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Abstract— In this paper, we consider robust output tracking
problem of an undamped Euler-Bernoulli beam with boundary
control and boundary observation. In particular, we study a
cantilever beam which has control and observation at the free
end. As our main result, we construct a finite-dimensional,
internal model based controller for the output tracking of
the beam system. In addition, we consider a case where the
controller achieves the robust output tracking for the cantilever
beam with distributed control and observation. Numerical
simulations demonstrating the effectiveness of the controller
are presented.

I. INTRODUCTION

In this paper, we consider output tracking of an Euler
Bernoulli beam with conservative clamped boundary con-
ditions at one end and control at the other end. The beam
system we study is given by

ρ(ξ)wtt(ξ, t) + (EI(ξ)wξξ)ξξ(ξ, t) = 0, 0 < ξ < 1, t > 0,

w(0, t) = 0, wξ(0, t) = 0,

(EI(ξ)wξξ)(1, t) = 0,

−(EI(ξ)wξξ)ξ(1, t) = u(t),

y(t) = wt(1, t),

w(ξ, 0) = w0(ξ), wt(ξ, 0) = w1(ξ), 0 < ξ < 1,
(I.1)

where w(ξ, t) is the transverse displacement of the beam
at position ξ and time t, wt(ξ, t) and wξ(ξ, t) denote time
and spatial derivatives of w(ξ, t), respectively, ρ(ξ) and
EI(ξ) are linear density and flexural rigidity of the beam,
respectively, u(t) is an external boundary input and y(t)
is a boundary observation. The parameters ρ(ξ) and EI(ξ)
satisfy the conditions

ρ(·), EI(·) ∈ C4([0, 1]), ρ(ξ), EI(ξ) > 0 ∀ ξ ∈ [0, 1].
(I.2)

Our goal is to design a controller in such a way that
the output y(t) tracks a given reference signal yref (t)
asymptotically despite uncertainties and perturbations in the
system. In other words, the objective is to find a controller
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that produces the input u(t) such that∫ t+1

t

‖y(s)− yref (s)‖ds→ 0 as t→∞.

The reference signal to be considered is of the form

yref (t) =

q∑
k=1

ak cos(ωkt) + bk sin(ωkt) (I.3)

where (ωk)
q
k=1 are known frequencies and (ak)

q
k=1 and

(bk)
q
k=1 are possibly unknown constant coefficients.

This so-called Robust Output Regulation Problem has been
studied widely in the literature for distributed parameter
systems ([1], [2], [3], [4], [5], [6]), for regular and well-posed
linear systems ([7], [8], [9]) and for boundary control systems
([10], [11]). The main key in the construction of robust
regulating controllers is the Internal model principle which
states that a controller can solve the robust output regulation
problem if the dynamics of the controller contains copies
of the frequencies from the reference signal. The internal
model principle was introduced by Francis and Wonham in
[12], [13] for finite-dimensional systems and since then it
has been developed for infinite-dimensional systems by many
authors, see for example, [5], [8], [11].

Robust output tracking of Euler-Bernoulli beam mod-
els has been studied recently in [14], [15] using infinite-
dimensional controllers. In this paper, we solve the output
tracking problem for the considered beam system (I.1) using
a finite-dimensional dynamic error feedback controller.

As the main contribution, we construct a finite-
dimensional, internal model based controller which achieves
output tracking of given combination of sinusoidal signals
as in (I.3). We formulate the beam system as an impedance
passive well-posed linear system ([16], [17], [18]) and show
that it can be stabilized exponentially using negative out-
put feedback. The controller construction is based on the
results for abstract well-posed linear systems [7]. As the
main novelty compared to the recent articles [14] and [15]
on output regulation of Euler-Bernoulli beam models, we
consider spatially varying parameters in the beam system and
solve the output tracking problem using a finite-dimensional
controller.

As the second contribution, we consider a case where the
cantilever beam (I.1) has distributed control and observation
instead of boundary control and observation. We formulate
the beam system as an impedance passive abstract linear
system which can be stabilized strongly using negative
output feedback. We show that the same finite-dimensional



controller structure achieves robust output tracking of the
given sinusoidal reference signals.

The paper is organized as follows. In Section II, we
formulate the robust output regulation problem for the beam
system. In Section III, we construct the controller for the
robust output tracking of the reference signals. In addi-
tion, we present results related to stabilizability and well-
posedness of the beam system. In Section IV, we consider
the robust output tracking problem for the beam system with
distributed control and observation. Section V is devoted to
numerical simulations which demonstrate the performance
of the controller for the robust output tracking of the beam
system (I.1). In Section VI, we conclude our results.

