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ABSTRACT 

The sense of smell can potentially be used to diagnose diseases. However, the sense 
of smell in humans has lower sensitivity and discrimination capability compared to 
animals such as dogs. Probably the most well-known example of using a dog’s sense 
of smell is drug detecting dogs at airports. Research studies have demonstrated that 
dogs can identify samples acquired from patients with cancer or infection.  

The molecules detected by sense of smell are volatile organic compounds 
(VOCs). Nowadays, it is possible to measure these compounds, for example, with 
an electronic nose (eNose). An eNose is a device that analyses gas-phase mixtures 
and produces a measurement signature that represents the spectrum of the molecules 
found in the mixture. Differential mobility spectrometry (DMS) is not a traditional 
eNose but produces comparable information and, in addition, has a higher 
sensitivity. DMS has not previously been used in otorhinolaryngologic studies. 

Acute rhinosinusitis (ARS) is typically caused by a virus or bacteria. As both 
produce similar symptoms, differentiating them based on symptoms or clinical 
examination is a challenging task, which often leads to the overprescription of 
antibiotics. Chronic rhinosinusitis (CRS) involves, for instance, nasal blockage and 
discharge lasting at least 12 weeks. As many other rhinologic diseases cause similar 
symptoms, the definite diagnosis of CRS warrants computed tomography imaging, 
which is not available in primary care. Therefore, there is a need for a rapid, accurate 
and non-invasive method to diagnose ARS and CRS. 

This dissertation examines the diagnostics of ARS and CRS with DMS and 
consists of four studies. First, five common rhinosinusitis bacteria in vitro were 
analysed with DMS. Second, maxillary puncture and aspiration of the contents were 
performed on patients with ARS. The acquired pus was analysed with DMS, and the 
results were compared to the traditional bacterial culture of the pus. Third, nasal air 
from volunteers was aspirated into collection bags using a pump built for this 
purpose. The results were then compared to room air samples and the feasibility of 
the method was evaluated. Fourth, patients with CRS without nasal polyps and 
patients with deviated nasal septum were studied. Aspirated nasal air was collected 
in the same way as in the third study and analysed with DMS. The ability of DMS to 
distinguish patients in different groups was then evaluated. The data analysis 
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employed in the studies involved machine learning methods which were used to 
examine the sensitivity and specificity of DMS to distinguish samples. 

The results reveal that DMS can separate common rhinosinusitis bacteria in vitro 
with very good accuracy. Furthermore, DMS shows very good accuracy to 
distinguish bacterial positive and bacterial negative samples compared to bacterial 
cultures. The method used for aspirating the nasal air and subsequent analysis with 
DMS proved to be a useful method. The nasal air samples were perfectly 
distinguished from room air samples. In addition, DMS demonstrates good accuracy 
to discriminate patients with CRS without nasal polyps from patients with deviated 
nasal septum by analysing nasal air. 

The studies in this dissertation were pilot studies and the results are affected by 
small sample size. However, cross-validation provides confidence of the reliability 
of the classifier. The studies demonstrate that DMS can analyse different sample 
types and distinguish groups from each other. The aspiration of nasal air was shown 
to be practicable and can be used in further studies of rhinologic diseases. 
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TIIVISTELMÄ 

Sairauksia voidaan mahdollisesti diagnosoida hajuaistin avulla. Koiran hajuaisti on 
ihmisen hajuaistia parempi ja kenties tunnetuin esimerkki koirien hajuaistin 
hyödyntämisestä on huumekoirien käyttö lentokentillä. Tutkimukset ovat myös 
osoittaneet, että koirat pystyvät tunnistamaan esimerkiksi syöpiä ja mikrobien 
aiheuttamia infektioita erilaisista näytteistä.  

Hajuaistilla aistittavat molekyylit ovat haihtuvia orgaanisia yhdisteitä. Nykyään 
niitä voidaan analysoida tarkoitukseen soveltuvilla laitteilla kuten elektronisella 
nenällä, joka tuottaa kokonaiskuvan kyseisen näytteen sisältämien molekyylien 
seoksesta. Liikkuvuuserospektrometria (differential mobility spectrometry, DMS) ei ole 
elektroninen nenä alkuperäisen määritelmän mukaan, mutta tuottaa vastaavanlaista 
informaatiota kuin perinteiset elektroniset nenät. Lisäksi se erottaa molekyylejä 
paremmalla herkkyydellä. DMS:n käyttöä ei kuitenkaan ole aikaisemmin tutkittu 
korva-, nenä- ja kurkkutautien saralla. 

Äkillisen nenän sivuontelotulehduksen aiheuttaa tyypillisesti virus tai bakteeri. 
Näiden aiheuttama oirekuva on kuitenkin hyvin samankaltainen ja vaikea erottaa 
oireiden tai kliinisen tutkimuksen perusteella. Äkillistä viruksen aiheuttamaa nenän 
sivuontelotulehdusta hoidetaan liian usein antibiootilla. Pitkäaikaisen nenän 
sivuontelotulehduksen oirekuvaan kuuluu muun muassa yli 12 viikkoa kestäneet 
nenän tukkoisuus ja niistämisen tarve. Kuitenkin monet muutkin nenän ja nenän 
sivuonteloiden sairaudet tai anatomiset syyt voivat aiheuttaa vastaavanlaisia oireita. 
Pitkäaikaisen nenän sivuontelotulehduksen diagnoosin varmentaminen vaatiikin 
nenän sivuonteloiden kuvantamista tietokonetomografialla, jota ei kuitenkaan ole 
käytettävissä perusterveydenhuollossa. Äkillisen ja pitkäaikaisen nenän 
sivuontelotulehduksen diagnosoimisen tueksi olisi hyödyllistä saada nopea, 
luotettava ja potilaaseen vähän kajoava keino. 

Tämä väitöskirja keskittyy äkillisen ja pitkäaikaisen nenän sivuontelotulehduksen 
diagnostiikkaan DMS:llä ja koostuu neljästä osatyöstä. Ensimmäisessä osatyössä 
DMS:llä analysoitiin viittä nenän sivuontelotulehduksen aiheuttajabakteeria 
elatusmaljoilta. Toisessa osatyössä tutkittiin äkillistä nenän sivuontelotulehdusta 
sairastavia potilaita. Heille tehtiin poskiontelopunktio ja tällä menetelmällä saatu 
märkäerite analysoitiin DMS:llä, minkä jälkeen tuloksia verrattiin samasta 
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märkäeritteestä tehtyyn bakteeriviljelyyn. Kolmannessa osatyössä selvitettiin 
hengitysilman keräämistä nenäontelosta näytteeksi ja sen analytiikkaa DMS:llä. 
Neljännessä osatyössä verrattiin hengitysilmanäytteitä DMS:llä pitkäaikaista nenän 
sivuontelotulehdusta sairastavien potilaiden ja nenän väliseinän vinoudesta kärsivien 
potilaiden välillä. Väitöskirjan kaikissa osatöissä data-analyysi tehtiin 
koneoppimismenetelmin, joiden avulla selvitettiin DMS:n herkkyyttä ja tarkkuutta 
erottaa näytteitä toisistaan. 

Tutkimuksissa havaittiin, että DMS erottaa erittäin hyvin toisistaan yleiset 
sivuontelotulehduksen aiheuttajat bakteerimalja-analyysin perusteella. Lisäksi 
havaittiin, että DMS erottaa erittäin hyvällä osuvuudella poskiontelon 
märkäeritteestä bakteeripositiivisen ja -negatiivisen näytteen verrattuna perinteiseen 
viljelymenetelmään. Hengitysilman keräys ja analysointi DMS:llä osoittautui 
käyttökelpoiseksi menetelmäksi. Pitkäaikaisesta nenän sivuontelotulehduksesta 
kärsivät potilaat pystyttiin erottamaan hyvin potilaista, joilla nenän tukkoisuuden 
aiheutti nenän väliseinän vinous. 

Alustavien tulosten perusteella DMS toimii hyvin nenän sivuontelotulehduksen 
diagnostiikassa. Tutkimukset osoittivat, että DMS soveltuu hyvin erilaisten 
näytetyyppien mittaukseen ja se erottaa ryhmiä varsin hyvin toisistaan. Ilman keräys 
nenäontelosta keräyspussiin osoittautui käyttökelpoiseksi menetelmäksi, jota voidaan 
hyödyntää tulevaisuudessa etenkin nenään ja nenän sivuonteloihin liittyvissä 
tutkimuksissa. 
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1 INTRODUCTION 

Physicians have used sense of smell in disease diagnostics for millennia. However, 
the sense of smell in humans has lower sensitivity and discrimination capability when 
compared to animals such as dogs. The molecules detected by sense of smell are 
volatile organic compounds (VOCs) which consist of chemicals that are volatile in 
ambient temperatures. Some VOCs can serve as possible biomarkers of diseases 
(Sethi et al., 2013; Wilson, 2015). Such VOCs can potentially be identified from gas-
phase mixtures, such as human breath, and can therefore be used as non-invasive 
methods to diagnose diseases.  

An electronic nose (eNose) is a device that performs a qualitative analysis of gas-
phase mixtures. The device consists of an array of nonselective gas sensors, pre-
processing electronics and a computer that interprets sensor signals (Gardner & 
Bartlett, 1994). During the analysis, VOCs react with the sensors, resulting in a 
measurement signature describing the VOCs in the sample. Thereafter, the 
signatures can be compared using pattern recognition software which can reveal the 
VOC pattern of a certain disease. During the last twenty years, eNose technology 
has gained interest in the field of medical research. For example, the technology has 
been studied in the diagnostics of airway obstructions, respiratory infections, 
inflammatory diseases and cancer (Farraia et al., 2019).  

Although not a traditional eNose, ion mobility spectrometry (IMS) provides 
analogous information from gas mixtures (Röck et al., 2008). It measures time-of-
flight, which is the time an ion spends in the drift tube (D’Atri et al., 2018). The 
separation power of IMS can be further enhanced with differential mobility 
spectrometry (DMS). In DMS, ion swarms are exposed to intermittent high- and 
low-electric fields which affect the mobility of the ion swarm (Borsdorf et al., 2011). 
Unlike with IMS, it is possible to detect ions of the same size and charge using DMS. 
As the ions hit the detector, an electrical current is generated and recorded (Borsdorf 
et al., 2011). The result is a dispersion plot that depicts the measurement signature 
of the chemical mixture. DMS has been studied in the medical field and shown to 
be able to discriminate pancreatic cancer from healthy controls by analysing urine 
samples with a sensitivity and specificity of 79% (Nissinen et al., 2019). Furthermore, 
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DMS can analyse smoke from a diathermy knife and distinguish samples with breast 
cancer from benign ones with a sensitivity of 80% and specificity of 90% (Sutinen 
et al., 2019). To date, however, DMS has not been studied in the field of 
otorhinolaryngology. 

Rhinosinusitis is a symptomatic inflammation of the paranasal sinuses and nasal 
mucosa. Symptoms include nasal blockage, nasal discharge, facial pressure and 
reduction of smell. In acute rhinosinusitis (ARS), the symptoms will have lasted less 
than 12 weeks (Fokkens et al., 2020). Although it is known that ARS is usually caused 
by a virus, the prevalence of bacteria is unclear (Chow et al., 2012; Orlandi et al., 
2021). The differential diagnostics between viral and bacterial aetiology is difficult as 
both viruses and bacteria cause similar symptoms (Autio, Koskenkorva, et al., 2015). 
Imaging findings do not differentiate the aetiology either (Autio et al., 2016; S. Smith 
et al., 2015). A reliable way to detect bacterial aetiology would be to perform 
maxillary sinus puncture and aspiration of the sinus contents for bacterial culture. 
However, this procedure is not routinely performed. As a result, antibiotics are often 
overprescribed in cases of viral ARS (Benninger et al., 2016; Pouwels et al., 2018; 
Sharma et al., 2017). 

If rhinosinusitis symptoms last at least 12 weeks, the condition is called chronic 
rhinosinusitis (CRS). According to a survey-based study, the prevalence of CRS has 
been estimated to be 11% in Europe (Hastan et al., 2011). Furthermore, the 
diagnostics of CRS are challenging. A diagnosis that is based only on symptoms can 
lead to a high risk of false positive findings (Bhattacharyya & Lee, 2010). Nasal 
endoscopy with rigid or flexible endoscopes improves the reliability of the 
diagnostics of CRS (D. H. Kim et al., 2020). A definite diagnosis of CRS would 
require confirmation of inflammatory findings in paranasal sinuses using computed 
tomography (CT) imaging (Fokkens et al., 2020). However, neither endoscopes or 
CT are readily available in primary care. 

Today, there is a need for rapid, non-invasive and reliable techniques as an 
addition to the current instruments used in the diagnostics of ARS and CRS. This 
dissertation describes how eNoses and DMS work and demonstrates their potential 
in the medical area. The diagnostic methods currently employed for ARS and CRS 
are covered in detail. The studies in this dissertation evaluate the ability of DMS to 
be used in the diagnostics of ARS and CRS. First, the detection of common 
rhinosinusitis bacteria in vitro is examined. Second, patients with ARS are examined 
and evaluated as to whether bacterial presence in the maxillary sinuses can be 
detected with DMS. Finally, aspirated nasal air is analysed with DMS and the 
feasibility of the method and whether it can detect patients with CRS are evaluated. 
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2 REVIEW OF THE LITERATURE 

2.1 Detection of diseases by smell 

Physicians have used sense of smell to diagnose disease for millennia. A well-known 
example is the sweet smell of acetone on the breath, which is associated with diabetes 
but also diet (Španěl et al., 2011). The human nose, however, has low sensitivity and 
discrimination capability when compared to animals such as sniffer dogs that are 
used at airports to detect drugs and other contraband. 

The ability of dogs to detect cancer was first published in the Letters to the Editor 
section of the Lancet by Williams and Pembroke in 1989. They wrote about a case 
where a pet dog had started to pay special attention to a mole on a patient’s leg. The 
patient visited the doctor, and the mole was excised. A pathology examination later 
identified it as a malignant melanoma. In another study, a dog was able to identify 
lentigo maligna, malignant melanoma in situ or malignant melanoma in six out of 
seven cases. A second dog was also tested with four of these patients and concurred 
with the results of the first dog (Pickel et al., 2004). Willis et al. (2016) found that in 
20 double-blind tests, each having one melanoma sample and ten controls, the dog 
was able to distinguish melanoma on nine (45%) occasions. Other studies have 
investigated the ability of dogs to detect other cancers, such as ovarian cancer 
(Horvath et al., 2008), breast cancer (McCulloch et al., 2006), lung cancer (Amundsen 
et al., 2014; Ehmann et al., 2012; Fischer-Tenhagen et al., 2018; McCulloch et al., 
2006), colorectal cancer (Sonoda et al., 2011) and prostate cancer (Cornu et al., 2011; 
Taverna et al., 2015). The results have varied significantly with sensitivity and 
specificity rates of 56-100% and 8-99%, respectively. 

Interestingly, dogs can detect not only cancer but also other diseases. A trained 
beagle showed promise in detecting Clostridium difficile in both stool samples and 
hospital patients (Bomers et al., 2012). In a recent study, eight detection dogs trained 
to detect the saliva or tracheobronchial secretions of patients infected with SARS-
CoV-2 were examined. The dogs could discriminate infected samples from the 
samples of healthy patients with an overall average detection rate of 94%, a 
sensitivity of 83% and specificity of 96% (Jendrny et al., 2020). In another study, 
twelve dogs were trained to detect SARS-CoV-2 infection. The dogs could 
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discriminate SARS-CoV-2 swab samples from the samples of other common 
respiratory viruses with a sensitivity of 74% and specificity of 95% (ten Hagen et al., 
2021). In a Finnish study, a pet dog was trained to detect paediatric urinary infection 
with an accuracy of 89% (Koskinen et al., 2017). Furthermore, another study found 
that two out of three dogs could detect obstructive sleep apnoea from urine samples 
two thirds of the time (Koskinen et al., 2019).  

However, the use of “detection dogs” has some drawbacks. For example, dogs 
require extensive training, which needs special expertise and is expensive, and have 
a limited lifespan. Moreover, even though the dog is trained properly, the dog’s 
motivational level may affect detection accuracy. Breeds behave differently and have 
different characteristics, meaning that some breeds are more favourable for the task 
than others (Jamieson et al., 2017). Dogs might also be distracted by other stimuli 
(Bomers et al., 2012), which might result in the examination coming to an end. In 
addition, some people might consider diagnostics dogs as unhygienic in a hospital 
setting. 

2.2 Volatile organic compounds 

Volatile organic compounds (VOCs) are a wide range of chemicals that are volatile 
at ambient temperature. Endogenous VOCs are released as by-products of normal 
cell metabolism, but also directly by microbes or due to an inflammatory response 
to infection (Sethi et al., 2013). Exogenous VOCs are inhaled or absorbed through 
the skin from the environment and may indicate the exposure of an individual to 
toxic chemicals (Sethi et al., 2013; Wilson, 2015). It is relevant to consider which 
VOCs are part of normal physiological processes in humans to distinguish them 
from pathological ones. In 1971, the Nobel laureate Linus Pauling and his colleagues 
measured 250 different compounds in human breath samples (Pauling et al., 1971). 
Since then, many more VOCs have been identified in healthy humans, including 
1488 from breath alone. VOCs from bodily fluids include 549 from saliva, 444 from 
urine and 379 from blood (Drabińska et al., 2021). In contrast, many of the VOCs 
identified can be possible biomarkers of diseases (Sethi et al., 2013; Wilson, 2015). 
Thus, identification of VOCs from human breath, urine, faeces, and other bodily 
fluids is a potential and non-invasive method for disease diagnostics. 
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2.3 Gas chromatography and mass spectrometry 

Scientists have tried to measure aromas since the 1910s (Hogewind & 
Zwaardemaker, 1919). Today, thanks to advancements in technology, analytical 
instruments, such as gas chromatography-mass spectrometry (GC-MS), and other 
technical instruments, for example, laser spectroscopic techniques (Wang & Sahay, 
2009), it is possible to conduct higher level investigations. These instruments can 
measure specific VOCs and probably identify disease-specific biomarkers, and 
thereby serve as diagnostic tools. They also allow the measurement of biomarkers in 
human samples, such as breath, blood, urine and pus. 
     Gas chromatography separates the molecular constituents of a chemical 
compound when the compound goes through a column. Each constituent has 
different delays before reaching the end of the tube, creating a series of peaks. In 
GC-MS, a gas-chromatography tube separates the mixture into its molecular 
constituents and mass spectrometry separates them based on their mass-to-charge 
ratio, creating a spectrum for each peak. A database allows storage of the labelled 
spectra for the identification of each chemical compound in a specific peak (Nagle 
et al., 1998). GC-MS can also perform quantitative analysis to provide information 
on the components of the sample. However, these devices are expensive and require 
time-consuming sample preparation, training and data interpretation (Vaks et al., 
2014). Therefore, not yet suitable for clinical use. A simpler and cheaper instrument 
would serve better than GC-MS in point-of-care use. 

2.4 Electronic nose 

Persaud and Dodd (1982) first described the concept of a group of sensors to classify 
odours. Later, Gardner and Bartlett (1994) defined the term “electronic nose” 
(eNose) to describe a device that comprises an array of nonselective chemical 
sensors, pre-processing electronics and a computer that interprets signals from the 
sensors. Unlike GC-MS that identifies the specific components of a sample, the 
eNose investigates the sample as a whole. Therefore, it performs a qualitative analysis 
of gas-phase mixtures. The eNose is a device that attempts to mimic the highly 
complex mammalian olfactory system. The original definition states that the device 
recognises odours (Gardner & Bartlett, 1994). However, this definition is misleading 
because odourless compounds can also be detected by the device. The eNose 
measures chemical interactions of VOCs and a gas sensor. The result is a signal 
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pattern that can be called a measurement signature. Sometimes it is also referred to 
as a “smellprint”, but the device does not smell VOCs. Furthermore, the term 
“chemical fingerprint” is somewhat inaccurate, as the signal pattern may not be 
unique to the measured gas mixture. Different gas mixtures may produce a similar 
signal which the computer cannot differentiate. If the same sample is measured 
repeatedly, slight shifts in composition might alter the measurement signature 
(Boeker, 2014). 

In addition to being investigated in the medical field, many areas, such as 
agriculture (Wilson, 2014) and the food industry, (Suman et al., 2007) can utilise 
eNose technology. The armed forces or the police can also exploit eNoses to detect 
explosives (Brudzewski et al., 2012; López et al., 2017) or toxic gases (Laquintinie et 
al., 2018; Olguín et al., 2014; Stassen et al., 2016). In environmental monitoring, 
eNoses allow the detection of toxic waste (Kalinowski et al., 2013) or the monitoring 
of air quality (Wang et al., 2018). The application of eNose technology in different 
fields has been thoroughly reviewed in the published literature (Berna, 2010; Capelli 
et al., 2014; Hu et al., 2019; Wilson & Baietto, 2009). 

Traditionally, an electronic nose detection system consists of an array of 8-32 
different sensors, which are tuned to different chemical groups. The gases are then 
presented to the sensors through sample delivery system (S. Chen et al., 2013). The 
air above the sample is called the headspace from which VOCs are introduced to the 
sensors. When the headspace is injected into the eNose, the measured response 
varies between sensor types and subsequent changes in voltage, current, resistance, 
mass or temperature can occur (James et al., 2005; Wilson & Baietto, 2009). 

2.4.1 Gas sensors 

The principle of gas sensors is a change in the physical properties in the active layer 
of the sensor when exposed to VOCs, which is then converted to an electric signal 
by a transducer (Ollé et al., 2020; Patel, 2014). Classification of sensors can be made 
according to the types of transducers, which can be electrochemical, gravimetric, 
optical or thermal (James et al., 2005; Ollé et al., 2020). Different characteristics exist 
between sensor types that affect their sensitivity, selectivity, reproducibility and cost. 
The literature thoroughly covers the different sensor types, their working 
mechanisms, and their advantages and disadvantages (Arshak et al., 2004; James et 
al., 2005; Nagle et al., 1998; Nazemi et al., 2019; Ollé et al., 2020; Wilson & Baietto, 
2009; Zohora et al., 2013). Thus, traditional sensors are described only briefly here. 
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Electrochemical sensors 

Electrochemical sensors can be further divided into chemoresistive, potentiometric 
and amperometric sensors (James et al., 2005). The first sensor contains metal-oxide 
semiconductors (MOS) and conducting polymer (CP) sensors, which are probably 
the most common sensors used in medical studies (Baldini et al., 2020; Farraia et al., 
2019; van der Sar et al., 2021). In MOS, VOCs interact with the sensing layer, which 
is a metal oxide. This interaction alters the conductivity of the oxide. Sensors are 
highly sensitive but typically require a high operating temperature and high power 
consumption. They also have poor long-term stability (Arshak et al., 2004; Nagle et 
al., 1998; Nazemi et al., 2019; A. P. F. Turner & Magan, 2004). 

CP sensors have a polymer surface that interacts with VOCs, resulting in an 
alteration of the electrical conductivity of the polymer, which creates a measurable 
signal. (Nagle et al., 1998; Patel & Kunpara, 2011; A. P. F. Turner & Magan, 2004). 
The sensors have low power consumption, easy synthetisation and are sensitive and 
inexpensive. However, they are also sensitive to humidity and sensor drift occurs 
over time. In addition, there are variations between batches (Arshak et al., 2004; 
Zohora et al., 2013). 

Potentiometric sensors include metal oxide silicon field effect transistors which 
have catalytic metals as a sensitive material. The working principle is based on a 
change in the threshold voltage of the sensor when in interaction with VOCs. Metal 
oxide silicon field effect transistors are of low cost and reproducibility is good. 
However, the operating temperatures affects selectivity and sensitivity. The sensors 
also suffer from baseline drift (S. Chen et al., 2013; Nagle et al., 1998; Patel, 2014). 

Amperometric sensors measure the current between electrodes produced by the 
transfer of an electron to or from the analyte (Patel, 2014). Sensors have low power 
consumption, are resistant to humidity but are quite selective (James et al., 2005; Ollé 
et al., 2020). 

Gravimetric sensors 

Gravimetric sensors are known as piezoelectric sensors and two types are commonly 
used: the surface acoustic wave (SAW) device and the quartz crystal microbalance 
(QCM) (Chang et al., 2000; Patel & Kunpara, 2011). The function of piezoelectric 
sensors is based on the mechanical stress within a crystal caused by electric potential. 
The acoustic wave is used as the sensing mechanism. The wave goes through (QCM) 
or on the surface (SAW) of the sensor coating material (Arshak et al., 2004). VOCs 
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bind to the coating material which then causes mass change and the frequency of the 
sensor shifts (Chang et al., 2000). The sensors have high sensitivity and short 
response time, but they have complex electronics and suffer from sensor aging 
(Nagle et al., 1998; Zohora et al., 2013).  

