
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=rquf20

Quantitative Finance

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/rquf20

Empirical deep hedging

Oskari Mikkilä & Juho Kanniainen

To cite this article: Oskari Mikkilä & Juho Kanniainen (2022): Empirical deep hedging, Quantitative
Finance, DOI: 10.1080/14697688.2022.2136037

To link to this article: https://doi.org/10.1080/14697688.2022.2136037

© 2022 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 30 Oct 2022.

Submit your article to this journal

Article views: 279

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=rquf20
https://www.tandfonline.com/loi/rquf20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/14697688.2022.2136037
https://doi.org/10.1080/14697688.2022.2136037
https://www.tandfonline.com/action/authorSubmission?journalCode=rquf20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=rquf20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/14697688.2022.2136037
https://www.tandfonline.com/doi/mlt/10.1080/14697688.2022.2136037
http://crossmark.crossref.org/dialog/?doi=10.1080/14697688.2022.2136037&domain=pdf&date_stamp=2022-10-30
http://crossmark.crossref.org/dialog/?doi=10.1080/14697688.2022.2136037&domain=pdf&date_stamp=2022-10-30

Quantitative Finance, 2022
https://doi.org/10.1080/14697688.2022.2136037

Empirical deep hedging

OSKARI MIKKILÄ and JUHO KANNIAINEN*

Group of Financial Computing and Data Analytics, Tampere University, Tampere, Finland

(Received 1 December 2021; accepted 7 October 2022; published online 31 October 2022)

Existing hedging strategies are typically based on specific financial models: either the strategies are
directly based on a given option pricing model or stock price and volatility models are used indi-
rectly by generating synthetic data on which an agent is trained with reinforcement learning. In this
paper, we train an agent in a pure data-driven manner. Particularly, we do not need any specifica-
tions on volatility or jump dynamics but use large empirical intra-day data from actual stock and
option markets. The agent is trained for the hedging of derivative securities using deep reinforce-
ment learning (DRL) with continuous actions. The training data consists of intra-day option price
observations on S&P500 index over 6 years, and top of that, we use other data periods for validation
and testing. We have two important empirical results. First, a DRL agent trained using synthetic
data generated from a calibrated stochastic volatility model outperforms the classic Black–Scholes
delta hedging strategy. Second, and more importantly, we find that a DRL agent, which is empiri-
cally trained directly using actual intra-day stock and option prices without the prior specification
of the underlying volatility or jump processes, has superior performance compared with the use of
synthetic data. This implies that DRL can capture the dynamics of S&P500 from the actual intra-day
data and to self-learn how to hedge actual options efficiently.

Keywords: Options; Hedging; Deep reinforcement learning; Stochastic volatility

JEL Classification: G13, C00

1. Introduction

Deep Reinforcement Learning (DRL) has shown its potential
automated trading (Deng et al. 2016). In the recent litera-
ture, the application of DRL for the hedging of options has
gained attention. This is not surprising, because hedging is
about sequential decisions to maximize long-term rewards
(wealth). So far, the research papers have mainly been train-
ing and testing DRL agents using synthetic data (Buehler et
al. 2018, Halperin 2019, Kolm and Ritter 2019, 2020, Cao
et al. 2021, Halperin 2020, Du et al. 2020, Giurca and
Borovkova 2021).

Surprisingly, the extant literature on DRL for option hedg-
ing uses empirical data quite barely. In this regard, Buehler et
al. (2018) provide important results by training a DRL model
with simulated sample paths generated by an empirically
estimated volatility (GARCH) model, achieving good perfor-
mance. More recently, Giurca and Borovkova (2021) showed
that an agent trained by synthetic data can be transferred to
the real environment successfully. Both of papers used daily
option data on S&P 500 for the estimation of a volatility
model to be used for data generation. As in these papers,

∗Corresponding author. Email: juho.kanniainen@tuni.fi

model-driven assumptions are required about volatility and/or
jump dynamics because of the limited size of daily data
(see Charpentier et al. 2021). Some papers exist for neural-
network based market simulators (Wiese et al. 2019, 2020)
that could be used to tackle the problem of limited size of
(daily) data. Nevertheless, we lack research that not only tests
but also trains DRL agents using empirical intra-day option
data from the actual option markets in a data-driven without
specifying nor using a volatility and/or jump model for data
generation.

In this paper, we aim to address this research gap using
the state-of-the-art DRL techniques with intra-day observa-
tions on S&P 500 index options. Our question is if DRL can
find new data-driven hedging strategies without specifying a
model on volatility or jumps. This is fundamentally impor-
tant because, to our best knowledge, this is the first time
in the academic literature the DRL agent is trained empir-
ically without advice about the volatility or jump dynam-
ics of the underlying asset. In that sense, the resulting
DRL hedging procedure is free of assumptions on volatil-
ity dynamics. The only source of information used to train
the agent is the actual option data coming from the mar-
kets and the reward function that we specify to be a linear

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://crossmark.crossref.org/dialog/?doi=10.1080/14697688.2022.2136037&domain=pdf&date_stamp=2022-10-28
mailto:juho.kanniainen@tuni.fi
http://creativecommons.org/licenses/by/4.0/

2 O. Mikkilä and J. Kanniainen

combination of the mean and standard deviation of the
wealth.

Delta hedging can be understood as a sequential (and
dynamic) optimization problem, where trader’s expected
cumulative utility is maximized. From this point of view, delta
hedging is a very natural problem to be solved by Reinforce-
ment Learning (RL). In general, the idea in RL is to identify
a policy, which, by optimal actions in an environment, max-
imizes the expected discounted cumulative rewards. In the
context of hedging, rewards can be determined by two com-
ponents: return and risk. That is, a trader wants to have a
hedging strategy that reduces the risk of her portfolio, but not
at any cost. An important feature of RL is that it maximizes
the cumulative rewards, which leads to a solution that is good
not only in the short term but also in the long term.

In RL, the ‘machine’ employs trial and error to develop an
optimal solution to the problem. Once the reward and other
settings are determined by a user, the machine can iteratively
teach itself based upon the rewards of its actions drawn from
the policy. There are alternative algorithms and approaches,
but perhaps the most important innovation in RL has been
the combination of RL and deep neural networks to capture
the optimal policies. It is the most useful in problems with
high dimensional state space, which is the case in the context
of this paper (for more information about deep reinforcement
learning, see, e.g. Henderson et al. 2018, François-Lavet et
al. 2018).

Fischer Black and Myron Scholes derived their option pric-
ing model (Black and Scholes 1973) using argumentation on
the delta hedging procedure. By that way, the option holder
can remove directional risk related to price movements in
the underlying asset. Their model assumes constant volatil-
ity and no jumps in returns. In the real world, there are more
than one sources of risk, in which case single-instrument
hedges remain partial (Naik 1993, Bakshi et al. 1997, Tankov
and Voltchkova 2009). Moreover, Black–Scholes delta hedg-
ing requires continuous trading in the absence of transac-
tion costs. Even if algorithms could rebalance the positions
on high frequency almost continuously, transaction costs
make it impossible to achieve continuous trading in prac-
tice. For these reasons, hedging error and hedging costs exist
in the real-world situation and the question is, how to find
a single-instrument hedging procedure that yields the best
performance.†

To proceed systematically towards the main objective, we
first test our DRL specification for hedging under Monte Carlo
experiments. The benchmark is classic Black–Scholes delta
hedging, which, among practitioners, is a popular procedure
to take the time-varying volatility into account by using cur-
rent implied volatility in the calculation of option’s delta
(see Hull and White 2017, Cao et al. 2021), and thus some-
times called as practitioners delta hedging. In the Monte Carlo
experiments and in the empirical investigation, the propor-
tional transaction costs are set to 1 BPS, which is relatively
low. The motivation for this rather conservative choice is to

† Another question in derivative hedging is the use of the other
derivatives to hedge one under stochastic volatility and other sources
of randomness, but in this paper, we focus on hedging with a single
instrument only.

have settings under which it is a non-trivial exercise to use
DRL to beat the naive classic Black–Scholes delta hedging
procedure. If the transaction costs were large, then the Black–
Scholes delta hedging automatically fails because of frequent
trading, while the DRL agent can perform relatively well,
even if it was poorly specified and trained.

