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The mechanical cell – the role of force dependencies in
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ABSTRACT
The role of mechanical signals in the proper functioning of organisms
is increasingly recognised, and every cell senses physical forces and
responds to them. These forces are generated both from outside the
cell or via the sophisticated force-generationmachinery of the cell, the
cytoskeleton. All regions of the cell are connected via mechanical
linkages, enabling the whole cell to function as a mechanical
system. In this Review, we define some of the key concepts of how
this machinery functions, highlighting the critical requirement
for mechanosensory proteins, and conceptualise the coupling of
mechanical linkages to mechanochemical switches that enables
forces to be converted into biological signals. These mechanical
couplings provide a mechanism for how mechanical crosstalk might
coordinate the entire cell, its neighbours, extending into whole
collections of cells, in tissues and in organs, and ultimately in the
coordination and operation of entire organisms. Consequently, many
diseases manifest through defects in this machinery, which we map
onto schematics of the mechanical linkages within a cell. This
mapping approach paves the way for the identification of additional
linkages between mechanosignalling pathways and so might identify
treatments for diseases, where mechanical connections are affected
by mutations or where individual force-regulated components are
defective.
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Introduction
Every living cell receives physical signals from its environment.
These physical signals, such as forces generated by motor proteins,
mechanical load, shearing forces, flow and pressure are transduced
into biological signals by complex mechanosensitive machinery
in a process known as mechanotransduction. Much of this response
to physical cues is achieved by a sensory network of receptor
complexes that form at contact points between the cell and its
surroundings as proposed by Ingber almost 30 years ago (Ingber,
1997, 2003; Wang et al., 2009). However, there are also many
mechanoreceptors inside the cell that respond to changes in the
tension of the cytoskeleton of the cell (Gautel, 2011; Goult et al.,
2018; Margadant et al., 2011; Sawada et al., 2006; Wang et al.,

2019a), nuclear shape (Earle et al., 2020; Nava et al., 2020;
Stephens et al., 2019) and the behaviour of organelles (Helle et al.,
2017).

Pioneering work from the Sheetz laboratory has demonstrated
that the cytoskeleton responds to mechanical load, identifying
p130Cas (also known as BCAR1) as a force-responsive protein
(Sawada and Sheetz, 2002). Closer inspection revealed that
phosphorylation of p130Cas is modulated by mechanical tension
(Sawada et al., 2006). Since the discovery of p130Cas as a
mechanoregulated protein, the field of mechanobiology has
exploded and now hundreds of proteins that are mechanoregulated
and integrated into complex mechanical linkages have been
identified. The large number of force-responsive proteins in cells
is exemplified by studies that quantify proteins present at cell–
extracellular matrix (ECM) adhesions when the motor protein,
myosin II is inhibited (Kuo et al., 2011; Schiller et al., 2011); 459 of
the 905 proteins identified in these complexes change in abundance
when mechanical load is reduced (Kuo et al., 2011; Schiller et al.,
2011).

The concept that mechanical signals are transmitted to the
nucleus leading to changes in gene expression is well established
(Cooper and Giancotti, 2019; Elosegui-Artola et al., 2018; Engler
et al., 2006; Sun et al., 2016; Wang et al., 2009), and here we
introduce how mechanical forces are sensed by proteins, acting as
mechanical switches, and how networks of mechanical switches,
connected by mechanical linkages, couple all regions of the cell
(Fig. 1). The attachments of cells to each other and to the ECM are
critical for normal tissue development as large mechanosensitive
signalling complexes form at these attachment sites, which enable
cells to sense the physical properties of the ECM to guide cell
behaviour and differentiation, and to transmit physical signals into
its environment (Hytönen and Wehrle-Haller, 2014). Furthermore,
the mechanical linkages that emanate from these attachments are
fundamental to multicellular life as they connect to other cellular
compartments, integrating mechanical cues into biochemical
responses that control cellular functioning.

Great complexity emerges from the coupling of the force
generation and force-sensing machinery, and many force
dependencies arise in the protein interaction networks. The aim
of this Review is to present a global view of the cell where
these assemblies working together in synchrony represent a vast
mechanosensitive network of mechanical switches, connected via
mechanical linkages functioning as a dynamic, complex machine
that coordinates cell shape, form and function (Fig. 1). Many
genetic diseases occur as a result of defective components of
these mechanosensitive structures, and in the second part we
consider how these defects map onto the mechanical linkages.
By viewing these machineries as awhole ‘mechanical cell’, a deeper
understanding of the diverse disease states that result frommutations
in these linkages can be appreciated which might help translation
into novel clinical treatments.
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Molecular mechanisms in mechanosignalling
Mechanosignalling involves multiple components that traverse the
different levels of organisation in a cell and across the entire
organism. As a result, mechanoregulated channels (Martinac, 2012;
Yao et al., 2020 preprint), membrane dynamics (Butler et al., 2001;
Haidekker et al., 2000; reviewed in Yamamoto and Ando, 2018),
conformational changes in proteins (del Rio et al., 2009; Johnson
et al., 2007; Matsui et al., 2012; Yao et al., 2016) and resultant
regulation of gene expression (Chien et al., 1998) have all been
shown to contribute to mechanosignalling. In this Review, we
mainly focus on the regulation of protein conformation, as it
represents a ubiquitous mechanism for cellular mechanosensing.

Protein conformation – plenty of conformational space to explore
Proteins adopt a limited number of conformations in solution, and
the concept that proteins fold into their ‘native state’ is widely
accepted (Englander and Mayne, 2014). As a result of enormous
efforts, >190,000 protein structures have been determined, with
most revealing one major conformer. Knowledge of how proteins
adopt a native state has led to the development of software, such as

AlphaFold (Senior et al., 2020), that can predict protein
conformations from sequence data alone by exploiting the
existing structural information.

