
Alexander Bakhtin

MICROSERVICE API PATTERN DETECTION

using business processes and call graphs

Master of Science Thesis

Faculty of Information Technology and Communication Sciences

Examiners: prof. Davide Taibi

Xiaozhou Li, PhD

November 2022

i

ABSTRACT

Alexander Bakhtin: Microservice API pattern detection
Master of Science Thesis
Tampere University
Master’s Programme in Computing Sciences
November 2022

It is well recognized that design patterns improve system development and maintenance in
many aspects. While we commonly recognize these patterns in monolithic systems, many pat-
terns emerged for cloud computing, specifically microservices. Unfortunately, while various pat-
terns have been proposed, available quality assessment tools often do not recognize many. This
thesis performs a grey literature review to find and catalog available tools to detect microservice
API patterns. It reasons about mechanisms that can be used to detect these patterns. Further-
more, the results indicate gaps and opportunities for improvements for quality assessment tools.
There are available tools commonly used by practitioners that offer centralized logging, tracing,
and metric collection for microservices. We assess the opportunity to combine current dynamic
analysis tools with anomaly detection in the form of patterns and anti-patterns. We develop a
tool prototype that we use to assess a large microservice system benchmark demonstrating the
feasibility and potential of such an approach.

Keywords: microservice, microservice patterns, business process, telemetry, dynamic analysis

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

CONTENTS

1. Introduction . 1

2. Research Methods . 4

3. Background. 5

3.1 Microservices . 5

3.2 Microservice Patterns and their detection 6

4. Microservice API Patterns Literature Review 9

4.1 Review Design. 9

4.1.1 The Review Process. 10

4.1.2 Literature Search Process 10

4.1.3 Snowballing . 12

4.1.4 Application of inclusion / exclusion criteria 12

4.1.5 Evaluation of the quality and credibility of sources 13

4.1.6 Creation of final pool of sources 13

4.1.7 Data Extraction . 13

4.2 Results of review . 14

5. Detecting Microservices API Patterns 19

5.1 Goal . 19

5.1.1 Research questions . 19

5.1.2 Selected patterns . 20

5.2 Case Study - TrainTicket . 24

5.2.1 TrainTicket - a microservice benchmark system 24

5.2.2 Simulating business processes 25

5.2.3 Collecting logs . 27

5.2.4 Parsing logs . 27

5.3 Results. 30

5.3.1 Example call graphs . 30

5.3.2 Frontend integration - results 33

5.3.3 Information Holder Resource - results 34

5.3.4 Request Bundle - results 36

6. Discussion . 40

7. Conclusion . 42

References . 43

iii

LIST OF SYMBOLS AND ABBREVIATIONS

API Application Programming Interface

DB Database

IHR Information Holder Resource

MAP Microservice API Pattern

MLR Multivocal Literature Review

MSA Microservice Architecture

OSS Open Source Software

RQ Research Question

SDG Service Dependency Graph

1

1. INTRODUCTION

Design patterns provide a generalized and reusable solution to common software design

problems. They indicate that a system uses best practices. Patterns are well-recognized

to improve software quality [1]. One of the reasons behind such impact is better software

comprehension related to software documentation. Detection of patterns is a complex

task [2, 3]. It can constitute static or dynamic system analysis and serves the purpose of

quality assurance and quality indices of system design.

With the era of cloud systems, we must assume new patterns emerge that constitute

possibly across multiple self-contained parts of the overall system. In the current context,

cloud computing is fueled by the microservice architecture [4]. Microservices are small

and autonomous services deployed independently, with a single and clearly defined pur-

pose [5, 6]. Microservice architecture (MSA) has become the industry standard. MSA

allows for efficient scaling, improved resiliency, and faster software delivery because of

its loosely connected nature. It also enables teams to focus on a single task/module and

produce reliable software faster by allowing them to use any programming language that

suits the task. With the ability of agility and speed of development, MSA needs constant

monitoring and analysis to tackle the complexity of the system. A microservice system’s

longevity and quality can be jeopardized without regular monitoring. We ask what tech-

niques and state-of-the-art tools can detect microservice patterns and the current gaps in

this context. Quality engineers, architects, and developers might need to know underlying

code quality details to improve maintenance and support system comprehension.

The system can be subjected to static and/or dynamic (runtime) analysis. The static

analysis uses software artifacts such as source code, deployment manifests, and API

documentation. Dynamic analysis is the real-time testing or profiling of a system. Dy-

namic analysis can be applied to runtime data from a system in either a production or a

staging/development environment. Users must use the system, or a script must replicate

real-time user behavior, such as accessing all use cases and making reasonable user

requests per minute, to generate runtime data. Data obtained in runtime includes appli-

cation logs and telemetry data. Both these approaches have their specifics and suitability

for certain tasks.

Many challenges need to be taken into account when detecting patterns in cloud-based

2

systems. For instance, the cloud-native development best practices [4] suggest separat-

ing microservice codebases to enable decentralized evolution. However, current static

analysis tools operate on a single codebase [7] only. As a result, we cannot detect pat-

terns that span across the whole system by concatenating analysis per codebase. Also,

while static analysis can detect bugs, vulnerabilities, and smells [8, 9], before putting

software into production, it also has the disadvantage of requiring language-specific anal-

ysis. It is challenging to find language-specific static analyzer tools unless the modules

are written in a few popular languages. Otherwise, the developers need to create their

tool, which will increase maintenance workload, or they must exclude those modules from

analysis, which is also not a good option. Dynamic analysis can help solve this language-

specific issue. Dynamic analysis tools can operate on the decentralized perspective [10].

However, the dynamic analysis does not reveal a comprehensive detail of the system

(e.g., concerning the actual implementation of the service). Telemetry data is one form

of dynamic analysis which provides a few key analysis perspectives, such as Service De-

pendency Graph (SDG), detecting architectural smells, and architectural evolution using

the SDG.

This thesis considers a catalog of well-established Microservice-specific API design Pat-

terns (MAP). It reports tools that can detect these patterns and mechanisms for the de-

tection (i.e., static analysis, tracing, log mining). The goal is to identify current gaps in

pattern mining and quality assurance automation tools and potentially fill them using the

technique of reconstructing API call graphs through dynamic analysis and log mining.

To approach this, we adopted a Multivocal Literature Review (MLR) process [11] survey-

ing the systematic gray literature. The key motivation for conducting an MLR and therefore

including the grey literature is the strong interest of practitioners on the subject, and grey

literature content creates a foundation for future research.

As a result, this work identifies a list of 46 MAPs and 59 pattern mining tools. Out of the

46 patterns, 34 have been addressed by found tools. These 34 MAPs can be discovered

by 26 tools out of 59. Most importantly, we identified gaps in current tools to support MAP

pattern identification. We further provide discussion for the reasons behind such a gap

and what needs to be addressed to overcome the current hurdles. We also attempt to

partially fill this gap - we use telemetry data to determine inter-service communication

and build the Software Dependency Graph (call graph). Next, we use this information to

detect three MAPs that are not currently covered by existing tools. Thus we provide a

new tool that increases the coverage of detectable MAPs.

This work relies on the literature review we published in [12] for identification of patterns

and existing tools and adapts the work we did in [13] for detecting the three MAPs using

the call graphs (SDG).

The remainder of this paper is structured as follows. Section 2 presents the overall re-

3

search methodology for both the literature review and the detection of the patterns. Sec-

tion 3 presents the background and related works. Section 4 provides detailed informa-

tion on the gray literature review process we adopted. Section 5 presents the tool we

develop to detect three new MAPs. Section 6 discusses implications for practitioners and

researchers while finally, Section 7 draws the conclusions.

4

2. RESEARCH METHODS

This work is composed by two main parts.

The first part was initially published as a research paper [12], and in it we perform a

Multivocal Literature Review to determine what tools currently exist to detect the patterns

proposed in [14]. Since we are interested in considering the problem from the practition-

er/developer side, we search for grey literature on the Internet with Google search and

consider several types of sources.

Additionally, we analyse each pattern’s description and consider if it can be theoretically

detected by analysing one of the five attributes of a microservice system - AST call graph

of the services, static analysis of the source code, studying the history of Git repositories,

as well as mining of dynamically generated event and access logs. As a result we see

the current situation of MAP coverage and well as the potential for future tools. We note

the uneven distribution of tools by patterns, leading to some patterns being detected by

many tools but some patterns currently having no corresponding tools.

In the second part we attempt to improve the situation by creating a tool that detects three

patterns that are poorly covered according to our review in the first part. In particular, we

are interested to detect the patterns using the approach we piloted in [13] - reconstructing

the Service Dependency Graph between the services of the system using the access logs

generated dynamically. We develop the tool using Python and its library NetworkX, since

these are the resources already familiar to us. Our tool is applied in a case study of

TrainTicket, a benchmark open-source microservice system.

We extend the approach used in [13] by considering several Business processes sepa-

rately, which allows us to see if a certain pattern or its violation is only noticed in particular

use cases, thus revealing potential inefficiencies that could be overlooked by developed

and that are masked if a single SDG is reconstructed for all processes simultaneously.

5

3. BACKGROUND

In this section, we provide further insights into three key concepts that we use in our study

of Microservice patterns.

3.1 Microservices

Microservices are becoming more and more popular. Big players such as Amazon, Net-

flix, Spotify as well as small and medium-sized enterprises are developing Microservices-

based systems [15].

A good introduction to Microservice Architecture is provided in [16] and [5]. Web article

of Martin Fowler [5] is considered seminal work on defining the term ’microservice’ and

many works studying microservices and MSA end up referencing it several times.

Since Microservices and Microservice systems are naturally compared to more classic

Monolithic applications, it is makes sense to explain them first. Fowler provides such a

summary:

... [The] monolithic style [is when] a monolithic application [is] built as a single unit. En-

terprise Applications are often built in three main parts: a client-side user interface, ... a

database ... and a server-side application. The server-side application will handle HTTP

requests, execute domain logic, retrieve and update data from the database, and select

and populate HTML views to be sent to the browser. This server-side application is a

monolith - a single logical executable. Any changes to the system involve building and

deploying a new version of the server-side application.

To explain how Microservices are different from Monolithic application, Taibi et al in [16]

provide the following summary of Fowler’s ideas and some other notions:

Microservices are autonomous services deployed independently, with a single and clearly

defined purpose. Microservices propose vertically decomposing applications into a sub-

set of business-driven independent services. Each service can be developed, deployed,

and tested independently by different development teams and using different technology

stacks. Microservices have a variety of different advantages. They can be developed in

different programming languages, can scale independently from other services, and can

be deployed on the hardware that best suits their needs. Moreover, because of their size,

6

they are easier to maintain and more fault-tolerant since the failure of one service will not

disrupt the whole system, which could happen in a monolithic system. Various companies

are adopting Microservices since they believe that it will facilitate their software mainte-

nance. In addition, companies hope to improve the delegation of responsibilities among

teams.

Business Processes Business process is a term that comes from the business/man-

agement sphere rather than from technology, however we adopt it here since good tech-

nology is developed by understanding the needs that it fulfills and expectations that are

placed onto it.

In [17], Mathias Weske defines business process as set of activities that are performed

in coordination in an organizational and technical environment. These activities jointly

realize a business goal. Each business process is enacted by one organization, but

it may interact with business processes from other organizations. Here he talks about

activities in an organization in general, although he does mention that a share of activities

performed for a business process are technical. Since in this work we will focus on the

technological implementations of business process, we use a more specific definition

provided in the glossary of Gartner1:

Business process is an event-driven, end-to-end processing path that starts with a cus-

tomer request and ends with a result for the customer. To put simply, a business process

is a special use case or a ’user story’ that a certain product/technology might enable.

In this work we wish to study the detection of patterns in a microservice system while

examining the system during several different business processes, since services might

have been written bearing specific use cases in mind and thus be inefficient if later they

are used in some other functionality which they nonetheless enable, thus a certain pat-

tern or anti-pattern concerning a microservice will be more pronounced in the business

processes that use that service and naturally invisible in processes that do not use it -

in [16], authors note that Reusability is amplified in Microservices. Therefore, systems

that need to reuse the same business processes can benefit more from Microservices,

while monolithic systems in which there is no need to reuse the same processes will not

experience the same benefits.

3.2 Microservice Patterns and their detection

One way to determine software quality is to analyze software for patterns and to verify that

it doesn’t contain anti-patterns [2, 3] or to calculate quality metrics such as coupling and

cohesion [18]. Different tools have been proposed to perform automatic quality reviews

using static analysis of code to operate on pattern detection [19]. Pattern mining has been

1https://www.gartner.com/en/information-technology/glossary/business-process

7

broadly researched [2, 20, 21] and it is a well-established domain, at least for monolithic

applications.

Various microservices patterns have also been identified [4, 22, 23] for various tasks,

such as porting from monoliths [23], supporting resilience [22], targeting good design

practices [2, 24], among others. Development frameworks apply these patterns [22] to

simplify development.

