
Tampere University Dissertations 733

733/2023
SA

M
A

N
 PAY

VA
R

 G
PU

-based Architecture M
odeling and Instruction Set Extension for Signal ...

GPU-based Architecture
Modeling and Instruction
Set Extension for Signal
Processing Applications

SAMAN PAYVAR

Tampere University Dissertations 733

SAMAN PAYVAR

GPU-based Architecture Modeling
and Instruction Set Extension

for Signal Processing Applications

ACADEMIC DISSERTATION
To be presented, with the permission of

the Faculty of Information Technology and Communication Sciences
of Tampere University,

for public discussion in the auditorium TB109
of the Tietotalo, Korkeakoulunkatu 1, Tampere,

on 20 January 2023, at 12 o’clock.

ACADEMIC DISSERTATION
Tampere University, Faculty of Information Technology and Communication
Sciences
Finland

Responsible
supervisor
and Custos

Professor Timo D. Hämäläinen
Tampere University
Finland

Pre-examiners Professor Juha Plosila
University of Turku
Finland

Docent Sebastien Lafond
Åbo Akademi University
Finland

Opponent Professor Shuvra Bhattacharyya
University of Maryland
United States

The originality of this thesis has been checked using the Turnitin OriginalityCheck
service.

Copyright ©2022 author

Cover design: Roihu Inc.

ISBN 978-952-03-2722-4 (print)
ISBN 978-952-03-2723-1 (pdf)
ISSN 2489-9860 (print)
ISSN 2490-0028 (pdf)
http://urn.fi/URN:ISBN:978-952-03-2723-1

Carbon dioxide emissions from printing Tampere University dissertations
have been compensated.

PunaMusta Oy – Yliopistopaino
Joensuu 2022

iii

iv

PREFACE

This work has been carried out in the Faculty of Information Technology and Com-
munication Sciences at Tampere University during 2017-2022.

I would like to express my appreciation to my supervisor Professor Timo D.
Hämäläinen for his guidance. Grateful acknowledgments go also to the reviewers
of my thesis, Professor Juha Plosila and Docent Sebastien Lafond for their comments
and the opponent Professor Shuvra S. Bhattacharyya. In addition, I would like to
thank Professor Jani Boutellier and Professor Maxime Pelcat for their advice. I am
very grateful for the opportunity of working at the Unit of Computing Sciences and
I want to thank all my colleagues and supervisors.

I am grateful to my family for supporting me throughout my education.

Tampere, December 2022
Saman Payvar

v

vi

ABSTRACT

The modeling of embedded systems attempts to estimate the performance and costs
prior to the implementation. The early stage predictions for performance and power
dissipation reduces the more costly late stage design modifications. Workload mod-
eling is an approach where an abstract application is evaluated against an abstract ar-
chitecture. The challenge in modeling is the balance between fidelity and simplicity,
where fidelity refers to the correctness of the predictions and the simplicity relates
to the simulation time of the model and its ease of comprehension for the developer.
A model named GSLA for performance and power modeling is presented, which
extends existing architecture modeling by including GPUs as parallel processing el-
ements. The performance model showed an average fidelity of 93% and the power
model demonstrated an average fidelity of 84% between the models and several ap-
plication measurements. The GSLA model is very simple: only 2 parameters that
can be obtained by automated scripts.

Besides the modeling, this thesis addresses lower level signal processing system
improvements by proposing Instruction Set Architecture (ISA) extensions for RISC-
V processors. A vehicle classifier neural network model was used as a case study,
in which the benefit of Bit Manipulation Instructions (BMI) is shown. The result
is a new PopCount instruction extension that is verified in ETISS simulator. The
PopCount extension of RISC-V ISA showed a performance improvement of more
than double for the vehicle classifier application. In addition, the design flow for
adding a new instruction extension for a re-configurable platform is presented.

The GPU modeling and the RISC-V ISA extension added new features to the state
of the art. They improve the modeling features as well as reduce the execution costs
in signal processing platforms.

vii

viii

CONTENTS

1 Introduction . 17

1.1 Objectives and scope of research . 18

1.2 Research problems . 19

1.3 Summary of contributions . 19

1.3.1 Author’s contribution to published work 20

1.4 Outline of the thesis . 20

2 Related work . 21

2.1 Workload modeling . 21

2.1.1 Fidelity work . 21

2.1.2 Optimization work . 23

2.2 Instruction Set Architecture extensions 29

2.3 Literature review comparison . 35

3 Methodology . 37

3.1 Workload modeling . 37

3.2 RISC-V ISA extension methods . 38

3.2.1 ETISS simulator . 39

3.3 Use case applications . 39

4 Workload modeling of heterogeneous platforms 41

4.1 Performance modeling . 42

4.2 Power modeling . 43

4.3 Proposed models . 44

4.4 Population count analysis . 47

ix

4.4.1 PopCount instruction . 47

4.4.2 PopCount modeling . 52

4.4.3 Modeling conclusion . 55

5 RISC-V non-standard instruction extensions . 57

5.1 RISC-V BMI extension . 57

5.2 RISC-V extension design flow . 58

5.2.1 Compiler modification . 58

5.2.2 Simulator modification . 59

5.2.3 ISA extension conclusions . 59

6 Conclusions . 61

6.1 Addressing the research problem . 61

6.2 Future work . 62

References . 63

Publication I . 71

Publication II . 79

Publication III . 103

Publication IV . 111

List of Figures

1.1 Overview of the research conducted in this thesis 18

3.1 Workload modeling method. 38

4.1 Model of Architecture. 41

4.2 Model of Computation. 42

4.3 Mapping of MoC on MoA. 42

4.4 An example of the S and γ variables. 43

x

4.5 Trading off between different aspects of the modeling. 44

4.6 Development and utilization workflow. 46

4.7 PopCount LLVM Logical Operations. 51

4.8 Population count graph. 54

5.1 Compiler modification design flow. 59

5.2 Simulator modification design flow. 60

List of Tables

2.1 Summary of workload reviews . 27

2.2 Summary of RISC-V reviews . 34

4.1 Parameters of functions. 53

4.2 Fidelity values. 54

xi

xii

ABBREVIATIONS

API Application Programming Interface

BMI Bit Manipulation Instruction

CNN Convolutional Neural Network

DSP Digital Signal Processor

ETISS Extendable Translating Instruction Set Simulator

GCC GNU Compiler Collection

GNU GNU’s Not Unix

GPU Graphics Processing Unit

I/O Input Output

ISA Instruction Set Architecture

LSLA Linear System Level Architecture

MoA Model of Architecture

MoC Model of Computation

OpenCL Open Computing Language

PULP Parallel Ultra Low Power

RISC-V Reduced Instruction Set Computer Five

xiii

xiv

ORIGINAL PUBLICATIONS

Publication I S. Payvar, J. Boutellier, A. Morvan, C. Rubattu and M. Pelcat.
Extending Architecture Modeling for Signal Processing towards
GPUs. 2019 27th European Signal Processing Conference (EU-
SIPCO). 2019, 1–5. DOI: 10.23919/EUSIPCO.2019.8903094.

Publication II S. Payvar, M. Pelcat and T. D. Hämäläinen. A model of archi-
tecture for estimating GPU processing performance and power.
Design Automation for Embedded Systems. 2021, 43–63. DOI: 10.
1007/s10617-020-09244-4.

Publication III S. Payvar, M. Khan, R. Stahl, D. Mueller-Gritschneder and J.
Boutellier. Neural Network-based Vehicle Image Classification
for IoT Devices. 2019 IEEE International Workshop on Signal Pro-
cessing Systems (SiPS). 2019, 148–153. DOI: 10.1109/SiPS47522.
2019.9020464.

Publication IV S. Payvar, E. Pekkarinen, R. Stahl, D. Mueller-Gritschneder and
T. D. Hämäläinen. Instruction Extension of a RISC-V Processor
Modeled with IP-XACT. 2019 IEEE Nordic Circuits and Systems
Conference (NORCAS): NORCHIP and International Symposium
of System-on-Chip (SoC). 2019, 1–5. DOI: 10.1109/NORCHIP.
2019.8906975.

xv

xvi

1 INTRODUCTION

Computer systems are composed of software, middleware, and hardware. The soft-
ware can be abstracted as a collection of commands to be executed on the hardware.
Typically, hardware platforms have multiple Processing Units (PUs). The middle-
ware provides abstraction between software and hardware, and can regard the work-
load scheduling where the SW commands are mapped to the PUs of the hardware.

Machine learning algorithms require high computing performance and there is
a need to execute them in a wide range of platforms from Internet of Things (IoT)
devices to cloud servers. Quite often there is a limited execution time budget. The
challenge is that energy consumption should be minimized while the output quality
and performance requirements have to be satisfied. Traditionally, the optimization
process starts by modifying the application and then further system level optimiza-
tions are considered by changing the mapping or the platform. In these cases, the
application workload mapping on the platform variations must be evaluated.

A model-based approach is often used to speed up the development time rather
than trying out real implementations. There are multiple feasible system model-
ing methods. This thesis uses a modular approach, which considers the application
and platform models separately. This system modeling concept was originally intro-
duced by Pelcat et al. [34] and named Linear System Level Architecture (LSLA) and
provides an obvious division and reusability for application and platform models.
In LSLA, the Model of Computation (MoC) presents the application and the Model
of Architecture (MoA) represents the platform. The original LSLA supports only
multi-core CPU platforms, and performance modeling. To better support machine
learning applications, this thesis presents an extension to cover Graphical Processing
Unit (GPU) units and power modeling also.

In this way the goal of this thesis is to improve system level modeling features at
a high abstraction level. The second goal is to improve real platform performance
at a lower abstraction level study. Machine learning applications are often written

17

Figure 1.1 Overview of the research conducted in this thesis

in OpenCL which motivates the GPU extension for the LSLA. For platform op-
timization, the way that extra instructions are added is studied. It is expected that
the Instruction Set Architecture (ISA) extensions will reduce the number of com-
piled assembly instructions, resulting in faster execution time. Reduced Instruction
Set Computer Five (RISC-V) ISA is open source and a widely adopted ISA which
makes it a suitable selection for this research. Common classification applications
like the Convolutional Neural Network (CNN) benefit greatly from Bit Manipu-
lation Instructions (BMI) extensions which at the beginning of this study were not
standardized in RISC-V. Implementation of a non-standard RISC-V extension is an-
other aspect of the research problem for system optimizations in this thesis.

Figure 1.1 presents an overview of the research conducted in this thesis: the ab-
straction levels according to the scope, novel contributions, and main methods ap-
plied in the research.

1.1 Objectives and scope of research

The objective of this thesis is to improve implementations of machine learning type
applications. The focus is on the modeling of the workload mapping on the platform
and ISA extensions. The target is to present performance and power models with as
high fidelity as possible for the platform, i.e., at least 80 percent to be useful for early
state architecture exploration. The modeling of the applications and their platform
independent optimizations are beyond the scope of this thesis. The second goal is

18

to achieve at least double the performance improvement with ISA extensions for a
neural network application on an IoT device.

1.2 Research problems

The research problems investigated in this thesis are platform modeling and ISA ex-
tensions. The modeling questions include the following:

• What is the simplest system model that achieves a reasonable fidelity value for
useful modeling accuracy?

• Could the performance model also be used for power modeling to keep the
model as simple as possible?

• How to expand the LSLA so that OpenCL applications running on GPUs can
be modeled?

The ISA extension questions consist of the following:

• What is the performance gain and effort of adding instruction extensions to
machine learning algorithms?

• What kind of custom instruction helps neural network execution on RISC-V?

1.3 Summary of contributions

Publication [26] describes the performance model for an OpenCL application on
GPU equipped platforms. The model is linear and it is named GSLA. It introduces
minimal computation for fast workload analysis resulting in reasonable workload
balancing between processing elements. The performance studies show an average
fidelity value of 93%.

Publication [31] depicts the power model for the OpenCL applications and pro-
vides a power dissipation analysis. Utilizing this model facilitates workload spread-
ing between processing elements for optimal power dissipation. The power dissipa-
tion inspections reveal an average fidelity value of 84%.

Publication [27] introduces the Population Count(PopCount) extension for RISC-
V ISA, which improves the performance of a vehicle classifier CNN application more

19

than double. This work includes the total instruction count and type analysis as well
as their impact on performance.

Publication [29] presents a design flow for including the new instructions in the
compiler and simulator of the RISC-V ISA. The effort analysis estimates around two
hours for a new instruction inclusion.

1.3.1 Author’s contribution to published work

The author is the main author and the main contributor in all included publications.
The main tasks were performed by the author including the literature reviews, soft-
ware development work, measurements, analysis of the results, and typing of the
articles.

Assistant Professor Jani Boutellier helped to develop the ideas in PublicationPayvar
et al., [31] and [27], assisted with the writing, and gave valuable comments.

Prof. Maxime Pelcat helped to develop the ideas in Publication[26] and Publication
[31] and gave instructive comments.

Dr. Antoine Morvan and Claudio Rubattu, M.Sc., helped to develop the idea in
Publication[26] and [31].

Mir Khan, M.Sc., provided the binarized version of the vehicle classifier applica-
tion and helped with the writing of Publication [27].

Rafael Stahl, M.Sc., and Dr. Daniel Mueller-Gritschneder helped with Publica-
tion [27] and Publication [29], and provided valuable comments.

Esko Pekkarinen, M.Sc., helped to develop the idea in Publication [29] and with
the writing of the article.

Prof. Timo D. Hämäläinen helped to develop the idea in Publication [29] and
[31] and with the writing of the articles.

1.4 Outline of the thesis

This thesis consists of four publications and an introductory part. Chapter 2 briefly
presents the related work. Chapter 3 introduces the performance and power models
for workload distribution. Chapter 4 explains the non-standard RISC-V ISA exten-
sions. Chapter 5 considers the execution cost improvements of the implementations.
Chapter 6 presents the main results and conclusions of the thesis.

20

2 RELATED WORK

System optimizations for a specific application are considered by two approaches
utilized simultaneously or separately. The first approach is by efficient workload
balancing between the processing elements of heterogeneous platforms. The sec-
ond approach is architecture modifications, in this thesis the system’s processing el-
ements with ISA extensions. In this section, the related work for both approaches is
presented.

2.1 Workload modeling

In platforms with multiple processing units, the optimal platform utilization re-
quires balanced work allocation between them. This is achievable by many method-
ologies, and Table 2.1 summarizes the major works related to them.

The related work is divided into two subgroups which focus on fidelity evaluation
or optimization. This thesis concentrates on fidelity evaluation while the optimiza-
tion works are presented here to provide a broader view. The studies use different
metrics to evaluate their proposed estimation models, i.e., the fidelity of their work.
The suitability of their selected metric is beyond the scope of this thesis but could
be further investigated, e.g., in [13].

2.1.1 Fidelity work

The main related work is the Linear System-Level Architecture (LSLA) [34]. LSLA
presents the hardware as a model of architecture (MoA) and describes the applica-
tion with a mode of computation (MoC). System optimization iteration is shown
as the mapping of the MoC activity on the MoA. An LSLA MoA is composed of
the processing elements and the communication nodes, and each component has a
cost function where the targeted cost could differ such as the execution time or the

21

energy consumption. The total execution cost of the system is calculated as the sum
of the execution costs of the processing elements and the communication nodes.
The authors present experiments with C applications running on a multi-core CPU
platform using the PREESM tool [33]. They used the kendall tau as the fidelity mea-
surement to evaluate their experiments and reported a fidelity of 86% for the energy
consumption modeling.

The period graph study [3] estimates the system throughput from the system
simulation data and the maximum cycle mean. They experimented with a nested
genetic and a simulated annealing algorithm for voltage scaling optimization. Their
graph consists of four main elements including named nodes, striped nodes, directed
edges, and solid small black circles on the edges. For period graph construction, first
the simulation data is used to identify the period. Then, the tasks of the period are
considered as the nodes and the idle time of the period is demonstrated with striped
nodes. Later, the nodes connections as the edges are assigned according to their order
in the period from the last node to the first node. They use the send and receive nodes
for Inter Processor Communication (IPC) to show the data transmission. They are
connected by the edges of the send node to the receive node. Also, a delay is applied
to an edge by adding a black circle to visualize the inter-iteration dependencies. They
reported a fidelity value of more than 0.65 for a system with six processors.

The ARM’s big.LITTLE model [41] facilitates the core selection of heteroge-
neous architecture. Their model is based on a correlation between last-level data
cache (LLC) misses and cycles per instruction (CPI) for efficient core selection. They
use two linear equations for presenting the model where one equation is for the small
cores and the other equation is for the big cores. Their model provides a soft thresh-
old setting where the larger number of LLC misses are scheduled on little cores.
They use a linear equation with two parameters for CPI calculations where MPI is
multiplied by the first parameter and added to the second parameter. They experi-
mented with HEVC and LDPC decoder applications and observed the effectiveness
of application division into multi-phases. They reported a negligible error of 9.71%
for A15 and 21.67% for A7, and error reduction as the LLC misses increased.

The Runtime system for User Preferences-defined Schedules (RUPS) [7] is a run-
time scheduling tool for multi-core architectures, which provides a trade-off between
three variables named PE, i.e., performance, E, i.e., energy consumption, and FT,
i.e., fault tolerance. Their methodology depicts the best scheduling trade-off deci-

22

sion from the user preferences. They considered task duplication for fault tolerance
where a copy of a task named duplicate was assigned to another processing element
which was replaced by the initial task in case of failure. RUPS consists of four parts
including system check, user preferences, schedule creation, and runtime system.
First, the system check gets the system data and then the user preferences are col-
lected. Later, the schedule is optimized according to the user requests and the system
data and then the runtime system receives the schedule. They experimented using
real machines supporting DVFS with four scenarios of only PE, PE and FT, only
FT, and only E. They reported an average maximum deviation of 7.14% and 1.64%
for energy prediction.

The thermally aware energy efficiency model of [38] utilizes environmental tem-
perature variations and eliminates the power sensor requirement of the multiproces-
sor platform. Their model includes a variable for the temperature which is used for
application reconfiguration. They considered the platform configuration points for
energy modeling of the heterogeneous platforms with Hardware Program Counters
(HPC). They experimented with the ODROID XU3 platform in three different en-
vironments where the board fan condition and temperatures were different in order
to provide a cold, middle, and hot case. They observed large energy level variations
with temperature changes from cold to hot and their results show 33% energy im-
provements for modeling with temperature awareness.

The ANNETTE [46] shows a performance estimation model for Deep Neural
Network (DNN) applications. They focus on mapping of the layers according to
their stacked model. Their framework has mapping and mixed layer models and
generates models according to the kernel and benchmark data. They use two separate
platforms, i.e., ZCU102 SoC board and Intel Neural Compute Stick 2 (NCS2) and
two network applications for execution time evaluations. They used the Spearman
metric to evaluate their model on 34 random models of the NASBench dataset and
reported 0.988 as the fidelity value of their model.

2.1.2 Optimization work

The parallel dataflow study by [12] uses the PREESM tool to explore the energy ef-
ficient mapping of a parallel application on a platform with a quad-core CPU. Their
work depicts the effect of the static power domination of contemporary platforms on

23

the energy consumption of parallel applications. They showed that limiting the ex-
ecution speed of the application for controlling the clock frequency of the processor
core by meta data input to the power management system resulted in energy-efficient
mapping. They used Levenberg-Marquardt’s algorithm for calculating a third degree
polynomial as their power model. They experimented with three different mappings
of the Sobel filter application including completely sequential, completely parallel,
and mix-parallel mappings. They reported energy savings of over 50% compared to
the reference.

The runtime mapping optimization research in [47] considers the energy effi-
ciency of several parallel applications running on a multi-core platform. They uti-
lized a hybrid approach of both mapping and frequency adjustment. Their man-
agement strategy has three steps. First, for each application some mapping options
and their minimum frequencies are calculated at design time. Later, at runtime, the
minimum common frequency is selected according to the design time data, which
shows the relevant mappings. Finally, the mappings are combined. In the case of
violation of the timing constraints, the second and third steps are redone. Their
design time data consists of the execution trace which is the start time and the end
time of the mapping options at the defined frequencies. Also, the Minimum Allowed
Frequency (MAF) based on [12] is determined. Their results depict 2x reduction in
energy consumption.

The workload type study by [11] investigates the effect of the instructions type
on the big.LITTLE platform. They showed the impact of the type of the executed
instruction and the stress on the micro architecture. The execution operation of dif-
ferent machine instructions utilizes diverse transistors, thus the power dissipation
on the processor varies. Their experiments with six benchmarks depict around 40%
workload type impact on power dissipation. Their workload type aware schedul-
ing includes a power and a performance model for each workload type where the
energy consumption of a schedule is calculated according to the relevant models.
Their scheduler has four variations for power and performance, both including and
ignoring them. The best case studies showed 31.3% energy savings.

The passive-active flow graphs (PAFGs) of [20] proposes a computation model
for the signal processing systems. A PAFG is developed as an application graph
based on core functional dataflow (CFDF). The PAFG expands the dataflow graphs
to cover several inputs and outputs with a different presentation where the vertices

24

show both buffers and computational models and the edges depict their connections.
The PAFG blocks are passive or active, where an active block shows both computa-
tional blocks and buffers but a passive block depicts only buffers. In addition, they
introduce the passivization transformation which is the conversion of active blocks
to passive ones. Their experiments with the error vector magnitude and jitter mea-
surement applications show improvements in throughput and buffer memory re-
quirement (BMR).

The intermediate directed acyclic graph (DAG) representation work by [2] shows
an improved model for resource allocation. Its implementation in the SPIDER tool
utilizes single-rate directed acyclic graph (SR-DAG) data. They use dependency equa-
tions for the numerical modeling of the SR-DAG and define additional equations
for hierarchy inclusion from the πSDF MoC. Their relaxed execution model on
interface-based synchronous dataflow (IBSDF) maximizes the throughput of the hi-
erarchical application. The proposed method eliminates the SR-DAG building and
storing stage but increases the complexity of the resource allocation algorithm. They
experimented with the greedy scheduling of four applications including SqueezeNet,
Reinforcement Learning, Stabilization, and Sobel-Morpho. They report an over-
head reduction in computation time and memory footprint besides performance im-
provement. Their results show an average memory reduction of 97.34% for schedul-
ing and mapping. Also, a minimum decrease of 47.11% in total execution time for
the resource allocation stage is reported.

The Data flow Method for Hardware/Software Exploration (DAMHSE) [42]
represents a fast hardware-software prototyping method. A compilable/synthesiz-
able code is provided by performing a design space exploration (DSE). Their exper-
iments with the parallel edge detection of an image processing system shows perfor-
mance elevation by 21.6x. They used hardware accelerators and an edited PREESM
tool for optimized tasks for actor scheduling and mapping in addition to code gen-
eration. They described a complementary application management system which
dynamically distributes tasks between processing elements. Their manager has a
low penalty of maximum 20% of the execution time which makes it suitable for
low power systems. They report high computational performance with reasonable
overhead for dynamic application mapping.

The OpenCL as abstract hardware research [36] shows a system modeling frame-
work with multiple MoCs. They implemented a portable heterogeneous architec-

25

ture for system modeling. Their model-based design framework arranges a system
into different directors where each one shows a semantic model. The models are
based on a MoC which executes according to implemented semantics. An applica-
tion scenario contains multiple directors, which is a heterogeneous combination of
MoCs. They evaluated the utilization of OpenCL by mapping an application mod-
eled by Synchronous Data Flow (SDF) on different platforms. They experimented
with a palatalized 2-D image processing application for face detection. The face detec-
tion has three modules for skin detection, skin quantization, and image contouring.
They conclude that OpenCL eases the targeted automatic synthesis.

The Distributed Operation Layer (DOL) by [44] is a framework for the efficient
execution of parallel applications on heterogeneous platforms with multiple proces-
sors. DOL provides automation for optimized algorithm mapping on the architec-
ture according to the targeted goal. In addition, DOL facilitates system level perfor-
mance analyzing with two static and dynamic models. The static model does not
consider resource sharing and assumes smooth patterns of operation and communi-
cation, whereas the dynamic model considers bursts, blocking, and synchronization.
The DOL framework has four parts including application specification, architecture
specification, functional simulation, mapping optimization and performance evalu-
ation while it outputs the mapping specification. They experimented with MPEG-2
decoder mapping using a static model for performance analysis. Their experimental
architecture has two identical tiles communicating through a NoC while each tile
consists of a RISC and a DSP. They presented three optimal mappings and selected
one of them as the best choice because of the workload variations.

ArchC [39] is an open-source processor architecture description language (ADL)
based on SystemC. It aids architecture design in the early stages by providing a Sys-
temC executable and automatically generating verification tools like a simulator.
ArchC compares the model editions against the functional description by inspecting
the memory hierarchy and other integration of IPs in a design. Also, it supplies mul-
tiple simulator options, i.e., interpreted or compiled and several memory selections
like memory levels or cache. ArchC has two inputs for describing the targeted archi-
tecture. One is the explanation of the resources like a pipeline structure or memory
hierarchy, and the other is a statement of the instruction set architecture, such as the
format of the instructions or the opcodes. They simulated multiple processor archi-
tectures using ArchC. They have MIPS and Intel 8051 with both cycle-accurate and

26

functional models and several architectures, such as PowerPC with only functional
models.

The energy model work in [37] describes the utilization of core level techniques
for heterogeneous platform modeling. They experimented with variable platform
configurations with the same performance levels where the platform configuration
was considered as the number of application parallel instances, number and type
of cores, DVFS levels, and utilization rate. Their experiments were based on the
ODROID XU4 platform which has two types of core clusters of ARM Cortex A7
and ARM Cortex A15, while four distinct voltage and frequency levels for both core
types are involved. They implemented two energy models: one for big cores and the
other for small cores and reported different energy and performance values in a table.
Their results show better energy efficiency in terms of the utilization rate factor.

