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Exact factorization of the many-body Green’s function theory of electrons and nuclei
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We combine the recently developed many-body Green’s function theory for electrons and nuclei with the exact
factorization of the wave function. The existing Born-Oppenheimer Green’s functions are shown to be special
cases of our exact approach. We consider the limitations of the laboratory frame formulation of the Green’s
function theory and discuss why the body-fixed frame formulation is needed in order to go beyond the Born-
Oppenheimer theory. We give exact forms of the electronic and nuclear Green’s functions written in terms of
the exact factorized states, providing a systematic approach beyond the Born-Oppenheimer approximation. The
lowest order approximation to the exact electronic Green’s function is found to be an expected value of the
Born-Oppenheimer electronic Green’s function with respect to the nuclear density.
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I. INTRODUCTION

The Born-Oppenheimer (BO) approximation [1,2] is the
cornerstone of our current understanding about the nonrela-
tivistic many-body quantum mechanical systems composed
of electrons and nuclei. Its validity originates from the
mass difference between the electrons and nuclei. There are,
however, systems where the validity of the BO approxima-
tion is compromised. Examples of such systems are various
molecules with conical intersections [3–5], graphene [6], and
possibly the recently discovered superconductive hydrides
[7–13]. Therefore, the beyond-BO theoretical and compu-
tational methods are expected to play an important role in
understanding the properties of these systems. To describe
these kinds of systems, several fully quantum mechanical
beyond BO approaches have been developed such as the wave
function approach [2], the exact factorization [14–19], the
density matrix renormalization group approach [20,21], the
multicomponent density functional theory [22], and the many-
body Green’s function theory [23].

The many-body Green’s function theory of electrons and
nuclei was introduced already in the 1960s by Baym [24]
and has become a useful theory that has already been used
in the actual computations, especially in the electron-phonon
related studies [25–27]. However, it is expected [23] that
the theory of Baym is not useful in its general form, that
is, when we truly go beyond the BO approximation. In this
work, we combine the exact factorization of the wave function
[14,15] with the many-body Green’s function theories [23,24].
This is beneficial for several reasons. First, we can develop
a perturbation theory in the nuclear kinetic energy allowing
systematic beyond BO approximations. The Green’s functions
are essentially written with respect to the exact factorized
states which can in some cases simplify the actual compu-
tations. The preceding simplification is obtained since, after
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the exact factorization, the expected values are taken with
respect to states in the nuclear space or in the conditional
electronic space only, not with respect to the states in the full
electron-nuclear space. This is beneficial as we have gained
over the years quite extensive experience on how to solve
the equations in the nuclear space or conditional electronic
space. Techniques to solve the aforementioned equations are
implemented, in the special case of the BO approximation,
in several existing computational packages. Moreover, the
approach taken here provides a way to see more specifically
what approximations have to be imposed in order for the
laboratory frame formulation of the Green’s function theory
of Baym to give useful results. We will find out, on the other
hand, when the body-fixed approaches [23] are needed. To
summarize, our aim here is to establish an exact factorization
of the states with respect to which the exact electron and
nuclear Green’s functions are defined. As a result, we will
obtain a systematic and still exact Green’s function approach
beyond the BO approximation, which will be computationally
more accessible in comparison with the nonfactorized Green’s
functions we start with. In the process, we will find out the
limitations of the laboratory frame formulation of the Green’s
function theory.

This paper is organized as follows. We start by recapping
the central equations in the laboratory frame exact factor-
ization of the wave function in Sec. II A and deduce the
BO approximation as a special case. We discuss the symme-
try related topics in Sec. II B and show that the laboratory
frame formulation does not give a reasonable nuclear density,
despite being useful in the computation of phonon spectra
and related properties. The laboratory and body-fixed frame
theories of the electronic and nuclear many-body Green’s
functions within and beyond the BO approximation are con-
sidered in Sec. III. We start with the BO Green’s function
theory in Sec. III A and, in Sec. III B, introduce the laboratory
and body-fixed frame Green’s functions. In Sec. IV (labora-
tory frame formulation) and in Appendix C (body-fixed frame
formulation), we derive the many-body perturbation theory
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in the nuclear kinetic energy with respect to exact factorized
states. Here we also show how to obtain the BO Green’s
function theory as a special case of our exact approach.

II. PRELIMINARIES

A. Hamiltonian and Born-Oppenheimer approximation

The object of our study is the system of Ne electrons and
Nn nuclei described by the Hamiltonian of the form

H = Te + Tn + Vee + Ven + Vnn, (1)

where Te is the kinetic energy of electrons, Tn is the
nuclear kinetic energy, and Vee, Ven, and Vnn are the electron-
electron, electron-nuclei, and nuclei-nuclei potential energies
of the Coulomb form, respectively. The time-independent
Schrödinger equation for this Hamiltonian can be written as

H�(r, R) = E�(r, R), (2)

where r and R denote all the electronic and nuclear coor-
dinates, respectively (see Appendix A for the notation). The
wave function is normalized as∫

dr
∫

dR|�(r, R)|2 = 1. (3)

The exact wave function �(r, R) can be written, after the
exact factorization [14,15,28], as

�(r, R) = �R(r)χ (R). (4)

It has been shown that the electronic wave function �R(r)
and the nuclear wave function χ (R) in exact factorization
satisfy [15]

Hnχ (R) = Eχ (R),

He�R(r) = ε(R)�R(r), (5)

where the Hamiltonians are

Hn =
∑

k

1

2Mk
[−i∇Rk + Ak (R)]2 + ε(R),

He = HBO(r, R) + Uen(R) (6)

and

ε(R) =
∫

dr �∗
R(r)He�R(r),

Ak (R) = −i
∫

dr �∗
R(r)∇Rk �R(r). (7)

In Eq. (6), the Born-Oppenheimer (BO) Hamiltonian is de-
fined as HBO ≡ H − Tn and the operator Uen is acting on the
nuclear variables only and is of the form

Uen(R) =
∑

k

1

2Mk
[(−i∇Rk − Ak )2

+2(Dk + Ak ) · (−i∇Rk − Ak )], (8)

where Dk (R) = −iχ−1(R)∇Rk χ (R). The wave functions in
exact factorization are normalized as∫

dR|χ (R)|2 =
∫

dr|�R(r)|2 = 1. (9)

The solution of the exact factorized equations in Eq. (5)
provide an exact and alternative way to solve the original
Schrödinger equation given by Eq. (2).