In this thesis, we consider current Microservice API Patterns (MAP further in the text)

reported on the API-Pattern website [3, 14]. The API-Pattern website collects the vast

majority of microservices patterns proposed by its creators in peer-reviewed literature [3,

25, 26, 27, 28, 29, 30]. The list of patterns is provided in Table 4.1 while the complete

description of each pattern can be found on the API-pattern website [14]. We have,

however, excluded the pattern “Annotated Parameter Collection” as it lacked a detailed

description.

The major difference between monolith and cloud systems in regards to pattern mining,

however, is the decentralized codebase, which likely introduces diversity, heterogeneity,

and no obvious connection across codebases. Despite initial codebase convention ef-

forts, these get easily lost with evolution and management diversity.

Because of possible diversity across microservices, practitioners often resort to assess-

ing cloud systems through dynamic analysis [22, 31]. However, with such direction, we

can recognize endpoints and calls but not internal microservice details often needed for

pattern detection (since many patterns, including some MAP, have to do with internal

implementation as well, e.g. “Backend Integration”).

When we consider other current analysis approaches [31], we can notice that static analy-

sis of code or mining software repositories involves code parsing and conversion to syntax

trees or various graph representations as an intermediate representation. Then it uses

these intermediate representations to identify patterns. Other approaches consider log

analysis. However, these approaches face difficulty with the non-structured format of log

messages. While log clustering can be used, it is very challenging. For this reason, it is

common to integrate event tracing, which adds logging statements to calls (i.e., via instru-

mentation) and collects additional information in log messages, including the originating

microservice or the correlation ID to determine distributed transactions and related log

messages [32].

Common tools exist for centralized logging, distributed tracing, and telemetry. In addition,

various system-centric perspectives are available in such tools (i.e., Jaeger, Kiali, etc.),

and it is possible to preview trace-reconstructed system topology or dependency graphs.

While these views cannot be as detailed as when assessing the code, it gives sufficient

abstraction on the running system and language agnosticism. Given the broad availability

8

of these tools, it is reasonable to consider the integration of detection of various patterns

[2], anti-patterns [33], smells [34], or quality metrics (e.g. Coupling [18]) using dynamic

analysis. While it might be assumed that development and operations (DevOps) engi-

neers can easily see these indicators, Bento et al. [35] suggested that the current tools

do not provide appropriate ways to abstract, navigate, filter, and analyze tracing data and

do not automate or aid with trace analysis. Instead, the process relies on DevOps, but

these might lack the expertise or the time necessary to determine the statistics in the ever-

changing environment. When using traces, it can be seen that SDG is commonly used.

For instance, Ma et al. [36] use it to analyze and test microservices through graph-based

microservice analysis and testing. However, Ma et al. made the process dependent on

DevOps manual efforts to detect anomalies by analyzing risky service invocation chains

and tracing the linkages between services.

Another approach worth mentioning is program slicing [37], which combines log analysis

with code analysis. This is accomplished by locating logging statements in the code and

identifying logging templates in these statements; these are then matched with log mes-

sages found in logs to these code locations [38]. For instance, in Lprof [38], the authors

used program slicing to profile distributed systems and optimize their performance. They

matched log statements with log messages and performed a data-flow analysis of method

parameters to identify if these parameters change across call paths. Unchanged parame-

ters identified related log messages and could be used as a correlation ID similar to event

tracing. Using this, they could recognize distributed transactions and their frequencies in

logs. However, with event tracing (i.e., OpenTelemetry [13]), such tasks become much

more simplified and commonly adopted by industry (establishing the correlation ID). Any

of these techniques could be used to help with detecting MAPs.

9

4. MICROSERVICE API PATTERNS LITERATURE

REVIEW

This chapter is adopted from our paper on "Survey on tools detecting microservice API

patterns" [12]. The background information for this and further work has already been

presented in section 3, so now we focus only on the review itself.

4.1 Review Design

This section describes the methods adopted to gather and classify the different tools to

detect microservices best practices.

Since our goal is to map existing tools recommended and adopted by practitioners, we

performed a systematic review of the grey literature. A review of peer-review literature

would be biased toward academic opinions and would not clearly enable us to understand

what practitioners can find when looking for such types of tools online.

In order to investigate the aforementioned goal, we formulated our research questions as:

RQ1: Which are the tools available to detect MAPs?

This RQ aims to find tools dedicated to mining-specific patterns described in the previous

section. Even though some of them could be identified using general-purposes testing

tools, the necessity to write tests for the specific patterns makes it unfeasible for the

patterns to be adopted in the industry, while having a set of ready-made tools that could

be incorporated into the CD/CI pipeline would facilitate the adoption of best practices and

improve code and design quality.

RQ2: Which MAPs can be detected automatically with tools?

In this RQ, we map the tools identified in RQ1 to the patterns they detect.

RQ3: Which techniques can be used to detect MAPs?

In this RQ, we aim to understand whether MAPs can be detected using static or dynamic

analysis tools. The possibility of detecting the pattern from static analysis tools would

enable understanding of the patterns used without running the system. In contrast, the

detection based on the dynamic execution of the system and the collection of log traces

10

would allow an understanding of how the system is actually behaving.

4.1.1 The Review Process

Grey literature Reviews and Multivocal Literature Reviews (MLR) proved to be the best

choice for the research method due to the lack of maturity of the subject. MLR includes

both academic and grey literature. However, since we are aimed at investigating the word

of mouth of practitioners, we will perform a review of the only grey literature. The key

motivation for the inclusion of grey literature is the strong interest of practitioners in the

subject, and grey literature content creates a foundation for future research.

The process adopted is similar to the MLR, but doesn’t include the peer-reviewed litera-

ture steps.

The process we adopted was based on these steps:

• Selection of keywords and search approach

• Initial search and creation of an initial pool of sources

• Snowballing

• Reading through material

• Application of inclusion / exclusion criteria

• Evaluation of the quality of the grey literature sources

• Creation of the final pool of sources

4.1.2 Literature Search Process

Since we are interested in finding tools to detect MAPs (Table 4.1), we created 53 query

search strings. The search strings were as follows:

• "pattern_name" api pattern detection tool, where pattern_name was re-

placed with every pattern from table 4.1 (46 total searches, excluding “Annotated

Parameter Collection” pattern)

• api security analysis tool

• api parameter analysis tool

• api parameter discovery tool

• api documentation analysis tool

• api specification analysis tool

• semantic versioning identification tool

• microservice api pattern detection tool

11

The latter strings were added because the first parametric search string did not produce

many meaningful results, and at the same time, many patterns can be grouped together,

as represented by other search strings. We understand that not all groups of patterns are

represented by latter search strings, so partial bias is introduced; however, we could not

think of search strings targeting other groups of patterns and, as stated before, not using

them produced only a handful of results.

We applied the Search strings to the Google Search1 engine, looking at 10 pages of

results per search (excluding ads). The search was done with Incognito browser mode

without logging into a personal Google account. The decision to use 10 pages of results

was adopted after an informal piloting of the search, which showed that no relevant results

appear on pages 9-10 of the search and that for some patterns (search strings) only a

few results (2-3 pages, sometimes not enough even for 1 page) are returned.

1www.google.com

Table 4.1. The list of Microservice API patterns [14]

Foundation Quality

Frontend integration API Key

Backend integration Rate Limit

Public API Rate Plan

Community API Service Level Agreement

Solution Internal API Error Report

API Description Conditional Request

Responsibility Request Bundle

Processing Resource Wish List

Information Holder Resource Wish Template

Computation Function Embedded Entity

State Creation Operation Structure

Retrieval Operation Atomic Parameter

State Transition Operation Atomic Parameter List

Operational Data Holder Parameter Tree

Master Data Holder Parameter Forest

Reference Data Holder Data Element

Data Transfer Resource Id Element

Link Lookup Resource Link Element

Evolution Metadata Element

Version Identifier Annotated Parameter Collection

Semantic Versioning Context Representation

Two In Production

Aggressive Obsolescence

Experimental Preview

Limited Lifetime Guarantee

Eternal Lifetime Guarantee

12

Search results consisted of blog posts (including blogs with lists of tools), websites, re-

search papers, Github2 repositories of tools, and Github repositories of lists of tools. It is

good to note that StackOverflow3 is a popular website for technical peer questions, and it

could be expected to appear in the search results, but in reality, it did not. It could have

been included in the study separately, but after piloting it, it did not provide meaningful

results, so in this review, we decided to focus only on Google Search.

This search was performed between 10th and 21st of January 2022.

4.1.3 Snowballing

We applied a backward snowballing to the retrieved literature in the following way:

• If the resource extracted from the search is a list of tools (as opposed to a page of

just one tool), such as “Top 10 API security tools in 2021”4, then we checked all of

the referenced tools (and potentially other referenced lists)

• If the resource is a research paper, we checked if the paper cites other algorithms

that fit our criteria and included them as well

4.1.4 Application of inclusion / exclusion criteria

Based on MLR guidelines [11], we defined our inclusion criteria:

• For pages of tools: the tool description directly contains one of the MAPs from 4.1

• For research papers: the paper proposes a new algorithm/tool to detect a pattern

whose description in the abstract is similar to studied patterns

Moreover, we defined our exclusion criteria as:

• Exclusion criterion 1: Non-English results

• Exclusion criterion 2: Duplicated result

• Exclusion criterion 3: (for papers) The paper proposes a new algorithm/tool to de-

tect a pattern; however, no source code for the tool is provided

• Exclusion criterion 4: (for commercial tools) The tool has no public documentation

of functionality available

• Exclusion criterion 5: (for tools) The tool is an all-purpose security tool claiming to,

e.g., “identify over 1000 different vulnerabilities”, i.e., no particular reference to one

of the MAP is given.

2www.github.com
3www.stackoverflow.com
4This is a made-up example

13

• Exclusion criterion 6: (for tools) The tool cannot automatically perform the analysis

but requires the programmers to configure it and adapt a certain workflow first (e.g.,

configure the tool to detect certain words in commit messages and then use them in

work), so that it cannot be used to retrospectively analyze the history of an existing

project.

4.1.5 Evaluation of the quality and credibility of sources

In order to evaluate the credibility and quality of the selected grey literature sources and

to decide whether to include a grey literature source or not, we extended and applied the

quality criteria proposed by Garousi et al. [11], considering the authority of the producer,

the methods applied, objectivity, date, novelty, impact, and outlet control. We adopted the

same evaluation sheet adopted by Peltonen et al. [39].

Two authors assessed each source using the aforementioned criteria, with a binary or

3-point Likert scale, depending on the criteria themselves. In case of disagreement, we

discussed the evaluation with the third author, which helped to provide the final assess-

ment.

We finally calculated the average of the scores and rejected grey literature sources that

scored lower than 0.5 on a scale that ranges from 0 to 1.

4.1.6 Creation of final pool of sources

Originally, 45 different resources were identified as relevant. After performing snowballing

on papers and lists and filtering all papers and tools through the exclusion criteria, we had

a list of 59 tools.

4.1.7 Data Extraction

In order to obtain the list of tools to detect MAPs (RQ1) we extracted the tool names from

the selected sources.

To understand which pattern is detected by the tools (RQ2), firstly, we read through the

tool documentation. There are two sorts of documents available: a dedicated website and

a README file. Few tools have both. After reading the documentation, we investigated

whether this tool recognizes any MAP and whether it is possible to obtain information

about those patterns using this tool. We couldn’t locate any tool that recognizes MAP

on its own because these MAPs are not commonly well-established yet. However, a few

tools disclose data that can be utilized to develop an insight into MAPs.

We examined each tool by reviewing its documentation to see if it exposed any information

14

that may be utilized to detect any MAP. When we locate a tool that can detect a pattern,

we map that tool to that pattern.

Lastly, to understand which technique can be adapted to detect MAPs (RQ3), We manu-

ally analyzed each pattern, including those not discovered by tools, and mapped each

pattern to the possible technique. For the techniques, we considered static and dy-

namic analysis. For static analysis, we considered plain code analysis, operation with

call graphs, which might require more advanced algorithms, and mining software repos-

itories which may include additional information. For dynamic analysis, we considered

application log analysis considering rich logging in the system code (an ideal case) and

event logs (i.e., received from instrumentation with correlation ID [22]). We did not con-

sider program slicing.

The first two authors both independently examined and mapped each pattern to the var-

ious techniques using their own reasoning. After that, the differing viewpoints were re-

solved by consulting with each other as well as the other authors.

4.2 Results of review

This section reports the results we obtained following the research methodology high-

lighted in Section 4.1.

As for the tools available to detect MAPs (RQ1), we identified 59 tools from 45 sources.

Tables 4.2 and 4.3 list the tools retrieved (Open Source and Commercial, respectively),

together with their URL, license (for Open Source tools), languages supported for analy-

sis, and date of the last update (for Open Source tools). As for the Licenses adopted by

OSS projects, the license indicated in their repository is stated, such as MIT, Apache, etc.;

‘OSS’ refers to tools whose source code is openly available, but no license is added to the

repository; ‘N/A (Free)’ refers to tools that are available for free (e.g., as a web service),

but not in Open Source form, and thus might be subject to a custom license as well. Dif-

ferent tools can analyze MAPs from the perspective of different programming languages.