The present work focuses on improving modeling features and accuracy while
the majority of the reviewed related research targets the optimization of some appli-
cations. Table 2.1 summarizes the workload reviews. The summary tables present
the similarities, case study and the results with respect to this work. These studies
are selected based on the goal of the study, the utilized methodology, experimen-
tation approaches, design tools, and evaluation metrics. In addition to relevance,
the publication date of the paper is considered to provide an up-to-date literature
review as the majority of the reviewed papers have been published during the last
four years. For example, the LSLA uses the same evaluation metric to show the
suitability of the model and report a high fidelity value, as in this work. The table
includes five columns. From left to right the first column shows the reference, the
second describes the scope of the reviewed work, the third lists the similarity score
to this work within a range of one to five where five is the highest and only used for
the publications of this research, and the fourth and fifth columns show the purpose
and the reported results.

Table 2.1 Summary of workload reviews

Ref. Scope Similarity Purpose Results

LSLA Methodology and
evaluation

4 Modeling C appli-
cations running on
multi-core CPU

86% fidelity

27

[12] Polynomial utiliza-
tion

3 Parallel appli-
cations energy
efficient mapping

50% energy saving

[47] Mapping optimiza-
tion

2 Dynamic energy
optimization by
mapping and fre-
quency adjustment

206% energy saving

[11] Workload schedul-
ing

2 Energy optimiza-
tion by type
aware workload
scheduling

31.3% energy sav-
ing

[20] Graph presenta-
tion

2 Modeling signal
processing systems

31.88% throughput
25% BMR

[2] MoC of applica-
tion

2 Resource alloca-
tion modeling

97.34% mem.,
47.11% exe. reduc-
tion

[3] Fidelity evaluation 3 Systems through-
put estimation

Fidelity of mini-
mum 65%

[42] Task mapping 2 Hardware-software
prototyping

21.6x performance
increase

[36] OpenCL mapping 2 System modeling
with portable
architecture

Design flow

[44] Architecture mod-
eling

2 Automatic algo-
rithm mapping

Optimal mapping

[39] Architecture
design

2 Early stage archi-
tecture design and
verification

MIPS-I 550.91
KIPS

[41] Multi-core model-
ing

2 Modeling ARM’s
big.LITTLE archi-
tecture

System model

[7] Multi-core schedul-
ing

2 Runtime schedul-
ing of multi-core
architectures

Max deviation of
7.14% and 1.64%

[37] Multi-core model-
ing

2 Modeling heteroge-
neous platform

Energy model

[38] Multi-core model-
ing

2 Energy-efficient
modeling without
power sensors

33% energy saving

28

[46] Fidelity evaluation 3 Modeling DNN
applications

0.988 performance
fidelity

This work

[26]& [31]
Architecture mod-
eling

5 Modeling OpenCL
applications on
GPU

93% performance
and 84% power
fidelity

2.2 Instruction Set Architecture extensions

The RISC-V ISA extension work in [16] depicts the inclusion of Bit Manipulation
Instructions (BMI) into the RISC-V ISA. They explored system performance and
power improvements through hardware optimization. They considered the instruc-
tions of the ARMv8 and x86 and used them as a reference for introducing ten BMIs
to the RISC-V ISA. They mentioned 13.5% less bytes encoding requirement in com-
parison to x86. They implemented the introduced BMIs with Berkeley’s Rocket
CPU and reported no overhead on the critical path. Their experiments included 13
benchmarks where instructions were manually replaced for the GNU assembler and
the results show a speed-up of between 1.09x and 96.87x.

The RISC-V verification environment study by [23] presents a framework for
the early stage evaluation of RISC-V cores. The demonstrated framework has a re-
configurable, portable, and user-friendly design for the easy addition of user-defined
ISA extensions. Their environment communicates with the DUT through the AXI4
lite protocol, which facilitates core switching. Their implementation, based on Uni-
versal Verification Methodology (UVM), utilizes the object-oriented facilities of the
UVM to provide bottom-up stimuli generation. They used internal binded signals
for designing their predictor model, which provides a reconfigurable architecture.

The multi-core generation work by [40] presents an automated solution for ar-
chitecture customization. It is based on the RISC-V ISA and outputs the Verilog
code of the architecture for an input application described as a dataflow. They used
an open source rocket chip generator with added accelerators and a NoC. The uti-
lized tools allow architecture configuration such as memory size or number of cores.
They used the CAL actor language for the application development, which includes
actors as operations. They experimented with two applications including auto fo-
cus criterion calculation and convolution. Their results show decreased design time,
reduced hardware resources, and improved performance.

29

The customized core paper in [48] demonstrates the analysis of a taped-out im-
plementation of an in-order, single-issue, 64-bit RISC-V ISA core named Ariane. It
has Global Foundries 22-nm FDX technology and runs up to 1.7 GHz. The core
covers multiplication or division, atomic memory operations, floating point, and
compressed instructions. It has six pipeline stages and a branch predictor. Its cache
memories are single-port static SRAM by INVECAS while the cache size of the
instructions is 16kB and the cache size of the data is 32kB. Their implementation in-
cludes ISA extensions, reducing the number of instructions by a factor of 4.6 when
compared to the baseline 32-bit RISC-V. Their evaluations with a 2-D convolution
show that the number of instructions decreases to 110k with the DSP ISA exten-
sions, whereas without the extension the number of instructions is 129k for 64-bit
ISA and 135k for 32-bit ISA.

The near-threshold (NT) RISC-V core work by [9] shows the implementation of
an architecturally optimized in-order core which supports ISA extensions. It covers
compressed instructions and has a L0 buffer which causes less cache access. Their im-
plementation has four pipeline stages and Harvard memory architecture. For power
efficiency, they considered clock gating so that each unit has separate input operand
registers, resulting in a 50% decrease in power dissipation. Their evaluations of sen-
sor processing workloads demonstrate 3.5-fold performance gain and 3.2-fold energy
efficiency. They implemented several ISA extensions such as post-increment instruc-
tions, hardware loop, vector instructions, and fixed point. They compare their ar-
chitecture to baseline RISC-V and OpenRISC cores and reported 10-fold speedup as
a result of the implemented ISA extensions.

The vector extension study by [5] describes a 64-bit RISC-V coprocessor called
Ara coupled with a RV64GC core named Ariane. Their architecture has uniform
lanes of functional units and vector register files communicating through a vector
load/store unit (VLSU) and slide unit (SLDU) which makes it scalable. They ex-
perimented with AXPY, convolution, and matrix multiplication and reported 97%
floating point unit (FPU) usage for 256x256 matrix multiplication. Ara is imple-
mented with GlobalFoundries 22FDX FD-SOI technology and runs at more than 1
GHz in the typical corner. They compared Ara plus Ariane with solo Ariane and
noted 2.5x energy efficiency for the Ara and Ariane pair. They observed two chal-
lenges, one with a scalability bottleneck introduced by VLSU and SLDU, and the
other with performance reduction of smaller size problems caused by pairing Ara

30

plus Ariane with the vector instruction issue rate problem.

The RISC-V soft-core process work by [15] shows a scalable vector extension
for the performance optimization of parallel applications. Their vector extension
eliminates the vectorized code adaptation requirement upon adjusting the number
of computing units for the SIMD soft-core. They targeted ARM SVE compatibil-
ity so they used ARM’s automatic vectorization compiler. First, they compiled the
program to ARM SVE assembly code. Second, they translated the assembly to a
RISC-V assembly. Finally, they assembled the RISC-V assembly to RISC-V machine
code using the edited GNU assembler. They used 32 vector registers and 16 predicate
registers with eight of them for vector-mask control and the other eight for logical
operation between them. Their vector instructions have three types including con-
trol, load/store, and vector operations. They performed a functional simulation of
their implementation in a gem5 simulator.

The RISC-V ISA small float SIMD extension paper by [43] presents a 32-bit RISC-
V core for scalar and floating point operations with a data type width of 8-bit and 16-
bit. They implemented relevant C/C++ types and GNU compiler editions. Their
edition covers the real type extension of the GNU compiler, which is an internal
format for floating point types. They included call back functions to convert the
internal format to the small floats and tuned the machine modes and rules as well as
adding new keywords and conversion rules and adjusting the GCC auto-vectorizer.
Their experiments with mixed precision computing shows no accuracy degradation
and the results for 8-bit demonstrate execution time improvements of 2.18x and an
energy reduction of 50%, whereas for 16-bit the execution time reduction is 1.64x
and the energy decrease 30%.

ASSIST [19] is a synthesis framework for a RISC-V core which receives instruc-
tion specifications and provides multiple RISC-V processors register transfer level
(RTL) implementations. The multi RTL outputs balance the quality-of-result (QoR)
metrics with a facilitating custom instruction set and architectural feature analy-
ses. Also, they describe automatic optimization for specific technology and perfor-
mance. ASSIST has three main parts including an instruction specification interface,
architectural synthesis engine, and pipeline schedule autotuner. The instruction in-
terface uses an architecture description language (ADL) in Python for collecting the
functional behavior of the instructions. The synthesis engine uses the DAL data
and pipeline schedule for architecture generation as Chisel RTL, which is later sim-

31

ulated. The schedule autotuner receives the measured metrics and optimizes the
pipeline schedule. They evaluated more than 60 variations of RTL implementations
of in-order RISC-V 32I with different features such as pipeline structures. Their ex-
periments were with machine learning and cryptograph applications and their 32-bit
cryptographic ISA extension showed 9.3X faster task execution.

SMURF by [4] is a RISC-V high precision floating point accelerator used for Vari-
able Precision (VP) calculations and covers up to 512 bits of mantissa. They present
a RISC-V ISA extension and its design as a 64-bit word-size with pipelined architec-
ture. SMURF is generated with Rocket chip as a RISC-V coprocessor and has two
floating point (FP) formats for the internal computations and the main memory,
while the format conversion is performed by a load and store unit. Their FPGA im-
plementation has a 50 MHz clock frequency and their ASIC implementation with
a 28 nm FDSOI has a 600 MHz clock frequency. They compared their design with
a RISC-V 64-bit FP and reported 9 times more area and 12 times more power dissi-
pation and stated that the essential internal memories and the mantissa buffers were
the main reason.

The compressed RISC-V ISA work by [25] describes a 32-bit core with a coex-
isting 16-bit ISA extension which includes a low overhead dual-issue hardware sup-
port. Their architecture has six pipeline stages, while the execution stage has sub-
stages with variable latency for different instructions. For example, the addition
instruction takes one clock cycle but division needs 16 cycles. They observed that
RISC-V ISA mainly uses 8 registers with instruction compression which increases
the hazards. Thus, they reduced stalls by selective register renaming for instruction
compression registers. Also, they implemented a partitioned register file and clock
gating. They experimented with a cycle-accurate simulator and analyzed the hard-
ware, reporting similar performance with area and power efficiency in comparison
to a super-scalar processor.

The multi precision RISC-V ISA floating point extension study by [17] presents
an architecture for IEEE 754-2008 SP numbers which provides a trade-off between
accuracy and precision. Their implementation covers eight-core Pulp architecture
with their proposed shared unit for the floating point square root or division opera-
tion, which supports different precision in 5 to 8 clock cycles. They divide the archi-
tecture into three stages consisting of pre-processing, iteration, and post-processing.
The pre-processing and post-processing each take one clock cycle while the iteration

32

stage includes four parallel iteration units which output one mantissa bit. They ex-
perimented with DIV/SQRT-intensive algorithms and concluded that there was a
possibility for effectiveness and energy saving through precision reduction. Their
report shows 36% energy saving and 43.65% performance improvement.

The RISC-V virtual prototype (VP) research by [10] presents an instruction set
simulator (ISS) with software debugging, which facilitates functional verification and
design space validations. Their design covers the IMAC instruction set with inter-
rupt controllers and peripherals for 32-bit and 64-bit single and multi-cores. In ad-
dition, it is possible to add ISA extensions by modifying the decode and execute
functions. Their VP design is based on systemC and it has about 12000 lines of
C++ code. It is extendable with a generic bus system and TLM 2.0 communication,
and covers the GCOV and GDB of the GNU tool chain. Their VP simulation is
fast as it has two performance optimizations including a direct memory interface
and local time quantums. They provide a HiFive1 board configuration example and
experimented with embedded applications, reporting an average of 46 MIPS.

The resource sharing multi processor system on chip (MPSoC) study by [18] de-
scribes a RISC-V ISA extension where the instructions execute on shared coprocess-
ing units outside of the processor’s data path. They implemented a NoC-based MP-
SoC with 3x3 mesh topology, i.e., nine tiles where each tile contains a network inter-
face (NI), a router, and a PE. In their design the center tile is the memory surrounded
by four processors and four coprocessors. The coprocessors execute the multiplica-
tion and division instructions and are accessible by the processors as needed, where
the processor uses the NoC for sending the operation packet to the coprocessor and
receiving the result packet. They used four scenarios for area, power and perfor-
mance evaluations and reported negligible hardware and execution time overheads
to trade off area and leakage power.

XpulpNN [8] is a RISC-V ISA extension designed for quantized neural network
(QNN) applications. It provides SIMD instructions for low-bit-width data types
of nibble, i.e., 4-bit and crumb, i.e., 2-bit, which removes the instructions required
for data packing and unpacking of QNN as well as an instruction for quantization.
They implemented the extension in the RISC-V RI5CY where the quantization unit
was added to the execution stage of the pipeline on the PULPissimo platform with
22nm FDX technology. Their report shows insignificant overhead with around 5-
fold performance improvement for 4-bit and about 8-fold improvement for 2-bit in

33

comparison to 8-bit SIMD. They report 2-fold energy efficiency in comparison to
commercial ARM architectures and up to 9-fold when compared to the baseline.

Table 2.2 summarizes the reviews. The RISC-V BMI study has the same goal
of extending the RISC-V ISA and shows a high speed-up value like the high value
obtained in this work. The table has five columns for referencing, stating the scope,
depicting the similarity point, presenting the purpose, and the reported results of
the reviewed work.

Table 2.2 Summary of RISC-V reviews

Ref. Scope Similarity Purpose Results

[16] RISC-V BMI exten-
sion

4 RISC-V ISA cus-
tomization

Up to 96.87x
speedup

[23] Non-standard ex-
tension simulation

2 Early stage RISC-V
core evaluation

Development time
reduction

[40] Application
specific ISA cus-
tomization

2 Customized HDL
generation

3 to 4 times
speedup

[48] RISC-V ISA exten-
sion analysis

2 Taped-out RISC-V
core

Reduction by a fac-
tor of 4.6

[9] RISC-V ISA exten-
sion investigation

2 Implemented
RISC-V core

10 times speedup

[5] RISC-V ISA
extension imple-
mentation

2 Implemented
RISC-V co-
processor

2.5x energy effi-
ciency

[15] Architecture exten-
sion

2 Implemented
RISC-V soft-core
process

Programming
method

[43] RISC-V ISA exten-
sion

2 Implemented
RISC-V SIMD
extension

2.18x and 1.64x
speedup

[19] RISC-V ISA exten-
sion simulation

2 RISC-V core syn-
thesis framework

Up to 9x speedup

[4] RISC-V ISA
extension imple-
mentation

2 Variable Precision
RISC-V accelerator

12x power increase

[25] RISC-V ISA exten-
sion

2 Dual-issue RISC-V
core

Performance
improvement

34

[17] RISC-V ISA exten-
sion

2 Multi-precision
RISC-V architec-
ture

36% energy saving

[10] RISC-V ISA simu-
lation

2 RISC-V instruc-
tion set simulator

46 average MIPS

[18] RISC-V ISA exten-
sion

2 RISC-V co-
processing

Area and power re-
duction

[8] RISC-V ISA exten-
sion for NN

2 RISC-V QNN cus-
tomization

9x energy effi-
ciency

This work

[27]& [29]
RISC-V ISA exten-
sion

5 Extending Pop-
Count instruction

2x performance
improvement

2.3 Literature review comparison

The workload modeling studies include similar work such as LSLA [34] and paral-
lel dataflow [12] with similar methodology. Also, the period graph study [3] has
related evaluation metric as this work. On the other hand, the difference between
the studies lies in the application parallelization, i.e., OpenCL or the platform se-
lection, i.e., the GPU. The ISA extension studies have similarities in the selection of
RISC-V ISA although they selected different types of instructions or have different
implementations. In this work, the Instruction Set Simulator (ISS) is used where a
GNU RISC-V compiler is edited to cover the PopCount instruction with no physical
implementation.

35

36

3 METHODOLOGY

This work targets improvements from two different aspects: improving platform
modeling by the means of workload modeling, as well as implementing an RISC-
V ISA extension. The applications, tools, input data, platforms, and measurement
methods as well as the techniques and platforms utilized are described for each of
these aspects.

3.1 Workload modeling

Four representative OpenCL applications were considered including Matrix multi-
plication, predistortion, Gaussian filtering, and PopCount, which are executed with
random data inputs. Two different GPUs which are known as Mali on Odroid XU3
[24] and AMD RX 460, i.e., Baffin [1] on a desktop computer were selected. Two
different shell scripts were used for profiling the applications on each of the plat-
forms. One of the shell scripts was used for collecting the execution time data only
on the Baffin GPU while the other was used for collecting both the execution time
and power dissipation data through a wire connection on the Odroid XU3 platform,
as it has built-in power sensors. The collected profiling data was used for studying
the workload optimization and proposing the performance and power models pre-
sented in this work with a Matlab script. For example, Figure 3.1 shows the stages
of the proposed model’s utilization on an unknown platform. In this figure, the
OpenCL implementation, Shell script, and Matlab script usages are demonstrated
in order from stage 1 to 3.

37

Figure 3.1 Workload modeling method.

S is the input data quantity, γ is the parallelism factor, α shows the reciprocal of the slope, andβ depicts
the intercept.

3.2 RISC-V ISA extension methods

The RISC-V ISA extension was studied with the PopCount [27] instruction addition
to the open source GNU RISC-V compiler. One C implementation of a binarized
neural network application known as the vehicle classifier [14] was selected, which
is run with camera images of four vehicle types. The modified compiler was used
for compiling the C code for the RISC-V ISA assembly that included the PopCount
instruction. No commercial RISC-V processor with a hardware implementation of

38

the PopCount instruction was available thus the Extendable Translating Instruction
Set Simulator (ETISS) by [22] was used for exploring the effect of the addition of
PopCount, and the ETISS simulator was modified to cover the PopCount instruc-
tion.

3.2.1 ETISS simulator

ETISS has multiple ISA support, including RISC-V. It provides semi-automated in-
struction additions and has a straightforward procedure. Its successful execution
results in a simulation and performance data display which could be edited to show
more details such as the printing of all of the executed assembly instructions. In ad-
dition, as the targeted platform is PULPino [35], the relevant library files are used.
The PULPino is an open source RISC-V microcontroller. It is reconfigurable for
covering RISCY or the zero-riscy core. The ETISS simulator has the advantage of
being open source while its codes can be edited to cover extra functionalities.

3.3 Use case applications

The selected applications for the experiments have wide usage areas such as signal
processing, wireless communication, or machine learning. They have been selected
by their use in other research studies. Verification of the use case is beyond the scope,
but it is stated that they are sufficient for the methodology development purposes.

In this study four applications were selected: matrix multiplication, predistor-
tion, Gaussian filtering, and the vehicle classifier. The matrix multiplication, pre-
distortion, Gaussian filtering applications were used in the modeling studies as they
are common embedded system applications. Also, the vehicle classifier was used in
the ISA extension as it includes a population count instruction. It is a neural net-
work image processing application which detects vehicle types according to pictures
of them.

39

40

4 WORKLOAD MODELING OF

HETEROGENEOUS PLATFORMS

The LSLA [34] concept covers multi-core CPU platforms while many current plat-
forms also include a GPU. Such heterogeneous platforms require an extension to the
LSLA in order to cover the GPU. The proposed model is named GSLA which adds
a new parameter for parallelism and support to OpenCL applications. OpenCL ap-
plications use the CPU as the host for the GPU. Thus, a simple MoA was designed
for the investigations. Figure 4.1 depicts the MoA, which consists of two processing
elements called PE1 and GPU and one communication node named CN. The PE1
is the host device of the OpenCL applications, which communicates with the GPU
through CN.

OpenCL applications include the kernel code which runs in the GPU and the
main code in the CPU, including OpenCL API calls and I/O management. Figure
4.2 illustrates two computations named I/O and Kernel and presents their commu-
nication as a two-sided arrow. The execution of the application shown by MoC on
the platform presented by MoA is depicted by mapping the MoC to the MoA where
the dash lines show the mapped computations on the relevant processing element or
communication node. The execution costs such as execution time or power dissipa-
tion are shown as tokens in the arcs on the dash lines. Figure 4.3 shows the mapping
of the model of the computation on the model of the architecture.

The total execution cost is presented in Equation 4.1, which is the sum of the

PE1 GPUCN

Figure 4.1 Model of Architecture.

41

KernelI/O

Figure 4.2 Model of Computation.

Figure 4.3 Mapping of MoC on MoA.

costs of the processing elements and the costs of the communication nodes. λ shows
the scaling coefficient between the processing units and the communication cost. Tp

depicts the collection of processing element tokens while Tc represents the collection
of the communication node tokens. Also, t represents any token.

cos t (A, P) =
∑

t∈Tp

cos t (t , ma p(t))+λ
∑

t∈Tc

cos t (t , ma p(t)) (4.1)

In this study, the execution costs of the OpenCL applications are examined and
two models are presented: one for performance and the other for the power dissipa-
tion of the system.

4.1 Performance modeling

The execution time of the OpenCL applications can be modeled with GSLA [32] as
a simple linear model as the sum of the costs of the three elements of the MoA, i.e.,
the cost functions of PE1, CN, and GPU. The total execution time is presented as
(tw) in Equation 4.2 as the sum of the execution costs of the kernel, i.e., (tk) plus the
execution cost of the processing elements, i.e., (t1) plus the execution costs of the

42

Figure 4.4 An example of the S and γ variables.

communication node, i.e., (tc).

tw = tk + t1+ tc (4.2)

The cost functions are presented in Equations 4.3, 4.4, and 4.5 where they all
have two variables named S and γ and two parameters named α and β. Here, S is
the input data quantity and γ is the parallelism factor. Figure 4.4 shows an example
of S and γ variables with values of 512 and 8. Also, in the models the α shows the
reciprocal of the slope, and β depicts the intercept. α and β are coefficients of the
equations and they are calculated for each specific system.

tk (γ , S) = (αg/γ +βg)× S (4.3)

t1(γ , S) = (α1/γ +β1)× S (4.4)

tc (γ , S) = (αc/γ +βc)× S (4.5)

4.2 Power modeling

The power dissipation of the OpenCL applications are representable by our pro-
posed power model, as shown in Equation 4.6. The total power dissipation of the

43

Figure 4.5 Trading off between different aspects of the modeling.

OpenCL application is denoted by Pt and has two variables named S and γ and three
parameters named ag p u , bg p u , and cg p u . ag p u , bg p u , and cg p u are coefficients of the
equations similar to the α and the β coefficients of the 4.3, 4.4, and 4.5 equations.
In the experiments, the ag p u parameter was a fixed constant value for all the tested
applications, which suggests it is static power dissipation. On the other hand, when
the ag p u parameter is removed, i.e., having the same equation for both performance
and power, the R-squared value decreases. The R-squared value is a metric for corre-
lation calculation and here it is used for evaluating the proposed model. It is a value
between 0 and 1 and shows a better correlation as its value gets closer to 1.

pt (γ , S) = ag p u + bg p u S + cg p u S/γ (4.6)

4.3 Proposed models

This modeling approach has practical benefits. The simplicity of the model and its
generalizability together with its evaluation with a fidelity metric provide a useful
modeling approach. The concept is illustrated in Figure 4.5.

Equations 4.1-4.6 show the results of the workload modeling of this work. Here
two workload models are proposed for the execution of OpenCL applications on
GPUs. The selection criteria of these models is based on the complexity and fidelity
trade-off, i.e., introducing powerful but simple models with the lowest possible com-
plexity.

Figure 4.6 presents the development and the utilization of the models. The model

44

development section in blue shows the model creation phases step by step, whereas
the model usages in green depict the two utilization approaches of the presented time
and power models.

In model development, first the test data and a parallelizable application are se-
lected, taking the data size into consideration. Also, a MoC for the application and
a MoA for the platform are designed as schematics. Then, the OpenCL implemen-
tation of the parallel application is made. Later, the application is edited to receive
the S and γ parameters as command line inputs that are affected by the input data
size of the application, the parallelization capacity of the platform, and the relation
of S to γ . The compiled application is executed and the correctness of the outputs
is checked. Then, the application with considered S and γ values is run on the se-
lected platform and the profiling data is collected. The data includes the execution
time and power dissipation without any runtime error. Later, the Lsqlin function in
Matlab is used to fit the average of the collected data points. After multiple use case
modeling, GSLA models for time and power as well as curve fitting parameters are
proposed.

In the model utilization for a known platform, first the input data is considered
and the OpenCL implementation of a parallelizable application is carried out. Then,
the application is edited to receive the S and the γ parameters as inputs. Later, the
application is run on the known platform, thus profiling is not required and the same
α andβ parameters for the time equation and the same a, b , and c parameters for the
power equation are used. The models show the estimated execution time and power
dissipation values for the selected input data size and the parallelization factor.

