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Abstract 1 

Aims:  While most patients with myocardial infarction (MI) have underlying coronary 2 

atherosclerosis, not all patients with coronary artery disease (CAD) develop MI.  We sought to 3 

address the hypothesis that some of the genetic factors which establish atherosclerosis may be 4 

distinct from those that predispose to vulnerable plaques and thrombus formation. 5 

Methods and Results:  We carried out a genome-wide association study for MI in the UK 6 

Biobank (n~472,000), followed by a meta-analysis with summary statistics from the 7 

CARDIoGRAMplusC4D Consortium (n~167,000).  Multiple independent replication analyses 8 

and functional approaches were used to prioritize loci and evaluate positional candidate genes.  9 

Eight novel regions were identified for MI at the genome wide significance level, of which effect 10 

sizes at six loci were more robust for MI than for CAD without the presence of MI.  11 

Confirmatory evidence for association of a locus on chromosome 1p21.3 harboring choline-like 12 

transporter 3 (SLC44A3) with MI in the context of CAD, but not with coronary atherosclerosis 13 

itself, was obtained in Biobank Japan (n~165,000) and 16 independent angiography-based 14 

cohorts (n~27,000).  Follow-up analyses did not reveal association of the SLC44A3 locus with 15 

CAD risk factors, biomarkers of coagulation, other thrombotic diseases, or plasma levels of a 16 

broad array of metabolites, including choline, trimethylamine N-oxide, and betaine.  However, 17 

aortic expression of SLC44A3 was increased in carriers of the MI risk allele at chromosome 18 

1p21.3, increased in ischemic (vs. non-diseased) coronary arteries, upregulated in human aortic 19 

endothelial cells treated with interleukin-1β (vs. vehicle), and associated with smooth muscle cell 20 

migration in vitro. 21 

Conclusions:  A large-scale analysis comprising ~831,000 subjects revealed novel genetic 22 

determinants of MI and implicated SLC44A3 in the pathophysiology of vulnerable plaques. 23 
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Introduction 1 
 2 

Myocardial infarction (MI) and coronary artery disease (CAD) are the leading causes of 3 

death in Western societies1, even in the contemporary era of high-potency statin therapy2.  4 

Individuals with CAD are typically asymptomatic, with the first manifestations often being 5 

major adverse clinical events, such as MI, or sudden death due to the rupture of an 6 

atherosclerotic plaque3.  Thus, understanding the biological mechanisms that precipitate plaque 7 

rupture and thrombosis could have important clinical implications since it may lead to earlier 8 

detection or better prediction of the transition from a stable lesion to a vulnerable plaque. 9 

It is generally accepted that common forms of MI and CAD are characterized by heritable 10 

susceptibility factors in the context of lifetime exposure to an atherogenic environment.  11 

Consistent with this notion, large-scale and multi-ethnic genome-wide association studies 12 

(GWAS) have identified >200 loci that influence risk of MI and CAD via perturbations of lipid 13 

metabolism, blood pressure regulation, inflammation, and platelet function4-12, as well as through 14 

mechanisms that still remain unknown.  However, the susceptibility alleles, most of which are 15 

common in the population, still only explain a small fraction of the overall heritability for CAD 16 

and MI.  Furthermore, even though the vast majority of patients with MI have underlying 17 

coronary atherosclerosis, not all patients with coronary atherosclerosis develop MI.  This 18 

observation suggests that some of the mechanisms that establish atherosclerosis or drive its 19 

progression may be distinct from those that predispose to plaque vulnerability and thrombus 20 

formation.  Again, genetic studies support this concept.  For example, 9p21 is one of the most 21 

strongly associated loci for CAD but is not specifically associated with MI when comparing 22 

CAD-positive/MI-positive (CAD+/MI+) individuals to those who are CAD-positive/MI-negative 23 

(CAD+/MI-)13, 14.  By contrast, the same analytical approach initially identified ABO, which 24 
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defines the common ABO blood group system, as being associated with MI among individuals 1 

with CAD but not necessarily with the presence of coronary atherosclerosis itself13.  Thus, even 2 

though nearly all loci identified to date for CAD are also associated with MI, it is likely that 3 

additional genetic factors predisposing more strongly or specifically to plaque rupture and 4 

thrombotic phenotypes exist as well.  However, with the exception of ABO, no other such locus 5 

has been identified.  In the present study, we sought to further explore the genetic architecture of 6 

MI and address the hypothesis that distinct genetic risk factors may underlie susceptibility to MI 7 

and CAD.  8 

 9 
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Methods 1 

Detailed methods are provided in the online Supplemental Materials.2 
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Results 1 

Identification of 8 Novel Loci for MI:  To further expand our understanding of the genetic 2 

architecture of MI, we first carried out a GWAS for MI with 17,505 cases and 454,212 controls 3 

from the UK Biobank (Figure 1 and Supplementary material online, Table S1).  This analysis 4 

identified 1,966 SNPs at 31 loci that were associated with MI at the genome-wide significance 5 

threshold of P=5.0x10-8 (Supplementary material online, Figure S1 and Table S2).  Twenty 6 

eight of the 31 loci were previously reported for an all-inclusive CAD phenotype that included 7 

MI6.  When MI was defined according to the algorithm provided by the UK Biobank, virtually 8 

identical results were obtained (Supplementary material online, Table S2).  We next combined 9 

our results in the UK Biobank with summary statistics from CARDIoGRAM+C4D6 in a fixed-10 

effects meta-analysis that included a total of ~61,000 MI cases and ~578,000 controls and 11 

8,126,035 SNPs common to both datasets (Figure 1 and Supplementary material online, 12 

