
i

Niko Rinko

EFFICIENT IEC 61131-3 STRUCTURED
TEXT TOOLING IN MODERN DISTRIB-

UTED CONTROL SYSTEM

Master of Science Thesis
Faculty of Engineering and Natural Sciences

Examiners: Professor Hannu Koivisto,
University Instructor Mikko Salmenperä

November 2022

ABSTRACT

Niko Rinko: Efficient IEC 61131-3 Structured Text tooling in modern distributed control
system
Master of Science Thesis
Tampere University
Master’s Degree Programme in Automation Engineering
November 2022

Structured Text is one of the programming languages defined in the IEC 61131-3 standard.
The standard defines several programming languages that can be used in automation control
software. Programmers have accustomed to use various advanced tools to develop programs
efficiently. A good development tool increases the efficiency by making the development both
easier and faster.

The goal of this thesis is to find out what is required to develop an efficient development tool
for Structured Text language that is integrated into a web-based automation platform, while taking
the platform constraints into account. The thesis has two research questions. One aspect is to
research what kind of features are useful and required for the tool. Another goal is to find out how
the features should be implemented. The requirements were collected via user interviews, exam-
ining existing tools and by using developers’ experience and opinions to determine most useful
code editor features.
As all interviewed persons were inexperienced with Structured Text, the first version of the tool
was implemented before the user interviews to spark the discussion. The findings from the inter-
views were then used to further plan the tool and analyze how useful the implemented features
are.

Most of the findings from interviews were biased towards features which make the develop-
ment easier for beginners who are not familiar with the Structured Text language. For example,
syntax documentation was the most desired feature. As the number of conducted interviews is
low and the interviewees have such a strong bias, the results are not very generalizable. The
implemented system was considered a great step forward and especially the debugging features
were very positively received by the interviewees. The implementation supports features that
were considered important by the developers. These features are automatic suggestion and com-
pletion of keywords, functions and variables, syntax highlighting, and basic syntax error reporting.

The goal was to improve the user experience of Structured Text development inside Valmet’s
configuration tools and this goal was reached. However, the tool has one major technical flaw in
the Structured Text parser. The implemented parser does not support meaningful error messages
and a new parser is required to improve the error messages. Despite the limited and biased data,
this thesis provides some guidelines of what features are required for an efficient programming
tool from the point of a user who is not familiar with the language.

Keywords: IEC 61131-3, Structured Text, automation platform, code editor

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

TIIVISTELMÄ

Niko Rinko: Tehokas IEC 61131-3 Structured Text ohjelmointi työkalu modernissa
hajautetussa ohjausjärjestelmässä
Diplomityö
Tampereen yliopisto
Automaatiotekniikan DI-ohjelma
Marraskuu 2022

Structured Text on eräs IEC 61131-3 standardissa määritellyistä ohjelmointikielistä. Standardi
määrittelee useita ohjelmointikieliä automaation ohjausjärjestelmien käyttöön. Ohjelmoijat ovat
tottuneet käyttämään erinäisiä kehittyneitä työkaluja kehittämään ohjelmia tehokkaasti. Hyvin
suunniteltu kehitystyökalu parantaa tehokkuutta tekemällä ohjelmoinnista helpompaa, sekä
nopeampaa.

Tämän työn tarkoituksena on löytää vaatimuksia tehokkaalle Structured Text
ohjelmointityökalulle, joka integroidaan web-pohjaiseen automaatioalustaan ottaen alustan
tuomat rajoitteet huomioon. Työllä on kaksi tutkimuskysymystä. Yksi näkökulma on tutkia,
minkälaisia ominaisuuksia työkalu vaatii ja mitkä ominaisuudet ovat hyödyllisiä. Toinen tavoite on
selvittää, kuinka nämä ominaisuudet tulisi toteuttaa. Vaatimuksia selvitetään
käyttäjähaastatteluilla, tutustumalla olemassa oleviin työkaluihin ja hyödyntämällä
ohjelmistokehittäjien kokemusta ja mielipiteitä hyödyllisistä koodieditorin ominaisuuksista. Koska
Structured Text on lähes tuntematon kaikille haastateltaville, työkalun ensimmäinen versio
toteutettiin ennen käyttäjähaastatteluja, jotta esimerkki työkalua voidaan käyttää herättämään
keskustelua. Haastattelujen tuloksia hyödynnetään analysoidessa työkalun ja projektin
onnistumista.

Suurimmaksi osaksi haastatteluista johdetut tulokset olivat painottuneita ja korostivat
voimakkaasti aloittelijaystävällisiä ominaisuuksia, joista on hyötyä kehittäjille, jotka eivät tunne
Structured Text kieltä entuudestaan. Esimerkiksi kielen syntaksi dokumentaation saatavuus oli
selkeästi toivotuin ominaisuus. Koska toteutuneiden haastattelujen lukumäärä on pieni ja
haastateltavat edustavat tiettyä käyttäjäryhmää, tulokset eivät ole helposti yleistettävissä.
Toteutettua järjestelmää pidetään kuitenkin suurena askeleena oikeaan suuntaan ja erityisesti
vianetsintään liittyvät ominaisuudet otettiin käyttäjähaastatteluissa erittäin positiivisesti vastaan.
Toteutus tukee muutamaa ominaisuutta, jotka olivat työkalun toteutuksen parissa
työskennelleiden mielestä tärkeitä ominaisuuksia. Nämä ominaisuudet ovat avainsanojen,
muuttujien ja funktioiden automaattinen ehdotus ja täydennys, syntaksin korostus ja
yksinkertainen syntaksivirheiden korostus.

Tavoitteena oli parantaa Structured Text ohjelmoinnin käyttäjäkokemusta Valmetin
konfigurointityökaluissa ja tässä työ onnistui. Työkalussa on kuitenkin yksi merkittävä tekninen
puute Structured Text parserissa. Toteutettu parseri ei tue virheiden yksityiskohtien raportointia.
Rajallisesta ja painottuneesta tutkimusdatasta huolimatta, tämä työ tarjoaa osviittaa millaisia
ominaisuuksia kieltä osaamaton käyttäjä kaipaa ohjelmointityökalulta.

Avainsanat: IEC 61131-3, Structured Text, automaatiojärjestelmä, koodieditori

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

PREFACE

This thesis was made for Valmet Automation Oy in 2022. This thesis has been very

educational experience for me with a lot of new subjects to learn. I wish to thank espe-

cially Ari Leppäniemi and Jari Tamminen for the opportunity and the generous freedom

to work on the thesis without pressure. Special thanks to Ari Leppäniemi for the great

feedback on the thesis. I also want to thank Tapio Katajisto, Sergey Khentov, and other

team members for helping me with my questions and problems during implementation

phase.

I am also grateful to Professor Hannu Koivisto and University Instructor Mikko Sal-

menperä for great feedback and guidance at the beginning and the end of the process.

Finally, I wish to express my gratitude to my family for supporting me for all these years

and encouraging me to finish my degree.

Tampere, 20.11.2022

Niko Rinko

CONTENTS

1. INTRODUCTION .. 1

2. IEC 61131-3 .. 4

2.1 Brief overview of IEC 61131 ... 4

2.2 Common elements in IEC 61131-3 languages 5

2.3 Structured Text .. 6

2.4 Function Block Diagram ... 7

2.5 Other languages in IEC 61131-3 .. 8

2.5.1 Instruction list (IL) .. 8
2.5.2 Ladder Diagram (LD) .. 8
2.5.3 Sequential Function Chart (SFC) .. 10

3. MODERN CODE EDITOR FEATURES... 11

3.1 Syntactical analysis .. 11

3.2 Semantical analysis ... 15

3.3 Language Server Protocol.. 17

3.4 Debugging ... 19

4. EXISTING TOOLS AND RESEARCH FOR STRUCTURED TEXT DEVELOPMENT

 22

4.1 MatIEC ... 22

4.2 CoDeSys .. 23

4.3 OpenPLC ... 24

4.4 Vendor specific tools .. 25

4.5 Small open-source projects .. 25

5. INTERVIEWS.. 27

5.1 Interview structure .. 27

5.2 Interview results ... 29

6. REQUIREMENTS AND CONSTRAINTS .. 32

6.1 Identified requirements ... 32

6.2 Constraints ... 34

7. IMPLEMENTATION .. 36

7.1 Selected technologies, libraries, and existing components 36

7.2 Implementation plan ... 37

7.2.1 Language Server .. 39
7.2.2 Debug functionality ... 39

7.3 First iteration .. 40

7.3.1 Debugging and validation of ST code.. 45
8. EVALUATION ... 48

8.1 Identified requirements and constraints .. 48

8.2 Implementation .. 51

8.2.1 Technical evaluation ... 53
9. CONCLUSIONS .. 56

REFERENCES... 59

LIST OF SYMBOLS AND ABBREVIATIONS

AST Abstract Syntax Tree
CSS Cascading Style Sheets
CST Concrete Syntax Tree
DAP Debug Adapter Protocol
DCS Distributed Control System
EBNF Extended Backus-Naur form
FBD Function Block Diagram
GDB GNU Project Debugger
HTML Hypertext Markup Language
IDE Integrated Development Environment
IEC International Electrotechnical Commission
IL Instruction List
IT Information Technology
JSON-RPC JavaScript Object Notation Remote Procedure Call
LD Ladder Diagram
LSP Language Server Protocol
npm Node Package Manager
OOP Object-oriented Programming
OT Operations Technology
PLC Programmable Logic Controller
POU Program Organization Unit
R&D Research and Development
RAM Random Access Memory
SFC Sequential Function Chart
SLSP Specification Language Server Protocol
ST Structured Text
UI User Interface
(Valmet) DNA Dynamic Network of Applications
XML Extensible Markup Language

1

1. INTRODUCTION

Software development is increasingly growing area of business and a huge selection of

tools have been developed to make software development easier. These tools are rap-

idly evolving and improving in the more traditional IT business. However, these tools are

rarely developed to support automation specific programming languages such as Struc-

tured Text or Function Block Diagram. These languages are defined in standard IEC

61131-3 (International Electrotechnical Commission), which is a commonly used stand-

ard for automation control application programming. While the standard defines the lan-

guages, it does not take a stand about tools for producing the program.

Modern automation systems are utilizing more and more tried and tested tools from tra-

ditional IT business and thus the requirements for automation engineer’s skills are be-

coming more inclined with the skills required from a software developer. As this happens,

tools for developing automation software must become more like ones used in traditional

software development. However, as automation has a long lifespan and most of existing

automation applications can be considered custom from traditional IT standpoint, mod-

ern automation engineering tools are required to be somewhere in between traditional

programming and automation specific software.

Valmet has a long history in developing and manufacturing distributed control systems

for process control in various industries. This includes the programming tools for the

systems. The primary method of programming the automation applications within Val-

met’s automation platform, DNA (Dynamic Network of Applications), is function block

diagram. However, some programming concepts, such as while- and for-loops are diffi-

cult to create in the Function Block Diagram language. To improve the feasibility of such

loop logic in automation applications, Valmet has added support for Structured Text (ST)

language. The ST language support is integrated within the function block diagram as a

special programmable function block as can be seen in Figure 1.

2

Figure 1. IEC ST function block as a part of function block diagram

The role of ST programming in Valmet DNA is not to replace function block diagrams,

but rather provide an alternative, powerful way to extend the functionality of a function

block diagram. The ST language and its usage requires some special knowledge about

PLC programming and programming in general. To make the use of ST easier, the edit-

ing tool should provide helpful features and information to the user.

Valmet has previously implemented the compilation process and runtime for ST code,

and a barebones code editor. This existing code editor resembles basic text editor such

as Notepad from Microsoft Windows and does not contain any language specific fea-

tures. This thesis focuses on the code editing user experience and aims to improve the

user experience of ST code editing in Valmet’s automation platform.

This thesis has two research questions (1) What features are required for efficient IEC

ST programming in modern web-based automation platform, and (2) How these features

should be implemented while taking the platform constraints into account? The required

features are researched via user interviews and investigating existing tools for ST devel-

opment and considering their features. Research is performed by interviewing end-users

about the requirements and wishes for ST development tool. Additionally, existing tools

and research for ST programming are studied to get broader picture of required features.

Limitations for implementation are mostly pre-determined by existing platform. There-

fore, limitations mostly only affect the choices made in implementation. ST development

3

tool is first implemented based on few persons’ opinions, showcased in the interviews,

and afterwards evaluated against the findings from the interviews.

