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Channel Power Gain Estimation for Terahertz
Vehicle-to-infrastructure Networks

Zheng Lin, Lifeng Wang, Jie Ding, Bo Tan, and Shi Jin

Abstract—The use of terahertz (THz) frequencies has been
recommended to achieve high-speed and ultra-low latency trans-
missions. Although there exist very large bandwidths in the THz
frequency bands, THz channels are significantly dynamic and
complicated, which is challenging for channel estimation. To
improve the energy efficiency of wireless networks, THz channel
power gains need to be precisely evaluated for determining opti-
mal THz transmission frequencies and power control. Therefore,
this work presents a novel conditional generative adversarial
networks (GAN) based channel power gain estimation solution
in the THz vehicle-to-infrastructure (V2I) networks with leaky-
wave antennas, where the THz frequency has a big effect on the
antenna gain, path loss and atmospheric attenuation. Simulation
results confirm that our solution can accurately estimate the
channel power gains versus the THz frequencies at a fast speed.

Index Terms— Channel estimation, generative adversarial net-
works, terahertz vehicle-to-infrastructure.

I. INTRODUCTION

Due to the availability of the abundant terahertz (THz)
frequency bands, THz transmission is envisioned as the next-
generation radio technology for wireless networks [1]. Com-
pared to the sub-6GHz and millimeter wave (mmWave) en-
abled vehicle-to-infrastructure (V2I) systems, THz V2I has
the potential to achieve ultra-low latency communication and
ultra-high sensing accuracy [2].

It is known that narrow beams with large antenna gains
are required to counteract the severe path losses in the
higher frequencies. Therefore, 5G mmWave systems have
already adopted large antenna arrays with high beam man-
agement complexities [3]. However, the implementations of
conventional antenna arrays in THz systems are confronted
with many challenges in terms of the hardware compo-
nents/architecture [1], access latency [3, 4], link budget [4,
5] and path discovery [6] etc. As summarized in [3], there
exist many key issues including inefficient beam sweeping
and correspondence for beam management with large antenna
arrays in the higher frequencies. In the THz V2I networks with
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high mobility, these issues will be more critical. Recent stud-
ies [4–7] suggest that new antenna solutions are encouraged
to establish low-complexity and low-cost THz networks.

Channel estimation is essential for optimal transmission
with efficient beam management and power control, however,
it has to be redesigned in the THz systems since the traditional
schemes with large phased arrays have many bottlenecks [3].
Moreover, the THz link with a very large number of antennas
may have larger access latency [3, 4], which is detrimental
for fast channel estimation, especially in mobile scenarios.
Statistical and machine learning methods provide a data-driven
manner to tackle this challenge, which have attracted much
recent attention [8–10]. However, the traditional deep learning
(DL) architectures have limited ability to generate the exact
samples following the realistic channel distributions because of
the data information loss in the successive layers of neural net-
works [11]. The generative adversarial networks (GAN) [12]
aided channel estimation has attracted much attention, thanks
to its capability of learning the underlying distribution from the
data and producing samples statistically close to the underlying
distribution. It is shown in [8] that the GAN based channel
estimation method can achieve higher accuracy than some
DL designs with deep convolutional neural networks or deep
multilayer perceptrons. In [9], GAN is exploited to build the
mapping function between the receive signal sequences and
the channel covariance matrix. To develop the end-to-end
wireless communication systems with DL, GAN is employed
to characterize the channel effects in [13]. In [14], mmWave
channel distribution is learned by using GAN. Therefore,
GAN provides an appealing data-driven approach for channel
estimation without requiring extensive training dataset.

Motivated by the aforementioned, we propose a new
GAN based channel power gain estimation framework in
the THz V2I network with leaky-wave antennas, which has
not been conducted in the literature. Unlike the conventional
wireless systems with phased arrays, the spatial-spectral cou-
pling feature of the leaky-wave antenna can be exploited to
design fast channel estimation. Such a novel THz antenna
solution is efficient for achieving high-speed transmission in
the dense THz networks [7]. The proposed estimation scheme
overcomes the drawbacks of Doppler shift and conventional
methods such as [15] that depend on state information in
the prior time. Moreover, the significance of the designed
GAN model is twofold: i) Different from the existing works
such as [8, 9, 13, 14, 16] in which GAN model is designed by
only splicing the conditional information vector and the noise
vector once, we consider an additional cross layer splicing
such that the conditional information vector is spliced twice.
This operation can compensate the data information loss in
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Fig. 1. An illustration of THz V2I network with leaky-wave antennas.

the successive layers of the neural networks and make the
proposed GAN model generate samples more effectively; ii)
Unlike existing GAN based methods with direct splicing,
we extend the noise vector and the conditional information
vector, to increase the richness of information and improve the
efficiency of generating accurate samples. In the considered
network, the received signal strengths (RSSs) are leveraged as
the conditional information to train the proposed GAN model.
With the help of the proposed GAN based solution, vehicles
extract the channel power gain information from their received
signal strengths (RSSs), and do not need any additional state
information. The results confirm that the proposed solution
can accurately predict the channel power gains of the corre-
sponding frequencies and has a fast convergence speed.