Some tools support several languages. Other tools scan git commits to perform the anal-

ysis, and thus applicable to any language. While other tools either access the APIs under

analysis using the provided endpoints or analyze API specifications in OpenAPI format,

thus the language of implementation doesn’t matter. The language reported in Table 4.2

as ‘Any’ refers to tools that parse source code in a language-agnostic manner and thus

apply to any language.

There are 7 Commercial tools and 52 OSS tools to provide some summary statistics.

When it comes to OSS licenses, 33 of tools (56% of total tools) are using permissive

licenses (Apache, MIT, BSD, etc.), and 5 more use no license at all, while 7 tools (11%)

use ‘copyleft’ licenses (different versions of GPL license).

15

Table 4.2. OSS tools to detect Microservice API Patterns (RQ1)

Language

ID Tool URL License supported Updated

T1 API security tools audit bit.ly/3UJImRv N/A (Free) REST API N/A (Active)

T2 apidiff bit.ly/3J0FyZN MIT Java 31.10.2021

T3 Arjun bit.ly/3uFZoWv GPL-3.0 REST API 29.08.2021

T4 Astra bit.ly/3ontBp4 Apache-2.0 REST API 05.04.2019

T5 Brakeman bit.ly/3LbQtSo MIT Ruby 30.01.2022

T6 Coala bit.ly/3AXgKiw AGPL-3.0 Any 11.06.2021

T7 code2flow bit.ly/34w2MYM MIT Many (4) 27.12.2021

T8 git-secret git-secret.io MIT git 01.02.2022

T9 git-semv bit.ly/34yi1jM MIT git 17.06.2021

T10 GitVersion bit.ly/3AVeUi6 MIT git 31.01.2022

T11 go-semrel-gitlab bit.ly/3upDINT MIT git 27.10.2019

T12 GraphQL FBC-CLI bit.ly/333l57q OSS GraphQL 06.06.2018

T13 Hikaku bit.ly/3Hubkhx Apache-2.0 REST-API 19.08.2021

T14 jgitver bit.ly/3glahV5 Apache-2.0 Java 30.03.2021

T15 Kiterunner bit.ly/3J77eML AGPL-3.0 REST API 10.05.2021

T16 LAPD bit.ly/3gl6FlZ N/A (Free) Java 07.09.2013

T17 magento-semver bit.ly/3gnWygi OSL-3.0 N/A 19.01.2022

T18 microservices-antipatterns bit.ly/3GwBwGJ Apache-2.0 Python 17.12.2019

T19 modver bit.ly/32WbY8k MIT Go 16.01.2022

T20 Mondrian bit.ly/3rqHkNZ OSS PHP 16.09.2014

T21 MSA-nose bit.ly/3sgODXF OSS Java 12.04.2021

T22 next-ver bit.ly/3B5EWzq MIT git 09.02.2018

T23 NodeJS scan bit.ly/3uqxHkm GPL-3.0 Node.js 31.01.2022

T24 NoRegrets bit.ly/3JjDAnF Apache-2.0 JavaScript 02.07.2019

T25 OpenAPI diff bit.ly/3oncymY MIT REST API 29.08.2017

T26 OpenAPI spec validator bit.ly/3sogwxc Apache-2.0 REST API 28.01.2022

T27 openapi-lint bit.ly/3oqUJDA BSD-3 REST API 12.08.2020

T28 openapilint bit.ly/3J45Lqs MIT REST API 13.05.2019

T29 oval bit.ly/3J466te MIT REST API 26.09.2018

T30 pact bit.ly/3gp77Q8 MIT REST-API 03.02.2022

T31 paramspider bit.ly/3sf6JZZ GPL-3.0 REST API 12.09.2021

T32 Prometheus prometheus.io Apache-2.0 Many (5) 02.02.2022

T33 prospector bit.ly/3oo4Zg7 GPL-2.0 Python 01.02.2022

T34 Public API changes bit.ly/3gjOKMF Unlicense C# 05.11.2017

T35 pycallgraph bit.ly/3uqyZfc GPL-2.0 Python 28.02.2018

T36 Pyramid OpenAPI3 bit.ly/3uqbZg5 MIT Python 07.12.2021

T37 pyramid-swagger bit.ly/3sfLKqb BSD-3 Python 30.03.2020

T38 Python Semantic Release bit.ly/3oo3uyg MIT Python 31.01.2022

T39 REST API Antip. Inspect. bit.ly/3GkLhrG MIT REST API 31.03.2021

T40 schaapi bit.ly/3J3BcB7 MIT Java 11.02.2019

T41 secret-detection bit.ly/3rqsM0N OSS Any 03.08.2020

T42 semantic-release bit.ly/3usLkPQ MIT git 18.01.2022

T43 semantic-versioning-anal. bit.ly/3HsvgBn MIT .NET 03.11.2021

T44 semver-config bit.ly/3GnLpGN OSS git 26.09.2019

T45 semverbot bit.ly/3GteoZI MPL-2.0 git 03.01.2022

T46 Speccy bit.ly/3uknqGe MIT REST API 02.10.2019

T47 Spectral bit.ly/3gnIeo3 Apache-2.0 REST API 03.02.2022

T48 SpotBugs bit.ly/3glbvQj LGPL-2.1 Java 29.01.2022

T49 Standard Version bit.ly/3uqgx64 ISC Node.js 01.01.2022

T50 Vulture bit.ly/3Gq9hd2 MIT Python 03.01.2022

T51 wFuzz bit.ly/3opt5Hg GPL-2.0 REST API 28.11.2020

T52 Zally bit.ly/34lLHkq MIT REST API 14.01.2022

16

Table 4.3. Commercial tools to detect Microservice API Patterns (RQ1)

ID Tool URL Supported Languages

T53 Acunetix acunetix.com Web

T54 CheckMarx checkmarx.com Many (20)

T55 CodeClimate bit.ly/3GrqB12 Many (11)

T56 Data Theorem API Secure bit.ly/34ASaYM N/A

T57 Dynatrace dynatrace.com Many

T58 SonarQube* bit.ly/3GryR15 Many (29)

T59 Synopsys bit.ly/3uqjhRd REST API

*Dual-licensed, available both as commercial and open source (GPL).

In terms of languages, 16 tools (27%) are written in Python, 11 tools (19%) are written

in JavaScript (some of them in TypeScript), Java and Go have 6 tools each (10% each);

other represented languages are C++/C#, Kotlin, PHP and shell scripting (bash).

Supported languages/platforms involve 8 tools analyzing commits in Git (14%), another

8 tools targeting Python as the only language (13%), 6 tools (10%) targeting Java, and

another 6 tools (10%) supporting several languages. Also, 19 tools (32%) target REST

APIs directly, with 9 analyzing specifications and 10 using the endpoints dynamically.

Out of 52 OSS tools, 32 have been updated at least once since January 2021. Further-

more, 19 have been updated already in 2022.

It should also be noted that some tools are research prototypes (T2, T16, T18, T21), some

grew out of research prototypes (T48), while many are projects done by hobbyists (T19,

T34, T37 to name a few), so their quality and applicability to up-to-data languages and

frameworks could be limited. The scope of this review is simply to identify existence of

some tools to address MAPs and see the pattern coverage, assessing the actual quality

and usefulness of the tools is a different, much more complicated endeavour.

As for the MAPs that can be detected automatically with tools (RQ2), we found 26 tools

that expose information about the tools. These tools are listed as RQ2 column in Table

4.4. Our table shows that found tools detect a subset of all patterns, and a combination of

tools is necessary to address broader coverage. For example, the pattern ‘API Descrip-

tion’ is detected by 9 tools in the Foundation category, while no tool targets the other 5

patterns in this category. Two tools, code2flow, and pycallgraph, which are both based on

call graphs, can identify all of the patterns in the Responsibility category. Hikaku is a tool

that can be used to detect all of the patterns in the Structure category. All of the patterns

in this category, with the exception of ‘Context representation,’ can be discovered with

four or more tools. There are three patterns in the quality section that no tool can detect.

Rate Plan, Service Level Agreement, and Wish Template are examples of these patterns.

At least one tool detects the rest of the patterns. Three patterns are not detected by any

17

tools in the Evolution category, whereas four patterns are detected by at least three tools.

The most promising techniques to detect MAPs (RQ3) stem from the static analysis in-

volving source code analysis as detailed in Table 4.4. Most of the tools we found use static

analysis. In particular, the static analysis might need to determine call graphs to detect

certain patterns, and also, the detection process can use mining software repositories.

Nevertheless, given the API level, dynamic analysis can also determine a large number

of patterns. While application log analysis is one option, it is a challenging option depen-

dent on the level of logging. It is more convenient to use event logs resulting from recent

cloud-native frameworks and infrastructure advancements. All events are centralized and

aggregated by the occurrence time, with correlation ID indicating message dependencies.

18

Table 4.4. Toosl and possible Techniques for detecting microservice patterns

RQ2 RQ3

Patterns Detected by tool (ID) Static Dynamic

Analysis Analysis

C
al

lG
ra

ph

S
ou

rc
e

C
od

e

R
ep

os
ito

ry

E
ve

nt
Lo

g

A
pp

lic
at

io
n

lo
g

Foundation

Frontend integration ✓ ✓ ✓ ✓

Backend integration ✓ ✓

Public API

Community API

Solution Internal API

API Description T25, T26, T27, T28, T29, T36, T37, T46, T52 ✓

Responsibility

Processing resource T7, T35 ✓ ✓ ✓ ✓

Information holder resource T7, T35 ✓ ✓ ✓ ✓

Computation function T7, T35 ✓ ✓ ✓ ✓

State recreation operation T7, T35 ✓ ✓ ✓ ✓

Retrieval operation T7, T35 ✓ ✓ ✓ ✓

State transition operation T7, T35 ✓ ✓ ✓ ✓

Operational Data Holder T7, T35 ✓ ✓ ✓ ✓

Master data holder T7, T35 ✓ ✓ ✓ ✓

Reference data holder T7, T35 ✓ ✓ ✓ ✓

Data transfer resource T7, T35 ✓ ✓ ✓ ✓

Link Lookup resource T7, T35 ✓ ✓ ✓ ✓

Structure

Atomic parameter T3, T6, T13, T31, T36, T37 ✓

Atomic parameter list T3, T6, T13, T31, T36, T37 ✓

Parameter tree T3, T6, T13, T31, T36, T37 ✓

Parameter forest T3, T6, T13, T31, T36, T37 ✓

Data element T6, T13, T31, T36, T37 ✓

Id element T3, T6, T13, T31, T36, T37 ✓

Link element T6, T13, T31, T36, T37 ✓

Metadata element T13, T31, T36, T37 ✓

Context representation T13 ✓

Pagination T13, T31, T36, T37 ✓ ✓ ✓

Quality

API key T13, T36, T37 ✓ ✓ ✓

Rate limit T36, T37, T53 ✓ ✓ ✓

Rate plan

Service level agreement

Error report T13, T36, T37 ✓ ✓ ✓ ✓

Conditional request T13, T36, T37 ✓ ✓ ✓ ✓

Request bundle T13 ✓ ✓ ✓ ✓

Wish list T36, T37 ✓ ✓ ✓ ✓

Wish template ✓ ✓ ✓ ✓

Embedded entity T13 ✓ ✓ ✓ ✓

Linked information holder T13 ✓ ✓ ✓ ✓

Evolution

Version identifier T6, T10, T13, T45 ✓ ✓ ✓

Semantic versioning T2, T9, T13, T19, T38, T40, T42, T43, T44, T45 ✓ ✓ ✓

Two in production ✓ ✓ ✓

Aggresive obsolesense ✓ ✓ ✓ ✓

Experimental preview ✓ ✓ ✓

Limited lifetime guarantee T2, T13, T40 ✓

Eternal lifetime guarantee T2, T13, T40 ✓

19

5. DETECTING MICROSERVICES API PATTERNS

As discovered in the previous section, there is still a lot of room to develop tools to detect

certain Microservice API patterns using particular techniques such as mining of applica-

tion or event logs. In this section we make our own contribution to this area by describing

a tool that can detect 3 MAPs, one of which has no tool coverage according to our review,

and another one - only by one OSS tool.

5.1 Goal

The main goal of this thesis is to study the detection of Microservice API patterns using a

call graph reconstructed from application logs while simulating several realistic business

processes to see if some pattern only appears in parts of the system for specific use

cases.

To achieve this goal we need to find an existing (benchmark) microservice system, a way

to simulate load and business processes on it, a tool to collect logs as well as invent a way

to reconstruct the dependency graph from these logs and define the selected detected

patterns as a problem (property) on this graph.

Note: here and further we will use the term call graph to refer to a graph of dependencies

between microservices obtained through dynamic analysis of a running system. Such a

graph is also called SDG - Service Dependency Graph (see Section 1). This is unlike

Section 4, where this term referred to a graph identified through static analysis of the

source code.

Also, we assume that the reader is familiar with basic concepts from graph/network theory

such as graph/network, vertex/node, edge/arc and degree (in_degree/out_degree) and

do not provide an introduction to this topic here. More advanced concepts will not be

necessary for our study of SDGs.

5.1.1 Research questions

We can formulate the ideas described in the above section as Research Questions. Since

the patterns to identify have already been selected (see Section 5.1.2), the only remaining

question are:

20

RQ4: How to implement the detection of the patterns from the reconstructed call

graph?