If we approximate Uen ≈ 0 and Ak ≈ 0, Eq. (5) becomes

Hphχ (R) = Eχ (R),

HBO�R(r) = εBO(R)�R(r), (10)

where the nuclear Hamiltonian is of the form

Hph = Tn + εBO (11)

and is often called the phonon Hamiltonian. The relations
in Eq. (10) are exactly the equations for electrons and nu-
clei in the BO approximation [2]. From the electronic BO
equation given by Eq. (10) we see that the BO energy has
a parametric dependence on the nuclear variables. This holds
since all the nuclear variables Rk commute with every quantity
that appears in the Hamiltonian HBO and thus any function
is an eigenfunction of R. Therefore, R in the electronic BO
equation can be treated as constants [29] or, in other words, as
parameters. In the nuclear equations of Eqs. (5) and (10), on
the other hand, the nuclear variables R appear as operators.
We note that �R(r), satisfying Eq. (5) or Eq. (10), belongs
to a different space of functions than �(r, R), even though
both seem to be eigenfunctions of the Hamiltonians which are
functions of the nuclear variables R.

Much of our understanding about the electronic structure
of crystals is based on the electronic BO equation [the second
relation of Eq. (10)], while the theory of lattice dynamics
[2,30] is based on the first relation of Eq. (10). The nuclear
problem has an exact solution when the BO energy εBO(R) =
εBO(x + u) is expanded to a Taylor series up to second order
in the displacements u about the reference positions x which
are treated as parameters. This is called the harmonic approx-
imation and the diagonalization of Hph can be established in
terms of normal or phonon coordinates [2], or by using unitary
transformations [31].

B. Symmetry

The Hamiltonian H given by Eq. (1) is invariant under
the translations and rotations of all particle coordinates. It
is known that these symmetries render Eq. (2) useless as
such [23,32], when we want to describe molecules or crys-
tals. More specifically, it can be shown that H has purely
continuous spectrum [E in Eq. (2) continuous] and does not
describe bound states, like molecules or solids. For instance,
from the translational invariance it follows that the eigen-
basis of the Hamiltonian can be chosen, without a loss of
generality, to be the plane wave eigenbasis of the total mo-
mentum. This in turn, leads to a constant electron density
[23]. By looking at Eq. (5) or (10) we see that the exact
nuclear equation has the same eigenvalue as the original
equation in Eq. (2), implying that neither of these equa-
tions will have a discrete spectrum, if no further assumptions
are made. There are at least two possibilities to deal with this
inconsistency.

When the BO approximation is applied to crystals, the
Hamiltonian H of Eq. (1) is used as such and Eq. (10) follows
as an approximation. In the electronic equation, it is noted
that the nuclear variables are parameters and can be chosen
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freely, which locates the system in space. Even though the
BO Hamiltonian HBO has the same translational and rotational
symmetry as the full Hamiltonian H , only the symmetry with
respect to the electronic variables for fixed nuclear variables
is considered. For instance, in deriving Bloch’s theorem [33],
only the electronic variables are displaced while the nuclear
variables remain fixed. The continuous translational symme-
try is broken and the system has only discrete translational
symmetry having the lattice periodicity determined by the
fixed R. In the theory of lattice dynamics, described by the
nuclear equation [Eq. (10)], only the symmetry with respect
to R is taken into account [34]. Namely, the symmetry consid-
erations in these cases are essentially based on the invariance
of the BO energy εBO(R) under the symmetry operations in
the crystallographic space groups. This treatment is neces-
sarily approximate since Eq. (2) as such leads to continuous
eigenvalues E which also appear in Eq. (10), but in the theory
of lattice dynamics we get a discrete phonon spectra. The
spectra are discrete since the Born–von Kármán boundary
conditions [2] are imposed and it has been shown that this is a
well-justified approximation, provided the generating volume
is taken to be sufficiently large. In this approach, the nuclear
density is not a useful quantity as justified in [23]. This can
be seen by assuming the harmonic approximation in Eq. (10).
The resulting wave function is of the product form where each
of the terms is of the simple harmonic oscillator form [31].
The lowest energy vibrational modes have zero frequency
guaranteed by the so-called acoustic sum rule originating
from the translational symmetry [2]. This renders χ and thus
� ≈ χ�R useless since the nuclear wave function χ is equal
to zero. The method nevertheless gives phonon spectra rather
closely resembling those obtained experimentally [35] and we
can compute various nuclei related physical quantities without
using the nuclear wave function in position representation
[36–39]. Problems will appear in this approach if we need
for instance the nuclear density, as in the coupled set of
equations of motion for the electronic and nuclear Green’s
functions beyond the BO approximation [23,26].

In the case of molecules, the mentioned issues are handled
by reformulating the problem in a different frame of reference
[1,23,32,40,41]. In this approach, we establish a coordinate
transformation to a body-fixed frame and all the observables
are written in this different frame of reference. In this case,
Eqs. (5) or (10) are not precisely the same anymore, have
additional terms, and are written in terms of the variables in
the body-fixed frame. The total Hamiltonian can be written as
[23] H = Tcm + Hb, where Tcm is the center-of-mass kinetic
energy and Hb the remaining part of the Hamiltonian. The
Hamiltonian Hb is written in terms of the body-fixed frame
variables describing the internal motion of the system, the
rotational degrees of freedom, and the coupling of the internal
motion with the rotational degrees of freedom. It is important
to note that the Hamiltonian written as H = Tcm + Hb is still
exact and thus has the original symmetries relative to the
original variables r and R. The continuous translational and
rotational symmetries are broken in the Hamiltonian Hb, but
it may still have the system dependent discrete symmetries
discussed above when the Born-Oppenheimer approximation
is imposed.