A. Notation

For normed linear spaces X and Y , L(X,Y ) denotes the
set of all bounded linear operators from X to Y . For a linear
operator A, D(A),R(A) and N (A) denote the domain,
range and the kernel of A, respectively. The resolvent and the
spectrum of A are denoted by ρ(A) and σ(A), respectively.
The resolvent operator is denoted by R(λ,A) = (λ −
A)−1, λ ∈ ρ(A). We denote by X−1 the completion of X
with respect to the norm ‖x‖−1 = ‖(βI − A)−1x‖, x ∈
X,β ∈ ρ(A) and by A−1 ∈ L(X,X−1) the extension of A
to X−1. For any a ∈ R, Ca = {λ ∈ C | Reλ > a}.

II. PROBLEM FORMULATION

In this section, we formulate the robust output regulation
problem for the considered beam system (I.1). The dynamic
error feedback controller to be constructed is of the form

ż(t) = G1z(t) + G2e(t), z(0) = z0,

u(t) = Kz(t)− k1e(t),
(II.1)

where z ∈ Z, Z = R2q , G1 ∈ R2q×2q , G2 ∈ R2q×1, K ∈
R1×2q , k1 > 0 and e(t) = y(t) − yref (t) is the regulation
error. Here q is the number of frequencies in the reference
signal.

Beam System

Controller

u(t) y(t)

e(t)

−yref (t)

Fig. 1. The closed-loop system interconnecting the beam system and the
controller

Robust Output Regulation Problem. Choose the con-
troller parameters (G1,G2,K, k1) in such a way that
(a) The closed-loop system in Figure 1 is exponentially

stable in the sense that the closed-loop semigroup
decays to zero exponentially.

(b) There exists α > 0 such that for all reference signals of
the form (I.3) and for all initial conditions w0(ξ), w1(ξ)
of the beam system and z0 ∈ Z, the regulation error
satisfies eα·e(·) ∈ L2([0,∞),C).

(c) If (a) holds despite uncertainties, perturbations and
disturbances in the system, then (b) is still satisfied for
all initial conditions and some α̃ > 0.

III. ROBUST OUTPUT REGULATION OF THE CANTILEVER
BEAM

In this section, we construct the controller for the robust
output tracking of the sinusoidal reference signal yref . We
start with presenting the controller. Based on [7], we choose
the controller parameters as

G1 = diag(G1, G2, · · · , Gq),

Gk =

[
0 ωk
−ωk 0

]
, k = 1, 2, · · · , q,

G2 = −[1, 0, · · · , 1, 0]T ,
K = [2, 0, · · · , 2, 0],

k1 >
1

2
.

(III.1)

We note that the above choice of controller parameters
does not depend on the coefficients ak and bk, k =
1, 2, · · · , q in the reference signal (I.3), ak and bk can
possibly be unknown. The controller with the above choices
of parameters solves the robust output regulation problem
if the beam system is impedance passive, exponentially
stabilizable using negative output feedback and well-posed
linear system [16, Def. 1.1]. Therefore, in order to solve the
output tracking problem, we need to verify the stabilizability
of the beam system and formulate the beam system (I.1) as
an impedance passive abstract well-posed linear system.

In the following, we present the abstract representation
and stabilizability of the beam system followed by well-
posedness results for the beam system. Afterward, we show
that the controller presented in (II.1) and (III.1) solves the
robust output tracking problem. Here we emphasize that the
construction of the controller does not require the beam
system as an abstract well-posed linear system. We will
verify the above properties to prove that the controller in
(II.1) and (III.1) solves the robust output regulation problem
for the system (I.1).

A. Abstract Formulation of the Beam System

We formulate (I.1) in the state space X = H2
E(0, 1) ×

L2(0, 1) where H2
E(0, 1) = {f ∈ H2(0, 1) | f(0) = f ′(0) =

0}. The norm on X is defined as

‖(f, g)T ‖2X =

∫ 1

0

[ρ(ξ)|g(ξ)|2 + EI(ξ)|f ′′(ξ)|2]dξ,

∀(f, g)T ∈ X.