Nevertheless, a surprisingly high proportion of our proteome
(∼30%) is expected to be partially disordered, with the fraction of
disordered proteins higher in complexmulticellular organisms than in
simple unicellular organisms (Mészáros et al., 2009). Locally
disordered regions within proteins are biologically relevant and are
enriched in sequences that mediate cellular signalling functions
(Wright and Dyson, 2015). Notably, intrinsically disordered proteins
participate in diverse cellular functions, such as phase separation
(Martin and Holehouse, 2020), enabling accessibility to ligand-
binding sites (Cermakova et al., 2021), defining zones of influence of
proteins tethered at one end (Barnett and Goult, 2022 preprint), as
well as being enriched in post-translational modifications (PTMs),
such as phosphorylation (Khoury et al., 2011).

In this section, we discuss key concepts of mechanosignalling
associated with the mechanomodulation of protein conformation.
The simplest notion of this can be imagined with a protein domain
that adopts a low-energy folded conformation, but upon applied
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Fig. 1. The complex mechanical linkages that scaffold and form the cells machinery. An artistic illustration of a cell connected to a neighbouring cell
(bottom) and tightly connected to the extracellular matrix (light grey; right). The matrix contains fibrous molecules, such as collagen and fibronectin, and also
flexible molecules, such as hyaluronan. On the intracellular side, cellular components are tightly interlinked, and the mechanical connections formed by the
cytoskeleton connect the cell membrane, cellular organelles and the nucleus. (1–3) Three of the mechanosensory complexes that connect the exterior of the
cell to the cytoskeleton. (1) the integrin-mediated focal adhesions, (2) the cadherin-mediated adherens junctions and (3) the desmosome. Two of the three
major cytoskeletal systems, actin and microtubules are shown and these form mechanical linkages that couple complexes 1–3 to each other and to cellular
organelles, such as the mitochondria, and via the LINC complex to the nucleus (4). Mechanosensitive proteins localised at the ends of these linkages
provide an array of binary switches, indicated by a ‘1/0’ and a green ‘light switch’, that can be operated by the force-generation machinery of the cell. The
mechanical coupling of disparate parts of the cell enables long-range communication both within and between cells and so we present the idea of the cell as
a complex array of interconnected, mechanically-operated switches functioning as a machine. Illustration generated by Iiris Mustonen, Tampere University,
Finland.
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force, undergoes a conformational change, unfolding to either a
linear peptide chain or a partially unfolded intermediate state. In an
ideal mechanosensor, this force-induced conformational change is
reversible to allow dynamic sensing and responding to mechanical
force. A textbook example is shown by the interactions of the
mechanosensitive proteins talin and vinculin (del Rio et al., 2009;
Wang et al., 2021; Yao et al., 2014a, 2016) where mechanical
unfolding of talin (herein referring generically to both talin 1 and 2)
exposes binding sites for vinculin that are cryptic in the folded
conformation.

How can mechanical load influence protein conformation?
The effects of applied forces on protein conformation can be studied
experimentally. Single-molecule methods, such as atomic force
microscopy (AFM) (Puchner and Gaub, 2009), and magnetic (Zhao
et al., 2017) and optical (Bustamante et al., 2021) tweezers, as well as
steered molecular dynamics (SMD) simulations (Isralewitz
et al., 2001), all enable detailed visualisation of these processes.
These studies are revealing that mechanical load influences the
conformational space of proteins (Hytönen and Vogel, 2008; Pruitt
et al., 2014). In the absence of mechanical load, or under low force, a
particular protein conformation might be dominant, but once a certain
force threshold is exceeded, the protein might switch into a completely
unfolded state. These represent the extreme states of the protein, the
fully folded and fully unfolded states, and are easy to visualise in
solution (as one can denature the protein with temperature, denaturant
etc.). However, under limited force, the protein might exist in
conformations rarely seen under equilibrium conditions. These are
often referred to as intermediate states (Imparato and Pelizzola, 2008;
Li et al., 2005; Mykuliak et al., 2018; Schwaiger et al., 2004) and such
conformations might only exist under mechanical load where they
could even represent the lowest energy conformation (Mykuliak et al.,
2020; Tapia-Rojo et al., 2019).
The most striking example of this mechanical load influence on

protein conformation is on protein domains that can exist in distinct
conformations, where switching between states can be triggered by
mechanical force (Fig. 2). This complexity soon scales when there
are multiple domains within a protein that can each adopt different
low-energy conformations independently of each other, creating
molecules that can have numerous different patterns or
conformations dependent on the history of the forces that have
acted on them (Goult, 2021) with different biological outcomes,
illustrated schematically in Fig. 2B for the talin rod (Mykuliak et al.,
2018; Yao et al., 2016).

Protein architecture
It has been observed that all proteins are only marginally stable
[ΔG being ∼−10 kcal/mol (Taverna and Goldstein, 2002;
Williams et al., 2006)]. The relatively low stability might simply
be an inherent property of the vast sequence space (Taverna
and Goldstein, 2002), or it might be connected to the need for
protein recycling; however, it could also reflect the requirement
of conformational plasticity. Traditionally, studies of protein
folding and stability focused on thermostability and stability
against denaturing factors. More recently, the importance of the
mechanostability of proteins has been appreciated. For example, a
recent study proposed that an R495W mutation in cMyBP-C
(encoded by MYBPC3), a myosin-associated protein located along
the myosin thick-filament backbone in muscle (Bennett et al.,
1986), decreases its mechanical stability and causes hypertrophic
cardiomyopathy (Suay-Corredera et al., 2021). There are many such
examples, discussed below, that together underline the relevance of

these mechanical linkages in maintaining cellular
mechanohomeostasis (Figs 3 and 4).

