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Abstract—In this article, we propose a machine learning (ML)-
assisted beam selection framework that leverages the availability
of digital twins to reduce beam training overheads and thus
facilitate the efficient operation of time-sensitive IoT applications
in dynamic industrial environments. Our approach employs a
digital twin of the environment to create an accurate map-based
channel model and train a beam predictor that narrows the beam
search space to a set of candidate configurations. To verify the
proposed concept, we perform shooting-and-bouncing ray (SBR)
modeling for a reconstructed 3D model of an industrial vehi-
cle calibrated using the real-world millimeter-wave (mmWave)
propagation data collected during a measurement campaign. We
confirm that lightweight ML models are capable of predicting the
optimal beam configuration while enjoying considerably smaller
size compared to the map-based channel model.

I. EMERGENCE OF INDUSTRIAL IOT

The fast-paced development of Industrial Internet of Things
(IIoT) became an enabler for digital twins, which can be used
to forecast deviations of the modeled object from its current
state and make timely decisions to prevent malfunctions. High
fidelity of modeling is achieved by accurate replication of the
properties of the original entity, such as shapes, materials, and
physics, thus aiding digital twins optimize many industrial
tasks, from material tracking to predictive maintenance [1].

Digital twins found their applications in a range of dynamic
scenarios of Industry 4.0, from human-robot interaction to
warehouse automation, where multiple mobile agents co-exist
within a common physical environment and collaboratively
perform industrial tasks. The mobile agents, both robots and
humans, may continuously stream video or readings from
radars and lidars to an edge server tracking the status of
operations, which require reliable wireless connectivity to
maintain adequate and real-time orchestration of the mobile
agents.

The operating quality of dynamic time-sensitive IIoT appli-
cations directly depends on the capability of the wireless net-
work to provide high-rate radio connections. The prominent
5G New Radio (NR) [2] and IEEE 802.11ay [3] technologies
operating in millimeter-wave (mmWave) spectrum can meet
the stringent connectivity requirements such as those imposed
by smart manufacturing. However, the high sensitivity of the
mmWave links to the propagation environment requires direc-
tional transmission and, therefore, careful beam management:
the device and the access point (AP) or the base station (BS)
employ beam training procedures to select the optimal beam
configuration before initiating a data transmission. In the case

of highly directional connectivity, cumbersome beam training
procedures result in degraded spectral efficiency of the link
[4]. Developing efficient beam training algorithms can improve
the operation of time-sensitive IIoT applications in dynamic
industrial environments with high mobility and frequent link
blockages.

Training overhead reduction is one of the matters being
actively investigated by the wireless communications commu-
nity. Among the proposed techniques, the most promising are
those leveraging machine learning (ML) assistance and map-
based channel models. The concept of ML-assisted beam train-
ing is to predict the best-aligned beam based on the previous
measurements [5]. The procedure was proposed as a faster
alternative to the conventional beam training, which can induce
high training overheads, especially for larger antenna arrays.
Trained ML models are capable of predicting the channel
characteristics or the best antenna configurations, and their
prediction accuracy is directly governed by the choice of the
ML model, which should be selected to meet the complexity
of the modeled environment and the availability of the training
data. In contrast, map-based methods employ realistic chan-
nel models obtained, e.g., from ray-tracing simulations [6].
Although these methods provide more accurate results, they
require pre-constructed 3D models of the environment, which
should be precise enough to accurately reconstruct the channel.
Moreover, a ray-traced channel model should be aligned with
the real environment, which requires synchronizing the model
at the reference points measured in the field. These features
narrow down the range of practical tasks for the map-based
methods, thus making their applicability limited.

In this article, we propose a framework that combines
the advantages of ML-assisted beam training and map-based
channel models. The core principle of our framework is to
employ a map-based channel model as a source of the training
data for an ML-based beam predictor, i.e., an ML model
predicting a set of beam configurations between the IIoT
devices and the AP/BS. Digital twins naturally integrate an
estimation of the channel map and learning, which allows
IIoT devices to readily use a pre-trained model for ML-
assisted beam selection without preliminary data collection.
Our framework seamlessly leverages digital twins to centralize
the ML-related routines at the edge server, thus substantially
reducing the device workload. The proposed approach can be
combined with desired ML-based beam selection methods,
while its envisaged applications may go beyond industrial
scenarios, as discussed in [7].
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Fig. 1. Envisioned interplay between time-sensitive IIoT applications and
ML-assisted mmWave radio.