Table S1).  This analysis revealed 4,419 significantly associated variants at 80 loci (Figure 2 13 

and Supplementary material online, Figure S2), eight of which were novel and associated with 14 

MI (or CAD) for the first time herein (Table 1 and Figure 3).  The other 72 genome-wide 15 

significant loci in our MI meta-analysis overlapped with the 205 previously identified CAD 16 

regions7-12 (Supplementary material online, Table S3).  We also obtained evidence for 17 

association of the 133 remaining known CAD loci at P<2.5x10-3, although 12 signals would not 18 

be considered significant at the Bonferroni-corrected threshold for testing 205 regions 19 

(P=0.05/205=2.4x10-4) (Supplementary material online, Table S3).  Thus, our meta-analysis 20 

with the UK Biobank and CARDIoGRAMplusC4D replicated nearly all 205 known CAD loci 21 

and, together with the eight novel regions, brings the total number of MI/CAD susceptibility loci 22 

to 213 at the time of this analysis (Supplementary material online, Table S3). 23 
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Prioritization of Positional Candidate Genes and Follow-up Analyses with Novel MI Loci:  To 1 

identify candidate causal genes at the new loci, we first used multi-tissue gene expression data 2 

from the GTEx Project15, the eQTLgen Consortium, or previously published studies available 3 

through the Phenoscanner database16.  For each locus, at least one candidate gene could be 4 

prioritized based on the lead SNP yielding a cis eQTL in one or more tissues relevant to MI 5 

(Supplementary material online, Table S4).  Candidate causal genes were prioritized further 6 

using colocalization analysis with summary statistics from our meta-analysis and eQTL data 7 

from the STARNET cohort17 in blood, atherosclerotic aortic artery, internal mammary artery, 8 

visceral and subcutaneous adipose, liver, and skeletal muscle.  Based on posterior probabilities of 9 

≥75%, we obtained evidence for SLC44A3, TMEM87B, and FHL5 as being causal positional 10 

candidate genes on chromosomes 1p21.3, 2q13, and 6q16.1, respectively (Supplementary 11 

material online, Table S5).  To explore the biological relevance of the MI loci, we also 12 

evaluated the lead variants for association with CAD risk factors in the UK Biobank and other 13 

disease phenotypes using the PhenoScanner database16.  Five loci yielded genome-wide 14 

significant associations with blood pressure, lipid levels, BMI, and/or type 2 diabetes in the UK 15 

Biobank (Supplementary material online, Table S6).  The other three loci on chromosomes 16 

1p21.3 (SLC44A3), 1p36.11, (AHDC1) and 4q22.3 (PDLIM5) were either not associated with 17 

any CAD risk factor or only yielded suggestive associations (Supplementary material online, 18 

Table S6).  Based on Phenoscanner, the loci on chromosomes 1p21.3 (SLC44A3) and 1p36.11 19 

(AHDC1) have also not been associated with other disease-related phenotypes whereas the lead 20 

variants (or tightly linked proxies) at the remaining MI loci have been suggestively or 21 

significantly associated with other complex traits, including inflammatory cytokines, circulating 22 

leukocytes, prostate cancer, and migraine (Supplementary material online, Table S7). 23 
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Comparison of Association Signals for MI and CAD Phenotypes at Novel Loci:  We next 1 

investigated the phenotypic specificity of the association signals for MI and CAD using various 2 

analytical strategies.  In the first approach, we carried out association analyses with the eight 3 

novel loci in the UK Biobank using an all-inclusive definition of CAD (see online Methods for 4 

details).  This was followed by a meta-analysis of the results with summary statistics for CAD 5 

provided by the CARDIoGRAMplusC4D Consortium.  Compared to MI, all eight loci yielded 6 

some degree of association with CAD in our meta-analysis with the UK Biobank and 7 

CARDIoGRAM+C4D, with two loci on chromosomes 1p36.11 and 6q16.1 exhibiting genome-8 

wide significance (Table 1 and Supplementary material online, Table S8).  These latter 9 

observations suggest that the association signals on chromosomes 1p36.11 and 6q16.1 may not 10 

be specific to MI.  The associations between the eight novel loci and CAD were also consistent 11 

with another recent meta-analysis for CAD using the UK Biobank and CARDIoGRAMplusC4D 12 

Consortium11 (Supplementary material online, Table S3).   13 

Since CARDIoGRAMplusC4D used an all-inclusive definition of CAD that incorporated 14 

MI6, it was not possible to determine the true specificity of the associations for MI vs. CAD 15 

using our meta-analysis results for CAD.  Therefore, as a second approach, we used primary 16 

level data in the UK Biobank to compare association of the eight novel loci with MI and a 17 

restricted CAD only phenotype that excluded subjects with MI.  As a positive control locus, we 18 

also included ABO in these analyses.  Consistent with previous studies13, our lead SNP 19 

(rs9411377) at the ABO locus in the UK Biobank was strongly associated with MI but not the 20 

restricted CAD only phenotype (Table 2), thus validating this analytical approach.  Seven of the 21 

eight novel loci identified for MI were not associated with CAD in the comparative analyses 22 

using the UK Biobank (Table 2).  The only exception was the AHDC1 locus on chromosome 23 
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1p36.11, although the effect size and significance level were weaker for CAD than with MI 1 

