
Arttu Paju

DISTRIBUTED EAAS SIMULATION USING TEES

A case study in the implementation and practical application

of an embedded computer cluster

Master of Science Thesis

Faculty of Information Technology and Communication Sciences (ITC)

Examiners: Prof. Billy Bob Brumley

M.Sc. Antti Kolehmainen

D.Sc. Juha Nurmi

November 2022

i

ABSTRACT

Arttu Paju: Distributed EaaS simulation using TEEs
Master of Science Thesis
Tampere University
Master’s Programme in Information Technology
November 2022

Internet of Things (IoT) devices with limited resources struggle to generate the high-quality
entropy required for high-quality randomness. This results in weak cryptographic keys. As keys are
a single point of failure in modern cryptography, IoT devices performing cryptographic operations
may be susceptible to a variety of attacks.

To address this issue, we develop an Entropy as a Service (EaaS) simulation. The purpose
of EaaS is to provide IoT devices with high-quality entropy as a service so that they can use it
to generate strong keys. Additionally, we utilise Trusted Execution Environments (TEEs) in the
simulation. TEE is a secure processor component that provides data protection, integrity, and
confidentiality for select applications running on the processor by isolating them from other system
processes (including the OS). TEE thereby enhances system security.

The EaaS simulation is performed on a computer cluster known as the Magi cluster. Magi
cluster is a private computer cluster that has been designed, built, configured, and tested as part
of this thesis to meet the requirements of Tampere University’s Network and Information Security
Group (NISEC). In this thesis, we explain how the Magi cluster is implemented and how it is utilised
to conduct a distributed EaaS simulation utilising TEEs.

Keywords: Computer Cluster, TEE, Trusted Execution Environment, EaaS, Entropy as a Service,
Cryptography, RNG, Random Number Generator, IoT, Internet of Things

The originality of this thesis has been checked using the Turnitin Originality Check service.

ii

TIIVISTELMÄ

Arttu Paju: Hajautettu EaaS simulaatio TEE:tä hyödyntäen
Diplomityö
Tampereen yliopisto
Tietotekniikan DI-ohjelma
Marraskuu 2022

Esineiden internetin (Internet of Things, IoT) laitteilla on tyypillisesti rajallisten resurssien vuok-
si haasteita tuottaa tarpeeksi korkealaatuista entropiaa vahvan satunnaisuuden luomiseen. Tämä
johtaa heikkoihin salausavaimiin. Koska salausavaimet ovat modernin kryptografian heikoin lenk-
ki, IoT-laitteilla tehtävät kryptografiset operaatiot saattavat olla haavoittuvaisia useita erilaisia hyök-
käyksiä vastaan.

Ratkaistaksemme tämän ongelman kehitämme simulaation, joka tarjoaa IoT-laitteille vahvaa
entropiaa palveluna (Entropy as a Service, EaaS). EaaS-simulaation ideana on jakaa korkealaa-
tuista entropiaa palveluna IoT-laitteille, jotta ne pystyvät luomaan vahvoja salausavaimia. Hyö-
dynnämme simulaatiossa lisäksi luotettuja suoritusympäristöjä (Trusted Execution Environment,
TEE). TEE on prosessorilla oleva erillinen komponentti, joka tarjoaa eristetyn ja turvallisen ajoym-
päristön valituille ohjelmille. TEE:tä hyödyntämällä ajonaikaiselle ohjelmalle voidaan taata datan
suojaus, luottamuksellisuus sekä eheys eristämällä se muista järjestelmällä ajetuista ohjelmista
(mukaan lukien käyttöjärjestelmä). Näin ollen TEE parantaa järjestelmän tietoturvallisuutta.

EaaS-simulaatio toteutetaan Magi-nimisellä tietokoneklusterilla. Magi on Tampereen Yliopis-
ton Network and Information Security Group (NISEC) -tutkimusryhmän oma yksityinen klusteri,
joka on suunniteltu, rakennettu, määritelty ja testattu osana tätä diplomityötä. Tässä diplomityös-
sä käymme läpi, kuinka Magi-klusteri on toteutettu ja kuinka sillä toteutetaan hajautettu EaaS-
simulaatio hyödyntäen TEE:itä.

Avainsanat: Klusteri, TEE, Luotettu Suoritusympäristö, EaaS, Entropia Palveluna, Kryptografia,
RNG, Satunnaislukugeneraattori, IoT, Esineiden Internet

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin Originality Check -ohjelmalla.

iii

PREFACE

This Master of Science thesis was done in the Network and Information Security Group

(NISEC) at the Faculty of Information Technology and Communication Sciences (ITC)

in Tampere University. This project has received funding from the European Research

Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-

gramme (grant agreement No 804476).

I wish to express my deepest gratitude to my supervisors professor Billy Bob Brumley,

Antti Kolehmainen, and Juha Nurmi for their invaluable guidance and support, not only for

this thesis but also as colleagues.

On this note, I would also like to thank my other current and former NISEC colleagues,

particularly Markku, Nicola, Cesar, Nacho, and Owais, with whom I have had the pleasure

of working closely. Working at NISEC has provided me with an extraordinary opportunity

to hone my skills and academic knowledge in an ambitious, yet laid-back research group

that generates world-class research, for which I am grateful.

Finally, I would like to thank my family and friends for all their support!

Tampere, 4th November 2022

Arttu Paju

iv

CONTENTS

1. Introduction . 1

1.1 Motivation and goals . 1

1.2 Contributions . 2

1.3 Structure and research questions 2

2. Background. 4

2.1 Cluster computing . 4

2.1.1 Classification and usage of computer clusters. 5

2.2 Embedded systems and Internet of Things 6

2.2.1 IoT security . 7

2.3 Trusted Execution Environments. 7

2.3.1 Enarx. 8

2.4 Cryptography . 9

2.4.1 Implementation failures 11

2.5 Randomness and Random Number Generators 12

2.5.1 Defining randomness in computer systems 12

2.5.2 RNGs and PRNGs . 13

2.5.3 Entropy source pitfalls and considerations 14

2.5.4 Cryptographically secure PRNGs. 15

2.5.5 Statistical test suites . 16

2.5.6 IoT RNG . 17

2.6 Randomness Beacons and Entropy as a Service 19

2.6.1 Terminology . 19

2.6.2 History and Related works 21

3. Implementing an embedded computer cluster 23

3.1 Related works . 23

3.2 Requirements . 25

3.3 Design overview . 27

3.3.1 Network configuration 29

3.4 Raspberry Pi nodes. 29

3.4.1 Network boot process 29

3.4.2 Operating system . 30

3.5 FreeBSD server . 31

4. Designing an EaaS simulation with the Magi cluster 33

4.1 Related works . 33

4.2 Security considerations and threat model 35

v

4.3 Goals . 36

4.4 Design and methodology. 36

4.5 Limitations and bias. 38

5. Results from the simulation . 41

5.1 Practicality of implementing an EaaS simulation 41

5.2 Practicality of developing TAs for the EaaS simulation that utilise TEEs . . 42

6. Conclusions . 44

6.1 Answers to research questions 44

6.2 Future work and open questions. 46

References . 48

vi

LIST OF FIGURES

2.1 Simplified TrustZone Architecture . 8

2.2 Taxonomy of cryptology . 9

2.3 Symmetric cipher . 10

2.4 Asymmetric cipher . 10

2.5 RNGs vs PRNGs . 13

3.1 Overview of the Magi cluster . 28

3.2 The network boot process . 30

4.1 EaaS protocol from the perspective of the IoT client 37

4.2 EaaS protocol from the perspective of the TES 38

1

1. INTRODUCTION

With the proliferation of embedded systems and the Internet of Things (IoT), the world is

becoming pervasive. As the number of IoT devices continues to rise, securing them be-

comes essential. On the basis of real-world examples and academic research, we know

IoT devices are susceptible to multiple security flaws. We are also aware that cryptog-

raphy can eliminate the majority of these security vulnerabilities. However, because IoT

devices have limited resources, it is difficult for them to generate the robust randomness

required for effective cryptographic use. Entropy as a Service (EaaS) is one possible so-

lution to this issue. In this thesis, we implement an EaaS simulation using an embedded

computer cluster called Magi cluster, which we design and implement for the internal use

of Tampere University’s Network and Information Security Group (NISEC).

1.1 Motivation and goals

The security of embedded systems and IoT devices is one of NISEC’s key research areas.

This is the impetus for implementing an embedded computer cluster and simulating EaaS.

We are particularly interested in implementing our own EaaS system due to the paucity

of academic literature on the topic. We are also interested in determining the viability

of distributed Trusted Execution Environment (TEE) utilisation with the EaaS simulation.

As NISEC is also researching the security differences between ideal and real-world cryp-

tosystem implementations, we also attempt to account for them in this thesis. Besides the

EaaS simulation, NISEC has additional applications for an embedded computer cluster.

Examples include evaluating the embedded performance of security-focused protocols

and efficiently running ARM-based cryptographic software. This justifies the implementa-

tion of the Magi cluster.

Our goal with the thesis is to implement an embedded computer cluster that satisfies

NISEC’s research requirements and use it to provide a functional EaaS service for gen-

erating strong entropy for IoT devices. In addition, we intend to implement the simulation

using TEEs in order to add an additional layer of security to both the IoT devices utilising

the generated entropy and the EaaS server itself.

2

1.2 Contributions

We present the following two novel contributions in this thesis:

• We design and implement an embedded computer for NISEC’s internal use.

• We use the cluster to design and implement an EaaS simulation for resource-

constrained IoT devices. The EaaS simulation utilises TEEs.

In support of open science, we have published the EaaS simulation code repository [1]

under open-source (MIT) license. In addition, as part of the research for this thesis, we

authored a Systemisation of Knowledge (SoK) paper on Trusted Application (TA) devel-

opment for TEEs [2].

1.3 Structure and research questions

This thesis is structured as follows:

In Chapter 2, we give relevant background information about the current state of the

knowledge in the fields related to this thesis. Chapter 3 explains how the Magi cluster is

designed and implemented based on the requirements of the NISEC. In Chapter 4, we

present an EaaS simulation scheme that is carried out with the Magi cluster. The purpose

of the simulation is to address the issue of modern IoT devices being incapable of gen-

erating high-quality randomness, which renders their cryptographic-level communication

insecure. Chapter 5 goes through the results of the EaaS simulation. Finally, in Chap-

ter 6, we provide overall conclusions of the work done in this thesis, give clear answers to

all the research questions, and propose future work.

The research questions we seek to address in this thesis are the following:

RQ1. How did we implement a computer cluster to meet the needs of our re-

search group?

RQ2. How does IoT RNG fail in practice?

RQ3. Is it feasible to create an EaaS system using an embedded computer clus-

ter?

RQ4. How can TEEs be used to harden the security of an EaaS system?

RQ5. Is it feasible to develop TAs that utilise TEEs for the EaaS system?

RQ6. Is EaaS capable of resolving existing IoT RNG issues?

Table 1.1 highlights the mapping between the research questions and the sections in

which they are answered.

3

Table 1.1. The mapping between research questions and the sections in which they are
answered.