Therefore, an obvious question to ask is whether thermodynamic
stability alone can predict the mechanical stability of a protein? The
answer appears to be that it cannot. When proteins experience
mechanical load, the system is tilted into a non-equilibrium state,
and domain unfolding can only be prevented by bonds that are
capable of resisting the applied mechanical load. As a result,
coordinated interactions, namely hydrogen bonds, are much more
important than hydrophobic contacts for the mechanical stability of
a protein, whereas hydrophobic interactions are considered more
important for the thermodynamic stability of proteins (Kellis et al.,
1988; Pace et al., 2011). Comparison between proteins with equal
thermostability but different secondary structure has shown that
proteins with a lot of β-sheets have a much higher mechanical
stability than α-helical proteins (reviewed in Carrion-Vazquez et al.,
2000). This is relatively simple to explain by comparing the
architecture of the secondary structures. In the case of a β-sheet,
each polypeptide strand is almost completely extended, with
extensive hydrogen bonding to the neighbouring strand.
Therefore, it is more difficult to mechanically unfold β-sheets
compared to α-helices, which can be unfolded bond-by-bond (Paci
and Karplus, 2000). Furthermore, α-helices pack together mostly
via hydrophobic interactions, causing them to be more vulnerable to
local mechanical unfolding as compared to β-sheets, which are
connected via hydrogen bonds throughout the structure. This is
exemplified by the relative mechanical stabilities of β-sheet
immunoglobulin (Ig) domains, which as measured by AFM is in
the range of 50–300 pN (Oberhauser et al., 2002), whereas the
typical unfolding force of a helix bundle measured by AFM is in the
range of 10–30 pN (Haining et al., 2016).

It has been possible to identify ‘hot spots’ in proteins that
contribute to enhanced mechanical stability, also referred to as
‘mechanical clamps’; these are often enabled by β-strands in
shearing configuration, observed for example in titin (Sikora
et al., 2009, 2011). These gatekeeper regions are capable of
resisting high forces for a short period of time, so as to ensure
protein stability under transient mechanical load (Craig et al., 2001).
The reciprocal case also occurs where ‘weak spots’ in proteins will
unfold first when the molecule experiences force (Yao et al., 2014a,
b). The differences in unfolding kinetics of different regions of
a multidomain protein might define the order of mechanical
unfolding of the individual domains (Yao et al., 2016).

Another important mechanism is force buffering, where certain
protein segments unfold rather easily, protecting the other parts of
the protein from mechanical unfolding. An example of such a
mechanism is the titin subdomain I27, which protects against
disruption of the A-band organisation of the sarcomere during high-
force load (Li et al., 2020). At a molecular level, titin I27 has been
found to adopt an intermediate state that is largely independent of
the applied load, potentially protecting the rest of the protein from
unfolding (Nunes et al., 2010). A similar mechanism has been
proposed for myomesin proteins, where α-helical linkers act as
force-buffering motifs to maintain the integrity of the M-band of
the sarcomere (Berkemeier et al., 2011). In talin, the unfolding
of individual domains results in a decrease in tension and so the
multiple domains unfolding and refolding as tension levels change
help to maintain the applied load at <10 pN, enabling talin to buffer
against large force changes (Yao et al., 2016). Another example of a
multi-domain protein serving as ‘shock-absorber’ is dystrophin
(Le et al., 2018), which protects the sarcolemma from damage
against excess force via a similar mechanism.
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Force-dependent interactions between biomolecules
Aswell as the force dependence of protein conformation, interactions
between proteins are similarly susceptible to mechanical regulation.
This can be explained with reference to the Arrhenius equation,
which states that the lifetime of a bond is negatively dependent on
temperature. This means that activation energy is needed to dissociate
a bond, and so a mechanically loaded bond becomes shorter in life
span. Such bonds are often referred to as ‘slip bonds’ and force
exerted on two proteins binding in this way will weaken the
interaction (Fig. 2C, left). Inmany cases, however, biological systems
contain mechanisms that lead to the opposite situation – under
mechanical load, the bond lifetime increases. Such behaviour is
named ‘catch bond’, referring to fishing tools, and means that forces
exerted on the interacting proteins strengthen the interaction (Fig. 2C,
middle). Many interactions exhibit ‘catch–slip bond’ behaviour,
where forces initially increase the interaction and lifetime of the bond,
but higher forces weaken the bond (Fig. 2C, right).
Catch bonds are important for the force-generation machinery of

the cell, and new examples are being reported regularly. Again, talin
offers an intriguing example – its actin-binding site 3 (ABS3)
interacts with F-actin only weakly in biochemical assays (Gingras
et al., 2008). When optical tweezers were used to apply mechanical
load on the talin–actin bond in vitro it was observed that the binding
lifetime was >100-fold longer when pulled towards the pointed end
of the actin filament compared to when applied towards the barbed
end of the filament (Owen et al., 2022). This directional catch bond
is similar to catch bond between vinculin and actin (Huang et al.,
2017), and this directionality appears to be due to the inherent
polarity of the actin filament (Swaminathan et al., 2017). Another

example of a catch bond is observed in the microtubule-associated
motor protein dynein family, where an individual dynein on its own
is capable of generating rather low force (∼1 pN) (Mallik et al.,
2004). However, under high force, dyneins form catch bonds that
bind microtubules tightly (Kunwar et al., 2011; Leidel et al., 2012)
and thus are able to withstand higher force by varying step size (Rai
et al., 2013). These features enable dyneins to generate large
collective forces in cells (Mallik et al., 2004).

Mechanochemical switches – quantising responses to force and protecting
against thermal noise
The cell is a busy, dynamic place, and amidst the milieu of proteins,
chemical inputs and mechanical cues a cell experiences it could
appear almost chaotic. However, in among all this ‘hustle and
bustle’, the cell can use these mechanical inputs in a meaningful
way. One way that the cell can achieve this is to use ‘mechanical
switches’, domains that change their structure, function or role as a
function of force (Box 1).

