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Blood-based biomarkers have been increasingly studied for diagnostic and

prognostic purposes in patients with mild traumatic brain injury (MTBI).

Biomarker levels in blood have been shown to vary throughout age groups.

Our aim was to study four blood biomarkers, glial fibrillary acidic protein

(GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neurofilament light (NF-

L), and total tau (t-tau), in older adult patients with MTBI. The study sample

was collected in the emergency department in Tampere University Hospital,

Finland, between November 2015 and November 2016. All consecutive adult

patients with head injury were eligible for inclusion. Serum samples were

collected from the enrolled patients, which were frozen and later sent for

biomarker analyses. Patients aged 60 years or older with MTBI, head computed

tomography (CT) imaging, and available biomarker levels were eligible for this

study. A total of 83 patients (mean age = 79.0, SD = 9.58, range = 60–100;

41.0% men) were included in the analysis. GFAP was the only biomarker to

show statistically significant di�erentiation between patients with and without

acute head CT abnormalities [U(83) = 280, p < 0.001, r = 0.44; area under the

curve (AUC) = 0.79, 95% CI = 0.67–0.91]. The median UCH-L1 values were

modestly greater in the abnormal head CT group vs. normal head CT group

[U (83) = 492, p = 0.065, r = 0.20; AUC = 0.63, 95% CI = 0.49–0.77]. Older

age was associated with biomarker levels in the normal head CT group, with

the most prominent age associations being with NF-L (r = 0.56) and GFAP
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(r = 0.54). The results support the use of GFAP in detecting abnormal head CT

findings in older adults with MTBIs. However, small sample sizes run the risk for

producing non-replicable findings that may not generalize to the population

and do not translate well to clinical use. Further studies should consider the

potential e�ect of age on biomarker levels when establishing clinical cut-o�

values for detecting head CT abnormalities.

KEYWORDS

traumatic brain injury, biomarkers, glial fibrillary acidic protein, ubiquitin C-terminal

hydrolase-L1, total tau, neurofilament light, computed tomography

Introduction

There is tremendous interest in developing blood-based

biomarkers for both diagnostic and prognostic purposes for

people who have sustained traumatic brain injuries (TBI) (1–

4). Blood biomarkers have been studied in children (5–7) and

adults (8–10) in the context of sport-related concussions (11–

13) and in the emergency department (ED) setting (14, 15).

There have been many studies that have employed blood-

based biomarkers as a screening for trauma-related intracranial

abnormalities visible on day-of-injury computed tomography

(CT) (16–19). In 2018, the Food and Drug Administration

(FDA) permitted the marketing of a panel of two biomarkers,

glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal

hydrolase-L1 (UCH-L1), as a screening test for intracranial

abnormalities in adults with head injuries presenting to the ED

setting (20, 21). There have been multiple studies showing that

GFAP is elevated in children (22, 23) and adults (14, 17–19) with

structural neuroimaging evidence of TBI, and some studies have

also illustrated elevations of UCH-L1 in those with macroscopic

intracranial abnormalities (24, 25).

The purpose of this study was to examine the diagnostic

usefulness of four serum biomarkers, from the Quanterix Simoa

4-plex assay (26), for identifying intracranial abnormalities

in older adults presenting to the ED following suspected

mild TBI (MTBI). Our goal was to examine the biomarkers

individually—and not incorporate them into an existing clinical

decision-making pathway or guideline. This 4-plex assay is

used to measure four proteins: GFAP, neurofilament light (NF-

L), total tau (t-tau), and UCH-L1. A description of these

four biomarkers, and their temporal kinetics following TBI, is

presented in Table 1. Among current trends in TBI research,

there have been calls for more research focused on MTBI in

older adults (27, 28), and there is evidence that biomarker

results are different in older adults (29–31). Based on studies

published to date, we hypothesized that, when studied in older

patients, all four biomarkers would have statistically significant

predictive associations with the presence of acute intracranial

abnormalities on head CT, that GFAP would have the highest

diagnostic accuracy, and that older patients would have higher

biomarker levels.

Materials and methods

Subjects

The study sample was collected in the Tampere University

Hospital ED (Tampere, Finland) between November 2015 and

November 2016. The Tampere University Hospital is the only

neurosurgical referral hospital in the hospital district, and the

ED provides health services for a total of ∼470,000 residents

from 22 municipalities, both urban and rural. The Tampere

University Hospital is comparable to a US level I trauma center.

All adult patients aged 18 years or older, with an acute traumatic

head injury, seen within 24 h of injury, were the population of

interest. The minimum criteria for TBI were as follows: either

blunt injury to the head or acceleration/deceleration type injury

resulting in witnessed loss of consciousness, disorientation, or

amnesia, and an initial Glasgow Coma Scale (GCS) score of 13–

15 (32). An injury-ED admission delay of more than 24 h was

an exclusion criterion. From that population, a sample of 325

patients was recruited for a prospective study (33) designed to

validate the Scandinavian Guidelines for Initial Management of

Minimal, Mild and Moderate Head Injuries in Adults (34). Of

the 325 patients, 314 had blood drawn for the original study of

S100B, and 225 of those samples were stored in the freezer for

future use.

