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Abstract— We compare a state-of-the-art deep image re-
trieval and a deep place recognition method for place recog-
nition using LiDAR data. Place recognition aims to detect
previously visited locations and thus provides an important tool
for navigation, mapping, and localisation. Experimental com-
parisons are conducted using challenging outdoor and indoor
datasets, Oxford Radar RobotCar and COLD, in the ”long-
term” setting where the test conditions differ substantially
from the training and gallery data. Based on our results the
image retrieval methods using LiDAR depth images can achieve
accurate localization (the single best match recall 80%) within
5.00 m in urban outdoors. In office indoors the comparable
accuracy is 50 cm but is more sensitive to changes in the
environment.

I. INTRODUCTION

An autonomous robot that operates in an environment
should be able to recognize different places when it revisits
them after some time (Figure 1, top). This is important to
support reliable navigation, mapping, and localisation. Ro-
bust place recognition is therefore a crucial capability for an
autonomous robot. Due to its importance place recognition is
an important research topic in robotics and computer vision
community for which Lowry et al. [1] and Zhang et al. [2]
survey the past works.

The problem of visual place recognition gets more chal-
lenging if the visual appearance of places change over
time. This usually happens due to changes in the lighting
conditions, shadows, different weather conditions, or even
different seasons. Also, people moving around and items be-
ing moved around change the environment. These factors are
particularly addressed in long-term visual place recognition.
Engineered features can be adjusted to be invariant [3], [4],
but the recent deep learning methods are prone to overfitting
and therefore their performance depends on suitability of
the selected training data [5], [6]. These works lack in one
or more terms: they focus either indoor or outdoor place
recognition, limited variability, unrealistic navigation data or
focus on RGB images only.

In this paper, we study deep place recognition using
LiDAR sensor. Compared to typical RGB camera, LiDAR
is less rich in details but more robust to various sources of
imaging distortions such as illumination change and weather
conditions. We perform extensive experiments on two largest
indoor and outdoor datasets that include LiDAR measure-
ments and are suitable for robot navigation: Oxford Radar
RobotCar [7][8] (3D LiDAR) and COLD [9] (2D LiDAR).
Our findings are that LiDAR is competitive modality to RGB
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Fig. 1. Examples of successful (top) and failed place recognition (bottom)
in the RobotCar dataset. In successful recognition the best five matches (red
points) are all near the query place (green point) and within a small feature
distance while in the failed case the feature distances are larger and matches
are found in random spatial locations.

and especially the range (depth map) measurements are ro-
bust to long-term changes. We also show that the state-of-the-
art image retrieval method by Radenovic et al. [10] performs
well in place recognition even without data specific fine-
tuning and is not sensitive to backbone network selection.
We publish all code and data to facilitate fair comparisons
and future works on place recognition for robot navigation.

Related work – Surveys for RGB-based methods can be
found from Lowry et al. [1] (engineered features) and



Zhang et al. [2] (deep learning). Visual localization com-
bines place recognition and refined localization (inc. 3D
pose) using RGB images. Hierarchical Localization using
SuperPoint and SuperGlue [11], [12] is the top performing
system for visual localization in the recent benchmark by
Pion et al. [13].

A number of methods have been proposed for point
cloud and LiDAR based place recognition. For example,
PointNetVLAD [14] uses global features of point cloud data
for place recognition. Steder et al. [15] use LiDAR range
images. Guo et al. [16] combine the both LiDAR range
(depth) and intensity values and use a probabilistic voting
scheme. A network architecture utilizing the combination of
RGB camera and LiDAR point clouds for place recognition
was introduced by Xie et al. [17]. A place recognition
system featuring adversarial training and octree mapping
was introduced by Yin et al. [18]. Kim and Kim [19]
introduced scan contexts, a type of spatial descriptor, to
improve results with point cloud place recognition. Our work
focus on LiDAR only place recognition to analyze whether
LiDAR depth or intensity images work well in long-term
place recognition.

Several datasets suitable for place recognition are
publicly available: MulRan [20], The Newer College
Dataset [21], COLD [9], NCLR [22], Mapillary Street-Level
Sequences [23], and Oxford Radar RobotCar [7]. For our
experiments we selected COLD and Oxford Radar RobotCar,
as both represent realistic navigation sequences, include
LiDAR, and are large long-term datasets.