Research Question Answered in

RQ1 Section 2.1, Chapter 3

RQ2 Section 2.2, Section 2.4, Section 2.5

RQ3 Chapter 4, Section 5.1

RQ4 Section 2.3, Chapter 4, Section 5.2

RQ5 Section 2.3, Chapter 4, Section 5.2

RQ6 Chapter 4, Chapter 5, Chapter 6 (based on RQ2 and RQ3)

As can be seen from Table 1.1, each research questions is addressed in multiple sections

and chapters. This is because we need both theoretical background information and

practical experience from the Magi cluster and the EaaS simulation implementations in

order to properly answer the research questions.

4

2. BACKGROUND

In this chapter, we summarise the current state of the current knowledge in all the fields

relevant to the thesis’ topic. In Section 2.1, we describe relevant background informa-

tion for computer clusters. This knowledge serves as the foundation for our design and

implementation of the Magi cluster in Chapter 3. The remaining sections of this chap-

ter address embedded systems and IoT, TEEs, cryptography, randomness and random

number generators, and randomness beacons and EaaS respectively. These sections

provide the foundation for our EaaS simulation, which is introduced in Chapter 4 and

whose findings are introduced in Chapter 5.

2.1 Cluster computing

A computer cluster is a group of computers that perform individual tasks together [3].

Computer clusters consist of administrative servers and computing nodes interconnected

via a high-speed network. Each node in a computer cluster is scheduled to perform

the same tasks [4]. The servers are responsible for task scheduling and controlling the

computer cluster. Typically, they do not contribute to the actual computation, which is

performed by the nodes. By definition, each computer cluster has to consist of multiple

nodes in order to form a cluster of computers. Cluster computing refers to the computing

done with computer clusters.

Each computer cluster has its own use cases, and no two computer clusters are identical

or utilised in the same manner. Consequently, the design and implementation of a given

computer cluster must be based on the cluster’s specific requirements. The requirements

vary based on the computer cluster’s use cases, the available resources, and the stake-

holders’ preferences. Given that computer clusters are large combinations of multiple

computers, their peripherals, and cables, designing the cluster’s architecture is a com-

plex procedure. Typically, data storage is implemented with a separate pool of multiple

hard drives. All nodes share this pool of shared data. In addition, nodes may have their

own smaller data storage systems that can be provided to individual users.

Even though the requirements and use cases for the various computer clusters are vastly

different, there are some design choices that recur across clusters. For instance, almost

all of the top 500 most powerful supercomputers in the world currently use Linux as their

5

operating system [5]. According to Yeo et al. [6], Linux is the most widely used cluster op-

erating system because it follows the Free and Open-Source Software (FOSS) principles

and has a wide user and developer community. In contrast to FOSS OSs, there are also

commercial cluster OSs that are proprietary and shipped along with commercial clusters.

Examples include IBM AIX [7] and Sun Solaris MC [8].

2.1.1 Classification and usage of computer clusters

In this thesis, we employ our own classification scheme for computer clusters. The clas-

sification is based on the cluster’s use cases. The classes are:

1. Shared production-level clusters

2. Private computer clusters designed for specific use cases

High-Performance Computing (HPC) clusters [4, 6] are the most powerful computer clus-

ters, and they are typically funded by large consortia consisting of multiple individuals,

organisations, businesses, or even governments. They are intended for shared produc-

tion level use between multiple parties. HPC clusters are widely utilised for research

and development applications in science, engineering, commerce, and industry according

to Yeo et al. [6].

Practical applications for HPC clusters in the scientific community are virtually limitless.

For instance, mathematicians can use the computing power provided by computer clus-

ters in weather forecasting [9–11], biomedical scientists can use it to simulate and analyse

the efficacy of various medical treatments [12–14], and astrophysicists can simulate the

formation of galaxies [15] or study the structures of accretion disks formed by supermas-

sive black holes [16] among many other interesting applications. All of these problems are

complex and involve enormous amounts of data that must be taken into account during

simulations. Standard consumer-grade workstations would require an excessive amount

of time to process them. Therefore, HPC clusters are utilised to solve such problems in a

timely manner.

In contrast to shared production-level clusters, there are also private computer clus-

ters designed for specific use cases. Many companies, research groups, and even

enthusiastic individuals design their own computer clusters that are not meant to be used

by anyone else. Private computer clusters have the advantage that their design can be

based solely on the needs of specific users. Therefore, they can be optimised to per-

form only the tasks the users require, whereas a shared computer cluster with a general

purpose may be inefficient or unsuitable for these specific tasks. For instance, if the use

case for the computer cluster is to conduct research on the behaviour of the computer

cluster when it is acted upon maliciously, a production-level cluster is unsuitable for the

task because the malicious behaviour could result in abnormal behaviour and outages for

6

the computer cluster’s users.

Use cases for the private computer clusters include commercial HPC use, such as per-

forming real-time stock trend analysis and automated trading [17], High Availability clus-

ters [6, 18, 19], and Load Balancing clusters [19–21]. Additionally, smaller research

groups can use private clusters to practise HPC use in a safe environment [22, 23]. Fi-

nally, private computer clusters can be built simply for the sake of learning and teaching

cluster computing [24–26].

2.2 Embedded systems and Internet of Things

Embedded systems are computer applications with particular properties. According to

Noergaard [27, Chapter 1], embedded devices possess the four characteristics listed

below:

• Embedded systems are computer systems developed for a specific application.

• Embedded systems have higher quality and reliability requirements than other types

of computers.

• Embedded systems have fewer hardware and/or software capabilities than per-

sonal computers.

• Many devices referred to as embedded devices are not, in fact, embedded systems.

Car engine control and brake systems, televisions, cameras, dialysis machines, cardiac

monitors, routers, printers, and scanners are all embedded devices found in the auto-

motive, consumer electronics, medical, networking, and office automation markets [27,

Chapter 1]. These examples do a good job of highlighting how embedded devices are

designed for specific applications, how they must meet higher reliability standards than

personal computers or the consequences could be disastrous for health and/or the envi-

ronment, and how embedded devices frequently have limited hardware capacities due to

space and power constraints [27, Chapter 1].

Embedded systems are gaining popularity because they can be optimised to perform

their designated tasks in a cost-effective, reliable, and efficient manner in terms of the

computer system’s size, power consumption, and performance. This is because embed-

ded systems are designed for a specific application and, unlike personal computers, do

not need to perform a variety of tasks. Consequently, personal computers are typically

unsuitable for embedded device tasks.

Internet of Things (IoT) is a network that connects physical (embedded) devices or

“things” to the internet. The IoT devices are equipped with sensors, processors, and

software components that allow communication, data processing, and computing through

the network with limited or no human intervention [28, 29]. The primary goal of IoT is to

7

improve a variety of aspects of daily life by sharing, processing, and analysing data from

connected devices. IoT devices, which are typically embedded systems, exhibit the same

characteristics as embedded systems. Specifically, this means that IoT devices frequently

have limited processing performance, power consumption, memory, and hardware func-

tionality, among other limitations. In the past few decades, the prevalence of IoT devices

has increased dramatically [28, 30].

2.2.1 IoT security

Unfortunately, as the popularity of IoT devices has grown, so have attacks on IoT devices.

Examples of notable IoT security vulnerabilities include the rise in ransomware attacks

[31], and the Mirai botnet [32], which was used to execute Distributed Denial-of-Service

(DDoS) attacks using infected IoT devices. As the prevalence of IoT devices continues to

rise, ensuring their security becomes increasingly crucial.

Butun et al. [33] provide exhaustive coverage of IoT security-related vulnerabilities, at-

tacks, and countermeasures in their review. While a comprehensive security review is far

beyond the scope of this thesis, it is worth noting that they provide five distinct passive

attacks and 26 distinct active attacks against IoT devices based on their classification.

In addition, they present seven unresolved issues pertaining to IoT security and thirteen

security proposals that show promise in resolving specific cyber-security issues for IoT

devices. For us, the most intriguing finding is that cryptography, in one form or another,

can solve a large number of the presented security issues. However, proper implementa-

tion of a strong RNG, which is required for strong cryptography, is difficult in IoT devices

due to their limited hardware resources [34]. We limit our scope to IoT security issues

pertaining to IoT RNG for the remainder of this thesis.

2.3 Trusted Execution Environments

A Trusted Execution Environment (TEE) is a secure area of the main processor. The

primary objective of TEEs is to provide an additional layer of trust for applications running

inside the processing unit. This is achieved by isolating security sensitive application logic

from other processes, including the OS [35, 36]. TEEs are utilised to enhance system

security by providing data protection, integrity, and confidentiality, as well as by reducing

the attack surface. For example, typically, when a cloud (the server or the backend)

is compromised, the adversary gains access to the cloud’s processes and data. TEEs

provide protection against compromised infrastructure by preventing the adversary from

accessing select portions of the TA, thereby protecting sensitive code and data. Remote

attestation is accomplished through the use of trusted firmware. When an application is

attested, the untrusted component loads the trusted component into memory: the TA is

8

then protected against modification. Each manufacturer has its own implementation of a

TEE. In this thesis, we focus on the TrustZone TEE technology developed by ARM [37].

TrustZone divides processes to secure worlds and normal worlds. Both of these worlds

have their own hardware and software runtime environments. The secure world serves as

the TEE and processes application logic that is security sensitive. Normal OS and stan-

dard applications operate within the normal world. Communication between the worlds

happens through a separate secure monitor at the most privileged execution level (EL3).

It is the only means of communication between the worlds. The basic architecture of

TrustZone is presented in Figure 2.1.

EL0
Userland

EL1
Kernel

EL2
Hypervisor

EL3
Secure Monitor

Normal World

Untrusted OS
Kernel

Hypervisor

TEE
Supplicant

Generic TEE API

TEE Subsystem

TEE
Driver

TEE Client API

Client
Applications

Secure World

TEE Kernel
/ Trusted OS

Trusted
Applications

TEE Internal APIs

Secure Monitor Calls (SMC)

Figure 2.1. Simplified TrustZone Architecture.

We have published a Systematisation of Knowledge paper concerning TA development

for TEEs [2]. In the paper, we review how developers can use TEEs in the development

of TAs and how TEEs are currently used in real-world applications. Thus, we provide only

a general overview of the relevant aspects of TEEs in this thesis, while more in-depth

information is available in the SoK paper.

2.3.1 Enarx

Enarx is an open-source middleware TEE development container. It enables the execu-

tion of existing applications within TEE instances or “Keeps” without the need to rewrite

the application, implement attestation separately, or trust a large number of dependen-

cies [38]. Enarx offers attestation, packaging, and provisioning services. In practise,

9

this means that following the verification of attestation and the authenticity of the TEE

instance, the application and associated data are encrypted and sent to the host for ex-

ecution within a Keep. The application middleware interface utilised by Enarx is We-

bAssembly System Interface (WASI). WebAssembly enables developers to use a variety

of programming languages, including Rust, C, C++, C#, Go, Java, Python, and Haskell

[38].

Enarx aims to be CPU-architecture independent, meaning it can run transparently across

different hardware architectures so that the developer does not need to make hardware-

specific modifications [38]. Enarx currently supports Intel Software Guard Extensions

(SGX) and AMD Secure Encrypted Virtualization (SEV) architectures [38]. For unsup-

ported hardware architectures, Enarx provides a “nil” backend [39]. The Raspberry Pi 3

can be used with the nil backend. Thus, Enarx enables us to develop TEE-enabled TAs

using the Magi cluster.