For the present study, the patients fulfilling the following

criteria were included in the final sample: Glasgow Coma Scale

(GCS) score from 14 to 15, age 60 years or over, blood sampling

within 12 h or less from injury, lab results available for all

four biomarkers, head CT scan performed, and no significant

extracranial injury requiring surgery. Detailed case reports

were obtained for each patient describing injury mechanism,

symptoms following the head injury, and the findings of the

physical examination performed in the ED by the on-call

physician. The study enrolment process is presented in Figure 1.
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TABLE 1 Review of the biomarkers.

Ubiquitin C-terminal hydrolase-L1: UCH-L1 is a protein

primarily found in neurons in both the central and peripheral nervous

system (35–38). UCH-L1 levels increase in serum (25, 39, 40) and plasma

(41–43) after TBI. Serum levels become detectible within an hour and

appear to reach a peak at 7–9 h post TBI (10, 25, 40). With a half-life of

around 7 h, the levels decrease steadily over 48 h (10, 40, 44).

Glial fibrillary acidic protein: GFAP is a cytoskeletal intermediate

filament protein almost exclusively present in astrocytes in the central

nervous system (CNS) (45, 46). GFAP levels in serum (10, 39, 47, 48), and

plasma (8, 41, 42, 49), increase following TBI. GFAP levels in serum begin to

increase within the first hour, and appear to peak at 20 h from injury, and

steadily decline over 72 h (10, 50). GFAP is reported to have a half-life of

24–48 h (44).

Tau: Tau, a microtubule-associated protein, is primarily localized in

neuronal axons in the CNS (51). Levels of t-tau and its proteolytic cleavage

product, c-tau, and phosphorylated tau (p-tau) increase in blood after TBI

(5, 49, 52, 53), Elevated plasma levels of t-tau have been associated with

repetitive MTBIs in amateur boxers (54). It has been suggested that acute

plasma p-tau levels and the p-tau to t-tau ratio outperform t-tau levels in

prognostication following TBI (53). Blood tau levels appear to peak 1 h

following TBI and then decline over the next 12 h (52, 55). However, the

levels seem to rise again between 12 and 36 h and may remain elevated up to

6 days from injury (52, 56).

Neurofilament light: NF-L is the smallest subunit of the

neurofilament heteropolymer, and it is abundant in neuronal axons (57).

Unlike tau, which is mostly expressed in the small unmyelinated axons (58),

NF-L is found in the large-caliber myelinated axons (59). NF-L levels

become elevated in blood following TBI (55, 60, 61). Serum levels increase

during the first weeks from injury and the half-life has been estimated to

exceed 1 week (60, 62).

All enrolled patients provided an informed written consent

according to the Declaration of Helsinki. The study protocol was

approved by the Ethics Committee of the Pirkanmaa Hospital

District, Tampere, Finland (ethical code: R15045).

Head CT imaging

Non-contrast head CT was performed with a 64-

row CT scanner (GE, Lightspeed VCT, WI, USA). The

findings were systematically coded by a neuroradiologist

(K.B.), blinded to the clinical characteristics of the

patients, based on the National Institute of Neurological

Disorders and Stroke (NINDS) Common Data Elements

(CDE) (63). The following traumatic lesions were

coded as acute intracranial abnormalities according to

the NINDS CDEs: skull fracture, epidural hematoma,

subdural hematoma, subarachnoid hemorrhage, vascular

dissection, traumatic aneurysm, venous sinus injury,

FIGURE 1

Study enrolment process. GCS, Glasgow Coma Scale; CT,

computed tomography.

midline shift, cisternal compression, fourth ventricle

shift/effacement, contusion, intracerebral hemorrhage,

intraventricular hemorrhage, diffuse axonal injury, penetrating

injuries, craniocervical junction injury, brain swelling,

ischemia/infarction/hypoxic-ischemic injury. No subject had

an isolated skull fracture, and an isolated skull fracture, if

present, would not have met our inclusion criterion for an

intracranial abnormality.

Blood biomarkers and laboratory
procedures

Venous blood samples were collected within 12 h of injury.

Blood samples were centrifuged for 10min at 10,000 rpm

at room temperature. Part of the serum was analyzed at

Tampere University Hospital (Tampere, Finland) as part of

the hospital laboratory’s on-call services for a prior study

(33). The remaining serum was stored in Eppendorf tubes

and immediately frozen at −70◦C for future use. The blood

samples were collected in Tampere between November 2015
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TABLE 2 Injury characteristics of the samples.