III. GREEN’S FUNCTION THEORIES

A. Within Born-Oppenheimer approximation

We start with the many-body Green’s function theory in the
BO approximation based on Eq. (10). The electronic degrees
of freedom are treated in second quantization and the nuclear
variables in first quantization. The BO Hamiltonian ĤBO is
a sum of one- and two-body electronic operators written in
terms of field operators and acting on states of the form
|�R〉 belonging to the electronic Hilbert space and having a
parametric dependence on R. We then define the electronic
one-body Green’s function as

GBO
R (yt, y′t ′) ≡ 1

i

Tr
[
e−βĤM

BOT {ψ̂ (yt )ψ̂†(y′t ′)}]
�R

Tr
[
e−βĤM

BO

]
�R

, (12)

where β = k−1
B T −1 and ψ̂ (yt ) ≡ Û †

BO(t )ψ̂ (y)ÛBO(t ) is an
operator in the Heisenberg picture, with the evolution oper-
ator being solved from the electronic equation for the BO
Hamiltonian HBO. Here, ĤM

BO ≡ ĤBO − μeN̂e, where μe is the
chemical potential of the electrons, N̂e the electron number
operator, and T {· · · } denotes the time ordering. In Eq. (12)
the trace is taken with respect to the Born-Oppenheimer states

Tr[ô]�R
=

∑
m

〈
�

(m)
R

∣∣ô∣∣�(m)
R

〉
, (13)

where m labels the electronic BO states and ô is an operator
acting in the electronic Hilbert space. We assume that ô is
independent of R. We note that the trace in Eq. (13), and thus
the Green’s function in Eq. (12), are dependent on the nuclear
variables R. The theory of Green’s function GBO

R (yt, y′t ′)
is well known, has been discussed extensively in the litera-
ture [42–44], and has also become a valuable computational
tool in the description of realistic materials [45]. Two main
approaches are used to solve GBO

R (yt, y′t ′), namely, the many-
body perturbation theory and the equations of motion. Both
ways provide exact results for the electronic BO problem, but
in practice approximations are needed.

The many-body Green’s function theory for the nuclei in
the BO approximation [46] is based on the nuclear equation of
Eq. (10) with the Hamiltonian given by Eq. (11). As in the
wave function approach, we write R = x + u and expand the
potential EBO

m (x + u) in u about the parameters x. The nuclear
Green’s functions are then defined as

DBO
αn̄

(kn̄tn̄) ≡ 1

in−1

Tr[e−βĤphT {ûαn̄ (kn̄tn̄)}]χ
Tr[e−βĤph ]χ

, (14)

where the trace is taken with respect to the states |χ〉 in
the nuclear space. Moreover, we define the notation used
for ûαn̄ (kn̄tn̄) in Eq. (A2) of Appendix A. Here the operators
like ûα (kt ) = Û †

ph(t )ûα (k)Ûph(t ) are operators in the Heisen-
berg picture and the evolution operator is written for the
Hamiltonian Ĥph. If the Hamiltonian Ĥph is used as such,
without making any further transformations, for instance, to
the phonon coordinates, also the momentum functions of the
form given by Eq. (14) are needed up to n = 2 in order to
compute the total energy.

The many-body Green’s functions defined by Eqs. (12)
and (14) together with the nuclear momentum functions can
be used to compute the arbitrary one- or two-body electronic
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observable and n-body nuclear observable, including the total
energy of the system. These functions can also be used to
determine the electronic structure and the vibrational states
of the system. These quantities form a complete, but approxi-
mate theory to the general problem corresponding to Eqs. (1)
and (2).

B. Beyond Born-Oppenheimer theory

The beyond-BO theory of many-body Green’s functions
assumes the Hamiltonian H of Eq. (1) as a starting point.
The electronic operators are written in terms of field operators
and the nuclear operators in first quantization. The coordinate
transformation R = x + u is usually, but not always [47],
established at this point as well as the expansion up to second
order in u [24,26]. The many-body Green’s functions are then
defined as

G(yt, y′t ′) ≡ 1

i

Tr[e−βĤMT {ψ̂ (yt )ψ̂†(y′t ′)}]�
Tr[e−βĤM ]�

(15)

and

Dαn̄ (kn̄tn̄) ≡ 1

in−1

Tr[e−βĤMT {ûαn̄ (kn̄tn̄)}]�
Tr[e−βĤM ]�

. (16)

The trace in Eqs. (15) and (16) is of the form

Tr[ô]� =
∑

m

〈�m|ô|�m〉 , (17)

where ô is an operator acting in the full electron-nuclear
space to which the states |�m〉 belong. In Eq. (17), m labels
the eigenstates of Eq. (2). Strictly speaking, as discussed in
Sec. II B, the eigenstates of Eq. (2) cannot be labeled with
discrete quantum numbers. Since we are discussing crystals,
we have imposed periodic boundary conditions such that the
spectrum will be discrete and the trace in Eq. (17) can be
written as a sum. The definitions of G(yt, y′t ′) and Dαn̄ (kn̄tn̄)
above resemble Eqs. (12) and (14) except that we have re-
placed the Hamiltonians ĤBO and Ĥph by the Hamiltonian Ĥ
in the ensemble averages and in the evolution operators. We
emphasize that the traces in Eqs. (15) and (16) are taken with
respect to states that belong to the full electron-nuclear space,
not only to the electron or nuclear space, as in Eqs. (12) and
(14). The Hamiltonian is still exact, and we have not expanded
the Hamiltonian in û at this point. Thus, in Eqs. (15) and (16),
the operators in the Heisenberg picture are defined ψ̂ (yt ) ≡
Û †(t )ψ̂ (y)Û (t ) and ûα (kt ) = Û †(t )ûα (k)Û (t ), where the evo-
lution operator Û (t ) is written for the Hamiltonian Ĥ . The
equations of motion for Dα2̄

(k2̄t2̄ ) were first derived by Baym
[24]. The equations of motion for the electronic and nuclear
Green’s functions, when the electronic equations are written in
Hedin’s equation form [48], are called the Hedin-Baym equa-
tions [26]. The theory based on Eqs. (15) and (16) is exact, but,
as our discussion of Sec. II B implies, these Green’s functions
as such do not describe bound states. At the same time, the
Hedin-Baym equations are the state of the art in describing
electron-phonon interactions and related effects in crystals
[25–27]. In Sec. IV we go through what approximations have
to be made in Eqs. (15) and (16) in order to obtain physically
relevant results from these Green’s functions and thus from
the Hedin-Baym equations.