Such switches are present in all of the mechanical linkages
identified to date, withmore being discovered regularly. Proteins such
as fibronectin in the ECM (Peleg et al., 2012), talin and vinculin in
focal adhesions (FAs), α-catenin (Yao et al., 2014b) and dystrophin
(Le et al., 2018) at the intracellular side of cell membrane, nesprin
(Déjardin et al., 2020) and lamin A/C (Cho et al., 2019) at the
nuclear envelope all contain mechanical switches (Fig. 1). The
mechanosensitive protein talin represents a particularly complex
molecule in this regard, as it exhibits mechanosensitivity through the
helical bundles in its rod domains that act as switches (del Rio et al.,
2009; Haining et al., 2016; Hytönen and Vogel, 2008; Vigouroux
et al., 2020; Yao et al., 2016). As talin contains 13 of these
mechanochemical switches in its rod domains, R1–R13 (Goult et al.,
2013), each with the ability to fold and refold repeatedly and with
high fidelity (Goult et al., 2021; Yao et al., 2016), the switch patterns
talin can adopt are complex. A common feature of these rod domains
is that they contain, buried within their hydrophobic core, polar
residues (Ser/Thr) that tune their mechanical stabilities (Goult et al.,
2013; Han et al., 2021; Rahikainen et al., 2017). Some of these
residues have been identified as phosphorylation sites in proteomic
studies (Bian et al., 2014; Mertins et al., 2016; Ratnikov et al., 2005),
and a striking possibility is that, once exposed, these residues are
phosphorylated, which would prevent domain refolding. These
switches, built into the meshwork of adhesion and cytoskeletal
proteins, can be viewed as a type of code, a MeshCODE (Barnett and
Goult, 2022 preprint; Goult, 2021), where the pattern of binary
information (folded ‘0’ and unfolded ‘1’) encoded in the shape of
these molecules provides instructions to dynamically respond to
changes in mechanical forces the cell experiences altering the
signalling of that adhesion and that cell (Goult et al., 2018). A switch
unfolding also introduces a quantised step-change in the length of the
talin molecule (40–120 nm depending on the switch) altering
the spatial organisation of molecules in the linkages (Barnett and
Goult, 2022 preprint). Similar switches have been identified in
many other mechanosensitive proteins distributed throughout the
cell (Figs 1, 3 and 4). As these switches are all coupled to the
cytoskeleton, this indicates a mechanism for how they might work
cooperatively allowing the entire cell to function as a mechanical
machine forming long-range interdependencies that synchronise
cellular operations (Figs 1, 3 and 4).

Cryptic binding sites
One of the best-known examples of mechano-regulated binding is
the association of vinculin with target proteins. Early studies

Fig. 2. Mechanical load applied on a protein modulates the free energy
landscape of folding. (A) Mechanoregulated proteins can be considered as
mechanoswitches, adopting multiple metastable states. In the absence of
mechanical load, a protein folds into a certain well-defined structure (blue);
however, other conformational states can be populated upon mechanical
load (shown in red). In the presence of force, these states can be
energetically equally favourable, or even lower in terms of the free energy
compared to the native state as illustrated by the free-energy landscape
shown. At low force (yellow), thermodynamics still favours the relaxed (blue)
conformation, but the probability for transitioning to the partially unfolded
state (red) is already high. In such a landscape, a coexistence force
condition (red) can exist, where the relaxed and partially unfolded states are
both expected to be populated with similar probability. Finally, above a
certain force threshold (green), the partially unfolded conformation is the
energetically favoured state. At high force, the protein will become fully
unfolded. (B) Talin has a highly complex free-energy landscape, as its 13
rod domains (R1–R13) all exhibit this switch-like behaviour in response to
mechanical force. (C) The architecture of a bond defines its behaviour under
mechanical load. Three different interaction mechanisms are illustrated. In
the case of a slip bond (left), the lifetime of the bond decreases when
mechanical load is applied and can be seen as a decrease of activation
energy required for the dissociation. In the case of catch bond (middle), the
bond lifetime increases under mechanical load, observed as an increase in
the activation energy needed for the dissociation event. In the case of large
biological macromolecules such as proteins, the bonds often display a
catch–slip bond behaviour (right), in that they exhibit catch bond behaviour
under low force, but increased force triggers slip-bond behaviour. In the
case of the energy landscape for catch–slip bonds, two force-dependent
unbinding pathways have to be considered: at low forces, the catch-bond
behaviour is dominant, resulting in an increase in the activation energy (Ea)
under applied load (unbinding to the left in the energy diagram), whereas at
higher forces, the slip-bond behaviour leads to decrease in the activation
energy (unbinding to the right). Panel A reprinted with permission from
Stannard et al. (2021). Copyright 2021 American Chemical Society. Panel B
reprinted from Mykuliak et al. (2018) where it was published under a CC-BY
4.0 license. Panel C reproduced from Huppa and Schütz (2016) with
permission from Elsevier.
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showed that local mechanical manipulation of a cell led to
subcellular accumulation of vinculin (Balaban et al., 2001;
Riveline et al., 2001). Structural studies provided the first hint of
a mechanism for this force-dependent interaction when it was found
that the vinculin-binding sites (VBSs) in talin were buried inside
the folded talin bundles (Gingras et al., 2005; Izard et al., 2004;
Papagrigoriou et al., 2004), suggesting talin domains might need to
unfold to enable vinculin binding. Later, single-molecule pulling
experiments in vitro (del Rio et al., 2009; Yao et al., 2016) and in
computational simulation (Hytönen and Vogel, 2008) revealed that
mechanical forces can cause talin rod domains to transition from a