The total energy of the beam system is given by

E(t) =
1

2

∫ 1

0

[ρ(ξ)w2
t (ξ, t) + EI(ξ)w2

ξξ(ξ, t)]dξ. (III.2)

We define

x(t) =

[
x1(·, t)
x2(·, t)

]
=

[
w(·, t)
wt(·, t)

]
.



Now (I.1) on X has the form

d

dt
x(t) = Ax(t), x(0) = x0,

Bx(t) = u(t),

y(t) = Cx(t),

(III.3)

where A : D(A) ⊂ X → X ,

A
[
x1
x2

]
=

[
x2

−1
ρ(ξ) (EI(ξ)x

′′
1(ξ))

′′

]
,

D(A) = {(x1, x2)T ∈ [H4(0, 1) ∩H2
E(0, 1)]×H2

E(0, 1)

| x′′1(1) = 0},

the operators B : D(A) → U and C : D(A) → Y with
U = C and Y = C are given by

B
[
x1
x2

]
= −(EI(ξ)x′′1(ξ))′(1, t),

C
[
x1
x2

]
= x2(1, t).

Let us introduce the operator A = A|N (B) with

D(A) = {(f, g)T ∈ [H4(0, 1) ∩H2
E(0, 1)]×H2

E(0, 1)

| f ′′(1) = f ′′′(1) = 0}.

We have that A is a skew-adjoint operator with compact
resolvent [19, Sec. 3]. This implies that A generates a
unitary group on X . Moreover, we have that N (B) =
D(A). Therefore, N (B) is dense in X . Thus (A,B, C) is
a boundary control system in the sense of [20, Def. 10.1.1].
Next, we show that the boundary control system (A,B, C)
is impedance passive which is defined as follows.

Definition III.1. (Impedance Passive System). A boundary
control system (A,B, C) is an impedance passive system on
(X,U, Y ) if U = Y and

Re 〈Ax, x〉X ≤ Re 〈Bx, Cx〉U , x ∈ D(A).

Lemma III.2. The boundary control system (A,B, C) in
(III.3) is an impedance passive system.

Proof. We have that for x ∈ D(A),

Re 〈Ax, x〉X = Re

〈[
x2

−1
ρ(ξ) (EI(ξ)x

′′
1(ξ))

′′

]
,

[
x1
x2

]〉
X

,

= Re

∫ 1

0

ρ(ξ)
−1
ρ(ξ)

(EI(ξ)x′′1(ξ))
′′x2(ξ)dξ

+Re

∫ 1

0

EI(ξ)x′′1(ξ)x
′′
2(ξ)dξ.

Using integration by parts twice for the first term and

applying boundary conditions, we obtain

Re 〈Ax, x〉X

= Re

[
− x2(1)(EI(ξ)x′′1)′(1) + x2(0)(EI(ξ)x

′′
1)
′(0)

+ x2
′(1)(EI(ξ)x′′1)(1)− x2′(0)(EI(ξ)x′′1)(0)

−
∫ 1

0

EI(ξ)x′′1(ξ)x
′′
2(ξ)dξ +

∫ 1

0

EI(ξ)x′′2(ξ)x
′′
1(ξ)dξ

]
= Re[−x2(1)(EI(ξ)x′′1)′(1)]
= ReBxCx
= Re 〈Bx, Cx〉C

which implies that (A,B, C) in (III.3) is impedance passive.

B. Stabilization of the Beam

In [19, Thm. 2.5] it is shown that the beam (I.1) with
output feedback u(t) = −κwt(1, t), κ > 0 is exponentially
stable in the sense that the energy E(t) of the solutions
decays to zero exponentially. Here we note that E(t) =
1
2‖x(t)‖

2
X . Therefore we have the following lemma.

Lemma III.3 ([19, Thm. 2.5]). The beam (I.1) with new
input u(t) = ũ(t)− κy(t), κ > 0 is exponentially stable in
the sense that for the semigroup T (t) generated by Acl =
A|N (B+κC), there exist ω > 0 and M ≥ 1 such that

‖T (t)‖ ≤Me−ωt, t ≥ 0.

C. Well-posedness of the Beam system

In this section, we present results related to the well-
posedness ([18, Def. 3.1]) of the beam system.