Normal head CT (n = 61) Abnormal head CT (n = 22)

Men, n (%) 25 (41) 9 (40.9)

Women, n (%) 36 (59) 13 (59.1)

M (SD) Mdn (IQR), Range M (SD) Mdn (IQR), Range

Age (years) 78.3 (9.6) 78.0 (70.0–86.0), 60–100 81.1 (9.4) 82.5 (72.8–89.0), 61–96

Time between injury and blood sampling (hours) 3.4 (2.3) 3.1 (1.7–4.5), 0.8–11.7 3.8 (2.1) 3.6 (2.2–4.8), 1.3–8.7

Present Present

n (%) n (%)

Loss of consciousness-witnessed/suspected 22 (36.1) 10 (45.5)

Post-traumatic seizure 0 (0) 0 (0)

Post-traumatic amnesia 18 (29.5) 13 (59.1)

Focal neurological deficit 5 (8.2) 3 (13.6)

Vomited 2 times or more 1 (1.6) 1 (4.5)

Headache 28 (45.9) 10 (45.5)

Alcohol intoxication 15 (24.6) 4 (18.2)

Glasgow coma scale= 15 58 (95.1) 20 (90.9)

Neurosurgery (craniotomy) 0 (0) 2 (9.1)

CT, computed tomography; n, sample size; M, mean; SD, standard deviation; Mdn, median; IQR, interquartile range.

TABLE 3 Descriptive statistics for the biomarkers by group.

Biomarker CT finding n M Mdn SD Min. Max. Mann-Whitney U Test

GFAP Negative 61 376.90 274.27 431.28 87.40 3,382.41 U = 280, p < 0.001, r = 0.44

Positive 22 1,108.19 787.84 872.31 114.44 2,640.75

UCH-LI Negative 61 57.47 40.88 46.37 7.12 197.63 U = 492, p= 0.065, r = 0.20

Positive 22 114.22 73.71 155.54 15.07 713.44

NF-L Negative 61 44.56 29.61 41.26 9.06 237.30 U = 612, p= 0.543, r = 0.07

Positive 22 49.23 34.72 56.47 17.45 284.07

t-Tau Negative 61 2.22 1.81 1.67 0.17 9.45 U = 653, p= 0.853, r = −0.02

Positive 22 2.63 1.85 2.71 0.56 12.20

Biomarkers are reported in pg/mL. GFAP, glial fibrillary acidic protein; UCH-L1, ubiquitin C-terminal hydrolase-L1; NF-L, neurofilament light; t-Tau, total tau; CT, computed tomography;

n, sample size; M, mean; SD, standard deviation; Mdn, median; Min., minimum; Max., maximum.

and November 2016. Approximately 2 years later the serum was

sent to the SahlgrenskaUniversity Hospital (research laboratory)

in Mölndal, Sweden for analysis. All the serum samples were

transferred in 20 kilograms of dry ice from Tampere to

Mölndal. The samples analyzed inMölndal underwent one cycle

of freezing and thawing. The serum samples were analyzed

in March of 2018 using the Quanterix Simoa 4-plex assay

on a Simoa HD-1 analyzer according to the manufacturer’s

instructions (Quanterix, Billerica, MA). The 4-plex assay

measures four protein biomarkers in blood: GFAP, NF-L, t-

tau, and UCH-L1. For GFAP, the lower limit of quantification

(LLOQ) was 0.467 pg/mL, the lower limit of detection (LLOD)

was 0.221 pg/mL, and the calibration range was 0–1,000 pg/mL.

For NF-L, LLOQ was 0.241 pg/mL, LLOD was 0.104 pg/mL,

and the calibration range was 0–500 pg/mL. For t-tau, LLOQ

was 0.053 pg/mL, LLOD was 0.024 pg/mL, and the calibration

range was 0–100 pg/mL. For UCH-L1, LLOQ was 5.45 pg/mL,

LLOD 1.74 pg/mL, and the calibration range was 0–10 ng/mL.

The mean interval in which the serum was frozen was 23.9

months (SD = 2.9, Range = 17–27). The laboratory technicians

performing the analyses were blinded to the clinical data.

Statistical analyses

The primary dependent variables were the four blood

biomarkers. The distributional characteristics for these

biomarkers were examined using visual inspection of

histograms for each biomarker in the total sample and

the subgroups and Shapiro-Wilk tests of normality. Given
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FIGURE 2

Box and whisker plots for the biomarkers by group. Upper left, glial fibrillary acidic protein; upper right, ubiquitin C-terminal hydrolase-L1; lower

left, neurofilament light; lower right, total tau; CT; computed tomography. Normal head CT n = 61, abnormal head CT n = 22.

that nearly all biomarkers in all groups were not normally

distributed, non-parametric analyses were used. Group

differences were examined using Mann-Whitney U tests.

Bivariate associations were calculated using Spearman rho

coefficients. Receiver operator characteristic curves, under

non-parametric assumptions, were computed using the brain

imaging result as the dependent variable and the biomarker

values as the predictors. The statistical analyses were conducted

with the Statistical Package for Social Sciences software program

(IBM SPSS Statistics for Windows, Versions 24, Armonk, NY,

USA). The statistical significance level was set at p < 0.05.