2.4 Cryptography

Cryptography is the study of techniques for secure communication. The primary objec-

tive of cryptography is to ensure message confidentiality, i.e., to conceal a message’s

meaning so that only its sender and intended recipient can understand it [40]. Other

important applications of cryptography include ensuring data integrity and authenticating

messages. Cryptography is a subfield of the broader field of cryptology, which also in-

cludes the subfield of cryptanalysis. Whereas the purpose of cryptography is to create

secure cryptosystems, the goal of cryptanalysis is to break them. Figure 2.2 provides an

overview of the general taxonomy of cryptology.

Cryptology

Cryptography Cryptanalysis

Symmetric
ciphers

Asymmetric
ciphers

Cryptographic
hash functions Protocols

Figure 2.2. Taxonomy of cryptology. Based on the taxonomy by Paar and Pelzl [40].

Cryptography can be further divided into the following four categories:

1. Symmetric ciphers

2. Asymmetric ciphers

3. Cryptographic hash functions

10

Plaintext PlaintextCiphertext

Shared key

Encryption Decryption

Figure 2.3. Symmetric cipher

Plaintext PlaintextCiphertext

Public key

Encryption Decryption

Private key

Figure 2.4. Asymmetric cipher

4. Protocols

Both cipher types aim to encrypt messages, or conceal the meaning of a plaintext mes-

sage by transforming it into an unreadable ciphertext. This is accomplished using cryp-

tographic keys. The only way to convert the ciphertext back to the original plaintext is

by decrypting the ciphertext by using the correct key. Thus, encryption provides confi-

dentiality for messages. Asymmetric ciphers use different (public and private) keys for

encryption and decryption, whereas symmetric ciphers use the same secret key for both

encryption and decryption. Figure 2.3 and Figure 2.4 demonstrate the differences be-

tween the ciphers.

Most modern cryptographic schemes are hybrid schemes, consisting of both symmetric

11

and asymmetric ciphers. Typically, asymmetric ciphers are employed for the purpose of

key exchange, i.e., a shared key is agreed upon and exchanged between the commu-

nicating parties. Using this shared key, the parties then continue communicating with

symmetric ciphers. Encryption and decryption can be performed significantly faster with

symmetric ciphers, but creating and sharing a key for symmetric ciphers over untrusted

communication channels is problematic without asymmetric ciphers [40].

Hash functions compress messages of arbitrary size into fixed-size messages known as

message digests or hashes. Cryptographic hash functions are hash functions with added

security characteristics. To qualify as a cryptographic hash function, a hash function

must be pre-image resistant, second pre-image resistant, and collision resistant [40]. In

practise, cryptographic hash functions are used for authentication and storage of pass-

words, digital signatures, blockchains, and message authentication codes, among other

applications. Cryptographic hash functions therefore provide message integrity and au-

thentication.

Cryptographic protocols can be roughly defined as a set of rules that specify how cryp-

tographic primitives must be employed for the secure execution of practical applications.

Different ciphers and hash functions can be regarded as protocol building blocks [40].

Typical protocol components include key generation, user authentication, key exchange,

and message encryption using the generated key. Transport Layer Security (TLS), for

instance, is a popular cryptographic protocol that provides communication security over

a computer network. TLS supports a large variety of combinations of ciphers, modes of

operation, key exchange algorithms, message authentication codes, and authenticated

encryption (with associated data) schemes. Together, they provide data integrity, confi-

dentiality, and authentication between the communicating applications.

2.4.1 Implementation failures

Cryptanalysis focuses on identifying vulnerabilities in cryptographic systems. This can

be accomplished either by identifying fundamental flaws in the algorithms themselves or

by identifying inconsistencies between the ideal and real-world implementations of the

algorithms. In this thesis, we focus on the failures and attacks against the real-world

implementations and ignore the theoretical attacks against the actual algorithms.

In modern cryptography, the algorithms are public knowledge but the cryptographic keys

are considered secret [40]. Therefore, the security of a given cryptosystem depends on

keeping the keys secret. There are many ways for the secret keys to leak out of system

memory including defects in software implementations of cryptographic algorithms, side-

channel attacks (SCAs) [41], and fault injection attacks [42]. Fault injection attacks inject

faults into computations. This is possible, for instance, by adjusting the supply voltage

during a computation. As demonstrated by the Bellcore attack [43, 44], it is feasible

12

to induce incorrect calculations that leak information about the secret keys in this way.

SCAs utilise unwanted leakage of sensitive information through side channels, which an

adversary can exploit to gain information about the secret keys. Side channels include

execution time, power consumption and electromagnetic emanations among others.

Heartbleed (CVE-2014-0160) [45], which exploits a software flaw in the OpenSSL library

[46], and Meltdown (CVE-2017-5754) [47], Spectre (CVE-2017-5715 & CVE-2017-5753)

[48], PortSmash (CVE-2018-5407) [49], and Foreshadow (CVE-2018-3615) [50], which

all leverage microarchitectural SCAs [51], are examples of notable attacks against cryp-

tosystems from the past decade. These examples also demonstrate that TEEs are sus-

ceptible to SCAs. Intel has even made the explicit decision to exclude SCA threats from

the SGX threat model. Instead, they argue that the prevention of SCAs is the develop-

ers’ responsibility [52]. Consequently, we must consider SCAs as an attack vector while

constructing cryptosystems utilising TEEs.

2.5 Randomness and Random Number Generators

Since cryptographic protocol level communication is frequently “automatic”, i.e., users do

not need to specify key values to the used ciphersuites, a method is required to gener-

ate random key values. Given that the cryptographic key is a single point of failure in

cryptosystems, the generated keys must be secret and unpredictable in order to ensure

the security of the cryptosystems. There are also other cryptographic uses for random

numbers, such as initialisation vectors and nonces (numbers used only once) [53]. In this

section, we examine randomness and Random Number Generators (RNG) in computer

systems to determine how to implement a secure RNG.

2.5.1 Defining randomness in computer systems

Randomness is a peculiar quality in that it is defined more by what it is not than by what

it is. If an occurrence has a pattern, it is not random. Similarly, if we can predict what

will happen next with a higher probability than pure chance, the event is not random.

Nonetheless, we can define certain characteristics that randomness must possess.

Since traditional computers operate on binary values, randomness in computer systems

refers to sequences of random bits. A perfect random bit stream is analogous to a se-

quence of fair coin flips in which one side displays the value “1” and the other side displays

the value “0”. Assuming the coin cannot land on its edge, p = 1
2

represents the probability

of each side landing face up. By repeating the flips indefinitely, a random sequence of

zeros and ones emerges in which both values appear roughly equally frequently.

Coin flip sequence with a fair coin follows a uniform distribution, meaning that all outcomes

are equally likely to occur. In contrast, when all outcomes are not equally likely to occur,

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5753
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-5407
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3615

13

the distribution is called nonuniform. For example, a toss of a weighted coin could yield the

value “1” with a probability of p = 2
3

and value “0” with a probability of p = 1
3
. This coin toss

event would therefore be biased towards the value “1” and be nonuniformly distributed. A

perfect random bit sequence must be unbiased and, consequently, uniformly distributed.

A 128-bit key generated by a perfect Random Bit Generator (RBG), for instance, must

have the same probability of p = 1
2128

for each of the 2128 possible key values.

In addition to being unbiased, the randomness used in cryptographic applications must

be unpredictable. Unpredictability includes both forward unpredictability and backwards

unpredictability. Forward unpredictability implies that even with knowledge of the RBG’s

previous values, it should be impossible to predict future values. Backward unpredictabil-

ity implies that it should be impossible to retrieve the seed value, even if the RGB output

is known. Seeds are explained in greater detail in Subsection 2.5.2.

2.5.2 RNGs and PRNGs

There are two distinct types of random bit sequence generators: RNGs and Pseudoran-

dom Number Generators (PRNGs). While the objective of both is to generate random

sequences of ones and zeros, the means by which they accomplish this objective are

distinct. Typically, cryptographic systems employ both RNGs and PRNGs [53], as demon-

strated by Figure 2.5.

RNG PRNG101 . . . 01 01100101 . . . 11010011

Figure 2.5. RNGs produce few unreliable bits from analogue entropy sources, while
PRNGs expand those bits to a longer stream of reliable bits. Based on the Figure 2-1 in
“Serious Cryptography: A Practical Introduction to Modern Encryption” [53, Chapter 2].

Random number generators are nondeterministic generators that use analogue sources,

also referred to as entropy sources, to convert entropy from the real world into digital bits.

To accomplish this, RNGs require two components: a measurement to collect data from

the entropy source and a distillation process that compensates for any flaws in the entropy

source that could result in the production of obvious nonrandom bits (e.g. a long string

of zeros or ones) [54]. RNGs are sometimes referred to as True Random Number Gen-

erators (TRNGs) to emphasise the fact that their randomness is intended to be nonde-

terministic, in contrast to PRNGs. RNGs collect entropy by observing expectedly random

physical phenomena. Noise in an electrical circuit, the user’s mouse movements, quan-

tum effects in a semiconductor, and radioactive decay are examples of entropy sources

[53, 54]. RNGs may utilise various combinations of entropy sources.

Based on our current knowledge of physics and quantum mechanics, quantum phenomena-

14

based entropy sources are guaranteed to be truly random [53, 55]. Consequently, utilising

RNGs based on quantum phenomena (also known as Quantum Random Number Gen-

erators or QRNGs) is a common method of implementing TRNGs [56–58]. Nevertheless,

even QRNGs can be susceptible to bias due to flaws in the entropy distillation procedure

[59, 60]. QRNGs are also not the only TRNG sources. Jitter from ring oscillators, for in-

stance, can be used as an entropy source for TRNGs [61–66]. This is a common method

of implementing TRNGs in resource constrained embedded devices.

Pseudorandom number generators, on the other hand, are deterministic generators

that transform their input bit stream, also known as the seed, into a longer and uni-

formly distributed bit stream. The same seed value will always result in the same output.

Whereas RNGs use entropy sources as their input, PRNGs obtain their input seed values

from an entropy pool.

PRNGs consist of three distinct functions that modify the PRNG’s internal state [53]:

1. init(), which initialises the PRNG’s entropy pool and internal state.

2. refresh(), which updates the entropy pool with a seed value typically derived from

an RNG.

3. next(), which returns specific amounts of pseudorandom bits and updates the en-

tropy pool.

The init() operation is used to initialise the state and entropy pool to their default values

and prepare the PRNG to execute the refresh() and next() operations [53]. The next()

operation invokes a Deterministic Random Bit Generator (DRBG) algorithm, which ex-

pands a subset of the entropy pool’s bits into a significantly longer output. It also modifies

the entropy pool to guarantee that the DRBG never receives identical inputs twice (which

would result in the same output) [53]. The refresh() operation is typically requested by the

operating system, while the next() operation is typically requested by applications [53].

There are both software and hardware PRNGs available. RDRAND in Intel microproces-

sors, which is based on NIST SP 800-90A [67], is an example of a hardware PRNG, while

Mersenne Twister [68] is an example of a software PRNG.