II. METHODS

The two methods experimented in our work are NetVLAD
by Arandjelovic et al. [24] and CNN retrieval (CNNRetr)
by Radenovic et al. [25]. NetVLAD [24] was selected as it
is used in Hierarchical Localization using SuperPoint and
SuperGlue [11], [12] that won the 2020 Visual Localization
Challenge (https://www.visuallocalization.net/).
On the other hand, the CNNRetr is at the core of the state-of-
the-art image retrieval architecture of Radenovic et al. [10],
[25], [26]. In the following we briefly introduce these meth-
ods and their adaptation to place recognition.

A. Deep place recognition (NetVLAD)

The core idea of NetVLAD [24] is in deep metric learning
where the deep architecture learns to produce a represen-
tation that encodes the informative content of inputs. The
representation is metric in the sense that similarity of inputs,
such as RGB or LiDAR range images, can be measured by
standard distance functions such as Euclidean distance. In
other words, the objective is to learn a function fθ with
its parameters (network weights) defined by θ that maps
images Ii to a high (D-)dimensional feature vector space
fθ : I → RD. The high dimensional representation encodes
images from the same place with a small distance value
dθ(Ii, Ij) = ||fθ(Ii) − fθ(Ij)|| and images from different
places with large distance values.

The main building blocks of NetVLAD are 1) the
NetVLAD layer that implements a differentiable version
of the VLAD encoding of SIFT features [27] to replace
maximum pooling, 2) triplet ranking loss, 3) Principal
Component Analysis (PCA) based dimensionality reduction
and 4) training procedure using Google Street View Time
Machine dataset that provides multiple close-by images of
the same spatial locations captured at different times.

The original VLAD representation is a K×D-dimensional
matrix where K denotes cluster centers (visual words) and
D is the number of feature dimensions. The SIFT detector
provides N descriptors that are VLAD encoded using the
following formula:

V (j, k) =

N∑
i=1

ak(xi)(xi(j)− ck(j)), (1)

where xi(j) and ck(j) are the j-th dimensions of the i-th
descriptor and k-th cluster centers. The ak(xi) means that the
descriptor xi belongs to the k-th visual word. In other words,
V encodes feature distances from the visual words that are
obtained by clustering all features in the training set. This
encoding is more powerful than the original Bag-of-Words
(BoW) encoding [27], but with the price of much larger
feature vectors (V can be converted to a vector). NetVLAD
layer uses a differentiable version of (1)

V (j, k) =

N∑
i=1

ew
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k′xi+bk′
(xi(j)− ck(j)), (2)

where {w}k, {b}k and {c}k are sets of parameters optimized
during training. Eq. 2 is obtained from (1) by applying soft-
assignment instead of the original hard assignments. The
downside of the NetVLAD features is their high dimension-
ality and therefore Arandjelovic et al. [24] propose a PCA-
based dimensionality reduction as a post-processing step.
However, in our experiment we found it unnecessary and
therefore used the full NetVLAD feature vectors which for
512-dim deep features and 64 clusters have 512 × 64 =
32, 768 elements.

The typical formulation of the triplet loss [28] is

max
(
||fθ(IA)− fθ(IP )||2 − ||fθ(IA)− fθ(IN )||2 + α, 0

)
, (3)

where IA is the ”anchor image” (query image from the
training set), IP is a positive example and IN is a random
negative example and α is the margin enforced between the
anchor and negative images. Instead of the triplet loss the
NetVLAD network is optimized using the triplet ranking loss

max
(
min
i
||(fθ(IA)− fθ(I(i)P )||2 − ||fθ(IA)− fθ(IN )||2 + α, 0

)
,

(4)
that can handle multiple positive candidates I(i)P and select
only the distance to the best match. The triplet ranking loss is
needed since the Google Street View Time Machine dataset
contains panoramic images that are converted to multiple
projective images and only the images viewing the same
direction are correct matches. However, since in our case
the images come from a LiDAR that can be considered as a
projective sensor we adopt the standard triplet loss from [28].



Oxford Radar RobotCar dataset sample images (left, back, right, front):

Corresponding LiDAR depth export:

Corresponding LiDAR intensity export:

Corresponding LiDAR raw export:

Fig. 2. Example from the Oxford Radar RobotCar [7]. The dataset is fully outdoors. The Velodyne LiDAR exports (bottom) are colorized, brightened
and cropped for better visualization. The actual LiDAR-exported images fed to the network are 1024 × 41 pix 8-bit greyscale.