Chapters 2 and 3 consist of mostly theoretical background. These chapters include the

brief overview of the IEC 61131 and especially its part 3, which is about programming

languages for PLC (Programmable Logic Controllers). Languages defined in IEC 61131-

3 are all briefly introduced in the chapter 2. All IEC 61131-3 languages share a decent

amount of common concepts and definitions, some more important ones for this thesis

of those are also introduced. Chapter 3 contains introduction and overview of modern

code editor or IDE (Integrated Development Environment) features. And especially how

they are implemented. Chapter 3 also introduces the basics of programming language

parsing. Some of the modern code editor features are implemented into the ST tooling

in this thesis using the implementation methods introduced in chapter 3. Concepts, such

as a language server are crucial to understand the implementation of ST tooling. Already

existing development tools for ST and previous research of subject are introduced in

chapter 4. Chapter 4 also introduces other ST related projects that could be useful for

this thesis. Interview methods are addressed in chapter 5, with the results of interviews.

These results are further processed in chapter 6, where requirements and platform limi-

tations are defined based on data received from interviews and other research methods.

Chapter 7 consists of implementing ST tooling fulfilling requirements and complying with

constraints. Implementation is only the first iteration of tooling, and it is not necessary to

implement all the features in first iteration. Chapter 8 consists of evaluation of the mean-

ingfulness and importance of identified requirements and constraints and how well im-

plemented system fulfills requirements and complies with constraints. Final chapter 9 is

about conclusions of this thesis.

4

2. IEC 61131-3

2.1 Brief overview of IEC 61131

IEC 61131 is a large standard or series of standards for PLCs containing guidelines for

hardware, communication, software, and safety.

IEC 61131 is a widely used standard in automation. Instead of being called a standard,

IEC 61131 is sometimes called a collection of standards [7]. As IEC 61131 is so large

standard, it is currently divided to 10 parts which are updated individually. These parts

are:

1. General Information

2. Equipment requirements and tests

3. Programming Languages

4. User Guidelines

5. Communication

6. Functional Safety

7. Fuzzy control programming

8. Guidelines for the application and implementation of programming languages

9. Single-drop digital communication interface for small sensors and actuators

(SDCI)

10. PLC open XML Exchange Format [7]

Most encountered part is the third part, which is very important for this thesis as well.

The third part focuses on the programming languages and defines the programming lan-

guages used in PLC programming. Hanssen states the standard aims to create specifi-

cation so PLC manufacturers, programmers and users could understand each other bet-

ter and create programs that could more easily be used in other PLC devices. The stand-

ard is more like a set of guidelines rather than absolute truth manufacturer’s should follow

to the letter. [6, Ch. 5.1] While the standard aims to make the PLC programs and devices

more uniform, the manufacturers often have their own specializations in the program-

ming language. This essentially makes the programs incompatible with other manufac-

turer’s devices.

5

IEC 61131-3 defines both textual and graphical languages, two textual and three graph-

ical languages. Textual languages are Structured Text (ST) and Instruction List (IL).

Standard’s graphical languages are named Function Block Diagram (FBD), Ladder Dia-

gram (LD) and Sequential Function Chart (SFC). This thesis focuses mostly on the ST

language, which is explained better in chapter 2.3.

The IEC 61131-3 standard has already three published versions with 4th edition currently

in progress with estimated publication date of 30th July 2024. Original 1st edition was

published in 1993. The standard was first revised in 2003 with the publication of 2nd edi-

tion. [24] The second edition fixed inconsistencies and contradictions of the standard and

included some of the proposed enhancements and revisions. The 3rd edition released in

2013 is fully backwards compatible with the 2nd edition of the standard but includes a lot

of additions and enhancements to the standard, most notably the object-oriented pro-

gramming concepts such as classes, namespaces and interfaces.[25] The another tex-

tual language of the standard, IL, has been deprecated from the standard starting from

the 3rd edition [26].

2.2 Common elements in IEC 61131-3 languages

All five languages defined by the standard share some features and architecture. One

major shared feature is the program structuring into Program Organization Units (POUs).

Each POU is a single compilation unit and the topmost program structure. All applications

written in IEC 61131-3 languages consist of POUs. Tiegelkamp’s book about PLC pro-

gramming tells POU’s can be compiled independently and linked together by compiler

[7, Ch. 2.2]. As POUs are independent modules of code, they can be easily reused by

other programs. There are three different POU types: Program, Function Block and

Function. Program-type POU contains the main program code, global variables, and acts

as a backbone of the program. Function Blocks slightly resemble objects in object-ori-

ented programming (OOP) in a sense that they are functions which can also have a

state. According to Tiegelkamp [7], function blocks are the most commonly used POU

type. Functions are the most restricted and the simplest POU type. Function has input

parameters and returns output parameter but does not have a possibility to define state

variables that would persist between function calls.

All POUs share general structure of having variable declaration part and main code part.

In dedicated PLC programming tools, these parts are often separated as own dedicated

windows/code editors. Declaration part may contain interface variables, which are ac-

cessible from outside of POU and local variables which are internal to the POU. Code

part of the POU contains all the functional code: variable assignations, calculation, loops,

6

and conditions. Not every variable type is permitted in all POU types. Local variables and

basic interfaces of types VAR_INPUT, VAR_OUTPUT, and VAR_IN_OUT are usable in

all POU types. Global and external variables are more restricted and only usable in PRO-

GRAM-type POUs.

All languages share common data types and most standard functions and function blocks

work similarly in all languages. Data types of IEC 61131-3 languages can be divided to

two categories: elementary types and derived types. Elementary types are basic, built-in

data types, which are the smallest building blocks of the language structures. Derived

types are user defined types, which can be anything from complex multi-dimensional

structures to simple alias for elementary data type. Tiegelkamp has a very informative

table of elementary data types which is replicated below in Table 1.

Table 1. Elementary data types of IEC 61131-3 [7, Ch. 3.4]

Bool-

ean/stringbit

Signed inte-

ger

Unsigned in-

teger

Floating

point (Real)

Time, date, and

character string

BOOL INT UINT REAL TIME

BYTE SINT USINT LREAL DATE

WORD DINT UDINT TIME_OF_DAY

DWORD LINT ULINT DATE_AND_TIME

LWORD STRING

Meaning of the first letters: D = double, L = long, S = short, U = unsigned

2.3 Structured Text

IEC 61131-3 defines textual programming language Structured Text. ST is a high level

programming language derived from Pascal, other high level textual programming lan-

guage [26]. Structured Text is a strongly typed language, which requires every variable

to have a static type. Structured Text language consists of statements which end with a

semicolon. In a sense, Structured Text is a list of statements which are executed in order

in a similar fashion to all popular textual programming languages. These statement lists

are encapsuled within POU declarations’ code section. ST also supports common con-

ditional statements and loops like WHILE and FOR. ST resembles modern popular pro-

gramming languages more than any other IEC 61131-3 language. An example code

written in ST is shown in program 1. In a world where automation and more traditional IT

7

are constantly closing in on each other, ST can become a great common language be-

tween IT and OT (Operational Technology) programmers.

PROGRAM example
 VAR_IN
 A: BOOL;
 END_VAR
 VAR_OUT
 X: BOOL;
 END_VAR
 IF (A)
 X := A;
 END_IF
END_PROGRAM

Program 1. Structured Text example

2.4 Function Block Diagram

Function block diagram is a graphical programming language, which consists of blocks

with input and output ports and wires connecting these blocks together. These wires can

be split, and a single output can be split to multiple inputs. Blocks and wires form a net-

work of blocks, which represents the program logic. Essentially the wires represent the

data flow in the program, while the function blocks are operations done to the data. One

great benefit to the FBD (Function Block Diagram) language is its function blocks’ reus-

ability. It is very modular by design and allows for non-programmers to write complex

logic more easily.

Figure 2 is an example of FBD language syntax originally made via CoDeSys

Figure 2. Function Block Diagram example [27]

For distributed control systems using FBD, there exists another standard called IEC

61499. The standard currently has three parts, 1: Architecture, 2: Software tool require-

ments and 4: Rules for compliance profiles [28]–[30]. Part three has been withdrawn in

8

2008 [24]. The IEC 61499 aims to standardize the distributed control system (DCS) ar-

chitecture by defining an application model using function blocks. The IEC 61499 ex-

tends the FBD language defined in the IEC 61131-3.

2.5 Other languages in IEC 61131-3

The other three languages of the standard are of little importance for this thesis. They

are however briefly introduced in this chapter for the sake of being crucial part of the

standard.

2.5.1 Instruction list (IL)
Instruction list is marked as deprecated language in the standard’s third edition IEC

61131-3:2013 [26]. Instruction list resembles assembly language and is not very similar

to modern programming languages such as JavaScript or Python. This makes it hard to

understand and read, while ST is more easily understandable and allows all the same

functionality. Hanssen has stated IL is efficient regarding required computing power [6,

Ch. 5.2.4]. This is one of the few benefits of the language compared to the other IEC

61131-3 languages. IL can possibly be still found in old control applications as it is one

of the original languages of the standard. CODESYS, one popular PLC programming

IDE (Integrated Development Environment), has stated they no longer maintain IL sup-

port but it can still be used in CODESYS [31].

Program 3 is an example of a very simple IL program. Essentially program 3 is a simple

AND-statement, which in pseudo code could be written as

If(A & B){
 X = true;
}

Program 2. Program 3 in pseudo code

LD A LD A
LD B AND B
ANB ST X
ST X

Program 3. Instruction list example [32]

2.5.2 Ladder Diagram (LD)
LD is another old language, and very popular one as it is a graphical language which

makes PLC programming easier to people who are not familiar with more traditional tex-

tual programming. According to Yi and Hangpin LD is the most widely used language

among the standard’s languages. They also state that LD being a graphical language

the code is always transpiled to instruction list first before PLC can run it. [22] However

9

de Sousa and Catalao describe there being three distinct approaches to running code

on PLC. Compiling the code to assembly or machine code, using a virtual machine, or

running a code interpreter. De Sousa’s IEC 61131-3 compiler MatIEC first compiles other

languages to ST before compiling ST into C code. [16]

Figure 3 shows the simplified compilation workflow from graphical IEC 61131-3 language

to executable machine code. MatIEC does not compile the code into directly executable

native code, but C code. Generated C code can then be further compiled into native code

by the platform specific C compiler. For example, GNU Compiler Collection (GCC) can

be used to compile native x86-64 code from the C code.

Figure 3. Simplified compilation workflow using MatIEC

So transpiling, or source-to-source compiling, to IL is not the only way, especially now

that IL has officially been deprecated. Arguably, MatIEC is more of a transpiler rather

than compiler, since it produces source code in another high-level language rather than

code which is ready to be executed.

LD is primarily used to program Boolean variables with symbols resembling electrical

relays [7, p. 147]. In LD, programs are drawn from top to bottom, left to right and the end

product sort of resembles ladder. Vertical lines evaluate all incoming horizontal lines from

left with OR and copy the result to all outgoing horizontal lines to right [7, p. 149]. The

horizontal lines contain the function blocks and operators which form the program logic.

Example of a simple LD program can be seen in Figure 4.

10

Figure 4. Ladder Diagram example [33]

2.5.3 Sequential Function Chart (SFC)
SFC is useful for programming process or manufacturing sequences. Tiegelkamp states

SFC was made to divide a complex program into smaller units which can be parallelized

[7, p. 169]. SFC diagrams run step by step. Each step has functions which define what

is done while the step is active and transitions, which define when step is finished and

next one should activate. Figure 5 contains an example of an SFC program.

Figure 5. SFC example [20]

11

3. MODERN CODE EDITOR FEATURES

Modern code editors and IDEs have numerous features to help programmer create code

efficiently. Features such as code completion suggestions, intelligent syntax error mes-

sages, snippets, syntax highlighting are very common in modern code editors. Sulin et

al. have studied source code editors augmenting code with additional annotations and

came to conclusion nearly all source code editors have some sort of augmentation sup-

port. Most of the visualizations were done with color or icons, with color being clearly the

most popular.[18] Author’s experience with programming IDEs also supports this claim,

as the syntax highlighting is almost always done with colors. With code editors having

so clear common de facto standard about the tooling style, one question arises whether

similar style should be applied also to the ST language tooling instead of taking inspira-

tion from more automation-oriented tools. One way to research this is to ask users if they

would feel comfortable using tool with features styled as such.