Optical and thermal sensors 

In optical sensors, the optical properties of the sensing layer go through a change 
when exposed to VOCs (Ollé et al., 2020). For example, variation in light absorbance 
or fluorescence can be measured (James et al., 2005). Sensors are highly sensitive and 
do not suffer from low signal-to-noise ratio but, in turn, are complex, have a short 
lifetime and low portability (Ollé et al., 2020; Patel, 2014). 

The working principle of thermal sensors is the detection of heat produced by 
catalytic oxidation of flammable gases. These devices are not widely employed in 
eNoses as they are optimized to detect high concentrations of VOCs. Furthermore, 
they have high power consumption and short lifetime (James et al., 2005; Ollé et al., 
2020). 

2.4.2 eNose in the medical field 

Electronic noses have been widely investigated in the medical field because they are 
non-invasive, simple and cheap devices. Although a variety of possible biomedical 
applications exist (Wilson & Baietto, 2011), the main focus is probably on disease 
diagnostics. Many review articles have covered studies dealing with the biomedical 
applications of eNoses (Azim et al., 2019; Baldini et al., 2020; Dragonieri et al., 2017; 
Farraia et al., 2019; Hintzen et al., 2021; Krilaviciute et al., 2015; Scarlata et al., 2015; 
van der Sar et al., 2021). In their review article, Farraia et al. (2019) covered the eNose 
studies in disease diagnostics and broke them down into five categories. These 
categories included airway obstructions, respiratory infections, inflammatory 
diseases, cancer and other diseases. In total, 81% of the studies used the Cyranose 
320 (Sensigent, California, USA), which is based on CP sensors. 

In the category of airway obstruction, the most studied diseases are chronic 
obstructive pulmonary disease (COPD) and asthma (Farraia et al., 2019), which is 
probably due to the prevalence of these diseases and the potential ease of diagnostics 
via breath analysis with an eNose. For example, Fens et al. (2009) utilised the 
Cyranose 320 and examined 20 asthma patients, 30 COPD patients and 40 healthy 
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controls divided into two subgroups based on whether they smoked or not. Asthma 
was distinguished from COPD with an accuracy of 96% after leave-one-out cross 
validation (LOOCV). However, when all groups were compared in one model, the 
accuracy fell to 56%. 

Studies on respiratory infections include the detection of pneumonia (Hockstein 
et al., 2004; Schnabel et al., 2015) and mycobacterium tuberculosis (Fend et al., 2006; 
Saktiawati et al., 2019). Furthermore, a recent review evaluated VOC-based breath 
analysis for the detection of COVID-19 infection using both eNoses and GC-MS. 
The cumulative sensitivity was 98% and specificity 74%. Subgroup analysis showed 
a higher sensitivity for eNoses, but the specificity was better with GC-MS (Subali et 
al., 2022). 

The detection of cancer by eNose is a potential field for further research, as the 
eNose could facilitate early diagnosis. In their review article, Baldini et al. (2020) 
included 60 studies that covered the detection of cancers from exhaled breath with 
eNoses. Of these, most studies focused on lung cancer. Again, the most used eNose 
was the Cyranose 320 followed by MOS-based sensors such as the Aeonose (The 
eNose Company, Zutphen, The Netherlands). Overall, the ability of eNoses to 
detect cancers is good, although wide heterogeneity exists. For instance, an electronic 
nose can determine patients with colorectal, bladder and lung cancers from healthy 
controls with a sensitivity and specificity rates of between 71-85% and 76-100% 
(Bassi et al., 2021; D’Amico et al., 2010; de Meij et al., 2014; Di Natale et al., 2003; 
Machado et al., 2005; van de Goor et al., 2018). Furthermore, according to a recent 
meta-analysis, eNoses can detect cancers from exhaled breath with a sensitivity of 
90% and specificity of 87%. Most of these studies, however, were feasibility studies 
with substantial heterogeneity (Scheepers, Al-Difaie, Brandts, et al., 2022). 

In a systematic review and meta-analysis evaluating the overall accuracy of 
eNoses in detecting diseases via breath analysis, 44 studies were included covering 
5728 patients. The pooled sensitivity was 90% with moderate heterogeneity, the 
pooled specificity was 88% with high heterogeneity and the diagnostic odd ratio was 
40.7, suggesting high accuracy. However, the reporting of the accuracy was not 
standardized (Yang et al., 2021).  

Some studies have investigated the use of the eNose in upper airway disease 
diagnostics. Table 1 and Table 2 present data on the studies related to 
otorhinolaryngologic diseases and eNoses based on gas-sensors. As can been seen 
in Tables 1 and 2, most of the studies are case-control types that evaluate the 
accuracy of an eNose in disease detection. The majority of the studies utilise CP-
based or MOS sensors.  
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Although eNose technology is commercially available for use in several different 
fields, such as detecting toxic gases (environics.fi), the application of the technology 
in the medical field is lacking. To the author’s knowledge, to date, only a few devices 
(April 2022) are available. The DSA BreathPassTM device produced by the Finnish 
company, Deep Sensing Algorithms (Tampere, Finland), has recently received 
medical CE certification. The device uses nanosensors and is designed to detect 
COVID-19 in exhaled human breath (dsa.fi). In the USA, the Food and Drug 
Administration (FDA) has given emergency use authorisation for the InspectIR 
COVID-19 Breathalyzer (InspectIR Systems, LLC, Frisco, Texas, USA) to detect 
COVID-19 in an authorised setting. The device is based on GC-MS (inspect-ir.com). 
Another mass spectrometry device for the detection of COVID-19 is the 
BreFenceTM Go (Breathonix, Singapore) which has received Singapore’s Health 
Sciences Authority’s Provisional Authorisation (breathonix.com). 

Table 1.  Studies concerning otorhinolaryngologic diseases (excluding cancers) and gas sensor- 
based electronic noses.  

Reference Aim Device Participants Sample Accuracy 

Aronzon et 
al., 2005 

To distinguish 
CSF from serum 

Cyranose 320 
(CP-based 
sensor)* 

n = 10 CSF fluid and 
serum 

N/A 

Broza et 
al., 2018 

To diagnose 
CRS 

Nanomaterial- 
based sensor 

CRSsNP = 
17 
CRSwNP = 
24 
HC = 30 

EB CRS vs HC = 
90% 
CRSsNP vs. HC = 
86% 
CRSwNP vs. HC 
= 81% 

Bruno et 
al., 2008 

To diagnose 
CRS 

zNose™ (GC 
and SAW-
based sensor) 

CRS = 14 
HC = 14 

EB + a 
tampon held 
in the middle 
meatus 

N/A 

Dragonieri 
et al., 2019 

Discrimination 
between AR with 
and without 
asthma and 
controls 

Cyranose 320  Validation 
set: 
AAR = 7 
AR = 7 
HC = 7 

EB AAR vs AR = 83% 
AAR vs HC = 
67% 
AR vs HC = 77% 

Dutta et al., 
2005 

To distinguish 
swab samples of 
MRSA, MSSA 
and C-NS 

Cyranose 320 MRSA = 50 
MSSA = 50 
C-NS = 50 

Swab 
samples 

96-100% 

Lai et al., 
2002 
 
 

To distinguish 
different bacterial 
species 

Cyranose 320 In vitro study Swabs 
containing 
bacterial 
isolate 

N/A 
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Table 1.  Continued. 

Reference Aim Device Participants Sample Accuracy 

Mohamed et 
al., 2003 

To diagnose CRS LibraNose 
(QCM-based 
sensor)** 

CRS = 5 
HC = 5 

EB + a 
tampon 
held in the 
middle 
meatus 

60% 

Saidi et al., 
2015 

To diagnose AR eNose based 
on 
semiconducting 
sensors 

AR = 5 
HC = 16 

EB 99% 

Shykhon et 
al., 2004 

To identify 
pathogens 
associated with 
ear, nose, throat 
infections 

Cyranose 320 n = 90 Swab 
samples 

71-88% 

Thaler et al., 
2000 

To distinguish 
CSF from serum 

eNose based 
on 
semiconducting 
sensors 

n = 19 CSF fluid 
and serum 

95%  

Thaler & 
Hanson, 
2006 
 

To diagnose 
bacterial 
rhinosinusitis 

Cyranose 320 Second 
period: 
ARS = 34 
HC = 34 

EB 72% 

Thaler et al., 
2008 

To distinguish 
biofilm-producing 
bacteria from 
non-biofilm-
producing 
bacteria of the 
same species 

Cyranose 320 In vitro 
study 

Glass vials 
containing 
bacterial 
strains 

72-100% 

AAR: allergic rhinitis with astma; AR: allergic rhinitis; ARS: acute rhinosinusitis; C-NS: 
patients with an infection caused by coagulase-negative staphylococci; CP: conducting 
polymer; CRS: chronic rhinosinusitis; CRSsNP: chronic rhinosinusitis without nasal polyps; 
CRSwNP: chronic rhinosinusitis with nasal polyps; CSF: cerebrospinal fluid; EB: exhaled 
breath; eNose: electronic nose; GC: gas-chromatography; HC: healthy control; N/A: not 
reported; MRSA: patients with an infection caused by methicillin-resistant Staphylococcus 
aureus; MSSA: patients with an infection caused by methicillin-susceptible Staphylococcus 
aureus; QCM: quartz crystal microbalance; SAW: surface acoustic wave. 

*Cyranose320 (Sensigent, California, USA); 

**LibraNose (University of Rome Tor Vergata, Italy); 

***zNose™ (Electronic Sensor Technology Inc., California, USA). 
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Table 2.  Studies concerning head and neck cancers and gas sensor-based electronic noses. 
Exhaled breath was used as a sample in all studies. 

Reference Aim Device Participants Accuracy 

Scheepers, 
Al-Difaie, 
Wintjens, et 
al., 2022 

To differentiate TC 
from benign thyroid 
disease 

Aeonose* TC = 48 
Benign thyroid 
disease = 85 

71% 

Gruber et al., 
2014 

To diagnose HNSCC GC-MS and 
nanomaterial-
based sensor 
 

HNSCC = 22 
BT = 21 
HC = 19 

HNSCC vs. HC = 83% 
HNSCC vs. BT = 84% 
BT vs. HC = 73% 

Hakim et al., 
2011 

To distinguish HNC 
cancer from LC and 
HC 

NA-NOSE 
GC-MS 

NA-NOSE set: 
HNC = 16 
LC = 20 
HC = 26 

HNC vs. HC = 95% 
LC vs. HC = 96% 
HNC vs. LC = 100% 

Lang et al., 
2016 

To distinguish HNSCC 
(before and after 
surgery) from HC 

Nanomechanical 
membrane 
sensors 

HNSCC = 3 
HC = 4 

N/A 

Leunis et al., 
2014 

To distinguish HNSCC 
from HC 

Metal-oxide 
sensor 

HNSCC = 36 
HC = 23 

88% 

N. Mohamed 
et al., 2021 

To distinguish OSCC 
from HC 

Aeonose OSCC = 49 
HC = 35 

79% 

van de Goor 
et al., 2017 

To discriminate 
HNSCC from BC and 
CC 

Aeonose HNSCC = 100 
BC = 40 
CC = 28 

HNSCC vs. CC = 81% 
HNSCC vs. BC = 84% 
BC vs CC = 84% 

van de Goor 
et al., 2019 

To diagnose 
locoregional recurrent 
or new primary 
HNSCC after curative 
treatment 

Aeonose recurrent 
HNSCC = 20 
HNSCC without 
recurrence = 20 

83% 

van de Goor 
et al., 2020 

To distinguish HNSCC 
from HC 

Aeonose HNSCC = 91 
HC = 72 

72% 

van Hooren 
et al., 2016 

To distinguish HNSCC 
from LC 

Aeonose HNSCC = 53 
LC = 34 

85% 

Witt et al., 
2012 

To distinguish HNC 
from HC 

Metal-oxide 
sensor 

HNC = 10 
HC = 13 

82% 

BC: bladder cancer; BT: benign tumour; CC: colon cancer; GC-MS: gas-chromatography 
mass spectrometry; HC: healthy control; HNC: head and neck cancer; HNSCC: head and 
neck squamous cell carcinoma; LC: lung cancer; NA-NOSE: Nanoscale Artificial Nose; 
OSCC: oral squamous cell carcinoma; TC: thyroid cancer. 

*Aeonose (the eNose Company, Zutphen, the Netherlands). 
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2.5 Ion mobility spectrometry and differential mobility spectrometry 

2.5.1 Ion mobility spectrometry 

Ion mobility spectrometry (IMS) is not considered to be an eNose in the strictest 
sense because it is not based on a traditional multisensor array (Wen et al., 2018; 
Wilson & Baietto, 2009). IMS provides analogous information from gas mixtures 
(Röck et al., 2008). It is widely used for the detection of chemical warfare agents and 
explosives (Ewing et al., 2001). It is also exploited in the food industry, for example, 
for the detection of pesticides, veterinary drugs and bacteria, and the control of food 
freshness and quality (Hernández-Mesa et al., 2017; Vautz et al., 2006).  

The working principle ion mobility spectrometry (IMS) is separation of ionic 
mixtures and characterization of ions by some property of their transport through a 
carrier gas in an electromagnetic field (Shvartsburg, 2008). First, the sample 
molecules are ionized. Usually, the ionization is done by Nickel-63, but other 
methods do exist (Borsdorf & Eiceman, 2006). Ions are then injected into an 
electrical field (E) where they move with a certain drift velocity (v) towards a detector. 
The movement is against a counterflow of dry, neutral drift gas, which is usually 
nitrogen or air (Borsdorf & Eiceman, 2006). IMS measures time-of-flight, which is 
the time an ion spends in the drift tube. Time-of-flight depends on the mass, shape, 
cross-sectional area and charge of the ion. Those ions that collide with buffer gas 
have more often greater friction and, therefore, lower terminal velocity (D’Atri et al., 
2018.). Thus, these ions arrive at the detector later than the smaller ions. Although 
drift tube IMS is considered the classic IMS, other instrumentation types, such as 
travelling wave IMS and trapped IMS, exist (Cumeras et al., 2015; D’Atri et al., 2018; 
Dodds & Baker, 2019). 

IMS has many advantages. For example, power consumption is low, and the 
device can be miniaturised and can operate at ambient pressure. Ambient air serves 
as the carrier gas. Response time is fast, and IMS has high sensitivity (Borsdorf & 
Eiceman, 2006). A major drawback of IMS is that when different ions have a similar 
size, mass and charge, they may not be separated from each other. Background noise 
can also complicate separation specificity (Borsdorf & Eiceman, 2006). 
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2.5.2 Differential mobility spectrometry  

Differential mobility spectrometry (DMS), also known as field asymmetric ion 
mobility spectrometry (FAIMS), is a technology that can enhance the separation 
power of IMS. Although the terms DMS and FAIMS are used synonymously, DMS 
refers to an analyser with a planar micro-fabricated design and FAIMS to a cylindrical 
design (Kolakowski & Mester, 2007). Nevertheless, ion separation in both designs is 
based on field-dependent mobilities that are essentially the same (Borsdorf & 
Eiceman, 2006). 

The history of DMS and FAIMS is covered in an article by Schneider et al. (2016). 
In a drift tube IMS, the drift velocity v of ions can be expressed as follows: 

 
v=KE     (1) 

where K represents a mobility coefficient (Anttalainen et al., 2018). However, K is 
only constant in low electrical fields, whereas in strong electric fields with high-
frequency asymmetric waveforms, it is field-dependent (Cumeras et al., 2015; 
Schneider et al., 2016). Thus, in strong electric fields the drift velocity of ions 
becomes a non-linear function of the electrical field, which is the basis of the 
separation of ions in DMS (Anttalainen et al., 2018). 

In practice, sample vapour is ionised, and the ions are passed into a channel along 
which they travel as in IMS. The carrier gas is usually ambient air which is provided 
from a pure air generator with a mass flow controller. The channel is called the 
separator and is formed by two plates which are metal electrodes on ceramic plates 
(Borsdorf & Eiceman, 2006). A separation voltage (USV) is applied and an 
asymmetric radio frequency field, containing a high-amplitude positive phase and a 
low-amplitude negative phase, is created between the plates in an asymmetric 
fashion. The high-field phases have shorter duration than the low-field phases, 
resulting in their net voltage being similar (Borsdorf et al., 2011). Ion motion is 
perpendicular to the electric field. In one phase, ions move toward one electrode and 
then toward an opposite electrode in another phase. As a result, ions will zig-zag in 
the channel. If the mobility of the ions is different between the high- and low-fields, 
they will move toward one electrode. If the difference is great enough, the ions will 
hit the electrode and be lost. If the mobility is the same in the phases, the ions will 
pass through the channel to the detector, which is an electrometer. When the ions 
reach the detector, they generate an electrical current. The detection of positive and 
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negative ions can be done simultaneously (Borsdorf et al., 2011; Schneider et al., 
2016). 

The oscillating motion of the ions will eventually lead to a collision with the 
electrodes and the annihilation of the ions (Borsdorf et al., 2011; Krylov et al., 2007). 
To counter this effect, a compensation voltage (UCV), which is superimposed on the 
electrical field to allow the transverse drift velocity of the ions to be zero, is applied 
(Krylov et al., 2007). Different USV and UCV values are scanned and the ion current 
emerging from the channel at each value can be recorded. This enables the detection 
of certain ions and the exclusion of others (Krylov et al., 2007). Also, the electric 
field strength can be altered, and similar scanning as with the compensation voltage 
performed. These scans and ion current recordings at each scan should reduce the 
signal-to-noise ratio and improve detection limits (Kolakowski & Mester, 2007). The 
working principle of DMS is shown in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.  The working principle of differential mobility spectrometry. Volatile organic compounds 
(VOCs) that evaporate from the sample are driven with a flow of air. They are given an 
electric charge by ionisation, allowing discrimination of the molecules according to their 
charge. The collisions with the medium also discriminate the molecules according to their 
size and shape. The molecules then enter the separation phase, where they are exposed 
to intermittent high- and low-electric fields. Ionised molecules move towards the oppositely 
charged plate at different speeds in the low and high fields, resulting in another dimension 
for separation. After separation, the molecules collide with the detector, resulting in a 
signal. V: volt. (I) © Springer. Reproduced with permission. All rights reserved. 

The result of a scan is a multidimensional signal print, also known as a dispersion 
plot, that depicts the measurement signature of the chemical mixture. It is a data 
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matrix, where every pixel represents an electrical current produced by ions colliding 
with the detector, each with a certain value of electric field voltage and UCV. The x-
axis shows the UCV values and the y-axis the USV values. Examples of dispersion 
plots are shown in Figure 2. 

  

Figure 2.  Example of a dispersion plot and both positive (left) and negative (right) ions are shown. 
Nasal air was used as a sample material. 

As with traditional eNoses, the output of DMS is a qualitative analysis of the sample 
and does not reveal the specific components. DMS detectors are highly sensitive and 
specific and have sufficient intra device stability. Although DMS is more expensive 
than many eNoses, it is still relatively cheap. Moreover, as with most eNoses, it can 
perform a fast analysis at room temperature. Miniaturized DMS devices, which allow 
better field use, have been built (Wilks et al., 2012). 

2.5.3 Studies in the medical field 

Like traditional eNoses, both IMS and DMS have gained popularity in studies 
regarding disease diagnostics. For example, Roine et al. (2014) used the 
ChemPro®100 device (Environics, Mikkeli, Finland), which is an eNose based on 
IMS and MOS. They analysed urine samples from 50 patients with prostate cancer 
and 15 patients with prostate hyperplasia. The eNose could distinguish samples with 
a sensitivity of 78% and specificity of 67%. In another study, the same device was 
used to discriminate the four most common urinary tract infection pathogens. After 
LOOCV, the bacterial plates could be distinguished from sterile plates with a 
sensitivity of 95% and specificity of 97% (Roine, Saviauk, et al., 2014). Furthermore, 
the ChemPro®100 could distinguish six relevant wound infection pathogens in vitro, 
including methicillin-sensitive Staphylococcus aureus (S. aureus) and methicillin-resistant 
S. aureus, with a sensitivity of 83% and specificity of 100% (Saviauk et al., 2018). 
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A formerly commercial FAIMS apparatus called the Lonestar VOC Analyzer 
(Owlstone Medical Ltd., Cambridge, UK) was able to distinguish patients with 
diabetes from healthy ones. If samples were stored for less than a year, sensitivity 
was 92% and specificity 100% (Esfahani et al., 2018). Furthermore, FAIMS was used 
to analyse urine samples collected from patients with pancreatic cancer, pre-malign 
lesion of the pancreas, acute and chronic pancreatitis, and healthy controls. FAIMS 
distinguished pancreatic cancer from healthy controls with a sensitivity of 79% and 
specificity of 79%. All the pancreatic diseases were distinguished from healthy 
controls with a sensitivity of 91% but with specificity of only 47% (Nissinen et al., 
2019). Colorectal cancer has been discriminated from healthy controls by analysis of 
urine samples with a sensitivity of 88-100% and specificity of 60-92% (Arasaradnam 
et al., 2014; Mozdiak et al., 2019). When colorectal cancer samples were compared 
to three categories (low, intermediate, and high risk) of adenomas, the sensitivity was 
75-83% and specificity was 75-100%. However, the sample size was only 7-12 
patients in each group (Mozdiak et al., 2019). Urine was also analysed with FAIMS 
in a study by Niemi et al. (2018) in which samples from patients with malignant 
ovarian tumours (n = 33) were distinguished from controls (n = 18) with a sensitivity 
of 91% and specificity of 63%. 

The ENVI-AMC™ (Environics Ltd., Mikkeli, Finland) is a differential mobility 
spectrometer which was originally designed for the ultra-low-level detection of 
ammonia and acids in clean room facilities. Two studies examined whether an 
analysis of diathermy smoke with the device could distinguish tumours when ex vivo 
samples were incised (Haapala et al., 2019; Sutinen et al., 2019). A specific smoke 
analysis system was used in these studies (Kontunen et al., 2018). Diathermy smoke 
from benign and malignant brain tumours could be discriminated from a control 
sample containing haemorrhagic or traumatically damaged brain tissue with a 
sensitivity of 78% and specificity of 89% (Haapala et al., 2019). In a study by Sutinen 
et al. (2019), the ENVI-AMC™ device was able to discriminate breast cancer from 
benign samples with a sensitivity of 80% and specificity of 90%. Recently, the 
feasibility of an analysis of diathermy smoke with the ENVI-AMC™ device in tissue 
identification was tested in vivo during breast tumour surgery. The accuracy of the 
device to distinguish four tissue types was 44% and showed high variation between 
surgeries (Kontunen et al., 2021). 

As mentioned previously, several studies have been published on DMS/FAIMS 
in the medical area. To date, however, no studies have been made on diseases in the 
field of otorhinolaryngology. 



 

36 

2.6 Data-analysis 

2.6.1 Pre-processing 

An electronic nose produces a digital output of the sample. The digital output 
comprises raw data that need to be further analysed and interpreted (Wilson & 
Baietto, 2009). Usually, some sort of data pre-processing and dimensionality 
reduction is performed before classification of the sample can be performed (Scott 
et al., 2006). Pre-processing may include compensation of sensor drift, noise filtering 
and data normalisation (Gutierrez-Osuna, 2002; Zhao et al., 2008). To find 
descriptive parameters from a high dimensionality sensor signal, some sort of 
dimensionality reduction is preferable to transfer the signal to a low dimensional 
feature space (Zhao et al., 2008). 

2.6.2 Classification  

In a similar way to data processing, a vast number of techniques for the classification 
of the analysed data exist. These include principal component analysis (PCA), linear 
discriminant analysis (LDA), k-nearest neighbour (kNN) and artificial neural 
networks. These techniques are described thoroughly in the literature (Berrueta et 
al., 2007; Gutierrez-Osuna, 2002; Scott et al., 2006; Zhao et al., 2008). However, no 
single method for dimension reduction and classification is superior to eNose 
technology in breath analysis (Leopold et al., 2015). Therefore, depending on the 
sensor and application, different methods should be tested. 

Data classification, also known as model building, can be divided into supervised 
learning and unsupervised learning processes (Zhao et al., 2008). In the former, the 
classifier is given known examples of the data. With these examples, the classifier 
learns to map the data into classes and a model is built. In contrast, in unsupervised 
learning, class labels in the training set are unknown and the classifier aims to find 
similarities in the structure of the data and to make decisions based on these 
similarities (Alpaydin, 2014). 
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2.6.3 Validation 

An error in a machine learning model can be due to bias or variance. When there is 
bias, the model oversimplifies the data and does not work well with new data. Bias 
usually decreases when the complexity of the model increases, meaning that the 
training error decreases. However, variance can also increase and the model may 
concentrate too much on the training data and may learn features that do not 
represent real-life data. In such cases, the model is poorly generalisable. This problem 
is called overfitting. If there is bias, the model is underfit to the data, and this is called 
underfitting (Alpaydin, 2014). 