(Table 2).  We also evaluated association at the eight novel loci in the UK Biobank in analyses 2 

comparing cases defined as having both CAD and MI (CAD+/MI+) to controls defined as CAD 3 

only subjects (CAD+/MI-).  In addition to the expected association with ABO, six of the eight loci 4 

were nominally associated (P<0.05) with MI among subjects with CAD (Table 2).  Taken 5 

together, these results suggest that the association signals at some of the novel eight loci are 6 

either specific to or more robust for MI than with a CAD only phenotype.   7 

We next carried out the same analyses in the UK Biobank for 15 previously identified 8 

loci that have been suggested to modulate risk of CAD through thrombotic mechanisms5-11.  At a 9 

Bonferroni-corrected significance threshold for testing 15 SNPs (P=0.05/15=3.3x10-3), the lead 10 

variants from our MI meta-analysis at seven of these loci were associated with MI, but not the 11 

CAD only phenotype, in the UK Biobank (Supplementary material online, Table S9).  Four of 12 

these seven loci were also associated with MI among individuals with CAD (CAD+/MI+ vs. 13 

CAD+/MI-) at P<0.05, but none were associated with the CAD only phenotype (Supplementary 14 

material online, Table S9).  The remaining eight thrombosis-related loci were associated with 15 

both MI and CAD but not with MI in the context of CAD (Supplementary material online, 16 

Table S9).  Thus, some, but not all, of the 15 previously identified CAD/MI loci related to 17 

thrombosis exhibited association patterns in the UK Biobank that were similar to those observed 18 

at the ABO locus and several of the novel MI loci (Table 2). 19 

To determine whether the novel MI loci were associated with other CAD phenotypes and 20 

whether the association signals differed by ancestry, we carried out sensitivity analyses in the 21 

UK Biobank.  As shown in Supplementary material online, Table S10, there was no evidence 22 

for association with “soft” endpoints, such as angina and death due to CAD, which may have 23 
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been due to decreased sample size.  Although the P-values for MI in subjects of non-European 1 

ancestry did not reach significance either, presumably also due to decreased power, the effect 2 

sizes were all directionally consistent with those in European ancestry subjects (Supplementary 3 

material online, Table S10) and still contributed to the overall increased significance observed 4 

at the MI loci in analyses that included all subjects from the UK Biobank (Table 2). 5 

 6 

Replication of Comparative Association Signals for MI and CAD in Biobank Japan:  To replicate 7 

the association signals at the novel loci in a large non-European ancestry population, we carried 8 

out the same comparative analyses for MI vs. CAD only in Biobank Japan (n~165,000).  Since 9 

the restricted CAD phenotype in Biobank Japan could only be defined based on a diagnosis of 10 

stable angina, we first evaluated the lead SNP at 9p21 (rs2891168) as a positive control CAD 11 

locus.  This analysis yielded the expected strong association with CAD only (OR=1.14, 95% CI 12 

1.11-1.17; P=7.3x10-21).  Similar to the UK Biobank, the ABO locus was also strongly associated 13 

with MI in Biobank Japan but not CAD only (Supplementary material online, Table S11).  14 

Based on these results further validating this comparative strategy and its applicability to 15 

Biobank Japan, we tested the novel regions for association with MI vs. CAD only.  Since the loci 16 

on chromosomes 1p36.11 (AHDC1) and 6q16.1 (FHL5) yielded genome-wide significant 17 

association with CAD in the meta-analysis with the UK Biobank and CARDIoGRAM+C4D 18 

(Table 1), they were not considered in these analyses.  None of the six remaining newly 19 

identified loci were associated with the CAD only phenotype whereas three regions (1p21.3, 20 

2q32.1, and 15q24.2) yielded nominal (P<0.05) associations with MI in Biobank Japan 21 

(Supplementary material online, Table S11) that were directionally consistent with the UK 22 

Biobank (Table 2).  However, only the lead SNP (rs12743267) at the chromosome 1p21.3 locus 23 
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harboring SLC44A3 was also associated with MI among CAD cases (Supplementary material 1 

online, Table S11). 2 

 3 

Preferential Association of the SLC44A3 Locus with MI in the Presence of Atherosclerosis:  We 4 

next sought to replicate the association signals for MI at the novel loci using independent cohorts 5 

in which the presence of CAD was more directly assessed by angiography.  Case-control 6 

analyses were carried out in a first set of six cohorts with ~14,000 angiographically-documented 7 

CAD patients with MI (CAD+/MI+ cases; n=6,514) and without MI (CAD+/MI- controls; 8 

n=7,411) (Supplementary material online, Table S12).  A fixed-effects meta-analysis with 9 

these six cohorts revealed consistent and strong association of the SLC44A3 locus on 10 

chromosome 1p21.3 with risk of MI among individuals with CAD (OR=1.16, 95% CI 1.09-1.23; 11 

P=3.3x10-6) (Table 3), with no significant evidence for heterogeneity (P-het=0.10) 12 

(Supplementary material online, Table S12).  Exclusion of the Emory cohort, which itself 13 

exhibited a very strong effect size with large variation, did not appreciably change the direction 14 

or significance level of the overall association between the SLC44A3 locus and MI (OR=1.15, 15 

95% CI 1.08-1.22; P=6.2x10-6) (Supplementary material online, Table S12). 16 

As another replication study, we evaluated association of the newly identified MI loci in 17 

10 additional angiography-based cohorts comprised of 7,412 CAD+/MI+ cases and 5,542 18 

CAD+/MI- controls (Supplementary material online, Table S13).  These analyses also yielded 19 

evidence for association of the SLC44A3 locus with MI in the context of CAD (OR=1.09, 95% 20 