Results

Patient characteristics and blood
sampling

The mean age of the total sample (n = 83) was 79.0

years (Median = 78.0, SD = 9.58, Range = 60–100; 41.0%

men). The mechanism of injury was a fall in 96.4% of the

sample. All had Glasgow Coma Scale scores (GCS) of 14 or

15 in the ED (GCS 15 = 94.0%). The median time between

injury and blood sampling was 3.1 h (SD = 2.2; IQR = 1.8–

4.7, Range = 0.8–11.7 h). The median time between blood

sampling and head CT was 0.9 h (SD = 2.4; IQR = 0.2–

2.1, Range = −1.3 to 13.9 h). Intracranial abnormalities were

identified in 26.5% (n = 22). The imaging findings were as

follows: skull fracture = 2.4% (n = 2), epidural hematoma =

0%, extra-axial hematoma=21.7% (n= 18), subdural hematoma

(acute) = 12.0% (n = 10), subdural hematoma (subacute or

chronic) = 3.6% (n = 3), traumatic subarachnoid hemorrhage

= 10.8% (n = 9), intraventricular hemorrhage = 1.2 (n =

1), midline shift (supratentorial) = 2.4% (n = 2), contusion

= 4.8% (n = 4), traumatic axonal injury = 3.6% (n =

3). No patient had an isolated skull fracture. The injury

characteristics of the sample stratified by negative and positive

imaging groups (i.e., uncomplicated vs. complicated MTBI) are

presented in Table 2.
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TABLE 4 Spearman intercorrelation matrix.

Age Time GFAP UCH-L1 NF-L

Total (n= 83) Age

Time to blood sampling 0.08

GFAP 0.37a 0.24b

UCH-L1 0.32a −0.02 0.29a

NF-L 0.48a 0.08 0.37a 0.19

Tau 0.18 −0.03 0.24b 0.35a 0.28a

Normal CT (n= 61) Age

Time to blood sampling 0.13

GFAP 0.54a 0.15

UCH-L1 0.37a −0.10 0.22

NF-L 0.56a 0.06 0.53a 0.20

Tau 0.26b 0.03 0.36a 0.29b 0.27b

Abnormal CT (n= 22) Age

Time to blood sampling −0.13

GFAP −0.06 0.39

UCH-L1 0.13 0.05 0.33

NF-L 0.23 0.12 −0.13 0.16

Tau 0.12 −0.10 0.23 0.57a 0.39

GFAP, glial fibrillary acidic protein; UCH-L1, ubiquitin C-terminal hydrolase-L1; NF-L, neurofilament light; t-Tau, total tau; CT, computed tomography. ap < 0.01; bp < 0.05.

Descriptive statistics and group
comparisons for the biomarkers

Descriptive statistics for the biomarkers, stratified by

groups, are presented in Table 3 and Figure 2. Visual

examination of the frequency distribution histograms

and Shapiro-Wilk tests of normality revealed non-normal

distributions for all biomarkers in the total sample and

in the subgroups. As seen in the box and whisker plots

in Figure 2, GFAP had the greatest separation between

the groups, whereas the other biomarkers had similar

distributional characteristics between groups. Those with

abnormal CT scans had significantly greater levels of GFAP

than those with normal CT scans [U(83) = 280, p < 0.001,

r = 0.44]. There were no statistically significant differences

between the two groups on the other three biomarkers (NF-L,

t-tau, and UCH-L1).

Biomarker intercorrelations and
correlations with age and time to blood
sampling

An intercorrelation matrix, stratified by group, is presented

in Table 4. For those with a normal head CT, there were small

to large correlations between age and GFAP, NF-L, t-tau, and

UCH-LI. The most prominent age association was with NF-L

(rho = 0.56) and GFAP (rho = 0.54), as illustrated in Table 4

and Figure 3. Due to small sample size in the abnormal head

CT group, and inconsistent power across normal and abnormal

head CT groupings, significance was not interpreted for the

correlations. The correlations between age and the biomarkers

were consistently negligible to small in the group with an

abnormal head CT. The correlations between the biomarkers

ranged from small to medium, apart from the large correlation

between tau and UCH-L1 (rho = 0.57) in the abnormal head

CT group and between GFAP and NF-L (rho = 0.53) in

the normal head CT group. However, the correlation between

GFAP and NF-L in the abnormal head CT group was negative

(rho = −0.13). The correlations between the biomarkers and

time to blood sampling varied from non-existent to weak in

both groups, apart from GFAP in the abnormal head CT

group (rho= 0.39).

Discriminating abnormal from normal
head CT scans

Receiver operator characteristic curves were computed for

each biomarker. The results are presented in Figure 4. The

only biomarker with a significant area under the curve was

GFAP (AUC = 0.791, 95% CI = 0.669–0.914). All individuals’

biomarker values are presented in the Table A1. To illustrate

a possible future clinical algorithm for using two biomarkers,
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FIGURE 3

Scatterplots of biomarkers and age by group. GFAP, glial fibrillary acidic protein, upper left; UCH-L1, ubiquitin C-terminal hydrolase-L1, upper

right; NF-L, neurofilament light, lower left; and tau, lower right. Markers in green are subjects with normal head computed tomography (CT) (n =

61) scans and markers in red are subjects with abnormal head CT scans (n = 22).