After deliberation with the supervisors and coauthors of [12], it was agreed that the three

selected patterns (section 5.1.2) are the ones that are ’in theory’ detectable using a call

graph (SDG). Now we need to actually decide how to formulate the detection in terms

of graph’s properties. The answer for each respective patterns is given in the same sec-

tion 5.1.2.

RQ5: What will the detection reveal about the system that is used as a case study?

We want to run the detectors on data from a real-life systems to see if our algorithms

(and underlying MAPs) indeed provide a useful insight into the system’s architecture and

operation. The selected system is TrainTicket (section 5.2.1).

5.1.2 Selected patterns

After we determined that we want to pursue the development of the MAP detectors using

application logs and SDG, we have determined that the following MAPs are detectable in

this way:

Frontend Integration1

The idea behind this patterns is that Frontend microservices need to be integrated into

the system vertically, and all the business logic has to be put into other services, to which

the Frontend service simply forwards the data (see figure 5.1). This mimics the idea used

in design of the monolithic application, especially in Java programming language, which

says that UI code and logic code have to be separated and god classes that do everything

at once better be avoided.

We can formulate this patterns as a SDG property that nodes corresponding to Frontend

services should have in_degree = 0 and out_degree ≥ 0.

The detection can be done in two ways

• Detect those service that fulfill the property above and list them as ’potential’ Fron-

tend services.

This way the creator(s) of the system can see if there are some services that be-

have as if they were a Frontend service even though they are not (i.e. a service

which is not a Frontend service, does not receive calls from other services but

spontaneously calls other services might be an anomaly).

• Given a list of services designated as Frontend services, check if they fulfill the

property listed above.

1https://www.microservice-api-patterns.org/patterns/foundation/FrontendIntegration

21

Figure 5.1. Frontend is integrated vertically and simply provides all the data for services
implementing Business Logic [14].

Figure 5.2. Information Holder Resource provides an unchanging API for CRUD opera-
tions to the underlying database, whose implementation can change [14].

This way the developers can check if their Frontend services behave as expected

and no Business Logic which causes them to receive calls calls to provide some

information has creeped into the codebase.

Our Literature Review did not find any tools to detect this pattern.

Information Holder Resource2

This pattern is based on the idea expressed by Newman in [6] that several services should

not be accessing the same database directly using the SQL (or other language) queries.

Instead, a separate service should be created whose only purpose is to expose the public

API that would allow other services to request and modify the information in the database

(so called CRUD operations - Create, Read, Update, Delete), see figure 5.2.

This will ensure services can use the same API even if the implementation of database

2https://www.microservice-api-patterns.org/patterns/responsibility/endpointRoles/InformationHolderResource

22

and its tables changes. Also, this way the Information Holder Resource can do all checks

to ensure that the database is in a consistent state after each operation, instead of each

Business Logic service having to implement these checks themselves for situations when

they need to modify the database. This pattern also mimics the idea from general software

engineering that data itself should be encapsulated within a class and only accessed and

modified using the ’getter’ and ’setter’ methods.

We can formulate this as an SDG property in the following way:

A database service (DB) and its Information Holder Resource (IHR) are a pair of services

such that in SDG the node of DB only has incoming edges from the node of IHR, and the

node of IHR only has outgoing edges into the node of DB. Additionally, the node of DB

must have out_degree = 0.

Several things can be detected about this property:

• Return a list of pairs of services (IHR, DB) that fulfill the above property.

This will provide the developers/researchers the list of ’healthy’ database-and-ihr

implementations.

• Return a list of pairs of services (IHR, DB) that ’almost’ fulfill the property in the

following sense: the DB service only receives calls from the IHR service, but IHR

service also sends calls to other services.

This show the services that could be good IHRs for some DB if some functionality

is refactored into other services.

• For a given list of services designed as Database Services (DB), return a list of

services that call other services.

This identifies the DB service that had some other Business Logic creeped into

them that needs to be refactored.

• For a given list of services designated as Database Service (DB), find their respec-

tive (potential) IHRs and return them (items 1 and 2), and separately return the list

of DBs that do not have a corresponding IHR.

This provides a list of DB services for which the IHR implementation is still missing.

Our Literature review found only 2 tools (T7 and T35, table 4.2), both of which construct

call graphs, however one of the projects has been frozen 8 years ago and the other

only covers Python, JavaScript, Ruby and PHP. Thus our approach will provide a more

language-agnostic way to detect the patterns through dynamic analysis, as explained in

section 3.

23

Figure 5.3. Instead of sending several request to get homogeneous data (top), services
use a Request Bundle to exchange all queries and responses during one call (bottom)
[14].

Request Bundle3

The idea of this pattern is that if one service A needs to receive several batches of homo-

geneous data from another service (endpoint) B, for examples several entries from the

same database based on IDs, then instead of calling this service several times to obtain

each piece of data, a mechanism should exist such that service B can receive a list of

parameters from A in one request for the whole batch, and provide all data in a list in the

same respective order. This list of request parameters and responses is call the Request

Bundle (see figure 5.3). This is similar to how in certain numeric computations functions

need to be ’vectorized’, i.e. either receive one input and given out output, or receive a list

(vector) of inputs and provide a list (vector) of outputs.

Due to how this pattern is formulated, it easier to detect the corresponding anti-pattern

by negating the idea - find those situations where Request Bundle is missing or at least

unused. Of course, if SDG shows the amount of times one service calls another as the

weight of the corresponding edge, it is possible to detect potential violations of Request

Bundle by noticing anomalously huge weights. However, this detection would not be

rigorous and depend on subjective parameters - how big a weight is considered too big?

how to make sure calls to the same service were consecutive if we do not store this

information into the graph?

Instead of using the graph directly, we can, during the construction of the graph from the

logs, put all the calls in a list and sort it by the timestamps of calls. This way we will see

all the calls in chronological order. Then we just have to find consecutive calls between

same pair of services, this will indicate the Request Bundle is not utilized during their

communication. The detection can be done on two levels:

• Service level: Service A repeatedly calls service B

• Endpoint level: Service A repeatedly calls the same endpoint of service B

3https://www.microservice-api-patterns.org/patterns/quality/dataTransferParsimony/RequestBundle

24

Violation of Request Bundle on endpoint level should definitely be avoided - same end-

point provides same kind of data (homogeneous), so it is definitely possible to implement

a list of queries/responses for this case.

On service level, of course one service could expose several types of information/func-

tionality on different endpoints, so repeatedly calling the same service does not necessar-

ily indicate violation of Request Bundle patterns. However developers/researchers could

still benefit from monitoring this kind of situation, since according to good design principles

each microservice should have clearly defined and limited responsibilities and functional-

ities, so it should be in theory possible to implement some kind of master-endpoint which

receives parameters to execute several tasks of the other endpoints and thus functions

as a Request Bundle.

Our Literature Review has identified only one tool (T13 - table 4.2), however this tool com-

pares the implementation of API endpoint to its specification, so Request Bundles need

to have been at least designed by the developers to be detected this way. Our approach

allows to detect violation of Request Bundle pattern even if it had not been considered by

the developers and indicate the interactions which would benefit from Request Bundles.

5.2 Case Study - TrainTicket

5.2.1 TrainTicket - a microservice benchmark system

Microservice systems are usually developed by big companies that can afford to have sev-

eral teams developing several distinct microservices. Due to private nature of the corpo-

rate world, getting access to these systems and their data is problematic for researchers.

Zhou et al have developed a benchmark microservice system called TrainTicket [40],

which mimics a web application for purchasing train tickets (see figure 5.4). The system

is an open source project, licensed under Apache-2.0 license and available on GitHub

[41]. This project has already proven itself useful for researchers [42, 43, 44, 45, 46]

TrainTicket contains 41 microservices, both for the user-side functionalities (browse web-

site, login, search for train, book ticket etc) and admin-side functionalities (modify user

data, modify station, train, price data etc). The following languages are used in the ser-

vices’ codebases: Java, Node.js, Python, Go, MongoDB, MySQL, nginx. This represents

a real-life situation when different teams on a project use different ’stacks’ to build their

services according to their skills and needs.

The system was deployed on Kubernetes [47], along with Istio [48]. The Istio was set up

in such a way that it generates and outputs a JSON-formatted access log. We installed

Kubernetes in a machine with 32GB of RAM and an Intel i9-8950HK processor using

kind (Kubernetes-in-docker [49]). There were 6 CPU cores and 12 threads in the system.

25

Figure 5.4. User interface of deployed TrainTicket system[40, 41].

Kubernetes’ resource limit was set at 22GB of RAM and 8 threads of CPU.

5.2.2 Simulating business processes

The functionality of services described in TrainTicket documentation4 allows us to define

the following five business processes (we call them ’Users’ here because each business

process simulates a particular user’s behavior; also classes to represent these processes

in configuration codes are called Users):

• UserNoLogin

1. Open the website

2. Search for a train by departure

3. Search for a train by return

• UserBooking

1. Open the website

2. Log in

3. Search for a train by departure

4. Book the ticket

• UserConsignTicket

1. Open the website

4https://github.com/FudanSELab/train-ticket/wiki/Service-Guide-and-API-Reference

26

2. Log in

3. Search for a train by departure

4. Book the ticket

5. Consign the ticket5

• UserCancelNoRefund

1. Open the website

2. Log in

3. Search for a train by departure

4. Book the ticket

5. Cancel the order without refund

• UserRefundVoucher

1. Open the website

2. Log in

3. Search for a train by departure

4. Book the ticket

5. Cancel the order and get a voucher for the amount

The last three users expand the actions taken by UserBooking in different ways, which

requires usage of different additional services in each case.

We used the ing tool PPTAM [50] to simulate a real-life user. It internally uses another tool

called locust [51] which allows to define different Users for the studied system and well

as parameters on how much and how often to spawn them. Both tools are implemented

in Python, so Users are also defined as Python code in the following way:

• First, a Client class is defined that can send calls to the different endpoints in the

system. Methods of this class are different atomic tasks that can be executed by the

users (open home page, login with given username and password, search for a train

with given parameters), each method performs necessary calls to the necessary

endpoints.

• User classes are defined for each user (use case/business process) which perform

the atomic tasks in the necessary order.

• User classes also have special attributes which define how locust will spawn them,

such as weight and wait_time.

5Request to pick up the ticket from the office

27

In order to be able to cleanly separate activity and service calls due to each user, we

configured the system to only use one user at a time and only spawn one instance of

each at a time. Logs of locust then allow us to understand the interval of time in which

that particular instance was running and map all system activity to it. More on this in the

following sections.

During our experiment the following amount of users were spawned: UserNoLogin - 263,

UserBooking - 70, UserConsignTicket - 92, UserCancelNoRefund - 199, UserRefund-

Voucher - 224.

5.2.3 Collecting logs

Distributed systems are notoriously difficult to manage, and adding traffic management

to the mix makes things even more difficult. A service mesh comes with traffic manage-

ment, observability, security, encryption, access control, rate limiting, and other features

out of the box. As a result, service mesh has become an essential tool in Kubernetes-

based systems. Each service module is deployed separately in this system, and each of

these modules has a sidecar [52] proxy that receives and sends traffic on behalf of the

microservice module. These proxy sidecars can control traffic and improve the service’s

observability and security.

Istio [48], linkerd [53], and consul connect [54] are the most popular open source service

mesh tools, according to GitHub stargazers. In addition to these tools, most service

mesh tools provide an access log (also known as audit logging or proxy log), containing

information about each inbound and outbound request in a customizable format. Our

method uses these access logs to determine which service is calling which service, which

endpoint is being called, and how frequently a service is called in a given time period. We

can use this information to reconstruct software architecture and automatically detect

patterns and anti-patterns.

5.2.4 Parsing logs

During the execution of the simulation of users two kinds of logs are generated - locust

logs about how Users are spawned and Istio access logs for each service about what

calls the service makes.

The example of the locust logs can be seen in the figure 5.5. We have 5 log files like that

for each User that was defined and run. We can use the first and last timestamps of the

file (figure 5.5, lines 1 and 1857) to infer the time interval where this particular User was

executing in the system. Locust was configured to spawn one instance of that User, let

it execute its tasks and then spawn another one. Each instance of the User is reported

in the log when it is spawned together with its UUID (figure 5.5, lines 10, 18), so we can

28

Table 5.1. An example of an inbound and outbound request access log. Inbound re-
quests have a-service as their destination, while outbound requests have a-service as
their source and b-service as their destination [13].