Developing a feature rich tooling for a programming language also requires deep under-

standing of the language, similarly to compilers. Compilers and language tooling how-

ever differ in some ways. While for compilers it is acceptable, although sub-optimal, to

stop parsing in case of error, this is not acceptable for a code editor’s parser. When

compiling, the process cannot proceed unless each stage produces valid output and any

error aborts the compilation process. When editing the code, user expects advanced

editor features such as autocompletion to work even when the code has errors. In other

words, code editor’s parser must have some sort of error recovery and produce sensible

output even when the input contains errors. For compilers it is also beneficial to show all

errors instead of just the first one, but the error recovery is not as important for parser

designed for compiler than it is for editor.

One goal of this thesis is to find a way to create these modern code editor features into

a code editor integrated into automation platform. To do this, one must first understand

the basics how these features are or can be implemented. Almost all modern code editor

features require parsing and some sort of analysis of the source code. The analysis can

be roughly divided to two categories, syntactical, and semantical analysis.

3.1 Syntactical analysis

Modern code editors generally have syntactical analysis to be able to highlight or other-

wise inform user about the syntax errors in the input. This requires programming the

12

knowledge of code syntax which can be a daunting task if the language is complex and

very context dependent. In other words, a lexer and parser for the language is required.

This is also stated in the introduction of paper on syntax error reporting and recovery in

parsers using specific type of grammars [12]. Parsing techniques are widely researched

subject with hundreds of papers released and dozens of tools developed. However, due

to the complexity of the problem, no tool is perfect, and every technique appears to have

some sort of drawback. There is a large book written which is said to summarize over

700 papers on parsing [5].

In a book about compiler design [3], the goal of syntactical analysis is described as con-

version of given source code into intermediate representation which is then used for

other analysis and/or compilation. In the book, the syntactical analysis is referred with

term “front-end” which is nowadays more commonly associated with web development.

The syntactical analysis generally consists of at least two stages, lexical analysis, and

parsing. In lexical analysis the character stream is mapped to list of tokens according to

specific tokenizer rules. In a sense the tokenizer rules define the vocabulary of a lan-

guage, all the keywords and identifiers. Essentially lexical analysis stage is about splitting

the entire input into elementary language concepts such as keywords or identifiers. Fic-

tional example of a result produced by lexer is pictured in Figure 6.

13

Figure 6. Example of lexer and parser workflow

Parsing is the next stage where these tokens are combined according to grammar rules

producing higher level language constructs such as if-statement or variable declaration.

Example of this can also be seen in the Figure 6, where the result of lexical analysis is

parsed by parser.

Parser usually produces these in a hierarchical tree-structure representing the used lan-

guage concepts from higher level structure down to elementary structures such as iden-

tifier. Example of this can be seen in Figure 6 where the construct named expression is

very high level and generic construct which is specialized by nested rules.

The tree directly produced by parser without any additional optimization is called Con-

crete syntax tree (CST) and it contains all the nodes exactly like parser identified them

based on grammar [34]. Figure 7 depicts an example CST for the input of “return a +2;”.

14

Figure 7. Concrete syntax tree for "return a + 2"[34]

The CST can however be optimized by removing unnecessary higher-level nodes from

the tree. For example, if tree has an if statement node, it is unnecessary to have higher

level node indicating it is a statement. This kind of reduced or optimized tree is called

AST(Abstract Syntax Tree) [34]. Difference between the CST and AST is that CST in-

cludes every matched grammar rule in the nodes, while the AST is trimmed, and only

meaningful data is kept. This makes AST faster and easier to walk through and analyze.

CST naturally contains the same information, and it can also be used for more in-depth

analysis, but usually using AST as basis for further analysis is easier. Creating AST can

be a complex task but due to the mentioned benefits it often is worth the effort.

15

Figure 8. Abstract syntax tree for "return a + 2"[34]

In Figure 7 there is a concrete syntax tree for simple return statement “return a + 2”.

Figure 8 shows an abstract syntax tree for the same input. When comparing the Figures

7 and 8 it is obvious the concrete syntax tree is significantly larger than the abstract

syntax tree. When considering these examples were done with a single statement, one

can imagine how much larger CST is compared to well-trimmed AST when using entire

source code file with hundreds of statements as the input.

The parsing is quite straightforward when the input is valid and conforms to the grammar,

but in the case of code editing, the code is more often invalid than valid. This makes the

error recovery features of the parser highly important as the tooling features depend on

the produced syntax trees. The errors in input can be generally recovered in two different

ways, inserting a token or removing a token [19]. The error recovery can become quite

complex task and while there are multiple methods for it, none fit for every situation. The

complexness stems from the questions What should be inserted/deleted? and How many

tokens should be inserted/deleted? It is difficult to figure rules for recovery which would

fit for all possible syntax errors. In paper by Quieiroz de Medeiros et al. they developed

an algorithm for automatic syntax error recovery and reporting. The new algorithm man-

aged to report most of the errors excellently, but still the evaluated rate of excellently

reported and recovered errors is 64% at best. [12] This highlights the complexness of

the generalized error recovery and reporting.

3.2 Semantical analysis

While syntax analysis focuses on input being correct grammar wise, it does not analyze

if the input is meaningful outside of conforming to the grammar. Semantic analysis is

executed to check if the code has a sensible meaning. Usually, semantic analysis meth-

ods require analyzing the code from wider point of view than in syntactical analysis. One

common type of semantic analysis is type checking. For ST type checking, the correct-

ness of variable types must be checked from two sections of the code. Variable types

16

are defined in the variable declaration part and when these defined variables are used,

the analysis must check variable declarations to figure out if the types of two variables

match. As an example, code may be syntactically correct and having variables a and b,

of type int and string respectfully. Now if there is a statement where a is assigned the

value of b, it is syntactically correct but semantically invalid. When the analysis encoun-

ters the assign statement, it must confirm the two variables have matching types by

checking the declaration part. Of course, this does heavily depend on the language used,

but ST is strongly typed and does not allow this kind of type mismatching. Below program

4 shows example of an ST program which is syntactically correct but semantically incor-

rect. Integer cannot be assigned to boolean in ST. This is not however found in syntac-

tical analysis since identifier := identifier is valid syntax.

PROGRAM example
 VAR_IN_OUT
 IN: INT;
 OUT: BOOL;
 END_VAR
 OUT := IN;
END_PROGRAM

Program 4. Syntactically correct but semantically incorrect ST program

De Sousa has published a paper [15] on type checking for ST language and implemented

type checking in the MatIEC compiler. Generally, compilers for strongly typed languages

implement type checks.

Another analysis method is to differentiate between variables with same names residing

in separate scopes. For example, two variables both named x can be differentiated to be

separate semantic entities if they for example are defined in different functions. This kind

of analysis can be used to implement “rename symbol” feature to the code editor. This

is more advanced than simple find and replace functionality, since the code may have

multiple variables with same name, but they are semantically different due to the scopes

of code. Program 5 shows short example code in ST how variable names can be re-used

in different scopes. Both FUNCTION and PROGRAM have their own variable scopes

and the variable IN is declared in both. These IN variables are different although they

have the same name and type. Simple find & replace functionality would change all oc-

currences of the variable, but with some scope analysis the refactoring can be limited to

affect only semantically identical variables.

17

FUNCTION func: INT
 VAR_INPUT
 IN: INT;
 END_VAR
 func := IN + 1;
END_FUNCTION

PROGRAM main
 VAR_IN_OUT
 IN: INT;
 OUT: INT;
 END_VAR
 OUT := func(IN);
END_PROGRAM

Program 5. Example ST program demonstrating the re-use of variable name in differ-
ent scopes

One interesting use case for an AST is introduced in paper by Liang et al: usage of an

custom, more information rich, AST to automatically locate bugs in source code based

on deep learning algorithm [10]. The algorithm takes source code and bug reports as

input and parses and compares both to identify likely locations which cause the bug. This

kind of advanced analysis is not common in popular code editors or IDEs. However, it is

interesting idea and is a good example how advanced analysis is possible with properly

constructed AST and modern advanced technology.

3.3 Language Server Protocol

The actual analysis of the code is often done in its own process in the background to not

block the editor UI. The output of the analysis still must be compatible with the editor API

to visualize the results. Microsoft attempts to solve the problem of having to make an

adapter for every language’s analysis software by defining Language Server Protocol

[35]. LSP (Language Server Protocol) aims to define universal protocol for language

analysis result format and the requests for analysis. The separate analysis software,

called language server by the protocol, must implement the protocol interface, and com-

municate adhering to the rules of the protocol. The internal implementation of the server

is not defined or constrained by the rules of the protocol and can be freely designed by

the developer. However, in practice the rules of communication guide the implementation

to use specific data structures. Language server using the protocol could be used in any

code editor which implements the language server protocol’s client interface. And this

also enables any code editor using LSP to use any language server available.

18

Figure 9. Language specific tooling without LSP

Figure 10. Language specific tooling with LSP

Figures 9 and 10 above show examples of simple situation where there are two editors

and two languages. In Figure 9, Editor A has implemented services for language A, but

does not support language B. Editor B has implemented services for language B and

some services for language A, but the feature set is smaller than in the editor A. The

Figure 10 shows the main benefit of LSP when used by all editors and language specific

tooling, both editors can use the feature rich language servers, increasing the function-

ality of both editors.

On the other hand, using a protocol defined and maintained by third party, the protocol

may restrict usability of bleeding-edge technology like the previously mentioned analysis

of bug reports to locate the code causing the bug. Kjær Rask et al have published a

proposal to fix this downside of the LSP. They propose another standard or extension to

the LSP specification to standardize LSP extensions called Specification Language

Server Protocol (SLSP). According to Kjær Rask et al. the downside to extending LSP is

the necessary initialization and synchronization messages which can be sometimes a bit

over-complicated to implement for a simple language feature which does not require

synchronization.[8] The extension of a specification is always a difficult problem since

19

both clients and servers must support the extensions and the more there are extensions,

the less there are benefits from the original idea of LSP. This SLSP is step in the right

direction, but it does not seem generic enough to completely solve the issue. Kjær Rask

et al. themselves state the generalization of the protocol for all languages is left for future

work [8].

3.4 Debugging

Modern IDE’s often offer support for debugging program and mapping debug data to the

source code. The goal of a debugger is to allow developer to see the state of the exe-

cuted program and control the execution. Debuggers are generally separate programs

which are integrated seamlessly into IDEs. Generally, debuggers are language specific

and support only single programming language. For example, pdb for Python, or jdb for

Java.

As with the language servers, Microsoft has developed a protocol called Debug Adapter

Protocol (DAP) to connect external debuggers to IDE’s user interface.[36] The idea of

DAP is to separate debugger front-end or user interface from the actual debugger imple-

mentation and allow the use of a generic debugger user interface with multiple debug-

gers. DAP’s website explains it is unlikely older debuggers add built in support for DAP

and instead adapters for them are recommended.[36] Figures 11 and 12 show the dif-

ferences how the debuggers are connected to IDEs and editors without and with DAP,

respectfully. The main goal and benefit of DAP is to re-use existing debuggers and pro-

vide an easy way to connect a single debugger to multiple development tools.

20

Figure 11. Debugging without DAP[36]

Figure 12. Debugging with DAP[36]

One of the most widely known debuggers is the GDB (GNU Project Debugger). GDB

supports several programming languages [37], most notably C++ and C, but not the ones

specified in IEC 61131-3. The debuggers like the development tools for IEC 61131-3

languages are generally proprietary software. The proprietary but free, cross-platform

PLC IDE CoDeSys has a built in debugger for these languages [38]. Most PLC tools

21

appear to offer some sort of simulation mode, where the application can be debugged

even without the physical hardware.

One way of implementing debugger for embedded system, which is somewhat close to

a PLC, is presented in a paper by Dolinay et al. where a debugger is implemented for an

Arduino board. The debugger is implemented as a GDB stub. Essentially Dolinay et al.

made a program library which listens and executes commands from GDB and sends the

requested data to debugger front-end which is running on user’s computer.[4]

Modern web browsers also have integrated debuggers for debugging JavaScript, CSS

(Cascading Style Sheets) and HTML (Hypertext Markup Language), the major lan-

guages for web. As debuggers are common in programming, it is worth investigating if a

debugger exists for the language before starting development of own debugger. In addi-

tion to source code debugger, modern browsers include various other development tools

such as performance monitor or network request logs. Figure 12 below is a screenshot

of Google Chrome’s DevTools as of version 105.