II. CHALLENGES IN TIME-SENSITIVE IIOT

In this section, we review the challenges of time-sensitive
IIoT applications in dynamic industrial environments and
discuss how mmWave and ML can facilitate their successful
operation (see Fig. 1).

A. High-Rate Connectivity for Industrial Collaboration

Collaborative operation of mobile industrial agents — for
example, semi-autonomous or remotely controlled robots — is
sensitive to the throughput of the wireless links, which should
be sufficient to handle the large volumes of streaming data,
such as real-time video or high-resolution sensor readings [8].
Radio networks at the factory premises play a crucial role as a
medium for industrial orchestration and monitoring and, there-
fore, should provide sufficient quality of service throughout the
entire time of operation.

Despite the impressive achievable data rates, mmWave
communication is susceptible to notable challenges. The in-
trinsic features of extremely high frequencies require careful
alignment of the transmitter and receiver directional antennas
to achieve the desired rates. The optimal beam pair is selected
by running a beam training procedure based on sequentially
measuring the channel quality at the receiver for all the
beam configurations. Beam training overhead associated with
the procedure can readily reach orders of milliseconds for
larger antenna arrays [9], which is comparable to the latencies
required by mission-critical IIoT applications [10].

The periodicity of beam training and the related reduc-
tion in spectral efficiency directly depend on the channel
coherence. Dynamic environments with non-coherent, contin-
uously changing channels require frequent beam training, thus
yielding high training overheads and ineffective transmission.
While one of the possible ways to mitigate this issue is to
initiate beam training only in the cases of link outage [4],
that strategy may not be able to resolve link drops due to

blockages or changes in device orientation. Therefore, the
requirements imposed by time-sensitive and dynamic IIoT
applications call for developing an efficient framework that
alleviates the current issues of mmWave connectivity.

B. Communication Reliability in Dynamic IIoT Applications

Reliability is one of the most important aspects of dynamic
collaborative operations. In human-to-machine applications,

robots may assist human workers in physically demanding
tasks, thereby saving human time and energy as well as
preventing potential injuries. However, a moving robot is a
source of danger itself: irregular wireless connectivity may
result in unpredictable or abrupt movements that may cause
severe injuries to the nearby workers. Remote operations
impose similar demands on the connection reliability: data
transmission should be made seamless to achieve high preci-
sion of remote control. Hence, smoothness of operation largely
depends on the underlying wireless network, which should be
able to quickly (re-)establish new links and avoid breakdowns.

One of the possible ways to improve the reliability of
mmWave connectivity is to reduce the time to recover from
blockage, that is, decrease the overheads of beam training. The
attention of the communications community is currently at-
tracted to ML-assisted beam training [5], [9], [11]. In essence,
these methods train the appropriate ML models to predict the
(sub-)optimal beam(s) from the channel measurements, device
coordinates, or other relevant parameters. In other words, a
trained ML model may be thought of as an approximation of
a full map-based channel model. What makes this approach
attractive is the fact that the beam prediction procedure may
take significantly less time as compared to the conventional
beam training, especially when using exhaustive beam search
for larger antenna arrays [9].

However, ML-based methods may fail to learn effectively
in complex environments with irregular channel conditions,
that is, with low-to-moderate correlation in two proximate
positions. Complex ML models may have such potential, but
their training process might be computationally infeasible,
especially in online regimes, where the model is being con-
tinuously retrained on the channel measurements collected,
e.g., from the user devices. Moreover, such ML models would
require large volumes of training data collected in advance
from across the entire environment. Therefore, ML-assisted
beam training may require external assistance, which could
be readily provided by the server.

III. ML-ASSISTED BEAM SELECTION FRAMEWORK

We envision a framework, where to create a map-based
channel model, the server uses a precise 3D replica of the
environment, which is already pre-constructed within the dig-
ital twin. In our framework, the generated channel map serves
as a training set for the ML-based beam predictor, i.e., an
ML model predicting beam configurations for the IIoT device
and the AP/BS. As a result, the devices utilize a pre-trained
ML model predicting a list of beam pairs without prior data
collection. The key aspects of the proposed framework are
discussed below.