Ironically, due to the use of cryptographic algorithms that introduce additional random-

ness properties with each transformation in the DRBG algorithm, PRNGs often generate

statistically superior and faster outputs than TRNGs [54]. Thus, PRNGs are frequently

chosen over pure TRNGs in applications requiring randomness.

2.5.3 Entropy source pitfalls and considerations

It may be possible to manipulate some entropy sources to produce biased output if the en-

tropy distillation procedure is poorly designed. For instance, if the only source of entropy

15

is the user’s mouse movement, an attacker can simply stop moving the mouse. This halts

the rate of entropy production by the entropy source. Many RNGs employ blocking mech-

anisms to prevent their use until sufficient entropy has been accumulated to generate

good randomness. A well-known example is Linux’s /dev/random [69]. In environments

with low entropy, the blocking mechanism can also cause issues, as the execution of a

program can be silently blocked for an extended period of time without the user being

aware of the reason. Thus, unblocking implementations that output data regardless of the

quality of the entropy are commonly used.

Unintented operational conditions can also cause biased results for TRNGs. For instance,

ring oscillators must operate under particular conditions to generate appropriate random-

ness for TRNGs. If the operating temperature or voltage deviates from the ideal condi-

tions, the TRNG output cannot be relied upon [70, 71]. As a result, there are numerous

active and passive attacks against ring oscillators that result in data bias [72, 73]. It is

extremely difficult to determine whether data from an entropy source is truly random or

merely appears random.

PRNGs must combine multiple entropy sources to mitigate the effects of biased entropy

sources. This is also essential for reducing the attack vector of a device employing

PRNGs. Even if the NSA has designed a backdoor in a hardware RNG component, a

Chinese manufacturer has hacked it during manufacturing, a Russian hacker has tam-

pered with the network drivers, and all other sources of randomness have been tampered

with by various state-level actors, by mixing all these untrusted sources of randomness

together (e.g. by using the XOR operation), none of them should have any insight into

the random numbers generated by the upstream system such as /dev/urandom [74] in

Linux.

2.5.4 Cryptographically secure PRNGs

Cryptographically Secure PRNGs (CSPRNGs) are PRNGs with additional security re-

quirements. According to the taxonomy by Kelsey et al. [75], CSPRNGs must be resistant

to three types of attacks: state compromise extension attacks, direct cryptanalytic attacks,

and input-based attacks. Forward secrecy requires the PRNG to withstand state compro-

mise extension attacks, whereas backwards secrecy requires the PRNG to withstand both

direct cryptanalytic attacks and input-based attacks. If a PRNG cannot withstand all three

of these attacks, it cannot be considered cryptographically secure.

CSPRNGs require a method for generating truly random seed values [53]. Consequently,

cryptographic applications commonly rely on TRNGs to provide the entropy pool for

CSPRNGs. Due to the potential for a low entropy rate, the direct output of TRNGs is un-

suitable for use in cryptographic applications, as it would either block or cause predictable

output. Because they transform even a small amount of true entropy from TRNGs into

16

longer and uniformly distributed pseudorandom bitstreams, CSPRNGs generate crypto-

graphically usable output without blocking.

PRNGs that are not cryptographically secure, but still generate a uniformly distributed

output without statistical bias, are also widely used in real-world applications due to their

speed and ease of implementation [53]. In fact, most of the PRNGs exposed to program-

mers are non-cryptographic PRNGs [53]. Examples include Python’s Random module

and libc’s rand() function, which are both based on Mersenne Twister [68].

Inappropriate use of PRNGs can lead to implementation failures in upstream crypto-

graphic applications. This often involves using PRNGs that are not cryptographically

secure in cryptosystems when CSPRNGs should be used instead. The Debian OpenSSL

random number bug (CVE-2008-0166) and factorisable (weak) RSA implementations [76]

discovered by Nemec et al. [77] in 2017 (CVE-2017-15361) are good examples of such

implementation errors, but there are numerous other examples, such as CVE-2009-3278,

CVE-2009-3238, and CVE-2009-2367.

The vast majority of commonly used CSPRNGs are based on hash functions, stream

ciphers, or number-theory problems [78]. Typical contemporary CSPRNGs include ISAAC

[79], Yarrow [80], Fortuna [81, Chapter 9], and ChaCha20 [82].

2.5.5 Statistical test suites

Random number generators can be evaluated using statistical test suites that seek to

detect nonrandom behaviour. Dieharder [83], TestU01 (BigCrush) [84], and NIST’s Sta-

tistical Test Suite (STS; described in SP800-22 [54]) are examples of such test suites.

Their objective is to ensure that the output of the RNG is uniformly distributed and free

of statistical bias. STS is developed specifically for testing CSPRNGs, while Dieharder is

designed for testing all PRNGs, and TestU01 is more applicable for testing TRNGs [85].

Nonetheless, each of the test suites can be utilised to test both PRNGs and TRNGs. All of

the tests included in a test suite should be statistically independent, and there should be

a sufficient number of statistical tests for adequate coverage of testing nonrandomness

[86].

A PRNG may not be cryptographically secure despite its exceptional statistical proper-

ties. This type of PRNG is exemplified by the Mersenne Twister [68], which passes STS

[78] despite being insecure for use in cryptographic applications. It is possible to pre-

dict all future values of the generator with sufficient iterations (624 for MT19937 [78]),

despite its evenly distributed output and absence of statistical bias. Therefore, it fails to

meet the requirement for forward unpredictability and is unsuitable for use in cryptogra-

phy. Thus, passing STS does not guarantee the PRNG’s cryptographic security. To be

suitable for cryptographic applications, a CSPRNG must, however, pass this test suite

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0166
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-15361
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3278
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3238
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2367

17

[78]. Consequently, the STS should only be used as a starting point when estimating the

cryptographic security of a particular PRNG.

As STS is computationally intensive, embedded devices with limited resources cannot

utilise it. However, IoT devices, which are often embedded devices with limited resources,

must also test the randomness of their TRNG. To address this issue, Lee et al. [87] pub-

lished NIST-Lite, a streamlined version of NIST’s STS that drastically reduces its energy

consumption. Therefore, NIST-Lite would be appropriate for testing the entropy produced

by our EaaS simulation.

Hurley-Smith and Hernandez-Castro [85] provide a critical analysis of the problems as-

sociated with statistical test suites. Many RNGs deemed secure by specific test suites

under specific conditions may not be secure in reality, according to their findings. A small

sample size and a small number of tested devices, for instance, can lead to misleading re-

sults and incorrect conclusions. They argue that a simple pass/fail result from a single test

suite is insufficient to deem a particular device with a particular RNG suitably random for

a given application. Rather, a more comprehensive process is required to evaluate risks,

attack vectors, and countermeasures, taking into account any known biases. Additionally,

RNGs should be tested with a sufficiently large sample size across a sufficient number of

statistically independent tests. In addition, they find that well-known and widely-used test

suites such as NIST’s STS, Dieharder, and TestU01 exhibit some degree of correlation

in some of their tests, and that STS and Dieharder have a high degree of duplication in

their test selection. Efforts should be made to ensure that statistical test suites do not

include correlated tests. In conclusion, they assert that the current RNG tests are useful

for detecting blatant deviations from randomness, but fail to provide useful information in

more subtle cases. This is why simple pass/fail or random/nonrandom results should be

avoided. Even further, Aumasson [53] asserts that statistical tests have little bearing on

cryptographic security.

2.5.6 IoT RNG

Embedded IoT devices, like all other modern internet-connected devices, require both

general-purpose and cryptographically secure randomness [34]. However, the limited

hardware capabilities of many IoT devices prevent them from generating high-quality ran-

domness. These resource-constrained IoT devices lack components suitable for proper

TRNG distillation and have limited computational power, energy resources, and hardware

protection features, making randomness generation difficult [34]. The DEF CON 29 talk

“You’re Doing IoT RNG” by Petro and Cecil [88] does an excellent job of presenting the

vulnerabilities with IoT RNGs and describing how they can be exploited. Based on this

talk, we present the most significant security issues with IoT RNGs, which are:

• IoT devices typically lack access to CSPRNG subsystems due to their lack of mod-

18

ern operating systems.

• Developers frequently make incorrect calls to the hardware TRNG (HWRNG) com-

ponent.

• Handling HWRNG errors correctly is difficult, if not impossible, at times.

• Oftentimes, the documentation for bare-metal function calls is inadequate, which

makes their proper use challenging.

• Numerous IoT devices generate HWRNG of subpar quality. This may either be due

to their resource-constrained nature or a flaw in their entropy distillation procedure.

IoT devices typically employ bare-metal environments or simple IoT operating systems. In

a bare-metal environment, CSPRNG subsystems are absent entirely. The majority of IoT

operating systems also lack proper CSPRNG implementations [34]. According to Kietz-

mann et al. [34], mbed OS [89], and Zephyr [90] are the only IoT operating systems with a

proper CSPRNG implementation and an OS-level random API. For instance, Contiki-NG

[91] lacks a CSPRNG implementation and instead uses the rand() function from libc for

all PRNG calls [34, 88].

When an IoT device requires a random number, it calls the dedicated HWRNG via the

device’s SDK or IoT operating system. Calls to HWRNG are handled through a hardware

abstraction layer (HAL). Incorrect HWRNG calls result in errors, which may return faulty

states or provide data that is not truly random. This results in “random numbers” that are

either only partial entropy, the number “0”, or uninitialised memory [88].

HALs frequently only permit developers to handle errors by aborting the entire process

that called the function or by leaving the process in a blocking state [88]. Neither of

these are generally acceptable solutions. Therefore, developers often disregard the error

conditions, resulting in biased and low-entropy randomness in upstream applications [88].

A proper implementation of CSPRNG would be crucial, as it would solve the issue of

HAL functions that either block execution of the program or fail. Nevertheless, many

CSPRNG algorithms are computationally too intensive to run on resource-constrained

IoT devices, which lack the computational power to run these algorithms effectively [34].

Similarly, many CSPRNG algorithms consume a significant amount of energy, and their

use in energy-constrained IoT devices could enable denial-of-service attacks [34]. These

impose additional constraints on the design of potential CSPRNG subsystems for IoT

devices.

In addition to the aforementioned issues, IoT devices are susceptible to generating weak

entropy during the boot process, even if they employ an OS that supports a proper

CSPRNG subsystem. Embedded devices frequently lack the hardware components, such

as the hard drive, keyboard, and mouse, that are present on desktop computers. These

are used as entropy sources by a number of CSPRNG subsystems. When the CSPRNG

19

algorithm begins with an empty entropy pool (either with no seed or a hardcoded ini-

tial seed), its entropy sources will require time to generate sufficient randomness. The

fewer entropy sources that are available, the longer the process will take. Worse still, the

problem is exacerbated by the low computing power of IoT devices.