Next we make a connection between the Green’s functions
in the laboratory frame given by Eqs. (15) and (16) and the
body-fixed Green’s functions introduced in Ref. [23]. As in
Sec. II B, we write the Hamiltonian as Ĥ = T̂cm + Ĥb; see
Eqs. (16)–(18) of Ref. [23]. We note that T̂cm commutes with
Ĥb and thus with all the operators included, like the electronic
field operators φ̂(yt ), φ̂†(y′t ′) or the nuclear variables R̂′ =
x′ + û′, which here refer to the Hamiltonian in the body-fixed
frame. Therefore, the exact states are of the product form
|�〉 = |φcm〉 ⊗ |�b〉 and we can trace out the center-of-mass
kinetic energy terms from the Green’s functions. We define the
Green’s functions in the body-fixed frame for the body-fixed
variables as we did in Eqs. (15) and (16) for the laboratory
frame variables. With the preceding in mind, the Green’s
functions in the body-fixed frame, after tracing out the center-
of-mass states, can be written as

G′(yt, y′t ′) = 1

i

Tr
[
e−βĤM

b T {φ̂(yt )φ̂†(y′t ′)}]
�b

Tr
[
e−βĤM

b

]
�b

(18)

and

D′
αn̄

(kn̄tn̄) = 1

in−1

Tr
[
e−βĤM

b T
{
û′

αn̄
(kn̄tn̄)

}]
�b

Tr
[
e−βĤM

b

]
�b

. (19)

These definitions are valid as such and there is no need
to impose any additional conditions, like specific boundary
conditions. The exact equations of motion for these Green’s
functions were obtained in Ref. [23] and it was also justified
that in the case of crystals the Hamiltonian can be approxi-
mated as

Ĥb ≈ T̂ ′
e + T̂ ′

n + V̂ ′
ee + V̂ ′

en + V̂ ′
nn = Ĥ ′

BO + T̂ ′
n . (20)

This result follows as the so-called mass polarization terms are
proportional to the inverse of the nuclear mass of the system,
which are negligible for crystals. Moreover, for Eq. (20) to
hold, the Coriolis and vibrational-rotational coupling terms
have to be small, and this is the case in crystals when the
Euler angles are connected to the nuclear variables through the
Eckart condition [23,49]. The resulting functions G′(yt, y′t ′)
and D′

αn̄
(kn̄tn̄) resemble closely those in Eqs. (15) and (16).

There are two differences: the Hamiltonian is now written
in terms of the internal coordinates in the body-fixed frame
instead of coordinates in the laboratory frame and here we
traced out the center-of-mass states. The remaining states |�b〉
describe the internal motion that is independent of the center-
of-mass motion. In contrast, the original states |�〉 are used as
such in the Green’s functions defined in the laboratory frame,
Eqs. (15) and (16).

IV. MANY-BODY PERTURBATION THEORY
IN EXACT FACTORIZATION

A. Exact expansion

The traces in Eqs. (15), (16), (18), and (19) are taken with
respect to the states that belong to the full electron-nuclear
space. We could take a rather straightforward approach and
develop a many-body perturbation for these Green’s func-
tions by using the methods described in the literature [44].
However, this is probably not a useful thing to do from a
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practical point of view. Here we instead establish the exact
factorization of the wave function and rewrite the Green’s
functions, like those given by Eqs. (15), (16), (18), and (19),
in terms of the exact factorized states. This allows us to derive
beyond-BO approximations systematically, and we see that
the approximations under which Eqs. (15) and (16) are useful
can be deduced as special cases. We establish the exact factor-
ization in the laboratory frame for the sake of simplicity, but
the results are formally the same in the body-fixed frame for
crystals when the Hamiltonian of Eq. (20) is used. We provide
in Appendix C the body-fixed versions of the exact laboratory
frame expansions derived in the following.

We start by writing the electronic Green’s function in the
contour formalism [44], including Eq. (15) as a special case,
as follows:

G(yz, y′z′) = 1

i

Tr
[
Tc

{
e−i

∫
c dz̄ Ĥ (z̄)ψ̂ (yz)ψ̂†(y′z′)

}]
�

Tr
[
Tc

{
e−i

∫
c dz̄ Ĥ (z̄)

}]
�

, (21)

and in a similar way for the nuclear Green’s function given
by Eq. (16). The contour formalism allows us to rewrite
G(yt, y′t ′) such that the evolution operators and the expo-
nential term in the ensemble average are included to a single
exponent which is under the contour time ordering Tc making
the algebraic manipulations less complicated. We can extract
the time-ordered function G(yt, y′t ′) and also other contour
components from G(yz, y′z′) by using the results described in
the literature [44]. In the following, we will use the fact that
under the contour time ordering the operators either commute
or anticommute. We write the Hamiltonian as Ĥ = T̂n + ĤBO

(see Sec. II A) and since the Hamiltonian is a sum of bosonic
operators, these operators commute under the contour time
ordering, and we can write

Tc
{
e−i

∫
c dz̄ Ĥ (z̄)ô

} = Tc
{
e−i

∫
c dz̄ ĤBO (z̄)e−i

∫
c dz̄ T̂n(z̄)ô

}
(22)

or alternatively

Tr
[
Tc

{
e−i

∫
c dz̄ Ĥ (z̄)ô

}]
�

= Tr
[
Tc

{
e−i

∫
c dz̄ Ĥ ′

n(z̄)ô
}]

�
. (23)

In Eq. (23), we used Eqs. (5) and (6) and

Ĥ ′
n(z̄) ≡ T̂n(z̄) + ε̂(z̄) − Ûen(z̄). (24)

We now use Eq. (22) for the electronic Green’s function
together with the results obtained in Appendix B. After the
expansion of the nuclear kinetic energy, the numerator of
Eq. (21) can be written as

Tr
[
Tc

{
e−i

∫
c dz̄ Ĥ (z̄)ψ̂ (yz)ψ̂†(y′z′)

}]
�

=
∑

m

∫
dR

∞∑
s=0

(−i)s

s!