In the model utilization for an unknown platform, first the OpenCL implemen-
tation of the selected parallelizable application is implemented, taking the input data
size of the application and the parallelization factor into consideration. Then, the
application is run on a reference platform and the profiling data is collected. The col-
lected data about the execution time and the power dissipation is used in the Matlab
script to provide the new platform specific parameters. Later, the equations with the
calculated parameters are used to estimate the execution time and power dissipation
values of the application. In addition, these parameters could be reused for similar
applications or platforms. If only the MoC of the application is available, i.e., no
physical platform or MoA to execute the code on, the previously collected data of
similar platforms could provide initial guesses, e.g., expecting similar cost function

45

M
o

d
el

 D
ev

el
o

p
m

en
t

Kn
o

w
n

 P
la

tf
or

m

Te
st

 D
at

a
-

R
a

n
d

o
m

ly
 g

en
e

ra
te

d

-
P

ri
va

te

A
lg

o
ri

th
m

-
P

ar
al

le
liz

a
b

le

In
p

u
t

D
at

a
P

ar
al

le
l a

lg
o

ri
th

m

-
O

p
en

C
L

im
p

le
m

e
n

ta
ti

o
n

-
P

ar
am

e
tr

iz
e

d

Tr
a

ce

-
E

xe
cu

ti
o

n
 t

im
in

g

-
P

o
w

e
r

co
n

su
m

p
ti

o
n

-
M

e
m

o
ry

 o
ve

rf
lo

w
 f

la
g

C
u

rv
e

fi
tt

in
g

to

m
ea

su
re

m
en

t
p

o
in

ts

-
M

a
tl

a
b

 ls
q

lin
 f

u
n

ct
io

n

 G
S

LA

Se
t

o
f

p
a

ra
m

e
te

rs

th
a

t
m

o
d

e
l/

p
re

d
ic

t
p

e
rf

o
rm

an
ce

 a
n

d

p
o

w
er

 (
se

p
ar

at
el

y)

R
e

su
lt

:
C

u
rv

e
fi

tt
in

g
p

ar
am

e
te

rs
o

f
th

e
p

la
tf

o
rm

 (
α
,β

)
o

r
(a

,
b

, c
)

P
a

ra
ll

el
is

m
 f

a
ct

o
r
ϒ

-
D

e
p

en
d

s
o

n
 t

h
e

n

u
m

b
er

 o
f

p
ar

a
lle

l
p

ro
ce

ss
in

g
 e

le
m

en
ts

o

f
th

e
p

la
tf

o
rm

 a
n

d

th
e

ir
 u

sa
g

e

M
o

C

-
Si

gn
a

l f
lo

w
 g

ra
p

h

M
o

A

-
B

lo
ck

 d
ia

gr
a

m

-
N

u
m

b
e

r
o

f
co

re
s

an
d

 t
h

e
ir

 t
yp

es

D
a

ta
 s

iz
e

 f
a

ct
o

r
S

-
D

e
p

en
d

s
o

n

al
g

o
ri

th
m

 a
n

d
 it

s
d

a
ta

 t
yp

e
s

-
D

e
p

en
d

s
o

n
 t

e
st

d

at
a -
fe

as
ib

le
 S

 a
n

d
 ϒ

P
ar

al
le

l a
lg

o
ri

th
m
 A

1
-

O
p

en
C

L
im

p
le

m
e

n
ta

ti
o

n

 G
S

LA
 f

o
r

kn
o

w
n

 p
la

tf
o

rm

E
st

im
at

io
n

-
E

xe
cu

ti
o

n
 t

im
in

g

-
P

o
w

e
r

co
n

su
m

p
ti

o
n

S ϒ

Th
e

re
su

lt
 o

f
th

e
p

a
p

er

P
la

tf
o

rm
-

R
e

al
 p

la
tf

o
rm

-
M

a
li

an
d

 B
af

fi
n

 G
PU

s

C
o

m
p

ila
ti

o
n

 &
 E

xe
cu

ti
o

n

(α
,β

)
o

r
(a

,
b

, c
)

In
p

u
t

D
at

a

P
ar

al
le

l a
lg

o
ri

th
m
 A

2
-

O
p

en
C

L
im

p
le

m
e

n
ta

ti
o

n

E
st

im
at

io
n

-
E

xe
cu

ti
o

n
 t

im
in

g

-
P

o
w

e
r

co
n

su
m

p
ti

o
n

S ϒ

C
u

rv
e

fi
tt

in
g

p
ar

am
e

te
rs

o
f

p
la

tf
o

rm
 X

-
(α
,β

)
o

r
(a

,
b

, c
)

Tr
a

ce

-
E

xe
cu

ti
o

n
 t

im
in

g

-
P

o
w

e
r

co
n

su
m

p
ti

o
n

C
o

m
p

ila
ti

o
n

 &
 E

xe
cu

ti
o

n
-

P
la

tf
o

rm
 X

 G
S

LA
 f

o
r

n
ew

 p
la

tf
o

rm
 X

U
n

kn
ow

n
 P

la
tf

o
rm

Figure 4.6 Development and utilization workflow.

46

parameters and similar graphs. In this case, the model utilization would be for the
known platform but it would be an initial estimation rather than the actual usage of
the proposed model, i.e., the S and the γ parameters and the arguments to calculate
the execution time or power dissipation from the cost function formula are required.

4.4 Population count analysis

Further analysis of the proposed performance and power models is investigated from
the aspect of neural network applications. The popularity of the neural network
applications and suggested performance improvements in recent studies, e.g., [14]
motivated the selection of the PopCount algorithm in this study. The PopCount
instruction has high utilization in the binary convolution of neural network appli-
cations.

4.4.1 PopCount instruction

The PopCount algorithm receives a string of zeros and ones and outputs a number
showing the number of ones in that string. There are multiple implementations
for the PopCount calculation. Here three of them have been selected for further
investigations with OpenCL kernel code. The selected algorithms include a native
OpenCL function call 1, LLVM implementation 2, and the adder tree method 3.
These kernel codes are disassembled by editing the 4th parameter of the clBuildPro-
gram call in the OpenCL code which resulted in five files outputs. One of the files,
i.e., .isa contains the assembly code equivalent of the kernel code.

Algorithm 1 OpenCL Kernel Native Instruction
__kernel void
PopC (
__global int ∗ C,
__global int ∗ A,
{
C[get_global_id(0)] = popcount(A[get_global_id(0)]);
}

The experiments were performed on the AMD Baffin GPU and the disassembling

47

Algorithm 2 OpenCL Kernel LLVM Implementation [21]
__kernel void
PopC_2 (
__global int ∗ C,
__global int ∗ A,
{
int x=A[get_global_id(0)];
x= x− ((x>> 1)& 0x55555555);
x= ((x>> 2)& 0x33333333)+ (x & 0x33333333);
x= (x+(x>> 4))& 0x0f0f0f0f;
x= (x+(x>> 16));
C[get_global_id(0)] = (x+(x>> 8))& 0x0000003F;
}

Algorithm 3 OpenCL Kernel Adder Tree Method
__kernel void
PopC_3 (
__global int ∗ C,
__global int ∗ A,
{
int x=A[get_global_id(0)];
ushortx_l= x;
ushortx_h= (x>> 16);
int res_l= popcount(x_l);
int res_h= popcount(x_h);
C[get_global_id(0)] = res_l+ res_h
}

results showed 23 assembly instructions 4 for the native OpenCL function call, 36
assembly instructions 5 for the LLVM implementation, and 27 assembly instructions
6 for the adder tree method. All disassembly codes have the same first 16 and 2 last
instructions which are grayed out for easier comparison.

The compiler converts the C code to the assembly according to the platform. For
example, Figure 4.7 shows the 14 logical operations of the LLVM implementation
of the PopCount algorithm and Algorithm 5 shows its equivalent assembly on an
AMD Baffin GPU. Instruction number 18 in the algorithm is the first instruction,
i.e., 1_SHIFT in the graph. The instructions are the same up to number 10 in the

48

graph, i.e., 10_ConstAND which is the number 27 in the assembly. Then, there is
an extra v_add_u32 instruction in the assembly. Later, it continues the same up to
number 12 in the graph, i.e., 12_ADD which is followed by an extra v_add_u32 in-
struction again. The last two instructions in the graph, i.e., 13_SHIFT and 14_ADD
are converted into the three instructions of v_mov_b32, v_addc_u32, and v_and_b32
in the assembly. Consequently, the 14 logical operations are converted into 18 assem-
bly instructions for the real platform.

Algorithm 4 OpenCL Kernel Native Instruction Disassembly
{
1 : s_load_dword s0, s[4 : 5], 0x04
2 : s_waitcnt lgkmcnt(0)
3 : s_and_b32 s0, s0, 0x0000ffff
4 : s_mul_i32 s0, s0, s8
5 : v_add_u32 v0, vcc, s0, v0
6 : s_load_dwordx2 s[0 : 1], s[6 : 7], 0x00
7 : s_load_dwordx4 s[4 : 7], s[6 : 7], 0x30
8 : s_waitcnt lgkmcnt(0)
9 : v_add_u32 v0, vcc, v0, s0
10 : v_mov_b32 v1, s1
11 : v_addc_u32 v1, vcc, 0, v1, vcc
12 : v_lshlrev_b64 v[0 : 1], 2, v[0 : 1]
13 : v_add_u32 v2, vcc, s6, v0
14 : v_mov_b32 v3, s7
15 : v_addc_u32 v3, vcc, v3, v1, vcc
16 : flat_load_dword v2, v[2 : 3]
17 : v_add_u32 v0, vcc, s4, v0
18 : v_mov_b32 v3, s5
19 : v_addc_u32 v1, vcc, v3, v1, vcc
20 : s_waitcnt vmcnt(0)& lgkmcnt(0)
21 : v_bcnt_u32_b32 v2, v2, 0
22 : flat_store_dwordv[0 : 1], v2
23 : s_endpgm
}

49

Algorithm 5 OpenCL Kernel LLVM Implementation Disassembly
{
1 : s_load_dword s0, s[4 : 5], 0x04
2 : s_waitcnt lgkmcnt(0)
3 : s_and_b32 s0, s0, 0x0000ffff
4 : s_mul_i32 s0, s0, s8
5 : v_add_u32 v0, vcc, s0, v0
6 : s_load_dwordx2 s[0 : 1], s[6 : 7], 0x00
7 : s_load_dwordx4 s[4 : 7], s[6 : 7], 0x30
8 : s_waitcnt lgkmcnt(0)
9 : v_add_u32 v0, vcc, v0, s0
10 : v_mov_b32 v1, s1
11 : v_addc_u32 v1, vcc, 0, v1, vcc
12 : v_lshlrev_b64 v[0 : 1], 2, v[0 : 1]
13 : v_add_u32 v2, vcc, s6, v0
14 : v_mov_b32 v3, s7
15 : v_addc_u32 v3, vcc, v3, v1, vcc
16 : flat_load_dword v2, v[2 : 3]
17 : s_waitcnt vmcnt(0)& lgkmcnt(0)
18 : v_lshrrev_b32 v3, 1, v2
19 : v_and_b32 v3, 0x55555555, v3
20 : v_sub_u32 v2, vcc, v2, v3
21 : v_lshrrev_b32 v3, 2, v2
22 : v_and_b32 v2, 0x33333333, v2
23 : v_and_b32 v3, 0x33333333, v3
24 : v_add_u32 v2, vcc, v3, v2
25 : v_lshrrev_b32 v3, 4, v2
26 : v_add_u32 v2, vcc, v3, v2
27 : v_and_b32 v2, 0x0f0f0f0f, v2
28 : v_add_u32 v2, vcc, v2, v2 src0_sel : WORD_1
29 : v_lshrrev_b32 v3, 8, v2
30 : v_add_u32 v2, vcc, v3, v2
31 : v_add_u32 v0, vcc, s4, v0
32 : v_mov_b32 v3, s5
33 : v_addc_u32 v1, vcc, v3, v1, vcc
34 : v_and_b32 v2, 63, v2
35 : flat_store_dword v[0 : 1], v2
36 : s_endpgm
}

50

Figure 4.7 PopCount LLVM Logical Operations.

51

Algorithm 6 OpenCL Kernel Adder Tree Method Disassembly
{
1 : s_load_dword s0, s[4 : 5], 0x04
2 : s_waitcnt lgkmcnt(0)
3 : s_and_b32 s0, s0, 0x0000ffff
4 : s_mul_i32 s0, s0, s8
5 : v_add_u32 v0, vcc, s0, v0
6 : s_load_dwordx2 s[0 : 1], s[6 : 7], 0x00
7 : s_load_dwordx4 s[4 : 7], s[6 : 7], 0x30
8 : s_waitcnt lgkmcnt(0)
9 : v_add_u32 v0, vcc, v0, s0
10 : v_mov_b32 v1, s1
11 : v_addc_u32 v1, vcc, 0, v1, vcc
12 : v_lshlrev_b64 v[0 : 1], 2, v[0 : 1]
13 : v_add_u32 v2, vcc, s6, v0
14 : v_mov_b32 v3, s7
15 : v_addc_u32 v3, vcc, v3, v1, vcc
16 : flat_load_dword v2, v[2 : 3]
17 : s_waitcnt vmcnt(0)& lgkmcnt(0)
18 : v_bfe_u32 v3, v2, 0, 16
19 : v_lshrrev_b32 v2, 16, v2
20 : v_bcnt_u32_b32 v3, v3, 0
21 : v_bcnt_u32_b32 v2, v2, 0
22 : v_add_u32 v2, vcc, v2, v3 src0_sel : WORD_0src1_sel : WORD_0
23 : v_add_u32 v0, vcc, s4, v0
24 : v_mov_b32 v3, s5
25 : v_addc_u32 v1, vcc, v3, v1, vcc
26 : flat_store_dword v[0 : 1], v2
27 : s_endpgm
}

4.4.2 PopCount modeling

The OpenCL implementation of the PopCount algorithm is coded where the ker-
nel receives an array of integer numbers and returns the PopCount results of each
number. The kernel is designed as a two dimensional indexing space where the first
dimension is a fixed value of 16, meaning that the kernel works on arrays which
have 16 elements. The second dimension value is a variable presenting the γ ,i.e., the

52

parallelization factor showing the number of vectors that the kernel performs the
computations on. Also, S, i.e., work size is implemented as the iterations of a for
loop calculated as S divided by γ . For example, when γ is 8 and S is 512, the ker-
nel receives 8 arrays each with 16 values, which in total becomes 128 numbers when
repeating the calculations 64 times. See Figure 4.4.

The shell scripts are used for benchmarking on the Baffin GPU and have nested
loops with the program execute command with two command line arguments values
for S and γ . The argument sets in the scripts have the same values as the previous
experiments in order to provide comparable results. For benchmarking, the same S
and γ sets were used for all applications. S ∈ { 512, 1024, 2048, 4096, 8192, 16384
} and γ ∈ { 8, 16, 32, 64, 128, 256}. The measured values are read by the Matlab
script of the proposed performance model which prints the parameters, the fidelity
value, and the graph. See Figure 4.8. The blue dots in the figure are the average of
10 iterations for each relevant S and γ value.

Table 4.1 presents the PopCount parameters in addition to the algorithms of the
three previous studies on the Baffin GPU. Table 4.2 shows the Kendall tau coefficient
of the studied algorithms on the Baffin GPU. It is an association evaluation metric
which shows the strength of the association with a value between −1 and 1. The
zero value would show independence between the model and its measurements. As
the value gets closer to 1 it shows better correlation, i.e., is more desirable. In these
tables B1 is the matrix multiplication, B2 is the predistortion, B3 is the Gaussian
filtering, and B4 is the PopCount algorithm.

Table 4.1 Parameters of functions.

Application αg βg α1 β1 αc βc

B1 0.001 0.008 0.000 0.004 0.005 0.068

B2 0.005 0.049 0.002 0.003 0.060 0.000

B3 0.000 0.051 0.002 0.000 0.004 1.074

B4 0.000 0.004 0.000 0.000 0.002 0.054

53

Table 4.2 Fidelity values.

Application Fidelity GSLA Fidelity LSLA

B1 0.88 0.75

B2 0.90 0.92

B3 0.91 0.62

B4 0.79 0.55

Figure 4.8 Population count graph.

γ is the parallelization factor, S is the work size, and t w is the time in milliseconds.

54

4.4.3 Modeling conclusion

In this study, four applications were considered in terms of performance and power
dissipation. The proposed GSLA model was examined for its correctness and fea-
sibility with the fidelity metric. The results of the experiments showed a value be-
tween 0.79 and 0.91 for performance modeling on the Baffin platform. Thus, these
observations suggest that the utilization of the model is feasible. In case of paralleliz-
able applications like matrix multiplication, predistortion, and Gaussian filtering,
the fidelity results are good while in case of the worst case, i.e., PopCount, it shows
an expected reduction.

The LSLA study investigated the system of C applications on a multi-core CPU
platform while the present work considers OpenCL applications on the GPU. In
the experiments the GPU unit provided multiple processing elements and the three
algorithms of matrix multiplication, Gaussian filtering, and predistortion supply
the parallel applications. During benchmarking, the execution time and the power
dissipation were measured and the collected data was used for modeling. The linear
regression method was used for studying the relations between the workload and
the execution costs such as time and power, and the Kendall tau metric was used for
selecting the appropriate model. The investigations resulted in two models: one for
performance and the other for the power dissipation of the system.

The proposed GLSA modeling approach has a simple equation while providing a
reasonable fidelity value. Also, the same equation of performance modeling with the
addition of a constant value is used for power modeling. In addition, the cost func-
tions of the LSLA are replaced with GSLA equations in order to cover the execution
of OpenCL applications on GPU platforms.

The evaluation of the results with the Kendall tau metric for the workload mod-
eling together with the linear regression method of the OpenCL applications on the
GPU shows a fidelity value between 0.79 and 1.00 for performance, and a value be-
tween 0.74 and 0.94 for power dissipation on both the Baffin and Mali platforms.

55

56

5 RISC-V NON-STANDARD INSTRUCTION

EXTENSIONS

The RISC-V ISA is a simple, widely adopted, and open source instruction set ar-
chitecture. It has multiple standard extensions that add some extra instructions to
the pipeline of the basic processing elements. These extra instructions reduce the
total number of compiled assembly instructions as they replace the compiler’s built-
in function calls. The reduction of the assembly code improves performance, es-
pecially for algorithms that have a lot of data manipulation functions. Beside the
standardized extensions, there are some promising non-standard extensions such as
BMI, which are considered in this work. The focus of this work is on the PopCount
instruction, as it has a high utilization rate in machine learning applications, suggest-
ing performance improvement potential.

5.1 RISC-V BMI extension

One of the bit manipulation instruction extensions is the PopCount or hamming
weight, which is not included in the standard RISC-V ISA extensions. The Pop-
Count instruction calculates the number of ones, e.g., in a byte it returns how many
of the eight digits are one. This instruction has considerably high utilization in the
current trend applications in research such as CNNs, especially in binarization CNN
algorithms implemented by packing binarized weights for suitable operations in-
stead of executing many times per weight. The CNN applications show justifiable
performance and accuracy for previously considered unjustifiable classifications ap-
plications on low power platforms like RISC-V. The energy efficiency aspect of the
RISC-V platforms and the ability of CNN applications motivated the investigation
of a system optimization, consisting of vehicle classification on PULPino, which is
an open source RISC-V core. In addition, PopCount is not supported by any RISC-

57

V microcontroller on the market as it is a non-standard extension. Consequently,
the RISC-V ETISS [22] with PULPino [45] support was considered in this study.
Also, the RISC-V GCC compiler was selected as a mature compiler. Further, ETISS
only supports the virtual prototype of the base RISC-V ISA, therefore modification
was applied to ETISS in order to cover the PopCount instruction. This modifica-
tion was implemented by studying the executed instructions and notation of unused
instructions of the use case vehicle classification application [28]. Thus, the XORI
instruction implementation on ETISS was modified to perform PopCount for XORI
with a specific immediate value. The results showed an execution time reduction of
more than double and 2 KB decrease in instruction memory footprint.

5.2 RISC-V extension design flow

Inclusion of the new instructions to the RISC-V ISA requires changes to the com-
piler, simulator, and hardware design tool. In this thesis, the compiler and simula-
tor modifications are covered and a design flow for the RISC-V GCC compiler and
ETISS simulator is presented. [30]. The first six levels of the proposed design flow
named L0 to L5 show the compiler and simulator modification. Figure 5.1 shows the
first three levels from initial specifications, i.e., the bit pattern of the new instruction
and the standard RISC-V ISA extension data up to the outputs of L2, which are the
object copy and GCC compiler tools. Figure 5.2 presents the output of L3 up to the
output of L5, which is the simulation of the binary file and extraction of the execu-
tion time report from the simulator. The effort analysis of the proposed design flow
showed around two hours of work effort for the inclusion of a new instruction in
the RISC-V ISA. The idea is not to add a new unit to the CPU micro architecture
but to use existing units by means of the new instructions.

5.2.1 Compiler modification

The addition of the new instruction to the GNU RISC-V compiler is presented in
three steps. First, the bit pattern of the new instruction should be decided according
to the RISC-V specification complying the instruction types. Also, the standard
extension and the relevant flags for the RISC-V GCC compiler should be selected.
See L0 in Figure 5.1. Second, a uniqueness check of the considered pattern for the

58

riscv-tools riscv-gnu-toolchain

tmp.h

riscv-opc.c

opcodes.txt riscv-opc.h

riscv32-
unknown-elf-
objcopy

riscv32-
unknown-elf-

gcc

L2L1L0

NewInstuction
BitPattern.txt

Standard
Extension
Flags.txt

Figure 5.1 Compiler modification design flow.

new instruction should be performed, as each instruction should have its own unique
and distinguishable pattern for the processor’s decoder unit detection. This check
could be done with some tools such as riscv tools where the opcodes text file with
its own specific pattern is read and the equivalent header file for the GCC RISC-V
compiler is supplied, see L1 in Figure 5.1. Third, the header file and the C files of
the RISC-V opcodes are edited accordingly in the riscv-gnu-toolchain tool. Then,
the standard flags from L0 are used to run the tool and provide the RISC-V compiler
with the new instruction support, see L2 in Figure 5.1. The produced compiler is
used to compile the application written in C for the RISC-V assembly.

5.2.2 Simulator modification

The architectural change to the ETISS simulator is implementable with the m2-isa-r
tool, which is an Eclipse application [6]. First, this tool requires the algorithm of
the new instruction and its bit pattern. The modification of the nML file results in a
RISC-V architecture file in CPP language, see L4 in Figure 5.2. Second, the address
of the compiled binary in L3 should be included in the ETISS initialization file and
the new architecture files produced in L4 should be applied to the ETISS simulator.
Then, running the ETISS simulator results in printing the outputs of the compiled
application and ETISS reports, one of which is the CPU time, see L5 in Figure 5.2.

5.2.3 ISA extension conclusions

Extending the instruction set of the processing elements by supplying the hardware
implementations reduces the number of clock cycles it takes to execute an unsup-

59

ETISS Simulator

ETISS.ini
CPU Time

RISCV.nml
RISCVArch

.cpp

m2-isa-r

L3 L4 L5

NewInstuction
BitPattern.txt

Algorithm.c

Application.bin

L0

Figure 5.2 Simulator modification design flow.

ported instruction from multiple to usually one clock cycle. Consequently, the total
number of assembly instructions is reduced, which improves the performance. De-
pending on the application and the frequency of the targeted instruction in the ap-
plication’s machine code a minimal hardware overhead could significantly improve
the execution cost.

There are several techniques for the optimization of hardware implementations
such as the inclusion of hardware accelerates. The RISC-V BMI study by [16] pro-
vides a RISC-V ISA extension which improves the performance of the system pro-
filing. In addition, there are several evaluation techniques for effectiveness analyses
such as simulating or prototyping. The ETISS [22] simulator shows the timing data
and early design stage view of the targeted system.

In the study, the frequency of the PopCount instruction in the machine code
of neural network applications motivated its further investigation. Consequently,
the RISC-V GNU compiler was edited to cover the PopCount instruction in or-
der to provide a comparison between the algorithm and the extended instruction.
The compilations showed the replacement of 14 instructions with the expanded 1
instruction and a clear instruction memory reduction. For the timing examination,
the simulation methodology with ETISS was used where the vehicle classifier appli-
cation showed around double the improvement in performance.

The performance gain is around double and the effort required for editing the
compiler and simulator for validation is reasonable. Also, the studied vehicle classi-
fier application has a considerable number of PopCount instructions which suggests
its RISC-V extension benefit.

The outcome analysis of the RISC-V ISA extension with the PopCount instruc-
tion for a neural network application known as a vehicle classifier using the ETISS
simulator demonstrates more than 2x performance improvement.

60

6 CONCLUSIONS

This work addressed improvements on system modeling and execution of signal pro-
cessing algorithms on RISC-V processors. Both aspects were verified using embedded
platforms and representative signal processing applications.

For workload modeling, the Odroid XU3 platform featuring the ARM Mali T628
MP6 GPU and onboard sensors, in addition to a desktop machine including an AMD
Baffin Radeon RX 460, were considered for four parallel algorithms with OpenCL
API for matrix multiplication, Gaussian filtering, predistortion, and PopCount. A
shell script supplied the commands for the broad connection, data transfer, code
compilation, and execution while generating the workload size, i.e., S and paral-
lelizing factors, i.e., γ parameters as the command line inputs for the applications.
During the benchmarking, the power sensor and clock data was collected and was
later sent as inputs to the Matlab script for modeling. The Matlab scripts read the
collected power and time measurements for the relevant S and γ values and used a
linear regressing technique for modeling the system and the Kendall tau metric for
evaluations.

For the second part, RISC-V ISA was selected for the bit manipulation instruction
(BMI) exploration of neural network applications. The GNU RISC-V compiler was
edited to cover the PopCount instruction and the compilation of the inline assembly
generated the relevant machine code. Comparison of the edited compiler’s output
with the PopCount algorithm shows a clear reduction of the number of instructions,
i.e., 14 instructions. The ETISS simulator was used for the simulation of the vehicle
classifier application on the Pulpino platform.

6.1 Addressing the research problem

The research problems on platform modeling and ISA extensions included five main
questions. In the platform modeling section there were three issues. First, the in-

61

troduced GSLA provides a trade-off between simplicity and usefulness. Second, the
same GSLA is shown to be usable for both performance and power modeling with
the introduction of a constant as the static power dissipation of a system. Third, the
GSLA expands the LSLA for single kernel OpenCL applications. The ISA exten-
sion research had two research questions. First, the PopCount shows a performance
gain of around a double for vehicle classifier applications, whereas the addition of
PopCount to an ISA requires a compiler and in our case, editing of the simulator
code. Second, the PopCount instruction is frequently utilized in the convolution
calculations of neural network applications, which means significant benefit in its
hardware realization.

6.2 Future work

The original LSLA model covers multi-core CPUs, whereas the presented perfor-
mance and power models consider the GPU. The workload study could be further
investigated for GPU and CPU co-utilization where the workload is balanced be-
tween CPU and GPU simultaneously. In addition, the OpenCL support of the
Preesm tool could facilitate model exploration and much faster statistical analysis.