A. Digital Twins and mmWave Channel Modeling

The intrinsic accuracy of a digital twin to the physical
environment can be leveraged to create realistic channel mod-
els. Map-based channel estimation can be naturally integrated
into the manufacturing processes since having a digital twin
eliminates the need to create and maintain a separate digital
model. In our proposed framework, the IIoT system considers
a digital twin of the physical environment (Fig. 2, 1⃝) as a
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Fig. 2. Conceptual structure of proposed ML-assisted beam selection framework.

source of an accurate 3D model, which is used to reconstruct
the corresponding map-based channel model. The computer-
aided design (CAD) model incorporated into the digital twin
is uploaded into the signal propagation simulator (Fig. 2,
2⃝). Alternatively, when CAD models are unavailable, less

precise virtual replicas can be constructed via photogrammetry
methods from the photos of the objects or the environment.
The results of simulations are transformed into a channel map
containing pairs of angles of arrival (AoA) and departure
(AoD) for each coordinate within the environment (Fig. 2,
3⃝). The values of AoA and AoD are further converted into the

optimal beam pairs, which are used by the devices to establish
wireless links. The CAD model is static and, therefore, the
described procedure can be performed once to create a static
channel map.

The environment may have dynamic objects, such as human
workers and robots, which act as reflectors and alter the chan-
nel model. Another feature of our framework is to periodically
run the described pipeline to construct snapshots of the channel
map based on the actual state of the environment. In this
case, a static base layer is refined by adding dynamic layers
containing pre-defined 3D models, or phantoms, of the objects,
which were not originally included in the static CAD model.
The phantoms may have different levels of detalization de-
pending on the modeled object: the system may store detailed
replicas of predictable agents while applying less specific
primitives (e.g., a cylinder for a moving human) for unknown
or volatile entities. The edge server may run the refinement
procedure for each snapshot of the dynamic environment,
which can be, however, computationally intensive depending
on the parameters of the modeled space. Although such
refinement of the channel map can be omitted, it may result in
a better selection of beam pairs, especially when the dynamic
objects are made of highly-reflective materials.

To preserve privacy, access to the CAD model can be
restricted solely to the group of trusted parties. Additional
security or privacy mechanisms could be applied to prevent
a disclosure of the plain CAD model over the network. While
our framework is compatible with both types of mechanisms,
the security-centric approaches such as data encryption might
be preferred since they do not impact the data fidelity. In
contrast, privacy-centric mechanisms may introduce additional
noise to the CAD model, thus potentially degrading the
prediction quality.

The constructed map-based channel model can be employed
as a beam predictor in the form of a table containing a list of
the candidate directions to explore. Iterating over the selected
candidates reduces the training overheads as compared to
performing an exhaustive search. The main disadvantage of
map-based beam predictors is in the need to explicitly store
the selected beams for each coordinate in 2D or 3D space. The
size of the stored table increases with that of the environment,
and a map-based beam predictor may face storage limitations
discernible for the IIoT devices. Additionally, in dynamic envi-
ronments, a map-based channel model should be continuously
recomputed to achieve better predictive performance. When
such periodic updates are not feasible, the device can use
outdated map-based beam predictors at the cost of degraded
accuracy. These issues can be mitigated by using an ML-based
beam predictor.

B. Improving Beam Selection with ML Models

The existing ML-assisted beam training methods share a
common feature: their operation solely relies on the channel
measurements collected by the devices in the considered
environment. Representativeness and distribution of the train-
ing data are largely determined by the variety of locations
where the measurements were collected. The training data
may be spatially heterogeneous, and the ML model may fail to
robustly predict the beam pair in less represented areas, which
leads to lower transmission rates as compared to the results of
an exhaustive beam search.