folded-bundle arrangement in its relaxed state, in which the VBS is
cryptic, to an extended conformation that gradually exposes the
amino acids of the VBS in the helices and facilitates vinculin
binding. Vinculin binding limits domain refolding but mechanically
stabilises the talin VBS helix, as shown by stretching talin rod
domains in the presence of bound vinculin. Dissociation of vinculin
is immediately followed by elongation of talin, as the VBS
transitions from a helix to a random coil (Yan et al., 2015), an
effect that can be used to calculate the force-dependent binding
constant (Wang et al., 2019b, 2021). Vinculin binding is reversible –
once relaxed, the talin domains refold and vinculin molecules are
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the cell and how defects in the balance of these systems at the cellular level manifest as diverse disease states at the organismal level. Key: the protein
domains involved for assembling mechanical linkages are defined in the key (middle section). Domains not indicated are as follows: CH, calponin homology;
KASH, KASH domain; P, plectin homology. The symbols used are based on the structural features of the domains employing the structural data available in
the Protein Data Bank (see also Box 2). The colour of the switch symbol for a protein (lower section) indicates the currently available evidence for
mechanical switch properties. For details, please see Tables S1–S3.
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released and free vinculin adopts an autoinhibited conformation
(Cohen et al., 2006). However, if vinculin autoinhibition is
disrupted, either by using just its head domain (Bakolitsa et al.,
2004) or mutated forms of vinculin lacking autoinhibition (Cohen
et al., 2005), some of the complexes formed with talin are not
released (Carisey et al., 2013; Wang et al., 2021; Yao et al., 2014a,
2016). It has been observed that relief of autoinhibition also can lead
to complex formation between talin and vinculin without
mechanical load (Atherton et al., 2020; Kelley et al., 2020), but
this is because autoinhibition itself is a mechanosensitive
phenomenon (Khan and Goult, 2019). Constitutively active
vinculin is lethal in flies (Maartens et al., 2016) and causes large
adhesions in cells that do not disassemble efficiently, limiting
cell migration (Carisey et al., 2013). It has been observed that
only a small fraction (<15%) of talin proteins are stretched in vivo
in Drosophila muscle-attachment sites (Lemke et al., 2019). This
might indicate that the cellular mechanosensing machinery
maintains a delicate balance in the amount of mechanical load
applied to individual molecules.
The VBSs within other interaction partners, such as α-actinin and

α-catenin proteins, also become exposed under mechanical load
(Bois et al., 2005; Le et al., 2017; Yao et al., 2014b). Vinculin
interactions are not the only examples of mechanical exposure of
cryptic sites. By definition, all autoinhibited proteins contain cryptic
binding sites (Pufall and Graves, 2002), and if those proteins form
mechanical linkages, these will be force-dependent cryptic binding
sites, as mechanical load will stabilise the open conformation
(Khan and Goult, 2019). Examples include the activities of focal
adhesion kinase (FAK; also known as PTK2) (Bauer et al., 2019)
and titin kinase (Gräter et al., 2005), which are both modulated
by mechanical signals. The ECM contains multiple examples
of mechanically regulated interactions that help organise the
meshworks. For example, fibronectin contains binding sites for
collagen (Kubow et al., 2015) and multiple cryptic self-association
sites (Lemmon and Weinberg, 2017), which are activated under
mechanical load and are important for fibronectin fibrillogenesis.
Similarly, collagen fibres also contain mechanically adjustable
binding sites (Zhu et al., 2018).
It seems likely that there are many more binding sites where the

accessibility is mechanically regulated in the protein interaction
networks of the cell to be discovered. Learning more about the
mechanoregulation of protein conformation and regulation of
protein interactions might help in understanding the molecular
basis of diseases associated with mechanically coupled proteins
(Figs 3 and 4).

Post-translational regulation of mechanical switch domains
PTMs modulate the stability, interactions, localisation and
conformations of proteins. This raises the question of whether
PTMs also contribute to their mechanical stability? Or alternatively,
could mechanical signals alter PTMs within proteins?

Recent studies have revealed that cyclin-dependent kinase 1
(CDK1), a key regulator of the cell cycle, contributes to adhesion
dynamics (Jones et al., 2018) in part via phosphorylation of talin
(Gough et al., 2021). Phosphorylation of talin (at residue S1589 in
the R7–R8 linker) by CDK1 leads to alterations in the order of how
the talin rod domains unfold, therefore modulating the mechanical
response of talin (Gough et al., 2021).

Talin also contains a force-dependent calpain cleavage site in the
R10 switch (Zhang et al., 2012); force exerted on talin AND active
calpain leads to cleavage [an example of an ‘AND’ gate operation
(see Box 1), as force alone ‘OR’ calpain activity alone generate
different outcomes (Bate et al., 2012)]. It is likely that the proteolytic
events associated with talin and related molecules are regulated
by mechanical load to yield different processed versions, as calpain
cleavage between the talin head and rod is required for proper cell
adhesion (Saxena et al., 2017), and similarly, talin rod cleavage is
important for correct adhesion dynamics (Bate et al., 2012).

Force-regulated proteolytic cleavage is also important in many
other biological systems. For example, for von Willebrand factor
(VWF), a large multimeric protein found in blood plasma that
mediates the adhesion of platelets to the connective tissue (reviewed
in Lenting et al. 2012), it was found that mechanical load applied to
VWF due to shear flow exposes a cleavage site within its A2 domain

Fig. 4. Mechanical linkages the cell makes to the outside world.
(A) Desmosomes are specialised adhesive protein complexes responsible
for maintaining the mechanical integrity of tissues. Complex protein
networks link the ECM and neighbouring cells with the nucleus and
cytoskeletal components. (B) The membrane skeleton is a specialised part
of the cytoskeleton in close proximity of the cell membrane with a unique
protein composition. (C) The dystroglycan–sarcoglycan complex forms a
critical link between the cytoskeleton and ECM. The association of the
proteins shown with various diseases is indicated with the colour code as
defined in the Key (top section). Key: the protein domains involved for
assembling mechanical linkages are defined in the key (middle section).
Domains not indicated are as follows: ANK, ankyrin repeat; C, cadherin
repeat; SU, calponin binding; Death, death domain; D, Desmoglein repeat;
DG, dynamin type G domain; KASH, KASH domain; GED, GTPase effector
domain; GAR, microtubule-binding domain; PDZ, PDZ domain; PH,
Pleckstrin homology; P, plectin homology; SH3, SH3 domain; WW, WW
domain; ZU5, ZU5 domain. IF, intermediate filaments; MT, microtubules. For
details, please see Tables S1–S3.

