the Hamiltonian (1), shown
for different mass parametersM at linear system size L= 500 with second-
nearest-neighbour t2= 0. Inset shows the behaviour of ρ(E≈ 0) as M is
varied. The feature at M= 2 originates from a gapless point of the
Hamiltonian (1) on a square lattice. b Configuration-averaged two-terminal
conductance G at t2= 0. Inset displays the averaged spectral gap and
inverse participation ratio for L= 90 as a function of M. (t2,Mc)= (0, 1.1)
and (t2,Mc)= (0, 2.9) denote the gapped-gapless transition points, with
the gapless region hosting localized states.
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structures46,48,49. These advances suggest that experimental reali-
zation of topological random fractals may not be far behind.

Methods
Generating random fractals. We construct the studied random lattices by starting
with an L × L square lattice, and independently associating a probability p= pc ≈
0.5927 for each site being populated. After drawing the random populations of all
sites from a uniform distribution, we keep a single remaining cluster which con-
nects the left and right edges of the lattice (statistically present in half of the end

configurations). To this cluster we associate the Hamiltonian of Eq. (1), modified
appropriately by the missing sites and hoppings; in the clean limit this would be a
topologically nontrivial system as seen in Fig. 6. Repeating this process many times
provides us with a statistical sample of 103− 104 finite snapshots of infinite ran-
dom fractal lattices.

Calculation of two-terminal conductance. We employ the KWANT software83 to
extract the two-terminal conductances. The obtained L × L random fractal con-
figurations are attached to two identical semi-infinite metallic leads, represented by
a set of parallel decoupled 1d chains. As seen in Fig. 7 for a square lattice with leads

Fig. 4 Properties of topological random fractal phase. a The average spectral gap above the ground state as a function of the mass parameter M with
linear system size L= 100 and second-nearest-neighbour hopping t2= 0.3. The gapped-gapless phase transition coincides with the trivial-topological
fractal transition atMc≈ 0.8. The average is taken over 150 random configurations and the error bars (not shown) are of the order of 10−3. b Two-terminal
conductance G as a function of t2 at (E,M)= (0, 0.8) signifying the transition from a spectral insulator to a topological random fractal phase. E indicates the
energy at which the conductance is calculated. (Inset) Same for (E,M)= (0, 1.1). c Conductance for different individual realizations of topological random
fractals as a function of energy for (t2,M)= (0.45, 0.8) and (inset) (t2,M)= (0.25, 1.1) for L= 1600. d Percentage of the samples falling into 1% of the
quantization range for (E,M)= (0, 0.8). e Same as (d) for (E,M)= (0, 1.1). Panels (d) and (e) are calculated for roughly 103 independent samples at
each point.

Fig. 5 Finite-size scaling of conductance for half-filled systems. a Conductance data fit at the mass parameter M= 0.8 with the 2d class D exponent
ν= 1, which fails to capture the correct scaling behaviour. In contrast, with the localization exponent ν= 2.4 in b the data collapse to a universal curve.
Curves are averaged over 103− 104 distinct random fractal configurations at each data point.
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attached in y-direction, the repeating unit cell is a vertical line of points, such that
the open tight-binding chain along y gets repeated in x-direction. We employ large-
scale parallel computing to carry out the calculation of the configuration-averaged
conductance of up to 104 different random configurations per parameter point for
linear system sizes L= 120−1600.

Data availability
The data supporting the findings of this work are available upon reasonable request.

Code availability
The codes implementing the calculations in this work are available upon reasonable
request.
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