If the CSPRNG subsystem’s next() function is called before sufficient randomness has

been generated, the output will be biased and predictable. This results in vulnerabilities

in upstream applications, as demonstrated in 2012 by Heninger et al. [92], who scanned

the entire internet for 12.8 million TLS and 23 million SSH servers and found that 5% of all

TLS hosts and 10% of all SSH hosts shared the same RSA keys or factors. This enabled

them to retrieve the private keys of 0.5% of TLS hosts and 1% of SSH hosts. Nearly all

of the vulnerable hosts were embedded devices that suffered from lack of entropy in the

early boot-time process when the keys were generated. In their simulation, Vassilev and

Staples [93] demonstrated that Linux’s /dev/urandom [74] CSPRNG subsystem can

take up to 45 seconds to reach the bare-minimum threshold of 112 bits of random data in

environments with limited entropy sources, invalidating all randomness generated prior to

this point.

2.6 Randomness Beacons and Entropy as a Service

As expanded in Subsection 2.5.6, IoT devices with limited resources struggle to generate

the high-quality entropy required for robust randomness. Since IoT devices are connected

to the internet, this issue can be resolved by employing services that broadcast strong

entropy across the network. The concept is that a third-party service broadcasts high-

quality entropy to IoT clients who cannot generate it in sufficient quantity or quality. This

can be accomplished cryptographically securely using either Randomness Beacons or

purpose-built Entropy as a Service (EaaS) servers. The related terminology is explained

in Subsection 2.6.1.

2.6.1 Terminology

Randomness beacons broadcast cryptographically signed and timestamped random

numbers at regular intervals [94, 95]. They utilise high-entropy sources to extract TRNG

from unpredictable natural phenomena. If multiple entropy sources are used, the ran-

domness beacon combines the entropy from multiple TRNG sources into random data

blocks by, for example, XORing them. Random blocks of data are published on the in-

ternet alongside timing information and a cryptographic signature as well as additional

metadata. Each published block of random data is referred to as a pulse. The sequence

of all pulses is known as a chain. Randomness beacons may be either centralised or

decentralised.

20

Centralised Randomness Beacons (CRBs) utilise Trusted Third Parties (TTP) to collect

entropy from entropy sources, combine them together, and then publish pulses contain-

ing blocks of randomness to the network. The TTP is an entity that is trusted to behave

properly. By colluding, the TTP can violate the security properties of randomness bea-

cons, since the beacon operator is in a position to reveal random numbers in advance to

favoured parties, manipulate the public random numbers, or even rewrite the history of

the chain by lying about the previous pulses [94]. Thus in CRBs, the TTP serves as a

single point of trust.

Decentralised Randomness Beacons (DRBs) do not rely on TTPs. Multiple sources

instead combine the data from their respective entropy sources into a single published

pulse. Thus, the single-point-of-trust problem is eliminated. The revelation of the back-

door in the NSA-designed Dual EC PRNG [96, 97] eroded faith in centralised single-point-

of-failure systems. This is what inspired the concept of DRBs [95].

Interactive and noninteractive DRBs can be distinguished [95]. Interactive DRB protocols

generate a beacon output through multiple rounds of participant communication. Nonin-

teractive DRB protocols do not require participant interaction to generate a pulse for each

round. Consequently, noninteractive DRBs are preferred for decentralised applications.

DRBs have the security properties of Availability (or Liveness), Bias Resistance, Unpre-

dictability, and Public Verifiability [95]. Unpredictability means that an adversary cannot

predict future beacon outcomes. Bias-Resistance property means that a single partici-

pant or a colluding adversary cannot bias the future beacon values. Availability means

that a single participant or a colluding adversary cannot prevent the generation of new

beacon values. Public Verifiability indicates that any third party can verify the validity

of the new pulse values. The SoK by Raikwar and Gligoroski [95] provides additional

information regarding the use cases of DRBs and how they can be constructed.

An Entropy as a Service (EaaS) server, in contrast to the randomness beacon, only dis-

tributes entropy to clients that specifically request it. Consequently, EaaS generates con-

siderably less data than randomness beacons. Otherwise, the concept remains largely

unchanged. EaaS server also uses timestamps and digital signatures to harden the proto-

col against response-replay attacks, Man-in-the-Middle (MitM) attacks, and Domain Name

System (DNS) poisoning attacks [93].

EaaS is designed from the ground up to provide robust entropy to IoT devices [93], en-

abling them to generate strong cryptographic parameters, whereas randomness beacons

are designed for multiple additional use cases [95]. If the IoT client has a CSPRNG sub-

system, it is seeded with entropy from both the EaaS service and the clients own HWRNG

sources. Otherwise, clients simply use their own HWRNG sources and combine their en-

tropy with the incoming entropy from the EaaS server (with e.g. XOR) prior to using it for

upstream applications. Similarly to randomness beacons, EaaS can be implemented with

21

a centralised or decentralised architecture.

To transfer data between the server and IoT clients, EaaS employs application layer proto-

cols such as HTTP. In NIST’s EaaS implementation [98], for instance, the client requests

entropy via an HTTP GET request that includes the client’s public key and the requested

amount of entropy [93]. The server then sends the requested data to the client. The data

is encrypted using the public key provided by the client. To obtain the initial strong keys

for the IoT clients, it is assumed that the IoT device’s manufacturer has generated and

provisioned a strong key. This model of key provisioning is frequently used in practise for

the shipment of IoT devices including secure hardware components such as the Trusted

Platform Module (TPM) or ARM TrustZone [93].

2.6.2 History and Related works

Using someone else’s randomness as a service is not a novel concept. Randomness

beacons were first described by Rabin [99] in 1983. Originally Rabin proposed the ran-

domness beacons to be used for digital signature schemes and implementing confidential

disclosures. Nowadays, there are many real-world implementations of randomness bea-

cons. NIST launched their own Randomness Beacon initiative [100] in 2011. 2013 saw

the release of the first public prototype of the NIST beacon (version 1.0), and in 2018

NIST upgraded their randomness beacon to version 2.0. The final version of the beacon

is expected to be published by NIST in 2022. The NIST randomness beacon employs a

QRNG source that passed the Bell test [101].

In the past five years, there has been an increase in scientific interest and publications

concerning DRBs. Examples of DRBs (in order of publication) include Ourobros [102],

RandHerd and RandHound [103], SCRAPE [104], HydRand [105], Albatross [106], Rand-

Piper [107], and SPURT [108]. Additionally, League of Entropy runs a DRB called drand

[109]. League of Entropy is a consortium consisting of different global organisations and

individual contributors. Each contributor operates their own unique source of high entropy

that they provide to drand.

In addition to the randomness beacon project, NIST launched an EaaS project [98] in

2016. Their EaaS implementation also generates randomness from QRNG sources that

passes the Bell test [101]. However, the project appears to be on hold as the EaaS

project page was last updated in 2020 and the EaaS-Events page has not been updated

since 2017. Unlike the randomness beacon project, there is no related comprehensive

documentation (in the form of NISTIR or NIST SP drafts). The only other relevant EaaS

academic publication appears to be “Entropy as a Service: A Lightweight Random Num-

ber Generator for Decentralized IoT Applications” by Ullah et al. [110], released in 2020.

Additionally, there are active EaaS projects in the industry. Crypto4A’s Root of QAOS

[111], QNu Labs’ QOSMOS [112], Qrypt’s EaaS [113], Quantropi’s SEQUR [114], and

22

QuintessenceLabs’s qRand [115] are recent examples of EaaS services provided by the

industry.

There are also additional sources for public randomness besides randomness beacons

and EaaS servers. For instance, random.org [116] has been providing random numbers

via the internet as a service since 1998. Random.org is a service that generates random

numbers using atmospheric noise and then offers applications such as list randomiser,

password randomiser, and lottery quick pick based on these numbers. It differs from

randomness beacons and EaaS servers in that random data is not accompanied by a

cryptographic signature or timestamp as metadata.

23

3. IMPLEMENTING AN EMBEDDED COMPUTER

CLUSTER

As demonstrated in Section 2.1, computer clusters can have a variety of requirements

and use cases. In this chapter, we describe the use cases, requirements, and available

resources that must be understood before designing and implementing the Magi cluster

to meet our specific needs. First, we present the existing related works in Section 3.1

to get an understanding of the related and already implemented clusters. We explore

both shared production-level clusters and clusters designed for specific use cases. In

Section 3.2, we then discuss the requirements for the Magi cluster in more detail. Finally,

we present our design for the Magi cluster, which is based on the related works and

the requirements. The design overview is detailed in Section 3.3, while Section 3.4 and

Section 3.5 focus on the design choices related to the nodes and the server, respectively.

3.1 Related works

We begin our search for relevant computer clusters in Finland by examining the shared

production-level clusters that are currently accessible for research purposes. Locally,

Tampere University has a shared production-level computer cluster called Narvi [117].

The x86-based Narvi cluster is intended for use by researchers, faculty members, and

students for their HPC needs. It consists of 140 CPU-only nodes with 3000+ CPU cores

and 22 GPU nodes with 4 GPUs each, and Slurm Workload Manager is used for job

scheduling [117]. Several other universities in Finland also have their own computer

clusters for HPC research. For instance, Aalto University has the Triton cluster [118] and

Helsinki University has the Turso cluster [119]. They share a striking resemblance to the

Narvi cluster in their design. The primary difference between the clusters is the amount

of computing power they offer.

CSC, the Finnish IT centre for science, also has numerous computer clusters that Finnish

researchers can utilise. Among these are the current supercomputers LUMI [120], Puhti

[121], and Mahti [122]. The most recent of them, LUMI, is one of the world’s most power-

ful supercomputers, according to TOP500 [5]. For HPC applications, CSC also provides

cloud services Pouta [123] and Rahti [124], and research data storage Allas [125]. In-

corporating increasingly more computing power, offering cloud-based Infrastructure as a

24

Service (IaaS) or Platform as a Service (PaaS) for the users, and combining the computer

clusters with data management services suitable for the large amounts of data related to

HPC research demonstrate how computer clusters can be scaled well beyond our needs

and requirements for the Magi cluster. While these computer clusters and services are

beyond the scope of this thesis, we introduce them to establish how the requirement elic-

itation must drive the design of the computer cluster and to illustrate the Finnish HPC

research infrastructure at the cutting edge of the field.

All of the previously mentioned clusters are x86-based. Nonetheless, ARM-based clus-

ters exist as well. Embedded computer clusters based on the ARM architecture are of

particular interest to us, as the Magi cluster is also an embedded computer cluster. A

2015 survey by Jahanzeb et al. [126] revealed that ARM-based clusters have a better

performance-to-power ratio than x86-based clusters, but that at the time, x86-based clus-

ters outperformed ARM-based clusters for typical HPC use cases. A more recent survey

by Yokoyama et al. [127] from 2019 demonstrates that ARM architecture may be a bet-

ter fit for modern HPC systems employing co-processors, and that companies such as

Amazon already offer ARM-based computer instances for cloud computing. Moreover,

they argue that ARM HPC could become dominant in the future due to its matured soft-

ware ecosystem, more aggressive architectural improvements, and cheaper prices when

compared to x86.

The most recent ARM based embedded clusters include computer clusters based on the

ARM ThunderX2 processor family, such as the experimental infrastructure for the Mont-

Blanc 2020 project [128]. Mantovani et al. [129] analyse the performance and energy

consumption of the aforementioned cluster and conclude that ThunderX2 provides com-

parable or superior performance-to-power ratio and scalability to x86 processors with a

comparable software ecosystem availability. Therefore, ARM-based clusters appear to

be viable candidates for the next generation of HPC systems and supercomputers [129].