CI 1.03-1.16; P=2.1x10-3) but not the remaining five loci.  When all 16 angiography-based 21 

cohorts were meta-analyzed together (n~27,000), association of the SLC44A3 locus with MI in 22 

the presence of coronary atherosclerosis increased in significance by several fold (OR=1.12, 95% 23 
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CI 1.08-1.17; P=5.6x10-8) (Table 3).  Notably, the SLC44A3 locus was highly significantly 1 

associated with MI in an all-inclusive meta-analysis with UK Biobank, Biobank Japan, and the 2 

16 angiography-based cohorts (n=41,336 CAD+/MI+ cases and 40,363 CAD+/MI- controls) and 3 

exceeded the threshold for genome-wide significance (OR=1.07, 95% CI 1.05-1.10; P=5.4x10-4 

11).  Taken together with the weak associations observed with CAD in the meta-analyses with 5 

CARDIoGRAMplusC4D and UK Biobank and the comparative analyses in the UK Biobank and 6 

Biobank Japan, these results provide compelling evidence for the SLC44A3 locus being 7 

preferentially associated with plaque instability and/or rupture in the presence of coronary 8 

atherosclerosis but not atherosclerotic CAD itself. 9 

 10 

Association of the SLC44A3 Locus with Other Thrombotic Phenotypes:  We next explored 11 

whether the SLC44A3 locus was associated with other thrombotic and coagulation phenotypes 12 

related to MI.  Based on data from the MEGASTROKE Consortium18, there was no evidence for 13 

association of rs12743267 with most forms of stroke except for nominal associations with 14 

cardioembolic and small vessel stroke in subjects of European ancestry that would not be 15 

considered significant at a Bonferroni corrected P-value of 0.01 for testing five forms of stroke 16 

(0.05/5=0.01) (Supplementary material online, Table S14).  Second, variants at the 17 

chromosome 1p21.3 locus had been previously associated with circulating levels of D-dimer19, 18 

which is produced when crosslinked fibrin is degraded by plasmin and the most widely used 19 

clinical marker of activated blood coagulation20.  However, rs12743267 was not associated with 20 

D-dimer levels (beta=-0.011; SE=0.007; P=0.12) based on a GWAS carried out by the CHARGE 21 

Consortium19 and the lead SNP for D-dimer (rs12029080) was not associated with MI in our 22 

meta-analysis with the UK Biobank and CARDIoGRAMplusC4D Consortium (OR=0.99, 95% 23 
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CI 0.98-1.01; P=0.32) or in Biobank Japan (OR=0.98, 95% CI 0.96-1.01; P=0.12).  Lastly, 1 

SLC44A2, a member of the solute carrier family of membrane transporters that includes 2 

SLC44A3, has been associated with venous thromboembolism (VTE)21, another coagulation and 3 

thrombotic phenotype relevant to MI.  However, there was no association of rs12743267 with 4 

VTE (OR=0.97, 95% CI 0.92-1.02; P=0.23) in a GWAS carried out by the INVENT 5 

Consortium21.  By comparison, the lead VTE SNP in SLC44A2 (rs2288904) was associated with 6 

CAD (OR=1.04, 95% CI 1.03-1.05; P=7.0x10-8) and MI (OR=1.04, 95% CI 1.02-1.06; 7 

P=1.5x10-5) in our meta-analyses, as well as with CAD in Biobank Japan (OR=1.03, 95% CI 8 

1.01-1.06; P=1.1x10-3). 9 

 10 

Association of the SLC44A3 Locus with Choline-related Metabolites:  While the function of 11 

SLC44A3 as a solute carrier is not entirely known, it has been reported to encode a putative 12 

choline-like transporter22.  In humans, elevated plasma levels of choline and products of its 13 

metabolism have been linked to risk of MI-related outcomes23-25.  However, we did not obtain 14 

evidence in the Genebank cohort for association of the SLC44A3 locus with plasma levels of 15 

these metabolites or a panel of choline-related small molecule amines that have also been 16 

associated with CAD and MI26-31 (Supplementary material online, Table S15).  Based on data 17 

from three metabolomics and proteomics studies32-34, the SLC44A3 locus did yield associations 18 

with small molecules in plasma or urine, but these would not be considered significant at 19 

Bonferroni-corrected thresholds for the number of analytes tested in each dataset 20 

(Supplementary material online, Table S16). 21 

 22 
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Functional Analysis of SLC44A3:  We next used functional studies to evaluate SLC44A3 as a 1 

candidate causal gene at the chromosome 1p21.3 locus.  Among 600 CAD patients in the 2 

STARNET study 17, SLC44A3 was expressed at relatively high levels in several MI-relevant 3 

tissues, such as atherosclerotic aortic root, adipose tissue, mammary artery, and liver (Figure 4 

4A).  In addition, the lead SNP on chromosome 1p21.3 yielded cis eQTLs for SLC44A3 in 5 

atherosclerotic aorta and mammary artery, where the MI risk allele (C) was associated with 6 

increased expression (Figure 4B).  In the GTEx Project, similar eQTLs were observed in aorta 7 

and coronary artery (Figure 4C), as well in whole blood and various components of the 8 

gastrointestinal tract (Supplementary material online, Table S4).  These findings were 9 

consistent with mRNA levels of SLC44A3 being significantly higher in ischemic coronary 10 

arteries compared to non-diseased coronary arteries in another independent dataset (Figure 4D).  11 