The PopCount instruction extension of the RISC-V ISA was evaluated here with
the ETISS simulator which describes the cycle timing data. Further examination
could be made by including a special accelerator HW for the instruction and explor-
ing the effect on FPGA prototyping. Neural network applications could be further
explored for other instruction extensions.

62

REFERENCES

[1] ARM Radeon RX 460. URL: https://www.amd.com/en/products/graphics/
radeon-rx-460 (visited on 06/03/2021).

[2] F. Arrestier, K. Desnos, E. Juarez and D. Menard. Numerical representation
of directed acyclic graphs for efficient dataflow embedded resource allocation.
ACM Transactions on Embedded Computing Systems (TECS) 18.5s (2019), 1–22.

[3] N. Bambha and S. S. Bhattacharyya. A joint power/performance optimization
algorithm for multiprocessor systems using a period graph construct. Proceed-
ings 13th International Symposium on System Synthesis. IEEE. 2000, 91–97.

[4] A. Bocco, Y. Durand and F. De Dinechin. SMURF: Scalar Multiple-precision
Unum Risc-V Floating-point Accelerator for Scientific Computing. Proceed-
ings of the Conference for Next Generation Arithmetic 2019. 2019, 1–8.

[5] M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner and L. Benini. Ara: A 1-
GHz+ Scalable and Energy-Efficient RISC-V Vector Processor With Multi-
precision Floating-Point Support in 22-nm FD-SOI. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems (2019).

[6] Eclipse Application. URL: https://www.eclipse.org/ (visited on 06/11/2021).

[7] P. Eitschberger, S. Holmbacka and J. Keller. Trade-Off Between Performance,
Fault Tolerance and Energy Consumption in Duplication-Based Taskgraph
Scheduling. International Conference on Architecture of Computing Systems. Springer.
2018, 3–17.

[8] A. Garofalo, G. Tagliavini, F. Conti, D. Rossi and L. Benini. XpulpNN: ac-
celerating quantized neural networks on RISC-V processors through ISA ex-
tensions. 2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE. 2020, 186–191.

63

[9] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi, E. Fla-
mand, F. K. Gürkaynak and L. Benini. Near-threshold RISC-V core with DSP
extensions for scalable IoT endpoint devices. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 25.10 (2017), 2700–2713.

[10] V. Herdt, D. Große, P. Pieper and R. Drechsler. RISC-V based virtual proto-
type: An extensible and configurable platform for the system-level. Journal of
Systems Architecture (2020), 101756.

[11] S. Holmbacka and J. Keller. Workload type-aware scheduling on big. LITTLE
platforms. International Conference on Algorithms and Architectures for Parallel
Processing. Springer. 2017, 3–17.

[12] S. Holmbacka, E. Nogues, M. Pelcat, S. Lafond, D. Menard and J. Lilius.
Energy-awareness and performance management with parallel dataflow appli-
cations. Journal of Signal Processing Systems 87.1 (2017), 33–48.

[13] H. Javaid, A. Ignjatovic and S. Parameswaran. Fidelity metrics for estimation
models. 2010 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE. 2010, 1–8.

[14] M. Khan, H. Huttunen and J. Boutellier. Binarized Convolutional Neural
Networks for Efficient Inference on GPUs. 2018 26th European Signal Process-
ing Conference (EUSIPCO). IEEE. 2018, 682–686.

[15] Y. Kimura, T. Kikuchi, K. Ootsu and T. Yokota. Proposal of Scalable Vec-
tor Extension for Embedded RISC-V Soft-Core Processor. 2019 Seventh Inter-
national Symposium on Computing and Networking Workshops (CANDARW).
IEEE. 2019, 435–439.

[16] B. Koppelmann, P. Adelt, W. Mueller and C. Scheytt. RISC-V Extensions for
Bit Manipulation Instructions. 2019 29th International Symposium on Power
and Timing Modeling, Optimization and Simulation (PATMOS). IEEE. 2019,
41–48.

[17] L. Li, M. Gautschi and L. Benini. Approximate DIV and SQRT instructions
for the RISC-V ISA: an efficiency vs. accuracy analysis. 2017 27th International
Symposium on Power and Timing Modeling, Optimization and Simulation (PAT-
MOS). IEEE. 2017, 1–8.

64

[18] P. Lima, C. Vieira, J. Reis, A. Almeida, J. Silveira, R. Goerl and C. Marcon.
Optimizing RISC-V ISA Usage by Sharing Coprocessors on MPSoC. 2020
IEEE Latin-American Test Symposium (LATS). IEEE. 2020, 1–5.

[19] G. Liu, J. Primmer and Z. Zhang. Rapid Generation of High-Quality RISC-V
Processors from Functional Instruction Set Specifications. 2019 56th ACM/IEEE
Design Automation Conference (DAC). IEEE. 2019, 1–6.

[20] Y. Liu, L. Barford and S. S. Bhattacharyya. Generalized graph connections for
dataflow modeling of DSP applications. 2018 IEEE International Workshop on
Signal Processing Systems (SiPS). IEEE. 2018, 1–6.

[21] LLVM PopCount. URL: https://github.com/sifive/riscv-llvm/blob/
master/compiler-rt/lib/builtins/popcountsi2.c (visited on 11/03/2022).

[22] D. Mueller-Gritschneder, M. Dittrich, M. Greim, K. Devarajegowda, W. Ecker
and U. Schlichtmann. The extendable translating instruction set simulator
(ETISS) interlinked with an MDA framework for fast RISC prototyping. 2017
International Symposium on Rapid System Prototyping (RSP). IEEE. 2017, 79–
84.

[23] A. Munir, M. Magdy, S. Ahmed, S. Nasr, S. El-Ashry and A. Shalaby. Fast Re-
liable Verification Methodology for RISC-V Without a Reference Model. 2018
19th International Workshop on Microprocessor and SOC Test and Verification
(MTV). IEEE. 2018, 12–17.

[24] Odroid XU3 board. URL: https://www.hardkernel.com/shop/odroid-
xu3/ (visited on 06/03/2021).

[25] K. Patsidis, D. Konstantinou, C. Nicopoulos and G. Dimitrakopoulos. A low-
cost synthesizable RISC-V dual-issue processor core leveraging the compressed
Instruction Set Extension. Microprocessors and Microsystems 61 (2018), 1–10.

[26] S. Payvar, J. Boutellier, A. Morvan, C. Rubattu and M. Pelcat. Extending Ar-
chitecture Modeling for Signal Processing towards GPUs. 2019 27th European
Signal Processing Conference (EUSIPCO). 2019, 1–5. DOI: 10.23919/EUSIPCO.
2019.8903094.

65

[27] S. Payvar, M. Khan, R. Stahl, D. Mueller-Gritschneder and J. Boutellier. Neu-
ral Network-based Vehicle Image Classification for IoT Devices. 2019 IEEE In-
ternational Workshop on Signal Processing Systems (SiPS). 2019, 148–153. DOI:
10.1109/SiPS47522.2019.9020464.

[28] S. Payvar, M. Khan, R. Stahl, D. Mueller-Gritschneder and J. Boutellier. Neu-
ral network-based vehicle image classification for iot devices. 2019 IEEE Inter-
national Workshop on Signal Processing Systems (SiPS). IEEE. 2019, 148–153.

[29] S. Payvar, E. Pekkarinen, R. Stahl, D. Mueller-Gritschneder and T. D. Hämäläi-
nen. Instruction Extension of a RISC-V Processor Modeled with IP-XACT.
2019 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and
International Symposium of System-on-Chip (SoC). 2019, 1–5. DOI: 10.1109/
NORCHIP.2019.8906975.

[30] S. Payvar, E. Pekkarinen, R. Stahl, D. Mueller-Gritschneder and T. D. Hämäläi-
nen. Instruction Extension of a RISC-V Processor Modeled with IP-XACT.
2019 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and
International Symposium of System-on-Chip (SoC). IEEE. 2019, 1–5.

[31] S. Payvar, M. Pelcat and T. D. Hämäläinen. A model of architecture for esti-
mating GPU processing performance and power. Design Automation for Em-
bedded Systems. 2021, 43–63. DOI: 10.1007/s10617-020-09244-4.

[32] S. Payvar, M. Pelcat and T. D. Hämäläinen. A model of architecture for esti-
mating GPU processing performance and power. Design Automation for Em-
bedded Systems 25.1 (2021), 43–63.

[33] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J.-F. Nezan and S. Aridhi. Preesm:
A dataflow-based rapid prototyping framework for simplifying multicore dsp
programming. 2014 6th european embedded design in education and research con-
ference (EDERC). IEEE. 2014, 36–40.

[34] M. Pelcat, A. Mercat, K. Desnos, L. Maggiani, Y. Liu, J. Heulot, J.-F. Nezan,
W. Hamidouche, D. Ménard and S. S. Bhattacharyya. Reproducible evaluation
of system efficiency with a model of architecture: From theory to practice.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
37.10 (2017), 2050–2063.

[35] PULPino. URL: https://github.com/pulp-platform/pulpino (visited
on 11/08/2022).

66

[36] O. Rafique and K. Schneider. Evaluating OpenCL as a Standard Hardware
Abstraction for a Model-based Synthesis Framework: A Case Study. MODEL-
SWARD. 2019, 386–393.

[37] H. Rexha, S. Holmbacka and S. Lafond. Core level utilization for achieving
energy efficiency in heterogeneous systems. 2017 25th Euromicro International
Conference on Parallel, Distributed and Network-based Processing (PDP). IEEE.
2017, 401–407.

[38] H. Rexha and S. Lafond. Energy Efficiency Platform Characterization for
Heterogeneous Multicore Architectures. ICT4S. 2019.

[39] S. Rigo, G. Araujo, M. Bartholomeu and R. Azevedo. ArchC: A SystemC-
based architecture description language. 16th Symposium on Computer Archi-
tecture and High Performance Computing. IEEE. 2004, 66–73.

[40] S. Savas, Z. Ul-Abdin and T. Nordström. A framework to generate domain-
specific manycore architectures from dataflow programs. Microprocessors and
microsystems 72 (2020), 102908.

[41] S. Stepanovic, G. Georgakarakos, S. Holmbacka and J. Lilius. An efficient
model for quantifying the interaction between structural properties of soft-
ware and hardware in the ARM big. LITTLE architecture. Concurrency and
Computation: Practice and Experience 32.10 (2020), e5230.

[42] L. Suriano, F. Arrestier, A. Rodrguez, J. Heulot, K. Desnos, M. Pelcat and E.
de la Torre. DAMHSE: programming heterogeneous MPSocS with hardware
acceleration using dataflow-based design space exploration and automated rapid
prototyping. Microprocessors and Microsystems 71 (2019), 102882.

[43] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu and L. Benini. Design and Eval-
uation of SmallFloat SIMD extensions to the RISC-V ISA. 2019 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). IEEE. 2019, 654–
657.

[44] L. Thiele, I. Bacivarov, W. Haid and K. Huang. Mapping applications to tiled
multiprocessor embedded systems. Seventh International Conference on Appli-
cation of Concurrency to System Design (ACSD 2007). IEEE. 2007, 29–40.

67

[45] A. Traber, F. Zaruba, S. Stucki, A. Pullini, G. Haugou, E. Flamand, F. K.
Gurkaynak and L. Benini. PULPino: A small single-core RISC-V SoC. 3rd
RISCV Workshop. 2016.

[46] M. Wess, M. Ivanov, C. Unger, A. Nookala, A. Wendt and A. Jantsch. An-
nette: Accurate neural network execution time estimation with stacked mod-
els. IEEE Access 9 (2020), 3545–3556.

[47] S. Yang, S. Le Nours, M. mendez Real and S. Pillement. Mapping and Fre-
quency Joint Optimization for Energy Efficient Execution of Multiple Appli-
cations on Multicore Systems. 2019 Conference on Design and Architectures for
Signal and Image Processing (DASIP). IEEE. 2019, 29–34.

[48] F. Zaruba and L. Benini. The cost of application-class processing: Energy and
performance analysis of a linux-ready 1.7-ghz 64-bit risc-v core in 22-nm fdsoi
technology. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
27.11 (2019), 2629–2640.

68

PUBLICATIONS

PUBLICATION

I

Extending Architecture Modeling for Signal Processing towards GPUs
S. Payvar, J. Boutellier, A. Morvan, C. Rubattu and M. Pelcat

2019 27th European Signal Processing Conference (EUSIPCO)2019, 1–5
DOI: 10.23919/EUSIPCO.2019.8903094

Publication reprinted with the permission of the copyright holders

Extending Architecture Modeling for Signal
Processing towards GPUs

Saman Payvar
Tampere University
Tampere, Finland

saman.payvar@tuni.fi

Claudio Rubattu
IETR/INSA Rennes and UNISS

Rennes, France and Sassari, Italy
crubattu@uniss.it

Jani Boutellier
Tampere University
Tampere, Finland

jani.boutellier@tuni.fi

Maxime Pelcat
IETR/INSA Rennes - Institut Pascal

Rennes and Clermont Ferrand, France
maxime.pelcat@insa-rennes.fr

Antoine Morvan
IETR/INSA Rennes

Rennes, France
antoine.morvan@insa-rennes.fr

Abstract—Efficient usage of heterogeneous computing archi-
tectures requires distribution of the workload to available pro-
cessing elements. Traditionally, this mapping is done based on
information acquired from application profiling. To reduce the
high amount of manual work related to mapping, statistical
application and architecture modeling can be applied for au-
tomating mapping exploration. Application modeling has been
studied extensively, whereas architecture modeling has received
less attention. Originally developed for signal processing systems,
Linear System Level Architecture (LSLA) is the first architecture
modeling approach that clearly distinguishes the underlying
computation hardware from software. Up to now, LSLA has
covered the modeling of multicore CPUs. This work proposes
extending the LSLA model with GPU support, by including the
notion of parallelism. The proposed GPU modeling extension is
evaluated by performance estimation of three signal processing
applications with various workload distributions on a desktop
GPU, and a mobile GPU. The measured average fidelity of the
proposed model is 93%.

Index Terms—modeling, architecture, design space exploration,
signal processing systems

I. INTRODUCTION

Heterogeneous computing platforms that contain GPUs
and DSPs alongside general-purpose processors, have become
mainstream platforms for many signal processing applications,
such as image, video and audio processing. One of the
design decisions that should be made in the early stage of
programming such systems is the mapping of the application
to the platform i.e. workload consideration for processing
elements. Unfortunately, the exploration of mapping alter-
natives is nowadays still mostly performed manually, which
is a work-intensive and time consuming task. An approach
that considerably reduces the effort is building models of
the target platform and the application and exploiting them
with automatic techniques or tools. With a suitable modeling
approach combined with design space exploration, the effi-
ciency of hundreds or thousands of mapping alternatives can
be approximated within seconds.

In statistical system modeling, the application and the ar-
chitecture are often considered together. Originally introduced

for modeling of signal processing systems [1], Linear System
Level Architecture (LSLA) [2], however, is the first Model
of Architecture (MoA) that clearly separates the underlying
architecture from the software running on top of it. LSLA
specifically models the architecture and distinguishes the con-
cepts of Model of Computation (MoC) from the MoA. The
MoA and MoC separation reduces the modeling effort by
formulating the system modeling as mapping of MoC activity
to the MoA, so that the MoA and the MoC can be treated
independently when needed. In LSLA it is possible to map
different types of MoC to the LSLA, such as Synchronous
Data Flow (SDF) [3] that is especially popular in signal
processing.

In LSLA, an application described by a MoC is mapped
to a processing architecture modeled by the LSLA MoA,
and by considering the activity of the application, a cost
function is computed for each processing element in the
platform. For estimating the performance of various mapping
alternatives, the cost functions of the processing elements
are summed while varying the mapping parameters. In the
original LSLA work, Pelcat et al. [2] have modeled the energy
consumption of the Odroid XU3 platform with a graph. In
this particular case, eight processing elements interconnected
by three communication nodes model the asymmetric eight-
core CPU of the Odroid platform. LSLA provides a model for
parallel programing for CPU cores, while most contemporary
platforms include also a GPU, which motivates the proposed
work.

The contributions of this work are:
• An extension, called LSLAG, of LSLA is presented for

covering GPU units. The proposed GPU extension to the
model is linear, similar to the original LSLA that only
covers CPU cores.

• For experimental evaluation of the proposed model, three
applications are implemented in OpenCL and are exe-
cuted on two different GPU-equipped platforms. Based
on these experiments, the average fidelity of the model
is 93%, which is similar to the original LSLA model

proposed for the CPU cores of the same platform.
This paper is structured as follows: Section 2 introduces

related work and provides a comparison to the proposed work.
Section 3 introduces the MoA concept. Section 4 explains the
proposed LSLA extension. Section 5 explains the parameters.
Section 6 elaborates the performed experiments. Finally, Sec-
tion 7 explains the conclusions and outlines the future work.

II. RELATED WORKS

There are different methodologies in performance modeling
studies. One of them, which provides a general model is the
statistical analysis method. For example, Moren, et al. [4]
present a statistical approach for work load scheduling on
heterogeneous platforms consisting of CPU and GPU. They
have modified the OpenCL API code for dynamic code feature
collection which is used for performance prediction. In model-
ing methods, it is common to use a graph to present a software
or a hardware system, or a system of systems. These methods
are divided into two different categories: data flow graphs and
non data flow graphs. In a data flow graph, a vertex is used
to model a run-to-completion block of computation called an
actor. Edges are used to model data token communications
between actors, realized by FIFO queues (First In First Out).
In addition, weights on FIFOs, called delays, are used to
represent initial data present on edges. The execution of a
data flow actor is called firing and is triggered when an actor
has sufficient data on each input edge. Table I lists modeling
approaches and the graph semantics used in related works.

SDF (Synchronous Data Flow) [3] is a well-known static
MoC. In SDF, a system is modeled with a data flow graph
where the firing rules specify the constant token consumption
and production rates for all actors. These constant rates
introduce limitations in terms of algorithmic behavior repre-
sentation.

CFDF (Core Functional Data Flow) [5] is a form of EIDF
(Enable Invoke Data Flow) [6] where a limited set of modes
influence token consumptions and productions. CFDF limits
mode transitions to only one alternative, making the model
deterministic.

BSP (Bulk Synchronous Parallel) [7], unlike SDF or CFDF
is a system modeling method, and it has its own graph
implementation. In BSP, there are processing units with local
memories connected over a router. Processing elements access
each other’s memories by remote access messages.

DAL (Distributed Application Layer) [8] has a dynamic
mapping methodology. It employs Kahn process networks to
explore application mappings and a finite state machine to
represent execution scenarios. Multiple scenarios are precom-
puted at design-time and the suitable one is selected at run-
time.

Bezati et al. [9] present a data flow modeling method ac-
cording to the CAL language [10]. Their method has six steps.
First, two different models for application and architecture
are designed. Second, simulation and profiling results are
collected. Third, the application is mapped to the architecture.
Fourth, C++ and HDL codes are generated from CAL. Fifth,

the code is compiled and synthesized. Finally, compiled code
is executed.

LSLA [2] is a MoA, separate from the MoC. The LSLA
MoA includes Processing Elements (PE) and Communication
Nodes (CN). PEs and CNs of the LSLA MoA has cost
functions including parameters that may be retrieved from
representative platform benchmarking. In that case, the cal-
culated cost functions are obtained from measured application
executions and the cost function parameters can be used to
predict system efficiency for a set of comparable applications.

The proposed work i.e. LSLAG provides a system modeling
approach that as an extension to LSLA has the benefit of
reduced modeling effort due to its re-usability. In addition,
GPU coverage of LSLAG provides more complete coverage
of modern heterogeneous platforms.

TABLE I
MODELING APPROACHES

Method Target Graph
SDF Application Dataflow

CFDF Application Dataflow
BSP System Non Dataflow
DAL System Non Dataflow
[9] System Dataflow

LSLA Architecture Non Dataflow
LSLAG Architecture Non Dataflow

III. MODELS OF ARCHITECTURE

The MoA concept [2] is used to distinguish the processing
architecture from the MoC, which should only address appli-
cations. A MoA is defined as a graph that can be used for
reproducible execution cost (time, energy, etc.) calculations.
A MoA is designed for each specific processing architecture
and it covers the processing elements and their interconnect.

Each element in the MoA graph has a cost function whose
parameters can be estimated statistically according to mea-
surement results. The calculated parameter values depend on
the application and the application’s configuration.

A. Linear System Level Architecture

LSLA is a specific type of MoA that uses linear cost
functions for each MoA graph element. The total cost of the
modeled platform is calculated according to the Equation 1,
which depicts the total cost of application activity A on the
LSLA graph P . In this equation, the total cost is equal to
the sum of the processing cost, and of the communication
cost, λ being a scaling coefficient between processing and
communication cost units. Tp depicts set of all mapped
tokens to the processing elements and Tc shows set of all
mapped tokens to the communication nodes. The activity of
the mapped MoC is calculated as tokens, consisting of quanta,
resulting in an affine cost model per communication and per
processing. The quanta are an application-independent unit of
execution cost.

Fig. 1. Mapping of the application to the architecture model.

cost(A,P) =
∑

t∈Tp

cost(t,map(t)) + λ
∑

t∈Tc

cost(t,map(t))

(1)
In LSLA, the application and its activity (i.e. the pressure it

puts on hardware) are mapped as activity tokens to the LSLA
model of the platform. Activity of the application includes
processing tokens and communication tokens. These tokens are
mapped to their associated elements in the platform model:
processing tokens are mapped to processing elements and
communication tokens are mapped to interconnection nodes
that are used to transfer data between PEs.

IV. LSLAG: THE PROPOSED EXTENSION TO LSLA

The proposed extension to LSLA of this work covers the
GPU that can be present in a heterogeneous platform. Figure 1
shows an LSLAG graph that includes a CPU core PE1, the
GPU, and the interconnection CN between the CPU core and
the GPU. PE1 is assumed to act as the host processor that
communicates with the GPU. This simple LSLAG model has
three elements including two processing elements and one
communication node. Each element has its own cost function
(presented beneath the nodes) that has two variables named γ
and S, as well as two linear parameters α and β whose values
are estimated for modeling purposes. The presented LSLAG
is used to model the execution time of the platform, thus time
samples are used in parameter calculations. As presented in
Equation 1, the total cost is a sum of all cost elements, i.e.
the execution time of the GPU (tk), the execution time of the
host processor (t1) and the execution time of the interconnect
(tc). The hypothesis of Equation 2 is justified by consideration
that (tk), (t1) and (tc) do not overlap in time, i.e. the kernels
of the GPU application are managed by the host device, then
executed by the GPU at separate time intervals.

tw = tk + t1 + tc (2)

tk(γ, S) = (αg/γ + βg)× S (3)

t1(γ, S) = (α1/γ + β1)× S (4)

tc(γ, S) = (αc/γ + βc)× S (5)

In these equations γ and S are variables, where γ is the
parallelism factor, and S is the input data quantity. As it
can be seen, increasing the parallelism factor γ decreases
the total execution cost asymptotically. Conventional LSLA
does not deal with parallelism, which limits its use to CPU
cores. LSLAG adds the parallelism factor γ that enables
including parallel processing elements. For each GPU-related
MoA graph entity (i.e., the GPU itself, the host PE and the
interconnect) there are separate parameters α and β, where α
can be regarded as the reciprocal of slope, and β as intercept.
In designing the model for the factors t1, tc, and tk, simplicity
was one of the driving motivations. To this end, t1, tc and tk
all have identical equations, and the model fitting will make
the parameters settle to values that reflect the real trends of
the factors. The next section describes the proposed approach
of estimating each α and β.

V. ESTIMATION OF PARAMETERS

Acquiring an accurate execution time model for an appli-
cation running on a GPU requires reliable profiling data. The
proposed estimation approach assumes three accurate factors
that can be profiled on the platform

• Application total wall-clock time tw,
• Host code execution time t1, and
• GPU kernel execution time tk.

The remaining factor tc, in contrast, is derived using tw,
t1 and tk. The proposed procedure for acquiring accurate
measurements for the factors are as follows: tw is measured
using the operating system clock, and tk is read from the pro-
filing data available from the GPU application programming
interface. The measurement of t1 is performed by modifying
the application so that all GPU-related calls are disabled and
the application only performs data I/O. Finally, tc is derived
from the other factors by subtracting t1 and tk from tw.

VI. EXPERIMENTS

The experiments presented below serve to illustrate the
suitability of the proposed model and Equations 2-5 for real-
life GPU-equipped platforms. Typical signal processing appli-
cations were used as case studies: matrix multiplication, digital
predistortion and Gaussian image filtering. The applications
were written in OpenCL and were executed on two GPU-
equipped platforms: the Odroid XU3 containing a Mali T628
GPU and a desktop workstation with the AMD RX 460
(Baffin) GPU.

The α and β parameters of the cost functions were estimated
with a Matlab script that invoked a least squares fitting
algorithm (see Section 2 of [11]). In the Matlab script, the
lsqlin function was used with a positive solution constraint.

Each application was profiled with two application vari-
ables, i.e., S and γ. Each variable had six values where S =
{ 512, 1024, 2048, 4096, 8192, 16384 } and γ = { 8, 16, 32,
64, 128, 256}. The global work size of OpenCL applications

was set application dependently. For matrix multiplication and
predistortion, the work size set was calculated by 256*gamma,
while for gaussian filtering, it is 1024*γ. The reason for this
variation is in the input data types i.e. gaussian filtering reads
1-byte data, while matrix multiplication and predistortion read
4-byte data items. For each (γ, S) combination the execution
time was measured 10 times, giving a total of 360 samples
per application/architecture combination.

A. Application-architecture mapping

In OpenCL, when computations are performed on a GPU,
the CPU works as the host device that reads data from I/O,
sends it to the GPU for processing, receives the computed
result and stores it back to I/O. Based on the dataflow [3]
MoC, a generic model for OpenCL applications was created.
Data reading and writing of the CPU is mapped to an I/O node
(see Figure 1). The Kernel node represents the computations
performed on the GPU, whereas the communication between
the I/O and Kernel nodes is presented with a bidirectional
arrow in Figure 1.