In the Monte Carlo experiment, we test our DRL agent
against classic Black–Scholes delta hedging under the con-
stant and stochastic volatility models. The constant volatility
model is used to analyze how well the DRL agent per-
forms when the assumptions are favorable for the classic
Black–Scholes delta hedging procedure. This is analyzed by
generating synthetic data under constant volatility, then train
the DRL agent, and finally test the DRL agent against the delta
hedging benchmark with the independent test data (generated
by the constant volatility model with the same parameters).
As the transaction costs are relatively low, we are happy
to see that the performance of the DRL agent is almost as
good as that of the delta hedging strategy. This means that
the agent was able to capture the idea of delta hedging on
its own. Second, to know if our DRL can beat the delta
hedging strategy under more realistic settings, we generate
synthetic data from the calibrated stochastic volatility under
Heston (1993) model. Indeed, we find that the DRL gives us
a cutting edge: under stochastic volatility, the DRL clearly
outperforms classic Black–Scholes delta hedging, and this is
robust across different weights between return and risk in the
reward function.

In the empirical part of this paper, we train the DRL agent
in two different ways. First, identically to the Monte Carlo
experiment, we train the agent with a synthetic data gener-
ated using the Heston model, which is calibrated using actual
option pricing observations on S&P500. This somewhat cor-
responds what Giurca and Borovkova (2021) do: training the
agent with synthetic data and transferring the optimal policies
identified by the synthetic data to a real market environment.‡
This kind of procedure is called Sim-to-Real Transfer. We find
that the agent trained by synthetic data generated from a cal-
ibrated Heston model outperforms the classic Black–Scholes
delta hedging strategy, which is again robust across different
weights between return and risk in the reward function.

To address the main research objective, we train the DRL
agent using actual empirical observations on option prices
written on S&P500 index. Importantly, we do not transfer
any information from the agent trained by the synthetic data,
but the training starts from scratch to make the agent not to

‡ The differences between our paper and other papers that use empir-
ical data, Buehler et al. (2018) and Giurca and Borovkova (2021)
are that (i) we formulate the calibration of the volatility model as
a least square problem and (ii) our calibration data span 6 years of
cross-sectional intraday option data. In contrast to this, Giurca and
Borovkova (2021) estimate the model parameters using daily obser-
vations on VIX as a proxy for instantaneous volatility. The advantage
of our approach is that it automatically takes the volatility risk-
premium into account (if VIX corresponded instantaneous volatility,
then volatility risk-premium would be zero). Moreover, Buehler et
al. (2018) estimate the parameters of the volatility (GARCH) model
with maximum likelihood estimation with return data. The main dif-
ference between our and their approach is that we have day-specific
parameter estimates as no historical data is needed when the model
is calibrated with the cross-sectional option data.

Empirical deep hedging 3

be influenced by assumptions on any volatility model. More-
over, the feature set does not include the Black–Scholes Delta,
because we do not want to provide any hints about possi-
ble hedging strategies for the DRL agent. This means that
the agent, fed with the reward function, must learn how to
hedge actual options in a real environment properly on its
own by trial-and-error. The agent is trained with 6 years
of intra-day option data from 2006 to 2011 and then val-
idated and tested using intra-day option price observations
from 2012 and 2013, respectively. Importantly, no data used
to train the agent were used to report its performance. The
results show that the empirically trained DRL agent not only
beats the Black–Scholes benchmark but also the Sim-to-Real
agent trained by the data generated from the calibrated Heston
model. The results are robust across different weights between
return and risk in the reward function. This is a strong result:
it shows that the DRL agent can autonomously learn to hedge
options in without any prior knowledge about possible speci-
fications of the volatility or jump processes. Second, it shows
that by intra-day observations, one can collect a sufficient
amount of cross-sectional option data for training the DRL
agent for hedging purposes. These findings provide the main
contribution of this paper.

2. Deep reinforcement learning with continuous action
domain

In Reinforcement Learning (RL), by a trial-and-error method
in an environment, the goal is to learn a policy that deter-
mines optimal actions. RL systems have two entities that
interact with each other: an agent and an environment. The
optimal action of an agent is defined as an action that max-
imizes the expected lifetime reward (Silver et al. 2014) in
light of the observations on the current environment. Roughly
speaking, the agent tries out different strategies and observes,
which is the best in terms of the expected reward (Sutton and
Barto 2018).

There are two types of actions in reinforcement learning
problems. Discrete actions have a known, limited space of
available actions. Continuous actions might have upper and
lower limits, but any action in between can be chosen. For
example, a discrete action could be if an agent should turn the
car left or right, while a continuous action tells how much to
steer the wheel. Therefore, continuous actions are in line with
the assumption of frictionless in delta hedging, for which rea-
son this paper is based on the continuous action space. At
each time step, an agent observes the state of the environ-
ment, st ∈ S, and then selects an action at ∈ A with respect
to its deterministic policy μ : S → A with parameter vec-
tor φ ∈ R

n. The problem is modeled as a Markov Decision
Process (MDP) with a stationary transition dynamics dis-
tribution with conditional density p(st+1|s1, a1, . . . , st, at) =
p(st+1|st, at), that is, the distribution of future states depends
only upon the present state and the present action and not on
the past.

After taking an action at time t, the agent receives a reward
rt+1 ∈ R, determined by a reward function R : S ×A→ R,
and observes a new state of the environment st+1. The new
state is an outcome of an action and external variables that

can be stochastic. Then based on st+1, an agent takes a new
action at+1, receiving reward rt+2 and so on. As a result, we
have a trajectory s0, a0, r1, s1, a1, r2, . . . This continues until
a terminal state is reached. The period between the start and
terminal states is called an episode. An episode can end for
different reasons depending on the problem being learned. In
a video game, the terminal state is reached when the game is
over if the time runs out. In the context of hedging, the episode
ends no later than at the maturity of the option. Some prob-
lems do not have a natural ending for an episode and instead,
an arbitrary limit for the maximum number of time steps
can be set.

In RL, the goal is to learn a policy that maximizes the
received reward over the entire episode. This gives an addi-
tional dimension when choosing a correct action: the optimal
action in the current state might result in a negative reward
immediately but lead to large positive rewards later. On
the other hand, an action might lead to a large immediate
reward but be disastrous in the long run. The balance between
immediate and future rewards is achieved with a familiar
method from the world of finance: by discounting the rewards.
The total discounted reward from time-step t onwards is
defined by

r̃t =
∞∑

i=0

rt+iγ
i,

where rt+i = R(st+i−1, at+i−1) is the immediate reward
received at time t + i and γ is the discount parameter with
0 < γ ≤ 1.

We denote the discount state distribution by

ρμφ (s′; t) :=
∫
S

∞∑
i=0

γ t+ipt(s)p(s→ s′; t + i, μφ)ds,

where s′ is a state after transitioning for t + i time steps from
state s with probability p(s→ s′; t + i, μφ) and μφ is the pol-
icy function with parameters φ. Agent’s goal is to maximize
the expected cumulative reward, which can be written as

J(μφ) =
∫
S

ρμφ (s; t)r(s, a)ds

= Es∼ρ
μφ

[
r̃t|μφ

]
,

where a = μ(s|φ). In RL, the objective is to find the optimal
policy μ, with parameters φ, which maximizes the expected
return J(μφ). For more information on the performance objec-
tive with both stochastic and deterministic policies, we refer
to Silver et al. (2014).