To avoid underfitting and overfitting and to find the optimal model complexity, 
validation is executed. The most robust method of validation is external validation, 
where the data set is divided into training and test sets (a so-called holdout method) 
(Han et al., 2011; Marco, 2014). The training set is used for the model building and 
the classification is done with the separate test set (Broadhurst & Kell, 2006). Usually, 
two-thirds of the data are used in the training set and the remaining one-third in the 
test set. Sometimes the terms “validation” and “test” sets are interchangeable. 
However, this can lead to confusion because the validation set is also meant as a set 
that is used to optimize the model structure and, therefore, is a part of the model 
building. The test set is completely independent of the model building (Broadhurst 
& Kell, 2006; Marco, 2014). 

In real life, there is not always enough data. In such cases, cross validation (CV) 
can be used to estimate the prediction error. It is also known as internal validation, 
meaning that the classifier is validated using the same data set that the classifier is 
built on. Thus, it may give overoptimistic results because the model building is made 
with the same data (Broadhurst & Kell, 2006; Marco, 2014).  

In k-fold CV, the data is randomly divided into k (e.g., five or ten) approximately 
equally sized folds. Training and testing are performed k times. Each time, each fold 
is reserved as a test set and the rest as a training set. This means that each fold is 
used the same number of times as the training and test sets. The predictive accuracy 
estimate is the average of the correct classification from all the runs (Han et al., 2011). 
LOOCV is one type of k-fold CV in which the k equals n (the number of samples). 
The model is built with all but one sample (k-1), which is used to test the model. 
The procedure is repeated k times with every sample being the test sample once 
(Alpaydin, 2014; Han et al., 2011). LOOCV is almost unbiased, but it can have high 
variance. In contrast, ten-fold CV gives more biased but less variable estimates. 
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LOOCV is computationally intensive and requires many models to be built. 
Sometimes it may also give overoptimistic results (Marco, 2014). 

Although CV is considered crucial (Marco, 2014), a literature review regarding 
the investigation of exhaled breath and eNoses yielded 46 studies in which internal 
validation was performed in 29 (63%) studies and external validation in only 7 (15%) 
(Leopold et al., 2015). Likewise, in their review, Farraia et al. (2019) found that 
external validation with a newly recruited population was done in only 10% of 
studies. 

2.7 Rhinosinusitis 

Rhinosinusitis is a symptomatic inflammation of the paranasal sinuses and nasal 
cavity mucosa. In adults, it is defined by prevalence of two or more symptoms, one 
of which should be either nasal blockage/obstruction/congestion and/or nasal 
discharge. Additionally, facial pressure or pain and/or reduction or loss of smell 
exist. In clinical definition, there should be either a CT scan showing mucosal 
changes in the osteomeatal complex and/or paranasal sinuses and/ or endoscopic 
signs such as nasal polyps, mucopurulent discharge primarily from the middle meatus 
or middle meatal oedema/mucosal obstruction (Fokkens et al., 2020). Rhinosinusitis 
is further divided to ARS and CRS according to the duration of symptoms. 

In ARS, symptoms are of sudden onset and last less than 12 weeks (Fokkens et 
al., 2020). Other guidelines suggest that the duration of symptoms should be up to 
four weeks (Chow et al., 2012; Orlandi et al., 2021; Rosenfeld et al., 2015). When 
symptoms last 4-12 weeks the condition is sometimes called subacute rhinosinusitis, 
although the use of the term is rare. If the patient has four or more episodes of ARS 
per year without resolution of symptoms between episodes, the term recurrent ARS 
is used. (Rosenfeld et al., 2015.) If symptoms last at least 12 weeks, the condition is 
called chronic rhinosinusitis (CRS). 
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2.8 Acute rhinosinusitis 

2.8.1 Epidemiology 

The incidence of ARS is unclear. In a questionnaire study conducted in Asia, it was 
estimated that 6–10% of cases in outpatient practice are due to ARS. Respondents 
included general physicians, otorhinolaryngologists and paediatricians (D. Y. Wang 
et al., 2011). However, the percentage is quite high in comparison to other studies. 
For example, ARS was diagnosed in 0.5% of all outpatient visits among adults in the 
USA during a 2000-2009 study period (Fairlie et al., 2012). In Finnish primary care, 
ARS accounted for 0.4% of all visits in 2019 (Finnish Institute for Health and 
Welfare, 2019). 

2.8.2 Socioeconomic aspects 

Rhinosinusitis causes a significant burden on the healthcare system. For example, 
the decreased quality of life in patients with rhinosinusitis leads on average to 6 
missed workdays annually (Bhattacharyya, 2009). Missed workdays and visits to the 
doctor do not come without costs. It has been reported that one episode of ARS has 
a direct cost of 266 € (converted from Swedish krona in May 2011). Indirect costs 
varied greatly between individuals, ranging from 0 € to 4752 €. (Stjärne et al., 2012). 
An evaluation of medical claims data in the United States of America between 2003 
and 2008 showed that the direct costs of recurrent ARS are approximately 1100 
dollars per patient-year. The indirect costs of ARS are also likely to be significant 
(Bhattacharyya et al., 2012). 

2.8.3 Aetiology 

The most frequent cause of ARS is viral, associated with upper respiratory infection, 
and is found in 27-84% of ARS cases (Chow et al., 2012; Orlandi et al., 2021). This 
wide variation may be explained by the different techniques used for viral 
identification. The most common causative virus for ARS is rhinovirus. Other 
causative viruses include influenza and parainfluenza viruses, respiratory syncytial 
virus, and coronavirus (Mäkelä et al., 1998; Monto, 2002). 
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A common statement is that bacterial ARS (ABRS) complicates 0.5-2% of viral 
upper respiratory infections. These numbers are citations as made clear in the meta-
analysis in which they were traced to two original articles (S. Smith et al., 2015). In 
the first, a study by Dingle et al. (1964), 53 (0.5%) of 11 134 patients with a common 
cold had diagnosed sinusitis based on clinical criteria. In the second study, the 
authors examined 100 patients with a common cold or “other acute ENT infection” 
and found purulent fluid in sinus aspiration in two patients (2%) (Berg et al., 1986). 
Patients were, however, excluded if they had paranasal symptoms suggesting 
sinusitis. The prevalence of ABRS is probably higher than the commonly stated 0.5-
2%. When using cultures from antral swabs as a reference, the bacterial prevalence 
was 61%. In contrast, the bacterial prevalence was 33% when endoscopic middle 
meatal sampling was used as a reference (S. Smith et al., 2015). A cohort study found 
bacterial cause in 40% of sinus aspirates if the patient with ARS symptoms had air-
liquid level, gas bubbles, or total opacification of either maxillary sinus in cone beam 
computed tomography (CBCT) imaging. Of all the patients with ARS symptoms, 
however, the bacterial cause was found only in 16% of cases (Autio et al., 2016). In 
a meta-analysis by Ebell et al. (2019), the authors concluded that the prevalence of 
ABRS with clinically suspected ARS is 31% when bacterial culture from sinus 
puncture fluid is used as a reference. 

Streptococcus pneumoniae (S. pneumoniae), Haemophilus influenzae (H. influenzae), 
Moraxella catarrhalis (M. catarrhalis) and S. aureus account for 84% of ABRS pathogens 
(Payne & Benninger, 2007). However, in odontogenic rhinosinusitis, the presence of 
anaerobic bacteria and oral microbial findings are the most prevalent (Brook, 2005; 
Wuokko-Landén et al., 2019). A recent Finnish study found dental origin to be the 
probable cause of ARS in 15% of patients (Wuokko-Landén et al., 2019). Moreover, 
based on imaging findings, the prevalence in unilateral rhinosinusitis is even higher 
at 40-73% (Vestin Fredriksson et al., 2017; Matsumoto et al., 2015).  

2.8.4 Pathophysiology 

The pathophysiology of ARS is unclear. A typical causative agent is a virus which 
attaches to the nasal epithelium. The attachment initiates a complex host defence 
mechanism and inflammatory response, which then leads to mucosal oedema, mucus 
production and sinus obstruction. If mucociliary function is impaired, it may be lead 
to secondary bacterial infection (Fokkens et al., 2020). 
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Guidelines consider that viral ARS precedes ABRS (Chow et al., 2012; Fokkens 
et al., 2020). However, it is a difficult task to distinguish these from each other. In a 
study in the Finnish population, abnormalities in paranasal mucosa and occlusion of 
the osteomeatal complex in CBCT scans already appeared in the first days of the 
disease and remained virtually the same at days 9 and 10 in both viral ARS and ABRS 
(Autio et al., 2016). A comparison of symptom scores and CBCT findings show a 
gradually increasing discrepancy between viral ARS and ABRS during the first few 
days of infections, suggesting a potential bacterial presence at an early phase of ARS 
(Autio et al., 2016). Findings of H. influenzae in the middle meatus early in an ARS 
episode led to worse disease scores and prolonged symptoms. Furthermore, it 
correlated with a wider spread of the disease to the paranasal sinuses. Therefore, 
bacteria may affect the pathogenesis from the beginning of ARS (Autio, Tapiainen, 
et al., 2015). 

2.8.5 Diagnostics 

It is important to differentiate viral and bacterial ARS to avoid unnecessary antibiotic 
treatment. However, due to difficulties in diagnostics, medical professionals 
overprescribe antibiotics in more than 80% of cases ARS (Benninger et al., 2016; 
Pouwels et al., 2018; Sharma et al., 2017). A Cochrane review found the effects of 
antibiotics on uncomplicated ARS based on clinical diagnosis were limited, which 
could be related to the difficulties in distinguishing ABRS and viral ARS (Lemiengre 
et al., 2018). 

Symptoms and clinical examination 

Typical symptoms related to ARS are nasal obstruction/congestion, anterior or 
posterior nasal discharge, facial pain/pressure, headache and reduction or loss of 
smell. Other systemic or distant symptoms are fever, fatigue, cough and dysphonia 
(Fokkens et al., 2020). Although unreliable, guidelines advise symptom-based 
differential diagnostics (Fokkens et al., 2020; Orlandi et al., 2021; Rosenfeld et al., 
2015). However, a meta-analysis by Engels et al. (2000) found no study that 
compared bacterial culture from sinus aspirate and symptoms for ABRS diagnostics. 
A later meta-analysis investigated symptom duration and purulent rhinorrhoea in 
differential diagnostics and found no evidence to support their use (van den Broek 
et al., 2014). ABRS may develop earlier than 7-10 days as shown in the differences 
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in local and systemic biomarkers and CBCT and symptom scores (Autio et al., 2016, 
2017). According to a systematic review, fever and facial or dental pain cannot be 
used to differentiate ABRS and viral ARS (Hauer et al., 2014). In another study, 
dental pain was specific for ABRS but was present in only 4% of patients (Autio, 
Koskenkorva, et al., 2015). 

In a Finnish study, the authors compared symptoms and physical findings to 
bacterial cultures from sinus aspirates. They found that none of the patient-reported 
symptoms at 10 days were ideal for identifying ABRS (Autio, Koskenkorva, et al., 
2015). According to guidelines, a worsening of symptoms (“double sickening”) could 
predict ABRS (Chow et al., 2012; Rosenfeld et al., 2015) but it only improves 
diagnostic accuracy slightly (Autio, Koskenkorva, et al., 2015). 

Clinical examination may include anterior rhinoscopy, evaluation of the posterior 
pharynx and palpation of the skin over the sinuses searching for tenderness of the 
cheek or teeth (Fokkens et al., 2020; Rosenfeld et al., 2015; Sinusitis: Current Care 
Guidelines, 2018). These examinations are easy to perform in primary care. At 9-10 
days after the onset of symptoms, a moderate amount or a profuse secretion present 
in either nasal passage in anterior rhinoscopy predict ABRS quite well. If no such 
secretion is present, ABRS can be ruled out. Furthermore, any secretion in the 
posterior pharynx increases the likelihood of ABRS. Additionally, cervical 
adenopathy can also predict ABRS (Autio, Koskenkorva, et al., 2015). 

Nasal endoscopy, using a rigid or a flexible endoscope after a local anaesthetic 
and a decongestant, provides a great view of the whole nasal cavity, turbinates, 
middle meatus, sphenoethmoidal recess, sphenoid ostium and nasopharynx. 
Secretions seen endoscopically in the middle meatus at 9-10 days after the start of 
the symptoms predict ABRS (Autio, Koskenkorva, et al., 2015). 

Bacterial cultures  

Although maxillary sinus puncture and aspiration of the contents are the gold 
standard of ABRS diagnostics, they are not usually performed due to the discomfort 
caused to the patient and the possible lack of expertise in performing the procedure 
in primary care. Additionally, maxillary sinus puncture and aspiration only reveals 
pathogens in the maxillary sinus, which may differ from those in the other sinuses. 
International guidelines do not recommend the procedure be performed routinely 
(Chow et al., 2012; Desrosiers et al., 2011). Despite the relative discomfort and 
possible morbidity caused by maxillary puncture, it is well-tolerated by the patient 
(Blomgren et al., 2015). The Finnish guidelines suggest performing the puncture if 
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the patient has severe symptoms or when other treatments have failed. Moreover, in 
addition to obtaining cultural samples, the pain caused by pressure may be alleviated 
(Sinusitis: Current Care Guidelines., 2018). 

As maxillary puncture produces some discomfort, alternative methods are 
desirable. A review revealed that in one study nasal swabs taken from the nasal cavity, 
inferior meatus or middle meatus yielded a correlation of 91% compared to the 
cultures acquired by maxillary sinus punctures (Jousimies-Somer et al., 1989), but 
only 42-65% in others (Benninger et al., 2002). In 57% of cases, cultures from the 
nasopharynx correlate with maxillary sinus puncture and culture of the contents 
(Thunberg et al., 2013). Possibly due to the mixed results, acquiring nasal swab 
cultures is not recommended (Chow et al., 2012; Desrosiers et al., 2011). 

Endoscopically derived middle meatal cultures (EDMMC) are non-invasive 
compared to maxillary puncture. Additionally, they provide information on possible 
pathogens in other paranasal areas, such as the ethmoids and frontal sinuses 
(Benninger et al., 2006). Two meta-analyses support the use of EDMMC in the 
diagnostics of ARS and CRS. It was concluded that EDMMC had an accuracy of 73-
76% when compared to cultures obtained by maxillary sinus punctures (Benninger 
et al., 2006; Dubin et al., 2005). Specifically, in ABRS, the sensitivity, specificity, 
positive predictive value (PPV) and negative predictive value (NPV) were 81%, 71%, 
78% and 75%, respectively. (Benninger et al., 2006). When compared to CT-findings, 
EDMMC had a sensitivity of 93% and specificity of 80% (Elwany et al., 2012). 

Imaging 

Different imaging modalities, such as plain radiographs, CT, CBCT and magnetic 
resonance imaging, provide information on the nasal cavities and paranasal sinuses. 
When imaging is negative, ARS can be ruled out. However, positive findings, such 
as mucosal thickening or air-fluid level, do not help to differentiate ABRS and viral 
ARS (Autio et al., 2016; S. Smith et al., 2015). Indeed, positive findings are common 
even in upper respiratory infections (Gwaltney et al., 1994)). As a result, routine 
imaging is not recommended (Desrosiers et al., 2011; Fokkens et al., 2020; Orlandi 
et al., 2021; Rosenfeld et al., 2015). 

Plain radiographs have limited usefulness and are not recommended (Fokkens et 
al., 2020; Rosenfeld et al., 2015). Magnetic resonance imaging is costly and time 
consuming and lacks bony detail and is not the first-line modality either (Kirsch et 
al., 2017). 
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CT imaging gives the best bony anatomic detail of the paranasal sinuses (Kirsch 
et al., 2017) and is recommended when planning surgical intervention or in cases of 
suspected complications (Bayonne et al., 2009; Fokkens et al., 2020; Rimmer et al., 
2019). The downside of CT is the ionizing radiation dose. CBCT has a significantly 
lower radiation dose than traditional or low dose CT (Al Abduwani et al., 2016). 
Further, although it shows bony details efficiently, it lacks proper soft tissue 
resolution (Kirsch et al., 2017). CBCT is, however, a great alternative to CT in 
uncomplicated cases to assess sinus anatomy and pathology (Kirsch et al., 2017) or 
when planning surgical interventions. 

Ultrasonography 

An ultrasound device provides a way of showing fluid in the maxillary sinus with a 
sensitivity of 68-85% and specificity of 72-82% compared to maxillary sinus 
puncture or imaging findings (Ebell et al., 2016; Varonen et al., 2000). A positive 
finding does not predict ABRS well, however (Autio, 2017). Furthermore, 
ultrasound has limited usefulness in the diagnostics of ARS. The Finnish guidelines 
suggest relating the findings to patient symptoms (Sinusitis: Current Care 
Guidelines., 2018). Interestingly, international guidelines do not find this necessary 
(Orlandi et al., 2021) or fail to mention it at all (Chow et al., 2012; Desrosiers et al., 
2011; Rosenfeld et al., 2015). 

Inflammatory biomarkers 

A systematic review found the sensitivity of C-reactive protein, white blood cell 
count and erythrocyte sedimentation rate in the diagnosis of ABRS to be 34%, 25% 
and 43%, respectively. Specificity was also better, varying between 83-88% (Ebell et 
al., 2016). In a review article, elevated C-reactive protein and erythrocyte 
sedimentation rate predicted bacterial ARS well, but sensitivity remained low. The 
authors of the review also stated that white blood cell count and procalcitonin are of 
no value in the diagnostics of ABRS. Nasal nitric oxide (NO) levels were lower in 
ABRS. However, further studies are needed on this subject as well as on the use of 
cytokines in diagnosing ABRS (Autio et al., 2018). 
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2.9 Chronic rhinosinusitis 

2.9.1 Epidemiology 

It is difficult to give an accurate estimate of the prevalence of CRS due to the 
heterogeneity of the disorder and the different diagnostic criteria used in the 
literature (Fokkens et al., 2020). According to a survey-based study, the self-reported 
prevalence of CRS in Europe is 11% (in Finland 7%). However, when evaluating 
CRS diagnosed by a doctor, the prevalence decreased to 5% (Hastan et al., 2011). 
The estimated prevalence obtained from an administrative database approach is 2-
3% (Shashy et al., 2004; Xu et al., 2016). Bhattacharyya examined the United States 
Medical Expenditure Panel Survey database and found a prevalence of 5% 
(Bhattacharyya, 2011). If diagnosis is based on symptoms combined with endoscopic 
findings, prevalence was found to be 1% (J. H. Kim et al., 2016).  

2.9.2 Socioeconomic aspects 

CRS causes significant costs to society. Direct costs come mainly from office-based 
expenditures and prescription expenditures (Caulley et al., 2015). Bhattacharyya 
performed an analysis of the estimated national healthcare costs of CRS in the Unites 
States in 2007 and 2018 and found them to be 8.6 and 14.4 billion dollars, 
respectively (Bhattacharyya, 2011, 2021). 

Indirect costs also result in a tremendous socioeconomic impact usually caused 
by missed workdays or reduced productivity. In a study assessing 322 patients with 
CRS with a survey instrument, CRS was found to cause an average of 4.8 missed 
workdays per year. The yearly economic cost of the missed workdays was 1539 US 
dollars per patient (Bhattacharyya, 2003). The total indirect costs of CRS due to 
absenteeism from work were estimated to exceed 20 billion dollars annually in the 
USA (Rudmik, 2017). 

In addition to costs, CRS has a clear impact on individual health. Patients with 
CRS have worse general health and vitality than the general population (Gliklich & 
Metson, 1995). Furthermore, comorbid depression may present in up to 40% of 
patients with CRS (Schlosser et al., 2016). 
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2.9.3 Aetiology 
The aetiology of CRS is complex and multiple environmental and host genetic 

factors have been implicated (Fokkens et al., 2020). In contrast to ARS, the role of 
microbes in the development of CRS is unclear. For instance, no evidence exists as 
to whether viruses and fungi are a direct cause in the aetiology of CRS (Fokkens et 
al., 2020; Orlandi et al., 2021). 

A systematic review pooled bacterial culture results obtained from patients with 
CRS and found positive cultures in 64% of cases. Most (77%) of the cultures were 
obtained during surgery. The most common bacteria were coagulase-negative 
staphylococcus (25%), S. aureus (19%) and anaerobic bacteria (17%) (Thanasumpun & 
Batra, 2015). However, the bacteria may be just colonisation and not true pathogens. 
Healthy controls have S. aureus and coagulase-negative staphylococcus in 23% and 75% 
of the middle meatus, respectively (Uhliarova et al., 2013). 

Bacteria may also form a biofilm, which is a community of bacteria in a protective 
extracellular matrix. It increases bacterial resistance to host defence and antibiotics. 
The prevalence of biofilms in patients with CRS varies between 15-97% (Danielsen 
et al., 2015; Prince et al., 2008), but they also exist in control patients (Bezerra et al., 
2011). Therefore, their role in CRS is uncertain.  

Some predisposing factors, such as asthma, are related to CRS (Jarvis et al., 2012). 
Allergic rhinitis is also more common in patients with CRS, but the role of allergens 
as an aetiologic factor in CRS is unclear (Fokkens et al., 2020). A meta-analysis 
revealed that there is significant association between a gastroesophageal reflux 
disease and CRS (Leason et al., 2017). The prevalence of immunoglobulin 
deficiencies is higher in patients with CRS than in the general population and can be 
as much as 23% in difficult-to-treat CRS (Schwitzguébel et al., 2015). Furthermore, 
active smoking has a strong association with CRS (Hastan et al., 2011). 

2.9.4 Pathophysiology 

The pathophysiology of CRS is unclear as CRS is a heterogenous disease rather than 
a specific disease. However, host and environmental interactions at the mucosal 
surface can lead to complex inflammatory mechanisms (Fokkens et al., 2020). 
Traditionally, CRS have been divided to chronic rhinosinusitis with nasal polyps or 
without nasal polyps (CRSsNP). Nowadays, it is understood as a more diverse 
syndrome with different inflammatory endotypes and clinical phenotypes (Grayson 
et al., 2019; Steinke & Borish, 2016). Primary CRS is characterised by dominance of 
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type 2 or non-type 2 endotypes (Fokkens et al., 2020). Secondary CRS is a local 
manifestation of other diseases. Patients with primary ciliary dyskinesia or cystic 
fibrosis for example, suffer from CRS frequently. Additionally, patients with 
autoimmune disorders, such as granulomatous polyangiitis or sarcoidosis, may 
exhibit CRS symptoms (Fokkens et al., 2020). 

2.9.5 Diagnostics 

Symptoms 

The most common symptoms patients with CRS have are nasal obstruction (95%), 
facial congestion or pressure (83-85%), nasal discharge (82%) and loss of smell 
(68%). Other symptoms that are nonspecific include fatigue (84%), headache (83%), 
ear pain or pressure (68%) and cough (65%) (Bhattacharyya, 2003). 

According to the guidelines, symptoms-only based diagnosis is not sufficient due 
to the high risk of false positives (Fokkens et al., 2020; Orlandi et al., 2021; Rosenfeld 
et al., 2015). Symptom criteria have a sensitivity of 89% and specificity of 12% 
compared to CT-findings (Bhattacharyya & Lee, 2010). Similarly, Tahamiler et al. 
(2007) showed that 70% and 77% of allergic and non-allergic patients fulfilling the 
symptom-based diagnostic criteria of CRS did not have CT or endoscopic pathology. 
Individual symptoms have a sensitivity of between 37-73% and specificity of 27-
73%, the most sensitive symptom being nasal discharge and the most specific loss 
of smell (Moore et al., 2017).  

In CRS without polyps, symptom-based diagnosis is especially difficult, as many 
diseases have similar symptoms. For example, different forms of rhinitis (e.g., allergic 
rhinitis) mimic CRS. In addition, loss of smell might be due to head trauma or viral 
infection. Tension-type headaches and migraine can cause facial pain or pressure 
(West & Jones, 2001), and odontogenic infections and sinonasal tumours may 
produce symptoms that are similar to CRS, although they are usually unilateral. 

Clinical examination 

Anterior rhinoscopy is easy to perform in an outpatient clinic using a nasal speculum 
and nasal decongestion. It is a simple way to investigate the presence of oedema, 
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purulence and polyps. However, it only allows visualisation of the anterior one-third 
of the nasal cavity. 