22

4. EXISTING TOOLS AND RESEARCH FOR
STRUCTURED TEXT DEVELOPMENT

Most ST parsers and static analysis tools are proprietary software owned by PLC man-

ufacturers. While the open-source culture has been prevalent in IT, OT systems are still

generally only used by companies and there are much less open-source versions of OT

systems. There however are a few open-source automation targeted software and as

the IT and OT continue to converge, there probably will be more open-source software

for automation in the future.

ST language has at least one unofficial extension called poST, which is introduced in

paper by Zyubin et.al. One major addition feature of poST is the addition of states into

the ST language. [23] States make some concepts easier to program. It is a bit unclear

if the poST language is supported by any open-source development tools. The paper

states however it is an extension of ST and a translator between poST and ST has been

developed [23]. Since the extension defines new constructs, also existing language tools

must be updated to support this kind of extensions. If there would have been open-

sourced tooling support for poST, it could have been a great example for web-based ST

tooling.

4.1 MatIEC

MatIEC is an open-source compiler for all the languages defined in IEC 61131-3 stand-

ard. The compiler compiles code written in standard’s languages into C code. The Bit-

bucket repository has a good technical readme file about the compiler’s functionality and

high level internal architecture. [16] The C code can be further compiled into native binary

with any C compiler. With MatIEC, PLC manufacturer can support all IEC 61131-3 lan-

guages with developing or using an existing C compiler for the target architecture.

MatIEC is very interesting software for this thesis as compilers generally must include

lexical analysis, syntax analysis and some semantical checks such as type checking [3,

Ch. 1.2], [11, p. vi]. These analysis and checks are needed for code editor’s language

tooling as well. Unfortunately, for Valmet’s purposes the MatIEC’s license is quite restric-

tive despite being open-source software and these analysis stages cannot be separated

from the rest of the compiler without also distributing the modified source code.

MatIEC compiler has built in lexical and syntax parsers and semantical analysis as stated

by MatIEC developer de Sousa [17]. According to de Sousa [17] MatIEC’s semantic

23

checker was implemented at later date compared to lexical and syntactical analysis

stages. He also states MatIEC does not do complete semantical analysis, but the com-

piler will be extended in the future to include code style verifications as well. It is difficult

to analyze how much of these checks have been implemented just by viewing source

code when the subject of compilers is not familiar. MatIEC however seems to be in semi-

active development in de Sousa’s repository [16]. As of August 2022, latest feature

seems to be CoDeSys syntax compatibility implemented in April 2021.

4.2 CoDeSys

CoDeSys is a closed source, free, manufacturer independent PLC programming IDE.

Harwell’s paper [13] summarizes the problem CoDeSys attempts to solve: PLC manu-

facturers often have differences in the implementations so that IEC 61131-3 programs

developed in one manufacturer’s software is not compatible with another manufacturer’s

devices. CoDeSys can support multiple manufacturer specific extensions to the standard

and adapt code automatically from one target device to another. Thus, CoDeSys further

helps the standardization of PLC programming from the practical standpoint. Harwall

also mentions the difference in the look and feel of the different programming environ-

ments may make it difficult to change vendors, while CoDeSys offers universal tool for

most common manufacturer’s systems [13]. According to Hanssen [6, Ch. 14.1] there

are over 250 hardware manufacturers using CoDeSys to program their PLC devices.

CoDeSys also includes a runtime for testing the program without PLC hardware, which

is helpful for the programmers. Figure 13 shows a screenshot of the CoDeSys’ UI (User

Interface)

24

Figure 13. CoDeSys development system

While CoDeSys does what is expected from the ST tool, it is not feasible option for the

Valmet’s use case as CoDeSys offers much more features than required and the pro-

gram is quite heavy and difficult to run in a web environment.

4.3 OpenPLC

OpenPLC is another manufacturer independent PLC programming IDE, but unlike

CoDeSys, OpenPLC is entirely open source [39]. OpenPLC allows to run PLC programs

on more diverse hardware via OpenPLC runtime. In the paper authored by Alves et al.

[14] they demonstrate OpenPLC can be run on custom hardware, providing a low cost

alternative to PLC vendors. The documentation [40] tells the OpenPLC runtime is written

in C, so any target platform which has an existing C compiler can run OpenPLC to run

programs written in IEC 61131-3 languages. Another research by Alves and Morris fo-

cused on the cyber security and validation of OpenPLC as an alternative for commercial

PLC products. They mentioned OpenPLC performance was satisfactory when compared

to 4 different commercial PLCs. [1] The OpenPLC project uses MatIEC as the compiler

[1]. Figure 14 shows the user interface of the OpenPLC IDE.

25

Figure 14. OpenPLC IDE

4.4 Vendor specific tools

Most PLC manufacturers have their own proprietary programming tools, for example

Siemens’ Simatic STEP 7 [41] or Beckhoff’s TwinCAT 3 [42]. This makes it more difficult

to program variety of PLC devices from different manufacturers and encourages users

to vendor lock their PLC systems to single vendor to ease development. PLC manufac-

turers who take this approach are mostly bigger companies with resources to implement

superior interoperability, support, and user experience if all the devices are from them.

This is of course desirable outcome for the PLC manufacturer, but reduces the effective-

ness of the IEC 61131-3 standard in practice since the vendor often implements addi-

tional features not specified in the standard to gain customer’s favor. Vendor locking is

opposite goal compared to OpenPLC’s and CoDeSys’ approach.

4.5 Small open-source projects

Besides the MatIEC compiler, there is at least one open source program IEC-Checker

[9] designed for static analysis of ST programs. IEC-Checker is said to have some

checks based on PLCOpen organization’s guidelines [43] for PLC development in addi-

tion to some other checks such as “Declaration analysis for derived types” [9]. This kind

of check is interesting, as the MatIEC developer de Sousa has published paper pointing

out the ambiguities related to derived variables datatypes [17]. In the paper, de Sousa

26

points out the standard does not clearly state how complex derived data types’ equality

should be evaluated when deriving from already derived types.

Figure 15. Example of ambiguous derived types

Figure 15 represents a simple example scenario where two types, derivedB and de-

rivedC, are derived from type derivedA. This by itself is not an ambiguous situation, but

what should result when checking equality between derivedB and derivedC? Both have

identical fields, but they are declared as separate types.

This raises the question, how valid or thorough can the check be for data type declara-

tions for derived types, if the standard itself is ambiguous?

There is also another open source IEC 61131-3 compiler named Echidna [2]. It is com-

bined compiler and runtime in a similar although more tightly coupled way compared to

OpenPLC. Echidna repository page states to support compiling and running code written

in Instruction List language on any hardware with supported C compiler. As compilers

generally must have syntactical analysis, Echidna should also contain parser for the IL

language. However, this thesis focuses on the ST, and Echidna it is not usable for the

ST tooling.

27

5. INTERVIEWS

Interviews are chosen as major research method to gather insights and opinions about

the new tool for ST development. Results are analyzed further in chapters 6 and 8. In

chapter 6, requirements for the tool are derived from the interview results and in chapter

8 the implementation is analyzed how well it fulfills these identified requirements. The

analyzed findings from the interviews should answer the research question: “What fea-

tures are required for efficient ST development tool?”. While originally interviews were

planned to be conducted early in the project, they were postponed as latter part of the

project. This choice was done to get more meaningful results as it is expected the ST

development is rather unfamiliar to most of the interviewees and it is beneficial to have

some baseline tool as an aid. Since the ST support has not had proper development tool

previously in Valmet’s system, it is unlikely to find experts on the subject. It is easier to

find issues and lack of features from existing tool rather than realize them purely by dis-

cussion. Therefore, the first iteration of the tool was developed first based on few per-

son’s opinions about the matter.

5.1 Interview structure

The interviews were conducted as open-ended interviews to allow relatively free discus-

sion about the experiences and thoughts about the ST editing and debugging. The goal

of the interviews is to pick up the most important ideas and thoughts how the user would

want to use the tool. Structured and semi-structured interviews could limit the field of

discussion too much since the questions could easily steer the discussion to specific

points of view. On the other hand, open-ended interviews can give too much freedom

and the interview results become impossible to generalize due to questions being too

different. This is a risk which was accepted and must be considered when analyzing the

results.

Target is to interview 4 persons from different backgrounds. Some who have previous

experience with writing ST, some have general programming experience but not with ST,

some have no programming experience at all. Preferably there would be more interviews

from each group, but it is especially difficult to find people who have prior experience

with ST programming. The interviewees are all Valmet personnel. External interviewees

are not conducted since it would be difficult to find suitable candidates and the tool itself

is integrated into Valmet’s automation platform which is in internal development. There

is an increased risk some classified details about the system would accidentally leak to

28

external users if external users would be interviewed. The group of interviewees is very

small, but it is expected for answers to be quite similar and hence the saturation point of

new ideas is reached quickly even with a small target group. Additionally, the target of

interview is rather small and well-confined feature. Because of this, the number of opin-

ions is expected to be small and the opinions to correlate between each other strongly.

In research by Weller et al. [21] the probing technique is emphasized to greatly enhance

the results even with small amount of interviewees. In probing technique more clarifica-

tions or follow-up questions are asked after initial response to a question. This is espe-

cially important in open-ended interview where it can be sometimes difficult to get solid

answers immediately. The questions and especially follow-up questions are altered ac-

cording to the interviewee’s experience about the ST development. On persons who are

more accustomed to ST development, answers and follow up questions can be more

technical and focus more on the specifics of the language. More familiar interviewees

may also have experience about other existing tools for ST development and may have

some bias towards specific way of working.

Main goal of the interviews is to gather opinions and ideas about the state of the tool and

future development ideas for ST development.

Interview questions:

1. How would you describe your experience regarding ST development?

2. What features and assist would you expect or hope code editor to offer?

3. What features would you expect or hope ST test mode/ debugger to offer?

4. What do you think are the user’s needs and use-cases for the ST editor?

After these initial questions, allow interviewee to briefly test the implemented tool or

showcase the current implementation to spark discussion.

5. What do you think about these editor features?

6. What do you think is missing? Now that you see the editor, do you have additional

expectations for the editor?

7. What do you think about these debugging features?

8. Should the debugger offer something else? Is something missing?

9. Anything else to add?

29

5.2 Interview results

In the end, only three official interviews were conducted. Additionally, some unofficial

conversations included the same topics which were discussed in interviews. The number

of interviews is less than originally planned. This can cause ideas and opinions to look

more popular than they are. Also, the amount of ideas may be a bit smaller and there is

less overlapping between the ideas.

This chapter summarizes responses received from the interviews. The responses are

anonymous and listed by the topic. The interviews were not recorded word by word.

Instead, the responses were summarized after the interview. Asked questions differ

slightly between the interviews and the exact questions asked were not recorded and

follow-up questions were unfortunately not recorded either during the interviews. As all

the interviewees are Valmet personnel with relations to the R&D (Research and Devel-

opment) department, the answers may be a bit biased towards a specific way of working.

1. Prior experience regarding ST programming?

Each interviewee had slightly different experience. One person responded to

have once programmed ST code with the previous tool version but had not much

experience outside of that. Another interviewee had no experience about ST or

programming altogether. Third interviewee had also no experience with ST and

very slightly about textual programming. He however had experience about logic

programming.

2. What features and assist would you expect or hope code editor to offer?

The first feature the interviewees usually came up with was the availability of the

documentation or some other form of syntax help in the editor. Especially pro-

grammers who were inexperienced with the ST wished for the syntax documen-

tation. One interviewee stated the user interface must be as clear as possible

and understanding what features it supports and how to use them should be ob-

vious to the user without ever seeing the user interface before. More specifically,

the UI (user interface) should be familiar in a way that UI elements should be

familiar and more importantly, if familiar UI elements are used, they should work

like the element works in other tools.

3. What features would you expect or hope ST test mode/ debugger to offer?

One idea or wish was to have offline debugging, or simulation. Essentially some

sort of way to test the functionality of the program without the actual runtime en-

vironment.

30

4. What do you think are the user’s needs and use-cases for the ST editor?

Interviewees had different thoughts about the use cases. One use case was the

copy and adaptation of existing logic written in ST to Valmet’s automation plat-

form. Other point of view was that ST is used for functionality which is not easily

creatable with function block diagrams, such as for-loops. The answers are wildly

different, some users immediately think of re-using entire control programs, other

users consider using this only when necessary. Overall, the use case is not clear

to anyone. Some interviewees even noted they don’t know the use cases of the

tool before even asking this question.

After these initial questions, the new editor and debugger was showcased or given to

interviewee to test it out.