Lemma III.4 ([19, Lem. 3.4]). The eigenvalues {iλn, iλn}
and the corresponding eigenfunctions ((iλn)

−1φn, φn) of A
have the following asymptotic expressions

iλn =
µ2
n

h2
, h =

∫ 1

0

(
ρ(s)

EI(s)

) 1
4

ds,

µn =
1√
2
(n+

1

2
)π(1 + i) +O( 1

n
),

(III.4)

as n→∞, n is a large positive integer and

φn(ξ) = e−
1
4

∫ z
0
a(s)ds

√
2(i− 1)[sin((n+

π

2
)z)

− cos((n+
π

2
)z) + e−(n+

1
2 )πz

+ (−1)ne−(n+ 1
2 )π(1−z) +O( 1

n
)]

(III.5)

where

z = z(ξ) =
1

h

∫ ξ

0

(
ρ(s)

EI(s)

) 1
4

ds

a(z) =
3h

2

(
ρ(ξ)

EI(ξ)

)− 5
4 d

dξ

(
ρ(ξ)

EI(ξ)

)
+ h

2 d
dξEI(ξ)

EI(ξ)

(
ρ(ξ)

EI(ξ)

)− 1
4

.



Next, we show that the boundary control system (A,B, C)
in (III.3) defines a well-posed system node on (X,U, Y ),
where system node is defined in the sense of [17, Def. 2.1]
or [21, Def. 2.1] and well-posed system node is defined in
the sense of [17, Def. 2.6], [18].

Theorem III.5. The boundary control system (A,B, C) in
(III.3) defines a well-posed system node on (X,U, Y ).

Proof. We have shown that the system (A,B, C) is an
impedance passive boundary control system. In addition,
since A generates a unitary group, the boundary control
system (A,B, C) is internally well-posed in the sense of [21,
Def. 1.1]. Therefore, by [21, Thm. 2.3], (A,B, C) defines a

system node S =

[
A&B
C&D

]
: D(S) ⊂ X × C→ X × C and

the system node is impedance passive [17, Thm. 4.2]. The
system node S is defined by[

A&B
C&D

]
=

[
A−1 B
C 0

] ∣∣∣∣
D(S)

,

D(S) =

{[
x
u

]
∈
[
X
U

] ∣∣∣∣ A−1x+Bu ∈ X
}

where B ∈ L(U,X−1) is uniquely determined by the relation
A = A−1+BB on D(A) [20, Prop. 10.1.2]. Next, we show
that the transfer function of the system node S is bounded
on some vertical line in the complex right half plane.

Using [20, Rem. 10.1.6], we obtain B∗x = x2(1) =
Cx, x = (x1, x2)

T ∈ D(A∗), where C = C|N (B). The op-
erator B∗ ∈ L(D(A∗), U) is the adjoint of B ∈ L(U,X−1)
in the sense that

〈x,Bu〉D(A∗),X−1
= 〈B∗x, u〉C , x ∈ D(A∗), u ∈ U.

Therefore, (III.3) can be equivalently written as a second
order system

wtt(·, t) +A0w(·, t) = B0u(t)

y(t) = B∗0wt(·, t)
(III.6)

where A0f = 1
ρ(ξ) (EI(ξ)f

′′)′′ is a positive self-adjoint
operator with D(A0) = {f ∈ H4(0, 1)∩H2

E(0, 1) | f ′′(1) =
(EIf ′′)′(1) = 0} and B0 = δ(· − 1), δ(·) is the Dirac
delta distribution. Then λ2n and φn from Lemma III.4 are
the eigenvalues and the corresponding eigenfunctions of A0.

From the expression (III.4), we have that (λn)n≥1 are
increasing. In addition, |B∗0φn| = |φn(1)| which from (III.5)
is bounded for n ≥ 1. This implies that B∗ is admissible [20,
Sec. 5.3], [22, Prop. 2]. By duality ([20, Sec. 4.4]), we have
that B is admissible. Moreover, using [22, Rem. 4], we have
that the eigenvalues of A0 satisfies the spectral condition

λn+1 − λn ≥ βλγn+1, ∀ n large,

for some β, γ > 0. Therefore, using [22, Thm. 4], we
conclude that the transfer function s 7→ G(s) = sB∗0(s

2 +
A0)
−1B0 ∈ L(U) of (III.6) is bounded on some vertical line

in the complex right half plane. Since

A =

[
0 I
−A0 0

]
, B =

[
0
B0

]
and C =

[
0 B∗0

]
,

we have that the transfer function GS of the system node S
which is given by [17, Def. 2.1], [18, Sec. 6]

GS(s)u = C&D

[
R(s,A−1)Bu

u

]
= CR(s,A−1)Bu

= sB∗0(s
2 +A0)

−1B0u

= G(s)u

is bounded on C0. Therefore, by [17, Thm. 5.1], we conclude
that the system node S is well-posed.