To explore the vascular cell type in which SLC44A3 could mediate its biological effects on MI, 12 

we used RNAseq and functional data from two additional independent datasets of human aortic 13 

endothelial cells (HAECs) and smooth muscle cells (SMCs), respectively.  Compared to vehicle 14 

control, SLC44A3 expression was significantly upregulated in HAECs treated with the pro-15 

atherogenic inflammatory cytokine IL-1β (Figure 4E).  SLC44A3 expression in SMCs was also 16 

modestly, but significantly, inversely correlated with migration towards platelet-derived growth 17 

factor (PDGF)-BB in vitro (Figure 4F).  Taken together, these data provide supportive 18 

functional evidence that SLC44A3 is at least one candidate causal at the novel MI locus on 19 

chromosome 1p21.3 locus and suggest that this putative solute carrier could promote increased 20 

risk of plaque rupture and thrombosis through mechanisms at the level of the artery wall. 21 

 22 

 23 
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Discussion 1 

In the present study, we identified eight novel loci for MI through a large-scale gene 2 

discovery effort that in total incorporated ~831,000 subjects from the UK Biobank, 3 

CARDIoGRAMplusC4D Consortium, Biobank Japan, and over a dozen angiography-based 4 

cohorts.  Based on our own meta-analyses with CARDIoGRAMplusC4D and the UK Biobank 5 

and another recent comparable analysis11, the strength of the associations at the eight loci were, 6 

for the most part, stronger with MI than with CAD.  This pattern of association signals is not 7 

entirely surprising since our primary meta-analysis was specifically for a plaque rupture 8 

phenotype.  Various follow-up analyses provided further evidence that six of the novel loci were 9 

either specifically or more strongly associated with MI than with CAD.  However, only one of 10 

these loci yielded independent association with MI among subjects with CAD in replication 11 

analyses.  Thus, it is possible that some of the novel loci may also influence risk of CAD and are 12 

therefore not truly specific for MI.  Nevertheless, our collective analyses led to the identification 13 

of eight novel genetic determinants of cardiovascular outcomes, bringing the total number of loci 14 

associated with atherosclerosis-related outcomes to 213. 15 

Of the loci identified, multiple independent analytical approaches provided evidence that 16 

the SLC44A3 locus was specifically associated with MI but not CAD.  This association was 17 

revealed not only by our initial meta-analysis and subsequent comparative analyses in the UK 18 

Biobank, but were also supported by association signals in the comparably sized Biobank Japan 19 

that were equivalent in magnitude and significance to those in the UK Biobank.  Further and 20 

consistent association of the SLC44A3 locus with MI was also observed in an initial set of 6 21 

followed by another 10 additional independent cohorts in which associations were tested 22 

specifically with MI among individuals with angiographically documented CAD.  Importantly, 23 
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the magnitude of the effect size of the SLC44A3 locus on MI in the context of coronary 1 

atherosclerosis (OR=1.12) was stronger than the ORs obtained in the GWAS meta-analysis, UK 2 

Biobank, or Biobank Japan (OR~1.05), and equivalent to some of the most significantly 3 

associated loci identified to date for CAD11.  Taken together, these results support the notion that 4 

the biological mechanism(s) underlying the association of the SLC44A3 locus may be related to 5 

plaque rupture rather than plaque progression per se.  In this regard, ABO was similarly 6 

identified as being only associated with MI in the original study by Reilly et al.13, which we 7 

replicated in our analogous comparative analyses with the UK Biobank and Biobank Japan.  8 

Thus, to our knowledge, the SLC44A3 locus represents the second and only other genetic risk 9 

factor that is specifically associated with MI but not with CAD.  We also did not obtain evidence 10 

for association of the SLC44A3 locus with other thrombotic phenotypes, such as stroke or VTE.  11 

This observation is not entirely surprising since the genetic determinants of CAD and stroke, 12 

while shared, do not completely overlap35.  However, it should be noted that our meta-analyses 13 

for MI had approximately 10-fold higher numbers of subjects than the VTE GWAS21.  Thus, it is 14 

possible that power was insufficient in the INVENT Consortium to detect an association of the 15 

SLC44A3 locus with VTE. 16 

The lead SNP on chromosome 1p21.3 (rs12743267) is located ~36kb upstream of the 17 

transcriptional start site for SLC44A3 and ~250kb away from the gene encoding tissue factor or 18 

coagulation factor III (F3).  Given the known role of tissue factor in the blood coagulation 19 

cascade and the association of variants around its gene with circulating D-dimer levels19, F3 20 

would be considered a more biologically plausible candidate gene for a thrombosis-related 21 

phenotype such as MI.  However, we did not obtain any evidence that would prioritize F3 as a 22 

candidate causal gene since our lead SNP was not associated with D-dimer levels and the lead 23 
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SNP for D-dimer (rs12029080) showed no evidence for association with MI.  Furthermore, cis 1 

eQTLs for F3 were not observed with our lead SNP or proxy variants in any available tissue in 2 

STARNET or the GTEx Project.  Given these observations and the presence of cis eQTLs for 3 

SLC44A3 in multiple tissues and independent datasets, we focused on SLC44A3 as a candidate 4 

causal gene for MI.  SLC44A3 is one of five members of the SLC44 family of solute carriers 5 

(SLC44A1-5) that have been proposed to function as choline transporters22.  However, SLC44A1 6 

is the only member of this transporter family for which a role in transporting choline across both 7 

the plasma and mitochondrial membranes has been demonstrated by direct experimentation36, 37.  8 