GFAP and UCH-L1, as a screening test for referring for head CT

in older adults, we visually examined the frequency distributions

and selected cutoff scores that would, in combination, identify

all subjects with abnormal head CT scans. All subjects with

abnormal head CT scans were correctly identified using the

following algorithm: GFAP values are 323 pg/mL or greater or

UCH-LI values are 42 pg/mL or greater. Applying that algorithm

to those with negative head CT scans yielded the following:

36/61 (59.0%) had GFAP values of <323 pg/mL, 31/61 (50.9%)

had UCH-L1 values <42 pg/mL, and 22/61 (36.1%) had both

GFAP <323 pg/mL and UCH-L1 <42 pg/mL. The algorithm

specificity for detecting abnormal head CT scans was 0.36 (95%

CI= 0.24–0.49).

Discussion

There is tremendous interest in whether blood biomarkers

can be used within an ED clinical pathway to determine if

patients should undergo head CT following a suspected or

confirmed MTBI (33, 64, 65). It is recognized that biomarker

values differ in older adults (30, 31), so there is a need for

research focused specifically on these patients. Nearly all older

adults in this study presented to the ED following head trauma

sustained in a fall. It is well-established that falls are a common

cause of ED visits (66, 67) and TBI in older adults (68–70).

The percentage of patients with traumatic abnormalities on

their head CT was 26.5%, and, although substantially higher
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FIGURE 4

Receiver operator characteristic curves for the four biomarkers.

Glial fibrillary acidic protein (GFAP), in the total sample (N = 83),

area under the curve (AUC) = 0.791, standard error (SE) = 0.063,

95% confidence interval (CI) = 0.669–0.914; Ubiquitin

C-terminal hydrolase-L1 (UCH-L1) AUC = 0.633, SE = 0.072,

95% CI = 0.493–0.774; Neurofilament light (NF-L) AUC = 0.544,

SE = 0.067, 95% CI = 0.412–0.676; and t-Tau AUC = 0.487, SE =

0.079, 95% CI = 0.331–0.642. n = 83. A subgroup analysis was

conducted for patients with Glasgow Coma Scale = 15 (n = 78,

CT positive = 20 and normal head CT = 58), as follows: GFAP

AUC = 0.776, SE = 0.068, 95% CI = 0.642–0.910; UCH-L1 AUC

= 0.633, SE = 0.075, 95% CI = 0.486–0.780; NF-L AUC = 0.508,

SE = 0.069, 95% CI = 0.373–0.642; and t-Tau AUC = 0.482, SE =

0.080, 95% CI = 0.325–0.639. Normal Head CT (n = 58): GFAP

Median (Mdn) = 283.59, interquartile range (IQR) =

206.21–441.27; UCH-L1 Mdn = 41.80, IQR = 23.95–83.26; NF-L

Mdn = 30.11, IQR = 19.56–54.37; and t-Tau Mdn = 1.79, IQR =

1.20–2.61. Positive Head CT (n = 20): GFAP Mdn = 787.84, IQR

= 351.17–2174.14; UCH-L1 Mdn = 73.71, IQR = 32.83–129.61;

NF-L Mdn = 32.70, IQR = 19.67–54.91; and t-Tau Mdn = 1.85,

IQR = 0.95–3.35.

compared to many prior MTBI studies, a high proportion

of abnormal scans has been reported in other MTBI studies

focusing on older adults (71, 72).

Only one of the four biomarkers, GFAP, significantly

differentiated older adults with abnormal head CT scans from

those with normal head CT scans (Figures 2, 4). The median

values for UCH-L1 were modestly greater in the complicated

MTBI group vs. the uncomplicated MTBI group (Table 3),

revealing a small separation between these groups (Figure 2),

whereas there was very little difference between groups on

levels of NF-L and t-tau. These results align with a prior study

examining the added value of incorporating GFAP and UCH-

L1 into clinical decision rules for detecting CT abnormalities

in MTBI, which identified improved performance using GFAP

independent of UCH-L1 (73).

The AUCs in the current study were substantially lower

than in a prior TBI study using the same biomarker platform

(GFAP: 0.79 vs. 0.88; UCH-L1: 0.63 vs. 0.86, NF-L: 0.54 vs.

0.84, and t-tau: 0.49 vs. 0.77, respectively) (43). The prior study,

however, differed methodologically in that it included patients

with mild, moderate, and severe TBIs (vs. MTBI only in this

study), the median age of their sample was more than 30 years

younger than in the present study, and they measured the

biomarkers in plasma (vs. serum in this study). By including

patients with moderate and severe TBIs, the prior study had

higher biomarker levels for GFAP, UCH-L1, and t-tau than

the present study and this might have contributed to better

differentiation of those with abnormal head CT scans. Patients

with moderate and severe TBI always undergo an acute head

CT (72). Therefore, in this study, we wanted to focus on

patients with MTBI. We also wanted to examine older patients,

because higher prevalence of intracranial abnormalities has

been reported among the elderly (74) and they experience

more severe consequences and slower recovery than younger

patients (28).

