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Abstract 

Objectives: Several studies have shown that patients with heart disease value hypothetical 

health states differently from the general population. We aimed to develop a value set for the 

EQ-5D-5L based on the preferences of patients with heart disease using an international 

valuation protocol. 

Methods: Patients with confirmed heart disease were recruited from two hospitals in 

Singapore. A total of 86 EQ-5D-5L health states (10 per patient) were valued using a 

composite time trade-off method according to the international valuation protocol for EQ-5D-

5L. A 20-parameter linear model and an 8-parameter cross-attribute level effects model with 

and without an N45 term (indicating whether any health state dimension at level 4 or 5 

existed) were estimated. Each model included patient-specific random intercepts, 

heteroscedastic error, and left-censored utility values at -1. Model performance was evaluated 

in terms of out-of-sample and in-sample predictive accuracy. The discriminative ability of the 

utility values was assessed using heart disease-related functional classes. 

Results: A total of 539 patients were included in the analysis. The preferred model is a 20-

parameter linear model with the N45 term. Predicted utility values ranged from -0.928 for the 

worst state to 1 for full health; the value for the second-best state was 0.982. Utility values 

demonstrated good discriminative ability in differentiating among patients of varied 

functional classes. 

Conclusions: For the first time, an EQ-5D-5L value set was developed using the preferences 

of patients with heart disease. The value set could be used for patient-centric economic 

evaluation and treatment selection for patients with heart disease. 
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Highlights 

• Patients with heart disease have health preferences that are systematically different 

from those of the general public. 

• This study provides utility values for EQ-5D-5L health states based on the preferences 

of patients with heart disease. 

• This value set is useful for clinical decision-making and for economic evaluation 

aiming to use patient preferences to inform treatment selection or reimbursement for 

patients with heart disease. 
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Introduction 

Medical costs are escalating with population aging and advances in healthcare technologies1, 

and these changes are placing pressure on national healthcare budgets. Health technology 

assessment (HTA) helps make efficient use of healthcare budgets. Using quality-adjusted life 

years (QALYs), HTA evaluates the costs of new treatment taking into consideration survival 

benefits and effects on health-related quality of life. QALYs are typically obtained from a 

generic preference-based instrument such as the EQ-5D that provides a utility value that is 

multiplied by the duration lived in a health state. Utility values are usually estimated by 

asking people to assign values to specific hypothetical health states that vary in severity from 

mild to extremely severe. 

HTA methods and processes have been criticized for not being sufficiently “patient-centric”2. 

For example, several countries recommend that the reference case analysis be based on a 

societal perspective3. However, there are doubts about whether members of the general public 

who are relatively healthy can appreciate the health states that they are being asked to value. 

Therefore, there are arguments that support using the preferences of patients who have 

experienced health states of varying severity4. The Dental and Pharmaceutical Benefits 

Agency in Sweden recommends that the preferences of persons who have experienced the 

particular health condition that is being assessed be used in economic evaluations5. For 

medical technology evaluations, the Agency for Care Effectiveness in Singapore 

recommends the use of preferences based both on patients with the condition and on the 

general public6,7. 

The choice of using patient or general public preferences depends on the purpose and context 

of the evaluation. General public values are desirable when the values are used to inform 

decisions that allocate societal resources, while patient values may be more appropriate when 
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making treatment decisions guided by patient health preferences. Patient preferences are 

essential for patient-centric healthcare decisions. In many counties, patient preferences are 

also crucial for economic evaluations, as patients themselves bear the majority of healthcare 

costs8. 

Empirical studies have shown systematic differences in the valuing of hypothetical health 

states by the general public and by patients with certain health conditions, such as heart 

disease9-11, that are not explained by differences in sociodemographic characteristics. Pickard 

et al.11 and Gandhi et al.10 showed that patients with heart disease give higher values than the 

general public for the 3-level EQ-5D (EQ-5D-3L) health states. Differences in values given 

by patients with heart disease and healthy people were also reported for the 5-level EQ-5D 

(EQ-5D-5L) health states9, along with the impact of these differences on utility gain 

estimates. These differences could occur for several reasons: variation in life experiences, 

uncertainty about life, adaptation to suboptimal health conditions and healthcare costs. These 

findings support the use of utility values based on patient preferences for patient-centric 

healthcare decision-making. 

Cardiovascular diseases (CVDs), which include ischemic heart disease, stroke, peripheral 

arterial disease, heart failure, and several other cardiac and vascular conditions, contribute to 

more than 400 million new cases, 18 million deaths (31% of all mortality), and 36 million 

years of lived-with-disability per year worldwide12. Considering the disease prevalence, 

burden, and health preferences, a utility value set based on preferences of patients with heart 

disease will potentially have a significant impact on the evaluation of emerging therapies for 

CVD. 

In this study, we aimed to develop a utility value set for health states defined by the EQ-5D-

5L descriptive system using the preferences of patients with heart disease. The EQ-5D-5L is 
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a new version of the widely used EQ-5D-3L and has demonstrated better measurement 

properties than the previous version13. 

Methods 

Study design and participants 

This was a cross-sectional study involving face-to-face interviews of patients with heart 

disease who were receiving treatment at the two largest cardiovascular tertiary hospitals in 

Singapore, a multiethnic Asian city-state. Consecutive patients were approached during their 

regular outpatient clinic visits. 