In comparison to anterior rhinoscopy, nasal endoscopy using a rigid or flexible 
endoscope allows a thorough visualisation of the whole nasal cavity. It also allows 
the exclusion of other possible causes of symptoms, such as intranasal neoplasms or 
foreign bodies. Nasal endoscopy increases diagnostic accuracy from 43% to 69% 
compared to symptom-based criteria by improving specificity from 12% to 84% 
while at the same time decreasing sensitivity from 89% to 47% (Bhattacharyya & 
Lee, 2010). Similar results were found in another study in which endoscopy had a 
sensitivity of 46% and specificity of 85% compared to CT-findings (Stankiewicz & 
Chow, 2002). Another case of low sensitivity (36%) but high specificity (95%) was 
found in a retrospective study (Amine et al., 2013). Endoscopy does not improve 
diagnostic classification if patients do not fulfil the symptom criteria described in the 
guideline (Bhattacharyya & Lee, 2010). Inter-rater agreement in endoscopic finding 
is reliable when evaluating polyps. Fairly good agreement was also present regarding 
nasal discharge, but not in the case of mucosal oedema (Larsen et al., 2018).  

Finally, a meta-analysis concluded that with rigid endoscopy CRS can be 
diagnosed with high reliability, but negative findings do not rule out the disease (D. 
H. Kim et al., 2020). Nasal endoscopy is a safe and recommended tool in clinical 
examination when evaluating patients for CRS (Fokkens et al., 2020; Orlandi et al., 
2021). Concerning post-surgical patients, endoscopy is a valuable tool for assessing 
inflammation and polyposis in operated cavities. In addition, it also allows 
microbiological samples to be acquired. Cultures from the middle meatus correlate 
with cultures from the maxillary sinus 75-86% of the time (Araujo et al., 2007; Gold 
& Tami, 1997; Szaleniec et al., 2021). 

Imaging  

Performing nasal endoscopy requires expertise and the equipment is often not 
available in primary care. Compared to CT, endoscopy is cost-effective and no 
radiation is used. CT is, however, more sensitive. In a meta-analysis comprising 15 
studies, endoscopy had a sensitivity of 73% and specificity of 77% when compared 
to CT in the diagnostics of CRS (D. H. Kim et al., 2020). CT is the gold standard in 
the diagnostics of CRS and is recommended for use with symptomatic, endoscopy-
negative patients or for preoperative planning (Kim et al., 2020; Orlandi et al., 2021).  

CBCT is a viable alternative for CRS imaging due to its low radiation dose, low 
cost and great resolution for bony detail. Moreover, its accuracy is nearly equal to 
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that of endoscopic findings (Zojaji et al., 2015). The recognition of incidental 
findings is essential, and CT/ CBCT should not therefore be used in asymptomatic 
patients to diagnose CRS (Desrosiers et al., 2011; Fokkens et al., 2020). Mucosal 
thickening of the paranasal sinuses is common in asymptomatic patients (Razi et al., 
2021). Furthermore, the symptom severity of CRS cannot be assessed based on CT 
findings alone (Rathor & Bhattacharjee, 2017; Valtonen et al., 2018). Nowadays, 
plain radiography has no place in diagnostics (Fokkens et al., 2020).  
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3 AIMS OF THE STUDY 

1. To evaluate whether DMS can discriminate common rhinosinusitis bacteria 
in vitro (I). 

2. To examine patients with ARS and to investigate whether DMS can identify 
bacterial growth in sinus secretions acquired by maxillary sinus puncture and 
aspiration (II). 

3. To investigate whether nasal air can be collected into a collection bag using 
aspiration and analysed with DMS (III). 

4. To evaluate whether DMS can discriminate the nasal air of patients with 
CRSsNP from those patients with nasal obstruction caused by deviated nasal 
septum (IV). 
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4 MATERIALS AND METHODS 

4.1 Differential mobility spectrometers 

In the studies of this dissertation, three DMS devices were used. In studies I and II, 
an ENVI-AMC™ device was used. In study III, a DMS prototype was used 
(Olfactomics Ltd, Finland), and an Ionvision device (Olfactomics Ltd, Tampere, 
Finland) was used in study IV. 

The ENVI-AMC™ device utilises dried and activated charcoal and molecular 
sieve (5Å)-filtered compressed air as a carrier gas. The device is connected to a 
personal computer (PC), and the monitor is then used to evaluate dispersion plots. 
The DMS prototype and the Ionvision device have integrated monitors and there is 
no need for a separate PC. All the devices were connected to a cloud database 
(Olfactomics Ltd, Tampere, Finland) for the monitoring and logging of the data. 

The measurement time can be freely adjusted, and for the ENVI-AMC™ device 
it was approximately 3 minutes and approximately 30 seconds for the DMS 
prototype and Ionvision device. 

4.2 Study population 

Studies II, III and IV were prospective studies conducted in the department of 
otorhinolaryngology – head and neck surgery at Tampere University Hospital, 
Finland. 

4.2.1 ARS patients (II) 

Patients older than 18 years with ARS symptoms lasting less than four weeks, 
according to the European guidelines, (Fokkens et al., 2020) were recruited. 
Exclusion criteria were smoking during the past six months, prior paranasal surgery, 
severe immunodeficiency or any malignant disease treated in the previous five years. 
A total of 15 patients met the criteria and were included. 
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Information on the patients’ current rhinosinusitis symptoms and use of 
antibiotics one month prior to enrolment was obtained. Complete 
otorhinolaryngologic physical examination was then performed. The patients 
underwent maxillary puncture and aspiration which were conducted bilaterally unless 
the patient experienced only unilateral symptoms in which case the affected side only 
was punctured. 

4.2.2 Volunteers (III) 

Ten adult volunteers were recruited. Exclusion criteria were pregnancy or lactation, 
smoking during past month, CRS, prior paranasal surgery, acute upper respiratory 
infection less than a week ago, any use of nasal sprays during the past week, lower 
respiratory tract disease, such as COPD or asthma, severe immunodeficiency and 
any cancer diagnosed less than five years ago. 

4.2.3 Patients with CRSsNP and patients with deviated nasal septum (IV) 

Eligible patients were consecutively recruited to two groups: the CRSsNP group and 
the control group. The inclusion criteria for the CRSsNP group were age ≥ 18 years, 
symptoms meeting European Position Paper on Rhinosinusitis and Nasal Polyps 
criteria for CRSsNP (Fokkens et al., 2020)and paranasal mucosal changes visible in 
CBCT or multislice CT. Lund-Mackay (LM) scores were calculated for the CT scans 
(Lund & Mackay, 1993). Classification was done based on points. For the 
osteomeatal complex, 0= not occluded or 2=occluded. For each side, the maxillary, 
frontal and sphenoid sinuses, and the anterior ethmoidal and posterior ethmoidal 
cells 0= normal, 1= partial opacification, 2= total opacification. Therefore, the 
maximum score per side was 12. Since asymptomatic patients may have mucosal 
changes in CT scans (Razi et al., 2021), only those patients with LM scores of four 
or more were included. Nasal endoscopy was not performed. 

Patients were recruited to the control group if they were aged ≥ 18 years, had 
experienced nasal congestion and deviated nasal septum (DS) was diagnosed based 
on anterior rhinoscopy, and no evidence of purulence or oedema in the middle 
meatus or polyps was observed. Again, nasal endoscopy was not performed. 

The exclusion criteria for both groups were pregnancy or lactation, smoking 
during the past six months, nasal polyps, prior paranasal surgery, any use of nasal 
sprays during the past 24 hours, acute upper respiratory tract infection during the 
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past two weeks, severe immunodeficiency or malignant disease treated in the 
previous five years. 

All patients were examined and recruited by a single ENT specialist (the author). 
After giving consent to participate, the patients completed the 22 item Sinonasal 
Outcome Test (SNOT-22) questionnaire. The test is validated in the Finnish 
language and has revealed that healthy controls have a mean score of 8.9 (Koskinen 
et al., 2021). Therefore, patients were included if they had a score of nine or more. 
No prior preparation, such as fasting and no exercise, were required. Information on 
the patient’s current medication, allergies, height, weight, and any drinking or eating 
during the past two hours was obtained during an interview. 

In total, 58 patients were invited to participate and two declined. Of the two 
patients who declined to participate, one had CRSsNP and the other had DS. In 
addition, two patients (one with CRSsNP and one with DS) were excluded because 
they had used nasal sprays within the past 24 hours. Thus, 54 patients were enrolled 
in the study. 

4.3 Samples 

4.3.1 Bacterial plates (I) 

Five bacteria species were analysed in vitro: S. pneumoniae, H. influenzae, M. catarrhalis, 
S. aureus and Pseudomonas aeruginosa (P. aeruginosa). FIMLAB (Tampere, Finland) 
laboratories provided the culture plates of the bacteria species. Standard biochemical 
methods and matrix-assisted laser desorption/ionization time-of-flight (VITEK® 
MS, bio-Mérieux, Marcy-l’Étoile, France) were used to identify the bacteria. Since H. 
influenzae only grows on chocolate agar, it was used as the growth medium for all the 
bacterial species to avoid a confounding effect from the medium. 

The plates were inserted to a specific chamber that was connected to an ENVI-
AMC™ device (Figure 3). The measurement sessions were initiated with a baseline 
measurement with plates containing tap water. Each bacterial plate was measured 
twice, producing two measurements per sample. After each culture plate, the device 
was rinsed with measuring tap water to control for carry-over contamination. 
Previous experience with the device has shown that two water measurements are 
usually enough for rinsing. In addition, the dispersion plot was visually assessed for 
contamination. If significant contamination was noted, water measurements were 
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repeated to rinse the system with water vapours until the dispersion plot had 
returned to baseline. The measurement cycle with two water measurements takes 
approximately 15 minutes. 

 

 

Figure 3.  Illustration of the DMS device. The bacterial plates were placed into the measurement 
chamber (1) from which the evaporated molecules were channelled to the analyser (2). (I) 
© Springer. Reproduced with permission. All rights reserved. 

A total of 107 bacterial plates comprising 24 samples of S. aureus, 22 samples of P. 
aeruginosa, 26 samples of S. pneumoniae, 21 samples of H. influenzae, and 14 samples of 
M. catarrhalis were measured. These resulted in 222 measurements (49 of S. aureus, 45 
of P. aeruginosa, 52 of S. pneumoniae, 46 of H. influenzae, and 30 of M. catarrhalis). One 
sample of S. aureus was measured only once, and two samples were measured three 
times. One sample of P. aeruginosa was measured three times. Two samples of H. 
influenzae and one sample of M. catarrhalis were measured four times. 

4.3.2 Samples from the maxillary sinuses (II)  

Samples from the maxillary sinuses were collected using maxillary sinus puncture 
and aspiration, which were conducted under local anaesthesia. An anaesthetic cream 
(Tapin cream, Orifarm Generics, Odense, Denmark) containing lidocaine 25 mg/g 
and prilocaine 25mg/g was applied into the inferior meatus. For vasoconstriction 



 

55 

and mucosal decongestion, a cotton-tipped aluminium swab containing 
adrenalin/epinephrine was placed into the inferior meatus for a few minutes. The 
puncture was performed through the inferior meatus with a 1.6 G needle, the tip of 
which was introduced close to the posterior wall of the maxillary sinus. Then, the 
patient was placed horizontally and, after 30 seconds, the maxillary sinus contents 
were aspirated with a 5 ml syringe. If no aspirates were obtained, two millilitres of 
0.9% sterile sodium chloride solution were applied into the maxillary sinus and 
aspiration was repeated. If no pus was found in the aspirate, the syringe was 
discarded.  

Approximately 0.5 to 1 ml of aspirate was then injected into an M40 Amies Agar 
Gel Transystem tube for bacterial culture. The remaining contents of the syringe 
were sealed with a cap, put in a Minigrip bag and stored in a fridge for later DMS 
analysis. Maximum storing time was set for 48 hours, but median storing time was 4 
hours. The syringes were transported for DMS analysis after storing. The time 
between transportation and analysis was between 15 and 40 minutes. The contents 
of the syringe were injected onto an empty agar plate and the plate placed into the 
specific chamber which was connected to the ENVI-AMC™ device (Figure 3). The 
measuring cycle was identical to that in study I. Each plate was measured twice. 
However, only one measurement was used in the data analysis.  

The bacterial culture was performed on blood agar, chocolate agar and fastidious 
anaerobic agar plates in aerobic and anaerobic conditions for 48 hours. Bacterial 
identification was performed according to standard procedures at the FIMLAB 
laboratories. The results of the bacterial cultures were reported semi-quantitatively 
(slight growth, moderate growth, and heavy growth). 

4.3.3 Nasal air (III, IV) 

Nasal air was aspirated using the suction pump SP 625 EC-LC-DU (Spiggle & Theis 
Medizintechnik GmbH, Overath, Germany) powered by AA-batteries. A metal 
Politzer nasal olive was inserted into the patient’s nostril and connected to the pump 
with a Teflon tube. Another Teflon tube was used to connect the pump to a 750 ml 
GaSampler Single-Patient Collection Bag (Quintron instrument Company Inc., 
Milwaukee, WI, USA), which is a metallised polyester bag. Small pieces of silicone 
were used to connect the tubes to the pump. 

To prevent contamination of the air from the pharynx, the soft palate must be 
closed. This can be achieved by the patient blowing against a resistance of at least 10 
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cm water as instructed by the ATS/ERS (American Thoracic Society; & European 
Respiratory Society, 2005). We chose a pressure of 15 centimetres water. 

When the pump is started, ambient air is entrained through the patient’s open 
nostril and through the nasal cavity to the contralateral nostril connected with the 
nasal olive. The seated patient inhales to total lung capacity and then begins to blow 
against resistance. At this point, the air in the nasal cavity and the Teflon tubes still 
contains air from the pharynx. The total length of the Teflon tubes is approximately 
500 mm with inner and outer diameters of 6 mm and 8 mm, respectively. Thus, the 
total volume of the tubes is 14 ml. It has been estimated that the volume of each 
nasal cavity is approximately 16 ml (Valtonen et al., 2020), resulting in a total volume 
in the nasal cavities and Teflon tubes of approximately 46 ml. The pump can induce 
a flow of 192 ml/s (11.5 l/min). Therefore, to clear contamination, the suction 
continues for 1 to 2 seconds while the soft palate is closed. Thereafter, the valve to 
the bag is opened.  

Less than 10 seconds is required to fill the bag. Then, the valve is closed; the 
patient stops blowing, and the pump is shut down. Each patient used two Teflon 
tubes which were disposed of after the samples were taken. 

In study III, each volunteer gave one nasal air sample on two separate days within 
a period of one week, resulting in 20 nasal air samples. In study IV, only one bag per 
patient was collected. No adverse effects were noted. 

On each day, we first collected a bag of room air for background VOC 
comparison. The pump was cleaned between patients by aspirating with room air 
for two minutes. Each bag was analysed with a DMS device within six hours. 
According to the manufacturer of the bags, this is the maximum time the bags can 
be stored. 

The collection bag was attached to the DMS device with Teflon tubes with small 
pieces of silicone at the ends. A pneumatic ejector VR 05 (Schmalz, Glatten, 
Germany) produced a vacuum for sampling from the bag. Air flow from the sample 
bag was adjusted to 400 ml per minute with the Gilibrator-2 system (Sensidyne, St. 
Petersburg, FL, USA). Cleaned, pressurized air was also used, and it diluted the 
sample air to a ratio of 10:1. Thus, total volumetric flow was 4.4 litres per minute. 
The DMS device can handle an air flow of 3 litres per minute, so approximately 1.4 
litres per minute were lost. The set-up for the collection of nasal air (without the 
plastic bottle) and attachment of the full bag to the DMS device is shown in Figure 
4. 
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Figure 4.  Above: the pump used to aspirate nasal air. A collection bag at the end of Teflon tube and 
a nasal olive at the end of another Teflon tube. Below: the DMS device attached to the full 
collection bag and ready for a measurement. (IV) 

Each measurement lasted about 30 seconds, and each collection bag was measured 
three times while connected to the device. Thus, the analysis of one bag lasted 
approximately 1.5 minutes. However, as the volume of the bags were 750 ml and the 
flow rate was 400 ml per minute, the analysis cycle would require a volume of 1.2 
litres. The flow from the sample was not, however, a constant 400 ml per minute 
because of the potential resistance in the bags when the volume of air was 
diminishing. Between measurements of the bags, we measured the room air aspirated 
through the DMS device to evaluate possible contamination. 

In study III, we took 60 measurements of nasal air samples and 43 measurements 
of room air aspirated through the DMS device (termed: reference air). We also took 
15 measurements of five bags of room air (termed: room air). However, one 
measurement was accidentally deleted from the device history leaving 14 
measurements. In study IV, 54 patients were included, providing 54 samples of nasal 
air. 
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4.4 Ethical aspects  

All patients and volunteers provided written informed consent. The study was 
approved by the Ethics Committee of Tampere University Hospital (R16103) and 
conducted according to medical device trial regulations and approved by the 
National Supervisory Authority for Welfare and Health. All procedures performed 
in the study were in accordance with the 1964 Helsinki declaration and its later 
amendments or comparable ethical standards.  

The patients with ARS (II) were exposed to mild and transient discomfort due to 
the maxillary puncture and aspiration. A local anaesthetic was used to alleviate pain 
before the puncture. The primary aim of the maxillary puncture was to alleviate 
symptoms and obtain a bacterial sample. All the punctures were performed by ear, 
nose and throat specialists or residents who are familiar with the procedure. 
Furthermore, the Finnish guidelines consider the procedure as a treatment option if 
the patent has severe symptoms or other treatment fails. Therefore, the procedure is 
considered to be ethical. 

The aspiration of nasal air (III, IV) was achieved by using a pump that was 
operated by AA-batteries. The aspiration did not cause pain or discomfort as it only 
produces transnasal airflow. A Politzer nasal olive was used to seal the nostril and 
prevent tissues being sucked into the tubes, which could have potentially caused pain 
or epistaxis. The risks for using the pump were, therefore, considered to be rare and 
minor. Furthermore, as the aspiration was well-tolerated, the procedure was 
considered ethical. 

4.5 Analysis of DMS data 

4.5.1 Software 

The DMS data analysis was done with MATLAB (The MathWorks, Natick, MA, 
USA) in studies I, II and IV. In study III, the statistical software R in the RStudio 
environment (Boston, MA, USA) was used. 
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4.5.2 Pre-processing (III, IV) 

In DMS, pre-processing may include row-wise normalisation which is used to 
emphasize the signals in the high-separation areas on the dispersion plot (Figure 5). 
Each row of the dispersion plot was scaled between 0 and 1, using the minimum and 
maximum value of the row. Noise threshold was defined by an analysis of a 
histogram of all the intensity data in which a gaussian-shaped peak can be observed 
at the smallest end, which is normally distributed background noise. The values 
below this were substituted with the global minimum of the spectra before the row-
wise normalisation. 

 

Figure 5.  Averaged nasal measurements (negative side) before and after pre-processing and 
normalisation. In the row-normalisation, ‘fragment-like’ peaks on the high separation 
voltage (USV) values are the result of the normalisation technique. pA: picoamperes; UCV: 
compensation voltage; V: volt. (III) © IOP Publishing. Reproduced with permission.  All 
rights reserved. 

4.5.3 Repeatability verification (III, IV) 

To make reliable inference from the DMS measurements, the measurements must 
be repeatable. Thus, we need a method to compare the similarities and differences 
between the measurements. DMS produces high-dimensional multivariate data in 
which the combined dimensionality of positive and negative ions is d = 12 000. As 
a result, the comparison of the measurements is not simple, and traditional univariate 
testing approaches cannot be used. Therefore, to estimate the repeatability and inter-
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class similarity of the DMS measurements, several difference and similarity measures 
were used. 

The resemblance of the measurements can be measured with distance metrics, 
similarity metrics or dissimilarity measures. The distance between two identical 
measurements is 0, and this distance increases as the measurements are further away 
from each other in their feature space. The distance metric used in studies III and 
IV was Euclidean distance, which is the distance between two p-dimensional data 
vectors x and y defined as follows: 

 

d(x, y) = √∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)²
𝑝𝑝
𝑖𝑖=1     (2) 

In theory, the upper limit for the distance does not exist. In contrast, similarity 
between two observations is 1 for identical observations and 0 for completely 
different observations. To have a comparable “similarity” metric for distance, a 
concept of dissimilarity (1-similarity) can be used. In study III, dissimilarity versions 
of cosine similarity as well as Pearson’s and Spearman’s rank correlation were used. 

4.5.4 Spectral archetypes of samples (III, IV) 

Spectral archetypes were created by averaging each measurement of the same sample 
type into a single spectrum. The effectiveness of this approach was tested by 
comparing the within-group distances and dissimilarities to the between-group 
dissimilarities. In study III, the nasal air sample data were used to form the 
archetypes. To avoid bias, a separate archetype was calculated for the nasal air sample 
data of each measurement day. The distance was then calculated between the 
archetypes and each individual measurement from the other days. The distributions 
of the within-group and the between-group distances and dissimilarities were then 
compared. 

In study III, the statistical significance of the findings was tested with 
Kolmogorov-Smirnov test, which is a general non-parametric statistical test without 
any distribution assumptions. In study IV, the same test was used, but the statistical 
significance was determined by the Bonferroni-corrected p-value for each feature 
(p< 0.05/6000). 
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4.5.5 Classification 

LDA 

LDA is a commonly used supervised pattern recognition method for dimensionality 
reduction (Berrueta et al., 2007). The method attempts to find vectors that maximise 
the distance between samples from different classes and, at the same time, minimise 
the distance of samples of the same classes. As the DMS data have high 
dimensionality (d = 12 000), regularisation is required. This can be performed using 
a shrinkage LDA (sLDA), which has previously been successfully applied in the 
classification of DMS data (Kontunen et al., 2018; Sutinen et al., 2019). 

kNN 

kNN is a widely used supervised method for performing patter recognition (Berrueta 
et al., 2007). The method compares a given test sample with similar training samples. 
The samples are stored in n-dimensional space. When an unknown sample (e.g., the 
test sample) is given, the classifier searches the k sample or samples that are closest 
to it. The test sample is assigned to the most common class of neighbours. The 
integer k can have any positive value. For example, when k=1, the test sample is 
classified as the training sample that is closest to it. When k=3, the three closest 
neighbours are searched for. If the closest are two A’s and one B, the test sample is 
then classified as A. Usually, the choice of the value of the integer k is empirical and 
small, such as 3 to 5 (Berrueta et al., 2007). When k becomes larger, the 
computational time becomes longer (Han et al., 2011). 

PCA 

PCA is an unsupervised pattern recognition method. Both LDA and PCA are 
dimensionality reduction methods, but in PCA the data are linearly transformed into 
a feature space that maximises the variance observed in the data, whereas LDA finds 
a vector that gives maximum separation between classes (Berrueta et al., 2007).  
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Validation 

To estimate the classifier’s ability to classify unknown samples, internal validation 
was performed with different CV methods, such as LOOCV, leave-one-day-out CV 
or 10-fold CV, depending on the data (II, III, IV). Furthermore, external validation 
with training and test set was performed in study I. 

Reporting the performance of DMS 

The diagnostic accuracy of DMS was evaluated by calculating the correct 
classification rate of the sample types in all the studies. Furthermore, in tests where 
the result was a binary outcome (positive or negative), the diagnostic parameters used 
were sensitivity, specificity, PPV and NPV (Table 3). Here, sensitivity means the 
proportion of true positives in the group of patients with the disease. Specificity is 
the proportion of true negatives in the group of patients without the disease. PPV is 
calculated by dividing the number of true positives by the total number of patients 
with positive results. It indicates the probability of having the disease if the test is 
positive. NPV is calculated by dividing the number of true negatives with the total 
number of patients with negative results. This indicates the probability that the 
patient does not have the disease if the test result is negative. The Wilson score 
interval method was used to calculate 95% confidence intervals (CI). 

 

Table 3.  Interpretation of the confusion matrix with binary outcomes.  

 Predicted class 

+ - 

 
True class 

+ True positives (TP) False negatives (FN) 

- False positives (FP) True negatives (TN) 

Sensitivity = TP/(TP+FN); specificity = TN/(TN+FP); positive predictive value  
(PPV) = TP/(TP+FP); negative predictive value (NPV) = TN/(TN+FN). 
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4.6 Comparison of baseline characteristics of the patents (IV) 

IBM® SPSS® Statistics for Windows version 27 (Armonk, NY, USA) was used to 
compare the baseline characteristics of the patents (age, gender, body mass index 
(BMI), SNOT-22 scores) to evaluate whether there were any statistical differences 
between the two groups (Table 4). The normal distribution of the data was evaluated 
by visual inspection of the histograms and by Shapiro-Wilk test. For normally 
distributed variables (age), the comparison was made with independent samples t test 
and for non-normally distributed variables (BMI, SNOT-22) with Mann-Whitney U 
test. Gender was compared with Fisher’s exact test. 