The intercorrelations between the biomarkers ranged from

very small to large, indicating their variable relationships with

each other (Table 4). Older age was associated with greater

levels of all the biomarkers in those with uncomplicated MTBIs

(Table 4), aligning with previous studies (29, 31). In contrast,

for those with abnormal head CT scans, there was not an

association between age and biomarker levels (Table 4; Figure 3).

We found a large correlation between GFAP and NF-L (r

= 0.53) in patients with normal head CT scans, while in

patients with abnormal head CT scans, a similar correlation

was found between UCH-L1 and t-tau (r = 0.57). The prior

study with the same biomarker platform found the strongest

correlation between NF-L and UCH-L1 (r = 0.71) and the

weakest correlation between GFAP and t-tau (r = 0.06) (43). In

their study cohort, the median age was 36 years lower and all

TBI severities were included.While the neurobiology underlying

this difference in results is unclear, the intercorrelations of

biomarker concentrations are possibly also affected by age,

sampling time point, extracranial injuries, and the severity

of TBI.

Given that GFAP and UCH-L1 have been FDA-approved

to screen for abnormal head CT scans following TBI in

adults, we provided all individual subjects’ biomarker values

in the Table A1. Some authors have expressed concern that

past researchers have not attempted to develop clinical

cutoff scores or develop clinical algorithms for using

blood biomarkers in the ED setting (75, 76). Therefore,

we illustrated one example of an algorithm that can be used

within 12 h of injury, optimized for the data presented in

the Table A1, that yielded 100% sensitivity for identifying

abnormal head CT scans. The algorithm produced 39

false positive and 22 true negative results, reflecting a

specificity of 36.1% within the sample. Although the

algorithm was developed using biomarker levels of older

adults, the specificity of the algorithm matches that of the

FDA-approved biomarker kit using the same biomarker

combination (specificity 0.367) (20). A summary of the

individual biomarkers follows.
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GFAP

We found that GFAP was the only biomarker that

significantly differentiated older adults with abnormal head CT

scans with the AUC of 0.791. The use of this biomarker in

detecting CT abnormalities in TBI patients has considerable

support in the literature. A living systematic review summarized

the existing literature on GFAP as a screening test for abnormal

head CT findings (77). The sensitivities for predicting abnormal

head CT findings were between 67 and 100% and the specificities

between 0 and 89% (77). Different assays have been used

in detecting GFAP levels, with various ELISA assays being

the most often used (10, 14, 39, 41, 47, 48, 50, 78). Others

have used assays by Randox Biochip (42), digital array from

QuanterixTM (49), and the Quanterix Simoa 4-plex (8, 17, 43).

GFAP is included in the FDA approved the Banyan BTITM for

clinical use (21). A study raised concern in the ability of GFAP

to differentiate between patients with MTBI vs. orthopedic

injury (79), which may be in part a result of GFAP not

being elevated in some cases of uncomplicated MTBI (16,

80). However, it has been reported that serum GFAP levels

may differentiate between patients with moderate to severe

TBI and orthopedic controls 30 days after the injury (81).

GFAP has been shown to be less accurate in discriminating

complicated and uncomplicated MTBI patients in older vs.

younger adults (30). The positive correlation between age

and GFAP in our sample is consistent with a study (29)

that reported greater GFAP concentrations in older patients

with MTBIs.

UCH-L1

In the current study, we found that UCH-L1 did not

statistically significantly differentiate older adults with abnormal

head CT scans. Those with abnormal CT scans had modestly

higher UCH-L1 levels, but the effect size was small. Prior studies

illustrate that UCH-L1 levels differentiate, to some degree,

patients with and without traumatic intracranial CT findings

in isolated TBI, and in people with TBI and multitrauma (17,

18, 20, 24, 25). A living systematic review summarized the

existing literature on serum and plasma UCH-L1 for predicting

acute traumatic head CT findings. The AUC for serum was 0.77

(95% CI: 0.70–0.83, 347 cases, 179 controls) and for plasma was

0.67 (95% CI: 0.58–0.76, 595 cases, 256 control) (77). Several

different assays for UCH-L1 have been used in TBI studies.

Most studies have used ELISA, either custom made (25, 39, 40,

82–84) or commercially available by Banyan Biomarkers Inc.

(6, 10, 20, 24, 41, 50, 85). Other studies have used Randox

Biochip (42, 79, 86), the Quanterix Simoa 4-plex (17, 43), or

electrochemiluminescence immunosassays (87). They differ in

analysis techniques resulting in different limits of detection and

quantification. UCH-L1 is included in the FDA approved the

Banyan BTITM for clinical use along with GFAP (21). Although

considered brain-specific, a study detected elevated UCH-L1

serum levels in patients with orthopedic trauma compared to

the healthy controls (25). Also, one study revealed that UCH-

L1 levels did not distinguish patients with orthopedic injury

without head trauma from patients with uncomplicated MTBI

(79). In our study, there were modest differences in the median

values of UCH-L1 (r = 0.20) between groups (Table 3), and

we were statistically underpowered to detect a difference of

this small magnitude. A recent study (29) showed the Banyan

BTITM to be 100% sensitive in detecting CT abnormalities in

older patients but showed a stepwise reduction in specificity

with age. The specificity for all patients over 65 years old

was 13%. In our study, UCH-L1 was useful in an algorithm

combined with GFAP designed to reduce the number of CT

scans in the CT negative group while detecting all abnormalities

in the CT positive group. The specificity of the algorithm

was 36%.