This paper uses an advanced version of so-called Q-
learning procedure, which is does not require a model of
the environment. In particular, for Q-learning we use Twin
Delayed Deep Deterministic Policy Gradients, TD3, intro-
duced by Fujimoto et al. (2018). This method builds on the
Temporal Difference (TD) methods. Particularly, on the first
hand, it is based on Deterministic Policy Gradient algorithm
(DPG) proposed by Silver et al. (2014) and, on the other
hand, deep Q-learning (Mnih et al. 2013). Recently, DPG was
used in Giurca and Borovkova (2021) for train the agent for
option hedging with synthetic data. TD methods have several
advantages as they combine the benefits of Monte Carlo (MC)

4 O. Mikkilä and J. Kanniainen

methods and Dynamic Programming (DP): (i) Similarly to
MC methods, TD methods can learn directly from raw expe-
rience without a model of the environment’s dynamics, and
(ii) like in the DP, in the TD, estimates are updated without
waiting for a final outcome (they bootstrap). Compared to the
DP methods, TDs do not require a model of the environment,
which is a very important property to enabling the hedging
of the derivatives in a data-driven manner. Moreover, com-
pared to MC methods, TD methods are online and they are
implemented in a fully incremental fashion. Thus prediction,
action, and learning proceed continuously as the agent inter-
acts with an unknown environment. At the same time, TD
methods can avoid the main drawback of MC methods that
one must wait until the end of an episode, because only then
is the reward known. For that reason, compared to TD, MC
methods could substantially delay the training of the model
if the episodes are long. Importantly, like the MC methods,
TD methods converge asymptotically to the correct predic-
tions (for more information, see, e.g. Sutton and Barto 2018,
chapter 6).†

The cornerstone of the modern reinforcement learning
algorithms is the action value function. In the fashion of Q-
learning (Watkins and Dayan 1992), we define the value of
taking action a in state s under a policy μφ as the expected
return starting from state s, taking the action a, and thereafter
following policy μφ :

Qμφ (s, a) = Es∼ρ
μφ

[
r̃t|st = s, at = a; μφ

]
= r(st, at)+ γ Es∼ρ

μφ [Qμφ (st+1, μ(st+1|φ))] , (1)

where a is determined by μφ(s). By following Mnih et
al. (2013), in deep Q-learning, for a large state space, the
optimal action-value function

Q∗(s, a) = max
φ

Qμφ (s, μ(s|φ))

can be approximated by (deep) neural networks with parame-
ters θ . We denote the function approximator with parameters θ

by Q(s, a|θ). In this research, we parameterize an approximate
value function using the feedforward neural network specified
in section 3.

In actor methods, the policy structure is known as the actor
(it is used to select actions) and the estimated value function
is known as the critic (it criticizes the actions made by the
actor). The policy can be updated through the deterministic
policy gradient algorithm. Policy gradients are based on the
idea that the policy parameters φ are adjusted by calculating
the performance gradient. In the case of deterministic policy,
the gradient is (see Silver et al. 2014, theorem 1)

∇φJ(μφ) =
∫
S

ρμφ (s)∇φμ(s|φ)∇aQθ (s, a)|a=μ(s|φ)ds

† There is a trade-off between choosing the action that has worked
in the past and exploring the action space in hopes of learning
something even better. This problem is known as the exploration–
exploitation dilemma. Without any exploration, policies can easily
fall into local value maximums. For continuous action spaces, explo-
ration can be done by adding a random number from for example the
Gaussian distribution.

= Es∼ρ
μφ

[∇φμ(s|φ)∇aQθ (s, a)|a=μ(s|φ)

]
. (2)

Multiple algorithms have been introduced to estimate the
action-value function Qμφ (s, a). In continuous action space
research, perhaps the best known deterministic policy gra-
dient algorithm is the Deep Deterministic Policy Gradients
(DDPG) by Lillicrap et al. (2015). DDPG introduces similar
improvements to deterministic policy gradients as Deep Q-
learning (Mnih et al. 2013) did to Q-learning, and DDPG is
known as the equivalent of Deep Q-Learning for continuous
action spaces. DDPG is an off-policy actor-critic algorithm. It
learns a Q-function, which is used as the critic. The method
considers function approximator parameterized by θ , which is
optimized by minimizing

L(θi) = Esi,ai,ri,si+1 (Q(si, ai|θi)− yi)
2 , (3)

where

yi = r(si, ai)+ γ Q(si+1, a∗i |θ∗i), (4)

where a∗i is the target action determined below.
A couple of important observations must be made at this

point. First, we have a sequence of loss functions L(θi) that
changes at each iteration i. Second, in deep-Q-learning (Mnih
et al. 2013), the neural network is updated using temporal dif-
ference parameters θ∗i and φ∗i are used to compute the target
at iteration i + 1. That is, we create versions for the actor and
critic neural network models, Q(s, a|θ∗) and μ(s, |φ∗), to cal-
culate the target values. The target network parameters θ∗i and
φ∗i are held fixed between individual updates.

DDPG estimates the loss function as follows. First, at a
given iteration i, noise sampled from a noise process ε is
added to actor policy: ai = μ(si|φi)+ εi, where ε ∼ N(0, σ)

with σ > 0. The target action in (4) is solved accordingly.
Second, an action ai is executed and reward ri and new
state si+1 are observed. The transition tuple (si, ai, ri, si+1)

is stored in B. Third, a random minibatch of N transitions
(sj, aj, rj, sj+1) is sampled from B. The minibatch is used to
set

yj = r(sj, aj)+ γ Q(sj+1, a∗j+1|θ∗i),

with a∗j+1 = μ(sj+1|φ∗i)+ εj. This, on the other hand, is used
to update the critic by minimizing the loss:

L(i) = 1

N
�j

(
Q(sj, aj|θi)− yj

)2
. (5)

In DDPG (Lillicrap et al. 2015), the parameters θ∗i and φ∗i of
the target neural networks are updated by

θ∗i+1 ←− τθ∗i + (1− τ)θi,

φ∗i+1 ←− τφ∗ + (1− τ)φi,
(6)

where the network weights are slowly copied into the target
networks and the rate of copy is controlled by the parameter
τ ∈ [0, 1]. In that way, we can combat drastic changes in the
policy and action-value networks.

Even if DDPG gained a lot of attention and popularity
for continuous action problems, it performs poorly in some
environments and has some issues. The algorithm was unsta-
ble in some environments and hyper-parameter sensitive, like

Empirical deep hedging 5

so many other reinforcement learning algorithms. Most of
the problems found in DDPG arose from the estimation of
Q-values in the critic network. This leads to the policy exploit-
ing the overestimations (Fujimoto et al. 2018). To overcome
these issues, an extended version of DDPG, so-called TD3,
was introduced by Fujimoto et al. (2018) and named as Twin
Delayed Deep Deterministic Policy Gradients. TD3 combines
some of the greatest achievements introduced in other deep
reinforcement learning (DRL) methods, such as using two
independent critic networks. The idea for double critic comes
from Double Q-learning (Hasselt 2010). The overestimation
of Q-values is battled by taking the smaller Q-value from the
two critic networks for the target value

yj = r(sj, aj)+ γ min
k=1,2

Q
(

sj+1, a∗k,j+1)
)

, (7)

where

a∗k,j+1 = μ(sj+1|θ∗k,j)+ εj+1.