In addition, the SLC44A3 locus was not associated with plasma levels of choline, proatherogenic 9 

choline-derived small molecule amines, such as trimethylamine N-oxide and betaine24, 25, or with 10 

a large panel of metabolomic and proteomic targets in plasma and urine32-34.  Thus, additional 11 

functional studies will be needed to demonstrate whether SLC44A3 encodes a transporter for 12 

choline or other molecules and whether such activity would modulate levels of metabolites that 13 

influence risk of MI. 14 

Several lines of evidence from our functional and bioinformatics analyses further pointed 15 

to SLC44A3 as one causal positional candidate on chromosome 1p21.3 and suggested that 16 

putative biological mechanisms through which this gene could influence plaque rupture and/or 17 

thrombosis may be through direct effects at the level of the vessel wall.  First, SLC44A3 was 18 

expressed in MI-relevant vascular tissues, such as the aorta and mammary artery.  Second, 19 

colocalization analyses carried out in atherosclerotic aorta yielded a strong posterior probability 20 

for SLC44A3, but not the other genes at the chromosome 1p21.3 locus (i.e. F3), as being causal 21 

for MI.  Third, carriers of the MI risk allele had significantly higher SLC44A3 mRNA levels than 22 

non-carriers, with a stronger effect size observed in atherosclerotic aortic root than mammary 23 
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artery.  The same cis eQTLs for SLC44A3 were independently observed in aorta and coronary 1 

artery in the GTEx Project.  Fourth, expression analyses in two independent heart donor datasets 2 

demonstrated upregulation of SLC44A3 in ischemic coronary arteries by ~50% compared to 3 

normal arteries and by ~3-fold in HAECs incubated with the pro-atherogenic cytokine IL-1β.  4 

This latter observation suggests that SLC44A3 might be involved in the response of HAECs to 5 

inflammatory stimuli that increase expression and secretion of various pro-atherogenic genes, 6 

such as adhesion molecules and chemokines38.  Lastly, although we did not detect an eQTL for 7 

SLC44A3 in SMCs (or HAECs), possibly due to insufficient power, an in vitro assay 8 

demonstrated that SLC44A3 expression was inversely correlated with SMC migration.  In this 9 

regard, previous studies have shown that SMC proliferation and migration can promote secretion 10 

of extra cellular matrix proteins and the formation of a protective fibrous cap that renders a 11 

lesion less prone to rupture39.  Taken together, these functional data and the results of our genetic 12 

analyses collectively implicate SLC44A3 as at least one candidate causal gene on chromosome 13 

1p21.3 and suggest that its expression is positively associated with MI-promoting characteristics 14 

of various vascular cell types.  However, in STARNET, SLC44A3 mRNA levels in adipose and 15 

liver were equivalent to those observed in aorta, and based on data from the GTEx Project, 16 

expression was also high in kidney, pancreas, the small intestine, and colon.  Moreover, the 17 

eQTLs in GTEx for SLC44A3 in aorta and coronary artery were modest relative to those 18 

observed in whole blood, heart, pancreas, liver, and colon.  In some of these tissues, such as 19 

liver, the allelic association of rs12743267 with SLC44A3 mRNA levels was also opposite to that 20 

observed in arterial tissues.  Although these observations suggest that SLC44A3 could influence 21 

risk of MI through mechanisms related to metabolism, the SLC44A3 locus was not associated 22 

with traditional CAD risk factors, such as lipid levels and type 2 diabetes.  Nonetheless, we still 23 
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cannot rule out the possibility that SLC44A3 could also increase risk of plaque rupture via a role 1 

in other MI-relevant tissues. 2 

 While our results point to novel and distinct genetic determinants of MI, certain 3 

limitations of our study should still be taken into consideration.  First, the majority of subjects in 4 

our analyses were of European ancestry and it is possible that some of the genetic associations 5 

may not be generalizable to other populations.  However, the SLC44A3 locus yielded an 6 

equivalent association with MI in Biobank Japan and exhibited directionally consistent effect 7 

sizes in other Asian populations, suggesting that at least a subset of the association signals 8 

identified herein may also be relevant in other ethnicities as well.  Second, it is possible, albeit 9 

unlikely, that some subjects in the UK Biobank and CARDIoGRAMplusC4D Consortium 10 

overlapped, which could have been a confounding factor in the meta-analysis.  However, a 11 

recent analysis concluded that duplicate samples between CARDIoGRAMplusC4D and the UK 12 

Biobank were minimal (<0.1%) and would not significantly influence test statistics11.  Third, we 13 

did not exclude subjects with a positive family history of CAD from the control group in the UK 14 

Biobank as was done in another recent GWAS meta-analysis for CAD11.  There could also have 15 

been misclassification in our analyses since, for example, MI and CAD may not have been 16 

defined in exactly the same in CARDIoGRAMplusC4D, the UK Biobank, and Biobank Japan.  17 

We note that if such misclassifications had occurred, they would have most likely been non-18 

differential and biased the results towards the null.  Finally, even though SNPs with MAFs as 19 

low as 0.5% were included in our analyses, our study was primarily focused on discovery of 20 

main effects with common susceptibility alleles.  However, rare variants or GxE interactions still 21 

likely play important roles in modulating risk of MI, which, along with vascular cell-specific 22 

eQTL analyses, will require additional investigation. 23 
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In summary, our results identify several previously unrecognized loci for MI and provide 1 

new avenues for exploring the pathophysiology of vulnerable atherosclerotic lesions.  Most 2 

importantly, our data support the concept that some of the heritable determinants of plaque 3 

rupture and thrombus formation are distinct from those that contribute to development of 4 

coronary atherosclerosis, with SLC44A3 emerging as one such potential genetic susceptibility 5 

factor.  Future studies will be needed to explore the clinical relevance of these findings for 6 

patients at risk of MI. 7 

 8 

 9 
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data are available upon request from the authors. 11 
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Figure Legends 1 