The eligibility criteria for the study were (i) adult patient (21 years or older) with one or more 

types of clinically confirmed heart disease (ischemic heart disease, heart failure, heart rhythm 

disorder, valvular heart disease) and prior hospitalization for heart disease-related conditions; 

(ii) physically and mentally well enough to participate in a 30-minute interview; and (iii) able 

to read and communicate in either English or Chinese. The eligibility criterion of prior 

hospitalization was included to ensure that all of the study participants had experienced a 

severe health state. The Singapore resident population constitutes of 74% Chinese, 13% 

Malay, 9% Indian, and 3% others. More than 85% of Indians and Malay are literate in 

English14. Hence, the eligibility criteria for language covers all three major ethnic populations 

in Singapore. The diagnosis of heart disease was based on internationally accepted criteria as 

applied by the participants’ managing cardiologists. 

Informed consent was obtained from all participants. The study was approved by the ethics 

boards of the respective hospitals. 

Valuation interview 
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The participants were interviewed in quiet areas in clinics. Each participant was interviewed 

by a trained interviewer in the language of their preference. The interviewer team comprised 

four bilingual interviewers who could fluently read and speak English and Chinese and had 

prior experience in conducting patient interviews. All the interviewers were trained in the 

valuation protocol and had conducted at least five practice interviews. 

Each interview comprised two parts: the first involved self-administration of paper forms, 

and the second involved interviewer-guided computer-based valuation tasks. In the first part, 

participants self-reported their sociodemographic information and health profiles using the 

EQ-5D-5L along with a visual analog scale (EQ VAS) and the HeartQoL (heart disease-

specific HRQoL instrument); they also reported their functional status using the New York 

Heart Association (NYHA) classification and the Canadian Cardiovascular Society (CCS) 

classification of angina. In the second part, participants valued EQ-5D-5L health states using 

the composite time trade-off (cTTO) module of the EuroQol Portable Valuation Technology 

(EQ-PVT) software version 1.7 running from a laptop. The interviewers followed a standard 

script in all interviews. In a previous study, the script and valuation tasks administered using 

very similar software were tested and shown to be well understood and accepted by local 

heart disease patients9. Protocol compliance was assessed using quality-control criteria 

developed by the EuroQol Group15. 

Detailed descriptions of the cTTO and the valuation protocol can be found elsewhere16,17. 

Briefly, the objective of the task was to identify the point of preferential indifference between 

10 years of life in the described target state followed by death and a shorter life (x ≤ 10 years) 

in full health followed by death. With a defined utility value of 1 for full health, the utility 

value of the target state can be calculated as x/10. For states considered to be worse than 

death, a lead time of 10 years was added to both alternatives to elicit a negative utility value 
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for the state. The utility value of a worse-than-death health state was calculated as (x-10)/10 

such that the utility value of each health state is bounded by -1 and 1; 0 represents the value 

for the “dead” state. 

Outcome measures 

EQ-5D-5L 

EQ-5D-5L is a generic, multi-attribute utility-based instrument. It contains five dimensions 

(mobility, self-care, usual activities, pain/discomfort, and anxiety/depression) and a visual 

analog scale (EQ VAS) of the overall health status18. It describes each dimension at five 

levels of severity (broadly corresponding to no problem, slight problems, moderate problems, 

severe problems, and extreme problems). Thus, it can describe 3125 possible health states. 

This study used validated Singapore English and Chinese language versions of the EQ-5D-

5L19,20. EQ-5D-5L has been psychometrically validated for a large number of diseases, 

including heart disease13. 

According to the valuation protocol16, each participant valued a randomly selected set (called 

a block) of 10 hypothetical EQ-5D-5L health states. Each block included one very mild 

health state chosen from five prespecified health states (21111, 12111, 11211, 11121, 11112), 

the most severe health state (55555), and eight health states chosen from 80 prespecified 

health states among the remaining 3119 possible health states. Here, the health state “21111” 

indicated slight problems (level 2 severity) in the first dimension (mobility) and no problems 

(level 1 severity) in the remaining four dimensions. Other health states were defined 

similarly. The protocol contained a total of 10 unique blocks, consisting of 86 unique EQ-5D-

5L health states. 

HeartQoL 
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HeartQoL is a heart disease-specific HRQoL instrument21. It comprises 14 items with four 

response levels that range from “not bothered” to “bothered a lot”. It provides a global score 

based on the mean values of the responses. The score ranges from 0 (worst HRQoL) to 3 

(best HRQoL). HeartQoL has been validated in more than 22 countries. Our study used its 

official English and Chinese translated versions. 

New York Heart Association (NYHA) and Canadian Cardiovascular Society (CCS) 

functional classifications 

The NYHA and CCS classifications are widely used clinical tools that measure cardiac 

functional capacity and the severity of exertional angina, respectively22,23. They classify 

patients into classes I, II, III, and IV based on limitations due to symptoms (shortness of 

breath or angina) at various levels of physical activity. A higher class indicates a worse 

functional capacity. In this study, participants self-evaluated their NYHA and CCS classes 

based on structured definitions of these classification systems. 

Statistical methods 

Sample size 

The sample size required to achieve the desired precision of fixed-effect coefficients of health 

state descriptors in a statistical model estimating utility values using a 20-parameter linear 

random-effects model was determined. Determination of the sample size was performed 

using the methodologies proposed by Gandhi et al.24 for the EQ-5D-5L value set studies. A 

sample size of 400 participants was required to estimate the coefficients with a precision level 

(95% confidence interval) of ±0.05, considering 0.05 as the minimum important difference 

(MID) for EQ-5D-5L utility values. The other parameters required for the sample size 

calculation⸺a residual variance of 0.4 and a design effect of 0.5⸺were estimated from the 
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EQ-5D-5L value set study in the general Singaporean population24. We anticipated that data 

from 20% of the participants might not be usable (e.g., dropouts or nontraders) and 

accordingly planned a sample size of 500 participants. 