B. Deep image retrieval (CNNRetr)

CNN Retrieval, CNNRetr [10][25], is an image retrieval
method. The key components of CNNRetr are a fully convo-
lutional backbone network, generalized-mean pooling layer,
siamese architecture with contrastive loss, and whitening
with dimension reduction. After training, the image retrieval
is done by exhaustively comparing the Euclidean distances
between the resulting feature vectors.

The fully convolutional neural network used in CN-
NRetr [10][25] can be of any convolutional architecture, such
as the popular VGG or ResNet. The 3D tensor output χ of
size W ∗H ∗K from the network is fed into a pooling layer.

CNNRetr [10] employs the usage of generalized-mean
(GeM) pooling,

f = [f1...fk...fK ]>, fk =

(
1

|χk|
∑
x∈χk

xpk

) 1
pk

, (5)

where the input χ is pooled into a vector f . χk is the
set of activations for the feature map k ∈ {1...K}. The
pooling parameter pk can be learned, as the GeM layer is
differentiable.

The GeM-pooled and l2-normalized feature vector is used
for contrastive loss training in a siamese network architec-
ture. Input images are fed as pairs (i, j) with corresponding
labels Y (i, j) ∈ {0, 1}, where 1 means that the images are
matches, and 0 means that the images are not matches. The
contrastive loss,

L(i, j) =

{
1
2‖f(i)− f(j)‖2, Y (i, j) = 1
1
2 (max{0, τ − ‖f(i)− f(j)‖}2, Y (i, j) = 0

,

(6)

decreases the Euclidean distance between matching images
and increases between non-matching images. The parameter
τ is the enforced margin between the non-matching exam-
ples.

After training, feature vector whitening is performed to
improve search precision, and dimension reduction is option-
ally done to improve performance and resource requirements.
CNNRetr learns whitening by employing a structure from
motion (SfM) pipeline to reconstruct a scene to extract
matching points. They use linear discriminant projections,
which involves two phases: whitening and rotation. Here,
the first part, whitening, is calculated as the inverse square
root of the covariance matrix within each matching class,
C
− 1

2

S , where

CS =
∑

Y (i,j)=1

(f(i)− f(j))(f(i)− f(j))> . (7)

The second part, rotation, of the linear discriminant pro-
jection, is the principal component analysis (PCA) of the
covariance matrix of the non-matching pairs in the whitened
space eig(C

− 1
2

S CDC
− 1

2

S ), where CD is basically the same
calculation as CS (Eq. 7) but for non-matches,

CD =
∑

Y (i,j)=0

(f(i)− f(j))(f(i)− f(j))> . (8)

The two linear discriminant projection steps are
combined as the projection via multiplication P =

C
− 1

2

S eig(C
− 1

2

S CDC
− 1

2

S ). To apply the projection, the mean
GeM vector to perform centering, µ, is taken into account
to get the wanted variance. The applied projection finally is



P>(f(i) − µ), which is also l2-normalized to get the fully
whitened feature vectors to be used in the search process.

III. EXPERIMENTS

A. Datasets and settings

The experiments were conducted on the two largest and
publicly available datasets suitable for outdoor and indoor
navigation: Oxford Radar RobotCar [7] (outdoors) and COsy
Localization Database (COLD) [9] (indoors).

Radar RobotCar – The Oxford Radar RobotCar dataset [7]
is an extension of the original RobotCar dataset [8] and
thus follows the original dataset route in Oxford, UK. It
consists of 32 traversals in different traffic, weather, and
lighting conditions in January 2019. The new dataset contains
measurements from three point cloud radars installed on the
top of the car and all provide full 360-degree panoramic
views around it. In the middle is a Navtech FMCW radar
that provides 400 measurements per scan 4 Hz and on its
both sides two 20 Hz Velodyne LiDARs of 41.3◦ vertical
FoV sensors. For simplicity, we used just one of the two
LiDARs, and we randomly selected the left Velodyne LiDAR
for our experiments. Note that the route is always to the same
direction. See Figure 2 for example images. The velocity
of the car is moderate and thus the distance between two
measurements is rarely more than 0.5 m. We selected the
following sequences for our experiments:
• Train: Jan-10-2019-11:46, Cloudy
• Gallery: Jan-10-2019-12:32, Cloudy
• Query 1: Jan-10-2019-14:50, Cloudy
• Query 2: Jan-11-2019-12:26, Sunny
• Query 3: Jan-16-2019-14:15, Rainy

Train and Gallery set images were used to train the two meth-
ods and the Gallery was also used as the place recognition
database (gallery set). Query sets were chosen from different
days with different weather.