Request type Sample Access Log

inbound request

{
"start_time": "2022-05-26T06:22:02.661Z",
"upstream_host": "10.244.0.65:12345",
"downstream_local_address": "10.96.162.171:12345",
"upstream_transport_failure_reason": null,
"protocol": "HTTP/1.1",
"upstream_service_time": "6",
"authority": "b-service:12345",
"requested_server_name": null,
"response_code_details": "via_upstream",
"connection_termination_details": null,
"upstream_local_address": "10.244.0.41:33326",
"downstream_remote_address": "10.244.0.41:48250",
"path": "/api/v1/endpoint/",
"bytes_sent": 44,
"request_id": "4631dc4c-0a6e-9ad2-ba61-d257cdd6e50b",
"bytes_received": 0,
"route_name": "default",
"duration": 7,
"x_forwarded_for": null,
"response_flags": "-",
"response_code": 200,
"method": "GET",
"upstream_cluster": "outbound|12345||b-service.default.svc.cluster.local",
"user_agent": "Apache-HttpClient/4.5.9 (Java/1.8.0_111)"

}

outbound request

{
"start_time": "2022-05-26T06:22:02.661Z",
"upstream_host": "10.244.0.65:12345",
"downstream_local_address": "10.96.162.171:12345",
"upstream_transport_failure_reason": null,
"protocol": "HTTP/1.1",
"upstream_service_time": "6",
"authority": "b-service:12345",
"requested_server_name": null,
"response_code_details": "via_upstream",
"connection_termination_details": null,
"upstream_local_address": "10.244.0.41:33326",
"downstream_remote_address": "10.244.0.41:48250",
"path": "/api/v1/endpoint/",
"bytes_sent": 44,
"request_id": "4631dc4c-0a6e-9ad2-ba61-d257cdd6e50b",
"bytes_received": 0,
"route_name": "default",
"duration": 7,
"x_forwarded_for": null,
"response_flags": "-",
"response_code": 200,
"method": "GET",
"upstream_cluster": "outbound|12345||b-service.default.svc.cluster.local",
"user_agent": "Apache-HttpClient/4.5.9 (Java/1.8.0_111)"

}

29

1: [2022-06-13 11:58:06,590] ECS-DRTC-Resh03/INFO/locust.main: Run time limit set to 600 seconds
2: [2022-06-13 11:58:06,591] ECS-DRTC-Resh03/INFO/locust.main: Starting Locust 2.8.6
3: [2022-06-13 11:58:06,592] ECS-DRTC-Resh03/INFO/locust.runners: Ramping to 1 users at a rate of 1.00 per second
4: [2022-06-13 11:58:06,593] ECS-DRTC-Resh03/DEBUG/locust.runners: Ramping to {"UserNoLogin": 1} (1 total users)
5: [2022-06-13 11:58:06,593] ECS-DRTC-Resh03/DEBUG/locust.runners: Spawning additional {"UserNoLogin": 1}

({"UserNoLogin": 0} already running)...
6: [2022-06-13 11:58:06,594] ECS-DRTC-Resh03/DEBUG/locust.runners: 1 users spawned
7: [2022-06-13 11:58:06,594] ECS-DRTC-Resh03/DEBUG/locust.runners: All users of class UserNoLogin spawned
8: [2022-06-13 11:58:06,594] ECS-DRTC-Resh03/DEBUG/locust.runners: 0 users have been stopped, 1 still running
9: [2022-06-13 11:58:06,594] ECS-DRTC-Resh03/INFO/locust.runners: All users spawned: {"UserNoLogin": 1} (1 total users)

10: [2022-06-13 11:58:06,594] ECS-DRTC-Resh03/DEBUG/root: Running user "no login" with id 6c4396b0-61fc-4ade-9253-e58b8c4aac30...
11: [2022-06-13 11:58:06,594] ECS-DRTC-Resh03/DEBUG/root: Performing task "home" for user 6c4396b0-61fc-4ade-9253-e58b8c4aac30...
12: [2022-06-13 11:58:06,612] ECS-DRTC-Resh03/DEBUG/urllib3.connectionpool: Starting new HTTP connection (1): localhost:32677
13: [2022-06-13 11:58:06,619] ECS-DRTC-Resh03/DEBUG/urllib3.connectionpool: http://localhost:32677

"GET /index.html HTTP/1.1" 200 18128
14: [2022-06-13 11:58:06,620] ECS-DRTC-Resh03/DEBUG/root: Performing task "search_departure" for user 6c4396b0-61fc-4ade-9253-e58b8c4aac30...
15: [2022-06-13 11:58:06,726] ECS-DRTC-Resh03/DEBUG/urllib3.connectionpool: http://localhost:32677

"POST /api/v1/travelservice/trips/left HTTP/1.1" 200 None
16: [2022-06-13 11:58:06,727] ECS-DRTC-Resh03/DEBUG/root: Performing task "search_return" for user 6c4396b0-61fc-4ade-9253-e58b8c4aac30...
17: [2022-06-13 11:58:06,840] ECS-DRTC-Resh03/DEBUG/urllib3.connectionpool: http://localhost:32677

"POST /api/v1/travelservice/trips/left HTTP/1.1" 200 None
18: [2022-06-13 11:58:07,841] ECS-DRTC-Resh03/DEBUG/root: Running user "no login" with id b9b0b541-6330-49fc-a128-f5e089fcbc01...
19: [2022-06-13 11:58:07,841] ECS-DRTC-Resh03/DEBUG/root: Performing task "home" for user b9b0b541-6330-49fc-a128-f5e089fcbc01...
20: [2022-06-13 11:58:07,847] ECS-DRTC-Resh03/DEBUG/urllib3.connectionpool: http://localhost:32677 "GET /index.html HTTP/1.1" 200 18128
21: [2022-06-13 11:58:07,847] ECS-DRTC-Resh03/DEBUG/root: Performing task "search_departure" for user b9b0b541-6330-49fc-a128-f5e089fcbc01...
22: [2022-06-13 11:58:08,220] ECS-DRTC-Resh03/DEBUG/urllib3.connectionpool: http://localhost:32677

"POST /api/v1/travelservice/trips/left HTTP/1.1" 200 None

...
1851: [2022-06-13 12:08:06,002] ECS-DRTC-Resh03/INFO/locust.main: --run-time limit reached. Stopping Locust
1852: [2022-06-13 12:08:06,003] ECS-DRTC-Resh03/DEBUG/locust.runners: Stopping all users
1853: [2022-06-13 12:08:06,005] ECS-DRTC-Resh03/DEBUG/locust.runners: Stopping Greenlet-0
1854: [2022-06-13 12:08:06,012] ECS-DRTC-Resh03/DEBUG/locust.runners: 1 users have been stopped, 0 still running
1855: [2022-06-13 12:08:06,015] ECS-DRTC-Resh03/DEBUG/locust.main: Running teardowns...
1856: [2022-06-13 12:08:06,015] ECS-DRTC-Resh03/INFO/locust.main: Shutting down (exit code 0)
1857: [2022-06-13 12:08:06,016] ECS-DRTC-Resh03/DEBUG/locust.main: Cleaning up runner...

Figure 5.5. Example of a locust log of a process that for a given user class (line 4) spawns
several instances of that user (lines 10, 18).

also determine time intervals of activity for each User instance. Using this intervals we

can map service calls from the access log to the corresponding User/User instance.

Table 5.1 contains a sample inbound and outbound request’s access-log, where both logs

are from service-a’s proxy sidecar, and its service DNS inside the Kubernetes cluster is

‘a-service.default.svc.cluster.local’.

The outbound request indicates that the event log contains upstream service information

in DNS format, with the key ‘upstream cluster’ and ‘path’ indicating which upstream ser-

vice endpoint is being requested. Also ’start_time’ contains the time of the call, which we

can use to map the call to a particular User instance. We can use this information to con-

struct the SDG, in which a-service and b-service each represent a node, with a directed

edge connecting a-service to b-service. We can also maintain the interaction count as

edge-weight on this directed edge. We can analyze each access log of a distributed sys-

tem and generate an edge in the graph for each interaction between two services within

a time period. If the services already have an edge, we can increase the weight of the

edge by one. Finally, we can use a visualizing tool to draw the graph automatically.

One thing to note is that while both the inbound and outbound logs contain downstream

and upstream addresses in the form of IPs, IPs are ephemeral in Kubernetes-based sys-

tems because they rely on ephemeral ‘Pods’ [55]. The service’s DNS, on the other hand,

is stable, and it will forward traffic to a Pod’s or a group of pods’ updated IP address [55].

Another complication we have faced is the fact that by default the two systems (pptam/lo-

cust and Istio) log the events using different timezone, so a correction for time needs to

30

be done when mapping calls from access logs to time intervals inferred from the locust

log.

For our tool we are using Python and in particular NetworkX library to store the result-

ing graphs. We use the networkx.MultiDiGraph class, i.e. directed multigraph class.

Nodes are services and multi-edges go from service making the call to the service re-

ceiving it. For multi-edges, it is necessary in NetworkX to specify a unique key for each

edge to distinguish several edges connecting the same pair of nodes. In our case the key

is the endpoint being called. In addition, the total amount of such calls is recorded as the

edge’s weight. NetworkX has provided functions for drawing the graphs, which can be

customized for a better layout.

The tool and the logs obtained in this work are available in the GitHub repository6.

5.3 Results

Here we present examples of the obtained Service Dependency Graphs and discuss the

results generated by each pattern detector.

5.3.1 Example call graphs

The call graphs for each User can be seen in figures 5.6 - 5.10.

Generally we notice that only a few services are used in UserNoLogin (figure 5.6), which

only performs train searches. The activity of UserBooking (figure 5.7) is noticeably more

complicated, however we observe that the the graph of UserNoLogin is a subgraph of

UserBooking, which makes sense since UserBooking also performs a search first, thus

it includes all activity of UserNoLogin in itself (we also verified it analytically through Net-

workX).

UserConsignTicket, UserCancelNoRefund and UserRefundVoucher all extend UserBook-

ing in three different ways, and we can see that the added functionality (consigning the

ticket, cancelling the order, requesting the voucher) is cleanly separated to other service -

the only addition to graph of UserBooking in the other three Users (figures 5.8 - 5.10), are

the calls to ts-consign- service, ts-cancel-service and ts-voucher-service,

respectively, and these services make other necessary calls to carry out the business

logic.

6https://github.com/bakhtos/TrainTicketsBPE

31

Figure 5.6. Aggregated call graph of all instances of UserNoLogin

Figure 5.7. Aggregated call graph of all instances of UserBooking

32

Figure 5.8. Aggregated call graph of all instances of UserConsignTicket

Figure 5.9. Aggregated call graph of all instances of UserCancelNoRefund

33

Figure 5.10. Aggregated call graph of all instances of UserRefundVoucher

5.3.2 Frontend integration - results

According to official documentation of all TrainTicket services on Github7, ts-ui-dashboard
is the only service responsible for the UI of TrainTicket, so the detector of Frontend In-

tegration pattern was provided only with this service as ’service designated as frontend

service’ (see detector specification in section 5.1.2). The results for each business pro-

cess/user are as follows:

UserBooking In all 70 run instances ts-ui-dashboard was successfully detected

as potential Frontend service and not returned as Frontend Integration violator. No

other services were reported as Frontend services (as expected), with the exception of

UserBooking_83ed2f64-c5a9-46b7-af7f-7a4f23259c71 instance - in that case 11

additional services were reported, but examination of locust log for that instance revealed

that it was the last instance run because during its execution locust timed-out when it was

performing the first task (logging in), so naturally most services were still unused.

UserNoLogin All 199 instances fulfill the pattern - only ts-ui-dashboard is reported

as potential Frontend service and it is not a violator.

7https://github.com/FudanSELab/train-ticket/wiki/Service-Guide-and-API-Reference

34

UserConsignTicket All 92 instances fulfill the pattern - only ts-ui-dashboard is re-

ported as potential Frontend service and it is not a violator.

UserCancelNoRefund All 199 instances fulfill the pattern - only ts-ui-dashboard is

reported as potential Frontend service and it is not a violator.

UserRefundVoucher All 224 instances fulfill the pattern - only ts-ui-dashboard is

reported as potential Frontend service and it is not a violator.

We should also recall that, as described in section 5.2.2, our User did not interact with

the system using the User Interface, but sent call to endpoints that actually performed the

tasks directly, so our graphs do not represent the full interactions of ts-ui-dashboard
with other services. However, if for some reason some other service needed to call

ts-ui-dashboard to carry out some business logic, than it would of course do it re-

gardless of how the service’s own operation was triggered - by a call from UI or by direct

call from User, so detection of Frontend Integration pattern is still a valid task in this case.

5.3.3 Information Holder Resource - results

By going through a list of all services for which Istio has generated access logs, we notice

that most of services have a corresponding -mongo service as well (in one case there is

-mysql instead), which shows that most such services have a database associated with

them. Thus it makes sense to provide all -mongo services to the detector as ’services

designated as database services (see specification in section 5.1.2).

Since there are many database services and user instances, enumerating all detections

is not feasible and so the detection results are summarized in tables 5.2 and 5.3 by

presenting counts of each User’s instance that detect a specific service/service pair.

The results are surprising. Most of pairs of IHR and DB services that we identified and ex-

pected to see in the reports have only been detected for one particular User instance of

one particular User (UserBooking). Otherwise these services did not receive any calls

and are not even part of the SDG for other User instances (see how those DB ser-

vices that have 1 count in table 5.2 have 1 count missing in table 5.3, while all other

DB services have full counts in table 5.3). The only exception to this trend is the pair

of ts-voucher-service and ts-voucher-mysql, which appear to have calls between

them in all instances of UserRefundVoucher.8

This could lead us to assume that the calls to -mongo services are some kind of initial-

ization procedure which happens when the system is started if the User instance that

8In this context ’all’ can mean ’all but one’ because the last User Instance is most likely aborted early
due to locust timeout, as explained before in section 5.3.2.