 

Table 4.  Demographics of the patients and comparison of the groups. (IV) 

  CRSsNP (n = 27)  DS (n = 27)  p-values  

Gender male/female  13/14  22/5  0.021*  

Age, median (range)  51 (24-71)  43 (23-69)  0.140**  

BMI, median (range)  28.4 (22.0-39.1)  27.1 (19-39.8)  0.169***  

SNOT-22 score, median (range)  38 (9-57)  29 (9-67)  0.345***  

Lund-Mackay score, median (range)  8 (4-19)      

BMI: body mass index; CRSsNP: chronic rhinosinusitis without nasal polyps; DS: deviated septum; SNOT-22: 
Sino-Nasal Outcome Test 

* Fisher’s exact test  

** Independent samples t test  

*** Mann-Whitney U test 
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5 RESULTS 

5.1 Detection of bacterial plates containing rhinosinusitis bacteria 
(I) 

Examples of the dispersion plots of the bacterial samples are shown in Figure 6. 
After LOOCV, LDA classified 77% of the bacteria correctly, whereas respective 
results for kNN, when k=1, were 84% (Table 5). When k was 2 and 3, the correct 
classification rate was 93% and 76%, respectively. After the train-test sets, 
classification with LDA and kNN (k=1) were 77% and 79%, respectively. 

 

Table 5.  Confusion matrix of all the bacterial samples using k-nearest neighbour when k=1. (I) 
© Springer. Reproduced with permission. All rights reserved. 

 

Predicted class 

Staphylococcus 
aureus 

Pseudomonas 
aeruginosa 

Streptococcus 
pneumoniae 

Haemophilus 
influenzae 

Moraxella 
catarrhalis 

True class      

Staphylococcus 
aureus 49 0 0 0 0 

Pseudomonas 
aeruginosa 1 33 0 1 10 

Streptococcus 
pneumoniae 2 0 43 5 2 

Haemophilus 
influenzae 0 0 3 43 0 

Moraxella 
catarrhalis 0 8 3 0 19 
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To evaluate the performance of the eNose to discriminate only ARS bacteria, P. 
aeruginosa was excluded. After LOOCV, LDA and kNN (k=1) had an accuracy of 
84% and 92%, respectively. In the train-test sets, the accuracies with LDA and kNN 
(k=1) were 83% and 85%, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Examples of dispersion plots for positive ion spectrums. (I) © Springer. Reproduced with 
permission. All rights reserved. 

5.2 Detection of bacterial positive and negative samples acquired 
from ARS patients (II) 

A total of 26 samples from 15 patients were obtained. Nine (9/26, 35%) of the 
samples were culture positive and 17 (17/26, 65%) were culture negative. Positive 
cultures demonstrated five S. pneumoniae, one H. influenzae, one Streptococcus milleri, one 
Citrobacter koseri and one Aggregatibacter aphrophilus. All the samples except one had 
heavy bacterial growth. In one sample, the bacterial growth was slight (S. pneumoniae). 
This patient had the same bacteria with heavy growth in the contralateral sinus, and 
the slight bacterial growth was also considered positive. 
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Prior antibiotics use was noted in nine patients (9/15, 60%). Four of these 
patients had positive bacterial culture in at least one sinus. Six patients had not used 
antibiotics and three of them (50%) had positive bacterial culture. 

After LOOCV, the accuracy of kNN (k=2) was 85% (CI, 66-94%) sensitivity of 
67% (35-88%), specificity of 94% (73-99%), positive predictive value of 86% (49-
97%) and negative predictive value of 84% (62-94%). The confusion matrix is 
presented in Table 6. LDA produced accuracy of 73% (54-86%), sensitivity of 56% 
(27-81%), specificity of 82% (59-94%), positive predictive value of 63% (31-86%) 
and negative predictive value of 78% (55-91%). 

 

Table 6.  Confusion matrix presenting the results of k-nearest neighbour when k=2.  
 

Predicted class 

Bacteria + Bacteria - 

Bacterial culture + 6 (TP) 3 (FN) 

Bacterial culture - 1 (FP) 16 (TN) 

FN: false negative; FP: false positive; TN: true negative; TP: true positive. (II) 

5.3 Analysis of nasal air from healthy volunteers (III) 

PCA decomposition demonstrates the inherent clustering of the data (Figure 7). The 
nasal air measurements are distinguishable from the reference and room air 
measurements, while the measurement day also affects the measurements (Figures 
7a and 7b). The three nasal air measurements from the same bag are usually observed 
close together, but no participant-wise clustering is observed if the measurements of 
both bags from the same participant are studied (Figure 7c). 
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Figure 7.  The two first principal components (PC) of (a) the entire dataset grouped by measurement 
type, (b) the entire dataset grouped by measurement day and (c) the nasal air samples 
grouped by participants. (III) © IOP Publishing. Reproduced with permission. All rights 
reserved. 

The sample types were 100% correctly classified with the sLDA after LOOCV, 
demonstrating perfect linear separability. The discrimination rate between ten study 
participants was 13.3% after 2-fold CV and, as such, does not significantly differ 
from the guess level of 10%. No significant clustering by participant is present 
(Figure 7c). 

Figure 8 shows the boxplots of the distance and the dissimilarity metrics between 
the data groups and the nasal air sample archetype. In all cases, the within-group 
distances and dissimilarities were notably lower than the corresponding between-
group metrics. The nasal air sample archetype demonstrated statistically significance 
on a 95% significance level compared to the differences between the distributions 
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of the other types. Furthermore, comparison of all sample types showed statistically 
significance (p < 0.05) in Kolmogorov-Smirnov test. 

 

 

Figure 8.  The boxplots of the cross-validated distance and dissimilarity metrics between the data 
groups and the nasal air sample archetype. The dissimilarity metrics all have the same scale 
on the vertical axis, whereas the Euclidean distance has its own, non-comparable scale. (III) 
© IOP Publishing. Reproduced with permission. All rights reserved. 

Figure 9 shows the absolute humidity of the diluted sample types. Nasal air is more 
humid than reference and room air, but the humidity also varies greatly between 
measurement days. Furthermore, the averaged dispersion plots of each sample type 
demonstrate differences in the reactant ion peak that resembles water (Figure 10). 
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Figure 9.  Absolute humidity in diluted air showing variance between samples and measurement days. 
(III) © IOP Publishing. Reproduced with permission. All rights reserved. 
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Figure 10.  The averaged dispersion plots of each sample type after pre-processing with row-
normalisation technique. Reactant ion peak (a water peak) that resembles water in the 
spectrum is shown with a white arrow. USV: separation voltage; UCV: compensation voltage; 
V: volt. (III) © IOP Publishing. Reproduced with permission. All rights reserved. 

5.4 Distinguishing patients with CRSsNP from patients with DS 
(IV) 

Both groups consisted of 27 patients. The CRSsNP group consisted of 13 males and 
14 females, and the DS group consisted of 22 males and five females. Only gender 
was statistically significantly different (p = 0.021) between groups, but other variables 
(age, BMI and SNOT-22 score) were not (p > 0.05) (Table 4). The methodology 
revealed no problems, since the nasal air samples were differentiated from the room 
air samples with a classification accuracy of 94% (95% CI, 91-96).  

After row-normalisation and 10-fold CV, DMS distinguished CRSsNP from DS 
patients with an accuracy of 69% (95% CI, 55-79), a sensitivity of 67% (48-81%) and 
specificity of 70% (52-84%). The confusion matrix is presented in Table 7. 
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Table 7.  A confusion matrix presenting the classification results of differential mobility 
spectrometry between chronic rhinosinusitis without nasal polyps (CRSsNP) and 
deviated septum (DS). (IV) 

 Predicted class 

CRSsNP DS 

True class   

CRSsNP 18 9 

DS 8 19 

 
 
The archetype spectra for CRSsNP and DS are shown in Figure 11. The visual 
comparison of these reveal differences, especially with negative ions. Furthermore, 
the differences are also visible with Bonferroni-corrected statistical differences in the 
spectra (Figure 12). 

Subgroup analysis was performed between patients with CRSsNP who had an 
LM score ≥ 10 (n = 11) and randomly chosen patients with DS (n = 11). The 
accuracy, sensitivity and specificity of DMS were 82% (52-95%), 82% (52-95%) and 
82% (52-95%), respectively.  

As the groups only differed significantly (p < 0.05) by gender (Table 4), we 
performed a classification between genders. The accuracy of the DMS was 46%, 
showing that classification is not biased due to gender. 
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Figure 11.  The row-wise normalised archetype spectra for chronic rhinosinusitis without nasal polyps 
(CRSsNP) and deviated septum (DS). USV: separation voltage; UCV: compensation voltage; 
V: volt. (IV) 
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Figure 12.  Features with Bonferroni-corrected statistical differences between the classes highlighted 
with grey for the complete dataset (54 patients) and with white for the subset of patients with 
a Lund–Mackay score of more than 10. Neg: negative; Pos: positive; USV: separation 
voltage; UCV: compensation voltage; V: volt. 
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6 DISCUSSION 

The diagnosis of ABRS is a challenging task. The bacterial prevalence in ARS is 
estimated to be around 16-61% (Autio, Tapiainen, et al., 2015; Ebell et al., 2019; S. 
Smith et al., 2015; Thunberg et al., 2013). The definite diagnosis of ABRS requires 
positive bacterial culture either acquired endoscopically from the middle meatus or 
by maxillary sinus puncture and aspiration. However, endoscopes are not available 
in primary care and maxillary sinus puncture is a rarely performed procedure. As a 
result, antibiotics are prescribed in over 80% of ARS (Benninger et al., 2016; Pouwels 
et al., 2018; Sharma et al., 2017) which predisposes to the side effects of antibiotics 
and increases antibiotic resistance. 

The symptom-based diagnostics of CRS has high sensitivity (89%) but very low 
specificity (12%) (Bhattacharyya & Lee, 2010). CBCT or CT can confirm the 
diagnosis of CRS in patients, which fulfils the symptom criteria, but the lack of 
availability and exposure to ionizing radiation limits their use. Furthermore, the 
imaging findings do not correlate with the severity of the patient’s symptoms 
(Gregurić et al., 2017). 

The results of the studies of this dissertation clearly demonstrate the feasibility 
and potential of DMS for use in the diagnostics of ARS and CRS. First, DMS could 
distinguish common rhinosinusitis bacteria in vitro with good accuracy. Moreover, 
the accuracy improved further when only the most common ARS bacteria were 
examined. Second, DMS distinguished bacterial positive and negative pus samples 
acquired by maxillary puncture and aspiration from patients suffering from ARS with 
a sensitivity of 67% and specificity of 94%. This supports the hypothesis that VOCs 
released from the pus could be potentially diagnosed using methods other than 
traditional ones, such as collecting breath air. Third, the collection of nasal air by 
aspiration into a breath collecting bag and a subsequent analysis with DMS works 
faultlessly. Nasal air was distinguished from room air perfectly. Fourth, patients with 
CRSsNP were distinguished from patients with DS by an analysis of aspirated nasal 
air with a sensitivity of 67% and specificity of 70%. Furthermore, the rates improved 
when patients with CRSsNP who had more severe inflammatory disease were 
compared to randomly chosen patients with DS. 
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6.1 Identifying bacteria in vitro with DMS (I) 

In previous in vitro studies, eNoses have detected bacterial species. Studies with the 
Cyranose 320 have shown that single and polymicrobial species of swab samples 
taken from diabetic foot wounds can be distinguished from each other, common 
upper respiratory pathogens, such as S. aureus, S. pneumoniae and H. influenzae, can be 
discriminated and biofilm versus non-biofilm-producing bacteria can be identified 
(Lai et al., 2002; Thaler et al., 2008; Yusuf et al., 2015). The IMS prototype has been 
shown to detect common wound infection pathogens and to distinguish methicillin-
sensitive S. aureus and methicillin-resistant S. aureus from each other (Saviauk et al., 
2018). Our results (I) are in line with previous studies, as bacterial samples were 
distinguished from each other with an accuracy of between 77% and 85%. However, 
almost all the samples were measured twice, which may have affected the validation 
and given overoptimistic results. Table 5 shows that there are false estimates between 
P. aeruginosa and M. catarrhalis and between H. influenzae and S. pneumoniae, which is 
also seen in dispersion plots (Figure 5). This demonstrates that potentially there are 
similarities in the gas-phase of the bacteria. A larger sample size would probably 
increase the discrimination power. However, to reveal the specific compounds of 
the VOCs released by the bacteria, GC-MS should be employed. 

6.2 The diagnostics of ARS with DMS (II) 

The discrimination of pathogens becomes more cumbersome when the samples are 
acquired ex vivo, as the immunological reaction to infection most likely affects the 
VOCs emitted from the sample. Furthermore, exogenous VOCs may also play a 
role. Study II demonstrated that bacterial positive and negative pus samples were 
identified with an accuracy of 85%, a sensitivity of 67% and specificity of 94% with 
kNN (k=2) after LOOCV. Only one previous study has examined the diagnostics 
of ABRS with an eNose. In that study, the study population consisted of patients 
who were suspected of having ABRS based on clinical criteria. Exhaled breath was 
collected via nasal continuous positive airway pressure mask and analysed with the 
Cyranose 320. The eNose could distinguish patient with ABRS from healthy controls 
with an accuracy of 72% after LOOCV, which is in line with our results (Thaler & 
Hanson, 2006). However, our study consisted of only ill patients, which is a similar 
situation to daily outpatient practice, where there is a need to identify ABRS to avoid 
unnecessary antibiotic treatment. The results of study II are limited by the sample 
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size, especially the bacterial positive samples. Therefore, the dispersion plots of 
specific bacteria species could not be assessed. Furthermore, only monomicrobial 
findings were noted. The polymicrobial setting could alter the VOC profile, although 
in an in vitro setting this was not the case (Yusuf et al., 2015).  

It would also have been valuable to compare the measurement signature of the 
pus samples containing the same bacteria species to those of the bacterial isolates 
measured in study I. This would have given better insight as to whether the VOCs 
that originated from the pus would have altered the measurement signature of 
specific bacteria. Unfortunately, there were not enough samples to do this. 

6.3 Utilisation of nasal air with DMS (III, IV) 

Although exhaled breath is commonly used as a sample material, only a few studies 
have used nasal air (E. I. Mohamed et al., 2003; Steppert, Steppert, Bollinger, et al., 
2021; Steppert, Steppert, Sterlacci, et al., 2021; Thaler & Hanson, 2006) In the study 
by Mohamed et al. (2003), samples were collected from patients with CRS and 
controls. Nasal out-breath was collected into sterile plastic sacks by exhalation 
through the nose. Before collection of the breath, the patients had a tampon of sterile 
cotton held in their nasal middle meatus to stimulate nasal secretions. Then, the 
tampon was introduced to the plastic sack. Thus, the analysed air was not pure nasal 
air. After LOOCV, the accuracy of the eNose was 60%. Steppert et al. (2021a) 
aspirated nasal air for 10 seconds during normal respiration from patients with 
confirmed influenza-A infection. The results were compared to nasal air samples 
from persons with negative test results and to healthy volunteers. The aspiration was 
performed online in such a way that the patient’s nostril was connected to the IMS 
coupled with a multicapillary column via foam cuffed oxygen catheter, filter and 
perfusor line. The device could detect influenza-A-infected patients with 100% 
sensitivity and specificity. In their other study, the exhaled air of patients with SARS-
CoV-2 infection was examined using the same device, and the samples were 
distinguished from patients with influenza-A infection and healthy controls with an 
accuracy of 97% after cross-validation (Steppert, Steppert, Sterlacci, et al., 2021). 

In studies III and IV, aspirated nasal air was collected with a method similar to 
the validated method for the measurement of nasal NO (American Thoracic Society; 
& European Respiratory Society, 2005). Blowing against resistance during aspiration 
allows the soft palate to be closed. This prevents air flow from the oral cavity which 
in turn, could affect the VOC profile. Ammonia, ethanol and hydrogen cyanide levels 
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are significantly less in nose-exhaled breath than in mouth-exhaled breath (D. Smith 
et al., 2008; T. Wang et al., 2008). These compounds could alter the measurement 
signature, as IMS is sensitive to them (Myles et al., 2006; Seto et al., 2019; Sielemann 
et al., 2001). Thus, the analysis of nasal air potentially reduces these confounding 
factors. Furthermore, aspiration of nasal air is not influenced by the portion of breath 
sampling. For instance, alveolar and mixed expiratory samples produce different 
VOCs and expiratory flow rate, and breath hold influences the eNose pattern (Bikov 
et al., 2014; Miekisch et al., 2008). 

The nasal air was collected with a system built for the study purpose. Even though 
the aspiration was painless and no complications such as epistaxis were noted, the 
method is susceptible to confounding effects. Room air consists of exogenous 
VOCs. To reduce their impact, an inspiratory VOC filter and rinsing of the patient’s 
lungs with filtered air for 2 to 5 minutes is possible (Dragonieri et al., 2012; van de 
Goor et al., 2020). With the method we used, this would have demanded the use of 
a filter attached to the patient’s nostril. Moreover, it is not known how long it would 
take to rinse a patient’s nasal cavity. The volume in the nasal cavity is estimated to 
be 32 ml (Valtonen et al., 2020). Therefore, a few seconds aspiration with our pump 
would be enough. However, the clean air supply can affect the measurement 
signature, as it might reduce the concentrations of likely endogenous VOCs and 
increase exogenous VOCs (Gilio et al., 2020). In our method, the pump and the 
tubes can release contaminant VOCs. To diminish the impact of this, Teflon tubes 
were used. Teflon is inert as a material and has been shown to be suitable for use 
with the eNose (Karjalainen et al., 2020). The pump worked with batteries, and a 
reduction in the flow of the air was observed as they were running out. This could 
affect the measurement signature of the eNose in a similar way as the values of NO 
are affected (American Thoracic Society; & European Respiratory Society, 2005). 
Furthermore, the closure of the soft palate was not verified by measuring nasal 
carbon dioxide. Nevertheless, blowing against resistance of a minimum of 10 water 
centimetres is adequate (American Thoracic Society; & European Respiratory 
Society, 2005). 

In studies III and IV, the system for aspiration of the nasal air and subsequent 
analysis with DMS was evaluated. Nasal air was discriminated from room air with 
100% (III) and 94% (IV) accuracy. The results demonstrate that the measurement 
protocol works and the day-to-day variation or baseline drift of DMS is not evident 
to a significant degree. Nasal air contains endogenous VOCs and the concentration 
of some VOCs in the room air might change during the air flow through the nasal 
cavity, which might explain the separability of nasal air and other sample types. The 
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collection of the nasal air and room air took place in a hospital environment, but the 
DMS device was located elsewhere, which might explain why the reference was 
different. Most importantly, the air is saturated to between 90 and 100% in the nasal 
cavity (Lindemann et al., 2003; Rouadi et al., 1999). Thus, the nasal air is more humid 
than other samples, but the humidity varies between measurement days (Figure 8). 
The reaction ion peak that resembles water in the spectrum shows differences 
between sample types. However, there is significant variation caused by other 
compounds in other areas of the spectrum as well (Figure 9). 

6.4 The diagnostics of CRSsNP with DMS (IV) 

The results of study IV are comparable to previous studies (Broza et al., 2018; E. I. 
Mohamed et al., 2003). Mohamed et al. (2003) used an eNose developed for research 
purposes and examined five chronic rhinosinusitis patients and five healthy controls. 
The accuracy of the eNose was 60% after LOOCV. In a recent study, an eNose 
based on an array of nanomaterials-based sensors was used to analyse the exhaled 
breath of CRS patients and healthy controls. The results were externally validated 
and revealed that patients with CRSsNP were distinguished from controls with a 
sensitivity of 80% and specificity of 89% (Broza et al., 2018).  

In these previous studies (Broza et al., 2018; E. I. Mohamed et al., 2003), in 
contrast to study IV, patients with CRS were compared to healthy controls, which 
might have overestimated the diagnostic accuracy (Whiting et al., 2013). The control 
group in study IV consisted of patients with nasal symptoms due to anatomical 
factors rather than inflammatory ones, even though DS may predispose to chronic 
mucosal inflammation (Kumar et al., 2017) which could affect the measurement 
signature of DMS and influence the accuracy. Another confounding effect is the lack 
of CT examination in the patients with DS. Therefore, some of the patients with DS 
could have had mucosal inflammation in the paranasal sinuses. Anterior rhinoscopy 
was used to exclude nasal polyps in the patients with DS which, in some cases, can 
result in false negative findings. Furthermore, other paranasal diseases can alter the 
measurement signature. Allergic rhinitis, for instance, can affect the VOC profile in 
eNose analysis compared to healthy volunteers (Saidi et al., 2015). In addition, only 
CRSsNP was included in study IV. Different endotypes and phenotypes of CRS 
could demonstrate a different VOC profile. 

Interestingly, subgroup analysis revealed that LM scores of ten or more were 
more effectively distinguished from patients with DS. A more severe inflammatory 
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disease may lead to a more prominent measurement signature. The sample size was, 
however, limited. Another method to measure disease severity is the symptoms-
based questionnaire SNOT-22. SNOT-22 scores revealed differences, although not 
statistically significant, between the CRSsNP and DS groups, as median values were 
38 and 29, respectively. However, both values fall into the category of moderate 
disease (Toma & Hopkins, 2016). As the SNOT-22 scores do not correlate with LM 
scores (Gregurić et al., 2017; Hopkins et al., 2007; Valtonen et al., 2018), it remains 
unclear whether symptom severity affects the VOC profile. 

6.5 Data-analysis (I-IV) 

Pre-processing was made with the row-wise normalisation (III, IV) which highlights 
the higher parts of the DMS dispersion matrices, where the peak separation is the 
highest, but the signal is the weakest. This method seems to improve the 
classification accuracy.  

Different supervised and unsupervised machine learning methods, such as LDA, 
kNN and PCA, were used. The methods are simple to understand and use and they 
are usually computationally inexpensive. Further, the distance metrics used (III, IV) 
provided visual information on the separability of the classes (Figure 7). As 
previously shown, there is a significant number of techniques for dimensionality 
reduction and classification, but none of the techniques are superior in breath 
analysis to eNose technology (Leopold et al., 2015). 

To assess the true performance of the classifier, validation should be performed. 
In all the studies, CV was performed to reduce overoptimistic results. However, the 
generalisability of the model should be evaluated by external validation (Marco, 
2014). Unfortunately, due to the limited sample size, external validation was only 
performed in study I. This has been the case in many other studies too, as external 
validation is performed in only 10-15% of them (Farraia et al., 2019; Leopold et al., 
2015).  

6.6 Advantages and disadvantages of DMS 

The optimal eNose would perform at room temperature, be sensitive, portable, have 
a short response and recovery time, and be reliable (minimal baseline drift) and 
robust against environmental effects such as humidity. It should also require only 
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minimum servicing. In addition, it should not be dependent on pressurised air, as 
the quality of the air might vary and affect the standardisation. The possibility of 
online sampling would be preferable, as there would not be a need for sampling bags. 
Compared to GC-MS, eNoses do not require complex sample preparation and 
trained personnel to operate them. 

Many eNoses are based on different sensor types, each having their own strengths 
and weaknesses. The most commonly used sensors are MOS sensors and (Baldini et 
al., 2020; Farraia et al., 2019). The former is relatively sensitive and are cheap and 
simple to produce. However, they usually operate at high temperatures, leading to 
high power consumption. Furthermore, MOS sensors suffer from poor long-term 
stability. CP sensors have higher sensitivity but have a short lifetime and suffer from 
baseline drift and sensitivity to humidity (Arshak et al., 2004; Nazemi et al., 2019; 
Zohora et al., 2013). 

In contrast, DMS provides real-time analysis at room temperature. Further, it has 
much higher sensitivity (< particles per billion) than MOS sensors or CP sensors. In 
the studies of this dissertation, offline measurements were used. However, online 
measurements are also possible. In studies I and II, water vapour was measured to 
rinse the device to reduce contamination after each sample measurement. During 
the study period, no significant baseline drift was noted within the devices, proving 
the reliability of DMS. A disadvantage of DMS is sensitivity to humidity. Thus, 
environmental factors such as different periods of the year could affect the 
measurement of the same compound. Sampling nasal air, however, saturates the 
sample to 90-100% (Lindemann et al., 2003; Rouadi et al., 1999) which, most likely, 
reduces the impact of environmental humidity. Another disadvantage of DMS is that 
the DMS devices used in the studies of this dissertation were not portable, although 
they were compact in size. 

6.7 Challenges with the analysis of VOCs 

Although eNoses can analyse the VOCs emitted from different sample types (e.g., 
blood, urine, faeces and pus), breath is probably the most studied sample type 
(Farraia et al., 2019). However, many issues are related to “breathprinting” and are 
discussed thoroughly in several articles (Hanna et al., 2019; Issitt et al., 2022; Jia et 
al., 2019; Lourenço & Turner, 2014; Miekisch et al., 2012; C. Turner, 2016). 