 2 
Figure 1.  Overview of genetic and functional analyses.  A GWAS was first carried out for MI 3 

using primary level data in the UK Biobank with ~11 million SNPs.  These results were then 4 

combined with summary GWAS data from the CARDIoGRAMplusC4D Consortium in a fixed-5 

effects meta-analysis that included a total of ~61,000 MI cases and ~577,000 controls, and 6 

8,126,035 SNPs common to both datasets.  The meta-analysis identified eight novel loci for MI, 7 

6 of which exhibited stronger association signals for MI compared to CAD.  Follow-up analyses 8 

and independent replication in Biobank Japan and 16 angiography-based cohorts, encompassing 9 

a total of ~831,000 subjects, provided confirmatory evidence for association of the chromosome 10 

1p21.3 locus with MI.  Bioinformatics and eQTL analyses prioritized SLC44A3 as one positional 11 

candidate on chromosome 1p21.3 for functional evaluation. 12 

 13 

Figure 2.  Manhattan plot of results from GWAS meta-analysis for MI.  (A)  Eight novel 14 

loci on chromosomes 1p36.11, 1p21.3, 2q13, 2q32.1, 4q22.3, 6q16.1, 9q34.3, and 15q24.2 15 

(orange dots) were significantly associated with MI.  Genome-wide thresholds for significant 16 

(P=5.0x10-8) and suggestive (P=5.0x10-6) association are indicated by the horizontal red and blue 17 

lines, respectively.  P-values are truncated at -log10(P)=40. 18 

 19 

Figure 3.  Regional plots of eight novel loci for MI.  The chromosome band and nearest gene 20 

(in parentheses) is indicated for each locus.  Each region is centered on the lead SNP (purple 21 

diamond) and the genes in the interval are indicated in the bottom panel.  The degree of linkage 22 

disequilibrium (LD) between the lead SNP and other variants is shown as r2 values according to 23 

the color-coded legend in the box. 24 
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 1 

Figure 4.  Functional Analyses of SLC44A3 in MI-relevant Tissues.  (A) In the STARNET 2 

cohort, SLC44A3 was expressed at relatively high levels in tissues relevant to MI, including 3 

atherosclerotic aortic root (aorta), visceral adipose, mammary artery, and liver.  (B) The lead 4 

SNP at the chromosome 1p21.3 locus yielded significant cis eQTLs for SLC44A3 in 5 

atherosclerotic aortic root and normal mammary artery among subjects from the STARNET 6 

cohort, where the MI risk allele (C) was associated with significantly higher mRNA levels.  (C)  7 

A similar pattern of cis eQTLs was also independently observed with the SLC44A3 locus in aorta 8 

and coronary artery based on data from the GTEx Project.  (D) In another independent human 9 

dataset, SLC44A3 expression was increased in ischemic coronary arteries (n=36) from heart 10 

donors with CAD compared to normal coronary arteries from non-diseased donors (n=24).  (E)  11 

Incubation of human aortic endothelial cells (HAECs) isolated from a different and independent 12 

set of anonymous heart donors (n=53) with IL-1β for 4 hours upregulated SLC44A3 expression 13 

~3-fold compared to paired vehicle-treated HAECs.  (F) Using a fourth independent human 14 

dataset (n=151), SLC44A3 expression was also observed in smooth muscle cells (SMCs) and 15 

inversely correlated with migration rate towards platelet-derived growth factor (PDGF)-BB in 16 

vitro. 17 

 18 
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Table 1.  Novel Loci Identified for MI through GWAS Meta-Analysis of the UK Biobank and CARDIoGRAM+C4D. 

      MI CAD 

SNP Chr Pos Nearest Gene(s) EA/OA EAF OR (95% CI) P OR (95% CI) P 

rs113716316 1p36.11 27,928,640 AHDC1 G/A 0.93 1.09 (1.06-1.13) 4.4x10-8 1.07 (1.05-1.10) 5.0x10-8 

rs12743267 1p21.3 95,249,306 SLC44A3 C/T 0.77 1.05 (1.03-1.07) 1.1x10-8 1.03 (1.01-1.04) 2.0x10-4 

rs6761276 2q13 113,832,312 IL1F10 T/C 0.43 1.04 (1.03-1.06) 2.8x10-8 1.03 (1.01-1.04) 2.2x10-5 

rs12693302 2q32.1 183,211,443 PDE1A G/A 0.39 1.05 (1.03-1.06) 2.5x10-9 1.03 (1.01-1.04) 2.5x10-5 

rs2452009 4q22.3 95,495,908 PDLIM5 A/G 0.70 1.05 (1.03-1.07) 5.8x10-9 1.03 (1.02-1.05) 9.4x10-7 

rs9486719 6q16.1 97,060,124 FHL5 G/A 0.80 1.06 (1.04-1.08) 6.8x10-10 1.04 (1.03-1.06) 1.1x10-8 

rs28429551 9q34.3 139,243,334 GPSM1 A/T 0.76 1.06 (1.04-1.08) 1.7x10-8 1.04 (1.02-1.05) 4.0x10-6 

rs8037798 15q24.2 75,240,030 COX5A-RPP25 G/T 0.23 1.05 (1.03-1.07) 3.8x10-8 1.02 (1.01-1.04) 1.6x10-3 

Chr, chromosome; Pos, base-pair position (hg19), EA, effect allele; OA, other allele; EAF, effect allele frequency; OR, odds ratio; CI, confidence 
interval; P, P-value obtained from meta-analysis of the UK Biobank and CARDIoGRAM+C4D. 
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 Table 2.  Comparative Associations of the 8 Novel Loci and the ABO Locus with MI and CAD in the UK Biobank. 