COLD – The COsy Localization Database [9] is an
indoor navigation dataset. The data has been gathered in
76 sequences across three different locations in Europe. The
sequences are varied in lighting conditions such as sunny,
cloudy, and night. The sequences also contain dynamic
elements such as people moving and rearranged furniture.
The room types are annotated, and odometry is used for
localization. The sequences are arranged as some being
”standard” or ”extended”. The standard sequences contain
rooms that are found in the sequences from the other
two locations, as well, and the extended sequences contain
location specific room types.

The data is captured with manually driven mobile robots.
The robots are equipped with two Videre Design MDCS2
cameras, one in typical perspective mode and the other
capturing omnidirectional images. SICK 2D laser scanner is
used to capture range information. SICK 2D provides only a
single 360-degree line scan of 361 samples that we convert
to artificial depth image by expanding it vertically (Figure 3).

For our experiments, we employed datasets similar to the
Oxford Radar RobotCar dataset. We had five sequences from

COLD dataset sample RGB image:

The corresponding 360◦ 2D laser scan export:

Fig. 3. Example from the COsy Localization Database (COLD) [9]. The
dataset is fully indoors. The greyscale images below are the expanded SICK
laser scans spanning 360-degree around the robot (white encodes distances
above 8 m and black is 0 m). The open door on the left-hand-side can
be seen as dark gray region, the opposite wall as light gray and the open
doorway as a completely white strip in the middle of the scan.

the same office. The train set sequence was sunny. The
gallery set sequence was cloudy, and the three tested query
set sequences represented all the different light categories:
sunny, cloudy, and night time:
• Train: Saarbrücken, Part B, Sequence 4, Sunny 3
• Gallery: Saarbrücken, Part B, Sequence 4, Cloudy 1
• Query 1: Saarbrücken, Part B, Sequence 4, Sunny 1
• Query 2: Saarbrücken, Part B, Sequence 4, Cloudy 2
• Query 3: Saarbrücken, Part B, Sequence 4, Night 3

a) Performance measure: All experiments were con-
ducted using the top-1 retrieval results, i.e. only the best
matching image was used. Our performance measure is thus
Recall@1 i.e. the number of correctly retrieved locations
divided by the number of all query images [24].

b) Settings: If not otherwise mentioned the default
parameters of CNNRetr and NetVLAD networks from the
original authors were used.

For the both methods we used the triplet loss as that was
found performing well and makes comparison between the
two architectures fair. The positive P and anchor A samples
were selected randomly within the given distance threshold
used in training. A list of positive matches for each image
was generated prior training. The hard negative mining was
conducted according to [24], [29].

B. Results

a) Method comparison: The two methods compared
were CNNRetr [25] and NetVLAD [24] described in Sec-
tion II. In the first experiment, we compared using the
methods without fine-tuning to our datasets. CNNRetr [10]
is used as is, however for NetVLAD we do not perform
the PCA-based dimensional reduction as the results in [25]



TABLE I
COMPARISON OF THE TWO METHODS WITH THEIR DEFAULT SETTINGS (VGG16 BACKBONE AND WITHOUT FINE-TUNING) AND A TRAINED

CNNRETR.

Outdoor dataset - RobotCar [8] Indoor dataset - COLD [9]
Method Rec@1-25m Rec@1-10m Rec@1-5m Rec@1-2m Rec@1-100cm Rec@1-50cm Rec@1-25cm Rec@1-10cm

Query 1 (same day, 2h later) Query 1 (sunny)
NetVLAD [24] (no train) 0.899 0.867 0.728 0.130 0.838 0.779 0.464 0.008
CNNRetr [10] (no train) 0.926 0.901 0.774 0.134 0.783 0.723 0.439 0.004
CNNRetr [10] (trained) 0.986 0.977 0.869 0.155 0.847 0.774 0.462 0.004