Box 1. Requirements for a good mechanical switch
When mechanical stimuli above a certain level are met, a mechanical
switch can change state, leading to more persistent changes in the
signalling at this site. In this way, a switch can experience lots of small
force changes, but its output is quantised in that it is either in one state or
the other. The output of such a process could be, for example, altered
ligand binding or posttranslational modification. Furthermore, these
switches offer the possibility of ‘logic gates’ as force above a certain
threshold AND acertain ligand gives one response, whereas force above
a certain threshold AND an active enzyme gives a different response
(described in Goult et al., 2021). Here, AND indicates a logic gate having
two or more inputs and a single output. Below, we detail key features of a
mechanical switch as we believe that these switches play a critical role in
mechanobiology.
A mechanical switch needs to:
(1) have domains that can alter their conformations reversibly.

Mechanosensitive protein domains have two or more conformations
which differ in length in the absence or presence of force (Wang et al.,
2019b).
(2) reset when force is removed. The ideal scenario is that the switch

has two (or more) thermodynamically stable states, and that these can be
toggled between using small changes in mechanical force.
(3) be part of a mechanical linkage. Or be tethered in some way that

allows it to experience and measure force, either exposed to a moving
part, or in a moving current.
(4) be able to alter in response to force. This force might be

generated by the cell moving, or by alterations in shape, or stress, or it
might be actively generated by the cytoskeletal machinery, for example,
by actin retrograde flow, or the myriad motor proteins that generate
motion in the cell. Polymerisation of long filaments is another way to
generate forces.
Another important feature of the switches identified to date is that they

exhibit ‘mechanical hysteresis’, whereby the force required to unfold a
domain is significantly higher than the force at which that domain will
refold (Yao et al., 2016).
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that allows for proteolytic activity by the metalloprotease
ADAMTS13 (Baldauf et al., 2009). Similarly, in the protein
recycling machinery, AAA+ proteases utilise mechanical force to
unfold their target proteins (reviewed in Baker and Sauer, 2012).
Interestingly, protein ‘knots’ exist that provide resistance against
this mechanically assisted unfolding and proteolysis (Sriramoju
et al., 2020) and >1300 knotted proteins have been identified
(Dabrowski-Tumanski and Sulkowska, 2017).
Overall, mechanical load regulates protein conformation, and as

many of the protein complexes discussed here are connected
via mechanical linkages, mechanical load applied on one cellular
component can impact on other connected structures. Therefore, to
understand cellular mechanosignalling, it is important to decipher
the mechanical force propagation pathways in cells.

Cells as a mechanically linked machinery
In this section, we describe how the molecular building blocks
described above are assembled into complex mechanical linkages
that connect all parts of the cell and link to its immediate
surroundings. Owing to the complexity of the cellular networks, it
is challenging to visualise physical connections with sufficient
detail, but visualisation of these networks is instructive for
conceptualising how cells might function. Similarly, as with most
of biology, incredible complexity is borne from simple components
and rules, and the mechanical linkages in cells are constructed from
a toolbox of protein domains with specific functionalities that are
repurposed for different purposes (Box 2; Table S1). The numerous
linkages have a modular composition, and we use illustrations that
all employ a standardised structure code format to visualise the
modular architecture of many of the cytoskeletal proteins, with the
aim to build a structure–function picture of the mechanical
connections of a cell (Figs 3 and 4).
Actin filaments that dynamically connect cellular substructures

are crucial in mediating mechanical signals and producing
mechanical load via molecular motors (myosin) (Houdusse and
Sweeney, 2016). Similarly, the microtubule (Hamant et al., 2019)
and intermediate filament (IF) (van Bodegraven and Etienne-
Manneville, 2021) cytoskeletons also form connections and act as
sensors for mechanical load. This network of cytoskeletal filaments
transmits mechanical cues across the cell enabling changes in the
physical environment to be rapidly transferred to each cellular
compartment. The cytoskeleton directly couples to the nuclear
envelope, via nesprin and SUN proteins (Lombardi et al., 2011) of
the LINC (linker of nucleoskeleton to cytoskeleton) complex (Crisp
et al., 2006). These direct couplings to the nucleus enable force-
dependent alterations in gene expression (Cooper and Giancotti,
2019; Elosegui-Artola et al., 2016; Engler et al., 2006; Graham and
Burridge, 2016; Jahed et al., 2014; Jain et al., 2013). While it is
likely that many of the proteins involved in these networks are
acting as mechanical switches, only a limited number of switches
are characterised (Table S2), as indicated in Figs 3 and 4.

Mechanical connections within cells and their association with
diseases
Not surprisingly, maintaining the correct level of physical cues
is essential to tissue integrity and to health and so cellular
mechanosignalling must involve powerful mechanisms that
regulate the force-generating cellular machineries to work in
synchrony to maintain homeostasis as the physical properties of
the environment changes (termed mechanohomeostasis). We are in
the early phase of understanding the mechanoregulation of cellular
processes, although disturbed mechanohomeostasis is being

increasingly linked to pathological conditions (highlighted in the
recent editorial ‘Pathological mechanosensing’; see https://www.
nature.com/articles/s41551-021-00835-5).