Exclusion of logically inconsistent data 

The study data of participants who met one or more of the following criteria were excluded 

from the analysis: (i) valued the all-worst state (“55555”) same as full health; (ii) used less 

than 10% of the utility scale; and (iii) gave the same values to all ten health states. These 

response patterns indicate that participants were either inattentive or insensitive to health 

states. These criteria were suggested by Dewitt et al.25, who studied these and several other 

criteria as well as their impact on utility values. 

Model development 

Various model specifications were explored, and the utility values of the resulting models 

were examined; only the most appropriate models are reported here. In all the models, we 

defined the dependent variable as disutility (i.e., 1 – utility value) for a given health state. 

Two core models (a 20-parameter linear random-effect model and an 8-parameter cross-

attribute level effects (CALE) model (a nonlinear random-effect constrained model)) and 

their variants were extensively tested for performance. Because each participant valued ten 

health states, participant-specific random-effect intercepts were considered in all the models 

to account for intraparticipant correlation. We used the regular dummy coding scheme for 

health state descriptors in the model illustrations and main tables presented in this article 

because this scheme is widely used. Model results using the backward difference coding 

scheme are provided in Appendix 1. 

The linear model can be presented as follows: 
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Linear model (Model 1): 𝑦 = 𝛼 + 𝛽 𝑋 + 𝑣 + 𝑒 

= 𝛼 + 𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 +𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 +𝛽 𝑋 + 𝛽 𝑋 +𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 + 𝑣 +e 

where y represents disutility; α, intercept; Xdl, fixed-effect indicator variable for the presence 

of problems on dimension d at level l; βdl, coefficient for the estimated disutility of having 

problems on dimension d at level l; v, participant-specific random-effect intercept; and e, a 

heteroscedastic error. 

As a preliminary analysis showed nonmonotonicity in coefficients of a few dimensions, each 

of the βdl coefficients was constrained to have a value greater than or equal to its previous 

level coefficient βdl-1. The model also left-censored the utility values at -1 because 

participants could hypothetically value a health state lower than -1. Right censoring at 1 was 

not considered, as 1 is the theoretical upper bound for the utility value of full health. 

Furthermore, because the observed variance of the utility values increased with increasing 

severity of the health states, heteroscedasticity of the error term was modeled using the log 

link of a linear regression model with an intercept and 20 indicator variables Xdl. 

An alternative to the linear model is a nonlinear CALE model. It includes a single coefficient 

per dimension (βMO, βSC, βUA, βPD, and βAD) representing the disutility of having problems at 

level 5 and one coefficient for each of levels 2, 3, and 4 (L2, L3, L4), all of which are 

multiplied by the respective dimensional coefficients. Here, Ll (l = 2, 3, 4) should be 

interpreted as the ratio of disutility at level l to that at level 5 with disutility at level 5 set to 1. 

The model assumes that these ratios are constant across all dimensions. Empirically, it has 

been found that the constraint imposed by the multiplicative CALE model makes it more 
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efficient, less susceptible to overfitting, and reduces the risk of nonmonotonicity compared to 

the linear model.26 

The model can be presented as follows: 

CALE model (Model 2): 𝑦 = 𝛼 + 𝛽 𝑋 𝐿 + 𝑣 + 𝑒 

= 𝛼 + (𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 )𝐿+ (𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 )𝐿+ (𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 )𝐿+ (𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 ) + 𝑣 + 𝑒 
where α, Xdl, ν, and e are the same as defined for the linear model. 

Like the linear model, the CALE model also left-censored the utility values at -1, and the 

heteroscedasticity of the error term was modeled using a linear regression model with the log 

link. Due to the nonlinear nature of the CALE model, standard errors were calculated using 

bootstrap sampling (1000 participant-level samples). 

Each core model was also tested with an additional term N45 as a fixed effect. The N45 term 

was defined as an indicator variable for health states having at least one dimension at either 

level 4 or 5. It is similar to the N3 term used with the EQ-5D-3L value set in the United 

Kingdom to represent additional disutility due to severe health conditions in any of the 

dimensions27. 

Model selection 

The predictive accuracy of the models was evaluated in terms of mean absolute error (MAE), 

root mean square error (RMSE), and Lin’s concordance coefficient between the predicted and 
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mean values of the observed values of the health state. Lower MAE and RMSE and higher 

concordance coefficient indicate better predictive accuracy. The out-of-sample fit was 

evaluated in cross-validation samples. Cross-validation was performed by fitting the models 

to a subset of the dataset prepared by excluding one of the 10 blocks of health states and 

assessing the predictive accuracy in the excluded block26. In-sample fit was assessed using 

the full dataset. If multiple models performed similarly in predictive accuracy, the model 

using the least number of fixed-effect parameters and achieving the lowest Bayesian 

information criterion (BIC) was considered the preferred model (i.e., model parsimony). 

Rescaling 

The predicted utility value for full health (“11111”) may not be 1 because of the nonzero 

intercept in the preferred model. We rescaled all the predicted utility values by dividing them 

with 1 – intercept to obtain a value of 1 for full health and proportionally adjusted values of 

the other health states28. 

All models were fitted using the xreg package29 for R software30. 

Model validation 

The preferred model was assessed for the known-groups discriminative ability of its predicted 

utility values (rescaled). Mean utility values based on the participants’ own EQ-5D-5L health 

states were estimated for each of the NYHA and CCS functional classes as well as for the EQ 

VAS and HeartQoL global score classes. EQ VAS and HeartQoL global scores were divided 

into three classes using their first (Q1) and third (Q3) quartiles (class I: ≥Q3, class II: Q1-Q3, 

class III: ≤Q1). Lower class represents better health or functional capacity. Mean utility 

values were expected to decrease as class increased. Mean utility values across the classes 
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and differences between two individual classes were compared using analysis of variance 

(ANOVA) and the two-sample t-test, respectively. 