Tau

In the current study, we found that t-tau did not statistically

significantly differentiate older adults with abnormal head

CT scans. There are discrepancies in other study results

assessing the ability of tau to discriminate patients with and

without head CT findings following milder spectrum brain

injury (9, 17, 88). One concern expressed previously was

that studies showing no significant differences in serum tau

levels based on head CT findings involved an assay with a

relatively high lower limit of detection, possibly obtaining

negative findings due to less sensitivity of the assay (54).

Studies using more sensitive technology have showed significant

increases in blood tau levels in patients with MTBIs with

abnormal findings on head CT (17, 43, 49). In addition,

it should be noted, that there are studies suggesting that

blood tau levels are affected by factors such as age in

cognitively normal individuals (89) and presence of Alzheimer’s

disease (90, 91). In the current study, we used one of the

more sensitive technologies for measuring t-tau with a lower

limit of detection but found no group differences based on

CT findings.

NF-L

In our study, NF-L did not statistically significantly

differentiate older adults with abnormal head CT scans. In

some studies, NF-L levels in blood discriminate patients with

and without traumatic head CT findings (17, 43, 55). Elevated

levels have been linked to diffuse axonal injury (92). However,

due to its kinetically slow increase profile in blood, some

suggest it might be more suitable for sampling during subacute
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and chronic stages of TBI for outcome prediction purposes

(62). Also, blood NF-L levels have been reported to be higher

in neurological conditions such as Alzheimer’s disease (93,

94), multiple sclerosis (95), and Huntington’s disease (96). A

strong association between older age and increased NF-L levels

has been reported both in MTBI patients and orthopedically

injured trauma controls (31). Specifically, there was a high

correlation between age and NF-L levels in a sample of

adults with MTBIs and normal day-of-injury neuroimaging

(r = 0.80), and within subgroups of patients who did (r =

0.068) and did not (r = 0.76) have pre-injury neurological

diseases (31).

Limitations

This study was limited in its sample size, and especially,

in the small number of patients with complicated MTBI. The

sample was underpowered to detect smaller effects, but the

overall differences in biomarker levels were quite modest with

the exception of GFAP.

Small sample sizes run the risk for producing non-

replicable findings that may not generalize to the population

and do not translate well to clinical use. The results of

this study require replication both in a larger sample of

older adults and in younger patients. Moreover, GFAP levels

might reflect, in part, aging-related inflammatory processes

affecting astrocytes (97), higher levels of GFAP are associated

with both aging and the development of dementia (98), and

one study suggests that GFAP might be less sensitive to

traumatic intracranial abnormalities in older adults compared

to younger adults (30). The current approach of using the

4-plex to detect abnormal head CT should be replicated in

diverse samples by future researchers to evaluate potential

clinical usefulness.

Extracranial injuries were only grossly assessed based on

the need for surgery other than neurosurgery, and more minor

orthopedic injuries, such as conservatively treated fractures,

were not noted. Therefore, it is possible that the biomarker

concentrations are affected by these injuries. Our data is not

suitable for analyzing the possible effect of extracranial injuries

on biomarker concentrations.

Measuring biomarkers in cerebrospinal fluid (CSF) might

yield different results. However, there are practical (e.g., time

and cost), clinical (e.g., risks and possible need to discontinue

anticoagulants), and ethical (e.g., suitable less invasive methods

are available) challenges associated with measuring biomarkers

in CSF.

Finally, our blood samples were stored in low temperature

for ∼2 years before the biomarker analysis. Although freezing

blood samples in low temperatures has been shown to preserve

proteins for years to decades (99), it is uncertain if the biomarker

concentrations may have been affected by the storage period.

Conclusions

This study set out to determine if GFAP, UCH-L1, NF-L, and

tau differentiated between older adult patients with and without

traumatic intracranial abnormalities due to MTBI. GFAP was

the only biomarker that significantly differentiated older adults

with abnormal head CT scans from those with normal scans.

The findings support the use of GFAP as a biomarker for

detecting CT-positive intracranial abnormalities in older adults

with MTBI. Further studies should consider the potential effect

of age on biomarker levels when establishing clinical cut-off

values for detecting head CT abnormalities.
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Appendix

Table A1 Individual subjects’ biomarker values (pg/mL) sorted by GFAP and by group.