The rest of this paper is organized as follows. The system
model is described in Section II. The GAN-based channel es-
timation solution is designed in Section III. Section IV covers
the simulation results. Finally, some concluding remarks are
presented in Section V.

II. SYSTEM DESCRIPTION

In the multi-vehicle THz downlink networks (illustrated by
Fig. 1), each roadside unit (RSU) has one lowest transverse-
electric (TE1) mode leaky-wave antenna and each vehicle has
one omnidirectional antenna. As mentioned by [17], the far-
field radiation pattern of TE1 mode leaky-wave antenna is
given by

G (f, φ) = Lsinc

[
(−jα− k0 (f) cosφ+ β (f))

L

2

]
, (1)

where f is the transmission frequency, φ is the propagation
angle (0 < φ < 90o), L is the aperture length, j =

√
−1, α

is the attenuation coefficient due to the power absorption in
the structure, k0 (f) = 2πf/c with the speed of light c is the

wavenumber of the free-space, β (f) = k0 (f)

√
1−

(
fco
f

)2

is the phase constant of the TE1 mode based traveling wave,
in which fco = c

2d with the inter-plate distance d is the cutoff
frequency. One of the key features for the leaky-wave antenna
is that given a line-of-sight (LoS) direction φ of a vehicle,
the frequency that has the maximum level of the radiation is
calculated as [6]

f (φ) =
fco
sinφ

. (2)

It is indicated from (2) that the frequencies of interest around
f (φ) can be leveraged to achieve large radiated energy at the
transmission direction φ.

Since each vehicle adopts the same mechanism, we focus
on an arbitrary vehicle for notational convenience. The leaky-
wave antenna’s spatial-spectral coupling effects (signatures)
enable that multiple vehicles can be identified by exploit-
ing their unique link directions without a need for beam
association. In practice, the reference signal can be formed
as a moderate “THz rainbow” [6], i.e., signal components
over different frequencies are radiated into the free-space at
different directions due to the leaky-wave antenna’s spatial-
spectral coupling effect. Moreover, the reference signal only
needs to consist of signal components in directions of interest
(namely moderate propagation angle range that covers the
desired direction from the RSU to a vehicle), thanks to the
known prior link direction information. In addition, it has
been confirmed in [7] that the THz network with leaky-
wave antennas is noise-limited and co-channel interference
is negligible. Therefore, the received reference signal at the
center frequency fn of the n-th subchannel for an arbitrary
vehicle is written as

yn (t) =

√
pG̃ (fn, φ (t))~nz (t− τ) ej2πf

Doppler
n (t)t +ϖ (t) ,

(3)
where p is the transmit power per subchannel, G̃ (fn, φ (t)) =
ξG (fn, φ (t)) is the effective antenna gain, here ξ is the
radiation efficiency factor and can be easily obtained by
measuring the effective antenna gain for a particular leaky-
wave antenna structure, thus it can be known a priori [6],
~n is the THz channel coefficient at frequency fn, z (t)
with E{z (t) zH (t)} = 1 is the reference signal, τ is the
propagation delay, fDoppler

n (t) is the Doppler shift at time t,
ϖ (t) is the complex additive white Gaussian noise with zero
mean and variance σ2. In light of (3), the RSS observed at the
vehicle is given by

yn = pG̃ (fn, φ (t)) |~n|2 +ϖ, (4)

where |~n|2 is the channel power gain, ϖ ∼ exp (λ) is the
exponential random variable with the parameter λ = 1/σ2.
Our aim is to estimate the channel power gain |~n|2 based
on the observations yn. It should be noted that the level of
effective antenna gain for a subchannel is unknown at the
vehicle. The vehicles aim to estimate the channel power gains
with the help of the proposed GAN based design, which is
detailed in the following section.

III. CHANNEL ESTIMATION WITH CONDITIONAL
GENERATIVE ADVERSARIAL NETWORKS

GAN is introduced as an alternative approach to train gen-
erative models for addressing the difficulty of approximating
many intractable probabilistic computations [12]. The rationale
behind it is that raw data is leveraged to train two feed-forward
neural networks, namely generator and discriminator: The
generator G(·) captures the data underlying distribution; and
the discriminator D(·) estimates the probability that a sample
comes from the training data rather than G(·). Nevertheless,
in this unconditional generative model, the generation of
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Fig. 2. Neural network architecture of the proposed GAN based solution.

data cannot be controlled. The conditional GAN [16] splices
the conditional information vector and the noise vector as
additional input layer to form a conditional generative model,
so that the model can generate data under the guidance of
the conditional information. Inspired by the GAN, we de-
velop a novel conditional GAN based THz channel estimation
solution, which can learn the complicated mapping function
between the RSS and channel power gain.