Results 

A total of 1166 potential participants were approached for this study. Of these, 64% were 

willing to participate, and 78% of those met the eligibility criteria. Of the recruited 

participants (N = 582), 43 were excluded from analysis: three were recruited twice during the 

quality control review, three did not complete the interview, and 37 provided logically 

inconsistent values (Supplemental Figure 1). Therefore, 539 participants were included in the 

analysis. Table 1 shows the sociodemographic and health characteristics of the participants 

who were included in the analysis. The study recruited older, more men, Malay and Indian 

participants than are found in the Singapore population14. There were no systematic 

differences in baseline characteristics between participants who were included in the analysis 

and those who were excluded (Supplemental Table 1). 

Table 2 compares the performances of all four models using both the full and cross-validation 

datasets. Among linear models, the model with the N45 term had lower MAE and RMSE and 

higher concordance coefficients with both the full and cross-validation datasets compared to 

the model without the N45 term. The coefficient of the N45 term was also statistically 

significant (p-value <0.001) in the model (Supplemental Table 2). As in the linear models, 

inclusion of the N45 term improved the performance of the CALE model, and the coefficient 

for the N45 term was statistically significant (p-value <0.001) (Supplemental Table 2). 

However, the predictive accuracy (MAE, RMSE, concordance coefficient) of the CALE 

model was lower than that of the linear model with the N45 term. Hence, the linear model 

with the N45 term (Model 1 + N45 term) was selected as the preferred model for developing 

the value set. Figure 1 shows the predicted utility values obtained using the linear and CALE 
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models with the N45 term as a function of the directly valued health states of the participants. 

Supplemental Table 3 summarizes results of all models using the backward difference coding 

scheme. 

Table 3 shows coefficients for the preferred model. The largest and smallest utility 

decrements at level 5 were for mobility and anxiety/depression dimensions, respectively. This 

was also the case for the CALE model with the N45 term, indicating that mobility and 

anxiety/depression dimensions have the highest and lowest impacts, respectively, on disutility 

values (Supplemental Table 2). 

Utility values predicted by the preferred model were rescaled by dividing each value by 1 – 

intercept = 1 – 0.135 = 0.865 for the value set. The value set has values of 1, 0.982 and -

0.928 for full health, second-best (‘11112’) and the worst state (‘55555’), respectively. Figure 

2 shows the originally predicted and rescaled utility values for the preferred model. An 

example that demonstrates how to use the coefficients of the preferred model to calculate the 

utility values can be found in Supplemental Table 4. The utility values for all 3125 health 

states are available in Appendix 2. 

The mean utility values based on the preferred model using the participants’ own health states 

ranked in the expected high-to-low direction for participants with increasing NYHA and CCS 

classes I to III/IV (p-value <0.001; Table 4). Differences in mean utility value between two 

consecutive classes were also statistically significant (p-value <0.01), with the majority of 

mean differences ≥0.05 (MID). Similar results were observed for EQ VAS and HeartQoL 

classes (Table 4). 

Discussion 
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A value set for EQ-5D-5L using heart disease patient preferences was developed according to 

a standardized international protocol. This is the first EQ-5D-5L value set developed using 

patient preferences exclusively. For patients with heart disease, it can inform patient-centric 

economic evaluations and clinical decision-making, and be used to evaluate differences in the 

outcomes of such decisions derived using societal versus patient preferences. 

Mobility is the most relevant EQ-5D dimension, and anxiety/depression the least, in terms of 

impact on utility value decrement according to preferences of heart disease patients. This 

differs from the preferences of the Singapore general population, which considers usual 

activities the most relevant dimension of the EQ-5D-3L value set, and pain/discomfort the 

least31. Such differences are expected. Mobility is essential to life in Singapore, where most 

people work past official retirement and commute on public transport. Heart disease often 

significantly limits physical activity such as walking, which explains patients’ preference for 

avoiding this dimension. That anxiety/depression is the least important dimension might be 

related to mental adaptation to disease, since most heart diseases are chronic. Previous studies 

have also found differences between the preferences of heart disease patients versus the 

general population9-11. Our results provide granularity regarding the dimensions in which the 

preferences differ. 

We chose a 20-parameter linear model with the N45 term as the final model for developing a 

value set. We observed logical inconsistencies in the initial version of the model and had to 

constrain coefficients to achieve monotonicity. Such logical inconsistencies have also been 

observed in several countries’ value sets for the EQ-5D-5L26,32-34. This could be due to the 

complexity of the model, which might predispose patients to overfitting to random variance. 

Nevertheless, the constrained linear model still provided better predictive accuracy than the 
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constrained 8-parameter CALE models, possibly because the assumption of a constant ratio 

of level parameters across the dimensions was not fully satisfied in our study data. 

There were demographic differences between the study and general populations. The former 

included more elderly individuals, men, individuals with lower educational levels and had a 

higher representation of Malay and Indian ethnicities than the latter. These characteristics are 

known risk factors for heart disease in Singapore35. Hence, a higher representation of these 

characteristics in the patient sample is not unexpected and supports the sample’s face validity. 

There have been attempts to develop disease-specific value sets for health dimensions 

affected by specific diseases or their treatments. For example, a cancer-specific QLU-C10D 

descriptive system has been developed from the EORTC C30 HRQoL measure36, and its 

value sets have been or are being developed in several countries37,38. We chose the EQ-5D-5L 

for our study for two reasons: (i) to our knowledge, no heart disease-specific descriptive 

system that can be used to develop a preference-based value set is currently available, and (ii) 

the EQ-5D-5L and its former version the EQ-5D-3L have demonstrated acceptable 

measurement properties in heart disease patients and are widely used for economic evaluation 

using societal preferences. A value set based on patient preferences for the same descriptive 

system can facilitate comparisons of economic evaluations based on patients’ and societal 

perspectives. 