The sampling method has an impact on the VOC profile. As previously discussed 
in chapter 6.3, room air, clean air supply, sampling device and nasal/oral breath 
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sampling may interfere with the VOC profile. Sample storage is another potential 
issue. In studies III and IV, the nasal air samples were stored in breath collecting 
bags made of metallized polyester. The advantages of bags are that they are cheap in 
price and moderate in durability. However, VOCs adsorb from the bags over time, 
which affects the storing time (Mochalski et al., 2009; Pet’Ka et al., 2000). The bags 
in studies III and IV were analysed within 6 hours as instructed by the manufacturer. 
The re-use of the collection bags is possible with cleaning protocols, which would 
reduce costs (Beauchamp et al., 2008; Mochalski et al., 2009). However, cleaning may 
still fail to remove some compounds (McGarvey & Shorten, 2000) and re-use of the 
bags may lead to micro-damage affecting their inertness. Online sampling would 
bypass these potential problems with sample collection, and it is also technically 
possible with DMS. 

The patient’s physiologic condition has an effect on VOCs. For example, 
pregnancy can change the VOC profiles in eNose analysis (Bikov et al., 2011). 
Furthermore, a patient’s diet may influence VOCs (Krilaviciute et al., 2019). 
Sometimes, fasting before sample collection is advocated (Dragonieri et al., 2016; 
Fens et al., 2011; Gruber et al., 2014), but the role of fasting or diet on VOCs is 
unclear (Jia et al., 2019). Other possible covariates include age, gender, smoking 
status and comorbid diseases. It is unclear, however, which of them should be 
adjusted for breath analysis (Broza et al., 2018; X. Chen et al., 2017; Dragonieri et 
al., 2016; Filipiak et al., 2012; Kischkel et al., 2010; Tiele et al., 2019). In studies III 
and IV, potential confounders, such as smoking, a recent acute upper respiratory 
tract infection and malignant diseases, were excluded. As medication could affect the 
VOC profile, patients were advised to refrain from using their nasal sprays for a 
week prior to sample collection in study III. After completing study III, we estimated 
that a shorter period would probably be sufficient, and 24 hours was chosen for 
study IV. The impact of nasal sprays on the VOC profile is unknown, but nasal 
decongestants and corticosteroid sprays have been shown to decrease nasal NO 
(Chatkin et al., 1999; Dillon et al., 1996; Vural & Gungor, 2003). Furthermore, 
corticosteroid sprays have a prolonged effect on inflammation, and the time the 
sprays take to wear-off is unknown. 

6.8 Strengths and limitations 

The main strength of the studies in this dissertation is the adding of new information 
to the current literature concerning the diagnostics of ARS and CRS with gas-phase 
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mixture analysis. Moreover, these are prospective studies and the first ones 
concerning otorhinolaryngologic diseases and DMS technology. As there is some 
lack of standardisation in previous studies concerning breath air, further emphasis 
was placed on evaluating the analysis of nasal air using a method that resembles the 
validated method for the measurement of nasal NO (American Thoracic Society; & 
European Respiratory Society, 2005). An additional strength of the studies is the 
promoting of interdisciplinarity including medical, data and engineering science. 

The findings of these studies are limited due to the relatively small sample size 
which prevented external validation, with the exception of study I. External 
validation would have alleviated overfitting and demonstrated the generalisability of 
the results. As three different DMS devices were used, the data matrixes analysed 
with one DMS device cannot be compared with the data matrixes analysed with 
another. 

6.9 Future aspects 

The diagnostics of ARS and CRS is a challenging task using current methods. The 
implementation of an eNose to point-of-care use is intriguing, as it could provide a 
rapid, easy to perform and non-invasive way to diagnose diseases or perhaps, 
monitor therapeutic responses. The analysis of gas-phase mixtures is, however, 
highly complex. The literature covering eNose studies is heterogeneous with the use 
of different sensor technologies, diverse sampling procedures, and a wide scale of 
data analysis methods. There is, therefore, an urgent need for standardised methods. 
This is already being attempted, as instructions have been provided by the European 
Respiratory Society (Horváth et al., 2017). Databases, such as the Human 
Breathomics Database, provide information on the VOCs in breath and serve as 
resources for complimentary investigations (Kuo et al., 2020). 

Many eNose studies evaluate the performance of the eNose in a specific task with 
a specific population. Further validation studies testing the built classifier are rarely 
performed. Ideally, large cohort studies should be undertaken and the results of the 
eNose compared to a gold standard diagnostic test and externally validated in a 
different patient cohort. Only then could eNose technology be brought to a real-life 
clinical setting. 

DMS demonstrated its ability to analyse different sample types and to be used in 
further studies. Because the analysis of aspirated nasal air with an eNose is rarely 
studied, further emphasis on the use of the method in research studies concerning 
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rhinologic diseases is encouraged, as nasal air is simple to collect, non-invasive and 
may reduce confounding factors compared to exhaled breath. For example, different 
endotypes and phenotypes of CRS may emit a distinct VOC profile that could be 
recognized with DMS. 
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7 CONCLUSIONS 

1. DMS can discriminate common rhinosinusitis bacteria in vitro with very good 
accuracy. 

2. DMS was found to have very good accuracy to distinguish bacterial positive 
and negative pus samples acquired from ARS patients by maxillary sinus 
puncture and aspiration. 

3. The method for aspirating nasal air into a collection bag and subsequent 
analysis with DMS was found reliable. 

4. DMS can identify patients with CRSsNP from those patients with DS by 
analysing aspirated nasal air. The classification accuracy improved when 
inflammatory findings were more severe in patients with CRSsNP. 
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Abstract 

Acute rhinosinusitis (ARS) is a sudden, symptomatic inflammation of the nasal and paranasal 

mucosa. It is usually caused by respiratory virus infection, but bacteria complicate for a small 

number of ARS patients. The differential diagnostics between viral and bacterial pathogens is 

difficult and currently no rapid methodology exists, so antibiotics are overprescribed. The electronic 

nose (eNose) has shown the ability to detect diseases from gas mixtures. Differential mobility 

spectrometry (DMS) is a next-generation device that can separate ions based on their different 

mobility in high and low electric fields. Five common rhinosinusitis bacteria (S. pneumoniae, H. 

influenzae, M. catarrhalis, S. aureus, and P. aeruginosa) were analysed in vitro with DMS. 

Classification was done using linear discriminant analysis (LDA) and k-nearest neighbour (KNN). 

The results were validated using leave-one-out cross-validation and separate train and test sets. 

With the latter, 77% of the bacteria were classified correctly with LDA. The comparative figure 

with KNN was 79%. In one train-test set, P. aeruginosa was excluded and the four most common 

acute rhinosinusitis bacteria were analysed with LDA and KNN; the correct classification rate was 

83% and 85%, respectively. DMS has shown its potential in detecting rhinosinusitis bacteria in 

vitro. The applicability of DMS needs to be studied with rhinosinusitis patients.  
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Introduction 

Acute rhinosinusitis (ARS) is a sudden, symptomatic inflammation of the nasal and paranasal 

mucosa. It is usually caused by respiratory virus infection, but bacterial prevalence remains poorly 

defined. In two often-cited studies [1, 2], the bacterial prevalence was 0.5–2%, but according to a 

recent meta-analysis [3], the prevalence is likely higher. Autio et al. (2015) have found bacterial 

causes in 40% of cases [4]. In Finland (2016), 1.3% of all patient visits to daily outpatient practices 

are due to ARS [5]. In a study conducted in Asia, it was estimated that 6–10% of appointments with 

a doctor are due to ARS [6].  

Antibiotics are usually prescribed, even though their effect is limited in clinically diagnosed, 

uncomplicated ARS [7]. The most common bacteria in ARS are Streptococcus pneumoniae, 

Haemophilus influenzae, Moraxella catarrhalis, and Staphylococcus aureus [8]. One explanation for 

the poor antibiotic response is that only 40% of ARS are bacterial culture-positive [4]. Nasal 

endoscopy provides the possibility to take microbiological samples from the middle meatus, but 

equipment is only available to ear, nose, and throat (ENT) specialists. A maxillary sinus puncture and 

aspiration can be considered the gold standard in diagnosing bacterial ARS, but it seems that 

endoscopically directed middle meatal cultures correlate well with aspiration [9]. 

 

Since the early days of medicine, doctors have linked certain diseases to specific smells. During the 

last decades dogs’ ability to detect certain diseases by smelling have been studied [10]. Dogs use in 

clinical practice has pitfalls due to extensive training and their limited life-span. The odour emitted 

from our bodies consists of volatile organic compounds (VOCs) [11–13]. Endogenous VOCs are 

released as by-products of normal cell metabolism, but also directly by microbes or due to an 

inflammatory response to infection [11]. Certain VOCs can be specific biomarkers of diseases [13]. 

Most commonly, however, patterns of multiple VOCs perform better than isolated biomarkers [14]. 

The electronic nose (eNose) is a device that attempts to mimic mammalian olfactory sense. It 

comprises an array of nonselective chemical sensors, pre-processing electronics, and a computer that 

interprets sensor signals [15]. Different kinds of sensor arrays exist – for example, metal–oxide–

semiconducting field-effect transistors (MOSFET), conducting polymer sensors, and optical sensors 

[15]. The eNose can also be constructed with more than one type of sensor. VOCs interact with 

sensors and produce a so-called smell print. The chemical characteristics of VOCs determine the 

response pattern of the eNose, which can be measured. The eNose does not differentiate specific 

components of the smell print [16], and it therefore performs a qualitative rather than a quantitative 

analysis. 



Differential mobility spectrometry (DMS), although not an eNose in the strictest sense, provides 

analogous information from gas mixtures. The DMS is highly more sensitive and selective device 

compared to the classic eNose. Devices with voltage adjustable ion filters have an enhanced ability 

to analyse complex samples without precipitation. The principle of DMS is explained thoroughly in 

other publications [17, 18]. Analogously to commonly used electrophoresis, the device separates the 

molecular mixture to its components, creating a data matrix also known as a dispersion plot or a 

“chemical fingerprint” of the sample. The dispersion plot is usually represented as a heat map color-

scheme. The working principle of the method is illustrated in Figure 1. 

Several studies have shown the ability of the eNose to detect diseases from gaseous headspace – for 

example, differentiating prostatic cancer from benign prostatic hyperplasia [19] or diagnosing head 

and neck cancer [20], tuberculosis [21], and ventilator acquired pneumonia [22]. In a study by Thaler 

and Hanson (2006), the eNose was able to diagnose acute bacterial rhinosinusitis with a 72% 

probability [23].  

There is a need for a new, easy-to-use tool for diagnosing rhinosinusitis bacteria, and the eNose has 

strong potential in this application. In addition, DMS provides next-generation technology to the 

eNose field. Our aim was to study whether DMS could identify common acute (S. pneumoniae, H. 

influenzae, M. catarrhalis) and chronic (S. aureus, P. aeruginosa) rhinosinusitis bacteria in vitro. 

 

Materials and methods 

FIMLAB (Tampere, Finland) laboratories provided the cultures of all five bacteria species. The 

bacteria were identified using standard biochemical methods and matrix-assisted laser 

desorption/ionisation time-of-flight (VITEK® MS, bioMérieux, Marcy-l’Étoile, France). Since H. 

influenzae grows only on chocolate agar, it was used as the growth medium for all the bacterial species 

to avoid a confounding effect from the medium.  

The device, Figure 2, used in this study was an Envi-AMC (Environics Ltd, Mikkeli, Finland). It is 

based on DMS technology, utilising Americium 241Am as an ionisation source. Dried and activated 

charcoal- and molecular sieve (5Å)-filtered compressed air was used as a carrier gas. The device was 

connected to a cloud database (Olfactomics Ltd, Tampere, Finland) for the monitoring and logging 

of the data. Two individual devices were used in the study due to the sensor malfunction of the first 

device.  



The measurement sessions were initiated with a baseline measurement with tap water. Each bacterial 

plate was measured twice, producing two measurements per sample. The device must be rinsed with 

water after every culture plate to control for carry-over. Based on our previous studies with the device, 

two water measurements are usually enough for rinsing. Each measurement produces a dispersion 

plot which is presented in the graphical user interface of the device. The dispersion plot was visually 

assessed for contamination. If significant contamination was noted, water measurements were 

repeated to rinse the system with water vapours until the dispersion plot had returned to baseline. The 

measurement cycle with two water measurements takes approximately 15 minutes. The bacteria were 

measured in random order with each bacteria spread over multiple sessions in order to avoid bias 

from sensor drift. 

The analysis was made with Matlab (The MathWorks, Natick, MA, USA). Linear discriminant 

analysis (LDA) and k-nearest neighbour (KNN) methods were used to classify samples. To avoid 

overfitting, the results were cross-validated by using leave-one-out cross-validation (LOOCV) and 

separate train and test sets. In LOOCV, each sample was removed from the sample set and then 

classified with the data of the remaining samples. When using train and test sets, a randomly selected 

30% of the samples (test set) was removed from the sample set and then classified with the data of 

the remaining 70% (train set). This was repeated five times because of the randomisation element, 

and the mean classification rate of the five drives was used in the final results. 

A total of 107 samples were analysed. Of these samples, there were 24 samples of S. aureus, 22 

samples of P. aeruginosa, 26 samples of S. pneumoniae, 21 samples of H. influenzae, and 14 samples 

of M. catarrhalis. A total of 222 individual measurements were made (49 of S. aureus, 45 of P. 

aeruginosa, 52 of S. pneumoniae, 46 of H. influenzae, and 30 of M. catarrhalis). One sample of S. 

aureus was measured only once and two samples were measured three times. One sample of P. 

aeruginosa was measured three times. Two samples of H. influenzae were measured four times, as 

was one sample of M. catarrhalis.  

 

Results 

Using LOOCV, 77% of the bacteria were classified correctly with LDA. With KNN, when k=1, the 

classifications were 84% correct. When k was 2 and 3, the correct classification was 93% and 76%, 

respectively. 



Using separate train and test sets, the mean correct classification rate with LDA was 77%. With KNN, 

when k=1, the classification rate was 79.0%.  

We also wanted to see how well the eNose discriminates only the ARS bacteria, so P. aeruginosa 

samples were excluded from the data. In this scenario, with LOOCV, LDA classified 84% of the 

samples correctly, while KNN, when k=1, classified 92% of the samples correctly. With the train and 

test sets, LDA had a mean classification rate of 83%, and with KNN, when k=1, the classification 

rate was 85%. 

The performance of the KNN classifiers are presented as a so-called confusion matrix in Tables 1 

and 2. Examples of the dispersion plots of the bacterial samples are shown in Figure 3. 

 

Discussion 

Our results show that DMS is able to discriminate five different rhinosinusitis bacteria and the four 

most common ARS bacteria with a reasonably high accuracy. Since the microbiological cause of 

ARS is challenging and time-consuming to diagnose, these results lay the foundations for a new 

diagnostic approach. 

To our knowledge, there are few in vitro studies concerning the eNose and ENT bacteria [24, 25]. Lai 

et al. (2002) used Cyranose 320 (Cyrano Technologies, Pasadena, CA, USA) in their in vitro analysis 

of ten common upper respiratory bacteria, which included those tested in our study, but also others, 

such as Streptococcus Group A, Klebsiella species, and Proteus mirabilis. The eNose was able to 

distinguish three tested bacteria from control swabs. Lai et al. also tested discrimination ability across 

a variety of bacterial species, but in quite many cases, the eNose gave false results. Moreover, 

cross-validation was not used, giving overoptimistic results for the performance of the eNose [24]. 

Thaler et al. (2008) examined the ability of the Cyranose 320 to distinguish biofilm-producing 

Pseudomonas and Staphylococcus from non-biofilm-producing strains of the same species [25]. The 

samples were tested over 24 days along with control data saline to check the consistency of the sensor 

responses. Consistent responses were received for 22 days. Internal validation was performed using 

the leave-one-day-out method. Furthermore, they also divided the data into training and testing sets 

with success rates ranging from 72% to 100%, which are quite similar to ours. Although Thaler et 

al.’s sample size was larger (198 samples of each bacteria), our study tested five different bacteria 

species. The technology in Cyranose 320 relies on conducting-polymer sensors, which have lower 



sensitivity, specificity, and accuracy than DMS [26]. In addition, the conducting-polymer sensors 

suffer from irreversible contamination. 

Our analysis also used bacteria in vitro. There are a few limitations regarding the study method. First, 

we acquired bacterial plates from a laboratory, and there was variance in the duration of plate storage 

in the refrigerator before measurements. Some were measured on the same day and some after a few 

days. Analysing all species over multiple sessions minimised bias from this variation. It is not known 

if some or all of the bacteria on the plate had died before measurement. This could lead to a weaker 

smell print but, on the other hand, it is also possible that bacteriolysis releases molecules that actually 

enhance detection. In addition, there was unavoidable variance in the confluence of the bacteria on 

the agar plate, which could affect DMS performance. As seen from the confusion matrix presented in 

Table 1, the device distinguishes all S. aureus correctly, but there are false estimates between P. 

aerigunosa and M. catarrhalis and also between H. influenzae and S. pneumoniae, demonstrating that 

there are probably similarities in the gaseous headspace of these bacteria. We must also emphasise 

that the specific molecules detected by the eNose are unknown. Thus, the smell print might change 

when the sample is acquired from a patient because there are also other molecules affecting it, such 

as those produced by the host inflammatory response. Two preliminary clinical trials have been 

conducted concerning rhinosinusitis diagnostics with the eNose [23, 27]. Nasal out-breath was 

sampled in both studies. The correct results varied between 60% and 72% with a modest sample size 

and limited cross-validation.  

There are many types of eNose sensor, and they all have their strengths and weaknesses. For 

example, surface acoustic wave sensors benefit from their high sensitivity to a broad spectrum of 

VOCs and relatively low costs in biomedical applications, but they suffer from reproducibility 

issues [14]. Metal oxide-semiconductor sensors, on the other hand, are easier to reproduce but 

suffer from poor long-term stability. 

The eNose in this study is based on DMS technology [17], which has been studied in various medical 

applications [18], but to our knowledge there are no publications regarding bacteria affecting the ENT 

area. The advantages of DMS include its high sensitivity and its ability to work at room temperature. 

Device-to-device variation is also limited, as we demonstrated in our study by changing the sensor 

during the study period. Its disadvantage is its susceptibility to contamination, which requires the 

sensors to be rinsed with water vapours between measurements. 

The eNose produces multidimensional data, which requires pre-processing and classification to build 

a model. A variety of techniques for data analysis exists, but there is no consensus as to which one is 



best [28]. Therefore, depending on the sensor and application, different methods should be tested. A 

recent review [28] aimed to give an overview of the currently used dimension reduction, 

classification, and validation methods. Although cross-validation is considered crucial [19], a 

literature review regarding the investigation of exhaled breath and eNoses yielded 46 studies, with 

internal validation performed in 29 (63%) studies and external validation performed only in 7 (15%) 

studies. In our study, the optimal data analysis method gave correct results in 93% of cases. To 

minimise the risk of overfitting, we utilised the leave-one-out method for internal validation in all 

measurements. External validation with the train-test set, which is considered the most robust method 

of cross-validation [29], yielded a correct classification rate of 79%, which is still an excellent result 

considering the modest sample size. We therefore consider our methods of cross-validation adequate. 

At the moment, Gram staining and a bacterial culture are the gold standard for microbial identification 

from samples. They are cheap and easy to do but requires laboratory setting and staff.  For all the 

bacteria tested in our study, it usually takes one day to get the results in culture and approximately a 

day more for information about antibiotic sensitivity. 

DMS can analyse complex samples in real-time without prior sample preparation. For example, it can 

differentiate Clostridium difficile- positive stool samples from negative ones with high accuracy [30]. 

DMS has also shown ability to differentiate methicillin-resistant S. aureus from methicillin-sensitive 

S. aureus [31]. Its high sensitivity allows detection of compounds even in low concentration. Our 

device is easy to use and the actual measurements can be done by almost anyone after brief 

instructions. 

Although in this study we analysed bacterial plates, the same methodology can be applied to a clinical 

setting. Samples acquired from rhinosinusitis patients can be analysed with DMS easily. An empty 

agar plate can be covered with pus collected from the maxillary sinus or middle meatus and analysed 

in the same manner as we did with the bacterial plates. The results can be compared with the results 

presented in this study. Our device does not have data-processing software within itself. Therefore, it 

does not give an instant result which bacteria grows in a sample. Thus, it is not yet possible to use the 

device in a clinical practice. Technically, there is only need for an analysis software to be integrated 

to the device to have an instant result after measurement. The device has a clear potential for point-

of-care use since it is relatively compact in size, works in room temperature, utilizes ambient air as 

carrier gas and tap water for rinsing. Since DMS analyses bacterial headspace, it is also relatively 

easy to develop an analytical method for the analysis of exhaled nasal air, utilising, for example, 



existing methods for nasal nitric oxide measurement, analogous to the sampling used in exhaled 

breath studies [32]. 

Conclusion 

The diagnostics of bacterial ARS are uncertain, so there is a need for a new diagnostic tool. DMS has 

proven its potential in detecting rhinosinusitis bacteria in vitro. The positive results remained after 

rigorous cross-validation, indicating that the performance of DMS is realistic. Therefore, the device 

is most likely able to distinguish between unknown samples. More studies are needed on the clinical 

applications of DMS in rhinosinusitis patients. 
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Legend to the Figures: 

 

Figure 1. The working principle of DMS. DMS is analogous to electrophoresis (A) in which 
molecules are driven through the medium by an electrical current. The molecules in the medium cause 
drag that depends on the size and shape of the molecule. The electrical charge and mass also affect 
the speed of the molecule. Due to these factors, different molecules travel at different speeds. In DMS 
(B) molecules that evaporate from the sample are driven with a flow of air. They are given an electric 
charge by ionization, allowing discrimination of molecules according to their charge. The molecules 
then enter separation phase where they are exposed to intermittent high- and low electric fields. 
Ionized molecules move towards the oppositely charged plate at different speed in low and high 
fields, thus resulting in another dimension for separation. Analogously to electrophoresis, the 
collisions with medium also discriminate the molecules according to their size and shape. After 
separation, molecules collide with the detector, resulting in a signal. 

Figure 2. Illustration of the DMS device. The bacterial plates were placed into the measurement 
chamber (no 1) from which the evaporated molecules were channelled to the analyzer (no 2). 

Figure 3. Examples of dispersion plots for positive ion spectrums. 
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Abstract 

Over the last few decades, breath analysis using electronic nose technology has 

become a topic of intense research, as it is both non-invasive and painless, and is 

suitable for point-of-care use. To date, however, only a few studies have examined 

nasal air. As the air in the oral cavity and the lungs differs from the air in the nasal 

cavity, it is unknown whether aspirated nasal air could be exploited with electronic 

nose technology. Compared to traditional electronic noses, differential mobility 

spectrometry uses an alternating electrical field to discriminate the different 

molecules of gas mixtures, providing analogous information. This study reports the 

collection of nasal air by aspiration and the subsequent analysis of the collected air 

using a differential mobility spectrometer. We collected nasal air from ten volunteers 

into breath collecting bags and compared them to bags of room air and the air 

aspirated through the device. Distance and dissimilarity metrics between the sample 

types were calculated and statistical significance evaluated with Kolmogorov-

Smirnov test. After leave-one-day-out cross-validation, a shrinkage linear 

discriminant classifier was able to correctly classify 100% of the samples. The nasal 

air differed (p < 0.05) from the other sample types. The results show the feasibility of 

collecting nasal air by aspiration and subsequent analysis using differential mobility 

spectrometry, and thus increases the potential of the method to be used in disease 

detection studies. 

  



   
 

   
 

1. Introduction 

 

Volatile organic compounds (VOC) are potential biomarkers of diseases, and their 

use in disease diagnostics has become a fast-growing field of research [1, 2]. A 

sample of exhaled human breath usually contains between 200 and 300 VOCs [3, 4]. 

Moreover, the sampling of exhaled breath is a non-invasive, painless technique that 

has potential for point-of-care use.  

The gold standard method for VOC analysis is gas chromatography-mass 

spectrometry (GC-MS), which can identify individual compounds in breath samples. 

However, the method is expensive and requires experienced personnel to operate it. 

An additional drawback of mass spectrometry is that it often requires selective 

sampling, which limits the breadth of the molecules analyzed. In contrast to the GC-

MS sampling method, the electronic nose (eNose) analyzes VOCs qualitatively, 

typically using an array of sensors that deliver a measurement signature, which could 

represent the VOC pattern of a certain disease [2]. A pattern recognition algorithm is 

then taught to discriminate different VOC patterns, and thus potentially discriminate 

diseased patients from healthy ones. eNose devices are usually relatively compact 

and they can perform a sample analysis in minutes. Indeed, eNose technology has 

even been shown to outperform mass spectrometry.  