5. What do you think about these editor features?

Interviewees mostly focused on the validation and syntax error highlighting, which

are new and most visible features. Opinions were quite positive, although the

initial assumption about syntax errors was that the editor would advise how to fix

them. Outside official interviews, the ability to validate code in the editor was

found out to be very useful while writing the code. Also, the validation feature

received an improvement suggestion for the UI, which does a poor job of inform-

ing if the validation is running still or if it produced the same message than before.

6. What do you think is missing? Now that you see the editor, do you have

additional expectations for the editor?

Idea about a conversion function for example ST programs written originally in

CoDeSys came up after explaining the idea to write the boilerplate code such as

interface variable definitions. The syntax used by CoDeSys differs slightly from

the syntax defined by the standard. For example, in CoDeSys the semicolons are

not required after the END_IF but in the standard, they are required.

Another kind of similar idea was to generate the interface code automatically,

since with current implementation it must be defined twice.

For users, it is annoying to write similar code repeatedly and instead it would be

nice to have some selection of common snippets of code. Similar but still slightly

different idea would be to have templates for slightly larger pieces of code, such

as a POU skeleton.

31

7. What do you think about these debugging features?

The debug prints are welcome addition as before the debugging was done mostly

by trial and error by adding additional ST block interface variable and writing to

it. The debugging features were considered great step into the correct direction.

The debugger does what interviewees expect it to do.

8. Should the debugger offer something else? Is something missing?

Generally, interviewees were positively surprised about the offered functionality.

One further suggestion was to be able to insert debug print commands to the

code while in debugging mode. Usually debugging requires the user to start fol-

lowing the execution from a point where the logic is surely still working correctly

towards the point where the result is unexpected. As the debug prints are the

best way to figure out how the program logic works and the point where the user

is interested constantly changes, it would be beneficial to be able to use debug

prints like breakpoints.

When observing the use of the debugger by interviewee, the order of code exe-

cution was not immediately clear to the user and the debugger does not have any

kind of indication what is executed when. With common programming language

debuggers in IDEs, the ability to execute code step-by-step gives this information.

The debugging becomes a complex task quickly as the ST code is divided to

more and more POUs.

9. Anything else to add?

The reusability and modularization of the code came up in discussions which is

not directly coupled to editor, but editor features must support code which is split

to different “files” or modules. In discussion there were mentions about pros and

cons of both having everything in one file or splitting the code into reusable mod-

ules. The answer which is better is not clear as there is not a clear picture what

is the role of ST programming in Valmet’s automation platform. On other hand,

the modularization could be done entirely outside of the code editor by dividing

the ST code into blocks and connecting the blocks together with “wires” which

are used in function block diagrams. With this approach, the ST code editor would

only ever be used to edit single block’s code and the organization of ST code

would be left to the function block editor.

Outside of the interviews, the users were observed to be struggling with ST syntax, which

further shows the importance of documentation help to be readily available while writing

ST code.

32

6. REQUIREMENTS AND CONSTRAINTS

This chapter lists and justifies identified requirements. Some of the requirements origi-

nate from the interview results, while some have been defined directly by the project

goal. Some implementation constraints, such as the requirement to make the tool run

within the web-based Valmet DNA tools, create additional requirements and con-

staraints.

6.1 Identified requirements

The project goal creates some requirements by itself. The goal is to improve the user

experience of ST programming within Valmet’s automation platform’s configuration tool

and create some way for user to verify the ST program works as intended. Following

requirements are set as the starting point for the project.

• Tools must comply with the IEC 61131-3 standard

• The editor must be compatible with the existing MatIEC compiler

• Editing must happen in Valmet’s web-based configuration tool

• Editor should be syntax-aware and provide syntax highlighting

• Editor should provide syntax error diagnostics or in other words, meaningful error

messages

• User should be able to verify the correctness of ST program to some extent

Rest of the requirements are defined via user interviews. Some requirements have come

up in both initial project requirements and user interviews. Most of the ideas were con-

sidered as requirements. Following list of requirements was created by combining the

ideas mentioned in interviews and removing those ideas that do not greatly improve the

user experience.

• Language documentation should be easily available

• User should be able to modularize source code and easily reuse code that has

been saved in a library.

• The interface between the function block diagram’s IEC ST block and contained

ST code should be automatically generated

• The user interface should be intuitive for the user

33

• Editor should suggest fixes for syntax errors

• Debugger should allow step-by-step debugging

• Inserting debug print commands in the middle of a debug session

Syntax documentation was clearly the most desired feature which was not implemented

in the first iteration of the tool. This was a bit surprising initially as such documentation

usually is not integrated into the editor when considering the programming languages

used in IT, such as JavaScript or C++. However, in automation related programming

tools, such syntax documentation is often available. This and the fact that the language

is unknown to nearly all the interviewees, explains, why the feature is required.

The second most desired feature is the ability to re-use ST code or otherwise make it

easier to write common code that is often required. The feature seems to be useful to

the users, as it is generally recommended to not repeat code or reinvent the wheel so to

speak. Instead, often used snippets could be saved to a shared library of code snippets

and browsed within an editor. Without such feature, users likely will create their own

libraries of ST code stored externally, for example in text files on local machine. While

this kind of feature is not necessarily a requirement for efficient development tool, it cer-

tainly would help.

Previous two wishes were brought up in all interviews, next ideas were less common and

all of them are not important enough to be classified as requirements. The requirements

derived from the interviews are largely biased towards the features useful for beginners.

There is a chance more experienced ST programmers would wish for different features.

Most of the wished features were either focused on learning the ST programming or

having the editor automatically do as much of the work as possible. Out of these the

latter would most likely be appreciated also by more experienced programmers.

Having an intuitive user interface is very important and an obvious requirement for effi-

cient ST development tool. Also, the ability for editor to report detailed syntax errors or

even fixes is seen as an obvious feature of the tool. Both are requirements for the tool.

Related to same reasons the re-use of code is desired, the automatic generation of ex-

ternal interfaces is wished. The interface must be defined both on the function block level

and in the ST code. The wish is to define it only in one location and the other would be

automatically updated. This would make the editing experience more efficient and thus

is deemed as a requirement.

One wish, which did not qualify as a requirement was to have conversion from alternative

ST syntax. While it could be useful in some situations, it would require some work to

34

make a reliable converter and the benefits are estimated to be too small for the work. In

this conversion case, interviewee thought about copying code over from some other ST

development tool which uses slightly differing syntax. Another unlisted wish was to have

offline debugging without controller. While this would be beneficial in some scenarios as

well, the technical and architectural choices make this difficult to implement and the use

case has a workaround by creating a temporary virtual controller for debugging. Thus, it

is deemed to not be important enough to qualify as a requirement.

6.2 Constraints

The biggest identified constraint is that the ST editor must be integrated into Valmet’s

automation platform, Valmet DNA (Dynamic Network of Applications), in some way. DNA

uses primarily function block diagrams as a language to program automation applica-

tions. In the new web-based Valmet DNA Configuration Environment, the ST code is

embedded within a Function Block Diagram as a special function block. Essentially the

function block accepts ST code as configuration and has typical function block input and

output interfaces which can be referenced within ST code. The function block diagrams

are executed in cycles, and as the FBDs can be connected to each other, pausing the

execution is technically difficult. This creates constraints to ST debugging as the ST code

is executed as a part of an FBD. As the ST code editing starts when the user navigates

to the specific function block within a diagram, it is desirable for ST code editing to hap-

pen in the web-based function block editor for smoother, more uniform user experience.

As the tool is web-based, there are additional constraints related to web and browser

context. The editor should not heavily rely on client machine’s software and instead run

entirely within browser. Also, some client machine’s resources such as the local filesys-

tem are much more restricted in browser environment. Some cache files or local storage

for the website could be utilized but the majority of filesystem is off-limits. Therefore, the

system should rely mostly on RAM (Random Access Memory).

The requirement to be compatible with the existing MatIEC compiler creates a constraint

for the IEC 61131-3 standard’s version. As MatIEC is based on the standard’s 2nd edition,

the tooling must match with the 2nd edition’s syntax and features.

In automation the product lifecycle is often long, even longer than 10 years. This discour-

ages the heavy usage of libraries and npm (node package manager) packages. The less

there are dependencies, the less there are components to monitor and maintain. After

10 years there is a big possibility most packages active today are not maintained any-

more. Unmaintained packages possibly contain security threats, and either no one is

35

fixing the found vulnerabilities or the maintenance of these packages falls to the user of

the packages. It is not forbidden to use libraries or npm packages, but the use case

should first be considered if it is easy to implement by oneself.

36

7. IMPLEMENTATION

This chapter consists of technical implementation details and planning and the first iter-

ation of the implemented system. Due to the size of the scope for the tooling system and

limited time for the project, only a subset of planned features or simplified versions of the

features were implemented.

7.1 Selected technologies, libraries, and existing components

As the tooling system was chosen to be integrated into Valmet’s Automation platform’s

configuration environment, it affected technology selection and feasible ways to engineer

a system for intelligent editor assistance. As the environment is web-based and the end-

product is used via web interface, some programming languages were more suited to

the task than others. JavaScript and Typescript, which is a superset of JavaScript and

often referred as “JavaScript with types”[44], are both common in web applications and

optimal programming language for this thesis. However, this slightly reduces the possible

external libraries and applications for code editing to be used in the system, especially

as most editor software are designed as standalone desktop software. Typescript was

however chosen as the primary programming language since the platform’s configura-

tion environment that wraps the ST tooling is browser based and mostly written in Type-

script thus making integration much easier.

The platform’s configuration environment has previously implemented code editor for ST

language using Monaco Editor as base, but the previous implementation does not have

any assist features enabled and the editing experience is similar to writing plain text to

an input box. This implementation could however provide a great base for implementing

the assisting features.

The tooling system was chosen to be implemented as language server which is run in a

Web Worker. Web Workers run in the background in the same browser instance, each

worker as a dedicated thread. Web Workers are a way to run JavaScript in browser

without interfering with the user interface [45].

The ST editor creates and owns the Web Worker instance which runs the Language

Server. With Language Server running in dedicated Web Worker, the Monaco Editor and

the Language Server exchange messages using the Web Workers API of the browser.

37

The Language Server and Monaco Editor communicate via the Language Server Proto-

col. The Monaco Editor was previously chosen to be used in other tools within the plat-

form and there was no interest in changing the editor unless necessary. Therefore, pri-

marily approaches which include the Monaco Editor were considered. Monaco Editor is

used in popular multi-language code editor Visual Studio Code and includes many useful

features for code editing.

For the ST parser, parser generator Lezer was chosen as it is JavaScript based and thus

fits well into the web environment. Lezer has been developed for use in another code

editor, CodeMirror [46]. Being developed for code editor, Lezer has crucial features for

a parser used in editor environment, such as error recovery or incremental parsing. Un-

fortunately, generated parsers nearly always have poor error messages, especially when

combined with error recovery and Lezer is no exception. Some parser generators or

libraries allow the customization of error messages, but Lezer does not have such fea-

ture.

The user interface wrapping the editor is created using React as the main framework.

Main reason for using React is the existing web-based configuration environment which

uses React. Using a different framework for a small integrated feature does not make

sense if the same framework can be used for both.

7.2 Implementation plan

Tooling system implementation plan includes the development of language server for ST

language, improved user interface to accommodate the new features, and new debug-

ging related functionality to the web-based code editor integrated into the Valmet’s auto-

mation platform. The plan initially was not extremely detailed and focused more on the

larger picture rather than specifics. The initial plan specified that the ST editing experi-

ence should be improved from the user’s standpoint. The platform had existing bare-

bones editor for ST without assist features, such as syntax highlighting or autocomplete.

Additionally, the platform had existing compiler and a separate runtime for executing the

ST code. The primary plan was to extend the functionality of these existing components

instead of replacing the editor with third party tool.

38

Figure 16. Simplified overview of the system

The ST editor and debugger are planned to be web components to be integrated into

existing web-based function block diagram editor. Figure 16 shows the basic architecture

of the tooling system. The ST editor is planned to consist of two main components, the

code editor Monaco which can be extended to be Language Server Protocol compatible

and the Language Server. The Language Server is explained in more detail in the next

chapter 7.2.1. The editor saves the ST code into the backend’s database for persistent

storage. The backend is also responsible for the compilation of the code. The debugger

component fetches the runtime data from the controller, which is executing the compiled

ST code. In this first iteration, the debugger component does not utilize the Language

Server. In the future, some more advanced “go to” features could be implemented in the

debugger component by utilizing the Language Server.