As shown in Fig. 2, the input to the generator G(·) is
the splicing of the noise vector z sampled from a priori
distribution pz (e.g. uniform distribution) and the conditional
information vector y. In the proposed design, the conditional
information vector encompasses the center frequencies of the
available subchannels and their corresponding RSSs (Vehicles
cannot identify the channel power gain information belonging
to which subchannel before processing). Therefore, the con-
ditional information vector y can be written as

y = [f1, f2, · · ·, fn, ȳ1, ȳ2, · · ·, ȳn] (5)

The objective of our proposed GAN based approach is to
generate the estimated channel power gain vector h̃ under
the guidance of the conditional information vector y. The
estimated channel power gain vector h̃ is given by

h̃ =

[∣∣∣~̃1∣∣∣2, ∣∣∣~̃2∣∣∣2, · · ·, ∣∣∣~̃n∣∣∣2] . (6)

We first design the generator model. Different from direct
splicing in existing GAN based methods such as [8, 9, 13, 14,
16], we extend the noise vector z and the conditional informa-
tion vector y, in order to increase the richness of information
and improve the efficiency of generating accurate samples.
The extended noise vector and conditional information vector
are spliced as the additional input of the generator. The input
splicing vector is then delivered into the multi-layer neural
network structure, which includes three neural network layers,
fully connected (FC) layer, batch normalization (BN) layer and
PReLU activation layer. By increasing neural network depth,
the activation function becomes more nonlinear, which leads
to stronger fitting ability [18]. The main purpose of BN layer
is to normalize the data and improve the gradient flowing
through the network, so as to accelerate the convergence of the
generative model. After multi-layer neural network processing,
the output vector is spliced with the conditional information
vector y for the second time and goes through three FC layers,
to rescale the vector that has the same size as h̃. The PReLU
activation layer can retain more feature information in the

shallow layer of the neural network, and has higher feature
discrimination in the deep layer.

The input of the discriminator D(·) is either a real sample
h from the targeted distribution pdata, or a generated sample
G (z |y) (namely h̃), and the output of the discriminator is a
real value representing the probability that the input is sampled
from the targeted distribution pdata. The input splicing vector
flows through the three FC layers, and the activation layers
are ReLU, ReLU, and Sigmoid, respectively.

In the training process, the generator G(·) attempts to gen-
erate fake samples, which can deceive the discriminator D(·).
The discriminator D(·) learns to distinguish the fake samples
generated by the generator G(·) and the real samples from the
target distribution pdata. The training process converges when
the Nash equilibrium of a minimax game between generator
G(·) and discriminator G(·) is reached. The objective function
of minimax game can be expressed as

min
G

max
D

V (D,G) = Eh∼pdata(h) [logD (h |y)]

+Ez∼pz(z) [log (1−D (G (z |y)))] ,
(7)

where E [·] is the expectation operator. By training the pro-
posed GAN model until convergence, the desired generator
G(·) is obtained as our THz channel power gain estimator.

IV. NUMERICAL RESULTS

This section presents numerical results to confirm the ef-
ficiency of the proposed approach, which can well address
the effects of path loss and atmospheric attenuation in the
different THz frequencies. The values of the system parameters
and the corresponding system computational complexity in the
simulations are detailed as follows:

Channel model parameters: For the V2I THz channel
measurement dataset, we adopt ITU’s gaseous attenuation
calculation model to generate real channel measurement data
in the frequencies ranging from 100GHz to 400GHz [19],
where the measured path losses and atmospheric attenuations
with respect to the THz frequencies are provided. In the
simulations, the propagation angle from the RSU to the vehicle
is uniformly distributed, i.e., φ ∈ U

(
0, π

2

)
, the transmit power

per channel is p = 21.76dBm, the communication distance is
uniformly distributed within the coverage radius rmax = 30m,
the aperture length L = 0.06m, the leaky-wave antenna’s
attenuation coefficient is α = 90rad/m, inter-plate distance
d = 1.5mm, radiation efficiency factor ξ = 1 and the noise
power is σ2 = −10dBm. The simulation is conducted by
using Python version 3.8 and PyTorch library 1.11.0.