Pardos et al. [130] also present a study on the performance of ThunderX2-based HPC

clusters, concluding that ThunderX2 is capable of matching the performance of its x86

counterparts, but that its power efficiency still lags behind x86 when AVX512 extensions

are used. All of these surveys on ARM-based clusters demonstrate that energy-efficient

ARM-based clusters have the potential to replace power-hungry x86-based clusters in ex-

ascale HPC in the future, and there are already indications that this change is occurring.

We have only presented shared production-level clusters thus far. However, for a variety

of reasons, many NISEC research projects are not suitable for shared production-level

clusters. For instance, root access may be required to enable insecure hardware debug

mechanisms, such as performance monitor units, which should never be exposed to user

space on servers used for production. Some of our research necessitates malicious be-

haviour towards the computer cluster, the effects of which are studied at multiple levels

of abstraction, ranging from microarchitectural to networking. Consequently, we are in-

25

terested in information regarding existing private computer clusters designed for specific

use cases.

In the scientific literature, Raspberry Pi (RPi)-based clusters are by far the most prevalent

private embedded computer clusters. Typical use cases include the teaching and learning

of distributed computing concepts [24–26], as well as the construction of cost-effective

and energy-efficient clusters for small HPC applications that do not require a great deal

of computing power, such as image processing and big data analysis [131–136].

According to studies by Mappuji et al. [137], Cicirello [138], and N. Gupta et al. [139], RPi

clusters are not particularly effective for HPC use. Due to the limited memory bandwidth

of the RPi’s, the performance of RPi’s appears to peak at two or three cores, meaning they

are unable to properly utilise all four cores. In addition, the limited networking capability

of RPi’s severely limits the parallel computing capabilities of the clusters, rendering them

unsuitable for tasks requiring the distribution of a significant amount of data between the

nodes relative to computation time. The studies reveal, however, that RPi clusters can

deliver modest performance at a reasonable cost and with a reasonable energy footprint.

Intriguingly, the study by Hawthorne et al. [140] reveals that RPi clusters appear to offer

comparable encryption/decryption performance for storage encryption tasks while con-

suming less power than x86-based systems when employing the Twofish algorithm. As

the AES instruction set is optional on ARMv8 processors and is not implemented in any

single-board computers known to Hawthorne et al. [140], x86-based clusters continue

to outperform RPi clusters when executing the AES algorithm. If AES hardware instruc-

tions were introduced for RPi, ARM-based RPi clusters could be preferable to x86-based

clusters in the future for storage encryption tasks.

3.2 Requirements

The initial phase of the implementation of the computing cluster is the elicitation of re-

quirements. Those accountable for implementing the computing cluster must learn the

cluster’s requirements from the cluster’s stakeholders. The stakeholders may have var-

ious functional and nonfunctional requirements for the cluster, including performance,

security, architectural, and usability requirements. The design must meet all of these

specifications. We will now describe how the requirements for the Magi cluster are gath-

ered and what those requirements are.

The elicitation of requirements for the Magi cluster entailed identifying possible use cases

for the computer cluster and then gathering requirements based on these use cases.

Since the Magi cluster is only utilised by the NISEC group for our own internal research,

all of the collected use cases are based on the NISEC’s existing and potential future

research projects. The stakeholders of the Magi cluster are the NISEC group leaders and

26

all group members who conduct research using the cluster. The use cases for the Magi

cluster include:

ARM-based software testing. As ARM-based software is used and researched in

many NISEC projects, NISEC requires an ARM-based computer cluster to efficiently run

and test software built for ARM processors. One example use case is fuzzing ARM-based

cryptographic software in order to find bugs. The existing computer cluster at Tampere

University, known as the Narvi [117] cluster, is based on the x86 architecture, making it in-

compatible with ARM-based software. Therefore, an ARM-based architecture is required

for the Magi cluster.

Distributed network security testbed for embedded devices. NISEC requires a testbed

that can measure network throughput when a core is saturated. In addition, the testbed

can be used to investigate, for instance, DDoS vulnerabilities, attack effects, and miti-

gation techniques. Consequently, the Magi cluster requires multiple embedded network-

connected devices as nodes.

Testing the embedded performance of security-oriented protocols. Members of the

NISEC group conduct extensive research and contribute to the development of security-

focused protocols such as TLS and OpenSSL. On embedded devices with limited com-

putational capabilities, protocol performance is crucial. Therefore, the Magi cluster must

be able to test the performance of experimental cipher suites on embedded devices.

Testing applications of distributed hardware-assisted security technologies. Us-

ing TEEs in a distributed manner, as we do in our EaaS simulation, is a prime exam-

ple of this use case. NISEC has already conducted research on Intel SGX and AMD

SEV-enabled cloud technologies; therefore, other potential use cases include simulating

TEE-enabled cloud technologies using TrustZone TEE in ARM processors.

Simulating attacks against consensus in distributed systems. Many distributed net-

work applications are vulnerable to majority attacks, where an adversary gains control of

the majority of the participating nodes of the network. Majority attacks against blockchains

are already a quite well understood and researched phenomena [141], but similar attacks

also exist, for example, in Tor network, where a well-funded adversary, such as a nation-

state actor, can achieve consensus blocking against Directory Authorities [142]. With the

Magi cluster, we can simulate such attacks against consensus in distributed systems.

Based on the aforementioned use cases, the Magi cluster nodes must be embedded

devices with ARM-based processors that support TrustZone. Additionally, a large number

of nodes must exist to permit the testing and simulation of various distributed applications.

27

In addition to the requirements extracted from the use cases, the stakeholders have nu-

merous other requirements regarding the usability, security, and software licence for the

cluster’s software. The cluster must primarily be as user friendly as possible. This in-

cludes a straightforward method for controlling all nodes with the server without requiring

individual configuration of the nodes, easily distinguishable nodes, and the capacity for

future expansion. Additionally, the cluster must be accessible from the external network

via the server, but individual nodes must not be accessible from the external network.

Therefore, the server must be capable of providing the nodes with firewalling and Network

Address Translation (NAT). Additionally, the cluster must be able to withstand high levels

of stress without crashing; this has been an issue with some previous NISEC projects.

Finally, FOSS should be utilised.

In the end, we end up with the following list of requirements for the Magi cluster:

• The cluster must be an embedded computer cluster based on the ARM architecture.

• The cluster must be easy to manage. Specifically, the cluster must have a server

capable of controlling all nodes via a job scheduler.

• The cluster shall be easily extendable in the future.

• The nodes must be able to communicate with each other.

• The server must be accessible from the outside network.

• The nodes must not be accessible from the outside network.

• The server must have a firewall capable of providing NAT for the nodes.

• The nodes must be distinguishable from each other.

• The nodes must function without the need for individual configuration. Specifi-

cally, the cluster must support Preboot eXecution Environment (PXE) booting of

the nodes.

• Both the server and the nodes must utilise FOSS.

• The nodes must be able to withstand high levels of stress without crashing.

The design of the Magi cluster is based on these requirements.

3.3 Design overview

The design of the Magi cluster is based on the requirements gathered during the phase

of requirement elicitation. RPis are utilised as nodes since they satisfy our hardware

requirements. The RPi nodes run a Devuan ASCII Linux distribution. For the server, we

install FreeBSD on an HPE ProLiant bare-metal system. The FreeBSD server provides

all required server utilities, such as traffic routing, firewalling, NAT, PXE booting of the

28

Outside
network

FreeBSD
server

Core
switch

NISEC core
switch

VLAN
3000, 3010

VLAN
3000, 3020

VLAN
3000, 3030

VLAN
3000, 3040

NISEC VLAN

VLAN
3000, 3010, 3020,

3030, 3040

Magi01-sw01

Magi01 Magi02 Magi03 Magi04

10.0.10.0/24 10.0.20.0/24 10.0.30.0/24 10.0.40.0/24

Te1/2

Gi0/24 Gi1/1

Gi0/13-16

Gi0/9-12Gi0/5-8

Gi0/1-4

Magi01-sw02

Magi01-sw03

Magi01-sw04

Magi02-sw01

Magi02-sw02

Magi02-sw03

Magi02-sw04 Magi03-sw04

Magi03-sw03

Magi03-sw02

Magi03-sw01 Magi04-sw01

Magi04-sw02

Magi04-sw03

Magi04-sw04

Magi04

Figure 3.1. Overview of the Magi cluster

Raspberry Pi nodes, and job scheduling. Devuan ASCII and FreeBSD both meet the

FOSS criterion.

On the cluster, 640 RPi devices are physically and logically partitioned into four “cubes”.

Therefore, each of the four logically and physically distinct cubes contains 160 RPi nodes.

Section 3.4 describes the design decisions for the RPi nodes, whereas Section 3.5 de-

scribes the design decisions for the FreeBSD server in more detail. The overview of the

Magi cluster and its network configuration is presented in Figure 3.1.

29

3.3.1 Network configuration

As illustrated in Figure 3.1, each cube resides behind its own VLAN with its own subnet-

work and four switches that are connected via a single “core switch” to the internet and the

FreeBSD 13 server. The entire cluster resides behind a 10.0.0.0/16 Classless Inter-

Domain Routing (CIDR) block. Each cube has its own /24 CIDR block, allowing each

cube to theoretically support up to 256− 2 = 254 RPi nodes. In practise, each cube only

contains 160 RPi nodes, but this number can be increased in the future to facilitate sim-

ple expansion. As there are 256 /24 CIDR blocks available within the /16 CIDR block,

and we are only utilising 4 blocks for the RPi nodes and 2 blocks for the management

networks, there is ample room for future project expansion.

3.4 Raspberry Pi nodes

Raspberry Pi is an embedded single-board computer. As RPis are readily available, user-

friendly, well supported by open-source software, and have a wealth of existing documen-

tation for various projects, they are suitable for use as Magi cluster nodes.

Due to the plethora of RPi models, we must examine the characteristics of each model

before selecting one for the Magi cluster. As we describe in Section 3.2, the RPi nodes

must support PXE booting. The RPi model 3b is the first model to support PXE booting

without an SD card [143]; however, PXE booting with RPi model 3b requires the setting

of an OTP software flag. Due to the need for manual labour on each RPi node, we

determine that the RPi model 3b is inapplicable to the Magi cluster. Additionally, many

known problems with the PXE boot process with the RPi model 3b were fixed in the RPi

model 3b+ [143]. The RPi model 3a+ does not support PXE booting [143]. Consequently,

only the RPi models 3b+ and 4b are suitable choices for the Magi cluster, as they are the

only models to properly support PXE booting out of the box. RPi 4b is more powerful than

RPi 3b+, but also considerably more expensive. Since the Magi cluster will not be used

for HPC, we will not noticeably benefit from the increased computing power. As a result,

we prioritise the lower price of RPi 3b+ over the increased computing power of RPi 4b,

and choose RPi model 3b+ as the base model for the Magi cluster.