In each actor firing of the application graph, actors and the
communication FIFO provide a token, which is mapped to
their associated PE or CN node of the model. In other words,
the tokens of the node I/O are mapped to the PE1 architecture
node, the tokens of Kernel are mapped to the GPU architecture
node, and the communication FIFO tokens to the CN node.
The cost functions shown below the architecture nodes have
two variables, thus two tokens on the mapping lines in Figure 1
are used to present the number of quanta for each variable.

B. Results and Discussion

This section shows how the proposed GPU execution time
model fits with the measured execution time samples. In Figure
2, Figure 3, and Figure 4 the bottom axes depict the variables S
and γ, whereas the vertical axis depicts execution time. The
dots represent the average of individual measured execution
time samples. The measured execution time samples are tw
(wall-clock time) values, and the mesh depicts the model-based
sum of tk + t1 + tc. For clarity, the measured time samples
depict the average of the 10 measurements for each (γ, S)
coordinate.

Table II depicts the calculated α and β parameter values for
each application on Baffin and Mali GPUs. These parameters
are used in the Equation 2 for calculating tw. The α value
represents the cost of a token and equals to the slope of
the mesh. The β value represents the constant time offset
of the relevant LSALG element and is the tw intercept of
the mesh graph. Due to technical difficulties, values for the
digital predistortion application were not acquired on the Mali
platform. App 1 is matrix multiplication, App 2 is digital
predistortion and App 3 is Gaussian filtering. M stands for
Mali and B for Baffin platforms.

Table III demonstrates the fitting error between the model
and measured samples for each application/platform combi-
nation as fidelity values. To highlight the improvement of the
proposed LSLAG model over conventional LSLA for GPU

TABLE II
CALCULATED COST FUNCTION PARAMETERS

App. αg βg α1 β1 αc βc

B1 0.001 0.008 0.000 0.004 0.005 0.068
M1 0.003 0.009 0.000 0.009 0.016 1.554
B2 0.005 0.049 0.002 0.003 0.060 0.000
B3 0.000 0.051 0.002 0.000 0.004 1.074
M3 0.003 0.023 0.022 0.000 0.082 0.460

TABLE III
FIDELITY OF THE TEST SETS ON EXECUTION PLATFORMS.

Application Platform Fidelity LSLAG Fidelity LSLA
(proposed)

1 Baffin 0.88 0.75
1 Mali 1.00 0.70
2 Baffin 0.90 0.92
3 Baffin 0.91 0.62
3 Mali 1.00 0.92

targets, Table III also shows the fidelity value for LSLA.
Fidelity is Kendall’s Tau Coefficient value calculated by the
corr function of Matlab. For computing the fidelity, the 360
execution time samples were randomly divided into a training
set of 288 samples, and a test set of 72 samples. Fidelity
calculations are performed similarly to [12] and present a value
between 0 and 1 where 1 would represent a perfect match
between model and samples.

In the Table III results, it can be seen that conventional
LSLA yields considerably worse fidelity than the proposed
LSLAG for GPU architectures. The reason for this is ev-
ident: LSLA does not capture parallelism (γ), which is an
integral part of GPU processing. An exception to this is the
predistortion application on the Baffin GPU, where LSLA and
LSLAG yield almost identical fidelity. The reason for this
is that on this platform, communication time dominates over
parallelized kernel execution, making the whole application
behave almost similar to a sequential application. Dominance
of communication can be seen in Table II as the high value
of coefficient αc for application B2.

The measured fidelity values also show that the proposed
linear LSLAG model fits better the Mali platform than the
Baffin platform. The difference is likely related to the different
memory architectures; Mali uses a shared memory between the
CPU and the GPU, whereas the Baffin GPU is connected over
PCI Express.

VII. CONCLUSION AND FUTURE WORK

In this work, LSLAG which is a GPU extension to the
LSLA model, was proposed. The proposed model is linear, like
the original LSLA model that is intended for multicore CPU
platforms. The validity of the proposed model was evaluated
by profiling three OpenCL applications on two GPU-equipped
platforms, and the achieved model fidelity was 93% for the
considered set of signal processing use cases.

Similar to the LSLA model, LSLAG can be used for
design space exploration and performance prediction of signal

0

50

100

0

150

200

tw

250

300

3000.5 250
200

10 4

S

1

gamma

150
1001.5

50
2 0

Fig. 2. Matrix multiplication on the Baffin GPU.

0

500

1000

0

1500

2000

tw

2500

3000

3000.5 250
200

S

10 4
1

gamma

150
1001.5

50
2 0

Fig. 3. Gaussian filtering on the Baffin GPU.

0

200

400

0

600

800

1000

tw

1200

1400

3000.5 250
200

S

10 4
1

gamma

150
1001.5

50
2 0

Fig. 4. Predistortion on the Baffin GPU.

processing systems, with the difference that the proposed
model also covers GPU-equipped architectures.

Future work involves extending the modeling approach to
cover energy measurements, and connecting the GPU exten-
sion to larger application graphs.

VIII. ACKNOWLEDGMENT

This work is partially supported by the ITEA3 project 16018
COMPACT and by the European Union Horizon 2020 research
grant 732105 CERBERO.

REFERENCES

[1] Maxime Pelcat, Karol Desnos, Luca Maggiani, Yanzhou Liu, Julien
Heulot, Jean-François Nezan, and Shuvra S. Bhattacharyya, “Models
of architecture: Reproducible efficiency evaluation for signal processing
systems,” in IEEE International Workshop on Signal Processing Systems
(SiPS). IEEE, 2016, pp. 121–126.

[2] Maxime Pelcat, Alexandre Mercat, Karol Desnos, Luca Maggiani,
Yanzhou Liu, Julien Heulot, Jean-François Nezan, Wassim Hamidouche,
Daniel Ménard, and Shuvra S. Bhattacharyya, “Reproducible evaluation
of system efficiency with a model of architecture: From theory to
practice,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 10, pp. 2050–2063, 2018.

[3] Edward A. Lee and David G. Messerschmitt, “Synchronous data flow,”
Proceedings of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[4] Konrad Moren and Diana Göhringer, “Automatic mapping for OpenCL-
programs on CPU/GPU heterogeneous platforms,” in International
Conference on Computational Science. Springer, 2018, pp. 301–314.

[5] William Plishker, Nimish Sane, Mary Kiemb, Kapil Anand, and
Shuvra S. Bhattacharyya, “Functional DIF for rapid prototyping,”
in IEEE/IFIP International Symposium on Rapid System Prototyping
(RSP). IEEE, 2008, pp. 17–23.

[6] William Plishker, Nimish Sane, Mary Kiemb, and Shuvra S. Bhat-
tacharyya, “Heterogeneous design in functional DIF,” in International
Workshop on Embedded Computer Systems. Springer, 2008, pp. 157–
166.

[7] Leslie G. Valiant, “A bridging model for parallel computation,” Com-
munications of the ACM, vol. 33, no. 8, pp. 103–111, 1990.

[8] Lars Schor, Iuliana Bacivarov, Devendra Rai, Hoeseok Yang, Shin-
Haeng Kang, and Lothar Thiele, “Scenario-based design flow for
mapping streaming applications onto on-chip many-core systems,” in
International conference on compilers, architectures and synthesis for
embedded systems. ACM, 2012, pp. 71–80.

[9] Endri Bezati, Richard Thavot, Ghislain Roquier, and Marco Mattavelli,
“High-level dataflow design of signal processing systems for reconfig-
urable and multicore heterogeneous platforms,” Journal of real-time
image processing, vol. 9, no. 1, pp. 251–262, 2014.

[10] Johan Eker and Jorn Janneck, “Cal language report,” Tech. Rep., Tech.
Rep. ERL Technical Memo UCB/ERL, 2003.

[11] Richard C. Aster, Brian Borchers, and Clifford H. Thurber, Parameter
estimation and inverse problems, Elsevier, 2018.

[12] Neal K. Bambha and Shuvra S. Bhattacharyya, “A joint
power/performance optimization algorithm for multiprocessor systems
using a period graph construct,” in International symposium on system
synthesis. IEEE Computer Society, 2000, pp. 91–97.

PUBLICATION

II

A model of architecture for estimating GPU processing performance and
power

S. Payvar, M. Pelcat and T. D. Hämäläinen

Design Automation for Embedded Systems2021, 43–63
DOI: 10.1007/s10617-020-09244-4

Publication reprinted with the permission of the copyright holders

Noname manuscript No.
(will be inserted by the editor)

A Model of Architecture for estimating GPU
processing performance and power

Saman Payvar · Maxime Pelcat · Timo
D. Hämäläinen

Received: date / Accepted: date

Abstract Efficient usage of heterogeneous computing architectures requires
distribution of the workload on available processing elements. Traditionally,
the mapping is based on information acquired from application profiling and
utilized in architecture exploration. To reduce the amount of manual work
required, statistical application modeling and architecture modeling can be
combined with exploration heuristics. While the application modeling side
of the problem has been studied extensively, architecture modeling has re-
ceived less attention. Linear System Level Architecture (LSLA) is a Model of
Architecture (MoA) that aims at separating the architectural concerns from
algorithmic ones when predicting performance. This work builds on the LSLA
model and introduces non-linear semantics, specifically to support GPU per-
formance and power modeling, by modeling also the degree of parallelism.
The model is evaluated with three signal processing applications with various
workload distributions on a desktop GPU and mobile GPU. The measured
average fidelity of the new model is 93% for performance, and 84% for power,
which can fit design space exploration purposes.

Keywords Modeling · Model of Architecture · Design space exploration ·
Signal processing systems

F. Author
first address
Tel.: +123-45-678910
Fax: +123-45-678910
E-mail: fauthor@example.com

S. Author
second address

2 Saman Payvar et al.

1 Introduction

Heterogeneous platforms that contain GPUs and DSPs alongside general-
purpose processors have become the mainstream for many signal processing
applications, such as image, video and audio processing. One of the design
decisions that should be made in the early stage is mapping of the applica-
tion to the platform i.e. resource allocation for processing elements. Unfortu-
nately, the exploration of mapping alternatives is still mostly performed case
by case, which is a work-intensive and time consuming task. An approach
that considerably reduces the effort is building models of the target plat-
form and the application, and exploiting them with automatic tools. There
are different approaches to the system modeling and workload mapping. For
example, the Distributed Operation Layer (DOL)[21] is a framework for auto-
matically optimizing parallel algorithm mapping on heterogeneous platforms.
ArchC[19] is an architecture description language (ADL) for architecture de-
sign which provides early stage system verification. In contrast, rather than
jointly designing optimization methods and architecture representations, this
paper concentrates on learning a model from structure hypotheses and plat-
form measurements, with the objective to obtain an abstract, repeatable and
application decorrelated model usable in a wide set of optimization contexts.

In statistical system modeling, the application and the architecture are of-
ten considered together. Originally introduced for modeling of signal process-
ing systems [14], the Linear System Level Architecture (LSLA) [15], Model of
Architecture (MoA) separates the underlying architecture from the algorith-
mic aspects following a Y-chart approach [8]. LSLA specifically models the
architecture and distinguishes the concepts of Model of Computation (MoC)
from the MoA. The MoA and MoC separation reduces the modeling effort by
formulating the system modeling as mapping of MoC activity to the MoA,
so that the MoA and the MoC can be treated independently when needed.
In LSLA it is possible to map different types of MoC to the LSLA, such as
Synchronous Data Flow (SDF) [9] that is popular in signal processing.

In LSLA, an application described by a MoC is mapped to the architec-
ture modeled by the LSLA MoA. Considering the activity of the application,
a cost function is computed for each processing element in the platform. For
estimating the performance of various mapping alternatives, the cost functions
of the processing elements are summed up while varying the mapping param-
eters. For example, the energy consumption of the Odroid XU3 platform was
modeled in [15]. In this particular case, eight processing elements intercon-
nected by three communication nodes model the asymmetric eight-core CPU
of the platform. The LSLA experiments model the energy consumption of a
Stereo Matching application that computes a depth map from a pair of views
of a single scene, while the GSLA experiments in this paper cover the execu-
tion time and the power consumption costs of matrix multiplication, digital
predistortion and Gaussian filtering applications.

LSLA provides a model for linear Key Performance Indicators (KPIs).
However, most contemporary platforms include a GPU, in which the perfor-

A Model of Architecture for estimating GPU processing performance and power 3

mance with respect to the application activity is non-linear. This is the key
motivation to extend the LSLA model. Our initial work was presented in [13]
with a GPU performance model. Consequently, in this work we introduce
power modeling and collect all the results for an LSLA model extended to
GPU modeling.

The key contributions of this work are:

– An extension of the LSLA model with non-linear GPU processing mod-
eling called GSLA (GPU-oriented System-Level Architecture). The model
includes both performance and power.

– Prototype tooling implemented as shell scripts and Matlab code for both
execution of the application for model creation and costs prediction in
exploration use.

– Proof-of-Concept with three representative applications that are imple-
mented in OpenCL and executed on two different GPU-equipped plat-
forms for setting the model parameters and comparing the measured and
predicted values for fidelity.

Experimental results show that the proposed GSLA model can help pre-
dicting with low complexity the performance and the power consumption of
an application with varying parameters. On the other hand, modeling the
key performance indicators of strongly differing applications or platform con-
figurations is shown to require model parameter recalculation. Even in cases
where parameters cannot be reused, experimental results show that the model
lightweight structure can be kept, and retrained through a lightweight proce-
dure and with good accuracy. Two different utilization examples of GSLA are
discussed in Section 2 to clarify the intended usage of the MoA.

This paper is structured as follows: Section 2 introduces related work and
provides a comparison to the proposed work. Section 3 introduces the MoA
concept. Section 4 explains the proposed LSLA extension. Section 5 explains
the parameters. Section 6 elaborates the performed experiments. Section 7
presents the novel power model for GPUs. Section 8 compares the fitness of
the models. Finally, Section 9 explains the conclusions.

2 Model Creation and Potential Usage

The design and usage of the proposed performance and power models in prac-
tice are represented in Figure 1. The blue stages depict the steps of the model
construction while the green steps show two examples of using the models.
Here the dashed lines demonstrate the manual estimations while the continu-
ous lines present the flow of the work.

Model development starts by selecting the test data and a target paralleliz-
able algorithm i.e. matrix multiplication, Gaussian filtering and predistortion
for execution on Mali and Baffin GPUs. Then, the algorithms are coded with
OpenCL function calls and receive two command line argument inputs named
S and γ which impact the size of the input data and the number of their par-
allel executions, offering variations in their structure. Later, two value sets for

4 Saman Payvar et al.

these parameters are defined where the S values set is inferred from the test
data and the algorithm input data size and the γ values set is extracted from
the platforms number of processing elements and memory sizes. In addition,
the values for both S and γ sets were checked for feasibility e.g. execution
of the OpenCL implementation of the parallel algorithm with a large S and
a small γ values could take up to some days while multiple S and γ com-
binations are executed for profiling which makes it impractical. Shell scripts
are used for passing the values of the S and γ parameters as command line
arguments for each iteration of the execution and storing the execution time
and power consumption values in files while the memory overflow errors are
monitored. Linear regression is used to fit the GSLA model. The MoC and
MoA for OpenCL application on GPU is then developed for showing the ap-
plication mapping on the platform. The results of this paper show the suitable
parameters of the models equations for Mali and Baffin platforms i.e. α,β or
a, b, c. These values in conjunction with the model equations could be used
to estimate the power and performance of similar applications on Mali and
Baffin GPUs.

The produced models could be used with or without the presented param-
eters which are shown as two utilization cases in Figure 1. In the first case,
a similar algorithm to the selected three algorithms is executed on Mali or
Baffin platforms while in the second case a different algorithm is executed on
a platform X. The first case does not require any compilation or execution
of a training code and the performance and the power estimations are done
merely by simple equation calculations using the reported parameters values.
The S and γ values of an algorithm implemented in OpenCL are computed
by checking the code files for the global work size and number of kernel calls
which is usually defined as constant values in a header file and considering the
input data of the application. In the second case where the algorithm or the
platform vary much from the presented training, values of parameters shall be
determined by the execution of a representative algorithm on the platform and
measuring the execution time or power consumption and using the presented
models equations for the parameters calculations. Later, the calculated param-
eters could be reused for performance and power estimations of similar cases.
These equations reduces the manual work of a researcher using the OpenCL
for parallelizing where the appropriate values are typically determined by trial
and error i.e. editing the code and benchmarking the application.

3 Related Work

There are different methodologies in performance modeling studies. One of
them, which provides a general model is the statistical analysis method. For
example, Moren, et al. [11] present a statistical approach for work load schedul-
ing on heterogeneous platforms consisting of CPU and GPU. Authors have
modified the OpenCL API code for dynamic code feature collection which is
used for performance prediction. In modeling methods, it is common to use

A Model of Architecture for estimating GPU processing performance and power 5

M
o

d
el

 D
ev

el
o

p
m

en
t

M
o

d
el

 U
ti

liz
at

io
n

 1

Te
st

 D
at

a
-

R
a

n
d

o
m

ly
 g

en
e

ra
te

d

-
P

ri
va

te

A
lg

o
ri

th
m

-
P

ar
al

le
liz

a
b

le

In
p

u
t

D
at

a
P

ar
al

le
l a

lg
o

ri
th

m

-
O

p
en

C
L

im
p

le
m

e
n

ta
ti

o
n

-
P

ar
am

e
tr

iz
e

d

Tr
a

ce

-
E

xe
cu

ti
o

n
 t

im
in

g

-
P

o
w

e
r

co
n

su
m

p
ti

o
n

-
M

e
m

o
ry

 o
ve

rf
lo

w
 f

la
g

C
u

rv
e

fi
tt

in
g

to

m
ea

su
re

m
en

t
p

o
in

ts

-
M

a
tl

a
b

 ls
q

lin
 f

u
n

ct
io

n

 G
S

LA

Se
t

o
f

p
a

ra
m

e
te

rs

th
a

t
m

o
d

e
l/

p
re

d
ic

t
p

e
rf

o
rm

an
ce

 a
n

d

p
o

w
er

 (
se

p
ar

at
el

y)

R
e

su
lt

:
C

u
rv

e
fi

tt
in

g
p

ar
am

e
te

rs
o

f
th

e
p

la
tf

o
rm

 (
α
,β

)
o

r
(a

,
b

, c
)

P
a

ra
ll

el
is

m
 f

a
ct

o
r
ϒ

-
D

e
p

en
d

s
o

n
 t

h
e

n

u
m

b
er

 o
f

p
ar

a
lle

l
p

ro
ce

ss
in

g
 e

le
m

en
ts

o

f
th

e
p

la
tf

o
rm

 a
n

d

th
e

ir
 u

sa
g

e

M
o

C

-
Si

gn
a

l f
lo

w
 g

ra
p

h

M
o

A

-
B

lo
ck

 d
ia

gr
a

m

-
N

u
m

b
e

r
o

f
co

re
s

an
d

 t
h

e
ir

 t
yp

es

D
a

ta
 s

iz
e

 f
a

ct
o

r
S

-
D

e
p

en
d

s
o

n

al
g

o
ri

th
m

 a
n

d
 it

s
d

a
ta

 t
yp

e
s

-
D

e
p

en
d

s
o

n
 t

e
st

d

at
a -
fe

as
ib

le
 S

 a
n

d
 ϒ

P
ar

al
le

l a
lg

o
ri

th
m
 A

1
-

O
p

en
C

L
im

p
le

m
e

n
ta

ti
o

n

 G
S

LA
 f

o
r

kn
o

w
n

 p
la

tf
o

rm

E
st

im
at

io
n

-
E

xe
cu

ti
o

n
 t

im
in

g

-
P

o
w

e
r

co
n

su
m

p
ti

o
n

S ϒ

Th
e

re
su

lt
 o

f
th

e
p

a
p

er

P
la

tf
o

rm
-

R
e

al
 p

la
tf

o
rm

-
M

a
li

an
d

 B
af

fi
n

 G
PU

s

C
o

m
p

ila
ti

o
n

 &
 E

xe
cu

ti
o

n

(α
,β

)
o

r
(a

,
b

, c
)

In
p

u
t

D
at

a

P
ar

al
le

l a
lg

o
ri

th
m
 A

2
-

O
p

en
C

L
im

p
le

m
e

n
ta

ti
o

n

E
st

im
at

io
n

-
E

xe
cu

ti
o

n
 t

im
in

g

-
P

o
w

e
r

co
n

su
m

p
ti

o
n

S ϒ

C
u

rv
e

fi
tt

in
g

p
ar

am
e

te
rs

o
f

p
la

tf
o

rm
 X

-
(α
,β

)
o

r
(a

,
b

, c
)

Tr
a

ce

-
E

xe
cu

ti
o

n
 t

im
in

g

-
P

o
w

e
r

co
n

su
m

p
ti

o
n

C
o

m
p

ila
ti

o
n

 &
 E

xe
cu

ti
o

n
-

P
la

tf
o

rm
 X

 G
S

LA
 f

o
r

n
ew

 p
la

tf
o

rm
 X

M
od

el
 U

ti
liz

at
io

n
2

Fig. 1 Development and utilization work flow.

6 Saman Payvar et al.

a graph to present a software or a hardware system, or a system of systems.
These methods are divided into two different categories: data flow graphs and
non data flow graphs. In a data flow graph, a vertex is used to model a run-
to-completion block of computation called an actor. Edges are used to model
data token communications between actors, realized by FIFO queues (First In
First Out). In addition, weights on FIFOs, called delays, are used to represent
initial data present on edges. The execution of a data flow actor is called firing
and is triggered when an actor has sufficient data on each input edge. Table 1
lists modeling approaches and the graph semantics used in related works.

SDF (Synchronous Data Flow) [9] is a well-known static MoC. In SDF, a
system is modeled with a data flow graph where the firing rules specify the
constant token consumption and production rates for all actors. These constant
rates introduce limitations in terms of algorithmic behavior representation.

CFDF (Core Functional Data Flow) [17] is a form of EIDF (Enable Invoke
Data Flow) [18] where a limited set of modes influence token consumptions and
productions. CFDF limits mode transitions to only one alternative, making the
model deterministic.

BSP (Bulk Synchronous Parallel) [22], unlike SDF or CFDF, is a system
modeling method rather than an application modeling method, and it has
its own graph representation. In BSP, there are processing units with local
memories connected over a router. Processing elements access each other’s
memories by remote access messages.

DAL (Distributed Application Layer) [20] has a dynamic mapping method-
ology. It employs Kahn process networks to explore application mappings and
a finite state machine to represent execution scenarios. Multiple scenarios are
precomputed at design-time and the suitable one is selected at run-time.

Bezati et al. [4] present a data flow modeling method according to the
CAL language [5]. Their method has six steps. First, two different models for
application and architecture are designed. Second, simulation and profiling
results are collected. Third, the application is mapped to the architecture.
Fourth, C++ and HDL codes are generated from CAL. Fifth, the code is
compiled and synthesized. Finally, compiled code is executed.

LSLA [15] is a MoA, modeling hardware architecture separately from the
MoC. The LSLA MoA includes Processing Elements (PE) and Communication
Nodes (CN). PEs and CNs of the LSLA MoA have cost functions including
parameters that may be retrieved from representative platform benchmarking.
In that case, the calculated cost functions are obtained from measured appli-
cation executions and the cost function parameters can be used to predict
system efficiency for a set of comparable applications.

Holmbacka et al. [7] studied the energy consumption of different phases
of the applications on multi-core CPUs. For utilizing the Dynamic Voltage
and Frequency Scaling (DVFS) and Dynamic Power Management (DPM) of
parallel platforms, they ran the parallel phases with as low as possible clock fre-
quency on multiple cores without missing any deadline and sequential phases
with higher clock frequency on a single core. For controlling the hardware
features, they introduced two parameters including the level of parallelism

A Model of Architecture for estimating GPU processing performance and power 7

and the quality of service and call it QP-aware (QoS and Parallel) strategy.
Running a program with lower clock frequency instead of a race-to-idle strat-
egy provides an energy efficient solution by reducing the frequent frequency
switching overhead. Authors used PREESM [16] for compiling the applications
and extracting the level of parallelism and deployed a non linear programming
solver for the QoS handling. In addition, they presented a platform specific
power model as a function of DVFS and DPM usage.

The energy efficiency survey [10] classifies the utilized techniques for im-
proving GPU energy efficiency and compares them with methods applied to
other computing units such as FPGAs. Authors use five categories includ-
ing dynamic voltage frequency scaling (DVFS), division-based CPU-GPU, ar-
chitectural techniques, dynamic workload variation and application-specific
programming-level approaches. A conclusion to this work is that the power
consumption of the GPU should be considered at multiple design phases with
several techniques to achieve desirable efficiency. The proposed GSLA model
falls under this objective, as it aims at making power estimates available early
during the design phase.

The proposed work on the GSLA model provides a system modeling ap-
proach as an extension to LSLA. It has the benefits of a reduced modeling
effort due to its re-usability. Table 1 summarizes the modeling approaches in
order to compare to this work. As can be seen, our work is focusing on the
architecture and supports wide range of applications.

Table 1 Modeling approaches

Method Target Application Graph
SDF Application Dataflow

CFDF Application Dataflow
BSP System Non Dataflow
DAL System Non Dataflow
[4] System Dataflow

LSLA Architecture Not restricted to dataflow
GSLA Architecture Non Dataflow

3.1 Polynomial modeling comparisons

The power model developed in [7] uses Dynamic Voltage and Frequency Scaling
(DVFS) and Dynamic Power Management (DPM) platform variables. Authors
use Levenberg-Marquardts algorithm and aim at a high modeling precision
which resulted in a third degree polynomial with seven terms. As an MoA,
GSLA is not specialized to power modeling and has a lower complexity with
three terms, keeping its complexity minimal. The usage of the fidelity metric
for evaluation results in a model with lower complexity differentiates this work
from studies using similar methodology, as the objective is not to have an
accurate model but rather to take the right design decisions.

8 Saman Payvar et al.

Fig. 2 Model of Architecture.