Our study has some limitations. As it would have been difficult to conduct cognitively 

demanding valuation tasks among hospitalized patients, we could only approach patients in 

outpatient clinics. However, we enriched the sample by recruiting those with prior 

hospitalizations. Recruiting participants with heart disease among the general population 

would be ideal but is logistically challenging. We believed that recruiting participants from 

hospital outpatient clinics would help us sample the target population (patients with 
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documented clinical diagnoses based on hospital records) without screening a large number 

of “generally healthy” candidates. Notably, the profiles of the study patients are comparable 

to heart disease patients recruited from the Singapore general population in Gandhi et al.10, 

which suggests our study findings can be generalizable. The requirement for basic literacy to 

complete the valuation tasks could have selectively excluded some participants, especially the 

elderly, who would otherwise have qualified but is common in most valuation studies. We 

reported preferences of patients in Singapore but patient preferences can vary among 

countries, possibly due to differences in culture and healthcare systems. The appropriateness 

of this value set should therefore be evaluated before adoption in other countries. 

Conclusions 

We have developed a time trade-off-based EQ-5D-5L value set using the preferences of 

patients with heart disease that enables patient-centric health technology assessments and 

clinical decision-making for treatment selection. 
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Table 1: Patient characteristics 

Characteristics 
Our study 
N = 539 

General 
population* 

Age (years), Mean (SD) 57.8 (11.3)  
     21 – 40, n (%) 39 (7.2) 40.9% 
     41 – 60, n (%) 258 (47.9) 42.5% 
           >60, n (%) 242 (44.9) 16.6% 
Men, n (%) 386 (71.6) 49.1% 
Ethnicity, n (%)   
     Chinese 309 (57.3) 75.8% 
     Malay 114 (21.2) 12.1% 
     Indian 87 (16.1) 8.8% 
     Others 29 (5.4) 3.2% 
Educational level, n (%)   
     Primary (6 years) or les 98 (18.2) 8.2% 
     Secondary (up to 11 years) 250 (46.4) 34.2% 
     Diploma, university or higher 191 (35.4) 56.6% 
Married, n (%) 397 (73.7) 65.8% 
Monthly household income <S$4000, n (%) 273 (50.7) 37.5% 
Employed, n (%) 304 (56.4)  
Heart disease diagnosis†, n (%)   
    Ischemic heart disease 425 (78.9)  
    Heart rhythm disorder 156 (28.9)  
    Heart failure 147 (27.3)  
    Valvular heart disease 94 (17.4)  
    Other heart problems 31 (5.8)  
Number of comorbidities, n (%)   
     0 60 (11.1)  
     1 – 2 211 (39.2)  
     3 - 4 223 (41.4)  
     >4 45 (8.4)  
NYHA functional classification   
     I 249 (46.2)  
     II 239 (44.4)  
     III-IV 51 (9.5)  
CCS functional classification for angina   
     I 423 (78.5)  
     II 98 (18.2)  
     III-IV 18 (3.3)  
EQ VAS, Mean (SD) 77.2 (15.0)  
HeartQoL global score, Mean (SD) 2.35 (0.55)  

NYHA, New York Heart Association; CCS, Canadian Cardiovascular Society; EQ VAS, EQ 

visual analog scale; SD, Standard deviation. 

* General population o20 – 79 years of age based on Singapore census 2010.14 
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† A patient may have multiple heart disease diagnoses; hence, he/she may be counted under 

more than one diagnosis. 
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Table 2: Comparison of model performance 

 

Linear models CALE models 
Model 1 Model 1 + N45 

(Preferred model) 
Model 2 Model 2 + N45 

Mean absolute error     
     Full dataset 0.089 0.076 0.097 0.087 
     Cross-validation dataset 0.103 0.087 0.105 0.093 
Root mean square error     
     Full dataset 0.109 0.097 0.120 0.110 
     Cross-validation dataset 0.128 0.110 0.131 0.118 
Concordance coefficient     
     Full dataset 0.974 0.979 0.968 0.973 
     Cross-validation dataset 0.964 0.973 0.962 0.969 
Number of fixed-effect parameters 21 22 9 10 
BIC based on the full dataset  8538.1 8481.7 8478.6 8430.7 

Model 1, 20-parameter linear random-effect model. Model 2, 8-parameter cross-attribute level 

effects model. N45, indicator variable for states with at least one dimension at a severity level of 

either 4 or 5. See methods section for details. 

CALE, cross-attribute level effects; BIC, Bayesian information criterion. 
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Table 3: Coefficients (SEs) of the preferred model (Model 1 + N45) based on the full 

dataset 

 Coefficient SE 
Intercept 0.135 0.030 
MO2 0.052 0.023 
MO3 0.114 0.024 
MO4 0.230 0.027 
MO5 0.354 0.026 
SC2 0.106 0.023 
SC3 0.213 0.026 
SC4 0.285 0.026 
SC5 0.342 0.023 
UA2 0.062 0.024 
UA3 0.139 0.024 
UA4 0.201 0.027 
UA5 0.221 0.026 
PD2 0.048 0.021 
PD3 0.048 0.027 
PD4 0.276 0.025 
PD5 0.296 0.028 
AD2 0.016 0.024 
AD3 0.114 0.026 
AD4 0.142 0.025 
AD5 0.210 0.023 
N45 0.246 0.031 

Model 1, 20-parameter linear random-effect model (see methods section for details). MO2 to 