The entire system is web-based, and the actual editor runs entirely on the client ma-

chine’s web browser. First the web server serves the webpage with the function block

diagram editor, including the code for the ST editor. The ST editor starts the ST language

server in dedicated Web Worker and initializes the Monaco editor as child component of

ST editor. The Monaco editor and the Language Server communicate directly with each

other, while the ST editor communicates with the backend.

39

7.2.1 Language Server
Language Server is an actual implementation of the features specified by Language

Server Protocol. Language Server does not have to support all features of the protocol

as the interface gives the possibility to specify which of the protocol’s features are sup-

ported. These capabilities can be easily expanded if needs arise. Client and server share

their list of supported features at the start of session as part of the handshake. Only the

features supported by both are used. New ST language server’s first features are auto-

completion and syntax error highlighting.

Initial plan for Language Server is to support two types of autocompletion, static and

dynamic with basic context awareness. Static autocompletion would not strictly require

language server as it is just a list of reserved keywords in ST language. Dynamic auto-

complete is used to identify and list user defined variables and functions. For dynamic

autocomplete language server with a parser for the ST language is required. Language

Server has access to the information where user’s document cursor is and can deduce

the context and filter suggestions based on the information. Language Server Protocol

supports wide variety of requests and features and not all of them are applicable to the

Valmet’s environment. Protocol supports for example “go to definition” requests, where

the language server is given a small subrange of the document which contains the sym-

bol in question, for example a function call. Language server then finds the file and po-

sition where given function is defined and responds with location of the requested defi-

nition in the source code.

7.2.2 Debug functionality
For debugging, true step-by-step execution control is difficult to implement to the auto-

mation platform where real-time operation is critical to the system and the idea was post-

poned until deemed necessary. Instead of real execution control, the plan is to implement

simplified variable reader functionality. This simple “debugger” reads program variables

after each cycle ST program has executed and visualizes variables state at the end of

execution. The actual runtime execution is not controlled by debugger, thus mitigating

the issue of debugging affecting time-critical processes running on the same controller.

In this approach, user has no control over execution and can only observe the status of

the variables. In addition to reading variables, user can use the debug print function to

print values to the log during execution. The debug prints are written to separate log

buffer during the code execution and visualized to the user after the execution cycle has

finished. This could be used for example to log the value of an index variable in a for

loop for each iteration during the execution.

40

One idea for further development is the history functionality where the application states

are recorded and can be visualized so that it resembles debugging in popular IDE’s such

as Visual Studio. Included features should include at the very least “go to next step” and

the list of variables at that state. With larger or heavily looping/recursive programs, this

would likely result in heavy memory consumption. Another possibility is to execute the

code in a dedicated simulated environment instead of using the actual runtime with other

applications running. With simulated environment it would in theory be feasible to control

the execution step by step.

7.3 First iteration

The implementation started with the creation of new language server. To aid develop-

ment of new language server, a standalone Monaco Editor was set up as prototype en-

vironment. Monaco Editor is also used in the target system, and it was assumed the

stand-alone editor would behave like the target system in many ways. Monaco Editor

was setup by using browser-esm-webpack-typescript-react sample package from Mi-

crosoft’s monaco-editor repository’s samples. Both language server and language client

must implement the protocol and unfortunately Monaco does not support language serv-

ers out of the box. Hence, Monaco must be extended with a language client implemen-

tation. There is an existing npm package called monaco-languageclient which imple-

ments language client interface for Monaco Editor. In addition, transport layer connection

between server and client must be created and provided to the LSP connection. LSP

does not take a stance what kind of transport method should be used as long as it can

transport JSON-RPC (JavaScript Object Notation Remote Procedure Call) messages.

Couple of transport methods were experimented with, WebSocket and Web Worker.

Web Worker seemed to be quite uncommon in language servers but is very suitable for

code editor running entirely in web browser. To run the Language Server, it is likely Web

Workers would have been used anyways, so it makes sense to use the built-in messag-

ing in Web Workers. Vscode-languageserver npm package has helper classes for con-

necting language servers via Web Worker. With connection mostly built by combining

existing packages, next step is to implement actual language server features. First iter-

ation of the server is quite limited in functionality as most of the development time is used

to develop a Structured Text parser.

For the parser, multiple parser generators and libraries were searched and evaluated.

Perfect parser generator was not found for the purposes of this thesis but compared to

writing a custom parser completely from scratch, parser generator still seemed favorable

to get something working in a reasonable timeframe. Parser generators generate the

41

parser from a grammar which specifies the keywords and structures of the language. For

example, if-statement could be one language structure. The chosen parser generator,

Lezer, has its own notation for grammar but it closely resembles extended Backus-Naur

form (EBNF). The grammar for ST parser is created by converting the grammar defini-

tions from the standard [47] to Lezer’s notation. While this requires quite a lot of hand-

work, it is still relatively simple as the formats are very close to each other in the first

place. Additionally, assuming the standard’s grammar specifications are correct and

comprehensive, the resulting grammar file is very close to complete and less prone to

errors compared to writing it from the scratch.

Figure 17. Lezer workflow

Figure 17 depicts the flow from grammar file to fully working parser using Lezer. Lezer

generates the parser from grammar as input data for the Lezer parser runtime. In appli-

cation code, which in this case is the Language Server, the Lezer runtime is merged with

the parser data file. As a result, the library returns a fully working parser as a JavaScript

object. The input to be parsed is then passed to this object. The parser also has various

helper functions and methods to set settings and fetch or iterate parse result. The parse

result is a tree structure of nodes containing some data about the language structure the

node represents. The essential data of the node is the type of the node or in other words,

which language structure it represents. A node could for example be a block of code like

function definition or a keyword such as RETURN. Nodes often have several child nodes

in several depth layers forming the parse tree. At its core, parse tree is a representation

42

of the entire input string as language structure nodes. Another essential piece of data in

nodes is the position of the node in the original input. For example, node has from- and

to-properties which are 0-based position indices of original input string, thus giving the

exact location of the substring that was identified to be of the node’s type. With these

information, most modern code editor features can be implemented. Parse tree can be

seen as a basic level of computer understanding source code structures.

With parser developed, next step is to take the parse tree into use and provide language

features. One easy feature is to report syntax errors. Parser adds special error-node to

the parse tree which signifies syntax error. As nodes have the position information, this

can be used to map syntax errors to source code producing the commonly seen red

squiggly underline in the editor view. The accuracy and specificity of the errors produced

are heavily dependent on the quality and robustness of the parser. While Lezer is very

robust with syntax errors and has built-in error recovery, its capabilities to report mean-

ingful error messages are minimal. Due to this, the first implementation of language

server is unable to tell what kind of error is encountered and can only show the location

of the erroneous node. Figure 18 shows how the editor highlights syntax errors found by

the parser. In the example code in Figure 18, there are reported syntax errors on line 8.

There the assignment operator is missing colon. Parser however marks entire line after

the operator as invalid. This example shows how the error location is not always clear,

but the error usually is located within one symbol from the first syntax error in the se-

quence of errors. In this case, the first syntax error points to operator, which is the actual

location of the error. In the case of a function missing return type, all variable declarations

are shown erroneous. In such case the actual error location is missing syntax just before

the variable declarations, thus the parser marks the variable declarations invalid as they

are unexpected before return type. Unfortunately, the parser does not tell any information

about what kind of error it has encountered, and the user must guess what is wrong.

43

Figure 18. ST editor syntax error highlighting

Despite this downside, parser generator was used to create a proof of concept. To im-

prove the error messages, custom handmade parser would be beneficial.

One benefit of using Lezer is its built-in support for incremental parsing which reduces

the amount of work required to parse the document after changes significantly. The in-

cremental parsing however required quite a lot of extra logic to extend support for incre-

mental parsing for the analysis of declared variables and functions. Essentially, the anal-

ysis is required only for the part of code which can be affected by the change. Due to the

44

structure of IEC 61131-3 languages, a single change can only affect single POU at least

in the context of analyzing which variables or functions have been declared. Hence a

scope tracking system was implemented to split the source code into sections of POUs

and running analysis only for the section which contains the change. There is however

one more thing to consider: change of code may change also break the POU in a way

parser does not recognize it anymore which may lead to the corruption of scope tracking

occurring as duplicate or overlapping POUs. As a solution, the analysis range is widened

to include also the next POU if situation where POU ceases to exist is detected.

Figure 19. Example of situation which requires wider analysis

In Figure 19, first the POU function1’s closing statement is removed, this correctly leads

to error being detected by the parser, which is highlighted as red in the Figure. The error

is in the next POUs opening as it is unexpected token. Now because of the incremental

parsing is based on changed POU scopes, re-adding END_FUNCTION keyword does

not remove the error, since it is in the next POU outside of the change range. POU func-

tion1 gets re-parsed and analyzed in all the steps of Figure 5, while PROGRAM test is

45

not re-analyzed at all. This is one example of situations where this rule is extended to re-

run the analysis for also the following POU.

7.3.1 Debugging and validation of ST code
In addition to language server implementation, some basic debug and code validation

features are implemented. For debugging, most of the work was done by a colleague

working with the ST runtime. With his additions, data about the most recent variables

values and debug print logs are available. ST editor can fetch this data periodically via a

subscribe mechanism. In addition to fetching the data, it must be visualized to the user.

The new user interface for visualizing this debug information is showcased in Figure 20.

The variables are visualized in a resizable panel located right of the source code. The

list of variables shows only the variables that have been used during the latest execution

cycle. For example, if there is a function which is not always executed, the variables from

it are not shown when the function hasn’t been executed. Function called only when a

condition is true could be one such case when not all functions are executed.

The debug prints work slightly differently compared to the debug variables. Whereas

debug variables show the most recent execution cycle’s values for the variables after the

execution, debug prints can be used to save variables into log in the middle of the exe-

cution. Additionally, debug print log keeps the history of last 1000 prints so that the prints

can be read and analyzed. Debug print log is fetched similarly from the runtime as the

debug data for the variables. The log history is only kept locally in the browser’s memory

and is cleared when the debugging session ends. User can also toggle the debug print

log writes off and/or clear the log manually if necessary. The log window has an auto

scroll function which automatically scrolls the log to the bottom, where the newest log

messages appear. The auto scroll feature is disabled when the user manually scrolls

upwards and is re-enabled when the user scrolls manually to the bottom. The auto scroll

feature was inspired by the need to read the logs for a while but on the other hand when

looking for the newest data, the constant manual scrolling is annoying.

46

Figure 20. Test mode/debugger view

The code validation was previously run as part of the validation of the entire function

block diagram with potentially a lot of unrelated content. This validation method is not

changed but an additional smaller scope validation is added to the ST code editor which

validates only the ST code without the other contents of the function block diagram. Be-

ing able to validate the ST code on its own makes checking the correctness of the code

easier and faster as the user does not need to leave the editor or validate the entire

function block diagram. The new edit view with validation support is shown in Figure 21.

47

Figure 21. Edit view

The errors shown by the validation result panel are the errors reported by the compiler

MatIEC. While the messages can sometimes be a bit cryptic, they are however the most

accurate errors available for this iteration of the ST editor tool. The Language Server, as

stated before in chapter 7.3, can only indicate the starting point of error but not the nature

of the error. The MatIEC’s checks are more sophisticated and can provide better location

and explanation of the error. The downside to MatIEC’s error reporting in an editor use

is that it is a compiler and compiling is notoriously heavy operation. Running MatIEC

repeatedly on code changes would waste processing power and with the compiler resid-

ing in the server-side, also create large number of unnecessary requests and load to the

server. Therefore, the validation is implemented as a manually invoked operation.

48

8. EVALUATION

This chapter consists of analysis and evaluation of how well the identified requirements

support the goal of improving user experience of ST programming and how well imple-

mentation fulfills the requirements. The interviewees experience and the effect of that

experience or lack of it is taken into account while analyzing the identified requirements.

8.1 Identified requirements and constraints

Requirements identified from project goals were quite general, which can be more ben-

eficial than having precise and specific requirements. Based on the discussions, the na-

ture of the tool and the actual use cases for the tool are not completely clear. Mainly it is

unclear if users will use the ST to program relatively small programs performing some

function that would be difficult to do with function blocks or if the users use ST to import

control logic from external sources. These use cases affect the prioritization of features

of the tool. With large programs, modularization of ST source code and the performance

of the analysis stages of language server are emphasized. With small user written func-

tions, the prioritization shifts to the language server features such as syntax suggestions,

autocomplete and function parameter signatures. Having specific requirements with un-

clear use cases would be detrimental to the quality of the tool as the specified features

could easily be unnecessary.