∫
c

dz̄s̄

∑
ks̄

1

2sMks̄

2∑
ls̄=0

(
2

ls̄

)

×〈�(m)
R | Tc

{
e−i

∫
c dz̄ ĤBO (R,z̄)ψ̂ (yz)ψ̂†(y′z′)

×C(2−ls̄ )
mks̄

(R, z̄s̄)Pls̄
ks̄

(z̄s̄)
} ∣∣�(m)

R

〉
(25)

and the denominator as

Tr
[
Tc

{
e−i

∫
c dz̄ Ĥ (z̄)}]

�

=
∑

m

∫
dR

∞∑
s=0

(−i)s

s!

∫
c

dz̄s̄

∑
ks̄

1

2sMks̄

2∑
ls̄=0

(
2

ls̄

)

× 〈
�

(m)
R

∣∣ Tc
{
e−i

∫
c dz̄ ĤBO (R,z̄)

×C(2−ls̄ )
mks̄

(R, z̄s̄)Pls̄
ks̄

(z̄s̄)
} ∣∣�(m)

R

〉
. (26)

In Eqs. (25) and (26)

C(2−ls̄ )
mks̄

(R, z̄s̄) ≡ χ∗
m(R)P2−ls̄

ks̄
(z̄s̄)χm(R). (27)

The used notation for the nuclear momentum operators and
so on is described in Appendix A. The relations given by
Eqs. (25) and (26) allow us to rewrite the exact electronic
Green’s function G(yz, y′z′) in terms of the exact factorized
states. We will consider the approximations derived from
these relations in Sec. IV B.

We obtain the perturbation expansion of the nuclear
Green’s functions in a similar way by using the methodology
described in Appendix B. Namely, by using Eq. (23) for the
nuclear Green’s function Dαn̄ (kn̄zn̄) [the contour form, includ-
ing Eq. (16)], we expand the nuclear kinetic energy term and
write the numerator as

Tr
[
Tc

{
e−i

∫
c dz̄ Ĥ ′

n(z̄)ûαn̄ (kn̄zn̄)
}]

�

=
∑

m

∫
dr

∫
dR

∞∑
s=0

(−i)s

s!

∫
c

dz̄s̄

×
∑

ks̄

1

2sMks̄

2∑
ls̄=0

(
2

ls̄

)
�

(m)∗
R (r)χ∗

m(R)

×Tc
{
e−i

∫
c dz̄[εm (z̄)−U (m)

en (z̄)]uαn̄ (kn̄zn̄)

× [
Pls̄

ks̄
(z̄s̄)�(m)

R (r)
][

P2−ls̄
ks̄

(z̄s̄)χm(R)
]}

(28)

and the denominator as

Tr
[
Tc

{
e−i

∫
c dz̄ Ĥ ′

n(z̄)}]
�

=
∑

m

∫
dr

∫
dR

∞∑
s=0

(−i)s

s!

∫
c

dz̄s̄

×
∑

ks̄

1

2sMks̄

2∑
ls̄=0

(
2

ls̄

)
�

(m)∗
R (r)χ∗

m(R)

×Tc
{
e−i

∫
c dz̄[εm (z̄)−U (m)

en (z̄)][Pls̄
ks̄

(z̄s̄)�(m)
R (r)

]
× [

P2−ls̄
ks̄

(z̄s̄)χm(R)
]}

. (29)

With Eqs. (28) and (29), we can rewrite the exact nuclear
Green’s function Dαn̄ (kn̄zn̄) in terms of the exact factorized
states and we consider the approximations in Sec. IV B. The
operator U (m)

en contains differential operators on the nuclear
variables and we have to take this into account when ordering
the terms like Pls̄

ks̄
(z̄s̄)�(m)

R (r) and P2−ls̄
ks̄

(z̄s̄)χm(R) within the
time ordering. That is, we cannot change the order of the terms
e−i

∫
c dz̄[εm (z̄)−U (m)

en (z̄)] and Pls̄
ks̄

(z̄s̄)�(m)
R (r), say, without indicating

this in our notation. The correct ordering is important as in our
notation the differential operators act only on the right.

To understand the physical picture that is being established
here, consider Eq. (21). The Green’s function G(y′t ′, y′z′) is
a time-dependent ensemble average of time ordering of the
operator ψ̂ (yz)ψ̂†(y′z′), one of the special cases of which is
the time-dependent electron density ne(yt ) = −iG(yt, yt+).
The ensemble average here contains two different expectation
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values: the thermal averaging and the quantum mechanical
expectation with respect to the states |�〉. Both of these ex-
pectations are taken with respect to the exact Hamiltonian
Ĥ defined by Eq. (1). When we use Eq. (22) and expand
in the nuclear kinetic energy, we obtain to the lowest order
the thermal averaging and the time evolution with respect to
the BO Hamiltonian. By taking into account the higher order
nuclear kinetic energy expansion terms, we include correc-
tions to the thermal averaging and the time evolution, induced
by the nuclear motion. The higher order corrections produce
more complicated expected values to be calculated, but all op-
erators will be in the Heisenberg picture defined with respect
to the BO Hamiltonian, with respect to which the thermal
averaging is also established. At this point, we still compute
the resulting quantum mechanical expectations with respect
to the states |�〉. The gain here is that the time evolution and
the thermal averaging is with respect to the ĤBO. The price
we pay is the more complicated Green’s functions to compute
involving the products of nuclear momenta and electronic
field operators. After the exact factorization of |�〉, we write
the quantum mechanical expectation with respect to the con-
ditional �R(r) and marginal functions χ (R). Consequently,
various terms originating from the nuclear momentum opera-
tors, like C(2−ls̄ )

mks̄
(R, z̄s̄), will appear. The gain here is that we

have some grasp on how to compute the expected values as
these are now with respect to the conditional electronic states
and states in the nuclear space only. The same line of thought
also applies to the nuclear Green’s functions.

In summary, the lowest order terms in the nuclear kinetic
energy expansion will usually be the most significant ones.
In this case, the remaining electronic Green’s functions are
defined with respect to ĤBO and contain one or few nuclear
momentum operators. These quantum mechanical expecta-
tions are essentially written in terms of exact factorized states,
which, at least in these lowest order cases, make computations
of these quantities more accessible, when compared with the
complexity of the original Green’s functions of Eqs. (15)
and (16).