Our framework resolves this issue by utilizing the map-
based channel model as a source of training data for the ML-
based beam predictor. Since computational capabilities of the
IIoT devices may be insufficient for ML-related processing,
the edge server leverages the simulated channel measurements
to train the ML model without assistance of the devices. In our
framework, the ML model infers a set of the best-aligned beam
pairs from the device coordinates (Fig. 2, 5⃝). Importantly,
the AP/BS and the IIoT device use the same ML-based beam
predictor (Fig. 2, 6⃝) to avoid beam misalignment. In contrast
to the state-of-the-art approaches, our framework enables
direct control over the size of the training set determined by
the resolution of the map-based channel model. Hence, the
performance of ML-based beam predictors is not limited by
non-representative training data.
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The complexity of the mobile environment directly affects
the accuracy of ML-based beam predictors. To ensure the
required prediction accuracy in highly dynamic scenarios, ML-
based beam predictors could be retrained periodically. The
frequency of retraining procedures directly depends on the
changes in the environment, the capabilities of the digital twin
to track them, and the computational resources of the server.
The periodicity of retraining should also be adjusted to the
level of mobility: the difference in accuracy from intensive
model updates is marginal, while infrequent model updates
may not capture the dynamics and, as a result, impair the
beam prediction performance. Our framework is flexible to
the choice of ML models; their complexity can be readily
adjusted to balance between the effective resource constraints
and the required accuracy levels.

The size of the ML-based beam predictor depends only on
the ML model architecture. Lightweight models may enjoy
sizes considerably smaller than those of map-based beam
predictors. However, in terms of computation overheads, the
map-based approach may outperform the ML-based methods
if the entire dataset can be stored in the on-device memory
and the training environment is an accurate and stable ap-
proximation of the real-world layout. In this case, the cost of
a reduced size is a less accurate beam selection procedure.
Although lightweight solutions can naturally compress flat
channel maps, they may fail in predicting beam pairs for
irregular environments. Alternatively, complex ML models
could increase beam prediction accuracy, but their training
may be computationally intensive, while their size is com-
parable to that of the channel maps. Hence, ML-based beam
predictors have a complexity–performance tradeoff, which can
be controlled by selecting the ML model architecture.

In dynamic scenarios where the channel map of the envi-
ronment is refined periodically, the online operation of our
framework can be improved further with transfer learning,
representation learning, or model distillation. The edge server
may employ a static channel map to train a heavier deep
neural network model, which would predict the optimal beam
configuration with very high accuracy. This network can be
compressed, or distilled, into a smaller ML-based beam pre-
dictor, the architecture of which is selected depending on the
prediction accuracy requirements as well as the computational
and storage constraints of the IIoT device.

Representation learning may be employed to learn the
representation of the data beyond the 3D coordinates suggested
by our framework by default. Trajectories of mobile agents
can be tracked to extract useful information on the temporal
dynamics of their coordinates. In this case, the decision that
the device makes at the inference stage could be based not only
on the current coordinates but also on the history of its motion.
The devices may benefit from previous information, thus
making different decisions on the best beam configuration, for
example, if they move along straight lines or have suddenly
changed their direction. This approach has the potential to
train a dynamic map instead of continuously retraining the
static one, which reduces the complexity of retraining and
broadcasting the model updates.

Transfer learning can further accelerate online retraining by

reducing the complexity of ray-tracing simulations. In dynamic
scenarios, two consequent snapshots of the environment have
distinct yet similar channel models or domains in terms of
the transfer learning. Then, the new ML-based beam predictor
can adjust the weights of its outdated version to accurately
predict in the new domain. Since the domains are similar,
the edge server should compute only a small subset of the
channel measurements used for refinement, thus decreasing
the computational complexity of ray-tracing simulations.

IV. SELECTED NUMERICAL ILLUSTRATIONS

In this section, we present a proof-of-concept prototype of
the discussed framework, where we use a manually designed
realistic 3D model of the environment. We briefly describe
the selected scenario, discuss the calibration procedure using
channel measurements, and present selected numerical exam-
ples for dynamic environments.

Fig. 3. Rendered reconstruction of utilized factory transport model.

A. Scenario and Metrics of Interest

We consider an industrial scenario with a mmWave network
of IIoT devices deployed in a factory vehicle (Linkker electric
bus in our example), which may transport workers engaged
in collaborative remote control operation. As direct cellular
connections might be hindered by severe signal attenuation
caused by metal sheathing, an intra-vehicular AP acts as an
aggregator connecting devices to the external network.