35

Table 5.2. Results of IHR pattern detection: IHR-DB pairs (correct pairs have a check-
mark).

Service User

IHR DB NoLogin Booking ConsignTicket CancelNoRefund RefundVoucher

IHR-DB pattern confirmed

✓ ts-config-service ts-config-mongo 0/263 1/70 0/92 0/199 0/224

✓ ts-price-service ts-price-mongo 0/263 1/70 0/92 0/199 0/224

✓ ts-inside-payment-service ts-inside-payment-mongo 0/263 1/70 0/92 0/199 0/224

✓ ts-travel2-service ts-travel2-mongo 0/263 1/70 0/92 0/199 0/224

✓ ts-food-map-service ts-food-map-mongo 0/263 1/70 0/92 0/199 0/224

✓ ts-station-service ts-station-mongo 0/263 1/70 0/92 0/199 0/224

✓ ts-payment-service ts-payment-mongo 0/263 1/70 0/92 0/199 0/224

✓ ts-order-service ts-order-mongo 0/263 1/70 0/92 0/199 0/224

✓ ts-route-service ts-route-mongo 0/263 1/70 0/92 0/199 0/224

✓ ts-security-service ts-security-mongo 0/263 1/70 0/92 0/199 0/224

✓ ts-auth-service ts-auth-mongo 0/263 1/70 0/92 0/199 0/224

✓ ts-contacts-service ts-contacts-mongo 0/263 1/70 0/92 0/199 0/224

✓ ts-order-other-service ts-order-other-mongo 0/263 1/70 0/92 0/199 0/224

✓ ts-ticket-office-service ts-ticket-office-mongo 0/263 1/70 0/92 0/199 0/224

✓ ts-consign-price-service ts-consign-price-mongo 0/263 1/70 0/92 0/199 0/224

✓ ts-train-service ts-train-mongo 0/263 1/70 0/92 0/199 0/224

✓ ts-user-service ts-user-mongo 0/263 1/70 0/92 0/199 0/224

✓ ts-voucher-service ts-voucher-mysql 0/263 1/70 0/92 0/199 0/224

ts-food-service ts-food-map-service 0/263 1/70 0/92 0/199 0/224

ts-consign-service ts-consign-price-service 0/263 0/70 91/92 0/199 0/224

ts-ui-dashboard ts-auth-service 0/263 0/70 0/92 1/199 0/224

ts-basic-service ts-station-service 56/263 0/70 0/92 0/199 0/224

IHR-DB pattern violated

✓ ts-voucher-service ts-voucher-mysql 0/263 0/70 0/92 0/199 223/224

✓ ts-travel-service ts-travel-mongo 0/263 1/70 0/92 0/199 0/224

ts-travel-service ts-route-service 56/263 1/70 0/92 0/199 0/224

ts-ui-dashboard ts-verification-code-service 0/263 1/70 0/92 0/199 0/224

ts-ui-dashboard ts-assurance-service 0/263 69/70 92/92 198/199 223/224

ts-ui-dashboard ts-contacts-service 0/263 3/70 0/92 0/199 0/224

ts-basic-service ts-price-service 207/263 68/70 92/92 198/199 223/224

ts-basic-service ts-station-service 207/263 1/70 0/92 0/199 0/224

ts-seat-service ts-config-service 207/263 68/70 92/92 198/199 223/224

ts-preserve-service ts-food-service 0/263 1/70 0/92 0/199 0/224

ts-security-service ts-order-other-service 0/263 68/70 92/92 198/199 223/224

ts-food-service ts-food-map-service 0/263 68/70 92/92 198/199 223/224

ts-inside-payment-service ts-payment-service 0/263 65/70 91/92 198/199 223/224

Table 5.3. Results of IHR pattern detection: DB services with no IHR.

DB Service User

NoLogin Booking ConsignTicket CancelNoRefund RefundVoucher

ts-delivery-mongo 263/263 70/70 92/92 199/199 224/224

ts-notification-mongo 263/263 70/70 92/92 199/199 224/224

ts-assurance-mongo 263/263 70/70 92/92 199/199 224/224

ts-consign-mongo 263/263 70/70 92/92 199/199 224/224

ts-food-mongo 263/263 70/70 92/92 199/199 224/224

ts-config-mongo 263/263 69/70 92/92 199/199 224/224

ts-user-mongo 263/263 69/70 92/92 199/199 224/224

ts-order-mongo 263/263 69/70 92/92 199/199 224/224

ts-voucher-mysql 263/263 69/70 92/92 199/199 1/224

ts-travel2-mongo 263/263 69/70 92/92 199/199 224/224

ts-price-mongo 263/263 69/70 92/92 199/199 224/224

ts-train-mongo 263/263 69/70 92/92 199/199 224/224

ts-station-mongo 263/263 69/70 92/92 199/199 224/224

ts-order-other-mongo 263/263 69/70 92/92 199/199 224/224

ts-contacts-mongo 263/263 69/70 92/92 199/199 224/224

ts-route-mongo 263/263 69/70 92/92 199/199 224/224

ts-inside-payment-mongo 263/263 69/70 92/92 199/199 224/224

ts-consign-price-mongo 263/263 69/70 92/92 199/199 224/224

ts-food-map-mongo 263/263 69/70 92/92 199/199 224/224

ts-security-mongo 263/263 69/70 92/92 199/199 224/224

ts-ticket-office-mongo 263/263 69/70 92/92 199/199 224/224

ts-travel-mongo 263/263 69/70 92/92 199/199 224/224

ts-auth-mongo 263/263 69/70 92/92 199/199 224/224

ts-payment-mongo 263/263 69/70 92/92 199/199 224/224

36

detected these calls was the very first instance that was run in the whole experiment.

However, although UserBooking was indeed the first User processed by locust, this par-

ticular User instance of UserBooking was actually the last spawned one, during which

locust terminated the execution of UserBooking. Thus it appears that these DB services

are spawned but actually not used. These numbers match our results from [13], where

Users were run simultaneously, but most -mongo services also had only 1 or 2 calls

throughout the whole load test as well. We intend to expand the work from this thesis into

a paper in the near future, and so we will investigate this result further.

We can also note that this detector will inevitably have false positives - a call chain

has to terminate somewhere (otherwise it forms a cycle, which is a more serious vi-

olation that is not studied in this thesis), so the last and second-to-last services in a

chain will satisfy our graph definition of IHR-DB pair. These are the entries in table

5.2 that are not marked with a checkmark. Even though they are not an actual IHR-

DB pair, we can still note that there is no ’surprising’ activity in this pairs: for exam-

ple, ts-consign-service only calls ts-consign-price-service during UserCon-

signTicket, similarly ts-inside-payment-service calls ts-payment-service in all

Users except UserNoLogin, since it is the only User that does not perform booking.

Since we also designed this pattern detector to check if DB services make calls, we shall

note now that no DB services made calls in this experiment.

5.3.4 Request Bundle - results

As described in detector specification in Section 5.1.2, Request Bundle detection can be

performed on Service level or Endpoint level. Since detections of Endpoint level would

be a subset of Service Level detections, we note now that for this experiment these sets

were equal and only present Endpoint level results for TrainTicket.

There are many Request Bundles and so they are divided among table 5.4 and 5.5. First

column shows the calling service, second the called service and the called endpoint, third

shows the amount of consecutive calls that make up the bundle, forth tells how many

bundles of such size were detected in total (in some case there were several during a

single User Instance), further columns tell how many instances of each User detected the

bundle.

There are many pairs of services that break the pattern and have bundles of calls that hap-

pen many times during the business process execution. Several bundles occur in most of

the Users and User Instances, such as ts-travel-service calling ts-route-service
two or five times in a row, which is observed several times for each User Instance;

ts-basic-service calling ts-station-service twice in row; ts-preserve-service
and ts-food-service each calling ts-station-service twice in a row.

37

We notice that while ts-travel-service called ts-route-service twice in a row

during some instances of UserNoLogin, in all other Users this call happens 5 times in

a row, so either logging in or making an order is implemented inefficiently due to ab-

sence of Request Bundle in the second service. There are also several bundles in 5.5

that occur only in Users that perform logging in and booking, however they occur in

all such Users, so these bundles also represent calls that can be optimized. In addi-

tion, ts-consign-service is implemented inefficiently, since all instances of UserCon-

signTicket have a request bundle with this service.

We assume that most bundles have only two consecutive calls due to the fact that these

two calls are related to departure and arrival stations, or to forward and return journeys.

Also, most bundles that appear in the results have been caused by one instance of User-

Booking - this is the same instance the gave surprising outputs for Information Holder

Resource. Apparently is was some kind of anomalous User instance that caused some

unexpected behavior in the system. Interestingly, User instances of other Users which

were aborted at timeout did not cause similar behavior.