The energy model [6] presents the number of active cores and frequency
as variables. Authors have considered three possibilities for the workload pro-
cessing and depict three variations of their model. The variations of the terms
number in their model is at least two and is impacted by the number of ac-
tive cores. The proposed model is designed for static scheduling and requires
timing data such deadlines and power consumption values of the active cores
for predicting energy consumption. Compared to this tailored model, GSLA
presents a simpler formula and we show that it still can capture several key
performance indicators.

The energy per cycle model introduced in [12] uses normalized frequency
variable. Authors use the Levenberg-Marquardts algorithm for calculating
their model equations which has three terms and it is in degree three. This
model targets power and frequency data for the energy computation while
the experiments are depicted for a limited set of measurements. On the other
hand, GSLA with lower complexity is demonstrated as a two dimensional
model fitting thirty six average measurement points.

4 Models of Architecture

The MoA concept [15] is used to distinguish the processing architecture from
the MoC, which should only address applications. Consequently, in this con-
cept a system of an application running on a platform is presented with a MoC
mapping on a MoA. A MoA is defined as a graph that in conjunction with the
mapped MoC can be used for reproducible execution cost (time, energy, etc.)
calculations. A MoA is designed for each specific processing architecture and
it covers the processing elements and their interconnect. Figure 2 depicts an
MoA which contains two processing elements and one interconnection.

Each element in the MoA graph has a cost function whose parameters can
be estimated statistically according to measurement results of the mapped
MoC element to the considered MoA element. The calculated parameter values
depend on the application and the application configuration, but the search of
the parameters is automated and requires only executable application(s) and
test data from profiling.

A Model of Architecture for estimating GPU processing performance and power 9

4.1 Linear System Level Architecture

LSLA is a specific type of MoA that uses linear cost functions for each MoA
graph element. The total cost of the modeled platform is calculated according
to the Equation 1, which depicts the total cost of application activity A on
the LSLA graph P . In this equation, the total cost e.g. execution time cost
is equal to the sum of the processing cost, and of the communication cost, λ
being a scaling coefficient between processing and communication cost units.
Tp depicts set of all mapped tokens to the processing elements and Tc shows
set of all mapped tokens to the communication nodes. The activity of the
mapped MoC is calculated as tokens, consisting of quanta, resulting in an
affine cost model per communication and per processing. The quanta are an
application-independent unit of execution cost.

cost(A,P) =
∑

t∈Tp

cost(t,map(t)) + λ
∑

t∈Tc

cost(t,map(t)) (1)

In a system running an application with multiple dependent tasks on a
platform with multiple processing elements, parallel application mapping and
scheduling are required. While mapping refers to assigning tasks to processing
elements, scheduling refers to ordering task execution on each processing ele-
ment. On the modeling side, mapping an activity to a platform modeled with
an MoA refers to the assignment of a unique processing element or communi-
cation node to each token in the application activity. The activity abstracts
the pressure the application puts on hardware, resulting in physical ,prop-
erties such as time and energy consumption. In our experiments, GPU and
CPU tasks are mapped manually, but the designed model can feed automated
mapping processes.

In LSLA, the application and its activity (i.e. the pressure that it puts on
hardware) are mapped as activity tokens to the LSLA model of the platform.
Activity of the application includes processing tokens and communication to-
kens. These tokens are mapped to their associated elements in the platform
model: processing tokens are mapped to processing elements and communi-
cation tokens are mapped to interconnection nodes that are used to transfer
data between PEs.

5 GSLA: Execution Time Modeling

This work adds GPUs that can be present in a modern heterogeneous platform.
Figure 3 shows a simple GSLA graph that includes a CPU core PE1, the GPU,
and the interconnection CN between the CPU core and the GPU. PE1 is
assumed to act as the host processor that communicates with the GPU. This
simple GSLA model has three elements including two processing elements and
one communication node.

Due to the very different characteristics of power and execution time mod-
eling, we use different parameters and a slightly different model for both; the

10 Saman Payvar et al.

Fig. 3 Mapping of the application to the architecture model.

power model is presented in Section 8, whereas the execution time model is
presented as follows: each element has its own cost function (presented be-
neath the nodes) that has two variables named γ and S, as well as two linear
parameters α and β whose values are estimated for modeling purposes. One
may note that the γ and S symbols refer to variables while bold characters rep-
resent the sets of values used during the profiling phase. The presented GSLA
is used to model the execution time of the platform, thus time samples are
used in parameter calculations. As presented in Equation 1, the total cost is a
sum of all cost elements, i.e. the execution time of the GPU (tk), the execution
time of the host processor (t1) and the execution time of the interconnect (tc).
The model of Equation 2 is justified by the consideration that times (tk), (t1)
and (tc) do not overlap in time, i.e. the kernels of the GPU application are
managed by the host device, then executed by the GPU during separate time
intervals.

tw = tk + t1 + tc (2)

tk(γ, S) = (αg/γ + βg)× S (3)

t1(γ, S) = (α1/γ + β1)× S (4)

tc(γ, S) = (αc/γ + βc)× S (5)

In these equations γ and S are variables, where γ is the parallelism factor,
and S is the input data quantity. As it can be seen, increasing the parallelism
factor γ decreases the total execution cost asymptotically. Each Equation 3, 4
and 5 follows an Amdahl’s law [1] with β representing the incompressible time
cost of a sequential section and α representing the compressible time cost of
a perfectly parallel region. Conventionally, LSLA does not deal with internal
processing element parallelism, which limits its usage to cores with limited
concurrency. GSLA adds the parallelism factor γ that makes it possible to

A Model of Architecture for estimating GPU processing performance and power 11

include parallel processing elements. For each GPU-related MoA graph entity
(i.e., the GPU itself, the host PE and the interconnect) there are separate
parameters α and β, where α can be regarded as the reciprocal of slope, and
β as intercept. The section 6 describes the proposed approach of estimating
each α and β.

5.1 Usage of the methodology

Figure 4 depicts the tool flow steps for creating the cost prediction using the
models either for performance or power. Applications are characterized with
the S and γ sets, written in OpenCL source code and compiled for execu-
tion and measurements. The employment of the models is provided by a shell
script and a Matlab script which is depicted in Figure 4. First, the S and γ
sets are selected and the shell script is edited accordingly. Then, the scripts
perform the mapping, compilation and execution of the OpenCL application.
The application receives S and γ as command line arguments. Pseudocode 1
presents an example of S and γ implementation in the matrix multiplication.
Later, the Matlab script is used to extract the parameters α and β. Finally,
the parameters are used to estimate the appropriate workload.

Pseudocode 1 The S and γ Implementation in Matrix Multiplication
INPUT: S, γ
OUTPUT: execution time print
int main(int argc, char ∗ argv[]) {
...
size t globalWorkSize[3];
int parMtx = atoi(argv[1]);
int globalWorkSize[0] = MTX SIDE;
int globalWorkSize[1] = MTX SIDE;
int globalWorkSize[2] = parMtx;
...
int workSize = globalWorkSize[0] ∗ globalWorkSize[1] ∗ globalWorkSize[2];
int totalLen = (atoi(argv[2]) ∗ 256 ∗ 4)/4;
int iterations = totalLen/workSize;
...
for(int i = 0; i < iterations; i + +){
...
clEnqueueNDRangeKernel(commands, krnMatMul, 3,NULL, globalWorkSize, ...);
...
}
...
}

The parameters can be used for similar applications on equivalent plat-
forms, or recalculated for other kind of platforms and applications.

12 Saman Payvar et al.

Cost
Prediction

Matlab
Script

OpenCL
Application

S and γ
Mapping

Code
Compilation

Shell
Script

S and γ sets

Measurements Parameters

Execution

Fig. 4 Steps in the tool flow.

6 Estimation of Parameters

Acquiring an accurate execution time model for an application running on
a GPU requires reliable profiling data. The proposed estimation approach
assumes three accurate terms that can be profiled on the platform

– Application total wall-clock time tw,
– Host code execution time t1, and
– GPU kernel execution time tk.

The remaining term tc, in contrast, is derived using tw, t1 and tk. The proposed
procedure for acquiring accurate measurements for the terms are as follows:
tw is measured using the operating system clock, and tk is read from the
profiling data available from the GPU application programming interface. The
measurement of t1 is performed by modifying the application so that all GPU-
related calls are disabled and the application only performs data I/O. Finally,
tc is derived from the other terms by subtracting t1 and tk from tw.

The Pseudocode 2 presents the Matlab script used for modeling the per-
formance of the applications according to the proposed Equation 2, 3, 4 and
5. The S and γ sets have the same number of elements and their values are
considered according to the input data size of the applications and the memory
of the platforms.

Pseudocode 2 Matlab Script of Performance Model
INPUT: tw = [...], tk = [...], t1 = [...]
OUTPUT: αg , βg , α1, β1, αc, βc
PerformanceModel {
S = [...];
γ = [...];
tc = tw − t1 − tk;
αg, βg = lsqlin(S, S/γ, tk);
αc, βc = lsqlin(S, S/γ, tc);
α1, β1 = lsqlin(S, S/γ, t1);
}

A Model of Architecture for estimating GPU processing performance and power 13

7 Experiments: Execution Time Modeling

The experiments presented below serve to illustrate the suitability of the pro-
posed model and Equations 2-5 for real-life GPU-equipped platforms. Typical
signal processing applications were used as case studies: matrix multiplica-
tion, digital predistortion and Gaussian image filtering. The applications were
written in OpenCL and were executed on two GPU-equipped platforms: the
Odroid XU3 containing a Mali T628 GPU and a desktop workstation with
the AMD RX 460 (Baffin) GPU. The test input data was randomly generated
for matrix multiplication and predistortion, and private data for Gaussian
filtering.

The α and β parameters of the cost functions were obtained with a Matlab
script that invoked a least squares fitting algorithm (see Section 2 of [2]).
In the Matlab script, the lsqlin function was used with a positive solution
constraint as a standard method to perform linear regression.

Each application was profiled while varying two application variables, i.e.,
S and γ. For setting parameters values, the applications input data sizes, the
memory of the platform, and the profiling duration have been considered. As
the applications are simple, setting their data parallelism γ is straightforward
and corresponds to the number of parallel fired kernels. Each obtained variable
had six values where S ∈ { 512, 1024, 2048, 4096, 8192, 16384 } and γ ∈ {
8, 16, 32, 64, 128, 256}. The global work size of OpenCL applications was
set application dependently. For matrix multiplication and predistortion, the
work size set was calculated by 256*γ, while for gaussian filtering, it is 1024*γ.
The reason for this variation is in the input data types i.e. gaussian filtering
reads 1-byte data, while matrix multiplication and predistortion read 4-byte
data items. For each (γ, S) combination the execution time was measured 10
times, giving a total of 360 samples per application/architecture combination.

7.1 Application-architecture mapping

In OpenCL, when computations are performed on a GPU, the CPU works as
the host device that reads data from I/O, sends it to the GPU for processing,
receives the computed result and stores it back to I/O. Based on the dataflow
[9] MoC, a generic model for OpenCL applications was created. Data read-
ing and writing of the CPU is mapped to an I/O node (see Figure 3). The
Kernel node represents the computations performed on the GPU, whereas
the communication between the I/O and Kernel nodes is presented with a
bidirectional arrow in Figure 3.

In each actor firing of the application graph, actors and the communication
FIFO provide a token, which is mapped to their associated PE or CN node of
the model. In other words, the tokens of the node I/O are mapped to the PE1
architecture node, the tokens of Kernel are mapped to the GPU architecture
node, and the communication FIFO tokens to the CN node. The cost functions
shown below the architecture nodes have two variables, thus two tokens on the

14 Saman Payvar et al.

0

50

100

0

150

200

tw

250

300

3000.5 250
200

10 4

S

1

gamma

150
1001.5

50
2 0

Fig. 5 Execution time of matrix multiplication on the Baffin GPU.

mapping lines in Figure 3 are used to present the number of quanta for each
variable.

7.2 Execution Time Results

This section shows how the proposed GPU execution time model fits with
the measured execution time samples. In Figure 5, Figure 6, and Figure 7 the
bottom axes depict the variables S and γ, whereas the vertical axis depicts ex-
ecution time. The dots represent the average of individual measured execution
time samples.

The measured execution time samples are tw (wall-clock time) values, and
the mesh depicts the model-based sum of tk + t1 + tc. For clarity, the mea-
sured time samples depict the average of the 10 measurements for each (γ, S)
coordinate.

Table 2 depicts the calculated α and β parameter values for each appli-
cation on Baffin and Mali GPUs. These parameters are used in the Equation
2 for calculating tw. The α value represents the cost of a token and equals
to the slope of the mesh. The β value represents the constant time offset of
the relevant GSLA element and is the tw intercept of the mesh graph. Due
to technical difficulties, values for the digital predistortion application were
not acquired on the Mali platform. App 1 is matrix multiplication, App 2 is
digital predistortion and App 3 is Gaussian filtering. M stands for Mali and B
for Baffin platforms.

A Model of Architecture for estimating GPU processing performance and power 15

0

500

1000

0

1500

2000

tw

2500

3000

3000.5 250
200

S

10 4
1

gamma

150
1001.5

50
2 0

Fig. 6 Execution time of Gaussian filtering on the Baffin GPU.

0

200

400

0

600

800

1000

tw

1200

1400

3000.5 250
200

S

10 4
1

gamma

150
1001.5

50
2 0

Fig. 7 Execution time of Predistortion on the Baffin GPU.

16 Saman Payvar et al.

Table 2 Calculated cost function parameters

App. αg βg α1 β1 αc βc
B1 0.001 0.008 0.000 0.004 0.005 0.068
M1 0.003 0.009 0.000 0.009 0.016 1.554
B2 0.005 0.049 0.002 0.003 0.060 0.000
B3 0.000 0.051 0.002 0.000 0.004 1.074
M3 0.003 0.023 0.022 0.000 0.082 0.460

Table 3 Fidelity of the test sets on execution platforms (Kendall tau coefficient between
−1 and 1, 1 is the best).

Application Platform Fidelity GSLA Fidelity LSLA
(proposed)

1 Baffin 0.88 0.75
1 Mali 1.00 0.70
2 Baffin 0.90 0.92
3 Baffin 0.91 0.62
3 Mali 1.00 0.92

Table 3 demonstrates the fitting error between the model and measured
samples for each application/platform combination as fidelity values. To high-
light the improvement of the proposed GSLA model over conventional LSLA
for GPU targets, Table 3 also shows the fidelity value for LSLA. Fidelity is
computed similarly to [3] with the Kendall Tau Coefficient value, as calculated
by the corr function of Matlab when configured for it. Fidelity assesses the
capacity of the model to correctly order samples, 1 corresponding to a perfect
order and −1 a perfectly reverse order. Indeed, a good model is a model that
feeds good decisions more than a model with good absolute accuracy. A value
of zero, as a worst case, would suggest independence in ranking between model
and measurements. For computing the fidelity, the 360 execution time samples
were randomly divided into a training set of 288 samples, and a test set of 72
samples.

In the Table 3 results, it can be seen that conventional LSLA yields con-
siderably worse fidelity than the proposed GSLA for GPU architectures. The
reason for this is evident: LSLA does not capture parallelism (γ), which is
an integral part of GPU processing. An exception to this is the predistortion
application on the Baffin GPU, where LSLA and GSLA yield almost identical
fidelity. The reason for this is that on this platform, communication time dom-
inates over parallelized kernel execution, making the whole application behave
almost similar to a sequential application. Dominance of communication can
be seen in Table 2 as the high value of coefficient αc for application B2.

The measured fidelity values also show that the proposed non-linear GSLA
model fits better the Mali platform than the Baffin platform. The difference is
likely related to the different memory architectures; Mali uses a shared memory
between the CPU and the GPU, whereas the Baffin GPU is connected over
PCI Express.

A Model of Architecture for estimating GPU processing performance and power 17

8 GPU Power Modeling

Besides GSLA for performance modeling, a power model is proposed for pre-
dicting the average power consumption of an OpenCL applications. The same
Odroid XU3 platform is used for power profiling as it includes power sensors
for CPU, GPU and memory. In our measurements we noticed almost constant
CPU power which is expected from OpenCL applications running on GPU.
Also, we ignored memory power consumption. Consequently, we only consid-
ered the GPU power dissipation as seen in Equation 6. In this equation the pt
is the total power of the GPU.

In our experiments, we recognized that power consumption modeling with
reasonable accuracy requires a third constant term in comparison to execution
time modeling. In order to keep the complexity at reasonable levels, we tried
to come up with the simplest possible model for capturing the GPU power.
Consequently, the proposed power model has three parameters.

pt(γ, S) = aGPU + bGPUS + cGPUS/γ (6)

As experiments, matrix multiplication and the Gaussian filtering are ex-
ecuted on the Mali platform and power values are read from the sensors.
Profiling was similar to performance model i.e. with two application variables
S and γ with the same values where S ∈ { 512, 1024, 2048, 4096, 8192, 16384
} and γ ∈ { 8, 16, 32, 64, 128, 256}. Figure 8 presents power modeling of
matrix multiplication and Figure 9 for Gaussian filtering. In both of these fig-
ures pt axis demonstrates only GPU power consumption. Table 4 shows the
power model’s parameters of these applications on the Mali GPUs. The val-
ues of the bGPU and cGPU are very small in comparison to other parameters.
The aGPU is almost constant at 0.12 representing a static power consumption
of 120mW i.e. the intercept of equation and its larger values effect the total
power consumption.

Table 5 depicts the fidelity of the proposed power model. These values
could improve slightly with the cost of increasing the complexity of the model.
For example, Equation 7 was tested and rejected for the power model with
R-squared value of 0.862 for matrix multiplication and 0.917 for Gaussian
application, which does not justify the increased complexity.

pt(γ, S) = aGPU + bGPUS + cGPU/γ + dGPUS/γ (7)

The S and γ variables depicted in Equation 6 show the input data quantity
and parallelism factor. From the observations we noticed similar variable rela-
tions like the performance cost for the measured power samples. We observed
that, logically, the input data quantity increases the power consumption while
an increase of the parallelism reduces the power consumption. In addition, the
Pseudocode 3 depicts the Matlab script of the power modeling according to
the proposed Equation 6. The values of the S and the γ sets are considered
according to the memory capacity of the targeted hardware and the input data
size of the applications.

18 Saman Payvar et al.

Pseudocode 3 Matlab Script of Power Model
INPUT: pt = [...]
OUTPUT: aGPU , bGPU , cGPU

PowerModel {
S = [...];
γ = [...];
aGPU, bGPU, cGPU = lsqlin(pt, [ones(S), S, S/γ]);
}

0.12

0.14

0.16

0.18

0

0.2

0.22

p
t

0.24

0.26

0.28

3000.5 250
200

10 4

S

1

gamma

150
1001.5

50
2 0

Fig. 8 Power modeling of Matrix multiplication on the Mali GPU (power in Watts).

Table 4 Cost function parameters of power modeling.

Application aGPU bGPU cGPU

M1 0.121747 0.000003 0.000055
M3 0.121422 0.000052 0.000191

Table 5 Fidelity of the power model (Kendall tau coefficient between -1 and 1,1 is the
best).

Application Platform Fidelity power model Fidelity LSLA
(proposed)

1 Mali 0.740 0.628
3 Mali 0.943 0.916

A Model of Architecture for estimating GPU processing performance and power 19

0

0.2

0.4

0

0.6

0.8

1

p
t

1.2

1.4

3000.5 250
200

10 4

S

1

gamma

150
1001.5

50
2 0

Fig. 9 Power modeling of Gaussian filtering on the Mali GPU (power in Watts).

9 Fitness of the models

The proposed LSLA extension aims to model parallel execution on the GPU
of the considered platform. With the following fitness study, we show that the
created GSLA model is capable of fitting both GPU performance and GPU
power consumption. The performance model shown in Equation 8 and the
power model presented in Equation 6 have the same terms with exception of
an extra constant term for Equation 6. This constant logically models the static
power of the platform while timing is null when no computation is requested.
The fitness of the performance model and the presented power model are
compared using the R-squared for the power measurements calculated with
Matlab regress function. Table 6 depicts the fitness comparison of the models.

The R-squared values of 0.850 and 0.916 for Equation 6 in comparison to
values for the Equation 8 justifies the selection of the Equation 6 as the power
model. The horizontal line has a better fit than Equation 8 for power samples
of the matrix multiplication application so the R-squared value. This suggests
the requirement to add a constant value in Equation 6.

The conclusion is that GSLA as defined by a sum of contributions obtained
with equation 6, is capable of modelling both GPU power and performance
with only 3 parameters.

20 Saman Payvar et al.

tw(γ, S) = α S/γ + β S (8)

Table 6 Fitness of Models

Application Equation R-squared
1 8 -5.415
1 6 0.850
3 8 0.854
3 6 0.916

10 Conclusion

We presented a new Model of Architecture called GSLA (GPU-oriented System-
Level Architecture). GLSA is tailored to GPU modeling but is capable of
modeling both performance and average power of the targeted GPU. Con-
trary to the preexisting LSLA model, GSLA includes non-linear constructs,
but reasonably fits the power consumption of a complex GPU with only 3
parameters. The validity of the proposed model is evaluated by profiling three
OpenCL applications on two GPU-equipped platforms. The achieved model
fidelity is 93% for execution latency and 84% for power. Such performances
can be considered sufficient for design space exploration purposes.

In future, other lightweight machine learning techniques will be investi-
gated for building models from platform measurements, expecially in more
heterogeneous contexts combining e.g. CPU and GPU.

Acknowledgements This work was partially supported by the ITEA3 project 16018
COMPACT and by the European Union Horizon 2020 research grant 732105 CERBERO.
We thank Jani Boutellier, Tapio Nummi, Antoine Morvan and Claudio Rubattu for their
helpful guidance.

References

1. Amdahl, G.M.: Validity of the single processor approach to achieving large scale com-
puting capabilities. In: Proceedings of the April 18-20, 1967, spring joint computer
conference, pp. 483–485 (1967)

2. Aster, R.C., Borchers, B., Thurber, C.H.: Parameter estimation and inverse problems.
Elsevier (2018)

3. Bambha, N.K., Bhattacharyya, S.S.: A joint power/performance optimization algorithm
for multiprocessor systems using a period graph construct. In: Proceedings of the
13th international symposium on System synthesis, pp. 91–97. IEEE Computer Society
(2000)

4. Bezati, E., Thavot, R., Roquier, G., Mattavelli, M.: High-level dataflow design of signal
processing systems for reconfigurable and multicore heterogeneous platforms. Journal
of real-time image processing 9(1), 251–262 (2014)

A Model of Architecture for estimating GPU processing performance and power 21

5. Eker, J., Janneck, J.: Cal language report. Tech. rep., Tech. Rep. ERL Technical Memo
UCB/ERL (2003)

6. Holmbacka, S., Keller, J., Eitschberger, P., Lilius, J.: Accurate energy modelling for
many-core static schedules. In: 2015 23rd Euromicro International Conference on Par-
allel, Distributed, and Network-Based Processing, pp. 525–532. IEEE (2015)

7. Holmbacka, S., Nogues, E., Pelcat, M., Lafond, S., Lilius, J.: Energy efficiency and
performance management of parallel dataflow applications. In: The 2014 Conference on
Design & Architectures for Signal & Image Processing (2014)

8. Kienhuis, B., Deprettere, E.F., Van der Wolf, P., Vissers, K.: A methodology to design
programmable embedded systems. In: International Workshop on Embedded Computer
Systems, pp. 18–37. Springer (2001)

9. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proceedings of the IEEE 75(9),
1235–1245 (1987)

10. Mittal, S., Vetter, J.S.: A survey of methods for analyzing and improving gpu energy
efficiency. ACM Computing Surveys (CSUR) 47(2), 1–23 (2014)

11. Moren, K., Göhringer, D.: Automatic mapping for opencl-programs on cpu/gpu hetero-
geneous platforms. In: International Conference on Computational Science, pp. 301–314.
Springer (2018)

12. Nogues, E., Pelcat, M., Menard, D., Mercat, A.: Energy efficient scheduling of real time
signal processing applications through combined dvfs and dpm. In: 2016 24th Euromi-
cro International Conference on Parallel, Distributed, and Network-Based Processing
(PDP), pp. 622–626. IEEE (2016)

13. Payvar, S., Boutellier, J., Morvan, A., Rubattu, C., Pelcat, M.: Extending architecture
modeling for signal processing towards gpus. In: 2019 27th European Signal Processing
Conference (EUSIPCO), pp. 1–5. IEEE (2019)

14. Pelcat, M., Desnos, K., Maggiani, L., Liu, Y., Heulot, J., Nezan, J.F., Bhattacharyya,
S.S.: Models of architecture: Reproducible efficiency evaluation for signal processing
systems. In: IEEE International Workshop on Signal Processing Systems (SiPS), pp.
121–126. IEEE (2016)

15. Pelcat, M., Mercat, A., Desnos, K., Maggiani, L., Liu, Y., Heulot, J., Nezan, J.F.,
Hamidouche, W., Ménard, D., Bhattacharyya, S.S.: Reproducible evaluation of system
efficiency with a model of architecture: From theory to practice. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2017)

16. Pelcat, M., Piat, J., Wipliez, M., Aridhi, S., Nezan, J.F.: An open framework for rapid
prototyping of signal processing applications. EURASIP journal on embedded systems
2009, 11 (2009)

17. Plishker, W., Sane, N., Kiemb, M., Anand, K., Bhattacharyya, S.S.: Functional dif for
rapid prototyping. In: Rapid System Prototyping, 2008. RSP’08. The 19th IEEE/IFIP
International Symposium on, pp. 17–23. IEEE (2008)

18. Plishker, W., Sane, N., Kiemb, M., Bhattacharyya, S.S.: Heterogeneous design in func-
tional dif. In: International Workshop on Embedded Computer Systems, pp. 157–166.
Springer (2008)

19. Rigo, S., Araujo, G., Bartholomeu, M., Azevedo, R.: Archc: A systemc-based architec-
ture description language. In: 16th Symposium on Computer Architecture and High
Performance Computing, pp. 66–73. IEEE (2004)

20. Schor, L., Bacivarov, I., Rai, D., Yang, H., Kang, S.H., Thiele, L.: Scenario-based design
flow for mapping streaming applications onto on-chip many-core systems. In: Proceed-
ings of the 2012 international conference on Compilers, architectures and synthesis for
embedded systems, pp. 71–80. ACM (2012)

21. Thiele, L., Bacivarov, I., Haid, W., Huang, K.: Mapping applications to tiled multi-
processor embedded systems. In: Seventh International Conference on Application of
Concurrency to System Design (ACSD 2007), pp. 29–40. IEEE (2007)

22. Valiant, L.G.: A bridging model for parallel computation. Communications of the ACM
33(8), 103–111 (1990)

PUBLICATION

III

Neural Network-based Vehicle Image Classification for IoT Devices
S. Payvar, M. Khan, R. Stahl, D. Mueller-Gritschneder and J. Boutellier

2019 IEEE International Workshop on Signal Processing Systems (SiPS)2019, 148–153
DOI: 10.1109/SiPS47522.2019.9020464

Publication reprinted with the permission of the copyright holders

Neural Network-based Vehicle Image Classification for IoT Devices

Saman Payvar
Unit of Computing Sciences

Tampere University
Tampere, Finland

saman.payvar@tuni.fi

Daniel Mueller-Gritschneder
Chair of Electronic Design Automation

Technical University of Munich
Munich, Germany

daniel.mueller@tum.de

Mir Khan
Unit of Computing Sciences

Tampere University
Tampere, Finland

mir.markhan@tuni.fi

Jani Boutellier
Unit of Computing Sciences

Tampere University
Tampere, Finland

jani.boutellier@tuni.fi

Rafael Stahl
Chair of Electronic Design Automation

Technical University of Munich
Munich, Germany

r.stahl@tum.de

Abstract—Convolutional Neural Networks (CNNs) have previ-
ously provided unforeseen results in automatic image analysis and
interpretation, an area which has numerous applications in both
consumer electronics and industry. However, the signal processing
related to CNNs is computationally very demanding, which
has prohibited their use in the smallest embedded computing
platforms, to which many Internet of Things (IoT) devices belong.
Fortunately, in the recent years researchers have developed many
approaches for optimizing the performance and for shrinking
the memory footprint of CNNs. This paper presents a neural-
network-based image classifier that has been trained to classify
vehicle images into four different classes. The neural network is
optimized by a technique called binarization, and the resulting
binarized network is placed to an IoT-class processor core
for execution. Binarization reduces the memory footprint of
the CNN by around 95% and increases performance by more
than 6×. Furthermore, we show that by utilizing a custom
instruction ’popcount’ of the processor, the performance of the
binarized vehicle classifier can still be increased by more than 2×,
making the CNN-based image classifier suitable for the smallest
embedded processors.