GAN model parameters: Assume that the noise vector z
length is M (usually set as a small integer) and the estimated
channel power gain vector h̃ length is N , therefore, the
conditional information y length is 2N . As shown in Fig. 2, for
the generator, we first extend the lengths of noise vector and
conditional information vector to 500 and 1000, respectively.
After the first splicing, the vector length remains 1500 during
the three-layer and five identical four-layers processes. Then
the vector length is extended to 10000 and reduced to 1000
before the second splicing. At last, after going through three
FC layers, the vector length is correspondingly reduced to
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1500, 1000 and N . For the discriminator, we first extend the
length of the splicing vector to 64, and then reduce the length
to 32 and 1 in the final two FC layers, respectively. In addition,
for each training, the training data batch fed into the model is
128; the generator G(·) and discriminator D(·) are trained 200
times in each epoch; the learning rates of the generator and
discriminator are the same and set as 0.003. It is noted that the
traditional GAN network [16] is employed as the benchmark,
which has the identical layers and dimensions as the proposed
GAN, and the difference of the proposed GAN network is
that input vector expansion and twice splicing processes are
introduced as illustrated in Fig. 2.

Computational complexity: The number of floating-point
operations (FLOPs) is an important indicator to measure the
computational complexity of neural networks. It is shown
in [20] that the number of FLOPs for the FC layer is
(2I − 1)O, and the number of FLOPs for the BN layer is
2IO, where I is the input dimensionality and O is the output
dimensionality. The number of FLOPs for the PReLU and
ReLU activation layers are the same as I , and the number
of FLOPs for the Sigmoid activation layer is 4I . As such,
the number of FLOPs for the considered generator and the
discriminator in the proposed GAN network are calculated as
5999N + 1000M + 3.399975 × 108 and 384N + 4160. It is
noted that for the traditional GAN network [16], the number of
FLOPs of generator and discriminator are 3999N −1000M +
3.379975×108 and 384N+4160, respectively. Therefore, the
proposed GAN network has the same order of computational
complexity as the traditional one [16].

Performance evaluation: We utilize normalized mean
square error (NMSE) to measure the similarity between the
estimated channel power gain vector h̃ and the real channel
power gain vector h, which is given by

NMSE =

∥∥∥h− h̃
∥∥∥2

∥h∥2
. (8)

Fig. 3 shows the heatmaps for estimated channel power gain
matrix versus real matrix for different numbers of subchannels
(5 and 10 in this figure). It can be seen that the channel power
gain predicted by the proposed solution has a good match with
the real one.

Fig. 4 shows the NMSE of using the proposed GAN based
solution and the traditional GAN in [16]. The proposed GAN
based solution has a lower NMSE, namely it can estimate the
real channel power gain vector h more accurately. Moreover,
the proposed solution has faster convergence speed. The
reasons are twofold: i) An additional cross layer splicing is
leveraged to reduce the data information loss in the successive
layers of the neural networks and make the proposed GAN
model generate samples more effectively; ii) The noise vector
and the conditional information vector are extended to increase
the richness of information and improve the efficiency of
generating accurate samples.

Fig. 5 shows the average NMSE (over 104 trials) for the
moving vehicle with different accelerations (a = 5m/s2 and
a = 3m/s2 in this figure). By using the proposed solution, the
level of NMSE keeps remarkably low for different motions. As
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the vehicle’s velocity increases, the proposed solution achieves
stable performance, i.e, the level of NMSE varies negligibly.

V. CONCLUSION AND FUTURE WORK

A data-driven approach was designed to rapidly estimate the
channel power gains in the multi-vehicle THz V2I networks
with leaky-wave antennas, which only required single shot
channel discovery. By employing vector expansion and twice
splicing of the conditional information vector, the proposed
GAN based solution improves the efficiency of channel pre-
diction with a fast convergence speed. Simulation results
have demonstrated that the proposed GAN based solution can
accurately predict the channel power gain and well address
the dramatic channel fluctuations due to the high path losses
and atmospheric attenuations in the THz frequencies.
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Fig. 5. Performance comparison for the moving vehicle with different
accelerations: The minimum communication distance between a vehicle and
the RSU is h = 2m, the initial states of the considered vehicle include
the velocity v◦ = 20m/s, the direction φ◦ = 4◦ and thus the initial
communication distance d◦ = h/ sin θ◦ = 28.67m.

While this work has shown the opportunities of using leaky-
wave antenna for the V2I channel power gain estimation in the
THz frequencies, more research efforts are required to study
the dense THz V2I networks, where co-channel interference
may have an adverse effect on the estimation performance
and needs to be mitigated. In the next-generation intelligent
transportation systems (ITS), vehicle platooning will be ubiq-
uitous [21, 22], and efficient THz channel estimation in the
platoon systems is another research area. In addition, it is
important to design GAN based vehicle positioning.
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