Query 2 (next day, same time) Query 2 (cloudy)
NetVLAD [24] (no train) 0.895 0.863 0.762 0.454 0.230 <0.000 <0.000 <0.000
CNNRetr [10] (no train) 0.887 0.856 0.758 0.468 0.100 <0.000 <0.000 <0.000
CNNRetr [10] (trained) 0.993 0.984 0.902 0.544 0.091 <0.000 <0.000 <0.000

Query 3 (after 6 days, 2h later) Query 3 (night)
NetVLAD [24] (no train) 0.527 0.449 0.325 0.049 0.264 0.005 <0.000 <0.000
CNNRetr [10] (no train) 0.678 0.608 0.465 0.060 0.267 0.005 <0.000 <0.000
CNNRetr [10] (trained) 0.918 0.856 0.642 0.089 0.263 0.005 0.001 <0.000

suggest that PCA may degrade the results, which we also
found out to happen in our experiments. The results for the
two dataset without fine-tuning are in Table I.

These results provide the following three findings: 1) there
is no substantial performance difference between CNNRetr
and NetVLAD; 2) the accuracy of LiDAR-based place
recognition is between 2-5 meters with the RobotCar dataset
and 25-50 centimeters with the COLD dataset (top-1 recall
above 70%); 3) LiDAR-based recognition fails for the indoor
dataset query sequences that are substantially different from
the gallery dataset (Query 2 and Query 3). This can be
explained by the fact that the 360-degree line LiDAR of
the COLD dataset does not provide enough information for
place recognition. Since COLD is the only indoor dataset
for long-term place recognition and including LiDAR there
is obvious need for new indoor navigation datasets.

b) Fine-tuning with training data: The best performing
method (CNNRetr [25]) was trained with dataset specific
training data (gallery sequence and one training sequence).
The top-1 recall (Rec@1) values are shown in Table I.
The results clearly demonstrate that dataset specific training
improves the results by 10-20%. However, the training did
not improve the results for Query 2 and 3 images of the
indoor dataset that still failed.

c) Backbone network: The typical image retrieval back-
bone networks are VGG16 and ResNet-50 which were com-
pared during our experiments. The results are shown only
for the Radar RobotCar dataset as the indoor results overall
were poor for Query 2 and 3 sets. The results are shown in
Table II. Clearly, the selection of backbone has only small
impact and thus VGG16 is preferable as it is computationally
lighter.

d) LiDAR intensity vs. range: LiDAR intensity and
depth scan performance are compared in Table III and as
functions of the training epochs in Figure 4. While in Query
1 the LiDAR intensity is slightly better, the depth is clearly
better in Query 2 and 3 where the conditions are more
challenging. The RGB results with the same network are
also added to demonstrate that LiDAR-only accuracy is
comparable to RGB. Interestingly the ”raw” LiDAR data

TABLE II
BACKBONE COMPARISON USING CNNRETR. THE DETECTION

THRESHOLD OF 5.0 M WAS USED IN TRAINING.

Outdoor dataset - RobotCar [8]
Method Rec@1-25m Rec@1-10m Rec@1-5m Rec@1-2m

Query 1 (same day, 2h later)
VGG16 0.976 0.966 0.866 0.154
ResNet-50 0.970 0.957 0.846 0.154

Query 2 (next day, same time)
VGG16 0.987 0.979 0.897 0.573
ResNet-50 0.953 0.941 0.869 0.555

Query 3 (after 6 days, 2h later)
VGG16 0.832 0.777 0.587 0.081
ResNet-50 0.830 0.773 0.601 0.080

provided with RobotCar data is worse than the depth channel.

IV. CONCLUSION

Our experiments provide the following important findings:
i) LiDAR is competitive sensor modality (vs. RGB camera)
for place recognition, ii) LiDAR depth maps are more robust
to long-term changes than LiDAR intensity images, iii) SoTA
deep image retrieval architecture ”CNNRetr” by Raden-
ovic et al. [10] provides place recognition accuracy of 5
meters urban outdoors and 50 centimeters with recall approx.
80% iv) the backbone network selection is not critical, and
v) feature fine-tuning with dataset specific data provides
improvement of 10-20%. Two important future directions
were also pointed out: a) new indoor navigation datasets with
high quality LiDAR are needed and b) complementarity of
LiDAR depth, LiDAR intensity and RGB should be further
investigated.
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