For each time step (iteration), we update the pair of critics
towards the minimum target value. We use the smaller Q-
value for the target, which helps fend off overestimation in the
Q-function. Moreover, to smooth possible peaks, the action is
clipped to lie in a given action range with alow ≤ a ≤ ahigh.
Consequently, in TD3, the action is determined as

ai = clip
(
μ(si|φi)+ εi, alow, ahigh

)
,

where ε ∼ clip(N(0, σ),−c, c)) with c > 0. The target action
is determined consistently. In this paper, we implement this
procedure, TD3, which is the state-of-the-art method to train
a model with deterministic policy with continuous actions.

3. Proposed model for deep hedging

The reinforcement learning method implemented in this paper
is the TD3 described above. Because it is a continuous action
space method, similarly to the Black–Scholes hedging, unlim-
ited short selling is allowed. Additionally, the underlying asset
can be sold or bought in any fraction as we are operating in
the continuous action space, and the tick sizes of the underly-
ing asset are not considered. This combined with a continuous
action RL method allows the agent to hedge on any precision.

In this section, we describe the implementation details of
the method and the general features of the hedging environ-
ment.

3.1. Reinforcement learning approaches for hedging in the
literature

Among the first papers in the relatively young literature on
deep hedging, Buehler et al. (2018) provide a framework in
the presence of market frictions. They operate under convex
risk measures subject to proportional transaction costs. Cao
et al. (2021) and Giurca and Borovkova (2021) use DDPG
to allow for continuous state and action space. The method
implemented in this paper, TD3, can be seen as an exten-
sion to DDPG. In fact, we tested simpler methods, including

vanilla actor critic methods and DDPG, but the complexity
and stochasticity of the environment lead to learning prob-
lems. These alternative methods seemed to either not con-
verge at all or started to learn and then later diverged. This
can occur if the gradients are not behaving well the case of
diverging weights.† At the same time, the stabilizing features
introduced in TD3 seemed to make it the most viable method.
Kolm and Ritter (2019) and Du et al. (2020) use methods with
discrete action space. Additionally, Halperin (2020) considers
both discrete-space and continuous-space versions but with
(non-deep) Q-learning without the use of neural networks.
The limited precision with discrete action space is not nec-
essarily an issue if the hedged position is small. However, if
the position to be hedged grows to thousands or hundreds of
thousands of options, having perfect precision with a discrete
action method becomes impossible. The continuous action
method works for any precision, and assuming convergence
of policies should result in more optimal hedging.‡

3.2. Reward function

To derive the reward function for this paper, we follow Cao
et al. (2021) in that we aim to identify parameters of the deep
neural network approximators maximize E(wT)− ξSD(wT)

with ξ > 0, where wT is the wealth at time T. Kolm and Rit-
ter (2019) and Du et al. (2020) use almost similar objective
function, but used variance instead of standard deviation. In
this regard, we tested the version with the use of variance, but
the results were clearly more stable and robust for the DRL
agent with the use of standard deviation. The reward rt should
be a function of wealth increments (see also Kolm and Rit-
ter 2019, Du et al. 2020), and based on that we choose reward
such that E(rt) = E(�wt)− ξSD(�wT). At each step, this,
on the other hand, is approximated by

rt = PnLt − ξ |PnLt| , (8)

where PnLt (Profit-and-Loss) is the change in agent’s wealth
between time steps. More specifically, the PnLt, the profit or
loss from time t− 1 to t, is

PnLt = HO
t (Ct − Ct−1)+ HS

t (St − St−1)

− c|St
(
HS

t − HS
t−1

) |, (9)

where HO
t is the option position, which equals −1(+1) in the

case of a short (long) call option position, Ct the price of the
option, HS

t the holdings in the underlying asset at time t, which
is positive (negative) in the case of a short (long) call option
position, and St the price of the underlying asset at time t.

The objective function essentially becomes a trade-off
between transaction costs, captured by c, caused by frequent
rebalancing (expected P&L) and risk caused by infrequent
rebalancing (the standard deviation of the P&L). If the trans-
actions costs are assumed to be large, then the DRL agent
would outperform classic Black–Scholes delta hedging strat-
egy ‘too easily’, because the DRL agent has the freedom to

† We than the anonymous referee for pointing this out.
‡ In Fujimoto et al. (2018), there is proof of convergence for a
version of Clipped Double Q-learning, yet for a finite MDP setting.

6 O. Mikkilä and J. Kanniainen

avoid transaction costs. For that reason, the size of propor-
tional transaction costs, c, is conservatively assumed to equal
1 BPS. P&L is largely assumed to come from transaction costs
on the underlying stock. To quantify the hedging performance
of the policy, we monitor it against the Black–Scholes delta
hedging benchmark.

3.3. State observation

Determining the features to capture the state of the envi-
ronment is critical, as the actions determined by them (with
a neural network approximator). In this regard, Kolm and
Ritter (2019), Cao et al. (2021), and Du et al. (2020) use infor-
mation about the moneyness, time to maturity, and current
number of shares held. In this paper, we use the same fea-
tures, but on top of them, the fourth feature is Black–Scholes
implied volatility. In fact, it is quite crucial to include the
implied volatility to the state variables, because then the DRL
algorithm is provided the same information we need for the
calculation of Black–Scholes delta. As the neural networks
are universal function approximators, the Black–Scholes delta
hedging can be considered as a special case of our model.
However, to learn a policy independent of any pricing model
and to see if DRL can learn a hedging policy independently,
we do not include delta and other Greeks. Instead, by hav-
ing a sufficient amount of trading data, the agent should learn
them from the input variables if needed. Additionally, the per-
formance of previous steps does not matter in choosing the
optimal action, which is a function of only the current state
observation, and the agent’s estimate on the future states.

3.4. State featurization

Featurization can be used to improve the ability of neural
networks to learn the underlying patterns (Ekenel and Stiefel-
hagen 2006). By featurization, the input data are run through a
featurization function engineered to a specific problem. Poly-
nomial, interaction and normalization techniques were used in
this paper to improve the hedging performance.

With non-linear models, a feature with higher order of mag-
nitude might dominate other features, for which reason the
input variables are normalized. Normalization has been shown
to increase the performance of neural networks (Ekenel and
Stiefelhagen 2006, Passalis et al. 2019), by improving the pre-
dicting accuracy or reducing learning times, often achieving
both. In this paper, we implement z-score normalization with
the skicit-learn library (Pedregosa et al. 2011).

3.5. Hyperparameters

In delta hedging, we set the discrete-time interval to 60 min-
utes, which equals seven re-balances a day. Episode length
will be set to 35 time-steps, and as there are 7 steps in a day,
the length is 5 trading days. In the existing literature, Kolm
and Ritter (2019) use episode lengths of 10 days with 5 rebal-
ances a day. In contrast, the rebalance frequency in Cao et
al. (2021) is substantially longer, from daily to weekly.

The implementation of the TD3 algorithm is based on the
paper that introduced TD3 (Fujimoto et al. 2018) (the orig-
inal implementation is available at Fujimoto et al. (2020)).
For TD3 hyper parameters, the implementation of Fujimoto
et al. (2018) used a τ of 0.005, and a policy update frequency
of 2. Tau controls how fast the target networks are updated
and policy update frequency controls how delayed the policy
update is. Implementation in this paper uses a tau of 0.001 for
slower target network update and a policy update frequency
of 2.

When using a continuous action RL method with a stochas-
tic policy, noise should be added for action space exploration.
TD3 has built-in source for noise, as it adds noise to the tar-
gets. On top of that, we add noise to the agent’s action from a
normal distribution with standard deviation between 0.2 and
0.7. The standard deviation is high in the beginning for fast
exploration and decreases when the performance increases.
The hyper parameters were selected empirically by assessing
both the performance and the speed of convergence of differ-
ent parameter sets, and by selecting the one that performed
sufficiently.