B. Approximations and connection
to Born-Oppenheimer theory

We can find the BO Green’s functions as special cases
of our exact results so far. We first look at the electronic
Green’s function G(yz, y′z′). To lowest order, Eqs. (25) and
(26) become

Tr
[
Tc

{
e−i

∫
c dz̄ Ĥ (z̄)ψ̂ (yz)ψ̂†(y′z′)

}]
�

≈
∑

m

∫
dR|χm(R)|2

× 〈
�

(m)
R

∣∣Tc
{
e−i

∫
c dz̄ ĤBO (R,z̄)ψ̂ (yz)ψ̂†(y′z′)

}∣∣�(m)
R

〉
(30)

and

Tr
[
Tc

{
e−i

∫
c dz̄ Ĥ (z̄)}]

�

≈
∑

m

∫
dR|χm(R)|2

× 〈
�

(m)
R

∣∣Tc
{
e−i

∫
c dz̄ ĤBO (R,z̄)}∣∣�(m)

R

〉
. (31)

By combining Eqs. (30) and (31) we can write the lowest
order approximation for G(yz, y′z′) of Eq. (12). For simplicity,
we take the zero temperature limit of Eqs. (30) and (31) and
extract the time-ordered component. In this case, the approxi-
mate form of G(rt, r′t ′) can be written as

G(yt, y′t ′) ≈
∫

dR|χ (R)|2GBO
R (yt, y′t ′), (32)

where we denote

GBO
R (yt, y′t ′) = −i 〈�R|T {

ψ̂ (yt )ψ̂†(y′t ′)
}|�R〉 . (33)

In Eq. (33), the field operators are in the Heisenberg picture
defined with respect to the Hamiltonian ĤBO. The Green’s
function of Eq. (33) is the zero temperature limit of Eq. (12).
The result given by Eq. (32) states that the exact electronic
Green’s function can be approximated as an expected value
of the BO electronic Green’s function GBO

R (yt, y′t ′) relative to
the nuclear density |χ (R)|2, with the random variables being
the nuclear coordinates R. If the nuclei R are localized to
their equilibrium positions x, then |χ (R)|2 = δ(R − x) and
Eq. (32) becomes G(yt, y′t ′) ≈ GBO

x (yt, y′t ′), which is the
BO electronic Green’s function. This is the approximation
also made for G(yt, y′t ′) in the practical applications of the
Hedin-Baym equations [26]. The same holds for the finite
temperature case when we approximate |χ (m)(R)|2 ≈ δ(R −
x) in Eqs. (30) and (31), which leads to GBO

R (yt, y′t ′) of
Eq. (12). The more quantum mechanically the nuclei behave,
the more uncertain their position and the wider the distribution
|χ (R)|2. The wider the distribution, the larger the discrepancy,
in general, between the functions GBO

R (yt, y′t ′) and G(yt, y′t ′).
For sufficiently broad nuclear distributions, we expect the
electronic quantities, like the electron density, to change from
the BO values making the approximation of Eq. (32) impor-
tant when assessing the physical properties. Since |χ (R)|2 is
independent of time, the equations of motion for G(yt, y′t ′)
given by Eq. (32) will be the well-known equations of motion
for GBO

R (yt, y′t ′), weighted by the nuclear density.
It is important to notice, however, that Eq. (32) as such

will not give any physically relevant results, as justified in
Sec. II B. This laboratory frame form is only useful if we
approximate |χ (R)|2 ≈ δ(R − x), as is essentially done in
the literature when the Hedin-Baym equations are applied
in the actual computations. Therefore, the laboratory frame
formulation of the electronic part is useful only strictly in the
BO approximation. The good news is that we obtain formally
the same result in the body-fixed frame when the Hamiltonian
is given by Eq. (20). That is, we can use Eqs. (C1) and (C2) of
Appendix C to the lowest order and approximate G′(yt, y′t ′)
at the zero temperature limit as

G′(yt, y′t ′) ≈
∫

dR′|χ (R′)|2G′BO
R′ (yt, y′t ′), (34)

where G′BO
R′ (yt, y′t ′) is defined as in Eq. (33) but with respect

to the body-fixed BO Hamiltonian Ĥ ′
BO, which is written in

terms of variables in the body-fixed frame; see Ref. [23]. To
emphasize the difference of G′(yt, y′t ′) and G′BO

R′ (yt, y′t ′), the
diagram corresponding to Eq. (34) is depicted in Fig. 1. We
need the BO Green’s function G′BO

R′ (yt, y′t ′) for all values of
R′ in order to compute G′(yt, y′t ′). Each of the separate single
lines in Fig. 1 denotes a Green’s function G′BO

R′ (yt, y′t ′) for a
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FIG. 1. Lowest order diagram for the electronic Green’s function
G′(yt, y′t ′) corresponding to Eq. (34). On the right hand side, each
single line denotes the BO electronic Green’s function G′BO

R′ (yt, y′t ′)
for a particular value of R′.

particular value of R′. In the BO approximation, we only need
to consider one particular line on the right-hand side diagram
of Fig. 1.

To obtain an approximation to the nuclear Green’s function
of Eq. (16) by using Eqs. (28) and (29), we consider the case
ls̄ = 0 and neglect all those terms where Uen acts on �R, in
this case

Dαn̄ (kn̄zn̄) ≈ 1

in−1

Tr
[
Tc

{
e−i

∫
c dz̄ Ĥ ′

n(z̄)ûαn̄ (kn̄zn̄)
}]

χ

Tr
[
Tc

{
e−i

∫
c dz̄ Ĥ ′

n(z̄)
}]

χ

. (35)

If we further approximate Ûen ≈ 0 and ε̂ ≈ ε̂BO, the Hamil-
tonian in Eq. (35), defined by Eq. (24), becomes Ĥ ′

n ≈ T̂n +
ε̂BO = Ĥph, which is the Hamiltonian of Eq. (11). In this case,
Eq. (35) becomes the BO nuclear Green’s function given by
Eq. (14) when the time-ordered component is extracted and
we again obtained the BO theory as a special case of our exact
approach. We have already shown that the laboratory frame
formulation is valid only in the strict BO approximation.
Therefore, in all implementations of the beyond-BO Green’s
function theory we have to use the body-fixed formulation.
In the case of nuclear Green’s functions D′

αn̄
(kn̄zn̄), the lowest

order approximation corresponding to Eq. (35) and the higher
order approximations can be obtained from the exact relations
given by Eqs. (C4) and (C5).