Remark III.6. Since B is an admissible control operator,
using [23, Thm. 2.7], we can deduce that

lim
s→+∞

G(s) = 0, s ∈ R.

Since the above limit exists, we have that the beam system
is a regular linear system [24].

D. Robust Regulating Controller for the Beam System

In this section, we show that the controller (II.1), (III.1)
presented in Section II solves the robust output tracking
problem.

We note that the transfer function G(s) in Section III-C
can also be written in terms of the solution of the elliptic
problem corresponding to I.1 ([25, Sec. 12.1], [26])

1

ρ(ξ)
(EI(ξ)ŵξξ)ξξ = −s2ŵ, ξ ∈ [0, 1],

(EI(ξ)ŵξξ)ξ(1) = û,

G(s)û = ŷ = sŵ(1),

for (ŵ, sŵ) ∈ D(A), û, ŷ ∈ C and s ∈ ρ(A).

Theorem III.7. Let ωj ∈ R, j = 1, 2, · · · , q be the frequen-
cies from the reference signal. Assume that ReG(iωj)û =
Re iωjŵ(1) 6= 0 for all j. Then the controller (II.1), (III.1)
solves the robust output regulation problem for (I.1).

Proof. We consider the input u(t) = Kz(t) − k1e(t). Let
us write k1 = C0 + κ, where C0 ≥ 1

2 and κ > 0. Then we
have u(t) = Kz(t)− C0e(t)− κy(t) + κyref (t) = u1(t)−
κy(t) + κyref (t) where u1(t) = Kz(t)− C0e(t).

With this input, (III.3) can be written as

d

dt
x(t) = Ax(t), x(0) = x0,

(B + κC)x(t) = u1(t) + κyref (t),

Cx(t) = y(t).

(III.7)

From Lemma III.3, we have that the system (A,B + κC, C)
is exponentially stable and from Theorem III.5, we have
that (A,B, C) is a well-posed linear system since every
well-posed system node defines a well-posed linear system
([18]). Moreover, due to Remark III.6, we have that κ is
an admissible output feedback operator. This implies that
the system (A,B + κC, C) is a well-posed linear system



[24, Thm. 4.7]. Therefore, by considering κyref (t) as an
external disturbance to the system (I.1), then we have that
(III.7) is an exponentially stable well-posed linear system
with input u1(t). In addition, the impedance passivity of
(A,B, C) implies that the transfer function G(s) is positive,
i.e., ReG(s) = 1

2 [G(s) + G(s∗)] ≥ 0, ∀ s ∈ C0 ([17],
[18]). This further implies that the transfer function Gκ(s)
of the system (A,B+ κC, C) is positive and the assumption
ReG(iωj) 6= 0, j = 1, 2, · · · , q implies that ReGκ(iωj) 6=
0 for all j = 1, 2, · · · , q. Therefore, using [7, Thm. 3.4], a
minimal realization of

C(s) = −C0 −
∑
j∈J

1

s− iωj
, (III.8)

where C0 ≥ 1
2 , J = {−q, · · · ,−1, 1, · · · , q} and ω−j =

−ωj , solves the robust output tracking problem and rejects
the disturbance κyref (t).

It can be verified from (III.1) that (G1,G2) is control-
lable, (G1,K) is observable and the transfer function of
(G1,G2,K,−C0) is given by (III.8). Therefore, the controller
given in (II.1) and (III.1) is a minimal realization of (III.8).
Combining the above arguments and using [7, Thm. 3.4],
we have that the controller (II.1), (III.1) solves the robust
tracking problem for (I.1).

IV. A ROBUST REGULATING CONTROLLER FOR AN
EULER-BERNOULLI BEAM WITH DISTRIBUTED CONTROL

AND OBSERVATION

In this section, we consider robust output tracking of a
cantilever beam which has distributed control and observa-
tion. The beam system that we study is described by

ρ(ξ)wtt(ξ, t) = −(EI(ξ)wξξ)ξξ(ξ, t) + b(ξ)u2(t)

w(0, t) = 0, wξ(0, t) = 0,

(EI(ξ)wξξ)(1, t) = 0, −(EI(ξ)wξξ)ξ(1, t) = 0,

w(ξ, 0) = w0(ξ), wt(ξ, 0) = w1(ξ),

y2(t) =

∫ 1

0

b(ξ)wt(ξ, t)dξ

(IV.1)
where 0 < ξ < 1, t > 0, u2(t) and y2(t) are the
external control input and observation respectively and b(·) ∈
L2(0, 1) is a real-valued function. The parameters ρ(ξ) and
EI(ξ) satisfy (I.2). The beam system (IV.1) cannot be
stabilized exponentially [27, Cor. 3.58], [28, Sec. 8.4].