3.6. Actor and critic neural networks

The original TD3 implementation uses relatively simple struc-
tures for the actor and critic networks. Both the actor and critic
consist of two hidden layers of size 256 and the activation
function used in the paper is Rectified Linear Unit (‘ReLU’).
For the critic, we add another hidden layer for a total of
three hidden layers. Layer size is close to the original one,
250 for each hidden layer. The advantage of adding another
layer seemed to provide a marginal improvement on the per-
formance. For the activation functions of the hidden layers,
we use Leaky ReLU. Leaky ReLU allows a small leakage for
negative values (Maas et al. 2013). The amount of leakage is
controlled by a hyper parameter α:

h(i) =
{

i if i > 0

α × i otherwise.
(10)

When α = 0 the function becomes ReLU. Common values
for the leakiness parameter are between 0.05 and 0.10 (Maas
et al. 2013). Leaky ReLU was chosen, as it has been shown
to improve neural networks’ performance (Xu et al. 2015).
Empirical tests conducted suggested that Leaky ReLU works
better than ReLU, and that 0.05 is suitable for the leakyness
parameter.

The activation function for the actor’s output layer is hyper-
bolic tangent. Hyperbolic tangent outputs a value from a range
of [−1, 1], which is the limited position the agent is allowed
to take in the underlying asset (with a long and short positions
to a range of [0, 1] and [−1, 0], respectively). This is then later
scaled outside the neural network to a range of [0, 1]. For the
critic network, the output layer outputs a single value with
linear activation.

The learning rate in both the actor and critic network
is relatively low, 1E− 04. Together with a small learning
rate and a high batch size of 10,000 a stabilizing effect is
achieved. The batch size of 10,000 is larger than usually used

Empirical deep hedging 7

in TD3 or DDPG implementations, where the usual batch
size is between 64 and 256 (Lillicrap et al. 2015, Fujimoto
et al. 2018). Batch sizes of this size are not unheard of for
continuous action problems, and used regularly in algorithms
like TRPO by Schulman et al. (2015). Adam is used as an
optimizer.

4. Data and results

4.1. Data

In the empirical part of this paper, we use S&P 500 index
intraday options data between January 3, 2006, and December
31, 2013 (2009 trading days), provided by CBOE Livevol.
The raw option data is on minute-by-minute bases, but as the
rebalance interval is 60 minutes, hourly observations are used.
For each option quote, the following information is available:
the value of the underlying index, strike, maturity date, call-
put flag, bid price, bid quantity, ask price and ask quantity.
The P&L in (9) is calculated from the mid-price of the option.
The roots considered are with the codes used by CBOE in
the calculation of VIX.† The risk-free rate used is the 1 year
point of the U.S. Treasury Yield Curve, obtained from U.S.
Department of the Treasury.‡

As a preliminary step, options with clearly misreported
quotes are excluded and a few ambiguous records consist-
ing of the same type of options sharing the same timestamp,
strike, and maturity but having different quotes have been
removed. On 3 days, there were issues related to the underly-
ing price being equal to zero, in which case those observations
were removed. Moreover, in a very few cases there were dif-
ferent underlying prices reported for the same time stamps,
the median value was used. Table 1 shows an example of the
cleaned data used in this paper.

Real-life applications could hedge S&P 500 options with
any instruments that track the index, e.g. exchange-traded
funds. On the other hand, in the existing literature, the index
value has been an accepted proxy for option hedges (e.g. Bak-
shi et al. 1997), which we also use in this paper. In fact,
this is a common assumption in the literature on the pricing
of index options (that is, the pricing models assume that the
index options can be hedged by the underlying asset). We
assume that the underlying asset can be sold or bought in
any fractions, and the tick sizes of the underlying asset are
not considered. As mentioned earlier, the transaction costs are
assumed to equal 1 BPS.

The data are divided between the following data sets, which
are summarized in table 2:

• Training data that span from 2006 to 2011, the val-
idation data. These data are used for the empirical
training of the model.

• Validation data observed from 2012, used selecting
the best model to be evaluated with the independent
test data.

† SPB, SPQ, SPT, SPV, SPX, SPZ, SVP, SXB, SXM, SXY, SXZ,
SYG, SYU, SYV, and SZP.
‡ https://www.treasury.gov/resource-center/data-chart-
center/interest-rates/Pages/TextView.aspx?data=yield.

• Test data from 2013, by which we evaluate and
report the performance on the DRL model (against
the classic Black–Scholes delta hedging bench-
mark).

The training data include options with moneyness 0.83 ≤
S/K ≤ 1.17. We do not use deep-out/in-the money options
because delta of the option is known to move the most when
the option is at-the-money, i.e. the gamma of the option is at
its highest. The larger the movements in the delta between
each rebalancing step is, the harder the option is to hedge
in the market with frictions. In this regard, both Kolm and
Ritter (2019) and Cao et al. (2021) consider at-the-money
options, and recently Du et al. (2020) developed a method that
can be used to hedge with a whole range of strikes. Regard-
ing the maturity times in training data, we use options that will
expire in 10–90 days, which corresponds to the maturity times
used in Cao et al. (2021). In contrast, Kolm and Ritter (2019)
consider options with expiry in 10 days and Du et al. (2020)
use options ‘close to maturity’. The properties of the options
considered here are in no way constraints to the hedging abil-
ity of the agent: the algorithm can be used to hedge a short or
long position in a call or put option. Moreover, in principle,
the time to expiry can be longer or shorter than in this study,
and the option can be as much out-of-money or in-the-money
as one wants, yet the good performance level is not guaranteed
without re-training the agent.

For empirical validation and testing, the target strikes are
S/K ∈ [0.85, 0.925, 1, 1.075, 1.15] and target maturity times
are 10, 30, and 60 days. Options that are closest to target
strikes and maturities (in percentage terms) are included. For
that reason, the option which is being hedged can change
every week. As the hedging period is 5 trading days, options
always have expiry after the hedging period ends. This limit is
chosen to ensure that none of the hedging periods is cut short
due to the option maturing.

4.2. Volatility models for Monte Carlo experiments

In the Monte Carlo experiment, we generate synthetic data
from both a constant volatility model and Heston model
(Heston 1993), which we use to train the DRL agent. First,
with constant volatility, we ensure that the DRL agent can
achieve satisfactory performance compared to classic Black–
Scholes delta hedging. Second, to generate realistic data for
Monte Carlo experiments, the Heston model is calibrated
using empirical option price observations. Particularly, syn-
thetic stock price and option data is generated from the model,
which is calibrated using 2012 empirical option data on daily
bases to train the DRL model to hedge options under dif-
ferent circumstances. In the calibration, the loss function is
the squared difference in model and market prices. Table 3
reports the summary statistics on parameter estimates. In the
Monte Carlo experiment, we randomly select the set of Hes-
ton parameter estimates from the daily calibrations in 2012.
Here the question is if the DRL agent can outperform the
Black–Scholes hedge under stochastic volatility. Moreover,
we also analyze the empirical performance of a DRL agent
trained with synthetic data. In particular, we first train an
agent with a synthetic data generated by the Heston model and

8 O. Mikkilä and J. Kanniainen

Table 1. Snapshot of option data.