V. CONCLUSIONS

In this work, we combined the many-body Green’s func-
tion and exact factorization approaches to describe nonrela-
tivistic quantum mechanical many-body systems of electrons
and nuclei. We discussed the limitations of the laboratory
frame formulation of the many-body Green’s function theory
and derived approximations. It was shown that in the labo-
ratory frame formulation, the electronic Green’s function is
a useful quantity only by assuming the strict BO approxima-
tion, which is already done in the existing implementations.
In other words, already the lowest order term in the expan-
sion contains the nuclear density which renders the electronic
Green’s function useless in the laboratory frame formulation,
unless the nuclear density itself is approximated by the delta
function in the electronic problem.

We derived an exact expansion of the electronic and nu-
clear Green’s functions in the nuclear kinetic energy by
using the exact factorization approach. This allows systematic
approximations for these functions beyond the BO approxi-
mation. The states with respect to which the expected values
are taken are the exact factorized states instead of the gen-

eral many-body states in the full electron-nuclear space. We
showed how the BO many-body Green’s functions follow as
special cases of our exact approach. The lowest order approx-
imation to the exact electronic Green’s function was found to
have a rather clear-cut interpretation as an expectation value
of the electronic BO Green’s function with respect to the
nuclear density. The simplest approximation to the nuclear
Green’s function adds more potential terms to the BO nuclear
Hamiltonian, only changing the potential energy felt by the
nuclei.

The steps taken here will make the implementations of the
general Green’s function theory derived in Ref. [23] more
accessible. We also took the first steps towards the many-body
Green’s function theory of exact factorization which has not
been attempted before. As the results of this work imply, the
beyond BO Green’s function theory cannot be formulated
in the laboratory frame and the body-fixed approaches are
needed for this task. The progress made in this work takes
us closer to the implementation of the many-body Green’s
function theory of electrons and nuclei beyond the BO ap-
proximation. We expect that these methods will become an
important part of the tool box used in the description of
systems, like molecules and solids, whenever the validity of
the BO approximation is compromised.
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APPENDIX A: NOTATION

The following shorthand notations are used in this work:

r ≡ r1, . . . , rNe ,

R ≡ R1, . . . , RNn ,

x ≡ x1, . . . , xNn ,

u ≡ u1, . . . , uNn , (A1)

and, moreover,

αn̄ ≡ α1 · · · αn,

kn̄tn̄ ≡ k1t1, . . . , kntn,

ûαn̄ (kn̄tn̄) ≡ ûα1 (k1t1) · · · ûαn (kntn), (A2)

where k labels the nucleus and α j the Cartesian component.
We use the following notation for the nuclear momentum
operators [used for instance in Eqs. (25), (26), and (27)]:

Pls̄
ks̄

(zs̄) ≡ Pl1
k1

(z1) · · · Pls
ks

(zs),

P2−ls̄
ks̄

(zs̄) ≡ P2−l1
k1

(z1) · · · P2−ls
ks

(zs), (A3)

where Pk j = −i∇Rk j
and s, l j are some integers greater or

equal to zero. For sums, integrals, the products of bino-
mial coefficients, and so on, we use the following shorthand
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notations:∫
c

dz̄s̄ ≡
∫

c
dz̄1 · · ·

∫
c

dz̄s,

∑
ks̄

≡
∑

k1,...,ks

,

2∑
ls̄=0

≡
2∑

l1,...,ls=0

,

Mks̄ ≡ Mk1 · · · Mks ,

(
2

ls̄

)
≡

(
2

l1

)
· · ·

(
2

ls

)
. (A4)

In Eq. (A4),
(2

l j

)
is the binomial coefficient.

APPENDIX B: EXACT FACTORIZED
PERTURBATION EXPANSION

Here we derive some results needed in the perturbation
expansions given in Sec. IV and Appendix C. We write for
a general state in the full electron-nuclei space

|�〉 =
∫

dr
∫

dR �R(r)χ (R) |r〉 ⊗ |R〉 , (B1)

where we established the exact factorization given by Eq. (4).
The momentum operator of the kth nucleus can be written as

P̂k =
∫

dR Pk |R〉 〈R| , Pk = −i∇Rk . (B2)

We act with P̂2n
k on |�〉 given by Eq. (B1) and after using the

product rule for the derivatives [50]

P̂2n
k |�〉 =

∫
dr

∫
dR

2n∑
s=0

(
2n

s

)[
P2n−s

k χ (R)
]

×[Ps
k�R(r)] |r〉 ⊗ |R〉 . (B3)

The nuclear kinetic energy is of the form T̂n = ∑
k P̂2

k/2Mk

and thus, by making use of Eq. (B3), we find that

T̂n(zs̄) |�〉

=
∫

dr
∫

dR
∑

ks̄

1

2sMks̄

2∑
ls̄=0

(
2

ls̄

)[
Pls̄

ks̄
(zs̄)�R(r)

]

×[
P2−ls̄

ks̄
(zs̄)χ (R)

] |r〉 ⊗ |R〉 (B4)

or

Tn(zs̄)�R(r)χ (R)

=
∑

ks̄

1

2sMks̄

2∑
ls̄=0

(
2

ls̄

)[
Pls̄

ks̄
(zs̄)�R(r)

]

×[
P2−ls̄

ks̄
(zs̄)χ (R)

]
. (B5)

Here we used Tn(z̄s̄) = Tn(z̄1) · · · Tn(z̄s) and the notation de-
fined by Eqs. (A3) and (A4). To expand the Green’s functions,
we have to consider, for instance, quantities of the following
form:

Tr
[
Tc

{
e−i

∫
c dz̄ ĤBO (z̄)e−i

∫
c dz̄ T̂n(z̄)ô

}]
�

=
∑

m

∫
dr

∫
dR

∞∑
s=0

(−i)s

s!

∫
c

dz̄s̄�
(m)∗
R (r)χ∗

m(R)

×Tc
{
e−i

∫
c dz̄ HBO (z̄)o(r, R)Tn(z̄s̄)

}
�

(m)
R (r)χm(R), (B6)

where we expanded e−i
∫

c dz̄ T̂n(z̄) and established the exact
factorization given by Eq. (B1). In Eq. (B6), ô is some op-
erator acting in the electronic, nuclear, or electron-nuclear
space, including the identity. We use Eq. (B6) combined
with Eq. (B5) to derive the perturbation expansions for the
electronic Green’s functions in Sec. IV and Appendix C. For
the nuclear Green’s function the expansion in nuclear kinetic
energy can be obtained in a similar way.