MO5, SC2 to SC5, UA2 to UA5, PD2 to PD5, and AD2 to AD5 represent indicator variables for 

severity levels 2 to 5 with reference to level 1 for mobility, self-care, usual activities, 

pain/discomfort, and anxiety/depression dimensions, respectively. N45 represents an indicator 

variable for health states with at least one dimension at level 4 or 5. SE, Standard error.
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Table 4: Known-group validity of rescaled utility values derived from the preferred model (Model 1 + N45) 

 
NYHA CCS EQ VAS HeartQoL Global 

N Mean (SD) N Mean (SD) N Mean (SD) N Mean (SD) 
         
Class I 249 0.961 (0.086) 423 0.948 (0.103) 152 0.972 (0.052) 154 0.985 (0.034) 
Class II 239 0.922 (0.121) 98 0.845 (0.239) 187 0.928 (0.159) 186 0.951 (0.073) 
Class III/IV 51 0.676 (0.372) 18 0.582 (0.401) 200 0.865 (0.219) 199 0.832 (0.247) 
ANOVA p-value  <0.001  <0.001  <0.001  <0.001 
  Mean (95% CI)  Mean (95% CI)  Mean (95% CI)  Mean (95% CI) 

Diff (I – II)  0.039 ** 
(0.020 – 0.058) 

 0.102 ** 
(0.072 – 0.133) 

 0.043 * 
(0.017 – 0.070) 

 0.034 ** 
(0.022 – 0.047) 

Diff (II – III/IV)  0.246 ** 
(0.188 – 0.304) 

 0.264 ** 
(0.127 – 0.400) 

 0.063 * 
(0.024 – 0.101) 

 0.119 ** 
(0.082 – 0.156) 

Diff (I – III/IV)  0.285 ** 
(0.233 – 0.337) 

 0.366 ** 
(0.305 – 0.427) 

 0.106 ** 
(0.071 – 0.142) 

 0.153 ** 
(0.114 – 0.193) 

NYHA, New York Heart Association functional classification; CCS, Canadian Cardiovascular Society functional classification 

for angina; EQ VAS, EQ Visual analog scale; Diff, Difference; SD, Standard deviation; CI, Confidence interval; ANOVA, 

Analysis of variance. 

Classes I, II and III/IV for EQ-VAS and HeartQoL Global represent ≥ the third quartile (Q3), first quartile (Q1) to third quartile 

(Q3), and ≤ first quartile (Q1) of their values, respectively. 

Two-sample t-test p-value: * < 0.01, ** <0.001. 
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Figure 1: Observed and predicted utility values for directly valued health states 

 

Utility values are sorted based on observed mean values. 
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Figure 2: Predicted utility values using the preferred model (Model 1 + N45) for all possible 

health states 

 

Utility values are sorted based on predicted values. 
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Appendix 1 

Supplemental Table 1: Comparison of the characteristics of patients included in and 

excluded from the analysis 

Characteristics 
Included patients 

N = 539 
Excluded patients 

N = 37* p-value 
Age (years), Mean (SD) 57.8 (11.3) 56.8 (14.1) 0.636 
     21 – 40, n (%) 39 (7.2) 6 (16.2) 0.155 
     41 – 60, n (%) 258 (47.9) 15 (40.5)  
           >60, n (%) 242 (44.9) 16 (43.2)  
Men, n (%) 386 (71.6) 30 (81.1) 0.258 
Ethnicity, n (%)   0.231 
     Chinese 309 (57.3) 19 (51.4)  
     Malay 114 (21.2) 5 (13.5)  
     Indian 87 (16.1) 10 (27.0)  
     Others 29 (5.4) 3 (8.1)  
Educational level, n (%)   0.242 
     Primary (6 years) or les 98 (18.2) 3 (8.1)  
     Secondary (up to 11 years) 250 (46.4) 21 (56.8)  
     Diploma, university or higher 191 (35.4) 13 (35.1)  
Married, n (%) 397 (73.7) 26 (70.3) 0.701 
Monthly household income <S$4000, n (%) 273 (50.7) 19 (51.4) >0.999 
Employed, n (%) 304 (56.4) 20 (54.1) 0.864 
Heart disease diagnosis†, n (%)    
    Ischemic heart disease 425 (78.9) 31 (83.8) 0.675 
    Heart failure 147 (27.3) 10 (27.0) >0.999 
    Heart rhythm disorder 156 (28.9) 11 (29.7) >0.999 
    Valvular heart disease 94 (17.4) 3 (8.1) 0.176 
    Other heart problems 31 (5.8) 2 (5.4) >0.999 
Number of comorbidities, n (%)   0.760 
     0 60 (11.1) 2 (5.4)  
     1 - 2 211 (39.2) 17 (46.0)  
     3 - 4 223 (41.4) 15 (40.5)  
     >4 45 (8.4) 3 (8.1)  
NYHA functional classification   0.878 
     I 249 (46.2) 19 (51.4)  
     II 239 (44.4) 15 (40.5)  
     III-IV 51 (9.5) 3 (8.1)  
CCS functional classification for angina   >0.999 
     I 423 (78.5) 30 (81.1)  
     II 98 (18.2) 6 (16.2)  
     III-IV 18 (3.3) 1 (2.7)  
EQ VAS, Mean (SD) 77.2 (15.0) 77.6 (13.0) 0.873 



Page 33 of 40 
 

HeartQoL Global score, Mean (SD) 2.35 (0.55) 2.34 (0.59) 0.952 

* Complete data on patient characteristics for 6 patients who did not complete the interview or 

did not meet eligibility criteria were not available. These patients were not included in the 

“Excluded patients” column. 

† A patient may have multiple heart diagnoses and hence may be counted under more than 

diagnosis. 