We assume that the factory has a digital twin utilized by the
factory edge server to perform a shooting-and-bouncing ray
(SBR) modeling. The output serves as a dataset for training
an ML model, which is then made available to an intra-vehicle
AP and its connected devices. The model is trained at the edge
server using a static 3D model, while inference is performed
locally at the devices, and its accuracy is assessed in a dynamic
scenario with randomly moving blockers. To predict a set of
the candidate beams, both AP and connected devices employ
the trained ML model that provides a set of AoA/AoD pairs,
which are translated into a beam configuration using the device
position and antenna orientation. Predictors of the AP and the
devices produce identical AoA/AoD pairs for equal inputs.

To create a map-based channel model of the vehicle, we
perform an SBR simulation in Wireless InSite software [12].
To calibrate the modeled scenario, we utilize a dataset [13]
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(latency and power delay profile) produced during a prior
measurement campaign for studying intra-vehicular mmWave
signal propagation. We calibrate the positions of the intra-
vehicular AP, devices, materials, and dimensions of the bus
parts. The render of the resultant environment is illustrated
in Fig. 3. The devices are located one meter above the floor,
while the AP is located two meters above the floor in the front
section. In our SBR setup, 10890 device positions form a 2D
grid, which covers the entire bus interior. Parameters of the
simulations are given in Table I.

For the metrics of interest, we consider (i) the norm of
the difference between the predicted and the true AoA/AoD
and (ii) the probability of the operational beam being in the
predicted configuration list. The norm of AoA/AoD prediction
error allows assessing the general predictive ability of the
system regardless of the antenna parameters at both the AP and
the device. The probability of the event where the model cap-
tures the operational beam within the half-power beamwidth
(HPBW) corresponds to a reduction in the overheads related
to the beam training procedure.

B. Interpreting Simulation Results

We consider an ML-based beam predictor based on a multi-
layer perceptron (MLP) regressor (one hidden layer of 20
neurons), which has previously been successfully applied for
beam prediction [14]. Our testing procedure relies on 3000
random locations in a dynamic environment with blockages,
while the rest is used for training on the static data. The
number of strongest multipath components is limited to 5.

The heatmaps in Fig. 4 illustrate an estimate of an angular
error norm between the AoA/AoD values predicted by the ML-
based vs. the map-based beam predictors. The ML-based pre-
dictor is trained on full SBR data, while the map-based option
employs sparse data and interpolation to maintain a similar
model size and mimic the use of data collected by one device.
The MLP-based predictor significantly outperforms its map-
based counterpart in terms of the error norm, thus providing a
sensible balance between model size and prediction accuracy.
We note that the range of acceptable norm values cannot be
defined explicitly as it depends on the system parameters, such
as HPBW and mobility level. For example, norm values over
120◦ correspond to the prediction offset of more than 60◦ at
both devices (120 =

√
(602 + 602) + (602 + 602), based on

squared azimuth and elevation angle errors for both the AP and
the device), which would result in performance degradation for
narrower beams.

The dependency between the probability of predicting a
valid beam configuration and the antenna HPBW is assessed
in Fig. 5. For example, valid beams can be captured with the
probability of at least 0.97 if the antenna HPBW is greater
than 60◦. The probability of successful beam prediction does
not reach one even for higher values of HPBW, which is due to
blocked beam configurations. The results in Fig. 5 correspond
to the use of full training set since reducing the training set

Fig. 4. Angular error norm for MLP- and map-based models.

TABLE I
SIMULATION SETTINGS

Parameter [Unit] Value
Center frequency [GHz] 61
Bandwidth [GHz] 4
Radiated power [dBm] 0
MPC number 5
AP height [m] 2
Device height [m] 1
Number of device locations 10890
Bus dimensions (W, H, L) [m] (2.5, 2.5, 12.5)

size (decreasing the channel model resolution) significantly
degrades the MLP-based model performance.