Index Terms—model compression, convolutional neural net-
works, image classification, internet-of-things

I. INTRODUCTION

Convolutional neural networks (CNNs) have enabled a
significant advance in automatic image analysis, such as image
classification [1], image segmentation [2], image captioning
[3] and object detection [4]. Unfortunately, up to recently
the computational requirements of CNNs have restricted their
use to server or desktop class computers, although their
deployment to edge devices could open up a variety of new
applications [5]. In the Internet-of-Things (IoT), the network
edge refers to devices that are within immediate connection
to sensors that provide input data for the whole IoT system.
Such an edge device can be a smartphone [6], or a tiny sensor
node commonly equipped with less than a megabyte of RAM
[7].

A CNN consists of a sequence of layers, of which the most
common types are fully-connected layers and convolutional
layers. Once a CNN has been trained [8], e.g. for image

classification, the parameters and weights of the layers are
fixed for deployment to a target device. On the target device,
the process that evaluates given input data is called inference,
where the input data flows through the layers of the CNN,
providing the requested output (e.g. classification result) from
the last layer.

In terms of computation, convolutional layers consist of
repeated 2D convolutions, where the input data of the layer
is convolved by 2D kernels with common sizes of 5×5,
3×3 or 1×1 [9]. The computational effort of convolutional
layers grows rapidly as the size of input images or kernels
grows [10]. However, it has been well-known for some time
that 2D convolution can also be interpreted and computed as
a 2D matrix multiplication [11]. The inference of a fully-
connected layer is also commonly performed by 2D matrix
multiplication.

Optimization of CNN processing can be performed by
optimizing software, hardware, or both [12]. Examples for
software-based optimizations are model compression [9][13]
or reduction of arithmetic precision [14][12]. Software-based
optimizations that target convolutional layers include separable
convolution [15] and depthwise convolution [16], whereas
fully-connected layers can be optimized by weight pruning
[13]. All of these optimizations have some negative impact on
the CNN accuracy.

Reduction of arithmetic precision, on the other hand, is
not limited to separate types of layers, but can be applied
to the whole CNN. Arithmetic precision can be reduced from
floating-point to, e.g., 16-bit fixed point [12] with minimal
degradation of CNN (classification) accuracy, or by extreme
quantization down to two [17] bits or one bit [18][14] of
weight precision. When the precision of weights (and possibly
also input data) is reduced to a single bit, the CNN is
binarized. Binarization dramatically reduces the memory foot-
print of a CNN, as the original weights, which are normally
expressed in 32-bit floating point, can be represented with
a single bit. This evidently has an impact on the CNN’s
accuracy [18]. However, besides shrinking the size of the

network, binarization also enables CNN inference on devices
that have no support for floating-point arithmetic, such as
microcontrollers and FPGAs [19].

This paper presents a CNN for vehicle image classification
[20] that has been binarized including the weights of all
layers, as well as the input data, following the principles
of our recent work [14]. However, unlike our recent work
that concentrated on CNN inference on graphics processing
units, in this paper we focus on microcontroller-class devices
that can be found on edge nodes of an IoT system. As
the target microcontroller, we have selected PULPino [21],
which is based on the open-source instruction-set architecture
RISC-V [22], which is gaining interest in both academia and
industry.

The contributions of this paper are as follows:
• Performance and memory footprint measurements of our

binarized CNN-based image classifier on a RISC-V mi-
crocontroller, and

• Optimization of binarized CNN computations by the
custom instruction ’popcount’ found in a proposal for
RISC-V instruction set extensions [23].

The structure of this paper is as follows: Section II intro-
duces other works related to optimization of CNNs; Section III
describes the PULPino microcontroller that we use as the
target device for our image classifier; Section IV covers the
structure and binarization process of our CNN; Section V
presents our experimental results, and Section VI concludes
the paper.

II. RELATED WORK

This section describes previous works related to acceleration
of CNNs, some also considering acceleration by hardware.
Table I present a summary of these works and what target
platforms they consider.

TABLE I
RELATED NEURAL NETWORK OPTIMIZATION WORKS

Work Type Optimization Platform
Courbariaux et al. SW Binarization NVidia GPU

[18] only (fc layers only)
Rastegari et al. SW Binarization 64-bit CPU

[24] only (conv and fc layers)
Khan et al. SW Binarization NVidia and

[14] only (conv and fc layers) OpenCL GPUs
ESPRESSO SW Binarization NVidia GPU,

[25] only (conv and fc layers) CPU
Park et al. HW Zero skipping, Nvidia GPU,

[26] SW Data reuse GPU simulation
(conv layers only)

Conti et al. HW Binarization HW accelerator
[27] SW (conv and fc layers) for MCUs

Proposed HW Binarization RISC-V MCU
SW (conv and fc layers) (simulation)

Binarized neural networks (BNN) were originally intro-
duced in [18]: network weights and activations are restricted
to +1 and −1, which enables replacing multiplications and
additions with bit-wise operations. Experiments have been

performed on MNIST and CIFAR-10 datasets. The authors
demonstrate a speedup of 7× for a multi-layer perceptron
network trained for MNIST handwritten digit classification.
Experimental results are limited to GPU acceleration of bina-
rized fully-connected layers.

Somewhat later the binarization optimization was extended
to the large-scale ImageNet image classification challenge
[24]. The authors of [24] concentrate on CPU targets and
report up to 58× execution time reduction on 64-bit CPUs
for binarized convolution and fully-connected layers. Also, the
authors claim an accuracy improvement of 16% compared to
[18] in the ImageNet top-1 classification challenge.

Our previous work [14] was among the first ones to present
GPU acceleration of both binarized convolution and fully-
connected layers. Experimental results are presented for two
mobile GPUs (NVidia Jetson and ARM Mali-T860), as well as
for a desktop GPU (NVidia GTX1080). Layer implementations
have been written from scratch in OpenCL and CUDA and
made available open source. Additionally, the accuracy impact
of various input image binarization approaches are analyzed.

In [25] a self-contained library ESPRESSO for binarized
neural networks is presented. The library provides layer im-
plementations in C and CUDA for both CPU and NVidia
GPU targets. ESPRESSO [25] uses an optimization called
unrolling (similar to im2col used in our previous work [14] and
the proposed work) for reshaping tensors prior to computing
convolution.

Optimization of CNN convolution operations is studied in
[26]. The authors have observed that Winograd convolutions
can involve a high number of multiplications by zero, espe-
cially if weight pruning (see, e.g. [13]) has been applied. This
redundancy is avoided by skipping zero weights by a software-
only and by a hardware-assisted approach. Additionally, the
authors present a data reuse approach for reducing the number
of additions. Both optimizations target NVidia GPUs.

In [27] the XNOR Neural Engine (XNE) is presented, a
hardware accelerator for binary neural networks to be closely
coupled with an MCU (micro controller unit) system. The
XNE is capable of executing both binarized convolutional and
fully-connected layers. The authors provide post-layout results
where the accelerator has been placed on the same chip and
same clock domain with a RISC-V microcontroller that acts
as the host processor for the accelerator.

The proposed work is similar to the work of Conti et al.
[27] in the sense that both consider an IoT edge computing
scenario, build on binarized CNNs, and consider RISC-V
MCU cores. However, a substantial difference is that the XNE
accelerator of [27] is a dedicated datapath for CNNs next to the
MCU core, whereas our proposed solution builds on a basic
microcontroller architecture with just one custom processor
instruction (’popcount’) for accelerating BNNs. Evidently, the
specialized circuit of [27] can achieve much higher energy
efficiency than our proposed solution, whereas our solution
only requires a tiny modification to a basic RISC-V MCU
system, and otherwise remains very generic and capable of
accelerating other types of applications as well.

Fig. 1. From left to right, a ’bus’, ’normal car’, ’truck’, and a ’van’.

III. THE PULPINO RISC-V PROCESSOR FOR IOT
APPLICATIONS

RISC-V is an open source instruction set architecture (ISA)
that is gaining interest in both academia and industry [22]. The
ISA is open and standardized, such that it is free to use for both
academia and industry. To promote adoption of the new ISA,
another goal was to design a modern ISA: it is designed in
a modular way by providing a small base instruction set with
optional extensions. Additionally, certain instruction opcodes
are reserved for custom extensions. This flexibility allows to
design RISC-V processors that are customized for special
workloads, which makes the ISA interesting for specialized
IoT devices.

While the open standard is just referring to the ISA itself and
not any micro-architecture, the community around RISC-V has
provided many open-source cores. An important motivation
for open hardware is security, especially with recent micro-
architecture bugs Spectre and Meltdown appearing in popular
media [28][29]. Kerckhoff’s principle and a long history of
research suggests that open systems provide certain advantages
over closed systems in terms of security [30][31][32].

The Parallel Ultra-Low-Power (PULP) project has devel-
oped several RISC-V-based microcontrollers that are suitable
for IoT applications [21]. The PULPino is particularly suited
for low cost, low power tasks, because it is a simple in-order
single-core microcontroller with many configuration options.
Due to these advantages, the custom processor used in this
work was derived from the PULPino-based SoC (System-on-
Chip).

IV. NEURAL NETWORK DESIGN

A. Network for Vehicle Classification

The neural network model we use is that of the vehicle
classifier network presented in [20]. The network has five
layers in total, starting with two convolutional layers, each
one with 32 output feature maps, and kernel sizes 5×5. Each
of the convolutional layers is followed by a 2×2 maxpooling
operation. The second convolutional layer is followed by three
fully-connected layers. The first fully-connected layer (the 3rd
layer in the network) has 100 neurons, resulting in the shape
24×24×32×100. The two layers that follow have shapes
100×100, and 100×4, in that order.

The dataset we use for training the network has 6555 photos
of vehicles from four categories: bus, normalcar, truck, and
van. Each vehicle image is a full-color image of size 96× 96.
Example images from each class in the data set are shown in
Fig. 1. We split the data into a training set (80%), validation

set (10%) and a test set (10%). Our test-set accuracy reports
are the recorded accuracy reports that correspond to the best
validation set accuracy.

B. Neural Network Binarization

We implement a binarized version of the vehicle classifier
network introduced in [20] reducing the precision of CNN
weights and their activations to 1-bit. This concept was first
introduced in [18], with reports of substantial reductions of
model execution time and size. In this work, we replace all
ReLU activations in the network with the sign function, which
is given as

sign(x) =

{
−1 if x ≤ 0

+1 if x > 0
(1)

We binarize the weights of the network using the sign function
as well. During training, the gradient of sign activations are
explicitly defined to be the identity function in the backward
pass so that ∂sign(x)

∂x = x. The full-precision version of
the network (non-binarized) is trained using the RMSprop
optimizer, and the binarized version is trained with the ADAM
optimizer. For the binarized version of the network, only the
binarized weights, where all have a value of either −1 or +1,
are used for inference on the target device. The network is
trained from scratch using binarization in a separate training
process.

We use the terms packing or bit-packing to denote the
encapsulation of an array of 1-bit values (+1’s and −1’s) into
one 32-bit unsigned integer. For example, if we wish to pack a
vector x ∈ {−1,+1}32, its packed representation, xp, is given
by

xp =

31∑
i=0

(xi + 1)2i−1, (2)

where xi is the ith element of x. This then allows operations
such as vector-summations and dot products to be performed
using binary (bit manipulation) operations. The dot-product,
for example, can be represented as

a·b = 32− 2× popcount(xor(A,B)), (3)

where both A and B are 32-bit unsigned integers holding
the packed representations of the vectors a, b ∈ {−1,+1}32.
The operation ’popcount’ (also known as Hamming weight
calculation) is a function for computing the number of bits set
to 1, which can essentially simulate vector summation. The
operation xor in Eq. 3 is the bit-wise ’xor’ operation.

C. Acceleration by Bit Manipulation Instructions

Looking at Eq. 3 we see that both ’xor’ and ’popcount’ are
used in inference of binarized CNNs to perform an operation
that emulates multiplication for packed weights; this means
that both for fully-connected and convolutional layers ’xor’
and ’popcount’ are in heavy use and offer a clear optimization
target.

The hardware implementation of ’xor’ can be found on any
programmable processor, whereas a hardware implementation
for ’popcount’ is mostly available on graphics processing units
or CPU SIMD extensions such as ARM NEON. For our target
processor, the PULPino microcontroller, the base ISA does
not include ’popcount’ – this instruction is only present in
the bit manipulation extension of RISC-V that is still under
development [23].

In our experiments, in cases where the target processor did
not have a hardware instruction for ’popcount’, the LLVM
C language description1 shown in Algorithm 1 was called
through builtin popcount().

Algorithm 1 LLVM ’popcount’, i.e. Hamming weight
int32 popcountsi2 (int32 a) {
uint32 x = (uint32) a;
x = x− ((x >> 1) & 0x55555555);
x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
x = (x + (x >> 4)) & 0x0F0F0F0F;
x = (x + (x >> 16));
return (x + (x >> 8)) & 0x0000003F;
}

V. EXPERIMENTS

The experimental evaluation of this work consisted of
two parts: 1) evaluating the effect of the software-based
binarization optimization for our image classifier, and 2)
evaluating the effect of the ’popcount’ custom instruction on
the binarized classifier. Unfortunately, as our ultimate target
platform was the PULPino microcontroller for IoT devices,
it was not possible to benchmark the original non-binarized
vehicle classifier on this device as it has no hardware support
for floating point computations. Hence it was necessary to use
two different target platforms to complete our experiments,
and these platforms are summarized in Table II.

The ARM Cortex A53 core is a powerful mobile processor
and in our experiments the processor was used under Linux
for benchmarking a C language implementation of the original
vehicle classifier [20], as well as for the C language imple-
mentation of the binarized vehicle classifier.

Experiments on the PULPino microcontroller platform were
performed in a simulation environment, which is described
next.

A. The ETISS Simulator

The RISC-V ISA is still in a phase of development, as for
example the specification is not officially standardized yet.
Still, the central components of the specification have matured
and have been used to fabricate various chips such as the
SiFive FE310 SoC [33]. The application being evaluated in
this work however requires the bit manipulation instruction
extension (’B extension’) of the RISC-V ISA. This extension

1https://github.com/sifive/riscv-llvm/blob/master/compiler-
rt/lib/builtins/popcountsi2.c

is still in active development [23] and not part of the current
specification. Therefore, there is no RISC-V chip available
that could be used for evaluating our results, however an
alternative way to estimate the performance gain achievable
through custom instructions is by simulation.

An RTL (Register-Transfer Level) hardware simulation
would not be suitable for fast prototyping as the micro-
architecture should be modified to enable the execution of
the chosen custom instructions. Additionally, for a time-
consuming workload such as our CNN application, the RTL
simulation time would be prohibitively high.

The Extensible Translating Instruction Set Simulator
(ETISS) focuses on extensibility [34] to support fast prototyp-
ing. As ETISS already supports the standard RISC-V base in-
struction sets, contains a virtual prototype of the PULPino [21]
SoC, and allows profiling the application execution time, the
use of this simulator was a natural decision our binarized
image classifier application.

B. Implementation of the Popcount Instruction

As the PULPino virtual prototype of ETISS currently only
supports the RISC-V base ISA, a temporary modification of
the virtual prototype was required to enable profiling with
support for ’popcount’. From ETISS execution traces it was
discovered that the ’xori’ instruction of the RISC-V base ISA
remained almost unused throughout the whole execution of the
binarized vehicle classifier. Therefore, in the PULPino virtual
prototype the functional description of ’xori’ was modified to
provide alternative functionality, i.e. ’popcount’, toggled by
the value of the 2nd instruction operand.

In the software implementation of the binarized vehicle
classifier, the calls to ’popcount’ were then replaced with inline
assembly calls to ’xori’ with the specific operand value that
would invoke ’popcount’ behavior.

C. Execution Time and Memory Footprint Analysis

Table III shows the experimental results for both A53 and
PULPino. From top to bottom the table rows report execution
time on A53, execution time on PULPino, data memory
footprint, PULPino instruction memory footprint, and CNN
classification accuracy.

Looking at the A53 results it can be seen that binarization
alone reduced the execution time by more than 80%, and
dropped the data memory usage close to 95% when compared
to the original floating point C version.

Acceleration by the hardware ’popcount’ instruction re-
duced the computation time of the binarized vehicle classifier
by around 55% on the PULPino platform, and also reduced
the instruction memory footprint by around 2 kB. The reason
for the 55% reduction in execution time can be seen from
Table IV that shows the count of executed instructions on the
PULPino platform for the binarized vehicle classifier with and
without the hardware ’popcount’ instruction: the code version
that calls the hardware ’popcount’ instruction has respectively
55% less executed instructions. This is because if there is no
hardware support for ’popcount’, the functionality must be

TABLE II
PLATFORMS USED FOR EXPERIMENTS.

Tag CPU Platform type Compiler Operating System
A53 ARM Cortex A53 (1416 MHz) Silicon SoC g++ 5.4.0 Linux Firefly 4.4
PULPino PULPino (33 MHz) Virtual prototype on ETISS riscv32-unknown-elf-gcc 7.1.1 n/a

implemented by means of several regular instructions, which
can be seen in increased execution counts of ’srli’, ’and’,
’sub’ and ’add’ instructions for the binarized version without
the hardware ’popcount’ instruction. Algorithm 1 shows that
these instructions are needed for the software implementation
of ’popcount’

The accuracy results shown in Table III are identical to our
previous work on binarization that targeted graphics process-
ing units [14].

TABLE III
EXECUTION TIME, MEMORY FOOTPRINT AND ACCURACY

Application version Baseline Binarized Bin+pop
Arithmetic float32 int32 int32
A53 Execution time 0.362 s 0.057 s -
PULPino Exec. time - 2.62 s 1.18 s
Data Memory 7.2 MB 369 kB 369 kB
Pulpino Instr. Memory - 21 kB 19 kB
Accuracy [14] 97.09% 92.52% 92.52%

TABLE IV
NUMBER OF EXECUTED INSTRUCTIONS

Instruction Binarized Bin+pop
name int32 int32

lw 8797430 8797417
lbu 272 272
addi 6372539 6354083
slli 2801668 2801668

popcount/xori2 4 3302052
srli 16510241 1
srai 4 4
ori 1 1

andi 3302062 14
sb 268 268
sh 4 4
sw 782165 782109
add 16704267 3496013
mul 0 0
sub 3670893 368845
sll 18632 18632
slt 2553032 2553032
xor 3302048 3302048
or 2451656 2451656

and 13208192 0
bne 3232555 3232555
blt 0 0
bge 370058 370058
bltu 4 4
jalr 39 39
jal 57 57

csrrw 1 1
Total 84078092 37830833

VI. CONCLUSIONS

In this paper we have presented a convolutional neural
network based vehicle image classifier that has been opti-
mized for real-time execution and small memory footprint
by a technique called binarization. We show that by using
’popcount’, a custom instruction in our target processor, the
runtime of the binarized image classifier can be reduced by
55%. This result is important due to the fact that ’popcount’
has been proposed to be included to a standardized instruction
set extension (’B extension’) of the recently introduced open
source RISC-V instruction set architecture. Besides RISC-V,
’popcount’ is already supported in graphics processing units
and e.g. in the NEON SIMD extension of ARM processors.

Our work shows that the software-based binarization trans-
formation coupled with the hardware-based ’popcount’ in-
struction yields an extremely powerful combination for opti-
mizing inference of convolutional neural networks. Together,
the memory footprint is reduced by close to 95%, and exe-
cution time is reduced by a magnitude while maintaining an
acceptable loss in accuracy. As a results, image classification
is performed in 1.18 seconds on the tiny 33 MHz RISC-V
microcontroller that is well suited for IoT applications.

ACKNOWLEDGMENT

This work was partially funded by the Academy of Finland
project 309903 CoEfNet, and by the ITEA3 project 16018
COMPACT (Business Finland diary number 3098/31/2017,
German ministry of education and research reference number
01IS17028).

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE conference on computer vision and pattern
recognition (CVPR), 2016, pp. 770–778.

[2] J. Dai, K. He, Y. Li, S. Ren, and J. Sun, “Instance-sensitive fully
convolutional networks,” in European Conference on Computer Vision
(ECCV). Springer, 2016, pp. 534–549.

[3] J. Johnson, A. Karpathy, and L. Fei-Fei, “DenseCap: Fully convolutional
localization networks for dense captioning,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4565–
4574.

[4] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in IEEE
conference on computer vision and pattern recognition (CVPR), 2017,
pp. 7263–7271.

[5] G. Ananthanarayanan, P. Bahl, P. Bodı́k, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer
app for edge computing,” Computer, vol. 50, no. 10, pp. 58–67, 2017.

[6] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78–81, 2016.

[7] M. Alioto and M. Shahghasemi, “The Internet of Things on its edge:
Trends toward its tipping point,” IEEE Consumer Electronics Magazine,
vol. 7, no. 1, pp. 77–87, 2018.

2’popcount’ implemented as ’xori’ alternative behavior

[8] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2016, pp. 265–283.

[9] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: Alexnet-level accuracy with 50x fewer
parameters and <0.5 MB model size,” arXiv preprint arXiv:1602.07360,
2016.

[10] J. Shen, Y. Huang, Z. Wang, Y. Qiao, M. Wen, and C. Zhang, “Towards
a uniform template-based architecture for accelerating 2D and 3D
CNNs on FPGA,” in ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA). ACM, 2018, pp. 97–106.

[11] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional
neural networks for document processing,” in International Workshop
on Frontiers in Handwriting Recognition, 2006.

[12] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: efficient inference engine on compressed deep
neural network,” in ACM/IEEE International Symposium on Computer
Architecture (ISCA). IEEE, 2016, pp. 243–254.

[13] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy
of pruning for model compression,” in International Conference on
Learning Representations (ICLR) Workshops, 2018.

[14] M. Khan, H. Huttunen, and J. Boutellier, “Binarized convolutional
neural networks for efficient inference on GPUs,” in European Signal
Processing Conference (EUSIPCO). IEEE, 2018, pp. 682–686.

[15] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional
neural networks with low rank expansions,” in British Machine Vision
Conference (BMVC). BMVA Press, 2014.

[16] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[17] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv preprint
arXiv:1605.04711, 2016.

[18] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or -1,” arXiv preprint
arXiv:1602.02830, 2016.

[19] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “FINN: A framework for fast, scalable binarized neural
network inference,” in ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA). ACM, 2017, pp. 65–74.

[20] H. Huttunen, F. S. Yancheshmeh, and K. Chen, “Car type recognition

with deep neural networks,” in IEEE Intelligent Vehicles Symposium
(IV). IEEE, 2016, pp. 1115–1120.

[21] A. Traber, F. Zaruba, S. Stucki, A. Pullini, G. Haugou, E. Flamand,
F. K. Gurkaynak, and L. Benini, “PULPino: A small single-core RISC-
V SoC,” in RISC-V Workshop, 2016.

[22] The RISC-V Instruction Set Manual, RISC-V Foundation, 2017, version
2.2.

[23] RISC-V Bitmanip Extension, Clifford Wolf, 2019, version 0.37.
[24] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:

Imagenet classification using binary convolutional neural networks,” in
European Conference on Computer Vision (ECCV). Springer, 2016,
pp. 525–542.

[25] F. Pedersoli, G. Tzanetakis, and A. Tagliasacchi, “Espresso: Efficient
forward propagation for binary deep neural networks,” in International
Conference on Learning Representations (ICLR), 2018.

[26] H. Park, D. Kim, J. Ahn, and S. Yoo, “Zero and data reuse-aware fast
convolution for deep neural networks on GPU,” in International Confer-
ence on Hardware/Software Codesign and System Synthesis (CODES+
ISSS). IEEE, 2016, pp. 1–10.