APPENDIX C: PERTURBATION EXPANSION
IN THE BODY-FIXED FRAME

Here we derive the exact expansions of the Green’s func-
tions given by Eqs. (18) and (19) in the body-fixed frame
by using the Hamiltonian of Eq. (20). Here, the Hamiltonian
Ĥb is formally of the same form as the Hamiltonian Ĥ of
Eq. (1). Thus the exact factorization of the Green’s functions
in the body-fixed frame can be established as in Sec. IV A
with a minor adjustment in notation. For the expansion of the
electronic Green’s function given by Eq. (18), we write for the
numerator [compare to Eq. (25)]

Tr
[
Tc

{
e−i

∫
c dz̄ Ĥb(z̄)φ̂(yz)φ̂†(y′z′)

}]
�b

=
∑

m

∫
dR′

∞∑
s=0

(−i)s

s!

∫
c

dz̄s̄

∑
ks̄

1

2sMks̄

2∑
ls̄=0

(
2

ls̄

)

× 〈
�

(m)
R′

∣∣ Tc
{
e−i

∫
c dz̄ Ĥ ′

BO (R′,z̄)φ̂(yz)φ̂†(y′z′)

×C′(2−ls̄ )
mks̄

(R′, z̄s̄)P′ls̄
ks̄

(z̄s̄)
} ∣∣�(m)

R′
〉

(C1)

and for the denominator [compare to Eq. (26)]

Tr
[
Tc

{
e−i

∫
c dz̄ Ĥb(z̄)}]

�b

=
∑

m

∫
dR′

∞∑
s=0

(−i)s

s!

∫
c

dz̄s̄

∑
ks̄

1

2sMks̄

2∑
ls̄=0

(
2

ls̄

)

× 〈
�

(m)
R′

∣∣ Tc
{
e−i

∫
c dz̄ Ĥ ′

BO (R′,z̄)

×C′(2−ls̄ )
mks̄

(R′, z̄s̄)P′ls̄
ks̄

(z̄s̄)
} ∣∣�(m)

R′
〉
, (C2)

where [compare to Eq. (27)]

C′(2−ls̄ )
mks̄

(R′, z̄s̄) ≡ χ∗
m(R′)P′2−ls̄

ks̄
(z̄s̄)χm(R′). (C3)

For the sake of notational simplicity, we used the same no-
tation for the exact factorized body-fixed states as we did
for the laboratory frame exact factorized states. The terms in
the Hamiltonian we start with, Hb ≈ T ′

n + H ′
BO, are defined in

Eqs. (16)–(18) of Ref. [23]. The expansions in Eqs. (C1) and
(C2) allow us to write the exact electronic Green’s function
G′(yt, y′t ′) given by Eq. (18) in terms of exact factorized
states. The simplest approximation is the BO approximation
(in the body fixed frame) and these results provide a system-
atic way to go beyond it.
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Next we consider the nuclear Green’s functions in the
body-fixed frame. The expansion of the nuclear Green’s func-
tion given by Eq. (19) can be written in terms of the relations
[see Eqs. (28) and (29)]

Tr
[
Tc

{
e−i

∫
c dz̄ Ĥ ′′

n (z̄)û′
αn̄

(kn̄zn̄)
}]

�b

=
∑

m

∫
dr′

∫
dR′

∞∑
s=0

(−i)s

s!

∫
c

dz̄s̄

×
∑

ks̄

1

2sMks̄

2∑
ls̄=0

(
2

ls̄

)
�

(m)∗
R′ (r′)χ∗

m(R′)

×Tc
{
e−i

∫
c dz̄[ε′

m (z̄)−U ′(m)
en (z̄)]û′

αn̄
(kn̄zn̄)

× [
P′ls̄

ks̄
(z̄s̄)�(m)

R′ (r′)
][

P′2−ls̄
ks̄

(z̄s̄)χm(R′)
]}

(C4)

and
Tr

[
Tc

{
e−i

∫
c dz̄ Ĥ ′′

n (z̄)}]
�b

=
∑

m

∫
dr′

∫
dR′

∞∑
s=0

(−i)s

s!

∫
c

dz̄s̄

×
∑

ks̄

1

2sMks̄

2∑
ls̄=0

(
2

ls̄

)
�

(m)∗
R′ (r′)χ∗

m(R′)

×Tc
{
e−i

∫
c dz̄[ε′

m (z̄)−U ′(m)
en (z̄)][P′ls̄

ks̄
(z̄s̄)�(m)

R′ (r′)
]

× [
P′2−ls̄

ks̄
(z̄s̄)χm(R′)

]}
. (C5)

In Eqs. (C4) and (C5), the following Hamiltonian appears:

Ĥ ′′
n (z̄) ≡ T̂ ′

n (z̄) + ε̂′(z̄) − Û ′
en(z̄), (C6)

where all the terms are written in terms of body-fixed vari-
ables. The results given by Eqs. (C4) and (C5) allow us
to write the nuclear Green’s function defined by Eq. (19)
in terms of the exact factorized state. This in turn makes
it possible to derive beyond-BO approximations systemati-
cally. The Hamiltonian of Eq. (C6) is a generalization of the
phonon Hamiltonian in the BO approximation as the phonon
Hamiltonian is included to Ĥ ′′

n . There are some additional
potential terms appearing in Ĥ ′′

n included to the operators
ε̂′ and Û ′

en which originate from the nuclear kinetic energy.
These terms introduce correction terms to the BO poten-
tial and have an effect on the nuclear properties, like the
phonon spectrum of the system, and therefore to the elec-
tronic properties as the electron and nuclear systems are
coupled.

The Green’s functions obtainable from Eqs. (C1), (C2),
(C4), and (C5) form a Green’s function theory generaliz-
ing the BO approach. The dynamics for these functions
will be rather complicated, but we believe that the lowest
order approximations to these functions provide a conve-
nient tool to study beyond-BO physics in various systems of
relevance.
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