Differential ion mobility spectrometry (DMS) - also known as field asymmetric ion 

mobility spectrometry (FAIMS) - is a technique that uses an alternating electrical 

field to discriminate the different molecules of a sample. Although DMS is not based 

on sensor arrays, as is the case with traditional eNoses, it provides analogous 

information on gas-phase molecules. The operating principle of DMS makes it less 

prone to drifting and the batch-to-batch variation that has plagued many 

semiconductor sensor-based eNoses [5]. In DMS, however, the molecules of the 

sample need to be ionized. Although different ionization methods exist, not all 

molecules can be ionized using one specific method. Therefore, DMS is selective to a 



   
 

   
 

certain range of VOCs. Theoretical advantages of DMS over microscale FAIMS are 

the longer residence time and the higher number of oscillations, which improves the 

separation capacity of the system. A further theoretical advantage of DMS over drift 

and travelling waves is the ability to perform continuous analysis compared to the 

pulsed measurements of the other methods. The additional advantage of DMS and 

FAIMS is that the method provides information on the behavior of molecules in high 

and low fields [6]. 

Numerous studies have examined the application of eNose technology in disease 

diagnostics with encouraging results. Classic asthma, for example, has been 

distinguished from chronic obstructive pulmonary disease with a sensitivity of 91% 

and a specificity of 90% [7]. Further, an ion mobility spectrometry-based eNose was 

able to diagnose prostate cancer from urine with a sensitivity of 78% and a specificity 

of 67% [8]. Using DMS analysis of urine samples, malignant ovarian tumors were 

differentiated from healthy controls with a sensitivity of 91% and a specificity of 

63% [9]. As reported in a review by Farraia et al. [10], many published studies use 

exhaled breath as a sample material. We are, however, aware of only a few studies 

that have investigated the use of nasal air with an eNose. In these studies, patients 

exhaled through the nose, or the air was aspirated during normal respiration either 

into a breath-collecting bag or into an eNose [11-14]. Thus, air from the lungs and the 

pharynx could have affected the results since it is known that expiratory flow rate, 

breath hold and the fraction of breath analyzed can alter the measurement signature of 

the eNose [15, 16] and have a subsequent impact on the reproducibility of the 

measurements. 

To only examine nasal air, the sample should be collected using aspiration as 

described by the American Thoracic Society and the European Respiratory Society 

(ATS/ERS) in their guidelines for the measurement of nitric oxide (NO) [17]. The 

aim of this study is therefore to report the collection and subsequent analysis of nasal 

air using an electronic nose based on DMS technology. 



   
 

   
 

2. Materials and methods 

 

2.1 System for the aspiration of nasal air 

The device used for the aspiration of nasal air was a suction pump SP 625 EC-LC-

DU (Spiggle & Theis Medizintechnik GmbH, Germany) operated with AA-batteries. 

A metal Politzer nasal olive was inserted to the patient’s nostril and connected to the 

pump with a Teflon tube. Another Teflon tube was used to connect the pump to a 750 

ml GaSampler Single-Patient Collection Bag (Quintron Instrument Company Inc. 

USA), which is a metalized polyester bag. Small pieces of silicone were then used to 

connect the tubes to the pump.  

To prevent contamination of the air from the pharynx, the soft palate must be closed. 

Closure of the soft palate can be achieved by the patient blowing against a resistance 

of at least 10 cm H2O as instructed by ATS/ERS [17]. In our study, a pressure of 15 

cm H2O was chosen. This was simply performed by measuring 15 centimeters of tap 

water into a plastic bottle and then asking the patient to blow bubbles in the water. 

During the aspiration of nasal air, the blowing was supervised by a nurse. 

When the pump is started, ambient air is entrained through the patient’s open nostril 

and through the nasal cavity to the contralateral nostril connected with the nasal 

olive. The seated patient inhales to total lung capacity and then begins to blow against 

a resistance. At this point, the air in the nasal cavity and the Teflon tubes still 

contains air from the pharynx. The total length of the Teflon tubes is approximately 

500 mm with inner and outer diameters of 6 mm and 8 mm, respectively. Thus, the 

total volume of the tubes is 14 ml. It has been estimated that the volume of each nasal 

cavity is approximately 16 ml [18], resulting in a total volume in the nasal cavities 

and Teflon tubes of approximately 46 ml. The pump can induce a flow of 192 ml/s 

(11.52 l/min). Therefore, to clear contamination, the suction continues for 1 to 2 

seconds while the soft palate is closed before the valve to the bag is opened.  



   
 

   
 

It takes less than 10 seconds to fill the bag. Then, the valve is closed; the patient stops 

blowing, and the pump is shut down. Each participant used two Teflon tubes which 

were disposed of after taking the samples. 

2.2 DMS device 

The DMS device used in this study was the differential ion mobility spectrometer 

prototype Ionvision (Olfactomics Ltd, Finland). The DMS electrode was 20 mm in 

length, 8 mm in width, and the analytical gap was 0.25 mm. In DMS, the gas phase 

molecules are ionized by 4.9 kV soft x-ray. The ions travel in buffer gas in a channel 

formed by two electrodes, which create an oscillating electric field USV  perpendicular 

to the motion of the ions. At the end of the channel is a detector, which consists of a 

Faraday plate connected to a transimpedance amplifier. The electric field has high- 

and low-voltage phases that cause the ions to travel in a zig-zag motion. If the ions hit 

the electrodes, they lose their charge before reaching the ion detector. To counter this 

effect, a compensation voltage UCV is applied. At a certain electric field and 

compensation voltage value, certain ions reach the detector and generate a pA-range 

current signal that is detected. Scanning different electric fields and compensation 

voltages creates a measurement signature that can be presented as a dispersion 

matrix. 

In this study, the samples were scanned with 60 evenly spaced USV values, ranging 

from 200 V to 800 V, and 100 evenly spaced UCV values ranging from -1 V to 8 V. 

Thus, the resultant dispersion field was 800 V/mm – 3.2 kV/mm. The measurement 

was done simultaneously in positive and negative ion channels, resulting in data 

vectors of 12 000 dimensions per each measurement in total. The data matrices along 

with the measurement parameters are then saved as .json files by the DMS device. 

2.3 Test participants 

We recruited ten adult volunteers to the study. Exclusion criteria were as follows: 

pregnancy or lactation, smoking during past month, chronic rhinosinusitis, prior 



   
 

   
 

paranasal surgery, acute upper respiratory infection less than a week ago, any use of 

nasal sprays during the past week, lower respiratory tract disease, such as COPD or 

asthma, severe immunodeficiency, and any cancer diagnosed within the past five 

years. 

Of the ten participants, four were women and six were men. Mean age was 45 years 

(range 33 to 64). All participants were able to provide a sample after one attempt. No 

adverse effects were observed. 

 

2.4 Collection and analysis of the samples 

The samples were collected in the same room in the University Hospital to avoid any 

variation from environmental factors. Each participant provided one nasal air sample 

on two separate days, resulting in 20 nasal air samples. The collection of samples was 

completed in five days. Every day, we collected a bag of room air for background 

VOC comparison, resulting in five room air samples. The bags were connected to the 

pump with a Teflon tube and a silicone connector in the same manner as the nasal air 

sampling. However, the pump aspirated room air without having a nasal olive and 

Teflon tube attached to the inflow port. To remove any VOCs left by the previous 

participant, the pump was used to aspirate the room air for two minutes between 

subjects. Each bag was then transported to a separate location and analyzed with the 

DMS device within six hours, which is the maximum storing time according to the 

manufacturer of the collection bags.  

The collection bag was attached to the DMS device with Teflon tubes. Small pieces 

of silicone were used between the connections of the tubes. We used a pneumatic 

ejector VR 05 (Schmalz, Germany) to produce a vacuum for sampling from the bag. 

Air flow from the sample bag was adjusted to 400 ml per minute with the Gilibrator-2 

system (Sensidyne, FL, USA). Pressurized air was also used, and it was cleaned with 

activated carbon and 5Å molecular sieves. It diluted the sample air to a ratio of 10:1. 

Thus, total volumetric flow was 4.4 liters per minute. The DMS device can handle an 



   
 

   
 

air flow of 3 liters per minute, so approximately 1.4 liters per minute were lost. Each 

measurement lasted about 30 seconds, and each collection bag was measured three 

times while connected to the device. Therefore, the analysis of one bag lasted 

approximately 1.5 minutes. However, as the volume of the bags were 750 ml and the 

flow rate was 400 ml per minute, the analysis cycle would require a volume of 1.2 

liters. The flow from the sample was not, however, a constant 400 ml per minute 

because of the potential resistance in the bags when the volume of air was 

diminishing. 

Between measurements of the bags, we measured the room air aspirated through the 

DMS device. The measurement protocol is shown in figure 1. Of all the 

measurements, there were 60 nasal air sample measurements and 43 measurements of 

room air aspirated through the DMS device (termed: reference air). We also had 15 

measurements of five bags of room air (termed: room air). However, one 

measurement was accidentally deleted from the device history, leaving 14 

measurements. The day-wise numbers of measurements are presented in table 1. 



   
 

   
 

 

Figure 1. The measurement protocol of the air samples with the differential mobility 

spectrometry device 

 

 

Table 1. Number of each measurement type per day. 

 
Measurement 
day      

Sample 
type Day 1 Day 2 Day 3 Day 4 Day 5 

total n per 
sample type 

Nasal air 15 9 12 12 12 60 
Room air 3 2 3 3 3 14 

Reference 
air 9 7 8 8 11 43 
Total n 
per day 27 18 23 23 26  



   
 

   
 

2.5 Data analysis 

The data analysis was performed with a statistical software R [19] in RStudio 

environment [20]. Packages caret [21], sda [22] and lsa [23] were utilized.  

 

2.6 Data pre-processing 

The DMS data were pre-processed by row-wise normalization to emphasize the 

signals in the high-separation areas on the spectra (figure 2). Each row, 

corresponding to a fixed USV value, was scaled between 0 and 1 using the minimum 

and maximum value of the row. To avoid accidentally emphasizing background noise 

in the low intensity rows, all values below the pre-defined noise threshold were 

substituted with the global minimum of the spectra prior to the row-wise 

normalization. The noise threshold was defined by plotting the histogram of all the 

intensity data. When the histogram is visually inspected, a gaussian-shaped peak can 

be observed at the smallest end of the histogram. This is considered to be normally 

distributed background noise. The values below this visually chosen threshold were 

substituted with the threshold value. 

  



   
 

   
 

 
 

Figure 2. Averaged nasal measurements (negative side) before and after pre-

processing and normalization. In the row-normalization, “fragment-like” peaks on the 

high USV  values are the result of the normalization technique. 

pA: picoamperes 

 

2.7 Repeatability verification 

To make reliable inference from the DMS measurements, the measurements must be 

repeatable. Thus, we need a method to compare the similarities and differences 

between the measurements. In the case of high-dimensional multivariate data 

(dimensionality d = 12 000), comparison of the measurements is not simple, and 

traditional univariate testing approaches cannot be used. Therefore, to estimate the 

repeatability and inter-class similarity of the DMS measurements, several difference 

and similarity measures were used.  

 

The resemblance of the measurements can be measured with distance metrics, 

similarity metrics or dissimilarity measures. The distance between two identical 

measurements is 0, and this distance increases as the measurements are further away 



   
 

   
 

from each other in their feature space. The distance metric used in this study was 

Euclidean distance, which is the distance between two p-dimensional data vectors x 

and y, is defined as follows: 

d(x, y) = √∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)²
𝑝𝑝
𝑖𝑖=1         (1) 

   

In theory, the upper limit for the distance does not exist. In contrast, similarity 

between two observations is 1 for identical observations and 0 for completely 

different observations. To have a comparable “similarity” metric for distance, a 

concept of dissimilarity (1-similarity) can be used. In this study, dissimilarity 

versions of cosine similarity as well as Pearson’s and Spearman’s rank correlation 

were used. 

 

Our approach was to form an “archetype” for each sample type (nasal air, reference 

air, room air). In practice, an averaged dispersion plot of each data type was used for 

this (figure 3). In future studies, this kind of archetype could be used to calibrate the 

measurement device and the setup. The distance or similarity metric between the new 

measurements and the archetype can thus be calculated to see whether the new 

measurements are within the accepted distance/similarity interval. 

 

The effectiveness of this approach was tested by comparing the within-group 

distances and dissimilarities to the between-group dissimilarities. The nasal air 

sample data were used to form the archetypes. To avoid bias, a separate archetype 

was calculated for the nasal air sample data of each measurement day, and the 

distance was then calculated between the archetypes and each individual 

measurement from the other days. The distributions of the within-group and the 

between-group distances and dissimilarities were then compared. 

 



   
 

   
 

The statistical significance of the findings was tested with Kolmogorov-Smirnov test, 

which is a general non-parametric statistical test without any distribution 

assumptions. 

 

2.8 Principal component analysis 

Principal component analysis (PCA) is a dimensionality reduction method, where the 

data are linearly transformed into a feature space that maximizes the variance 

observed in the data [24]. The first two principal components of the dataset are 

visualized to illustrate how the data are naturally clustered. 

 

2.9 Classification 

Different classification approaches were utilized to find out whether the different 

measurement clusters were distinguishable from each other. A commonly used way 

to estimate a classifier’s generalization ability to unseen data is cross-validation 

(CV). In CV, the dataset is divided into k mutually exclusive subsets, and each subset 

is left out as an independent test set. The rest of the subsets are used to form the 

model. The overall performance can then be estimated from the combined test results 

of the subsets. If the measurements are independent, the subsets (folds) can be formed 

by random split (k-fold CV), or each instance can even form a subset of its own (in 

which case it is called leave-one-out CV, LOOCV). In our case, however, the 

measurements are not independent: the measurement order, the measurement day and 

the participant all compromise the independence. Thus, CV was performed by 

dividing the data into day-wise or participant-wise folds. 

 

Linear discriminant analysis (LDA) is a classification method, where the classes are 

separated by hyperplanes maximizing the class separation. Due to the high 

dimensionality of the data (d = 12 000), regularization is required. The regularized 

version of LDA is shrinkage LDA (sLDA), which has previously been applied 

successfully to classify DMS data [25, 26], and was used in this study, too. 



   
 

   
 

 
 

Figure 3. The averaged dispersion plots of each sample type after pre-processing with 

row-normalization technique. Reactant ion peak (a water peak) that resembles water 

in the spectrum is shown with a white arrow. 

 
 
 
 
 
  



   
 

   
 

3. Results 
 
PCA decomposition creates insight into the inherent clustering of the data (figure 4). 

The plots show that the nasal air measurements are distinguishable from the reference 

and room air measurements, while the measurement day also affects the 

measurements (figure 4a and 4b). In the nasal air data (figure 4c), it seems that even 

though the three nasal air measurements from the same bag are usually observed 

close together, there is no participant-wise clustering if the measurements of both 

bags of the same participant are studied.  

 

The leave-one-day-out cross-validation results of the sLDA classifier for the sample 

types are shown in table 2. Each model was able to correctly classify 100% of the 

out-of-sample data. This means that the data were perfectly linearly separable.  

 

Discrimination between study participants with sLDA was cross-validated by a 2-fold 

setup, where the first fold consisted of the first sample bags of each participant, and 

the second fold contained the latter measurement bags. The discrimination rate was 

13.3% and, as such, does not significantly differ from the guess level of 10%. Visual 

assessment on the PCA plot (figure 4c) does not reveal significant clustering by a 

participant. 

 

The boxplots of the distance and the dissimilarity metrics between the data groups 

and the nasal air sample archetype are shown in figure 5. The within-group distances 

and dissimilarities were notably lower than the corresponding between-group metrics 

in all cases. The differences between the distributions of the archetype class and the 

other types were statistically significant on a 95% significance level in all cases. 

Kolmogorov-Smirnov test showed statistically significance (p < 0.05) between all 

sample types.  



   
 

   
 

 
 
Figure 4. Two first principal components of a) the entire dataset, grouped by the 

measurement type, b) the entire dataset, grouped by the measurement day and c) the 

nasal air samples grouped by participants. 

 

 

 

Table 2. Day-wise cross-validation results of the sample type classification with a 

shrinkage linear discriminant analysis model.  

 True class 

Nasal air Room air Reference air 

 
Predicted 

class 

Nasal air 60 0 0 

Room air 0 14 0 

Reference air 0 0 43 
  



   
 

   
 

 
Figure 5. The boxplots of the cross-validated distance and dissimilarity metrics 

between the data groups and the nasal air sample archetype. The dissimilarity metrics 

all have the same scale on the vertical axis, whereas the Euclidean distance has its 

own, non-comparable scale.  

  



   
 

   
 

The absolute humidity of the diluted sample types is shown in figure 6. Nasal air is 

more humid than reference and room air but no larger than variance of the humidity 

between measurement days. This is also illustrated by the visual intensity of a 

reaction ion peak in figure 3. 

 

 

Figure 6. Absolute humidity in diluted air showing variance between samples and 

measurement days. 

  



   
 

   
 

4. Discussion 

 

In this study, we evaluated a method to collect and analyze nasal air that resembles 

the ATS/ERS guidelines for the measurement of nasal NO. Data analysis showed that 

nasal air, room air and reference air were clearly separable and established reference 

intervals for measurements from healthy participants. As the participants were not 

distinguishable from each other, there was no clustering of the data based on 

individual characteristics but only by sample type. 

As we examined only healthy individuals, we do not know whether the analysis of 

nasal air can distinguish patients with conditions from healthy ones. To our 

knowledge, only a few studies have examined nasal air analysis in the diagnostics of 

diseases with eNoses [11-14]. Mohamed et al. [11] collected nasal outbreath into 

sterile plastic sacks from five chronic rhinosinusitis patients and five controls. 

Patients inhaled through the mouth and exhaled through the nose to fill the sack. In 

addition, the plastic sack contained a tampon that was first held in the middle meatus 

of the patient's nose to stimulate mucosal secretions. The contents of the sack were 

then analyzed using an eNose developed for research purposes (LibraNose, 

University of Rome Tor Vergata and Technobiochip) that utilizes quartz crystal 

microbalances covered with metalloporphyrins. The eNose had a sensitivity and 

specificity of 60% after leave-one-out cross-validation. Thus, the results did not differ 

much from the guess level of 50%. In the other study, breath samples from patients 

with acute rhinosinusitis symptoms and controls were obtained using a modified 

nasal CPAP mask that was connected to an eNose based on conducting polymer 

sensors. After leave-one-out cross-validation, the eNose could diagnose bacterial 

rhinosinusitis with an accuracy of 72% [12]. Both the aforementioned studies 

examined exhaled nasal air coming directly from the lungs, the pharynx and the oral 

cavity, which may have caused confusing results.  However, Steppert et al. had more 

promising results in two recent pilot studies investigating nasal air with an IMS 



   
 

   
 

coupled with a multicapillary column [13, 14]. In their first study, nasal air was 

aspirated during normal respiration. Samples were collected from individuals with 

confirmed influenza-A infection and then compared to persons with negative test 

results and to healthy volunteers. Influenza-A-infected patients were distinguished 

with perfect sensitivity and specificity [13]. Furthermore, the second study showed 

that an analysis of exhaled nasal air from patients with SARS-CoV-2 infection could 

be distinguished from patients with influenza-A infection and healthy controls with 

accuracy of 97% after cross-validation [14].  

We consider it crucial to investigate aspirated nasal air in studies concerning 

rhinologic diseases to exclude confounding factors as much as possible. Guidelines 

suggest the application of aspiration in the measurement of nasal NO [17], which is 

also applicable for nasal air analysis. This method excludes sample contamination 

with air originating from the lungs, the pharynx or the oral cavity, as it could affect 

the VOC profile. For instance, Smith et al. [27] examined ammonia levels in breath 

air and found that levels are significantly less in nose-exhaled breath than mouth-

exhaled breath. The same applies for ethanol and hydrogen cyanide [28]. Because ion 

mobility spectrometry is sensitive for these compounds, they could cause significant 

bias if left unchecked [29-31]. Therefore, an analysis of nasal air could reduce 

contamination by endogenous VOCs that originate in the oral cavity. In exhaled 

breath sampling, VOCs depend on which portion of breath is analyzed. Alveolar 

samples, for example, show different VOCs than mixed expiratory samples [15]. 

Also, expiratory flow rate and breath hold influence the eNose pattern [16]. 

Aspiration of the nasal air does not suffer from these problems. However, one should 

note the potential confounding factors of aspiration. First, we did not measure nasal 

CO2 , which, when remaining low, would verify the closure of the soft palate. 

Nevertheless, blowing against resistance of a minimum of 10 cm H2O is approved to 

be adequate [17]. Second, the flow of the air was not measured, and it could be 

affected by nasal aerodynamics. As the batteries of the pump were running out, a 



   
 

   
 

reduction in the flow of the air was observed. Measurements of nasal NO suggest a 

targeted airflow, otherwise the values of NO are affected [17]. Similarly, the signal 

patterns of the eNose could be altered. 

Many patient-related factors can affect the breath analysis regardless of whether the 

sample is collected through the mouth or the nose. For example, the consumption of 

certain foods can affect VOCs [32]. Some studies even advocate fasting before 

sample collection [7, 33, 34], but the role of fasting or diet on VOCs is unclear [35]. 

Moreover, we are unaware of any previous studies that have compared the effects of 

diet on the nasal and oral sampling of air. Other possible covariates that alter VOCs 

include age, gender, smoking status, and comorbid diseases. However, controversy 

exists as to which of these covariates should be adjusted for breath analysis [4, 34, 

36-39]. Also, medication, such as nasal sprays, could affect the VOC profile. Indeed, 

nasal decongestants and corticosteroid sprays have been shown to decrease nasal NO 

[40-42]. In our study, we advised the volunteers to refrain from using their nasal 

sprays for a week prior to sample collection, but a shorter period would probably 

have been sufficient. However, corticosteroid sprays have a prolonged effect on 

inflammation, and the time the sprays take to wear-off is unknown. 

Room air is a source of exogenous VOCs that might interfere with the results. A 

typical way to exclude the impact of room air is to use an inspiratory VOC filter and 

to rinse the patient's lungs with filtered air [43]. In our study, this would have 

demanded the use of a filter attached to the patient's open nostril. To our knowledge, 

it is not known how much time would be enough to rinse the nasal cavity with 

purified air. As we used an estimate of 32 ml for the volume of both nasal cavities 

[18], we expect that a few seconds of aspiration would replace the room air in the 

nasal cavity with purified air. Nevertheless, one should note that use of a clean air 

supply might be an additional confounding factor since it might reduce 

concentrations of likely endogenous VOCs and increase exogenous [44]. 

Furthermore, breath collection devices can release contaminant VOCs [45], which 



   
 

   
 

also applies to our pump. Therefore, if one would want to eliminate its effect, an 

airtight container should be used. The container has the sampling bag inside and two 

airtight ports. One port connects to a pump outside the container and the other to a 

bag to supply sample air from the patient via a tube. When the pump is turned on, the 

air in the container is drawn out, which produces a differential pressure, and air is 

then drawn into the bag via the port from the patient's nose. This method would not, 

however, allow cleaning of the nasal cavity from air of the oral cavity while the 

patient is blowing against resistance at the beginning of nasal air aspiration. In 

addition to the pump, the tubes are also a potential source of contamination. In the 

present study, we used Teflon tubes which were disposed of after the test. Teflon is a 

suitable material due to it being inert and is suitable for use with the eNose [46]. 

Teflon is, however, quite rigid and requires more adjustment with the pump 

compared to silicone.   

It should be borne in mind that in the present study air samples were stored in the 

collection bags. Previous studies have shown that VOCs adsorb from bags over time, 

which affects the storing time [47, 48]. Therefore, we analyzed all samples as quickly 

as possible and within at least 6 hours, as instructed by the manufacturer of the bags. 

Furthermore, we did not re-use the collection bags, although with cleaning protocols 

it would have been possible and would have reduced costs [48, 49]. However, 

cleaning may still fail to remove some compounds [50]. During the analysis of the 

bags with the DMS device, the flow from the sample was set to 400 ml per minute, 

but the resistance in the bags during emptying varied and affected the flow rate. 

Therefore, clean air was most likely present in different volumes in the three 

measurements of the one bag. This did not, however, seem to have a significant effect 

since the PCA composition shows that the measurements are usually close to each 

other. 

Since some environmental factors, such as temperature, humidity and air quality, 

cannot always be controlled in a clinical setup, they can be expected to affect the 



   
 

   
 

DMS measurements in some way. The DMS is sensitive to humidity and therefore 

measurements of the same compound in different humidity levels might produce 

different results. However, the air in the nasal cavity is saturated to between 90% and 

100% [51, 52]. Therefore, changes in the humidity of room air supposedly does not 

significantly affect the measurements of nasal air. The measurement device itself can 

also produce dynamically changing baseline noise to the measurements due to system 

stabilization. The changes in the baseline can be compensated by using various 

normalization methods. The row-wise normalization used in this study highlights the 

higher parts of the DMS dispersion matrices, where the peak separation is the highest 

but the signal is the weakest. With this method, the sample types became perfectly 

linearly separable. 