[27] F. Conti, P. D. Schiavone, and L. Benini, “XNOR neural engine: A
hardware accelerator IP for 21.6-fJ/op binary neural network inference,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 11, pp. 2940–2951, 2018.

[28] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” arXiv preprint arXiv:1801.01203,
2018.

[29] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” arXiv
preprint arXiv:1801.01207, 2018.

[30] J.-H. Hoepman and B. Jacobs, “Increased security through open source,”
arXiv preprint arXiv:0801.3924, 2008.

[31] B. Witten, C. Landwehr, and M. Caloyannides, “Does open source
improve system security?” IEEE Software, vol. 18, no. 5, pp. 57–61,
2001.

[32] C. Cowan, “Software security for open-source systems,” IEEE Security
& Privacy, vol. 99, no. 1, pp. 38–45, 2003.

[33] SiFive FE310-G000 Manual, SiFive, Inc., 2017, version v2p3.
[34] D. Mueller-Gritschneder, M. Dittrich, M. Greim, K. Devarajegowda,

W. Ecker, and U. Schlichtmann, “The extendable translating instruction
set simulator (ETISS) interlinked with an MDA framework for fast RISC
prototyping,” in International Symposium on Rapid System Prototyping
(RSP). IEEE, 2017, pp. 79–84.

PUBLICATION

IV

Instruction Extension of a RISC-V Processor Modeled with IP-XACT
S. Payvar, E. Pekkarinen, R. Stahl, D. Mueller-Gritschneder and T. D. Hämäläinen

2019 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International
Symposium of System-on-Chip (SoC)2019, 1–5

DOI: 10.1109/NORCHIP.2019.8906975

Publication reprinted with the permission of the copyright holders

Instruction Extension of a RISC-V Processor
Modeled with IP-XACT

Saman Payvar
Computing Sciences
Tampere University
Tampere, Finland

saman.payvar@tuni.fi

Daniel Mueller-Gritschneder
Chair of Electronic Design Automation

Technical University of Munich
Munich, Germany

daniel.mueller@tum.de

Esko Pekkarinen
Computing Sciences
Tampere University
Tampere, Finland

esko.pekkarinen@tuni.fi

Timo D. Hämäläinen
Computing Sciences
Tampere University
Tampere, Finland

timo.hamalainen@tuni.fi

Rafael Stahl
Chair of Electronic Design Automation

Technical University of Munich
Munich, Germany

r.stahl@tum.de

Abstract—Short time-to-market and cost consideration of
hardware design promotes reuse of ever more complex intellec-
tual property even up to processors. In processor design, the
instruction set architecture (ISA) selection is a major design
decision driven largely by application requirements. Extend-
able ISAs enable application-specific adjustments and improved
performance at the cost of more complex design. Adding a
custom instruction introduces a choice of either utilizing existing
hardware or adding new dedicated hardware.

This work presents an instruction extension flow for a RISC-
V processor core modeled in IP-XACT. We demonstrate the
workflow by adding three bit manipulation instructions ”popcnt”,
”parity” and ”bswap” in the instruction set that executes on an
extended processor platform and evaluate their performance in
simulation. The simulated instruction count and performance are
used to evaluate the benefit of adding dedicated hardware.

The effort analysis of the design flow shows approximately
110 minutes work for adding a new instruction to the RISC-V
core. This suggests a straightforward and easy to follow approach
that can be extended to other instructions as well. In addition,
we propose the work flow to cover adding dedicated hardware
in IP-XACT for improved re-usability and design consistency.

Index Terms—RISC-V, GCC back end, ISA extension, bit
manipulation, IP-XACT

I. INTRODUCTION

The transistor shrinking trend of the CMOS technology in-
troduces higher design complexity of System-on-Chips (SoCs)
while competition pressures for short time-to-market at low
cost. Modularity addresses the complexity by composing the
system of reusable components and their connections. The
components are often provided by different vendors which ne-
cessitates a standard exchange format to facilitate Intellectual
Property (IP) reuse. The most promising is the IEEE 1685
standard (IP-XACT) [1] that is an XML format widely used
in the industry for IP description and integration.

Beside increased complexity, transistor size reduction in-
creases the leakage power and thus static power dissipation.

Consequently, energy efficiency becomes much more signif-
icant. Hardware design energy efficiency is achieved by ap-
plication specific adjustments which increase the performance
and reduce the power consumption. In processor core design,
ISA extensions and the hardware design adjustments are the
two available options for application specific optimizations.

RISC-V [2] is an open source ISA whose availability, sim-
plicity and adaptability has made it popular in both academia
and industry. Studies like [3] motivate further research on the
potential of non-standard RISC-V extensions. In this work,
we consider adding three bit manipulation instructions to the
PULPino [4] platform that is an open source implementation
of a 32-bit RISC-V single-core microprocessor.

Modeling a processor in IP-XACT facilitates the configu-
rations for different versions such as deciding the standard
and non-standard ISA extensions in the hardware design flow.
The software compiler must produce compatible binary code
for the target hardware, extending the configurability to the
compiler, which has lead to retargetable compilers [5]. To this
end the ISA extensions should be captured in an early phase
for consistency in both hardware and software design flows
using the IP-XACT model as a single point of entry.

The contributions of this work are:

• Instruction extension design flow of RISC-V ISA mod-
eled with IP-XACT,

• Evaluation of the extensions with RISC-V GCC compi-
lation and simulation, and

• Effort analysis of the proposed design flow

The rest of the paper is organized as follows: Section II
introduces the related works. Section III explains the RISC-V
non-standard instructions extensions. Section IV depicts the
experiments and shows the results. Section V concludes the
study and discusses future work.

TABLE I
COMPILER EXTENSION STUDIES

Study Platform Compiler Extension
Tagliavini et al. [3] PULPino GCC SmallFloat SIMD

Sen et al. [8] ARMv8 N.A. SPARCE
Murray and Franke [9] ENCORE GCC App. Specific

Sedaghati et al. [10] x86-64 GCC & ICC StVEC
Proposed PULPino GCC Bit Manipulation

II. RELATED WORK

The RISC-V ISA has a modular structure where the base
ISA covers the minimal instructions and the standard instruc-
tion extensions add options for extra functionality. At the
time of writing this paper, some standard extensions like bit
manipulation [6] and vector extensions [7] are still a work-
in-progress. Additionally, the ISA allows adding non-standard
extensions, and thus custom instructions, and promising stud-
ies and proposals have already emerged. In this section, we
compare the current ISA extension works summarized in Table
I to our experiments. For the comparison we have considered
the platform, the compiler, and the implemented extensions.

A. RISC-V ISA Extensions

The small floating point types for RISC-V ISA study [3]
presents extensions for 16-bit and 8-bit floating point types.
The extensions are implemented for register size of 32-bit
for small floating point (FP) data types. The experiments are
performed on RISCY core and show 1.64 times performance
boost and 30% energy saving for 16-bits and 2.18 times
execution time increase and 50% energy reduction for 8-bits.

The sparsity extension work [8] is targeted for deep neural
network (DNN) execution on general purpose processors. The
sparsity aware general purpose core extensions dynamically
track registers with zero value and prevents fetching redundant
instructions. The experiments on image recognition DNNs
shows up to 31% performance improvements.

Compiler support for automatic instruction set extension
study [9] applies the GCC extension in the middle-end for
the ENCORE which is a customizable application specific
instruction-set processor. They have reported an average per-
formance improvement of 1.26 for experiments on 179 bench-
marks.

The vector instruction extension study [10] focuses on ad-
dressing mode of vector instructions for stencil computations.
The overhead estimations is considered with a hardware imple-
mentation and depicted with the optimistic and the pessimistic
simulations. The experiments are performed on four x86-64
platforms using GCC and ICC compiler vectorization options.
They reported performance improvement between 20% and
2.47x with optimistic instruction emulation and between 7%
and 2.26x with pessimistic instruction emulation for both GCC
and ICC.

B. IP-XACT Extensions

Inherently IP-XACT is extendable by vendor extension that
contain supplementary information. Extendability is manda-
tory for wide applicability and industrial acceptance. However,
extensive use of vendor extensions will result in exactly
what the standard was originally intended to avert, vendor-
dependence. In the following we consider proposals for vendor
extensions that are not only relevant for this work, but also
considered broadly applicable.

The IP-XACT extension targeted for smart systems [11]
covers power, temperature and reliability concerns. All stan-
dard IP-XACT components are identified by a Vendor, Library,
Name, Version (VLNV) 4-tuple, so an optional C tag is
proposed to distinguish different concerns resulting in VLNVC
identifiers. A smart system is modeled as multiple commu-
nicating views where each presents an extra-functional (i.e.
non-functional) concern. The IP-XACT views are used for
SystemC code generation where instances of all the views are
instantiated at the top level. The influence of all concerns of
a system are now covered when all views are simultaneously
simulated.

IP-XACT is originally intended for hardware description but
could be used for both hardware and software data inclusion.
In [12], a methodology for both hardware and software IP
reuse is proposed for IP-XACT based FPGA design flow. This
approach facilitates board support package and software file
creations, and results in reducing the design time to one third
while doubling automation. In [13] IP-XACT extensions are
proposed for covering hardware dependent software.

C. RISC-V IP-XACT Model

The PULPino platform SystemVerilog (SV) implementation
is considered for creating IP-XACT models from the SV
source code repositories in [14]. The modeling is applied
by using the Kactus2 [15] tool to automatically import the
modules and further refined manually by the designer by e.g.
defining the memory maps. The resulting model covers all
four RISC-V configuration options of the PULPino platform
and provides the basis for configuration automation which
simplifies the rest of the design flow for the different processor
variants.

The related works are presented in three subsections cover-
ing three aspects of this work. The reported results of RISC-V
extension studies promote further investigations of our RISC-
V bit manipulation instruction extension work. The IP-XACT
studies show that it can be successfully applied to many design
topic and promote our core expansion study. The IP-XACT
model of RISC-V study facilities our RISC-V core extension
explorations.

III. RISC-V INSTRUCTION EXTENSION DESIGN FLOW

The design flow utilized in this study for adding the non-
standard instructions to the RISC-V ISA is presented in Fig. 1.
This flow has eight levels from top down depicting the stages
from inferring the bit pattern of instructions until running the
compiled binary on a processor implementation on an FPGA.

riscv-tools

riscv-gnu-toolchain

tmp.h

riscv-opc.c

opcodes.txt

riscv-opc.h

riscv32-
unknown-elf-

objcopy

riscv32-
unknown-elf-

gcc

ETISS Simulator

ETISS.ini
CPU Time

Extended RISC-V GCC Compilation

RISCV.nml

RISCVArch
.cpp

m2-isa-r

L2

L1

L3

L4

L5

L0

L6

L7

Kactus2

Synthesis

Extended
Core.v

Instruction
Memory

 Bitstream

BasicCore

riscv_alu

Legend

Platform

Edited FileInstruction File Report

Tool

Memory

NewInstuction
BitPattern.txt

Standard
Extension
Flags.txt

Algorithm.c

BasicCore.xml

decoder.xml

Control Unit

IP-XACT Component

FPGA

Extended RISC-VCore

Application File

Application.c Application.elf Application.bin

Platform File

ControlUnit.xml

riscv_decoder

Functional
Unit.xml

Fig. 1. The proposed design flow of RISC-V instruction extensions targeting
simulation and prototyping on FPGA.

A. Standard ISA Selection and Custom Instructions Inclusion

The basic RISC-V core with its standard extensions is
determined at the initial stage at level L0 in Fig. 1. The
command line flags i.e. with-arch and with-abi for the compiler
generation by riscv-gnu-toolchain are stored in a text file.
Beside the standard extensions, the bit patterns of the targeted
non-standard instructions are stored in another text file using
the same format as in the opcodes.txt file of riscv-tools on L1.

B. RISC-V GCC Compiler Extension

The RISC-V GCC back-end can be edited to cover non-
standard RISC-V instructions. Utilizing inline assembly for
new instructions requires only minor modification to GCC
binutils. Alternatively, the instruction pattern could be added
to the automatic code generation in the compiler back-end and
the compiler would attempt to utilize it whenever appropriate.

However, the latter is vastly more complex requiring in-depth
knowledge of the optimizer internals and thus considered
outside the scope of this paper.

First, the RISC-V opcodes header file should be edited to
include a new instruction’s MATCH and MASK definitions
and its DECLARE INSN macro declaration in riscv-opc.h. The
MATCH defines the binary equivalent of an instruction with
zeros for the registers while the MASK defines a pattern for
detecting the instruction. The MATCH pattern must be unique
for each instruction, so addition of new instruction’s MASK
requires overlap checking which can be performed by tools
like riscv-tools [16]. This first stage is shown as level L1 where
the instruction specification i.e. the binary equivalent of each
field of the instruction is considered as input from level L0.
The output of level L1 is a temporary header tmp.h containing
the instructions in compatible format with riscv-opc.h.

Second, the instruction format must be added to the
riscv opcodes structure in riscv-opc.c file. The format includes
data like the instruction’s name, type and registers which
are inferred from the new instruction’s bit pattern text file.
Also, the temporary header file tmp.h should be applied to
riscv-opc.h. Then, the RISCV GCC compiler is built with
appropriate platform specification data i.e. with-arch and with-
abi configurations received from L0. The second stage is
demonstrated as level L2 where the new instruction bit pattern
and standard extension flags generated in L0 are considered
for header and C file modifications and the compiler build.

Third, the Extended RISC-V GCC compiler is used to com-
pile the application C code to RISC-V assembly. The ETISS
[17] project provides a Makefile template for compiling the C
code using the previously built RISC-V GCC compiler which
now recognizes the new instruction’s inline assembly. Beside
the C code, the Makefile accesses the necessary libraries for
providing the platform i.e. PULPino compatible binary file.
The third stage is demonstrated as level L3 where the C code
input for the RISCV GCC compiler is presented on the left
and the binary output file on the right.

C. ETISS Simulator Extension

As we are exploring non-standard instructions, no hardware
in the market supports them out-of-the-box. Consequently, the
ETISS simulator is selected for performance analysis of the
studied instructions. ETISS is an ISA-independent Instruction
Set Simulator (ISS) based on Dynamic Binary Translation
(DBT). ETISS can be used to estimate CPU time of the
compiled C code. The simulation is used to evaluate the
performance of the processor using base instructions against
using custom instructions to evaluate whether the performance
gain justifies adding dedicated hardware.

ETISS can support different ISAs using plugins. It already
provides a plugin for the basic RISC-V ISA. To extend the
RISC-V ISA, the new instruction must be supported by the
DBT of the ETISS simulator. This is conveniently done using
the m2-isa-r tool, which is an Eclipse Modeling Framework
(EMF) application that can generate plugins for different ISAs
using a model-based flow based on nML description. nML

is a modeling language for compact ISA description. m2-
isa-r reads the nml file RISCV.nml and supplies the ETISS
plugin file RiscvArch.cpp. The plugin file contains an Instruc-
tionDefinition for each available instruction and defines the
binary encoding and the instruction behavior which enables
DBT. The nml file RISCV.nml is extended according to the
Algorithm.c and the new instructions bit pattern text files. The
RISC-V plugin RiscvArch.cpp, which is extended with the new
instructions, is generated using the model-based flow resulting
in ETISS supporting the new instructions. The fourth stage is
demonstrated as level L4.

In a second step, the ETISS simulator is configured for
estimating the performance. The ETISS simulator contains a
shell script which accesses the initialization configurations file
i.e. ETISS.ini. Beside the simulator configuration options, the
path to the compiled binary is given in this file. ETISS outputs
the text prints of the code and reports CPU time, simulation
time, CPU Cycles and MIPS estimation. This is shown as
level L5 where the ETISS simulator receives the binary and
provides the CPU time report. The experiments in Section IV
cover levels L0 to L5 of the presented design flow.

D. Hardware Support

Executing the new instructions is possible by either utilizing
existing instructions i.e. a function call to equivalent algorithm
or by adding dedicated hardware functional unit (FU) for it in
the pipeline. The the latter is presented in the work flow as
L6 and L7 where the FU of the new instruction is added at
the IP-XACT model level.

First, the IP-XACT model of the selected basic core is
packaged in the Kactus2 tool. In the case of PULPino, this
is already done. Next, the FU of the new instruction is added
in the pipeline and the control unit of the core is replaced
with a compatible implementation. In PULPino the FU is
added into the ALU module riscv alu and wired to the ALU
output selection multiplexer. Then, the module riscv decoder
is replaced with one recognizing the new instruction bit pattern
and driving the control signals for ALU and optionally the
rest of the core. After these editions, the basic core covers the
extensions.

Second, the RTL code for the extended processor is auto-
matically created using the generators in Kactus2. The RTL
is synthesized using the chosen synthesis tool for the target
FPGA platform. Then, the FPGA is programmed with the
extended core including the FU of the new instruction. Finally,
the binary of the compiled software code which includes the
new instructions is loaded into the instruction memory for
execution. In Fig. 1 the synthesis and FPGA run stage is
depicted as L7.

IV. EXPERIMENTS

We have studied three non-standard RISC-V bit manipula-
tion instructions including popcnt, parity, and bswap, and their
impact on the performance.

A. Algorithms of Instructions

We have compared the selected instruction’s LLVM algo-
rithm implementation 1 to their inline assembly equivalents.
Population count algorithm returns the number of one bits in
a given value as presented in Algorithm 1. Parity algorithm
returns one if the number of ones is odd. Byte swap algorithm
performs conversion between big-endian and little-endian.

Theses algorithms are compiled to several existing RISC-
V ISA instructions. Consequently, the extended equivalent as
only one instruction results in an obvious smaller instruction
memory footprint. The disassembler of the RISC-V GCC
compiler shows 14 RISC-V assembly instructions for popu-
lations count algorithm, 8 RISC-V assembly instructions for
parity algorithm and, 6 RISC-V assembly instructions for byte
swap algorithm. Due to coherency only the population count
algorithm is presented. Algorithm 2 depicts disassembly of
Algorithm 1 that all together are equivalent to one popcnt
instruction. For example, the first instruction of Algorithm 1
at line number 2 is compiled to three instructions of srli, and
and, sub in the first three lines of Algorithm 2.

Algorithm 1 Population Count
1: unsigned int popcount (unsigned int x) {
2: x = x− ((x >> 1) & 0x55555555);
3: x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
4: x = (x + (x >> 4)) & 0x0F0F0F0F;
5: x = (x + (x >> 16));
6: return (x + (x >> 8)) & 0x0000003F;
7: }

Algorithm 2 Population Count Assembly
1: srli a5, s0, 0x1
2: and a5, a5, s5
3: sub a5, s0, a5
4: srli a1, a5, 0x2
5: and a1, a1, s2
6: and a5, a5, s2
7: add a5, a1, a5
8: srli a1, a5, 0x4
9: add a1, a1, a5

10: and a1, a1, s4
11: srli a5, a1, 0x10
12: add a1, a1, a5
13: srli a5, a1, 0x8
14: add a1, a5, a1

B. Results and Discussion

Table II shows the CPU Time results i.e. the output report of
the ETISS simulator for running a for loop iterating one million
times for one function call (see L5 in Fig. 1). The function has
three variations i.e. the built-in function, the LLVM algorithm,
and the inline assembly of the new instruction presented in

1https://github.com/sifive/riscv-llvm/tree/master/compiler-rt/lib/builtins

TABLE II
BIT MANIPULATION INSTRUCTIONS PERFORMANCE

Instruction Built-in A. Algorithm Extension Reduction
popcnt 8.8312 s 8.5187 s 8.0812 s 5.13 %
parity 8.56768 s 8.34893 s 8.09893 s 2.99 %
bswap 8.56493 s 8.25243 s 8.06493 s 2.27 %

TABLE III
NEW INSTRUCTIONS EFFORT ESTIMATION

Effort L1 L2 L3 L4 L5 Total
Edit 30 min 30 min 10 min 30 min 10 min 110 min

Table II in the second, third and fourth column respectively.
The fifth column depicts the performance improvement of
the inline assembly compared to the LLVM algorithm. The
simulation shows up to 5% improvement for new instructions
extension in comparison to the LLVM algorithms. These results
justify the implementation of the expanded RISC-V processors.

Table III shows the effort estimation for adding a new
instruction according to the presented design flow. These
estimations are done with the assumption of already installed
and available tools for a first time users who is familiar
with compilers and simulators. The estimations show the
time required for modifying the files. On L1, one should be
familiar with RISC-V ISA and instructions bit pattern as each
instruction should have a unique bit combination. For L2, one
should consider the instructions pattern and should know the
targeted RISC-V platform. On L3 the only required modifica-
tion is the Makefile of the ETISS compiler to include the new
compiler path. For L4 the RISCV.nml file should be modified
to include the algorithm of the new instruction. Consequently,
the RISCVArch.cpp file is created automatically. On L5 the
RISCVArch.cpp file is applied to the ETISS tool chain and
after re-installation of both the GCC RISC-V compiler and
the ETISS RISC-V simulator, the newly added instruction is
recognized by compiler.

V. CONCLUSION AND FUTURE WORK

Utilizing IP-XACT format as higher level of hierarchy for
RISC-V ISA implementation facilitates the creation of differ-
ent variations of the RISC-V ISA extensions. The variations
of the processor implementations forces the compiler and
simulator to adjustment accordingly. In this study, we have
presented our RISC-V instruction extension design flow and
analyzed its utilization effort. Also, we have considered the bit
manipulation extension of the RISCV ISA for the PULPino
platform and shown how to modify the GCC RISCV compiler
accordingly. We have applied the necessary changes to the
ETISS RISC-V simulator and experimented with the three
instructions. We have compared our implementations with the
equivalent algorithms and presented the performance results.

The future work will be to synthesize the extended RISC-
V core for FPGA using the different configurations and to
run the compiled RISC-V binaries that platform to verify the
improvements predicted with simulation.

VI. ACKNOWLEDGMENT

This work is partially supported by the ITEA3 project 16018
COMPACT (Business Finland diary number 3098/31/2017,
German ministry of education and research reference number
01IS17028).

REFERENCES

[1] IEEE, “IEEE standard for IP-XACT, standard structure for packaging,
integrating, and reusing ip within tool flows,” IEEE Std 1685-2014
(Revision of IEEE Std 1685-2009), pp. 1–510, Sep. 2014.

[2] The RISC-V Instruction Set Manual, RISC-V Foundation, 2017, version
2.2.

[3] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini, “Design
and evaluation of smallfloat simd extensions to the risc-v isa,” in 2019
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2019, pp. 654–657.

[4] A. Traber, F. Zaruba, S. Stucki, A. Pullini, G. Haugou, E. Flamand,
F. K. Gurkaynak, and L. Benini, “PULPino: A small single-core RISC-
V SoC,” in RISC-V Workshop, 2016.

[5] L. Ghica and N. Tapus, “Optimized retargetable compiler for embedded
processors-gcc vs llvm,” in 2015 IEEE International Conference on
Intelligent Computer Communication and Processing (ICCP). IEEE,
2015, pp. 103–108.

[6] RISC-V Bitmanip Extension, Clifford Wolf, 2019, version 0.90.
[7] RISC-V Vector Extension, Andrew Waterman, 2019, version 0.7.1.
[8] S. Sen, S. Jain, S. Venkataramani, and A. Raghunathan, “Sparce:

Sparsity aware general-purpose core extensions to accelerate deep neural
networks,” IEEE Transactions on Computers, vol. 68, no. 6, pp. 912–
925, 2018.

[9] A. Murray and B. Franke, “Compiling for automatically generated
instruction set extensions,” in Proceedings of the Tenth International
Symposium on Code Generation and Optimization. ACM, 2012, pp.
13–22.

[10] N. Sedaghati, R. Thomas, L.-N. Pouchet, R. Teodorescu, and P. Sa-
dayappan, “Stvec: A vector instruction extension for high performance
stencil computation,” in 2011 International Conference on Parallel
Architectures and Compilation Techniques. IEEE, 2011, pp. 276–287.

[11] S. Vinco, M. Lora, E. Macii, and M. Poncino, “Ip-xact for smart systems
design: extensions for the integration of functional and extra-functional
models,” in 2016 Forum on Specification and Design Languages (FDL).
IEEE, 2016, pp. 1–8.

[12] A. Kamppi, L. Matilainen, J.-M. Määttä, E. Salminen, and T. D.
Hämäläinen, “Extending ip-xact to embedded system hw/sw integra-
tion,” in 2013 International Symposium on System on Chip (SoC). IEEE,
2013, pp. 1–8.

[13] F. Herrera, H. Posadas, E. Villar, and D. Calvo, “Enhanced ip-xact
platform descriptions for automatic generation from uml/marte of fast
performance models for dse,” in 2012 15th Euromicro Conference on
Digital System Design. IEEE, 2012, pp. 692–699.

[14] E. Pekkarinen and T. D. Hämäläinen, “Modeling risc-v processor in ip-
xact,” in 2018 21st Euromicro Conference on Digital System Design
(DSD). IEEE, 2018, pp. 140–147.

[15] A. Kamppi, E. Pekkarinen, J. Virtanen, J.-M. Määttä, J. Järvinen,
L. Matilainen, M. Teuho, and T. D. Hämäläinen, “Kactus2: A
graphical eda tool built on the ip-xact standard,” The Journal of Open
Source Software, vol. 2, no. 13, p. 151, 5 2017. [Online]. Available:
http://dx.doi.org/10.21105/joss.00151

[16] “RISCV Tools,” https://github.com/riscv/riscv-tools.
[17] D. Mueller-Gritschneder, M. Dittrich, M. Greim, K. Devarajegowda,

W. Ecker, and U. Schlichtmann, “The extendable translating instruction
set simulator (ETISS) interlinked with an MDA framework for fast RISC
prototyping,” in International Symposium on Rapid System Prototyping
(RSP). IEEE, 2017, pp. 79–84.

Tampere University Dissertations 733

733/2023
SA

M
A

N
 PAY

VA
R

 G
PU

-based Architecture M
odeling and Instruction Set Extension for Signal ...

GPU-based Architecture
Modeling and Instruction
Set Extension for Signal
Processing Applications

SAMAN PAYVAR

	Tyhjä sivu
	Tyhjä sivu