Time Code Underlying Strike Days to mat. Rate Call price Call bid Put price Put bid

2006-Jan-03 09:31 SPX 1253.00 800 18 0.0438 454.45 454.2 0.1 0
2006-Jan-03 09:31 SPX 1253.00 825 18 0.0438 429.45 429.2 0.1 0
··· ···
2006-Jan-03 09:31 SXZ 1253.00 1400 18 0.0438 0.1 0 144.25 144
2006-Jan-03 09:31 SXM 1253.00 1500 18 0.0438 0.1 0 244.05 243.8
2006-Jan-03 09:31 SPX 1253.00 800 46 0.0456 455.05 454.8 0.1 0
2006-Jan-03 09:31 SPX 1253.00 850 46 0.0456 405.35 405.1 0.1 0
··· ···
2006-Jan-03 09:31 SPB 1253.00 1600 347 0.0478 0.65 0.55 297.85 297.6
2006-Jan-03 09:32 SPX 1253.72 800 18 0.0438 455.15 454.9 0.1 0
···
2006-Jan-03 16:00 SPB 1268.80 1600 347 0.0478 0.75 0.5 284.4 283.4

Table 2. Summary statistics on the number of unique option
contracts and 5-day paths for training, validation, and test data.

Training
data

(2006–
2011)

Validation
data

(2012)
Test data
(2013)

Unique options 7228 1539 1683
Unique five-day paths 12,298 2703 2914

Table 3. Summary statistics on the estimated parameters
obtained from daily calibrations of Heston (1993) model
in 2012. There were totally 249 trading days in 2012.
We use the following notation for the Heston model:
dSt = μStdt +√vtStdW1,t, dvt = κ(vt − θ)dt + η

√
vtdW2,t,

where κ > 0, θ > 0, η > 0, and dW1,tdW2,t = ρdt, ρ ∈ [−1, 1].

θ κ η ρ v0

Min 0.02 0.07 0.04 −1.00 0.01
Max 0.25 9.49 1.00 −0.45 0.08
Median 0.04 3.08 0.56 −0.78 0.02
Average 0.04 3.41 0.62 −0.79 0.03
Standard deviation 0.02 1.60 0.31 0.16 0.01

then analyze how the agent performs with the real-world data,
along with Giurca and Borovkova (2021). This is so-called
Sim-to-Real reinforcement learning, where the methods of
transferring the agent’s policy from simulation to real life
(Peng et al. 2017).

4.3. Results from Monte Carlo experiments

In this section, to test our deep hedging framework, we con-
duct Monte Carlo experiments under (i) geometric Brownian
motion and (ii) (Heston 1993) stochastic volatility model. All
tests displayed are out of sample simulations. In the next
section, we will use a simplified version of transfer learning to
train the agent in a Heston model-simulated environment and
test with real empirical SPX option data, and, on top of that,
we train and test the model with empirical data without any
assumptions about volatility dynamics.

To assess the hedging performance of the agent and the
benchmarks, we will consider four values from the tests: (i)
the mean episode P&L is the average of the total P&L over

each 5-day episode; (ii) the episode P&L standard deviation
is the standard deviation of the episode total P&Ls over the
10,000 tests; (iii) mean episode transaction costs over each 5-
day episode; (iv) average rewards accumulated, as determined
in equation (8).

Table 4 reports the results from the Monte Carlo experi-
ments with constant volatility of 25% for ξ ∈ 1, 2, 3 based on
the use of 10,000 simulated stock price paths for each test.
With constant volatility, the starting point is when the trans-
action costs are not large (which is the case in this paper), the
Black–Scholes delta hedging should theoretically be close to
optimal. Hence, not any hedging strategy, including the use
of DRL agent, should outperform classic Black–Scholes delta
hedging. Rather, the question is how well the DRL model
can perform compared to the standard delta hedging proce-
dure. In this regard, the results on constant volatility with
ξ = 1 reported in the first row of Panel A show that in terms
of the performance, the agent trained by DRL accomplishes
the hedging of options surprisingly well without using any
information about the dynamics of the underlying asset. The
algorithm automatically learns the tradeoff of hedging costs
and the variance, whether the perfect hedging is possible or
not due to the existence of transaction costs. When larger
values for the risk-return coefficient, ξ , are applied, a gap
between the classic delta hedging and the DRL agent slightly
increases, yet remain quite small. Overall, the Monte Carlo
experiment with constant volatility shows that the DRL with
continuous action space can yield quite consistent results with
Black–Scholes delta hedging.

Next, table 5 compares the performance the DRL agent
against the Black–Scholes hedging from Monte Carlo exper-
iment with stochastic volatility. In the presence of stochastic
volatility, in which case there are more than one source of
risk, single-instrument hedges can only be partial (Bakshi
et al. 1997). In this case, classic Black–Scholes delta hedg-
ing does not minimize the variance of changes in the value
of a trader’s position, not even theoretically when there is
a non-zero correlation between returns and volatility of the
underlying security (Hull and White 2017). Indeed, this can
be observed from table 5. For example, whereas with ξ = 2,
the reward for classical classic Black–Scholes delta hedg-
ing is 7.17 with constant volatility (see table 4, Panel B), it
decreases to –9.19 with stochastic volatility (see table 5, Panel
B). More importantly, when volatility is stochastic, the DRL
agent trained with the synthetic data from the Heston model

Empirical deep hedging 9

Table 4. Deep reinforcement learning (DRL) agent’s performance and hedging cost against classic Black–Scholes delta hedging benchmark
under constant volatility. The hedge period is 5 days and the option is a call option expiring in 2 weeks. A hedge is rebalanced seven times a
day. Results are reported on 10,000 out-of-sample simulations. The reported results on P&L and costs are scaled by the underlying price at
the beginning of the periods. Panels A–C report the results for ξ = 1, 2, 3. Here, as described by (8), greater ξ gives more weight to minimize

the risk (the standard deviation of wealth).

Mean episode P&L Std episode P&L Mean episode transaction costs Rewards

Panel A: ξ = 1
Black–Scholes Delta Hedging −0.0119% 0.0426% −0.0094% 8.79
DRL Agent −0.0124% 0.0459% −0.0094% 8.60

Panel B: ξ = 2
Black–Scholes delta hedging −0.0114% 0.0436% −0.0095% 7.17
DRL Agent −0.0107% 0.0490% −0.0094% 6.74

Panel C: ξ = 3
Black–Scholes delta hedging −0.0108% 0.0428% −0.0094% 5.59
DRL Agent −0.0112% 0.0478% −0.0094% 4.90

Table 5. Deep reinforcement learning (DRL) agent’s performance and hedging cost against classic Black–Scholes delta hedging benchmark
under stochastic volatility. The DRL agent is trained using synthetic data from the Heston model. The hedge period is 5 days and the option is
a call option expiring in 2 weeks. Hedge is rebalanced seven times in a day. Results are reported on 10,000 out-of-sample simulations based
on Heston (1993) model, which was calibrated with empirical option data. The parameter estimates for a given simulation were randomly
selected from the daily calibrations in 2012. The reported results on P&L and costs are scaled by the underlying price at the beginning of
the periods. Panels A–C report the results for ξ = 1, 2, 3. Here, as described by (8), greater ξ gives more weight to minimize the risk (the

standard deviation of wealth).

Mean episode P&L Std episode P&L Mean episode transaction costs Rewards

Panel A: ξ = 1
Black–Scholes delta hedging −0.0086% 0.2628% −0.0084% 0.42
DRL Agent −0.0072% 0.2343% −0.0077% 1.66

Panel B: ξ = 2
Black–Scholes delta hedging −0.0149% 0.2551% −0.0084% −9.19
DRL Agent −0.0157% 0.2263% −0.0080% − 6.82

Panel C: ξ = 3
Black–Scholes delta hedging −0.0104% 0.2606% −0.0084% −19.44
DRL Agent −0.0106% 0.2301% −0.0079% − 15.97

clearly outperforms the classic Black–Scholes delta hedging.
Particularly, the use of DRL yields a hedging model that leads
to the clearly lower variance of hedger’s wealth, which yields
larger rewards for all the ξ ∈ {1, 2, 3}, yet the differences are
substantial especially with ξ = 3, which is intuitive because
then more weight is given to minimize the portfolio risk.