38

Table 5.4. Results of Request Bundle pattern detection: Part I

a-service b-service
endpoint

#calls #bundles User

N
oL

og
in

B
oo

ki
ng

C
on

si
gn

Ti
ck

et

C
an

ce
lN

oR
ef

un
d

R
ef

un
dV

ou
ch

er

ts-travel-service ts-ticketinfo-service
/api/v1/ticketinfoservice/ticketinfo

2 115 0/263 1/70 0/92 1/199 0/224

ts-travel-service ts-ticketinfo-service
/api/v1/ticketinfoservice/ticketinfo

3 18 0/263 1/70 0/92 0/199 0/224

ts-travel-service ts-ticketinfo-service
/api/v1/ticketinfoservice/ticketinfo

5 6 0/263 1/70 0/92 0/199 0/224

ts-travel-service ts-ticketinfo-service
/api/v1/ticketinfoservice/ticketinfo

4 4 0/263 1/70 0/92 0/199 0/224

ts-travel-service ts-route-service
/api/v1/routeservice/routes

5 1115 261/263 70/70 91/92 198/199 222/224

ts-travel-service ts-route-service
/api/v1/routeservice/routes

2 400 147/263 1/70 0/92 0/199 0/224

ts-travel-service ts-route-service
/api/v1/routeservice/routes

20 1 0/263 1/70 0/92 0/199 0/224

ts-travel-service ts-route-service
/api/v1/routeservice/routes

4 9 0/263 1/70 1/92 0/199 0/224

ts-travel-service ts-train-service
/api/v1/trainservice/trains

2 29 0/263 1/70 0/92 0/199 0/224

ts-travel-service ts-train-service
/api/v1/trainservice/trains

3 2 0/263 1/70 0/92 0/199 0/224

ts-travel-service ts-train-service
/api/v1/trainservice/trains

5 1 0/263 1/70 0/92 0/199 0/224

ts-travel-service ts-seat-service
/api/v1/seatservice/seats

2 14 0/263 1/70 0/92 0/199 0/224

ts-travel-service ts-seat-service
/api/v1/seatservice/seats

3 1 0/263 1/70 0/92 0/199 0/224

ts-travel-service ts-seat-service
/api/v1/seatservice/seats

4 2 0/263 1/70 0/92 0/199 0/224

ts-travel-service ts-order-service
/api/v1/orderservice/order

2 4 0/263 1/70 0/92 0/199 0/224

ts-travel-service ts-order-service
/api/v1/orderservice/order

5 1 0/263 1/70 0/92 0/199 0/224

ts-seat-service ts-travel-service
/api/v1/travelservice/routes

5 1 0/263 1/70 0/92 0/199 0/224

ts-seat-service ts-travel-service
/api/v1/travelservice/routes

2 20 0/263 1/70 0/92 0/199 0/224

ts-seat-service ts-travel-service
/api/v1/travelservice/routes

3 1 0/263 1/70 0/92 0/199 0/224

ts-seat-service ts-travel-service
/api/v1/travelservice/routes

4 1 0/263 1/70 0/92 0/199 0/224

ts-seat-service ts-travel-service
/api/v1/travelservice/train_types

2 24 0/263 1/70 0/92 0/199 0/224

ts-seat-service ts-travel-service
/api/v1/travelservice/train_types

3 1 0/263 1/70 0/92 0/199 0/224

ts-seat-service ts-travel-service
/api/v1/travelservice/train_types

5 1 0/263 1/70 0/92 0/199 0/224

ts-seat-service ts-config-service
/api/v1/configservice/configs

2 9 0/263 1/70 0/92 0/199 0/224

ts-seat-service ts-config-service
/api/v1/configservice/configs

3 1 0/263 1/70 0/92 0/199 0/224

ts-seat-service ts-config-service
/api/v1/configservice/configs

5 1 0/263 1/70 0/92 0/199 0/224

ts-seat-service ts-order-service
/api/v1/orderservice/order

2 20 0/263 1/70 0/92 0/199 0/224

ts-seat-service ts-order-service
/api/v1/orderservice/order

5 1 0/263 1/70 0/92 0/199 0/224

39

Table 5.5. Results of Request Bundle pattern detection: Part II

a-service b-service
endpoint

#calls #bundles User

N
oL

og
in

B
oo

ki
ng

C
on

si
gn

Ti
ck

et

C
an

ce
lN

oR
ef

un
d

R
ef

un
dV

ou
ch

er

ts-ui-dashboard ts-travel-service
/api/v1/travelservice/trips

4 1 0/263 1/70 0/92 0/199 0/224

ts-ui-dashboard ts-travel-service
/api/v1/travelservice/trips

5 2 0/263 1/70 0/92 0/199 0/224

ts-ui-dashboard ts-travel-service
/api/v1/travelservice/trips

2 2 0/263 1/70 0/92 0/199 0/224

ts-ui-dashboard ts-contacts-service
/api/v1/contactservice/contacts

2 581 0/263 68/70 92/92 198/199 223/224

ts-ui-dashboard ts-consign-service
/api/v1/consignservice/consigns

2 91 0/263 0/70 91/92 0/199 0/224

ts-ui-dashboard ts-auth-service
/api/v1/users/login

2 1 0/263 1/70 0/92 0/199 0/224

ts-basic-service ts-station-service
/api/v1/stationservice/stations

2 5533 207/263 69/70 92/92 198/199 223/224

ts-basic-service ts-station-service
/api/v1/stationservice/stations

3 54 0/263 1/70 0/92 0/199 0/224

ts-basic-service ts-station-service
/api/v1/stationservice/stations

4 14 0/263 1/70 0/92 0/199 0/224

ts-basic-service ts-station-service
/api/v1/stationservice/stations

10 1 0/263 1/70 0/92 0/199 0/224

ts-basic-service ts-station-service
/api/v1/stationservice/stations

5 7 0/263 1/70 0/92 0/199 0/224

ts-basic-service ts-route-service
/api/v1/routeservice/routes

5 1 0/263 1/70 0/92 0/199 0/224

ts-basic-service ts-route-service
/api/v1/routeservice/routes

2 2 0/263 1/70 0/92 0/199 0/224

ts-basic-service ts-price-service
/api/v1/priceservice/prices

2 3 0/263 1/70 0/92 0/199 0/224

ts-basic-service ts-price-service
/api/v1/priceservice/prices

5 1 0/263 1/70 0/92 0/199 0/224

ts-basic-service ts-train-service
/api/v1/trainservice/trains

2 6 0/263 1/70 0/92 0/199 0/224

ts-ticketinfo-service ts-basic-service
/api/v1/basicservice/basic

2 119 0/263 1/70 0/92 1/199 0/224

ts-ticketinfo-service ts-basic-service
/api/v1/basicservice/basic

3 14 0/263 1/70 0/92 0/199 0/224

ts-ticketinfo-service ts-basic-service
/api/v1/basicservice/basic

5 4 0/263 1/70 0/92 0/199 0/224

ts-ticketinfo-service ts-basic-service
/api/v1/basicservice/basic

4 1 0/263 1/70 0/92 0/199 0/224

ts-preserve-service ts-station-service
/api/v1/stationservice/stations

2 579 0/263 67/70 91/92 198/199 223/224

ts-food-service ts-station-service
/api/v1/stationservice/stations

2 581 0/263 68/70 92/92 198/199 223/224

ts-cancel-service ts-order-service
/api/v1/orderservice/order

2 198 0/263 0/70 0/92 198/199 0/224

ts-order-service ts-order-mongo
/

2 1 0/263 1/70 0/92 0/199 0/224

ts-station-service ts-station-mongo
/

4 1 0/263 1/70 0/92 0/199 0/224

ts-train-service ts-train-mongo
/

2 1 0/263 1/70 0/92 0/199 0/224

ts-price-service ts-price-mongo
/

3 1 0/263 1/70 0/92 0/199 0/224

ts-travel-service ts-route-service
/api/v1/routeservice/routes

3 21 1/263 1/70 0/92 0/199 1/224

ts-route-service ts-route-mongo
/

3 1 0/263 1/70 0/92 0/199 0/224

ts-config-service ts-config-mongo
/

3 1 0/263 1/70 0/92 0/199 0/224

40

6. DISCUSSION

It is interesting to note that the vast majority of MAPs can be detected by tools, even if

there are no tools that analyze them all. Foundation patterns are the only group of MAPs

where no tools implemented their detection, except for the "API description." However,

few other patterns could be technically detected, and therefore tools could implement

them. Other pattern categories have rather reasonable coverage by tools.

Regarding RQ1, we found 59 tools available for the detection task. We listed these tools in

Tables 4.2 and 4.3. These tables also divided the tools based on open-source availability.

We further categorized these tools based on patterns they identify in Table 4.4. However,

not all tools had available information on which patterns they could detect.

With regards to RQ2, almost no tool identifies the patterns directly. The extracted results

must be post-interpreted by users to identify these patterns from the provided information.

For example, tools discovering the pattern ’Semantic Versioning Identifier’ do not simply

tell if the project has followed the SemVer specification1, but instead tell the correct identi-

fier (increment) based on changes in the source, and it is up to the developer/researcher

to compare it to the one actually used. This is a missing step to better terminology uni-

fication, establishment, and automation in the domain, which some practitioners could

desire. Still, there are notable gaps and improvement opportunities. Despite 59 tools

found, there is no outstanding tool with respect to the detection coverage of a number

of patterns. Tools must be combined to address different types of patterns. Table 4.4

outlines identified gaps that quality assurance tools should fill to provide better quality

measures through integration into a single solution. Some conventional API testing tools

could be used to detect specific patterns, but we excluded such tools as they need ex-

plicit scripting. As an example, in Postman [56], it is possible to extract request/response

headers from HTTP calls, and from the headers, users can write tests to see if it contains

API Key or Version information, etc.

Related to RQ3, identified tools are predominantly based on static code analysis, and

more advanced techniques might be necessary to detect some patterns as depicted by

Table 4.4. This table also shows that some patterns that could be detected by the tech-

niques we identified are not yet recognized by the pool of tools we found, which opens

1www.semver.org

41

opportunities. Some of the patterns currently require manual input to be determined.

However, this opens questions about whether other techniques could be considered to

address these patterns. For instance, “Rate Plan” and “SLA” are about the legal use

of the API, and perhaps organizational policies need to be taken into account. Still,

these policies are not in a machine-readable format, and there is no guarantee these

are enforced; thus, more advanced mechanisms would need to be considered to allow

combinations of static or dynamic analysis with organizational policies.

When it comes to RQ4, we successfully implemented a tool that detects the three se-

lected patterns - Frontend Integration, Information Holder Resource and Request Bundle.

We have used Python and its library NetworkX. We notice that part of code actually pro-

cessing the graphs is relatively small, and the part reading and parsing the logs is the

more complicated and longer part of the code.

We also performed an experiment on pattern detection on a microservice system TrainTicket

to answer RQ5. We achieved several insights into the system. Firstly, the Frontend

Integration pattern is conformed to, with no exceptional cases. Secondly, Information

Holder Resource and Request Bundle patterns are not followed, with almost every ser-

vice spawning a MongoDB counterpart which appears to not be used (or at least not

logged properly) and only functioning database being ts-voucher-mysql, as well as

several service pairs having inefficient consecutive calls. Most of such pairs of calls seem

to be related to activity of logging in or booking a ticket given the detection distribution

among Users. We also witnessed an anomalous User instance, which, due to its timeout,

appears to have caused a lot of activity in the system that got detected by our tool in form

of IHR and Request Bundle pattern violations. We could not investigate the activity of that

instance closely in the scope of this thesis, however we note that having a bug in one of

the services that can cause many unnecessary calls to happen all over the system is one

of the worst situations for developers to find themselves in, since if this bug occurs in a

deployed system, it could overload it and lead to temporary shutdown, which could lead

to disrupted business, money and customer loss.

The results of this work can be useful for researchers that can investigate different tech-

niques for detecting patterns. This review’s outcomes could also be useful to practitioners

who can access the list of tools and our own tool that automatically detect patterns and

eventually integrate them in continuous quality control models [57]. Finally, results might

be beneficial to tool providers that might extend their solutions to detect a large number

of patterns or integrate them into DevOps pipelines [58].

42

7. CONCLUSION

This thesis considered Microservice API patterns (MAP) and their recognition by available

quality assurance tools. We performed a Multivocal Literature Review to identify existing

tools to detect MAPs, as well as considered the potential of developing such tools using

several techniques. We have identified 59 tools that address 34 MAPs out of 46. We

did not find a specific tool that would surpass others, and thus a combination of tools

is necessary to cover a broader spectrum of MAPs. Yet, not complete coverage exists

considering our search results.

We attempted to bridge the gap by providing a tool that reconstructs a Service Depen-

dency Graph from telemetry logs to detect three MAPs - Frontend Integration, Information

Holder Resource and Request Bundle. We also performed a case study on a microser-

vice benchmark system TrainTicket. Results of the case study provided important insights

into the systems’ flawed architecture.

43

REFERENCES

[1] Wedyan, F. and Abufakher, S. Impact of design patterns on software quality: a sys-

tematic literature review. IET Software 14.1 (2020), pp. 1–17.

[2] Taibi, D., Lenarduzzi, V. and Pahl, C. Architectural Patterns for Microservices: A

Systematic Mapping Study. Proceedings of the 8th International Conference on

Cloud Computing and Services Science - Volume 1: CLOSER, INSTICC. SciTePress,

2018, pp. 221–232. ISBN: 978-989-758-295-0. DOI: 10.5220/0006798302210232.

[3] Zimmermann, O., Stocker, M., Lübke, D., Pautasso, C. and Zdun, U. Introduction to

Microservice API Patterns (MAP). International Conference on Microservices (Mi-

croservices 2019). 2019. DOI: 10.4230/OASIcs.Microservices.2017/2019.4.

[4] Wiggins, A. The Twelve-Factor App. URL: https://12factor.net/ (visited on

11/11/2022).

[5] Lewis, J. and Fowler, M. MicroServices. Mar. 2014. URL: www.martinfowler.
com/articles/microservices.html (visited on 11/11/2022).

[6] Newman, S. Building Microservices. O’Reilly Media, Inc., 2015. ISBN: 9781491950357.

[7] Cerny, T., Svacina, J., Das, D., Bushong, V., Bures, M., Tisnovsky, P., Frajtak, K.,

Shin, D. and Huang, J. On Code Analysis Opportunities and Challenges for Enter-

prise Systems and Microservices. IEEE Access (2020), pp. 1–22. DOI: 10.1109/
ACCESS.2020.3019985.

[8] Walker, A., Das, D. and Cerný, T. Automated Code-Smell Detection in Microser-

vices Through Static Analysis: A Case Study. Applied Sciences (2020).

[9] Saarimäki, N., Baldassarre, M. T., Lenarduzzi, V. and Romano, S. On the Accuracy

of SonarQube Technical Debt Remediation Time. 2019 45th Euromicro Conference

on Software Engineering and Advanced Applications (SEAA) (2019), pp. 317–324.

[10] Soldani, J., Muntoni, G., Neri, D. and Brogi, A. The µTOSCA toolchain: Mining, an-

alyzing, and refactoring microservice-based architectures. Software: Practice and

Experience 51 (2021), pp. 1591–1621.

[11] Garousi, V., Felderer, M. and Mäntylä, M. V. Guidelines for including grey literature

and conducting multivocal literature reviews in software engineering. Information

and Software Technology 106 (2019), pp. 101–121. ISSN: 0950-5849.

[12] Bakhtin, A., Al Maruf, A., Cerny, T. and Taibi, D. Survey on Tools and Techniques

Detecting Microservice API Patterns. 2022 IEEE International Conference on Ser-

vices Computing (SCC). 2022, pp. 31–38. DOI: 10.1109/SCC55611.2022.00018.

https://doi.org/10.5220/0006798302210232
https://doi.org/10.4230/OASIcs.Microservices.2017/2019.4
https://12factor.net/
www.martinfowler.com/articles/microservices.html
www.martinfowler.com/articles/microservices.html
https://doi.org/10.1109/ACCESS.2020.3019985
https://doi.org/10.1109/ACCESS.2020.3019985
https://doi.org/10.1109/SCC55611.2022.00018

44

[13] Maruf, A. A., Bakhtin, A., Cerný, T. and Taibi, D. Using Microservice Telemetry Data

for System Dynamic Analysis. 2022 IEEE International Conference on Service-

Oriented System Engineering (SOSE) (2022), pp. 29–38.

[14] Zimmermann, O. Microservice API patterns. URL: https://www.microservice-
api-patterns.org/ (visited on 02/04/2022).

[15] Taibi, D., Lenarduzzi, V. and Pahl, C. Processes, Motivations, and Issues for Migrat-

ing to Microservices Architectures: An Empirical Investigation. IEEE Cloud Com-

puting 4.5 (Sept. 2017), pp. 22–32. ISSN: 2325-6095. DOI: 10.1109/MCC.2017.
4250931.

[16] Auer, F., Lenarduzzi, V., Felderer, M. and Taibi, D. From monolithic systems to Mi-

croservices: An assessment framework. Information and Software Technology 137

(2021), p. 106600. ISSN: 0950-5849. DOI: https :/ / doi. org / 10. 1016 /j .
infsof.2021.106600. URL: https://www.sciencedirect.com/science/
article/pii/S0950584921000793.

[17] Weske, M. Business Process Management: Concepts, Languages, Architectures.