Typical examples of diseases associated with defects in
mechanosignalling are cancer (Schedin and Keely, 2011) and
fibrosis (Tschumperlin et al., 2018). However, links between
defects in mechanotransduction and cardiomyopathy (Clippinger
et al., 2019), atherosclerosis (Irons and Humphrey, 2020) and
osteoporosis (Haffner-Luntzer et al., 2020), have now been
identified and there is a rapidly expanding amount of genetic
information on diseases that result from defects in these linkages. To
that end, we have collated information about diseases potentially
linked to defects in mechanotransduction andmapped them onto the
schematic representations of these linkages (Figs 3 and 4; Table S3).
Together they provide insight into how dysregulated operation of
this machinery can give rise to disease.

Some disease-causing mutations impact multiple linkages. For
example, mutations in actin, which manifest in diseases such as
cardiomyopathy (Olson et al., 1998), will perturb each linkage.
Similarly, each linkage involves coupling to the nucleus, where
lamin proteins have a significant role in enabling the proper
mechanoresponse (Ihalainen et al., 2015; Swift and Discher,
2014). Laminopathies are a diverse group of diseases associated
with mutations in A-type lamins (reviewed in Davidson and
Lammerding, 2014) and will impact all linkages. However, other
mutations specifically disrupt certain linkages.

Linkage 1 – integrin–adhesion complexes, connecting cells to the ECM
The FA is one of the best studied mechanical linkages connecting
the ECM to the cytoskeleton, downstream signalling pathways, and
to the nucleus via direct linkages to the LINC complex (Fig. 3). The
core of FAs involves integrins attached to the ECM (Bachmann
et al., 2019) coupled to the cytoskeleton via talin and vinculin, and
>250 additional components of the integrin ‘adhesome’ (Chastney
et al., 2020; Horton et al., 2015; Winograd-Katz et al., 2014) can
assemble onto this core to form integrin signalling complexes. FAs

Box 2. Protein components to build a mechanical cell
To visualise the mechanical apparatus of the cell we amalgamated the
available information from the literature for the reported protein
associations in these cellular assemblies, including the cellular
location and known interactions, tissue specific expression, disease
association, structural homology and genome information. This
information was obtained from multiple databases including NCBI,
PubMed, UniProt, Ensembl, PDB. The diseases listed were retrieved
from NCBI OMIM (Online Mendelian Inheritance in Man) (Amberger
et al., 2019). The vast majority of diseases shown are a result of DNA
mutation (missense, frameshift) and although changes in expression
levels of proteins also correlate with disease, these were not considered
in our analysis. The information sources are shown in Table S3.
Information on the contribution of mechanical signals in disease is

rapidly expanding, but there is still much to understand. In Figs 3 and 4,
we have illustrated a number of the cellular mechanical linkages, where
the protein components were selected using the following criteria: (1) the
protein of interest is mechanically active, or affected by mechanical
cues; (2) alternatively, the target protein interacts with a mechanically
active protein; (3) its cellular location potentially contributes to the
transmission of mechanical signals between cellular structures; (4) it
has known disease association; (5) there is structural information
available.
The visualisation is based on known domains, andmolecular networks

shown in Figs 3 and 4 are built using the domains as described in the Key
and legends.
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are mechanoresponsive and change their composition as a response
to applied mechanical load (Kuo, 2013).
Mutations in ECM proteins are common in diseases, such as

epidermolysis bullosa, affecting collagen (Varki et al., 2007), and
muscular dystrophies, that is with mutations in laminin (Helbling-
Leclerc et al., 1995). In collagens alone, >1000 disease-associated
mutations have been reported (Myllyharju and Kivirikko, 2001).
Numerous diseases are associated with integrin mutations,
including muscular dystrophies and skin blistering (reviewed in
Bouvard et al., 2001). On the cellular side, mutations in integrin
adapter proteins, such as filamin, cause diseases including skeletal
dysplasia and intestinal obstruction (reviewed in Sasaki et al., 2019).
Talin mutations have been linked to multifaceted clinical symptoms
(Azizi et al., 2022), cancer (Azizi et al., 2021) and spontaneous
coronary artery dissection (Turley et al., 2019). There are growing
numbers of diseases recognised as being associated with building
blocks of these linkages and a better understanding of the role of
mechanical signals in the regulation of cell–ECM interactions
should enable development of novel therapeutic applications and
strategies (reviewed in Winograd-Katz et al., 2014). Such
approaches include targeting specific integrins (Bachmann et al.,
2019; Bergonzini et al., 2022) or the downstream signalling
pathways (Pang et al., 2021) in the treatment of cancer (Cooper and
Giancotti, 2019).

Linkage 2 – the desmosome, connecting cells and cytoskeleton
Desmosomes (Fig. 4A) represent mechanically strong cell–cell
adhesion structures that are often found in tissues experiencing high
mechanical load, such as cardiac tissue and bladder (Delva et al.,
2009). Arrhythmogenic cardiomyopathy is commonly associated
with defects in desmosomes and often caused by mutations in
desmoglein or desmocollin (Lahtinen et al., 2011), which are
transmembrane desmosomal proteins responsible for the cell–cell
interactions. However, there are also diseases associated with the
intracellular constituents of desmosome (Fig. 4A).
For example, mutations in desmoplakin are associated with

diseases reflecting compromised tissue integrity under mechanical
load, such as cardiomyopathy (Norgett et al., 2000) and skin fragility
(Whittock et al., 2002). Using genetically encoded Förster resonance
energy transfer (FRET) mechanoreporters, it has been shown that
desmoplakin experiences little or no load resulting from internally
generated contractile forces, but externally applied mechanical
forces resulted in mechanical load on desmoplakin suggesting that
desmosomes function as stress-absorbing adhesion complexes (Price
et al., 2018). Dystonin (also known as bullous pemphigoid antigen-1)
connects IFs and microtubules (Bouameur et al., 2014), and
mutations in dystonin have been linked to neurological disorders
and skin blistering (Groves et al., 2010). Via IFs, plectins link
desmosomes to the nucleus, and mutations in plectin have been
linked to epidermolysis bullosa simplex with muscular dystrophy
(Bardhan et al., 2020; Pfendner et al., 2005). Another example of a
protein that connects desmosomes to the nucleus is presenilin.
Interestingly, presenilin has also been observed to be physically
connected to catenin (Yu et al., 1998) at adherens junctions,
highlighting the crosstalk and interdependencies of these linkages,
and mutations in presenilin are associated with heart diseases (Li
et al., 2006) and Alzheimer’s disease (Hutton and Hardy, 1997).