Overall, the Monte Carlo experiment shows that when
volatility is constant and thus the most important assump-
tions of Black–Scholes hedging procedure are met, the DRL
agent can accomplish the hedging relatively well compared.
And more importantly, when stochastic volatility is intro-
duced, then the DRL agent clearly outperforms the classical
Black–Scholes hedging procedure.

4.4. Empirical performance

In this section, we evaluate our empirical performance of DRL
models that are trained by two different ways:

(i) We train the DRL agent using synthetic data from the
calibrated Heston model (Heston 1993) and test the
trained agent with empirical option data (this model
is used for Monte Carlo experiment, see table 5 in
section 4.3).

(ii) We train and test the DRL agent using empirical
stock and option price observations instead of the data
generated from a model.

Here the latter represents an agent, which is trained with
actual empirical data only without any assumptions about
volatility dynamics.

There are advantages of using synthetic data simulated with
stochastic volatility for training agents intended for real-life
usage, especially because simulations can be ran as many
times as needed. However, the policy an agent learns is spe-
cific to the simulated environment, and thus is dependent on
the volatility model used. Therefore, a problem of how to
transfer the learning to real life arises. Sim-to-Real reinforce-
ment learning studies the methods of transferring the agent’s
policy from simulation to real life (Peng et al. 2017). In this
paper, we will apply the most basic form of Sim-to-Real rein-
forcement learning: we empirically test the model trained with
simulated. The test data are from 2013, in which there are
1683 options. From that population, we select options with
the maturities of 5–70 days and strikes of 0.825–1.175. By
that way, the final test sample consists of 419 options for
which there are observations for the 5-day trajectories. Con-
sequently, we have 419 options × 5 trading days/option × 7
steps/trading day = 14,665 steps

Second, we use empirical option and stock price data not
only to test the performance but to train the agent indepen-
dently on any volatility model. In that sense, our we train a
completely data-driven DRL agent. The existing literature on
DRL hedging has purely used simulated data and this paper,
to our best knowledge, is the first research that trains and

10 O. Mikkilä and J. Kanniainen

Table 6. Empirical performance of DRL agent and classic Black–Scholes delta hedging, which serves as a benchmark. The hedge period is
5 days. Hedge is rebalanced seven times in a day. Results are reported in panels A, B, and C for different levels of the risk-return tradeoff
parameter ξ = 1, 2, 3, respectively. The results are available for (i) classic Black–Scholes delta hedging, for (ii) an agent trained by synthetic
data simulated from calibrated Heston models, and (iii) an agent trained by the actual empirical data on option and stock prices. The reported

results on P&L and costs are scaled by the underlying price at the beginning of the periods.

Mean episode P&L Std episode P&L Mean episode transaction costs Rewards

Panel A: ξ = 1
Black–Scholes Delta Hedging −0.0195% 0.1515% −0.0076% 4.204
Sim-to-Real DRL Agent trained with Heston model −0.0095% 0.1502% −0.0068% 4.375
DRL Agent trained with empirical data −0.0123% 0.1415% −0.0072% 4.466

Panel B: ξ = 2
Black–Scholes Delta Hedging −0.0195% 0.1515% −0.0076% −1.896
Sim-to-Real DRL Agent trained with Heston model −0.0140% 0.1483% −0.0072% −1.423
DRL Agent trained with empirical data −0.0112% 0.1378% −0.0071% − 1.361

Panel C: ξ = 3
Black–Scholes Delta Hedging −0.0195% 0.1515% −0.0076% −7.997
Sim-to-Real DRL Agent trained with Heston model −0.0122% 0.1499% −0.0075% −7.386
DRL Agent trained with empirical data −0.0141% 0.1402% −0.0072% − 7.272

evaluates the DRL agents with actual option market data. To
train the model, we use option data from 2006 to 2011 (see
table 2). Particularly, option and stock price trajectories of
5 days are used to train the model. Totally, there are 12,298
unique 5-day periods for training (see section 4.1), which was
achieved by using different strikes and expiry days for the
same time period. This amount of data is found to be suffi-
cient with TD3, which uses experience replay, i.e. a replay
memory technique (Mnih et al. 2013). By that way, a tuple
(si, ai, ri, si+1) can be used more than once by random sam-
pling, thus improving data efficiency. Second, this method
addresses the problem of a high correlation between consecu-
tive steps in the environment making the neural network more
robust.

Table 6 reports results about the empirical performance of
agent-hedging and classic Black–Scholes delta hedging. The
results are very favorable for the DRL models: the empirically
trained DRL agent outperforms not only the classical classic
Black–Scholes delta hedging but also the DRL agent trained
by synthetic data generated by the calibrated Heston model.
The result is robust with all the values of ξ ∈ {1, 2, 3}.

Second, the DRL agent trained with the synthetic
Heston data always yields higher returns compared to the clas-
sic Black–Scholes delta hedging. This finding suggests that
even if no option data is sufficiently available for the training
of a DRL agent, a simple but effective solution is to transfer
the agent’s policy from simulation to real markets. The idea
of the use of synthetic data in real-life financial applications
has been recently developed further (see, e.g. Da Silva and
Shi 2019, Kondratyev and Schwarz 2019, Wiese et al. 2020),
and was recently applied in Giurca and Borovkova (2021)
with the applications to the option hedging procedures. This is
a very encouraging result, because it suggests that practition-
ers could start to implement RL-based techniques even if there
is no sufficient amount of empirical data available to train the
models.

Moreover, figure 1 illustrates a sample trajectory on the
training of the DRL agent with the empirical data with ξ = 1.
The performance (reward) is calculated with the validation
data and it is plotted against the episodes. The figure uses
log-scale for the episodes to zoom into the beginning of the

Figure 1. The performance (rewards) of empirically trained agent
against the validation data over the episodes with ξ = 1. The perfor-
mance is compared against the classic Black–Scholes delta hedging
strategy over. The performance is plotted against the log-scaled
episodes.

training process. Totally, the training was performed over
100,000 episodes, but, in fact, DRL model reached the classic
Black–Scholes delta hedging already at the 1400th episode.
That is, the training procedure was very efficient and fast. The
results are consistent with different values of ξ as well as with
the synthetic data simulated with the Heston model.

4.5. Public data and codes

We have made the synthetic data and codes pub-
licly available at https://github.com/oskarimikkila/Empirical-
Deep-Hedging. As the option data are available at CBOE’s
LiveVol with a paywall (see https://www.livevol.com/stock-
options-analysis-data/), we are not allowed to publish the
actual empirical data used to train the agent empirically. The
published codes and synthetic data can be used to reproduce
results for Monte Carlo experiment.

5. Conclusion

To our best knowledge, this is the first paper that uses intra-
day option data from actual markets to both train and test the

Empirical deep hedging 11

self-learning hedging algorithm based on the Deep Reinforce-
ment Learning (DRL). Our research provides two important
contributions. First, the results confirmed that the DRL agent
is transferable from a simulated environment to reality. That
is, the agent was able to learn a policy from synthetic option
data generated by empirically calibrated Heston model that
work on both simulated and actual environments. This was
verified with an extensive data set. This finding is consistent
with the evidence provided by Giurca and Borovkova (2021),
who conclude that the use of Reinforcement Learning is suit-
able for traders taking real-life hedging decisions when the
agents are trained on synthetic data.