Springer Berlin Heidelberg, 2012. ISBN: 9783642286162. URL: https://books.
google.fi/books?id=-D5tpT5Xz8oC.

[18] Panichella, S., Imranur, M. R. and Taibi, D. Structural Coupling for Microservices.

11th International Conference on Cloud Computing and Services Science. Apr.

2021.

[19] Pigazzini, I., Arcelli Fontana, F., Lenarduzzi, V. and Taibi, D. Towards Microservice

Smells Detection. Proceedings of the 3rd International Conference on Technical

Debt. TechDebt ’20. Seoul, Republic of Korea, 2020, pp. 92–97. ISBN: 9781450379601.

DOI: 10.1145/3387906.3388625.

[20] Dwivedi, A. K., Tirkey, A. and Rath, S. K. Software design pattern mining us-

ing classification-based techniques. Frontiers of Computer Science 12.5 (2018),

pp. 908–922.

[21] F. Farias, M. A. de, Novais, R., Júnior, M. C., Silva Carvalho, L. P. da, Mendonça, M.

and Spınola, R. O. A Systematic Mapping Study on Mining Software Repositories.

Proceedings of the 31st Annual ACM Symposium on Applied Computing. SAC ’16.

Pisa, Italy, 2016, pp. 1472–1479. ISBN: 9781450337397.

[22] Carnell, J. and Sánchez, I. H. Spring microservices in action. Simon and Schuster,

2021.

[23] Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri, D. A. and Lynn, T. Microser-

vices migration patterns. Software: Practice and Experience 48.11 (2018), pp. 2019–

2042.

[24] Taibi, D., El Ioini, N., Claus, P. and Niederkofler, J. R. S. Patterns for Serverless

Functions (Function-as-a-Service): A Multivocal Literature Review. 10th Interna-

tional Conference on Cloud Computing and Services Science (CLOSER). 2020,

pp. 181–192. ISBN: 978-989-758-424-4. DOI: 10.5220/0009578501810192.

https://www.microservice-api-patterns.org/
https://www.microservice-api-patterns.org/
https://doi.org/10.1109/MCC.2017.4250931
https://doi.org/10.1109/MCC.2017.4250931
https://doi.org/https://doi.org/10.1016/j.infsof.2021.106600
https://doi.org/https://doi.org/10.1016/j.infsof.2021.106600
https://www.sciencedirect.com/science/article/pii/S0950584921000793
https://www.sciencedirect.com/science/article/pii/S0950584921000793
https://books.google.fi/books?id=-D5tpT5Xz8oC
https://books.google.fi/books?id=-D5tpT5Xz8oC
https://doi.org/10.1145/3387906.3388625
https://doi.org/10.5220/0009578501810192

45

[25] Zimmermann, O., Stocker, M., Lübke, D., Pautasso, C. and Zdun, U. Introduction to

Microservice API Patterns (MAP). Joint Post-proceedings of the First and Second

International Conference on Microservices (Microservices 2017/2019). 2020, 4:1–

4:17.

[26] Zimmermann, O., Lübke, D., Zdun, U., Pautasso, C. and Stocker, M. Interface Re-

sponsibility Patterns: Processing Resources and Operation Responsibilities. Euro-

pean Conference on Pattern Languages of Programs 2020. EuroPLoP ’20. 2020.

[27] Zimmermann, O., Pautasso, C., Lübke, D., Zdun, U. and Stocker, M. Data-Oriented

Interface Responsibility Patterns: Types of Information Holder Resources. Euro-

PLoP ’20. 2020.

[28] Lübke, D., Zimmermann, O., Pautasso, C., Zdun, U. and Stocker, M. Interface Evo-

lution Patterns: Balancing Compatibility and Extensibility across Service Life Cy-

cles. Proceedings of the 24th European Conference on Pattern Languages of Pro-

grams. EuroPLop ’19. Irsee, Germany: Association for Computing Machinery, 2019.

ISBN: 9781450362061.

[29] Stocker, M., Zimmermann, O., Lübke, D., Zdun, U. and Pautasso, C. Interface Qual-

ity Patterns – Communicating and Improving the Quality of Microservices APIs.

23rd European Conference on Pattern Languages of Programs 2018. July 2018.

DOI: 10.1145/3282308.3282319.

[30] Zimmermann, O., Stocker, M., Lübke, D. and Zdun, U. Interface Representation

Patterns - Crafting and Consuming Message-Based Remote APIs. 22nd Euro-

pean Conference on Pattern Languages of Programs (EuroPLoP 2017). July 2017,

pp. 1–36. DOI: 10.1145/3147704.3147734.

[31] Bushong, V., Abdelfattah, A. S., Maruf, A. A., Das, D., Lehman, A., Jaroszewski, E.,

Coffey, M., Cerny, T., Frajtak, K., Tisnovsky, P. and Bures, M. On Microservice Anal-

ysis and Architecture Evolution: A Systematic Mapping Study. Applied Sciences

11.17 (2021). DOI: 10.3390/app11177856.

[32] Taibi, D. and Systä, K. From Monolithic Systems to Microservices: A Decomposition

Framework based on Process Mining. Proceedings of the 9th International Confer-

ence on Cloud Computing and Services Science (CLOSER). INSTICC. SciTePress,

2019, pp. 153–164. DOI: 10.5220/0007755901530164.

[33] Taibi, D., Lenarduzzi, V. and Pahl, C. Microservices Anti-patterns: A Taxonomy.

Microservices: Science and Engineering. Cham: Springer International Publishing,

2020, pp. 111–128. DOI: 10.1007/978-3-030-31646-4_5.

[34] Taibi, D. and Lenarduzzi, V. On the Definition of Microservice Bad Smells. IEEE

Software 35.3 (2018), pp. 56–62. DOI: 10.1109/MS.2018.2141031.

[35] Bento, A., Correia, J., Filipe, R., Araújo, F. and Cardoso, J. S. Automated Analysis

of Distributed Tracing: Challenges and Research Directions. Journal of Grid Com-

puting 19 (2021), pp. 1–15.

https://doi.org/10.1145/3282308.3282319
https://doi.org/10.1145/3147704.3147734
https://doi.org/10.3390/app11177856
https://doi.org/10.5220/0007755901530164
https://doi.org/10.1007/978-3-030-31646-4_5
https://doi.org/10.1109/MS.2018.2141031

46

[36] Ma, S.-P., Fan, C.-Y., Chuang, Y., Lee, W.-T., Lee, S.-J. and Hsueh, N.-L. Using

Service Dependency Graph to Analyze and Test Microservices. 2018 IEEE 42nd

Annual Computer Software and Applications Conference (COMPSAC) 02 (2018),

pp. 81–86.

[37] Bushong, V., Sanders, R., Curtis, J., Du, M., Cerny, T., Frajtak, K., Tisnovsky, P.

and Shin, D. On Log Analysis and Stack Trace Use to Improve Program Slicing.

Information Science and Applications. Springer Singapore, Dec. 2021, (in print).

DOI: Acceptedforpublication.

[38] Zhao, X., Zhang, Y., Lion, D., Ullah, M. F., Luo, Y., Yuan, D. and Stumm, M. lprof:

A Non-intrusive Request Flow Profiler for Distributed Systems. 11th USENIX Sym-

posium on Operating Systems Design and Implementation (OSDI 14). Broomfield,

CO, 2014, pp. 629–644. ISBN: 978-1-931971-16-4.

[39] Peltonen, S., Mezzalira, L. and Taibi, D. Motivations, benefits, and issues for adopt-

ing Micro-Frontends: A Multivocal Literature Review. Information and Software Tech-

nology 136 (2021), p. 106571. ISSN: 0950-5849. DOI: https://doi.org/10.
1016/j.infsof.2021.106571.

[40] Zhou, X., Peng, X., Xie, T., Sun, J., Xu, C., Ji, C. and Zhao, W. Benchmarking Mi-

croservice Systems for Software Engineering Research. Proceedings of the 40th

International Conference on Software Engineering: Companion Proceeedings. ICSE

’18. Gothenburg, Sweden: Association for Computing Machinery, 2018, pp. 323–

324. ISBN: 9781450356633. DOI: 10 . 1145 / 3183440 . 3194991. URL: https :
//doi.org/10.1145/3183440.3194991.

[41] GitHub - FudanSELab/train-ticket. URL: https://github.com/FudanSELab/
train-ticket/ (visited on 11/11/2022).

[42] Walker, A., Das, D. and Černý, T. Automated Code-Smell Detection in Microser-

vices Through Static Analysis: A Case Study. Applied Sciences 10 (Nov. 2020).

DOI: 10.3390/app10217800.

[43] Černý, T. and Taibi, D. Static analysis tools in the era of cloud-native systems. May

2022.

[44] Černý, T., Abdelfattah, A., Bushong, V., Maruf, A. and Taibi, D. Microvision: Static

analysis-based approach to visualizing microservices in augmented reality. Aug.

2022, pp. 49–58. DOI: 10.1109/SOSE55356.2022.00012.

[45] Schiewe, M., Curtis, J., Bushong, V. and Černý, T. Advancing Static Code Analysis

With Language-Agnostic Component Identification. IEEE Access 10 (Jan. 2022),

pp. 1–1. DOI: 10.1109/ACCESS.2022.3160485.

[46] Bushong, V., Das, D., Maruf, A. and Černý, T. Using Static Analysis to Address Mi-

croservice Architecture Reconstruction. Nov. 2021, pp. 1199–1201. DOI: 10.1109/
ASE51524.2021.9678749.

[47] Kubernetes. URL: https://kubernetes.io/ (visited on 11/11/2022).

https://doi.org/Accepted for publication
https://doi.org/https://doi.org/10.1016/j.infsof.2021.106571
https://doi.org/https://doi.org/10.1016/j.infsof.2021.106571
https://doi.org/10.1145/3183440.3194991
https://doi.org/10.1145/3183440.3194991
https://doi.org/10.1145/3183440.3194991
https://github.com/FudanSELab/train-ticket/
https://github.com/FudanSELab/train-ticket/
https://doi.org/10.3390/app10217800
https://doi.org/10.1109/SOSE55356.2022.00012
https://doi.org/10.1109/ACCESS.2022.3160485
https://doi.org/10.1109/ASE51524.2021.9678749
https://doi.org/10.1109/ASE51524.2021.9678749
https://kubernetes.io/

47

[48] Istio: Simplify observability, traffic management, security, and policy with the leading

service mesh. URL: https://istio.io/ (visited on 11/11/2022).

[49] kind: Kubernetes-in-Docker. URL: https://kind.sigs.k8s.io/ (visited on

11/11/2022).

[50] Avritzer, A., Menasché, D. S., Rufino, V. Q., Russo, B., Janes, A., Ferme, V., Hoorn,

A. van and Schulz, H. PPTAM: Production and Performance Testing Based Appli-

cation Monitoring. Companion of the 2019 ACM/SPEC International Conference on

Performance Engineering (2019).

[51] Locust - A modern load testing framework. URL: https://locust.io/ (visited on

11/11/2022).

[52] Burns, B. and Oppenheimer, D. Design Patterns for Container-based Distributed

Systems. HotCloud. 2016.

[53] The world’s lightest, fastest service mesh. URL: https://linkerd.io (visited on

11/11/2022).

[54] Service mesh on Consul. URL: https://developer.hashicorp.com/consul
(visited on 11/11/2022).

[55] Marmol, V., Jnagal, R. and Hockin, T. Networking in Containers and Container Clus-

ters. 2015.

[56] Postman API Platform. 2022. URL: https://www.postman.com/.

[57] Lenarduzzi, V., Stan, A. C., Taibi, D., Tosi, D. and Venters, G. A Dynamical Quality

Model to Continuously Monitor Software Maintenance. 11th European Conference

on Information Systems Management (ECISM2017). 2017.

[58] Taibi, D., Lenarduzzi, V. and Pahl, C. Continuous Architecting with Microservices

and DevOps: A Systematic Mapping Study. Cloud Computing and Services Sci-

ence (CLOSER). 2019, pp. 126–151. ISBN: 978-3-030-29193-8. DOI: 10.1007/
978-3-030-29193-8_7.

https://istio.io/
https://kind.sigs.k8s.io/
https://locust.io/
https://linkerd.io
https://developer.hashicorp.com/consul
https://www.postman.com/
https://doi.org/10.1007/978-3-030-29193-8_7
https://doi.org/10.1007/978-3-030-29193-8_7

	Introduction
	Research Methods
	Background
	Microservices
	Microservice Patterns and their detection

	Microservice API Patterns Literature Review
	Review Design
	The Review Process
	Literature Search Process
	Snowballing
	Application of inclusion / exclusion criteria
	Evaluation of the quality and credibility of sources
	Creation of final pool of sources
	Data Extraction

	Results of review

	Detecting Microservices API Patterns
	Goal
	Research questions
	Selected patterns

	Case Study - TrainTicket
	TrainTicket - a microservice benchmark system
	Simulating business processes
	Collecting logs
	Parsing logs

	Results
	Example call graphs
	Frontend integration - results
	Information Holder Resource - results
	Request Bundle - results

	Discussion
	Conclusion
	References