The benefits of our framework in terms of reduced over-
head as compared to exhaustive search are illustrated in
Fig. 5. Here, the inference time is 305 ns, which is negligibly
small compared to, e.g., 15.91µs and 9.96µs for one sector
level sweep (SLS) and short sector sweep (SSW) of IEEE
802.11ad/ay [3]. For the beam refinement protocol (BRP), the
overhead reduction is slightly lower in absolute values due
to shorter frames. We may conclude that application of the
ML-based predictor is most advantageous for SSW and SLS
frames, while for BRP, its use offers marginal benefits in terms
of absolute values.

In addition to faster beam selection, our framework reduces
the amount of data stored at the devices. A full map-based
model provides superior accuracy as the AoA/AoD data are
stored for all the locations but rapidly grows in size. Here,
the full map-based model has the volume of 3.3 MB, while
the ML model is only 250 KB. These numbers hold for one
plane of 3D device positions. In reality, the entire volume of
the bus interior may be sampled in the SBR tools, and the size
of data increases as more layers are added to the modeling.
For the bus of 2.5 meters height, adding a new layer every
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Fig. 5. Successful beam prediction probability and overhead reduction.

10 cm would yield a 25-times increase in the model size up
to 83 MB. Placing a new layer every cm would result in the
data scaling up to 830MB.

While the data may theoretically be compressed and pro-
cessed by the device locally (as a map-based beam predictor),
there is an issue of higher power consumption for mobile
devices. Further, even if network resource constraints are
satisfied, the inference should be performed within a certain
deadline, which is challenging to achieve in the presence of
high mobility. Devices may also pre-cache parts of the map-
based models for inference, but with frequent mobility, data
may lose relevance rapidly. The ML-based beam predictor
maintains a constant size regardless of the data that the
model employs for training, which is especially important for
dynamic scenarios where the model can be stored in the device
memory.

V. DISCUSSION AND CONCLUSIONS

IIoT enables multiple applications and utilities by linking
physical and digital domains. To maintain usability, these
require a reliable communication channel with small down-
times. The mmWave networks provide higher data rates but
are susceptible to beam training overheads, which can be
effectively reduced if only a subset of beam configurations
is considered. In this article, we proposed a framework that
employs digital twin-based SBR modeling results to train an
ML model for predicting a subset of candidate AoA/AoD
options. This strategy allows the utilization of information
from ray-tracing of the environment blueprints without the
need for measurements, which are expensive, time-consuming,
and in some cases impossible. With the proposed approach,
beam selection times can be reduced, thus improving the
overall network performance. Moreover, the devices may first
receive a pre-trained model based on the digital twin and then
better adapt it to their environment.

Importantly, SBR tools employed to produce results for ML
model training should be sufficiently accurate; otherwise, the
ML model may train on unrealistic data and offer incorrect
AoA/AoD pairs, thus jeopardizing the entire framework. While
more accurate modeling may increase compute complexity,
the edge server might have higher computing capacity and
can produce more accurate ML models. For example, with
our available hardware (GTX 550Ti, 2012), the experiment
completed in two days. With more powerful equipment, the

SBR simulations may run even quicker. Furthermore, our
proposed framework is suitable for indoor/outdoor deploy-
ments and may be extended to permit even more complex and
precise simulations such as Finite Domain Time Difference or
Finite Element Method. In addition to more accurate channel
simulations, alternative or tailor-made ML models could also
be explored. One of the future research directions might be
selection and design of the optimal ML model utilized to
predict the AoA/AoD pairs in a specific environment. The
optimization may be performed in terms of the prediction
accuracy and inference/training complexity.

Going forward, our framework can be extended to fully
embrace the non-stationary nature of real-world deployments.
If a scenario is highly dynamic, the model should be up-
dated regularly; otherwise, devices might fall back to the
conventional beam training. Several approaches can be taken
for retraining the model. If the dynamics of the environment
follow a cyclic pattern (e.g., a subway), it may be reasonable to
train a series of predictors for each state of the environment. If
no pattern can be established (e.g., a public event), then one
may apply online learning mechanisms instead of retraining
the model from scratch. As digital twins for buildings and
outdoor areas are becoming more common, they facilitate
signal propagation modeling of these areas and help produce
data that devices cannot obtain in the field. The challenge of
building an efficient framework for predicting the AoA/AoD
is open and, with recent advancements in mixed reality, offers
promising perspectives for many IIoT services.
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