 

A potential reason for the separability of nasal air from the reference and room air is 

that nasal air contains endogenous VOCs and the concentration of some VOCs of the 

room air might change during the air flow through the nasal cavity. Most importantly, 

the air is humidified in the nasal cavity during aspiration to the collection bag. As 

seen from the figure 6, nasal air is more humid than other samples but the humidity 

also varies greatly between measurement days. Although the reaction ion peak that 

resembles water in the spectrum differs between different sample types, there is 

significant variation caused by other compounds in other areas of the spectrum as 

well (figure 3). Because the measurement device was located in a different location 

compared to the collection of the nasal air and room air samples (hospital 

environment), the VOCs in the reference air were different, which may explain the 

differences in the box plots. Although we recognize that the strength of our study is 

limited by the small sample size, the study still manages to achieve good, unbiased 

results despite this limitation.  

 

The data analysis also had possible bias factors. The most obvious bias factor results 

from the nasal air sample bags, each of which were measured three times on the same 



   
 

   
 

day. They are expected to be highly similar to each other, and this is also supported 

by the PCA transformation of the nasal air data, where the measurements from the 

same bag are usually observed close together. Furthermore, the measurement order of 

the different samples (figure 1) was always the same and could therefore cause bias 

and affect the distances and classification results. Another factor is the measurement 

day. The measurement conditions during a measurement session are similar between 

measurements, which is why measurements from the same session tend to cluster 

together. Thus, to avoid bag-wise and day-wise bias, the cross-validation was 

performed by leaving each day as a test set at a time. However, since the nasal air of 

each participant was measured twice on separate days, each test day contained data 

from the same participants that were also present in the training data. Even though the 

participant-wise measurements did not form participant-wise clusters in the visual 

inspection of the PCA, this is still a possible bias factor in the sLDA classification. 

However, since the measurement types did not differ significantly between days, this 

is unlikely to be a great disadvantage. 

 

The distance comparisons show that the distance and dissimilarity metrics, especially 

Euclidean distance where the relative differences between the archetype group and 

the other groups are most prominent, could be used to study the repeatability of the 

DMS data and in device calibration. The absolute values of the Euclidean distances 

cannot be directly compared to the dissimilarities since the scales differ. However, as 

Euclidean distance is widely used in different fields and it is intuitively simple to 

understand, we recommend its use. Moreover, all the presented metrics are 

computationally cheap to evaluate. 

Breath analysis for disease detection is an exciting and promising field of research. 

Although it is important to find disease-specific biomarkers using, e.g., mass 

spectrometry, the qualitative analysis of breath based on pattern recognition better 

suits fast and cheap point-of-care use. As there is a lack of standardization in breath 



   
 

   
 

sampling, we evaluated a method that is similar to the validated method for the 

measurement of nasal NO to diminish confounding factors. We believe that this kind 

of approach is suitable for use in the diagnostics of rhinologic diseases, such as acute 

and chronic rhinosinusitis, allergic rhinitis and sinonasal cancers. 

  



   
 

   
 

 

5. Conclusion 

Although numerous studies on exhaled breath analysis exist, this is the first study to 

examine the eNose analysis of aspirated nasal air with soft velum closed. The study 

shows that the concept of collecting nasal air into a breath collecting bag by 

aspiration and the subsequent analysis of the nasal air using DMS works well. Indeed, 

DMS distinguishes sample types perfectly but the difference in the humidity of the 

samples might contribute to the results. We believe that the analysis of aspirated 

nasal air with DMS brings more potential for the use of the method in disease 

detection studies. 
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ABSTRACT
Background: The diagnosis of chronic rhinosinusitis (CRS) is a complicated procedure. An electronic
nose (eNose) is a novel method that detects disease from gas-phase mixtures, such as human breath.
Aims/Objectives: To determine whether an eNose based on differential mobility spectrometry (DMS)
can detect chronic rhinosinusitis without nasal polyps (CRSsNP) by analyzing aspirated nasal air.
Materials and methods: Adult patients with CRSsNP were examined. The control group consisted of
patients with septal deviation. Nasal air was aspirated into a collection bag and analyzed with DMS.
The DMS data were classified using regularized linear discriminant analysis (LDA) models with 10-fold
cross-validation.
Results: The accuracy of the DMS to distinguish CRSsNP from patients with septal deviation was 69%.
Sensitivity and specificity were 67 and 70%, respectively. Bonferroni-corrected statistical differences
were clearly noted. When a subgroup with more severe inflammatory disease was compared to con-
trols, the classification accuracy increased to 82%.
Conclusions: The results of this feasibility study demonstrate that CRSsNP can potentially be differenti-
ated distinguished from patients with similar nasal symptoms by analyzing the aspirated nasal air
using DMS. Further research is warranted to evaluate the ability of this novel method in the differen-
tial diagnostics of CRS.
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Introduction

The diagnosis of chronic rhinosinusitis (CRS) is a compli-
cated procedure that is based on patient history and clinical
findings. It is therefore difficult to estimate the true preva-
lence of CRS. In Europe, a prevalence of 11% was obtained
in a symptom-based questionnaire study [1]. Symptoms
alone, however, tend to overestimate the prevalence and are
therefore not sufficient for the diagnosis of CRS [2]. The
endoscopic visualization of purulence or mucosal inflamma-
tion in the middle meatus or the presence of polyps
improves the specificity of the symptom criteria. Computed
tomography (CT) is the gold standard in the diagnostics of
CRS and is recommended for symptomatic, endoscopy-
negative patients [3]. New innovative and non-invasive
methods are, however, needed to help identify patients
with CRS.

The analysis of human breath is an interesting field of
research. The measurement of exhaled nitric oxide (NO),
for example, can be used in the diagnostics of asthma. In
addition to specific molecules, the non-targeted analysis of
gas-phase compounds can also be used in disease

diagnostics. The electronic nose (eNose) attempts to mimic
mammalian olfaction. The device consists of an array of gas
sensors combined with pattern recognition software and
performs a qualitative analysis of gas-phase mixtures. The
result is a measurement signature of the volatile organic
compounds (VOCs) contained in the sample, which could
represent the VOC pattern of a certain disease. Thus, differ-
ent diseases could potentially be differentiated by comparing
their VOC patterns and, as a result, eNose technology has
gained interest in research. In many previous studies,
exhaled breath has been used as a sample material [4].
Furthermore, studies have shown that a ‘breathomics’-based
approach can be used to diagnose and even determine the
phenotype of asthma [5]. To date, only a few studies have
examined the diagnostics of rhinosinusitis using an eNose.
However, the accuracy reported in these studies has varied
between 60 and 85% [6–8].

Although differential mobility spectrometry (DMS) is not
an eNose in the strictest sense, it provides comparable infor-
mation on the samples. In DMS, ionized molecules are sepa-
rated from each other using an alternating electrical field.
An in vitro study revealed that DMS can distinguish five
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common rhinosinusitis bacteria from each other with an
accuracy of 79% [9].

The aim of this feasibility study was to investigate
whether patients with chronic rhinosinusitis without nasal
polyps (CRSsNP) could be distinguished from patients with
nasal symptoms due to deviated septum (DS) by analyzing
the aspirated nasal air of these patients using DMS.

Materials and methods

Participants

In this prospective study, we consecutively recruited eligible
patients into two groups: the CRSsNP group and the control
group.

The following inclusion criteria were used for the
CRSsNP group: age� 18 years, symptoms meeting European
Position Paper on Rhinosinusitis and Nasal Polyps criteria
for CRSsNP [2], and paranasal mucosal changes visible in
cone beam tomography or multislice CT. As incidental
mucosal changes are possible in CT scans, Lund–Mackay
(LM) scores were calculated and only those patients with
LM scores of four or more were included. Nasal endoscopy
was not performed.

Patients were recruited to the control group if they were
aged� 18 years, had experienced nasal congestion, and DS
was diagnosed based on anterior rhinoscopy, but no evi-
dence of purulence or polyps was observed. Again, nasal
endoscopy was not performed.

The exclusion criteria for both groups were pregnancy or
lactation, smoking during the past month, nasal polyps,
prior paranasal surgery, acute upper respiratory tract infec-
tion during the past two weeks, severe immunodeficiency,
or malignant disease treated in the previous five years.

All patients were examined and recruited by a single
ENT specialist. After giving written informed consent to
participate, patients filled out the 22-item Sino-Nasal
Outcome Test (SNOT-22). The test is validated in the
Finnish language and has revealed that healthy controls
have a mean score of 8.9 [10]. Therefore, patients were
included if they had a score of nine or more. No prior rep-
arations, such as fasting and no exercise, were required.
Information about the patient’s current medication, allergies,
height, weight, and any drinking or eating during the past
two hours was obtained during an interview.

In total, 58 patients were asked to participate and two
declined. Of the two patients who declined to participate,
one had CRSsNP and the other had DS. Furthermore, two
patients (one with CRSsNP and one with DS) were excluded
because they had used nasal sprays within the past 24 h.
Thus, 54 patients were enrolled in the study. The demo-
graphics of the patients are presented in Table 1. All the
procedures performed in this study were in accordance with
the Helsinki declaration and its later amendments or com-
parable ethical standards. The study was approved by the
Ethics Committee of Tampere University Hospital (R16103).
The study was conducted according to medical device trial
regulations and was approved by National Supervisory
Authority for Welfare and Health. All patients provided
written informed consent.

Collection of nasal air

We collected nasal air into a collection bag by aspiration in
the same manner as described earlier [11]. This resembles the
standardized method for the collection of nasal air for the
measurement of NO [12]. In brief, nasal air was aspirated
using a suction pump SP 625 EC-LC-DU (Spiggle & Theis
Medizintechnik GmbH, Overath, Germany). A Teflon tube
with a metal Politzer nasal olive was inserted into the
patient’s nostril while the other end was attached to the suc-
tion pump. The collection bag was a metalized polyester
750ml GaSampler Single-Patient Collection Bag (Quintron
Instrument Company Inc., Milwaukee, WI), which was con-
nected via a Teflon tube to the outlet port of the pump. The
patient blew against resistance of 15 cmH2O to close the soft
palate, allowing only the aspiration of nasal air. This was sim-
ply performed by measuring 15 cm of tap water into a plastic
bottle and then asking the patient to blow bubbles in the
water. Less than ten seconds is required to fill the bag. The
contents of the bag were then analyzed with the DMS device
within 6 h. The set up for the collection of nasal air (without
the plastic bottle) and attachment of the full bag to the DMS
device is shown in Figure 1.

DMS device

The DMS device used in this study is a differential mobility
spectrometer (Ionvision, Olfactomics Ltd, Tampere,

Table 1. Demographics of the patients and comparison of the groups.

CRSsNP
(n¼ 27) DS (n¼ 27)

p
Values

Gender male/female 13/14 22/5 .021�
Age, median (range) 51 (24–71) 43 (23–69) .140��
BMI, median (range) 28.4 (22.0–39.1) 27.1 (19–39.8) .169���
SNOT-22 score, median (range) 38 (9–57) 29 (9–67) .345

���

Lund–Mackay score,
median (range)

8 (4–19) – –

BMI: body mass index; CRSsNP: chronic rhinosinusitis without nasal polyps; DS: deviated septum; SNOT-22: Sino-Nasal
Outcome Test.�Fisher’s exact test.��Independent samples t Test.���Mann–Whitney U test.
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Finland). In DMS, gas phase molecules are ionized and
driven into a drift chamber formed by two electrodes
(Figure 2). These electrodes create an oscillating electric
field that is perpendicular to the ions’ motion in the carrier
gas. The separation field of DMS alternates between high
and low voltages asymmetrically. This causes ion swarms to
travel in a saw-like motion that separates ion clusters based
on their mobility characteristics. An additional compensa-
tion voltage field is applied to selectively prevent certain
ions from colliding with the chamber electrodes. At the end
of the chamber is a detector into which ions collide, creating

an electric current signal. When different electric fields and
compensation voltage values are scanned, the result is a
measurement signature called a dispersion plot. The meas-
urement is conducted simultaneously for both positive and
negative ions.

Analysis of the samples

Samples were collected and analyzed within 28 separate
days. Each sample bag was analyzed three times while con-
nected to the DMS device. The dispersion plots were

Figure 1. Above: the pump used to aspirate nasal air. A collection bag at the end of Teflon tube and a nasal olive at the end of another Teflon tube. Below: the
DMS device attached to the full collection bag and ready for a measurement.

Figure 2. A schematic representation of the differential mobility spectrometer (DMS) used in this study. kV: kilovolts; mm: millimeters.
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measured using separation voltages (USV) of 200–800V with
60 increments and compensation voltages (UCV) of �1–8V
with 100 increments, resulting in a 6000-dimensional dis-
persion plot for positive and negative ions. The baseline of
the device was evaluated by inspection of the dispersion plot
using an analysis of the room air aspirated through the
device between each patient sample at the beginning and
the end of the measurement session. Further, bags of room
air were collected with the pump and analyzed at least once
during a measurement session. However, if significant carry-
over was observed in the dispersion plots, the bags of room
air were analyzed more often.

Data analysis

The baseline characteristics (age, gender, body mass index
(BMI), SNOT-22 scores) were compared to evaluate whether
there were any statistical differences between the two
groups. Analyses were performed using IBMVR SPSSVR

Statistics for Windows version 27 (IBM, Armonk, NY).
First, we evaluated whether the data were normally distrib-
uted by visual inspection of the histograms and by
Shapiro–Wilk test. For normally distributed variables (age),
the comparison was made with independent samples t test
and for non-normally distributed variables (BMI, SNOT-22)
with Mann–Whitney U test. Gender was compared with
Fisher’s exact test.

The DMS data were classified using regularized linear
discriminant analysis (LDA) models with 10-fold cross-
validation. Regularized LDA has been used in the classifica-
tion of DMS data in previous studies [11]. The classification
models were created in MATLAB version 2019a
(MathWorks, Natick, MA). The differentiation of the nasal
air samples from the room air samples was first conducted
using every available measurement to ensure that there was
no methodological problem with the sampling. For the clas-
sification of the sample types, the average spectrum of the
three DMS measurements from each patient was utilized.
Each separation voltage row was normalized to values of

0–1 to further accentuate the differences in the spectra in
the higher separation voltages, where the absolute signal
intensities are lower.

Spectral archetypes were created by averaging each meas-
urement into a single spectrum for CRSsNP and DS. The
statistical differences between the features of the archetype
spectra were studied with the Kolmogorov–Smirnov test.
The statistical significance was determined by the
Bonferroni-corrected p value for each feature (p< .05/6000).
To study the similarity of the measurements within and
between classes, the Euclidean distance from the CRSsNP
and DS archetype was also calculated for each measurement.

In addition to distance analysis, a subset of patients that
had an LM score of at least 10 (n¼ 11) was classified separ-
ately against 11 randomly selected patients with DS to assess
the effect of the severity of CRSsNP on the classifica-
tion results.

The performance of the classification models was eval-
uated using the accuracy, sensitivity, specificity, negative,
and positive predictive values. The Wilson score interval
method was used to calculate 95% confidence inter-
vals (CIs).

Results

Both groups consisted of 27 patients. There were 13 males
and 14 females in the CRSsNP group and 22 males and five
females in the DS group. Comparison of the groups shows
that only gender was statistically significantly different
(p¼ .021) but others (age, BMI, and SNOT-22 score) were
not (p> .05) (Table 1).

Nasal air vs. room air

Nasal air samples were differentiated from room air samples
with a classification accuracy of 94% (CI 91–96%), and vis-
ual comparison of the Euclidean distances (Figure 3)
revealed that they are clearly distinguishable from the sam-
ple archetypes.

Figure 3. Euclidean distances of each measured sample type from sample archetypes. CRSsNP: chronic rhinosinusitis without nasal polyps; DS: deviated septum.
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CRSsNP vs. DS

After row-normalization and 10-fold cross-validation, the
accuracy of the DMS to distinguish CRSsNP from DS
patients was 69% (CI 55–79%). Sensitivity and specificity
were 67% (48–81%) and 70% (52–84%), respectively. The
confusion matrix is presented in Table 2 and the receiver
operating characteristics (ROC) curves in Figure 4. The
archetype spectra for CRSsNP and DS are shown in
Figure 5 and visual comparison of these reveal differences,
especially with negative ions. Furthermore, the differences
are visible with Bonferroni-corrected statistical differences in
the spectra (Figure 6).

In subgroup analysis between CRSsNP patients with LM
score � 10 (n¼ 11) and randomly chosen DS patients
(n¼ 11), the accuracy, sensitivity, and specificity were 82%
(52–95%), 82% (52–95%), and 82% (52–95%), respectively.

Male vs. female

As there were statistical differences between males and
females in the groups (p< .05), we performed a classifica-
tion between genders. When comparing the samples from
men (n¼ 35, labeled as negatives) and females (n¼ 19,
labeled as positives), the DMS had an accuracy of 46%, a

sensitivity of 26% (5/19), and a specificity of 57% (20/35),
showing that classification is not biased due to gender.

Discussion

Our results show that by analyzing aspirated nasal air, DMS
can distinguish CRSsNP with a sensitivity of 67% and a spe-
cificity of 70%. Moreover, the classification accuracy
increases to 82% when a subgroup with more severe inflam-
matory disease is compared to controls. These findings are
suggestive of a distinct VOC profile being associated
with CRSsNP.

The previous literature on the eNose in a CRS context is
heterogenous. Mohamed et al. examined five CRS patients
and five controls. In their study, the eNose developed for
research purposes had an accuracy of 60% after leave-one-
out cross validation [6]. Thaler and Hanson performed a
case-control study and examined rhinosinusitis patients and
sampled breath air exhaled through the nose with a modi-
fied nasal continuous positive airway pressure (CPAP)
mask. After leave-one-out cross validation, the eNose had
an accuracy of 72%. However, in their study, most of the
patients had acute exacerbation of CRS [7], and the acute
infection could have affected the VOC profile. A more
recent study by Broza et al. employed an array of

Table 2. A confusion matrix presenting the classification results of differential mobility spectrometry between chronic rhinosinusitis with-
out nasal polyps (CRSsNP) and deviated septum (DS).

Predicted class

CRSsNP DS

Actual
class

CRSsNP 18
True positives (TP)

9
False negatives (FN)

Sensitivity¼ TP/(TPþ FN)
¼ 67%

DS 8
False positives (FP)

19
True negatives (TN)

Specificity¼ TN/(TNþ FP)
¼ 70%

PPV ¼
TP/(TPþ FP)
¼ 69%

NPV ¼
TN/(TNþ FN)
¼ 68%

NPV: negative predictive value; PPV: positive predictive value.

Figure 4. Receiver operating characteristic curves for the classification of CRSsNP and DS; a) for all patients and b) for patients with LM-score of at least 10.
CRSsNP: chronic rhinosinusitis without nasal polyps; DS: deviated septum; LM: Lund–Mackay.
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Figure 5. The row-wise normalized archetype spectra for chronic rhinosinusitis without nasal polyps (CRSsNP) and deviated septum (DS). USV: separation voltage;
UCV: compensation voltage; V: volt.

Figure 6. Features with Bonferroni-corrected statistical differences between the classes highlighted with grey for the complete dataset (54 patients) and with white
for the subset of patients with Lund–Mackay score of more than 10.
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nanomaterials-based sensors to examine exhaled breath
through the mouth from CRS patients with polyps (n¼ 24)
and CRSsNP (n¼ 17), and healthy controls (n¼ 30). After
external validation, patients with CRSsNP were distin-
guished from healthy controls with a sensitivity of 80% and
a specificity of 89% [8].

In all the above studies [6–8], patients with CRS were
compared to healthy volunteers, which might have overesti-
mated the diagnostic accuracy. Therefore, in this study, we
aimed to distinguish two groups of patients with similar
symptoms but with different etiology. In our control group,
patients were symptomatic due to anatomical factors rather
than inflammatory ones, although DS may predispose to
chronic mucosal inflammation [13]. Though unproven, this
may alter the measurement signature of the DMS and influ-
ence the accuracy. However, as the patients with DS did not
undergo CT examination, some of the patients could have
had mucosal changes in the paranasal sinuses, which may
have also affected the DMS analysis. In addition, the exclu-
sion of nasal polyps in the control group was conducted by
anterior rhinoscopy which can, in some cases, result in false
negative findings. Other paranasal diseases could also be
confounding factors.

Our subgroup analysis revealed that patients with LM
scores of 10 or more were more effectively distinguished
from DS patients, which may have been due to a more
severe inflammatory disease leading to a more prominent
VOC profile. The sample size, however, was small and limits
the drawing of any further conclusions. Furthermore, the
results are limited to only CRSsNP. CRS has different endo-
types and phenotypes and the signal patterns of the eNose
could differ between them.

Although most eNose studies sample exhaled breath [4],
few concentrate on nasal air. In this study, we collected
nasal air using a similar method to the one validated for the
measurement of nasal NO [12]. The method minimizes the
confusing effects in the collected sample for evaluating rhi-
nologic diseases with DMS. Previous studies have shown
that exhaled nasal air contains less ammonia, ethanol, and
hydrogen cyanide than breath exhaled through the mouth
[14]. These compounds could therefore serve as confound-
ing factors, since ion mobility spectrometry is sensitive to
them [15,16]. Although collecting exhaled breath is simpler
than collecting aspirated air through the nose, VOCs differ
in terms of expiratory flow rate, breath hold, and the por-
tion of exhaled breath analyzed [17]. These factors do not,
however, affect aspirated nasal air, although targeted airflow
during aspiration, such as in the measurements of nasal
NO, would be preferable [12].

The comparison of room air samples to nasal air samples
was distinguishable (accuracy of 94%) and shows that the
measurement protocol works and day-to-day variation or
baseline drift of the DMS do not exist to a significant
degree. However, nasal air samples were not as well discri-
minated between patient groups, as the accuracy was 69%.
Still, Bonferroni corrected statistical differences reveal that
there were differences between patients with CRSsNP and
patients with DS.

Patient-related factors can have an impact on breath
sampling. For example, age, gender, and smoking, can inter-
fere with the measurement signature of the samples, but it
is unclear which of these factors should be adjusted in
breath analysis [8,18]. In this study, we excluded some of
the potential confounding factors, such as smoking. The
groups were similar regarding age and BMI. Furthermore,
our analysis showed that the classification was not based on
gender. The differences in SNOT-22 scores were not statis-
tically significant, but patients with CRSsNP had higher
scores (the median values 38 vs. 29). Therefore, the severity
of symptoms was not identical even though falling into the
category of moderate disease in both groups [19]. Although
higher LM scores improved classification accuracy in this
study, they do not correlate with SNOT-22 scores [20].
Therefore, the impact of symptom severity on VOC profiles
between groups is unclear. Furthermore, it remains
unknown whether there are specific symptoms that affect
the VOC profile in the spectra of the dispersion plots.
Further studies are required to evaluate which covariates
and symptoms can affect the VOC patterns.

In addition, the limitations of the data analysis need to
be addressed. Even though cross-validation was used in this
study to alleviate overfitting, the generalizability of the
results could have been improved by using a completely
independent set of patients for validation of the model.
Furthermore, the sample size is limited, as demonstrated by
the wide CI, and reduces the power of the study. Therefore,
the results should only be interpreted as preliminary.

The potential use of a breathomics-based approach in
addition to the instruments currently used to identify CRS
is intriguing. However, it cannot replace clinical examin-
ation, such as observing intranasal findings. As phenotyping
asthma from exhaled breath is already possible [5], the same
could perhaps be done for CRS phenotyping by analyzing
nasal air. At present, however, eNose technology is not
ready for use in the diagnostics of CRS. Therefore, to evalu-
ate the ability of DMS or other eNoses to diagnose CRS fur-
ther, a larger study containing a control group of patients
who have symptoms positive for CRS, according to estab-
lished criteria, but negative CT findings should be under-
taken. This would lead to a diverse etiology of symptoms,
such as allergic and non-allergic rhinitis, DS, and hyper-
trophy of the inferior turbinates. These etiologies could have
an impact on the nasal air profile and would require a
larger number of samples to build a trustworthy classifier.
Furthermore, patients with different endotypes and pheno-
types of CRS should be evaluated as their VOC profile could
differ from each other. Preliminary findings show that
CRSsNP was distinguished from CRS patients with polyps
with an accuracy of 67% [8]. In addition, the impact of dis-
ease severity based on symptoms and objective findings to
the VOC profile should be further evaluated.

Conclusion

The results of this feasibility study demonstrate that
CRSsNP can potentially be differentiated from patients with
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similar nasal symptoms by analyzing aspirated nasal air
using an eNose based on DMS. Further research is war-
ranted to evaluate the ability of this novel method in the
differential diagnostics of CRS.
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