      MI vs. Control                          
(17,505/454,212) 

CAD only vs. Control         
(15,580/454,212) 

CAD+/MI+ vs. CAD+/MI-                       

(17,505/15,580) 

SNP Chr Pos Nearest Gene(s) EA/OA EAF OR (95% CI) P OR (95% CI) P OR (95% CI) P 

rs113716316 1p36.11 27,928,640 AHDC1 G/A 0.93 1.11 (1.07-1.16) 7.2x10-7 1.07 (1.02-1.12) 4.1x10-3 1.04 (0.98-1.11) 0.21 

rs12743267 1p21.3 95,249,306 SLC44A3 C/T 0.76 1.04 (1.01-1.06) 3.1x10-3 1.00 (0.97-1.03) 0.98 1.04 (1.01-1.08) 0.02 

rs6761276 2q13 113,832,312 IL1F10 T/C 0.42 1.03 (1.01-1.06) 1.9x10-3 1.01 (0.99-1.03) 0.44 1.03 (0.99-1.06) 0.11 

rs12693302 2q32.1 183,211,443 PDE1A G/A 0.36 1.06 (1.03-1.08) 1.3x10-6 0.98 (0.96-1.01) 0.19 1.07 (1.04-1.10) 2.9x10-5 

rs2452009 4q22.3 95,495,908 PDLIM5 A/G 0.70 1.04 (1.02-1.07) 2.6x10-4 1.01 (0.98-1.03) 0.68 1.03 (1.001-1.07) 0.04 

rs28429551 9q34.3 139,243,334 GPSM1 A/T 0.76 1.07 (1.04-1.10) 4.8x10-8 1.01 (0.98-1.03) 0.54 1.07 (1.03-1.11) 2.8x10-4 

rs8037798 15q24.2 75,240,030 COX5A-RPP25 G/T 0.24 1.05 (1.03-1.08) 3.2x10-5 1.00 (0.97-1.02) 0.85 1.06 (1.02-1.10) 1.7x10-3 

rs9411377 9q34.2 136,145,404 ABO A/C 0.30 1.06 (1.04-1.09) 3.3x10-7 0.99 (0.97-1.02) 0.67 1.07 (1.03-1.10) 1.3x10-4 

Number of cases and controls for each phenotype defined in the UK Biobank are shown in parentheses. 
For CAD+/MI+ vs. CAD+/MI- analyses, cases were defined as subjects positive for both CAD and MI; controls were defined as CAD positive subjects 
without MI. 

Chr, chromosome; Pos, base-pair position (hg19), EA, effect allele; OA, other allele; EAF, effect allele frequency; OR, odds ratio; CI, confidence 
interval; P, P-value obtained from linear mixed model analysis in UK Biobank. 
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Table 3.  Association of Novel Loci with MI in the Presence of CAD in Angiography-based Cohorts. 

      
Angiography Cohorts I 

(6,514/7,411) 

Angiography Cohorts II 

(7,412/5,542) 

Meta-Analysis 

(13,926/12,953) 

SNP Chr Pos Nearest 
Gene(s) EA/OA EAF OR (95% CI) aP OR (95% CI) bP OR (95% CI) P 

rs12743267 1p21.3 95,249,306 SLC44A3 C/T 0.77 1.16 (1.09-1.23) 3.3x10-6 1.09 (1.03-1.16) 2.1x10-3 1.12 (1.08-1.17) 5.6x10-8 

rs6761276 2q13 113,832,312 IL1F10 T/C 0.43 1.03 (0.98-1.08) 0.31 1.03 (0.97-1.08) 0.34 1.03 (0.99-1.06) 0.16 

rs12693302 2q32.1 183,211,443 PDE1A G/A 0.35 0.99 (0.93-1.04) 0.63 1.07 (1.004-1.13) 0.04 1.02 (0.98-1.06) 0.28 

rs2452009 4q22.3 95,495,908 PDLIM5 A/G 0.69 1.01 (0.95-1.06) 0.83 1.04 (0.99-1.10) 0.13 1.03 (0.99-1.07) 0.21 

rs28429551 9q34.3 139,243,334 GPSM1 A/T 0.76 1.02 (0.95-1.09) 0.66 1.04 (0.95-1.13) 0.37 1.03 (0.97-1.08) 0.36 

rs8037798 15q24.2 75,240,030 COX5A-RPP25 G/T 0.26 1.004 (0.93-1.08) 0.91 1.03 (0.97-1.10) 0.31 1.02 (0.98-1.06) 0.38 

Number of cases, defined as subjects positive for MI and CAD based on angiographic data (CAD+/MI+), and controls, defined as CAD 
positive subjects without MI (CAD+/MI-), are shown in parentheses. 
Chr, chromosome; Pos, base-pair position (hg19), EA, effect allele; OA, other allele; EAF, effect allele frequency in European ancestry 
subjects; OR, odds ratio; CI, confidence interval. 
aP, p-value from meta-analysis of the GeneBank, Emory Cardiovascular Biobank, ANGES/FINCAVAS, LURIC, LIFE-Heart, and UCORBIO 
cohorts. 
bP, P-value from meta-analysis of the SMART, SCADGENS, PennCath, MedStar, OHGS, CADomics, ADVANCE, WTCCC, and 
CATHGEN cohorts. 
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Graphical Abstract.  Large-scale analyses in ~831,000 subjects identified eight novel 
susceptibility factors for myocardial infarction (MI) and demonstrated that some of genetic 
determinants of plaque rupture and thrombus formation, such as SLC44A3, are distinct from 
those that contribute to development of coronary atherosclerosis.  These findings may provide 
new avenues for exploring the pathophysiology of vulnerable lesions and development of MI. 
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