Interviews were planned to identify some of missing features. The lack of experience

about ST development makes the ideas and requirements derived from the interviews

biased towards features useful for the beginners. Interviews also provide additional or

alternative points of view how the tool could work. Despite low number of interviews, they

produced few requirements which are estimated to greatly improve the user experience.

Especially for users who are not familiar with ST language. The bias towards help for

beginners is shown by the popularity of features such as syntax documentation and abil-

ity to use premade code snippets or templates. The interview results raise the question,

should the tool be targeted for beginners or more experienced developers, or can the

tool target both audiences effectively? These questions remain unanswered for now, as

the needs for experienced ST developers are still somewhat unknown.

The requirements are missing some commonly used features in IDEs such as symbol

refactoring and go-to shortcuts. These features are estimated to greatly improve the user

experience. It is interesting they did not come up in the interviews. Exact reason, why

49

these common IDE functionalities are not mentioned in interviews is difficult to guess.

This may be because they were taken as granted or then the inexperience of ST pro-

gramming affected the results here. On other hand the interview questions may have

guided interviewees thoughts in a way where traditional IDE did not come to mind.

Overall, there are not many constraints identified, which raises the question are there

some important constraints not identified. Most constraints are derived from the choice

of developing an integrated web-based tool and integrating the tool into automation plat-

form with a long lifecycle. Missing requirements and constraints make estimating the

success of implementation more difficult.

Table 2. below lists the requirements, and implementation status alongside estimated

importance for the goal of improving user experience. Out of the initially identified re-

quirements, the implementation fulfills all but one initial requirement. As the interviews

were conducted late in the project, most of the requirements identified via interviews

were not implemented.

Table 2. Requirements and implementation status

Requirement Details Source Imple-

mented

Importance

Tools must comply

with the IEC 61131-3

standard

 Initial

require-

ment

Yes Necessary

The editor must be

compatible with the

MatIEC compiler

The compiler uses 2nd

edition of the standard

Initial

require-

ment

Yes Necessary

Editing must happen

within the Valmet’s

web-based configura-

tion tool

Due to architecture con-

straints, it is recom-

mended for the editor to

be completely web-

based.

Initial

require-

ment

Yes Necessary

Editor should provide

syntax highlighting

 Initial

require-

ment

Yes High im-

portance

50

Editor should provide

syntax error reporting

Editor should mark the

syntax errors in the edi-

tor and provide diagnos-

tics what the error is.

Initial

require-

ment

Partial,

the edi-

tor

marks

syntax

errors

but

does

not pro-

vide di-

agnos-

tics

High im-

portance

User should be able to

verify the correctness

of ST program to an

extent

User can run the compi-

lation and receive the

possible errors. Addi-

tionally, user can debug

the code during execu-

tion and observe varia-

bles

Initial

require-

ment

Yes

Medium im-

portance

Language documenta-

tion should be easily

available

A link to documentation

within the editor

Inter-

views

Yes High im-

portance

User should be able to

re-use code

Some sort of library with

templates. Editor could

also suggest snippets

Inter-

views

No Medium im-

portance

The external interface

for the ST block should

be automatically gen-

erated

Quality of life feature,

reduces manual work.

Inter-

views

No Medium im-

portance

Editor could automati-

cally convert common

ST code into compati-

ble form

Refers to situation

where user would copy

and paste code from ex-

ternal sources.

Inter-

views

No Low im-

portance

51

Debugging offline

without runtime con-

troller

 Inter-

views

No,

worka-

round

exists

Low im-

portance

The user interface

should be intuitive to

use

 Inter-

views

Yes High im-

portance

Editor suggests fixes

for syntax errors

While it would be nice,

having descriptive error

messages should be

enough

Inter-

views

No Low im-

portance

Step-by-step debug-

ging or ability to insert

debug print com-

mands to code while

debugging

Useful but technically

difficult feature to imple-

ment

Inter-

views

No Medium im-

portance

8.2 Implementation

The implementation prototype, which was created in few weeks, was reviewed, and dis-

cussed with a small group of software engineers and deemed feasible. Afterwards the

implementation for the first iteration of new ST tooling system was developed and inte-

grated to the configuration environment. In hindsight, the development could have ben-

efitted from user feedback before the first working version is done. On the other hand,

since there are very few users who have any experience with ST programming, the feed-

back could have been very shallow and not provide much value outside of developer’s

ideas. That was the main reason feedback interviews were pushed to later stage after

the ST editor is usable.

One of the most important improvements to the ST editing was the detection and visual-

ization of syntax error. Unfortunately, the diagnostics for syntax errors are poor due to

the minimal error reporting capabilities of the used parser library Lezer. Otherwise, the

developed ST language server checks the syntax conforms to the IEC 61131-3 2nd edi-

tion, which is supported by MatIEC, and marks anomalies as syntax errors. The editor’s

validation function runs the compiler to validate the code, fulfilling the requirement for

user to be able to confirm code’s correctness partially. Rest of the requirement is fulfilled

52

by the debugging features, which allow the user to debug the program to an extent via

debug prints and live variable panel.

Other improvements to editor include the implementation of syntax highlighting, sugges-

tions for variables, keywords and functions and autocomplete for the suggestions. All of

these are huge improvements to the starting point, which was essentially a plain text box.

Syntax highlighting helps user to distinguish keywords from identifiers and function calls

at first glance. Suggestions and autocomplete support the popular requirement of syntax

help by providing list of possible keywords and variables at a position. The autocomplete

additionally makes writing code faster and lowers the number of typographical errors as

just couple of letters is often enough to narrow suggestions to the correct word.

The choice for the initial feature set fell on the developers as they have the most experi-

ence with programming with textual languages and have strong opinions which features

are important in a code editor. Due to time limitations, only few most important features

were implemented.

The syntax documentation was one feature which was deemed very important in the

interviews and the implementation for it was started immediately after identifying its im-

portance. The syntax reference material about the language structures, datatypes, op-

erators, and standard functions was created based on the IEC 61131-3 standard’s 2nd

edition. This material is used as a base for the official user documentation, which is linked

to the editor for easy access. Some users who read the material, told that it really helps

the development of ST code as a beginner. This feature is the clearly most wished miss-

ing feature from the editor based on the interviews and the feature greatly adds value to

the tool.

The debugger was found very successful part of the new ST development tool and the

features implemented were the ones that were also wished for. However, when observ-

ing the use of the tool the users seemed to have a bit trouble following the execution of

the code. The common debugger feature is to execute the code step by step and when

asked about this, the interviewees agreed immediately that would be very appreciated

feature. Step-by-step debugging unfortunately is also very difficult to implement techni-

cally. On the other hand, it would make the debugging much easier and again improve

the value of the tool. The technical difficulties, work required and received benefit should

all be carefully estimated.

Overall, the implementation already greatly improved the user experience of ST pro-

gramming, and the language server has still huge amount of potential. Language Server

53

Protocol supports a huge variety of features used in IDEs and the implemented Lan-

guage Server gives the base to build features upon.

8.2.1 Technical evaluation
The internal code structures for the Language Server are mostly focused on parsing and

selecting meaningful data from the concrete syntax tree. The lack of meaningful error

messages at the parser level is a major caveat of Lezer and an unfortunate overlook

while evaluating the options for a parser generator. The choice to use a parser library

was influenced by the timeframe of this project and the lack of experience regarding

parsers. If handwritten parser would have been selected as the initial approach, there is

a chance other useful features such as the debug prints could not have been made in

this timeframe. The parser of the Language Server should eventually be replaced with

better suited parser. Likely custom handcrafted parser would be the best choice. One

early idea was to keep the parser library as decoupled from the rest of the language

server as possible to ease the replacement of the parser. In practice this is not easily

seen in the code as most of the code is directly related to parsing and interpreting the

parse results. As the parse tree must be read with the methods in the Lezer runtime

library, there isn’t very easy way to decouple the Lezer generated parse tree from other

functionality. One considered method was re-creating the parse tree as own custom data

structure. This is redundant work and was not deemed a good idea at the time. Instead,

the functionality uses Lezer’s helper functions and methods and when the time of rework

comes, most of the code must be rewritten. It is recommended to fix design issues earlier

rather than later as the cost of the issue becomes much higher the further development

proceeds. In this case, the rewrite of the language server’s parser should take priority

before extending the feature set of it.

One major benefit of Lezer is the incremental parsing feature. The performance of the

parser is much less affected by the size of the document. In fact, during performance

profiling, there was a significant difference in processing time when parsing few thousand

lines of code. Time taken to parse few thousand lines was less than a second with incre-

mental parsing, while full document parse took few seconds. However, the performance

boost from the incremental parsing may not be as important as initially thought. The

parsing is relatively fast operation with small documents and the added complexity due

to the incremental parsing may not be worth it if the users generally write files which are

under thousand lines long. Considering the scenario where the user writes code without

incremental parsing, the analysis is constantly run on the entire code, which is much

easier to implement but uses more system resources. If running the analysis takes for

example one second, it still is fast enough for the user to likely not notice difference

54

between running the analysis for the entire code versus partial analysis. However, if there

are additional analysis steps in the future and the users work with larger code files, then

the importance of the incremental parsing becomes more and more relevant. Incremen-

tal parsing may be one feature which could be omitted from the future replacement par-

ser if incremental parsing is deemed as overly complex feature and users are expected

to write relatively small programs.

The general design from architectural standpoint for an entirely browser-based editor

was a great success. The web workers are perfect for relatively independent sub-pro-

grams such as language servers. Some modern code editors work entirely online in a

web browser and as such there exists open-source tools and libraries which can be used

to easily embed a fully working code editor into a web page. As the editor is designed to

be used in a web browser from the start, integrating it into Valmet’s configuration envi-

ronment was a breeze. As the editor is browser based, besides making the integration

requirement much easier to fulfill, it also makes the debugging side much easier to im-

plement, as the configuration environment has existing mechanisms to read data from

the runtime and the editor can utilize these same mechanisms.

The benefits of the language server protocol are very small in this use case as there

aren’t a lot of different languages used in the first place. However, it is a solid foundation

if there will be need for other languages in the future. The editor client is easily re-usable

for another language, especially if a fully featured language server already exists for the

language. In that case, supporting new language is not much more complex from just

defining language configuration and launching the appropriate language server in a web

worker.

The autocomplete feature implementation includes static list of keywords and addition-

ally the user defined variables and functions. While the feature works, there is room for

improvement. The autocomplete could also suggest user defined datatypes and the snip-

pets mentioned before. The user defined variables are collected from the parse tree after

the parse is finished by iterating specific sections of the tree structure.

The debug functionality is mostly implemented in the ST code runtime. The runtime de-

velopment was not the target of this thesis and therefore only the front-end for the de-

bugger is evaluated. The implementation works well, and the editor should be quite re-

sponsive even with larger amount of data. This is largely supported by design where only

the changed values are updated in the editor’s user interface’s list of variables. The de-

bug print log is limited to 1000 entries, so the memory won’t run out even if user runs

debugger for extended periods of time. It is extremely unlikely anyone would need to

55

have more than 1000 debug prints visible at the same time. The step-by-step debugging

is technically very difficult to implement but would be very much wished feature. The

step-by-step debugging is not only wished for ST but also to the function block diagrams.

This feature is more dependent on the runtime and debugger backend, rather than the

editor and debugger frontend.

56

9. CONCLUSIONS

The goal of this thesis was to find out what features are required for an efficient IEC ST

development tool and implement a tool with some subset of the features, improving the

user experience. The tool is integrated into Valmet’s web-based automation platform,

which created constraints for the implementation.

The requirements for the tool were researched in a few different ways. Major research

method for the requirements are user interviews, which were moved to later part of the

project. This was justified by the assumption the interviewees are not familiar with IEC

ST and for the results it is beneficial to have some sort of demonstration of the tool. Thus,

the implementation was done before the interviews. The second part of thesis, the im-

plementation was designed by researching common design in programming language

tools and parsing basics. Early in the project free IEC 61131-3 compliant IDE’s, such as

OpenPLC, were tried to get better understanding of common features in PLC oriented

development tools. In practice, the implementation prototype was created by trying dif-

ferent libraries in attempt to create a proof of concept.