NYHA, New York Heart Association; CCS, Canadian Cardiovascular Society; EQ VAS, EQ 

Visual analog scale; SD, Standard deviation. 
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Supplemental Table 2: Summary of models using regular dummies for health state 

descriptors 

 Linear models CALE models 

 
Model 1 Model 1 + N45 Model 2 Model 2 + N45 

Coefficient (SE) Coefficient (SE) Coefficient (SE) Coefficient (SE) 
  Nonlinear parameters  
Intercept - - 0.128 (0.017) 0.135 (0.017) 
MO - - 0.403 (0.016) 0.356 (0.016) 
SC - - 0.368 (0.016) 0.316 (0.017) 
UA - - 0.310 (0.016) 0.237 (0.018) 
PD - - 0.363 (0.015) 0.331 (0.015) 
AD - - 0.270 (0.015) 0.207 (0.017) 
L1 - - 0 0 
L2 - - 0.303 (0.023) 0.220 (0.029) 
L3 - - 0.524 (0.019) 0.433 (0.026) 
L4 - - 0.885 (0.017) 0.834 (0.020) 
L5 - - 1 1 
N45 - - - 0.225 (0.026) 
  Linear parameters  
Intercept 0.123 (0.030) 0.135 (0.030) 0.128 (0.017) 0.135 (0.017) 
MO1 0 0 0 0 
MO2 0.112 (0.022) 0.052 (0.023) 0.122 (0.011) 0.078 (0.011) 
MO3 0.189 (0.024) 0.114 (0.024) 0.211 (0.010) 0.154 (0.011) 
MO4 0.315 (0.027) 0.230 (0.027) 0.356 (0.013) 0.297 (0.013) 
MO5 0.412 (0.026) 0.354 (0.026) 0.403 (0.007) 0.356 (0.008) 
SC1 0 0 0 0 
SC2 0.155 (0.022) 0.106 (0.023) 0.112 (0.011) 0.069 (0.012) 
SC3 0.248 (0.026) 0.213 (0.026) 0.193 (0.009) 0.137 (0.010) 
SC4 0.337 (0.026) 0.285 (0.026) 0.326 (0.011) 0.264 (0.011) 
SC5 0.389 (0.023) 0.342 (0.023) 0.368 (0.007) 0.316 (0.007) 
UA1 0 0 0 0 
UA2 0.117 (0.023) 0.062 (0.024) 0.094 (0.010) 0.052 (0.010) 
UA3 0.206 (0.024) 0.139 (0.024) 0.162 (0.007) 0.102 (0.007) 
UA4 0.285 (0.027) 0.201 (0.027) 0.274 (0.009) 0.197 (0.009) 
UA5 0.285 (0.026) 0.221 (0.026) 0.310 (0.006) 0.237 (0.005) 
PD1 0 0 0 0 
PD2 0.094 (0.021) 0.048 (0.021) 0.110 (0.009) 0.073 (0.011) 
PD3 0.101 (0.028) 0.048 (0.027) 0.190 (0.010) 0.143 (0.010) 
PD4 0.316 (0.025) 0.276 (0.025) 0.322 (0.011) 0.276 (0.012) 
PD5 0.356 (0.028) 0.296 (0.028) 0.363 (0.006) 0.331 (0.007) 
AD1 0 0 0 0 
AD2 0.046 (0.024) 0.016 (0.024) 0.082 (0.007) 0.045 (0.008) 
AD3 0.164 (0.026) 0.114 (0.026) 0.141 (0.008) 0.090 (0.008) 
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AD4 0.229 (0.025) 0.142 (0.025) 0.239 (0.008) 0.173 (0.008) 
AD5 0.268 (0.023) 0.210 (0.023) 0.270 (0.005) 0.207 (0.005) 
N45 - 0.246 (0.031) - 0.225 (0.026) 

Model 1, 20-parameter linear random-effect model (see methods section for details). MO1 to 

MO5, SC1 to SC5, UA1 to UA5, PD1 to PD5, and AD1 to AD5 represent indicator variables for 

severity levels 1 to 5 for the mobility, self-care, usual activities, pain/discomfort, and 

anxiety/depression dimensions, respectively. 

Model 2, 8-parameter cross-attribute level effects model (see methods section for details). MO, 

SC, UA, PD, and AD represent indicator variables for the mobility, self-care, usual activities, 

pain/discomfort, and anxiety/depression dimensions, respectively. L1 to L5 represent indicator 

variables for severity levels 1 to 5, respectively. 

N45 represents an indicator variable for health states with at least one dimension at level 4 or 5. 

CALE, cross-attribute level effects model; SE, standard error. SEs for cross-attribute level 

effects models were based on 1000 bootstrap samples (participant-level sampling). 
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Supplemental Table 3: Summary of models using backward difference dummies for health 