Assumption IV.1. Under negative output feedback u2(t) =
−κy2(t), κ > 0, the solutions of the beam system (IV.1)
satisfy

‖w(·, t)‖L2 + ‖wt(·, t)‖L2 → 0 as t→∞ (IV.2)

for any initial conditions.

Assumption IV.1 implies that the system (IV.1) can be
stabilized strongly by negative output feedback.

Robust Output Regulation Problem (Strongly Stable
Version). Choose (G1,G2,K, k1) in (II.1) such that

(a) The closed-loop system comprising the controller and
the beam system (IV.1) is strongly stable.

(b) The regulation error ẽ(t) = y2(t)− yref (t) satisfies∫ t+1

t

‖ẽ(s)‖ds→ 0 as t→∞

for all initial conditions w0(ξ), w1(ξ) and z0 ∈ Z.
(c) If (a) holds despite uncertainties, perturbations and

disturbances in the system, then (b) is still satisfied for
all initial conditions.

Theorem IV.2. Under the Assumption IV.1, the controller
(II.1) and (III.1) solves the robust output regulation problem
(Strongly Stable Version) for the beam system (IV.1).

Proof. The system (IV.1) can be formulated as an abstract
linear system

d

dt
x(t) = Ax(t) + B̃u2(t), x(0) = x0,

y2(t) = C̃x(t)

in the state space X = H2
E(0, 1) × L2(0, 1) with state

variable x(t) = (w(·, t), wt(·, t))T . The norm on X is
defined as in Section III-A. The operator A corresponds to
the skew-adjoint operator in Section III-A and the operators
B̃ ∈ L(C, X) and C̃ ∈ L(X,C) are given by

B̃u2 =

[
0

B̃0

]
u2, B̃0 =

b(·)
ρ(·)

, u2 ∈ C,

C̃x =

∫ 1

0

b(ξ)x2(ξ)dξ, (x1, x2)
T ∈ X.

Here B̃∗ = C̃.
By direct computation, we obtain

1

2

d

dt
‖x(t)‖2X = Re 〈u2(t), y2(t)〉C .

This implies that the system (A, B̃, B̃∗, 0) is an impedance
passive system.

Now we have that the system (IV.1) is passive and assumed
to be strongly stabilizable by negative output feedback.
Therefore, by [9, Thm. 5.2], we conclude that the controller
(II.1) and (III.1) solves the robust output tracking prob-
lem.

V. NUMERICAL SIMULATIONS

Simulations are carried out in Matlab for the beam system
(I.1) with the following choices of parameters on the time in-
terval [0,15]. We consider the case where ρ(ξ) = 1, EI(ξ) =
1. We aim to track the reference signal yref (t) = sin 2t +
cos t. So, the frequencies are {2, 1}. We choose the beam
initial state w0(ξ) = 0.1(sin(πξ)−πξ), w1(ξ) = (1+ π3

60 )ξ
2

and the controller initial state z0 = 0. The beam system is
approximated using Legendre spectral Galerkin method [29].
The number of basis functions used for the approximation is
20. The controller parameters (G1,G2,K) are chosen as in
(III.1) with k1 = 6. Figure 2 shows that the tracking of the
given reference signal is achieved asymptotically. Velocity
profile of the controlled beam is shown in Figure 3.
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Fig. 2. Output tracking

Fig. 3. Velocity profile of the controlled beam

VI. CONCLUSIONS

In this paper, we studied the robust output tracking of a
cantilever beam. As the main problem, we considered the
cantilever beam which has control and observation at the
free end. In addition, we considered the case where the
beam has distributed control and observation. We solved
the output regulation problem using a finite-dimensional,
internal model based controller. The advantage of using
this controller is that the controller is simple and able to
handle the spatially varying parameters in the beam system.
Numerical simulations demonstrating the effectiveness of the
controller were presented.
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