3.4.1 Network boot process

We use PXE to boot the RPi clients over the network. The PXE booting procedure func-

tions fundamentally as follows (and is illustrated in Figure 3.2):

1. The RPi client broadcasts a DHCP Discovery message.

2. The server responds with a DHCP Offer containing the client’s IP address, bootfile

name (filename), TFTP server address (next-server), and NFS server path

30

RPi Client

1. Broadcast DHCP Discovery

3. Accept with DHCP Request

5. Request bootfile

7. Execute bootfile, load kernel, mount
filesystem

Server

2. Make DHCP Offer

4. Acknowledge with DHCP ACK

6. Send requested bootfile

7. Host the NFS filesystem

DHCP

DHCP

DHCP

DHCP

TFTP

NFS

TFTP

Figure 3.2. The network boot process

(root-path) values.

3. If the RPi client finds the DHCP Offer satisfactory, it broadcasts a DHCP Request.

4. The server responds to the newly assigned IP address with DHCP ACK.

5. Using the next-server and filename values included in the DHCP Offer mes-

sage, the RPi client requests the bootfile from the server via TFTP.

6. The server sends the requested bootfile to the client via TFTP.

7. The client executes the received bootfile, which loads the kernel. The NFS filesys-

tem is then mounted using the root-path value obtained from the server during

the DHCP Offer.

8. From this point forward, the OS handles booting the RPi client.

In step 1, the RPi client transmits the DHCP Discovery five times, with five seconds be-

tween each transmission. The RPi client will enter a low-power state and the PXE boot

will fail if the server fails to respond within this time. This could occur if the server is utilis-

ing a Spanning Tree Protocol (STP) with listening and learning states, as this procedure

could take longer than 25 seconds. In order for the server to see the DHCP Discovery
messages, it is necessary to configure the connected switches to use STP PortFast mode

(or disable STP entirely). Using the SD card’s bootcode.bin file, which is stored on the

device, is a known workaround for this issue. However, this would necessitate manual

labour on each RPi node, which would contradict the requirements.

3.4.2 Operating system

Based on Section 3.2 and our prior knowledge, we have the following criteria for selecting

the operating system for the RPi nodes:

• The selected OS must be FOSS. We do not wish to be reliant on proprietary,

closed-source software; rather, we desire total control over the cluster.

31

• The operating system must be stable under high stress and have minimal overhead

to avoid wasting the computing power of the RPi nodes. According to our previous

tests, systemd [144] can cause nodes to crash under heavy load and adds a sub-

stantial amount of unnecessary overhead. Thus, we avoid operating systems and

distributions with systemd.

• The selected OS should not have reached the end of its product lifecycle (end-of-

life product, EOL). We do not want to select EOL products in the event that a critical

patch is required (e.g., a newly discovered security flaw), but the OS will no longer

be updated.

• The selected OS should require few manual updates. Since we want the Magi

cluster to be as stable as possible, we will only apply critical OS updates to a stable

OS build. For this reason, we disregard all frequently updated OS development

builds.

We select Devuan ASCII Linux distribution [145] as the OS for the nodes in the Magi

cluster based on these criteria. It is a stable, lightweight, systemd-free Linux distribution

with ready-to-use RPi 3 images, thus meeting all of our criteria.

3.5 FreeBSD server

We choose FreeBSD 13 as the server for the Magi cluster. FreeBSD is a free open-

source OS derived from the BSD version of Unix that fulfils our requirements listed in

Section 3.2. It is developed and maintained by a large open-source community and can

be freely downloaded from the FreeBSD project website [146]. We list below the most

important features of FreeBSD we use for the Magi cluster:

Dynamic Host Configuration Protocol (DHCP) is utilised for automatically assigning

IP addresses to RPi client nodes and distributing all necessary information for the network

boot procedure. Subsection 3.4.1 describes how and which files are sent through DHCP

during the network boot procedure. In practise, the DHCP server residing on the FreeBSD

13 server machine comprises configurations for six separate VLANs; one for each of the

four cubes, one for the management VLAN, and one for the NISEC’s internal VLAN.

Network File Share (NFS) provides RPi client nodes with a network-based file system

without requiring an SD card on each node computer. PXE utilises TFTP to transfer

required files from the server to the client nodes during startup. All changes to the client’s

filesystem can be made on a single server computer, which then propagates to all client

nodes. This makes the computer cluster more scalable and easier to maintain.

32

Packet Filter (pf) is an internal packet filtering tool in FreeBSD that we use for the Magi

cluster. It acts as a firewall between our private subnetwork and Tampere University’s

private network. Furthermore, all packets originating from outside Tampere University’s

network are blocked, thus hardening the security of the server.

Slurm Workload Manager serves as the cluster’s job scheduler. It enables us to run

and monitor parallel jobs on multiple RPi nodes and to allocate groups of RPi nodes to

cluster users for their work.

Trivial File Transfer Protocol (TFTP) is used to transfer files from the server to the RPi

client nodes over the network so they can be network booted using PXE. Subsection 3.4.1

describes how and which files are sent through TFTP during the network boot procedure.

ZFS filesystem is used on the server. ZFS is a filesystem that was originally designed

for Sun Solaris and later ported to other Unix-like operating systems, including Linux and

FreeBSD. It has advanced file system properties, such as snapshots and replication at

the pool level, that are useful for our uses for the Magi cluster. It also enables users to

create pools of hard drives in their own pool of mirrors without the need for RAIDs at

the hardware level. Our server configuration makes use of two distinct pools of mirrors.

The system host resides on its own pool of two hard discs in mirror, whereas the cluster

resides on its own pool of 2×2 mirror.

33

4. DESIGNING AN EAAS SIMULATION WITH THE MAGI

CLUSTER

To develop a practical application for the Magi cluster described in Chapter 3, we imple-

ment an EaaS simulation. This chapter highlights why and how the EaaS simulation is

developed. We use the background information provided in Section 2.6 as a baseline for

our simulation. Initially, we examine existing works on EaaS implementations in greater

detail in Section 4.1. Then, we explain the security considerations and the threat model

on which our design is based in Section 4.2. The objectives of the simulation are then

discussed in Section 4.3, followed by a thorough explanation of its design and method-

ology in Section 4.4. Finally, we describe the limitations and biases of our simulation in

Section 4.5. The results of the simulation are presented in Chapter 5.

4.1 Related works

Before we begin designing our own EaaS implementation, we examine existing EaaS so-

lutions. Existing related works serve as an inspiration for our design. For our search of

relevant related works, we first take a look into implementations that are supported by

pertinent scientific literature. We exclude proprietary industry solutions whose implemen-

tation details are not publicly available from this search. Our search for scientific literature

commences with the following search engines:

• ACM Digital Library1

• Andor 2

• arXiv open-access archive3

• dblp computer science bibliography4

• Google Scholar 5

• IEEE Xplore6

1https://dl.acm.org/
2https://andor.tuni.fi/
3https://arxiv.org/
4https://dblp.org/
5https://scholar.google.com/
6https://ieeexplore.ieee.org/

https://dl.acm.org/
https://andor.tuni.fi/
https://arxiv.org/
https://dblp.org/
https://scholar.google.com/
https://ieeexplore.ieee.org/

34

We use the following search terms and their combinations during the search: “EaaS”,

“Entropy”, “as”, “a”, “Service”, “IoT”, and “randomness”.

According to our search results, “EaaS” is not commonly understood to mean “Entropy

as a Service”. Specifically, the letter “E” in “EaaS” represented different words such as

“Ecosystem”, “Edge”, “Education”, “Electricity”, “Emulation”, “Encryption”, “Energy”, “En-

tanglement”, “ERP (Enterprise Resource Planning)”, “Evaluation”, “Everything”, “Execu-

tion”, and “Exostructure” in many of the search results, where the paper was about offer-

ing something else as a service. After eradicating all search results that are not about

“Entropy as a Service”, we are left with only the two works presented in Table 4.1.

Table 4.1. Related EaaS works.

Title of the paper (abbreviated) Authors Year Reference

EaaS: Unlocking Cryptography’s Full Potential Vassilev and Staples 2016 [93]

EaaS: Lightweight RNG for Decentralised IoT Apps Ullah et al. 2020 [110]

The first related work by Vassilev and Staples [93] focuses on the NIST EaaS project

[98]. It employs a QRNG source that passes the Bell test [101]. The design is cen-

tralised, meaning it has a single point of trust. In the design, the HTTP protocol is used

to transfer entropy from the service to clients, and the generated entropy undergoes con-

tinuous TRBG health test monitoring. Timestamps and digital signatures are also used to

strengthen the design’s security.

Ullah et al. [110] design a CSPRNG that uses sensor data as a source of randomness

in the second related work. In addition, they present a proof of concept for the potential

use of sensor data as a source of randomness and evaluate the generated entropy using

the NIST SPS [54]. While the contents of the paper are relevant to this thesis, it does not

actually implement an “Entropy as a Service” system in the sense that we understand the

term. Therefore, the paper’s title is somewhat deceptive, and it is of little assistance to us

in designing the EaaS simulation.

Based on the search results for related scholarly literature, EaaS does not appear to be

an active area of research. This is in stark contrast to randomness beacons, which return

a plethora of search results from recent years using the same search engines with terms

such as “randomness”, “random”, “beacon”, “beacons”, “protocol”, and “protocols”. This

begs the question of whether it is worthwhile to implement an EaaS system or whether a

randomness beacon would be more advantageous. Nonetheless, if we expand the search

for related works to include industry solutions and use the same EaaS-related keywords

on Google search7, we find numerous results of real-world EaaS implementations by

companies such as Crypto4A, QNu Labs, Qrypt, Quantropi, and QuintessenceLabs [111–

7https://www.google.com/

https://www.google.com/

35

115]. All of these industrial solutions utilise QRNG sources and emphasise the “quantum”

aspect of the solution in their marketing. These results indicate, in our opinion, that EaaS

implementations, particularly with QNRG sources, have real-world monetary value for

businesses and therefore should be studied more by the academic community in addition

to randomness beacons.

4.2 Security considerations and threat model

In our simulation, we have full control over both the server and the IoT clients. In addition,

all EaaS simulation-related computers are contained within our private subnetwork. Only

the FreeBSD server controlling the Magi cluster is accessible from the external network.

In this case, the external network is the Tampere University network. All packets originat-

ing outside the university’s network are dropped. Additionally, many packets originating

from this network are blocked by default due to the fact that the FreeBSD server employs

packet filtering that whitelists only specific protocols. Furthermore, all computers asso-

ciated with the simulation are physically located in a server room with restricted access.

Few individuals are physically capable of entering this server room. These safeguard

our EaaS system against the vast majority of attacks and adversaries, as we assume

adversaries cannot gain physical access to the computers and remote access requires

adversaries to first connect to the Tampere University network.

However, we use a conservative threat model, in which we assume that an adversary will

be able to pivot into our private subnet and is therefore capable of launching both active

and passive attacks within the network. Due to this, we assume that the attacker can

conduct MitM attacks, response-replay attacks, DNS poisoning attacks, and even gain

root access to the server.

To prevent MitM attacks, we employ both asymmetric encryption and digital signatures.