Second, and most importantly, to our best knowledge, this
is the first paper showing that it is possible to successfully
train an empirical DRL agent for derivative hedging with
option data from actual markets, obtaining even better per-
formance than training the agent with synthetic data. The
agent is free of volatility models in the sense that no spec-
ifications on volatility or jumps were provided. The hedging
based on the empirical agent we call Empirical Deep Hedging,
and we found that it yields consistently better performance
than the use of simulated data from stochastic volatility model
and also clearly outperforms the classic Black–Scholes delta
hedging. Importantly, this research provides strong evidence
that the DRL agent can self-learn to capture the actual prop-
erties of stock price and volatility processed and to use them
for hedging in a real-life environment.

The results of this paper are important not only academi-
cally but also in practice as we provide evidence that practi-
tioners can develop their hedging strategies using empirical
self-learning DRL agents in and achieve superior perfor-
mance compared to the classic Black–Scholes delta hedging
procedure. In our future research, we plan to develop DRL
agents that exploit statistical arbitrage opportunities in option
markets by identifying over/under priced options and deep-
hedging the position until a point where the profits are the
best to be realized.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

Bakshi, G., Cao, C. and Chen, Z., Empirical performance of
alternative option pricing models. J. Finance, 1997, 52, 2003–
2049.doi:10.1111/j.1540-6261.1997.tb02749.x

Black, F. and Scholes, M., The pricing of options and corporate
liabilities. J. Polit. Econ., 1973, 81, 637–654.

Buehler, H., Gonon, L., Teichmann, J. and Wood, B., Deep hedging.
Quant. Finance, 2018, 19, 1271–1291.

Cao, J., Chen, J., Hull, J. and Poulos, Z., Deep hedging of derivatives
using reinforcement learning. J. Financ. Data Sci., 2021, 3, 10–27.

Charpentier, A., Elie, R. and Remlinger, C., Reinforcement learning
in economics and finance. Comput. Econ., 2021, 32, 1–38.

Da Silva, B. and Shi, S.S., Style transfer with time series: Generating
synthetic financial data. arXiv preprint arXiv:1906.03232.2019.

Deng, Y., Bao, F., Kong, Y., Ren, Z. and Dai, Q., Deep direct rein-
forcement learning for financial signal representation and trading.
IEEE Trans. Neural Netw. Learn. Syst., 2016, 28, 653–664.

Du, J., Jin, M., Kolm, P.N., Ritter, G., Wang, Y. and Zhang, B.,
Deep reinforcement learning for option replication and hedging.
J. Financ. Data Sci., 2020, 2, 44–57.

Ekenel, H.K. and Stiefelhagen, R., Analysis of local appearance-
based face recognition: Effects of feature selection and feature
normalization. In: 2006 Conference on Computer Vision and
Pattern Recognition Workshop (CVPRW’06), pp. 34–34, 2006.

François-Lavet, V., Henderson, P., Islam, R., Bellemare, M.G. and
Pineau, J., An introduction to deep reinforcement learning. arXiv
preprint arXiv:1811.12560, 2018.

Fujimoto, S., Hoof, H. and Meger, D., Addressing function approx-
imation error in actor-critic methods. In International Conference
on Machine Learning, PMLR, pp. 1587–1596, 2018.

Fujimoto, S., van Hoof, H. and Meger, D., Github: Address-
ing function approximation error in actor-critic methods.
https://github.com/sfujim/TD3, 2020.

Giurca, A. and Borovkova, S., Delta hedging of derivatives using
deep reinforcement learning. Available at SRRN 3847272. 2021.

Halperin, I., The QLBS Q-learner goes NuQLear: Fitted Q itera-
tion, inverse RL, and option portfolios. Quant. Finance, 2019, 19,
1543–1553.

Halperin, I., QLBS: Q-Learner in the Black–Scholes (–Merton)
worlds. J. Deriv., 2020, 28, 99–122.

Hasselt, H., Double Q-learning. Adv. Neural Inf. Process. Syst., 2010,
23, 2613–2621.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D. and
Meger, D., Deep reinforcement learning that matters. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence, 2018.

Heston, L.S., A closed-form solution for options with stochastic
volatility with applications to bond and currency options. Rev.
Financ. Stud., 1993, 6, 327–343.

Hull, J. and White, A., Optimal delta hedging for options. J. Bank.
Finance, 2017, 82, 180–190.

Kolm, P.N. and Ritter, G., Modern perspectives on reinforcement
learning in finance. SSRN Working Paper, 2020.

Kolm, P.N. and Ritter, G., Dynamic replication and hedging: A
reinforcement learning approach. J. Financ. Data Sci., 2019, 1,
159–171.

Kondratyev, A. and Schwarz, C., The market generator. Available at
SSRN 3384948. 2019.

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa,
Y., Silver, D. and Wierstra, D., Continuous control with deep
reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

Maas, A.L., Hannun, A.Y. and Ng, A.Y., Rectifier nonlinearities
improve neural network acoustic models. In: Proc. icml, Citeseer,
p. 3, 2013.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D. and Riedmiller, M.A., Playing atari with deep rein-
forcement learning. CoRR http://arxiv.org/abs/1312.5602, 2013.

Naik, V., Option valuation and hedging strategies with jumps in the
volatility of asset returns. J. Finance, 1993, 48, 1969–1984.

Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M. and Iosifidis,
A., Deep adaptive input normalization for time series forecasting.
IEEE. Trans. Neural Netw. Learn. Syst., 2019, 31, 3760–3765.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot,
M. and Duchesnay, E., Scikit-learn: Machine learning in Python.
J. Mach. Learn. Res., 2011, 12, 2825–2830.

Peng, X.B., Andrychowicz, M., Zaremba, W. and Abbeel, P.,
Sim-to-real transfer of robotic control with dynamics random-
ization. CoRR abs/1710.06537. http://arxiv.org/abs/1710.06537,
arXiv:1710.06537, 2017.

Schulman, J., Levine, S., Abbeel, P., Jordan, M. and Moritz, P.,
Trust region policy optimization. In International Conference on
Machine Learning, PMLR, pp. 1889–1897, 2015.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D. and Ried-
miller, M., Deterministic policy gradient algorithms. In Pro-
ceedings of the 31st International Conference on International

https://doi.org/10.1111/j.1540-6261.1997.tb02749.x
https://github.com/sfujim/TD3
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1710.06537

12 O. Mikkilä and J. Kanniainen

Conference on Machine Learning – Volume 32, JMLR.org, pp.
I–387–I–395, 2014.

Sutton, R.S. and Barto, A.G., Reinforcement Learning: An Introduc-
tion, 2018 (A Bradford Book).

Tankov, P. and Voltchkova, E., Asymptotic analysis of hedging errors
in models with jumps. Stoch. Process. Their Appl., 2009, 119,
2004–2027.

Watkins, C.J. and Dayan, P., Q-learning. Mach. Learn., 1992, 8, 279–
292.

Wiese, M., Bai, L., Wood, B. and Buehler, H., Deep hedg-
ing: Learning to simulate equity option markets. arXiv preprint
arXiv:1911.01700, 2019.

Wiese, M., Knobloch, R., Korn, R. and Kretschmer, P., Quant gans:
Deep generation of financial time series. Quant. Finance, 2020,
20, 1419–1440.

Xu, B., Wang, N., Chen, T. and Li, M., Empirical evaluation of recti-
fied activations in convolutional network. ArXiv abs/1505.00853,
2015.

	1. Introduction
	2. Deep reinforcement learning with continuous action domain
	3. Proposed model for deep hedging
	3.1. Reinforcement learning approaches for hedging in the literature
	3.2. Reward function
	3.3. State observation
	3.4. State featurization
	3.5. Hyperparameters
	3.6. Actor and critic neural networks

	4. Data and results
	4.1. Data
	4.2. Volatility models for Monte Carlo experiments
	4.3. Results from Monte Carlo experiments
	4.4. Empirical performance
	4.5. Public data and codes

	5. Conclusion
	Disclosure statement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