state descriptors 

 Linear models CALE models 

 
Model 1 Model 1 + N45 Model 2 Model 2 + N45 

Coefficient (SE) Coefficient (SE) Coefficient (SE) Coefficient (SE) 
Intercept 0.123 (0.030) 0.135 (0.030) 0.128 (0.017) 0.135 (0.017) 
MO1 0 0 0 0 
MO2 – MO1 0.112 (0.022) 0.052 (0.023) 0.122 (0.011) 0.078 (0.011) 
MO3 – MO2 0.077 (0.024) 0.062 (0.024) 0.089 (0.010) 0.076 (0.011) 
MO4 – MO3 0.126 (0.027) 0.116 (0.027) 0.145 (0.013) 0.143 (0.013) 
MO5 – MO4 0.097 (0.026) 0.124 (0.026) 0.046 (0.007) 0.059 (0.008) 
SC1 0 0 0 0 
SC2 – SC1 0.155 (0.022) 0.106 (0.023) 0.112 (0.011) 0.069 (0.012) 
SC3 – SC2 0.094 (0.026) 0.106 (0.026) 0.081 (0.009) 0.068 (0.010) 
SC4 – SC3 0.088 (0.026) 0.072 (0.026) 0.133 (0.011) 0.128 (0.011) 
SC5 – SC4 0.052 (0.023) 0.057 (0.023) 0.042 (0.007) 0.053 (0.007) 
UA1 0 0 0 0 
UA2 – UA1 0.117 (0.023) 0.062 (0.024) 0.094 (0.010) 0.052 (0.010) 
UA3 – UA2 0.089 (0.024) 0.077 (0.024) 0.068 (0.007) 0.051 (0.007) 
UA4 – UA3 0.079 (0.027) 0.062 (0.027) 0.112 (0.009) 0.096 (0.009) 
UA5 – UA4 0.000 (0.026) 0.020 (0.026) 0.036 (0.006) 0.040 (0.005) 
PD1 0 0 0 0 
PD2 – PD1 0.094 (0.021) 0.048 (0.021) 0.110 (0.009) 0.073 (0.011) 
PD3 – PD2 0.007 (0.028) 0.000 (0.027) 0.080 (0.010) 0.071 (0.010) 
PD4 – PD3 0.216 (0.025) 0.228 (0.025) 0.131 (0.011) 0.134 (0.012) 
PD5 – PD4 0.040 (0.028) 0.019 (0.028) 0.042 (0.006) 0.055 (0.007) 
AD1 0 0 0 0 
AD2 – AD1 0.046 (0.024) 0.016 (0.024) 0.082 (0.007) 0.045 (0.008) 
AD3 – AD2 0.118 (0.026) 0.098 (0.026) 0.060 (0.008) 0.044 (0.008) 
AD4 – AD3 0.065 (0.025) 0.029 (0.025) 0.097 (0.008) 0.083 (0.008) 
AD5 – AD4 0.039 (0.023) 0.068 (0.023) 0.031 (0.005) 0.035 (0.005) 
N45 - 0.246 (0.031) - 0.225 (0.026) 

Model 1, 20-parameter linear random-effect model (see methods section for details). MO1 to 

MO5, SC1 to SC5, UA1 to UA5, PD1 to PD5, and AD1 to AD5 represent indicator variables for 

severity levels 1 to 5 for the mobility, self-care, usual activities, pain/discomfort, and 

anxiety/depression dimensions, respectively. 
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Model 2, 8-parameter cross-attribute level effects model (see methods section for details). MO, 

SC, UA, PD, and AD represent indicator variables for the mobility, self-care, usual activities, 

pain/discomfort, and anxiety/depression dimensions, respectively. L1 to L5 represent indicator 

variables for severity levels 1 to 5, respectively. 

N45 represents an indicator variable for health states with at least one dimension at level 4 or 5. 

CALE, cross-attribute level effects model; SE, standard error. SEs for cross-attribute level 

effects models were based on 1000 bootstrap samples (participant-level sampling). 
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Supplemental Table 4: Illustration showing use of the estimated coefficients from the 

preferred model (Model 1 + N45) to calculate utility values for EQ-5D-5L health states 

 
Coefficient 

Health state 
‘12221’ 

Health state 
‘24315’ 

Intercept 0.135 0.135 0.135 
Mobility level 1 (MO1) 0 0  
Mobility level 2 (MO2) 0.052  0.052 
Mobility level 3 (MO3) 0.114   
Mobility level 4 (MO4) 0.230   
Mobility level 5 (MO5) 0.354   
Self-care level 1 (SC1) 0   
Self-care level 2 (SC2) 0.106 0.106  
Self-care level 3 (SC3) 0.213   
Self-care level 4 (SC4) 0.285  0.285 
Self-care level 5 (SC5) 0.342   
Usual activities level 1 (UA1) 0   
Usual activities level 2 (UA2) 0.062 0.062  
Usual activities level 3 (UA3) 0.139  0.139 
Usual activities level 4 (UA4) 0.201   
Usual activities level 5 (UA5) 0.221   
Pain/discomfort level 1 (PD1) 0  0 
Pain/discomfort level 2 (PD2) 0.048 0.048  
Pain/discomfort level 3 (PD3) 0.048   
Pain/discomfort level 4 (PD4) 0.276   
Pain/discomfort level 5 (PD5) 0.296   
Anxiety/depression level 1 (AD1) 0 0  
Anxiety/depression level 2 (AD2) 0.016   
Anxiety/depression level 3 (AD3) 0.114   
Anxiety/depression level 4 (AD4) 0.142   
Anxiety/depression level 5 (AD5) 0.210  0.210 
Any dimension at level 4 or 5 (N45) 0.246  0.246 
Sum of coefficients (Disutility)  0.351 1.067 
Utility (1 – Disutility)  0.649 -0.067 
Rescaled utility (Utility/0.865)  0.750 -0.077 
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Supplemental Figure 1: Participant flow chart 

 

 

 

 

Approached for study
(N = 1166)

Screened for study
(N = 746)

Enrolled
(N = 582)

Analyzed
(N = 539)

Excluded (N = 43)
Assigned the same value to all 10 health states (N = 23)
Used less than 10% of the utility scale (N = 8)
Valued the worst health state equal to full health (N = 6)
Prior participation in the same study (N = 3)
Did not complete study (N = 3)     

Not eligible (N = 164)
No prior hospitalization (N = 118)
Cannot read and communicate in English or Chinese (N = 

46) 

Refused to participate (N = 420)
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Appendix 2 

Excel file listing the rescaled utility values of all 3125 health states. 

 

 

 