Linkages 3 and 4 – the membrane skeleton and the dystrophin
glycoprotein complex
The membrane skeleton refers to a specialised part of the
cytoskeleton that is in close proximity to the cell membrane and

differs from the bulk cytoskeleton in its protein composition and
structure (Ritchie and Kusumi, 2004). The membrane skeleton
(Fig. 4B) is formed of a network of spectrin and actin (Bennett and
Baines, 2001), and is important in preserving the integrity and
mechanical characteristics of the cell membrane. Spectrin mutations
are associated with anemia and neurodegenerative diseases (Li et al.,
2022).

The dystrophin glycoprotein complex (DGC, Fig. 4C) is another
membrane-spanning complex linking the ECM to the cytoskeleton
and mechanically coupling it to the nucleus (Ibraghimov-
Beskrovnaya et al., 1992), especially in cardiac and skeletal
muscle (Lapidos et al., 2004). Dystroglycan is a non-integrin
ECM receptor that is linked to cytoplasmic actin filaments via the
mechanosensitive protein dystrophin, and DGC is involved in
multiple processes, including basement membrane assembly,
nerve myelination and epithelial polarisation. The sarcoglycan
complex is a subcomplex within the DGC (Hack et al., 2000).
Sarcoglycanopathies are muscular dystrophies caused by mutations
in any of the four sarcoglycan proteins (Fayssoil, 2010). Mutations
in δ-sarcoglycan can influence DGC function causing myocardial
mechanical instability (Campbell et al., 2016). Mutations and
deletions in the central domain of dystrophin are linked to a large
number of mild skeletal muscle disease cases, as well as to severe
cardiomyopathy. Via the actin cytoskeleton, DGC connects to the
nucleus via nesprins, and nesprin-1 mutations are associated with
dilated cardiomyopathy and cause disruption of nuclear envelope
(Zhou et al., 2017), highlighting how defects in different parts
of mechanical linkages can manifest in similar pathologies.
Furthermore, deletions in the central domain of dystrophin are
observed in patients with late-onset Becker muscular dystrophy
(Bushby et al., 1993). Point mutations that influence the stability
of dystrophin are also associated with diseases; for example, an
L427P mutation results in partial misfolding and reduced rate of
refolding of the spectrin-like domains 1–2 of the 24 present (Acsadi
et al., 2012), indicating altered mechanical stability. Another
protein connecting to the dystroglycan receptor is caveolin, which
coordinates the anchorage of caveolae (Sharma et al., 2010) but is
also a scaffolding protein associated with a number of diseases
(Cohen et al., 2004) (Fig. 4B). Caveolae are small invaginations of
the plasma membrane involved in processes such as endocytosis
(Hetmanski et al., 2019).

These examples indicate how mechanical connections between
cells are essential for tissue function, and even small disturbances in
these linkages transmitting mechanical force can cause significant
defects. Therefore, as information about genetic factors increases it
will be important to take mechanical signalling into account when
trying to understand the molecular mechanisms underlying diseases.

Conclusions and perspectives
Mechanical linkages provide a way to coordinate long-range
activities in a cell and to harness the force-generation and force-
sensory machinery to control cell behaviour. Together, this leads to
the emergence of a view of a mechanical cell with patterns of switch
states that define its overall behaviour. The integration of an array of
binary switches distributed across each cell into these sensory
networks indicates a way each cell could achieve exact states
and quantised responses. As each cell is connected to its neighbours
and the ECM, interdependencies between these linkages enable
biological systems to maintain their operation and synchronise
behaviours across multiple levels of complexity in a way that is
metastable and robust. We envisage that the switches outside of the
cell, such as conformations of ECM proteins, affect the signalling

10

REVIEW Journal of Cell Science (2022) 135, jcs259769. doi:10.1242/jcs.259769

Jo
u
rn
al

o
f
Ce

ll
Sc
ie
n
ce



inside the cell and reciprocally, that the switches inside the cell alter
the mechanical load exerted on the ECM. This enables precise
synchronisation between the ECM and the cell, which is difficult to
recapitulate in cell culture. In the case of multimodular proteins,
applied mechanical load might adjust the biological function by
influencing the conformation and activity of multiple domains
simultaneously (Goult et al., 2021). While force-resistant domains
of the protein remain folded, force-sensitive domains change their
function under mechanical stress. Therefore, multimodular proteins,
which represent the majority of human proteins (Ekman et al.,
2005), might perform an array of different functions that are
modulated by chemical and physical cues (Vogel, 2006).
Furthermore, mechanical regulation of proteins represents an as-

yet untapped therapeutic opportunity; targeted therapeutic molecules
that adjust the mechanical stability of mechanosensors could be used
to alter the behaviour of an entire cell, but development of such drugs
requires a deeper understanding of molecular behaviour. Information
about protein interaction networks might represent a novel way to
consider diseases in the context of mechanosignalling, and viewing
such diseases as a disruption of these mechanical networks might
pave the way for advances in personalised medicine. Identification of
a de novo mutation in a protein from a patient presenting with a
condition might map to a mechanical linkage and thus identify
existing ways to treat that defect.
We are still in the early stages of understanding the

mechanoregulation of cellular functions. Although the behaviour
of individual proteins under mechanical load has been studied, we
have a significant knowledge gap regarding the regulation of protein
interactions and functional alterations by mechanical signals
throughout cellular networks. With this Review, we encourage
researchers and clinicians to pay attention to mechanical
connections and their potential contribution to disease.
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