The conducted interviews produced wishes which were then analyzed whether they are

significant enough to be requirements. All interviewees were inexperienced with the ST

language and had varying experience with programming in general. Thus, the require-

ments identified via interviews are biased towards features for inexperienced program-

mers. Unfortunately, there were no ST experts found as interviewees. Experienced ST

programmer could have had different opinions about the tool. Some of the requirements

were initially given at the beginning of the project, while the rest were identified via inter-

views near the end of the project. The requirements identified in the end inclined more

towards improvement ideas or wishes rather than well specified requirements, but they

are nevertheless valuable data to answer the question, what features should the editor

include.

When considering the results, it must be noted that in the Valmet’s environment the ST

language support is not the primary way of programming automation applications and as

such, the requirements are different if one would for example create a system mainly

focused on the ST. The requirements list is not exhaustive and obvious requirements

such as “The editor must allow saving the code to the configuration environment” are not

listed. Features which help to write correct syntax came up most frequently during the

interviews. This was also in line with author’s own estimates for important features. Other

57

category of requirements focused on editor automatically doing part of the work, such as

automatically defining ST function block’s interface in ST code. Majority of the require-

ments can be divided into these two categories.

The implementation was a great success and provides a great example how language

specific tooling can be implemented in completely web-based environment. The use of

the Language Server Protocol makes supporting additional languages as easy as finding

suitable Language Server and connecting the editor to it. As the most important require-

ments revolved around the syntax help, the new tool has autocomplete, syntax sugges-

tions, syntax highlight and readily available ST syntax documentation. These features

greatly improve the user experience which was one of the main goals of this thesis.

However, there is still a lot of potential for the language tooling which is not utilized. The

implementation is thus evaluated to be a major step to the correct direction, rather than

finished and polished tool.

Technically the implementation has one unfortunate drawback. The used parser gener-

ator Lezer was not entirely suited for the purpose and made implementing the proper

error messages very difficult. Other technical solutions worked perfectly and provide a

good implementation example for web-based code editor language specific tooling. The

choice to use language server and run it in a dedicated web worker works extremely well

in a web environment. The downside to using such web-based environment is the lack

of directly compatible language servers. In theory, any textual language could be sup-

ported by the editor by using suitable language server. This opens a lot of possibilities to

extend the language support in the future.

To develop the Structured Text language server further, there are several features the

Language Server could support. ST language generally contains quite a lot of repetitive

and strict structures and would benefit quite a lot about automatic generation of these

repeated structures. The implementation done in this thesis implements one feature to

aid automatic generation, autocomplete suggestions. Further ideas for this are larger

snippets, automatic boilerplate generation and templates. Another point of research is to

investigate how the parser should be improved. One option is to rewrite the parser com-

pletely by hand. For that option, the amount of work required, and possible algorithms

should be investigated. Another option is to investigate alternative parser libraries, but

as was seen in this thesis, their features are rarely ideal for code editor’s purposes. And

most of, if not all the parser related code must still be rewritten.

As most of the publicly available language servers are designed to work in a native desk-

top environment, one point of research could be a general adapter for use of language

58

servers in web environment. This would make addition of new languages to the editor

very easy.

Once the tool has been used for some time, user feedback could be beneficial to improve

aspects which were not identified during this thesis due to lack of Structured Text expe-

rience.

59

REFERENCES

[1] T. Alves and T. Morris, “OpenPLC: An IEC 61131–3 compliant open source indus-
trial controller for cyber security research,” Comput. Secur., vol. 78, pp. 364–379,
2018.

[2] R. Casey, “Echidna,” 24-Jul-2022. [Online]. Available:
https://github.com/61131/echidna. [Accessed: 15-Aug-2022].

[3] K. Cooper, Engineering a compiler, 2nd ed. Amsterdam: Elsevier, 2012.
[4] J. Dolinay, P. Dostalek, and V. Vasek, “Arduino Debugger,” IEEE Embed. Syst.

Lett., vol. 8, no. 4, pp. 85–88, 2016.
[5] D. Grune and C. J. H. Jacobs, Parsing Techniques: A Practical Guide. New York,

NY: Springer New York, 2007.
[6] D. H. Hanssen, Programmable Logic Controllers: A Practical Approach to IEC

61131-3 Using CoDeSys. New York: John Wiley & Sons, Incorporated, 2015.
[7] K.-H. John and M. Tiegelkamp, IEC 61131-3: Programming Industrial Automation

Systems: Concepts and Programming Languages, Requirements for Programming
Systems, Decision-Making Aids, 2. Aufl. Berlin, Heidelberg: Springer-Verlag, 2010.

[8] J. Kjær Rask, F. Palludan Madsen, N. Battle, H. Daniel Macedo, and P. Gorm
Larsen, “The Specification Language Server Protocol: A Proposal for Standardised
LSP Extensions,” Electron. Proc. Theor. Comput. Sci., vol. 338, pp. 3–18, 2021.

[9] G. Komarov, “IEC Checker,” 05-Aug-2022. [Online]. Available:
https://github.com/jubnzv/iec-checker. [Accessed: 08-Aug-2022].

[10] H. Liang, L. Sun, M. Wang, and Y. Yang, “Deep Learning With Customized Abstract
Syntax Tree for Bug Localization,” IEEE Access, vol. 7, pp. 116309–116320, 2019.

[11] T. Æ. Mogensen, Introduction to Compiler Design, 1st ed. 2011. London: Springer
London, 2011.

[12] S. Queiroz de Medeiros, G. de Azevedo Alvez Junior, and F. Mascarenhas,
“Automatic syntax error reporting and recovery in parsing expression grammars,”
Sci. Comput. Program., vol. 187, 2020.

[13] Richard C Harwell and L. Sparks Kerry, “IEC 61131-3, CoDeSys standardize
control logic: ease control programming across multiple controller platforms using
IEC 61131-3-based CoDeSys programming software,” Control Eng., p. 20+, Jan.
2011.

[14] T. Rodrigues Alves, M. Buratto, F. M. de Souza, and T. V. Rodrigues, “OpenPLC:
An open source alternative to automation,” in IEEE Global Humanitarian
Technology Conference, 2014, pp. 585–589.

[15] M. de Sousa, “Data-type checking of IEC61131-3 ST and IL applications,” in
Proceedings of 2012 IEEE 17th International Conference on Emerging
Technologies & Factory Automation, Krakow, 2012, pp. 1–8.

[16] M. de Sousa, “MatIEC repository,” Bitbucket. [Online]. Available:
https://bitbucket.org/mjsousa/matiec_git/src/master/. [Accessed: 11-Aug-2022].

[17] M. de Sousa, “On Analyzing the Semantics of IEC61131-3 ST and IL Applications,”
in Advances in Sustainable and Competitive Manufacturing Systems, Heidelberg:
Springer International Publishing, 2013, pp. 559–571.

[18] M. Sulír, M. Bačíková, S. Chodarev, and J. Porubän, “Visual augmentation of
source code editors: A systematic mapping study,” J. Vis. Lang. Comput., vol. 49,
pp. 46–59, 2018.

[19] S. D. Swierstra and P. R. A. Alcocer, “Fast, error correcting parser combinators: A
short tutorial,” in SOFSEM’99: Theory and Practice of Informatics, Milovy, 1999, pp.
112–131.

[20] E. Tisserant, L. Bessard, and M. de Sousa, “An Open Source IEC 61131-3
Integrated Development Environment,” 2007, vol. 1, pp. 183–187.

60

[21] S. C. Weller et al., “Open-ended interview questions and saturation,” PloS One, vol.
13, no. 6, 2018.

[22] Y. Yan and H. Zhang, “Compiling Ladder Diagram into Instruction List to comply
with IEC 61131-3,” Comput. Ind., vol. 61, no. 5, pp. 448–462, 2010.

[23] V. E. Zyubin, A. S. Rozov, I. S. Anureev, N. O. Garanina, and V. Vyatkin, “poST: A
Process-Oriented Extension of the IEC 61131-3 Structured Text Language,” IEEE
Access, vol. 10, pp. 35238–35250, 2022.

[24] “IEC 61131-3:2013,” IEC Webstore. [Online]. Available:
https://webstore.iec.ch/publication/4552. [Accessed: 08-Jul-2022].

[25] “Status IEC 61131-3 standard,” 19-Jul-2018. [Online]. Available:
https://plcopen.org/status-iec-61131-3-standard. [Accessed: 07-Nov-2022].

[26] “IEC 61131-3:2013 Programmable controllers - Part 3: Programming languages,”
IEC, 2013.

[27] “Beckhoff Information System - English.” [Online]. Available:
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_plc_intro/13
5987851.html&id. [Accessed: 23-Aug-2022].

[28] “IEC 61499-1:2012,” IEC Webstore. [Online]. Available:
https://webstore.iec.ch/publication/5506. [Accessed: 23-Aug-2022].

[29] “IEC 61499-2:2012,” IEC Webstore. [Online]. Available:
https://webstore.iec.ch/publication/5507. [Accessed: 23-Aug-2022].

[30] “IEC 61499-4:2013,” IEC Webstore. [Online]. Available:
https://webstore.iec.ch/publication/5508. [Accessed: 23-Aug-2022].

[31] “CoDeSys Development System,” CODESYS. [Online]. Available:
https://www.codesys.com/products/codesys-engineering/development-
system.html. [Accessed: 08-Jul-2022].

[32] “Why is the instruction list (IL) language for PLCs falling out of favor?” [Online].
Available: https://www.motioncontroltips.com/why-is-the-instruction-list-il-
language-for-plcs-falling-out-of-favor/. [Accessed: 23-Aug-2022].

[33] “Ladder Diagram (LD) Programming | Basics of Programmable Logic Controllers
(PLCs) | Automation Textbook.” [Online]. Available:
https://control.com/textbook/programmable-logic-controllers/ladder-diagram-ld-
programming/. [Accessed: 28-Jul-2022].

[34] “Abstract vs. Concrete Syntax Trees - Eli Bendersky’s website.” [Online]. Available:
https://eli.thegreenplace.net/2009/02/16/abstract-vs-concrete-syntax-trees/.
[Accessed: 17-Aug-2022].

[35] “Official page for Language Server Protocol.” [Online]. Available:
https://microsoft.github.io/language-server-protocol/. [Accessed: 22-Aug-2022].

[36] “Debug Adapter Protocol.” [Online]. Available: https://microsoft.github.io/debug-
adapter-protocol/overview. [Accessed: 12-Sep-2022].

[37] “GDB: The GNU Project Debugger.” [Online]. Available:
https://www.sourceware.org/gdb/. [Accessed: 01-Sep-2022].

[38] “Testing and Debugging,” CODESYS. [Online]. Available:
https://help.codesys.com/api-
content/2/codesys/3.5.17.0/en/_cds_struct_test_application/. [Accessed: 01-Sep-
2022].

[39] “OpenPLC – Open-source PLC Software.” [Online]. Available:
https://openplcproject.com/. [Accessed: 12-Aug-2022].

[40] “1.5 Installing OpenPLC Runtime on Microcontrollers,” OpenPLC. [Online].
Available: https://openplcproject.com/docs/installing-openplc-runtime-on-arduino-
and-other-platforms/. [Accessed: 12-Aug-2022].

[41] “PLC programming with SIMATIC STEP 7 (TIA Portal),” siemens.com Global
Website. [Online]. Available:
https://new.siemens.com/global/en/products/automation/industry-
software/automation-software/tia-portal/software/step7-tia-portal.html. [Accessed:
15-Aug-2022].

61

[42] “TwinCAT 3 Engineering,” Beckhoff Automation. [Online]. Available:
https://www.beckhoff.com/en-en/products/automation/twincat/te1xxx-twincat-3-
engineering/te1000.html. [Accessed: 15-Aug-2022].

[43] “Software Construction Guidelines,” PLCOpen, 12-Jul-2018. [Online]. Available:
https://plcopen.org/software-construction-guidelines. [Accessed: 15-Aug-2022].

[44] “Official page for TypeScript.” [Online]. Available: https://www.typescriptlang.org/.
[Accessed: 20-Sep-2022].

[45] “Using Web Workers - Web APIs | MDN.” [Online]. Available:
https://developer.mozilla.org/en-
US/docs/Web/API/Web_Workers_API/Using_web_workers. [Accessed: 22-Sep-
2022].

[46] “Lezer.” [Online]. Available: https://marijnhaverbeke.nl/blog/lezer.html. [Accessed:
26-Sep-2022].

[47] “IEC 61131-3:2003,” IEC Webstore. [Online]. Available:
https://webstore.iec.ch/publication/19081. [Accessed: 27-Sep-2022].