Normal head CT Normal head CT Abnormal head CT

ID Age GFAP UCH-L1 NF-L t-tau ID Age GFAP UCH-LI NF-L t-tau ID Age GFAP UCH-L1 NF-L t-tau

339 86.0 87.404 102.990 18.001 1.321 184 64.0 292.916 9.860 22.368 1.399 355 96.0 114.444 386.304 38.783 1.189

287 71.0 90.265 22.706 22.874 1.598 138 83.0 294.218 27.986 86.380 1.312 360 92.0 188.588 42.706 27.766 6.328

204 66.0 92.736 8.237 44.632 1.909 095 83.0 306.735 40.877 36.157 2.416 271 73.0 195.592 713.444 90.163 6.424

203 60.0 94.557 7.119 9.632 0.171 225 73.0 308.590 10.376 11.916 2.178 228 87.0 323.110 29.540 17.451 0.774

144 70.0 98.566 127.998 10.392 0.814 286 68.0 322.340 17.762 30.608 2.720 351 72.0 349.994 15.073 19.463 0.708

149 67.0 105.283 60.608 20.051 0.826 245 78.0 323.188 37.743 21.813 5.261 295 86.0 354.694 17.039 35.672 0.924

224 78.0 106.699 74.218 31.925 1.948 135 83.0 330.417 16.049 47.272 1.234 277 73.0 386.933 23.281 74.804 1.745

214 65.0 135.817 24.390 14.976 1.004 108 83.0 332.453 65.819 99.755 2.013 230 88.0 492.604 49.188 38.454 0.563

132 70.0 145.567 83.035 25.808 1.811 231 84.0 387.479 23.859 26.716 1.820 107 71.0 533.145 30.386 33.862 0.767

343 68.0 146.852 35.917 12.708 2.789 153 88.0 403.082 127.456 40.205 7.286 120 76.0 657.108 89.672 26.612 2.385

179 75.0 166.290 65.977 17.919 2.019 159 78.0 422.222 104.450 90.539 5.216 175 85.0 729.044 18.268 35.572 1.133

357 72.0 169.771 72.476 15.103 3.594 192 93.0 424.888 133.234 99.772 4.534 189 61.0 846.644 48.201 73.089 1.968

262 68.0 170.991 20.162 31.041 0.533 161 82.0 433.279 30.515 53.901 2.500 267 89.0 1,064.121 114.594 284.068 12.200

279 70.0 190.954 24.056 14.843 1.074 353 61.0 434.286 107.582 9.055 1.531 232 77.0 1,191.149 63.553 29.823 3.300

094 77.0 192.155 47.981 20.806 1.661 263 89.0 434.825 49.901 49.223 2.439 157 89.0 1,372.245 135.899 36.954 1.208

331 63.0 193.154 17.360 133.355 0.627 152 90.0 460.618 187.730 135.883 0.721 235 83.0 1,382.719 110.735 19.128 1.953

260 77.0 210.562 31.717 18.851 1.912 163 77.0 477.162 23.982 18.281 1.287 302 68.0 2,057.879 151.345 19.913 3.481

257 81.0 215.777 103.772 25.452 1.706 278 86.0 501.701 57.073 46.989 1.329 215 72.0 2,212.887 100.462 19.594 1.021

268 69.0 218.441 10.236 15.132 0.846 281 75.0 504.937 26.802 23.078 3.306 321 82.0 2,331.838 58.248 18.326 0.890

205 72.0 219.909 16.674 49.444 2.233 206 76.0 529.588 21.441 22.439 1.004 246 95.0 2,340.981 83.872 62.243 2.036

325 91.0 221.865 30.721 20.950 1.395 140 85.0 532.299 143.043 20.353 0.969 198 80.0 2,613.821 138.220 21.106 3.366

172 77.0 233.167 96.265 39.659 1.207 273 93.0 557.109 49.105 237.303 4.794 363 89.0 2,640.746 92.724 60.286 3.503

258 84.0 235.187 20.315 26.332 2.104 237 88.0 560.016 38.680 29.610 5.401

207 66.0 243.461 183.169 24.739 3.866 187 74.0 567.810 83.933 32.702 3.226

297 69.0 245.478 42.728 31.575 1.766 104 100.0 610.401 50.455 85.437 1.684

212 78.0 260.781 67.890 19.801 2.802 310 81.0 627.396 30.670 86.047 0.911

109 66.0 262.556 25.743 15.252 0.919 283 88.0 753.972 59.750 69.423 2.232

253 80.0 263.371 29.421 17.566 1.176 199 81.0 788.310 43.798 68.159 9.448

196 94.0 267.663 40.316 45.553 2.305 142 88.0 853.919 197.634 93.206 2.577

177 94.0 272.902 46.483 31.277 0.894 315 89.0 3,382.409 116.109 142.353 2.880

328 90.0 274.270 31.590 55.782 1.203

GFAP, glial fibrillary acidic protein; UCH-L1, ubiquitin C-terminal hydrolase-L1; NF-L, neurofilament light; t-Tau, total tau; CT, computed tomography; Values in bold are above the

study-specific cutoff scores. Optimized, Study-Specific Algorithm: If GFAP value is 323 or greater or UCH-LI value is 42 or greater then positive head CT sensitivity = 100%. Normal head

CT n = 61, abnormal head CT n = 22.
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