Since the adversary does not have access to the IoT client’s private key in our threat

model, they cannot read or modify the entropy generated by the server. The digital sig-

nature verification offers protections for authenticity, integrity, and non-repudiation, hard-

ening the system against MitM and DNS poisoning attacks. We use the Network Time

Protocol (NTP) to provide timing information for both the IoT client’s request for entropy

and the server’s generation of entropy in order to prevent response-replay attacks. The

IoT client verifies that entropy is only generated in response to a request for it.

We employ TEEs to safeguard our implementation from adversarial root access on com-

puters participating in the simulation. All of the code and data associated with the EaaS

simulation is executed within Enarx’s keeps; therefore, even with root access to the server

or IoT clients, an adversary cannot read or process the data, enhancing the system’s in-

tegrity and confidentiality. Consequently, even we as the operators of the EaaS server are

unable to read or modify the generated entropy. Users do not need to rely on us being

36

trustworthy and operating the server with good intentions, but rather on the TEE technol-

ogy to function properly and prevent us from observing or altering the data on the server.

While the server continues to function as a single point of trust, it is not a typical Trusted

Third Party (TTP) server, as in the NIST’s EaaS implementation [93]. Instead, we refer to

our server as the Trusted Execution Server (TES) to emphasise that trust is placed in the

TEE technology and not the server operator.

In order to use asymmetric encryption effectively, we employ a key provision model. This

indicates that we anticipate the IoT clients to be shipped with robust keys provided by the

manufacturer. Without the initial strong keys provided by the manufacturer, the IoT clients

would need entropy from the EaaS server to generate strong keys; however, using the

EaaS service securely against powerful active adversaries requires strong keys. Using

the key provision model gets rid of this chicken-and-egg problem. In addition, we assume

that IoT clients already know the server’s public key prior to the simulation.

4.3 Goals

The main goals of our simulation are the following:

1. Implement a functional EaaS system. Due to the scarcity of academic reference

implementations of other EaaS systems, our simulation is vital for demonstrating

that building an EaaS system is actually feasible.

2. Find out whether EaaS is a practical solution for solving IoT RNG problems.

3. Determine whether the use of TEEs to enhance the security of the EaaS system is

feasible in practise. Based on our experience writing the SoK paper [2], the devel-

opment of TAs is not a simple process; therefore, we are interested in determining

whether Enarx can be used to harden the EaaS system security with TAs.

As a consequence, our simulation aims to give answers to the research questions RQ3,

RQ5, and RQ6. We will discuss the extent to which our simulation achieves these objec-

tives in Chapter 5.

4.4 Design and methodology

The primary components of our simulation are the Trusted Execution Server (TES), the

entropy sources, and the IoT clients that utilise the TES’s entropy. The TES appears

to IoT clients as a black box that returns entropy on demand. From the perspective of

the entropy sources, the TES is a black box that requests and receives entropy from the

entropy sources. From the perspective of the TES, the architecture is somewhat more

complex because the server must communicate with IoT clients that request entropy as

well as entropy sources that gather and distil entropy from nature. The TES must also

37

utilise a CSPRNG function to combine the entropy sources.

When IoT clients request entropy from the TES, they send an HTTP GET request along

with their own public key (pkIoT) and the quantity of entropy required (∆x). Additionally,

they utilise NTP to store the request time (t1) locally. The server then responds with the

requested entropy (x), its cryptographic digital signature (s), and the time the entropy was

generated (t2). The response is encrypted using the public key of the IoT client. When

the IoT client receives the returned data, it verifies it prior to employing the entropy. The

entropy is discarded if the verify function returns an invalid result. The verify operation

includes three steps:

1. The IoT client verifies that the data is encrypted correctly using its own public key

and that the response is in the correct format, i.e. the response contains the re-

quested entropy x with the requested amount of entropy ∆x, the digital signature

s, and the time the entropy was generated t2.

2. The client verifies that the entropy was generated only after the request for entropy

(t2 > t1).

3. The client then verifies the validity of the digital signature.

Figure 4.1 demonstrates the simulation protocol from the perspective of IoT clients.

pkIoT, Δx

Epk_IoT (x, s, t2)

Generate:
Δx, t1

TES IoT client

Verify(x, s, pkTES, t1, t2)

(previously) pkTES

Generate:
x, s, t2

Figure 4.1. Protocol for EaaS simulation from the perspective of the IoT client.

If the verify function fails, we employ a blocking implementation that terminates the pro-

cess that requested entropy from the EaaS. Because we control and trust our entire

simulation implementation, which is located within a self-controlled private subnet, and

because we don’t use IoT devices for anything critical during the simulation that would al-

ways require a functioning state for the devices, a blocking implementation is suitable for

us. However, a non-blocking implementation could also be used by simply discarding the

entropy received from the EaaS and proceeding with only the IoT device’s own HWRNG

entropy sources.

We use Enarx to run the simulation inside a TEE. Using a TEE enhances system security

because, even if the computers comprising the EaaS system are compromised, the in-

38

pkIoT, Δx

Epk_IoT (x, s, t2)

Generate:
Δx, t1

TES IoT client

Verify(x, s, pkTES, t1, t2)

(previously) pkTES

Combine(x1, x2):
 x

Generate:
x1, x2

Entropy sources

Δx

x1, x2

Figure 4.2. Protocol for EaaS simulation from the perspective of the TES.

tegrity and confidentiality of the processed data remain intact, as the high-level operating

system is unable to view or modify the data.

In our simulation, both the IoT clients requesting entropy and the entropy sources are

RPi 3b+ nodes from the Magi cluster. In practise, two distinct nodes serve as entropy

sources. The process of entropy distillation is simulated utilising the CSPRNG function

(/dev/urandom [74]) included in the Devuan ASCII Linux distribution [145]. When re-

quested by the server, the RPi nodes serving as entropy sources generate and send their

generated entropy to the server. We use another RPi node in the Magi cluster as the

TES because FreeBSD does not properly support Enarx. After receiving entropy from the

entropy sources, the server uses its own CSPRNG function to combine these two distinct

entropy sources. Finally, the server sends the properly mixed entropy to the IoT device

that requested the entropy in the first place. Figure 4.2 highlights the simulation protocol

from the perspective of the TES.

4.5 Limitations and bias

Since we are using Enarx’s “nil” backend, our design will not be secure in practise. Con-

sequently, we will not utilise ARM’s TrustZone capabilities in reality. According to our SoK

of TEE development tools and applications [2], there are no open-source tools readily

available for TrustZone-enabled development. Enarx, which supports actual TEE usage

on other architectures such as Intel SGX and AMD SEV, with the nil backend allows us

to develop applications in the same manner as if we were actually using the proper TEE

backends. This is sufficient for our simulation, but for a secure implementation in the real

world, we would need a middleware framework that supports TrustZone-enabled devel-

opment.

Our architecture includes a TES. Consequently, we are limited to a single point of trust.

Since we do not share the entropy from our EaaS simulation over the internet and we

have complete control over the TES within our private subnet, a more conventional TTP

server would also meet our needs. Using a TES, on the other hand, enables us to scale

our EaaS implementation in the future for a more robust design in which the entropy is

39

actually broadcast to other internet users. In addition, our design does not include a re-

mote attestation mechanism because it is unnecessary in a centralised and self-controlled

design. In a decentralised architecture, integrity guarantees require appropriate remote

attestation, and the entropy sources should be independent and controlled by separate

parties, in contrast to our design in which we control all entropy sources. This further mit-

igates the issue of a single point of trust, as a single colluding entity (capable of breaking

the memory isolation of the TEE) is unable to manipulate the output entropy of the EaaS.

Our entropy sources are also limited in this design, as we only use identical hardware

choices and TRNG collection techniques. Multiple, distinct, and unrelated entropy sources

must be utilised in a more secure implementation. We could improve our simulation by

employing e.g. Physical Unclonable Function (PUF) based ring oscillator TRNGs [61–66]

or QNRG devices [56–58] as entropy sources. Even in these designs, it is essential to

evaluate the conditions under which they can generate strong entropy. In a ring-oscillator-

based PUF design, for instance, the temperature and voltage must remain within the

proper condition ranges; otherwise, the entropy will be biased [70, 71]. Therefore, the

source of entropy must be guarded against fault injection attacks that seek to interfere

with its condition range.

Since many CPU manufacturers exclude SCAs from their TEE threat model [52], TEEs

do not often provide adequate protection against SCAs in the real world, as demonstrated

in the surveys by Cerdeira et al. [147] and Fei et al. [148]. Therefore, our design is fun-

damentally insecure against highly skilled and well-resourced adversaries who can craft

specific SCAs against the various EaaS simulation components employing TEEs. This

would be the case even if our design utilised the ARM TrustZone TEE backend correctly.

Since TEE manufacturers are typically uninterested in fixing the fundamentally flawed

parts of their hardware design that can be exploited with SCAs [52], the only way to pro-

tect against these attacks is to conduct extensive in-house research on the possible SCAs

against the used TEE system and then implement all the necessary software modifica-

tions to protect against the discovered vulnerabilities. Even so, it may be impossible to

protect against specific SCAs, and regardless of how well internal research on SCAs is

conducted, it is impossible to identify every possible defence. Therefore, on a fundamen-

tal level, the TEEs do not provide the design-based security guarantees in the real world

that they theoretically provide. However, the use of TEEs to secure the implementation is

not in vain, even if SCAs could theoretically be used to attack TEEs. This is due to the fact

that utilising TEEs drastically reduces the system’s attack surface by providing stronger

protections for data confidentiality, integrity, and authenticity. As we could not find many

instances of SCAs being utilised in the wild against TEE-enabled systems, the use of

TEEs appears to deter all but the most highly skilled and resource-rich attackers, such as

nation-state actors. This substantially decreases the attack surface. Consequently, the

use of TEEs to strengthen system security remains highly advantageous.

40

It is also important to note that at no point in the simulation do we evaluate the statistical

quality of the generated entropy. The NIST statistical suite [54] could be employed to

evaluate the entropy of the EaaS simulation. Similarly, NIST-Lite [87] could be used to

test the output randomness of IoT clients after generating randomness using entropy

from EaaS. As explained in Subsection 2.5.5, these test suites cannot prove that the

randomness is truly secure. However, they can be used to demonstrate that the entropy

is at least not known to be insecure.

In general, it is essential to acknowledge that our current design is not secure in the real

world. Due to this, the design is restricted to simulation and testing purposes only. For a

truly secure implementation, each of the aforementioned biases and limitations must be

addressed.

41

5. RESULTS FROM THE SIMULATION

In this chapter, we explain how our EaaS system, whose design was presented in Chap-

ter 4, was implemented in practise, as well as the challenges and considerations we

faced during the implementation. In addition, we discuss whether our EaaS implemen-

tation demonstrates that a secure distributed EaaS system utilising TEEs is feasible to

implement and can it resolve the issues with IoT RNG presented in Subsection 2.5.6.

Section 5.1 discusses the practicality of implementing an EaaS system, while Section 5.2

discusses the practicality of developing TAs to harden the security of an EaaS system.

5.1 Practicality of implementing an EaaS simulation

We used Rust programming language and Enarx for the development of the EaaS system.

The related code and script files for actually running the simulation can be found from our

GitLab repository [1], where we published them under the MIT open-source license.

For the entropy generation, we used the ChaCha12 algorithm as the CSPRNG, and the

FromEntropy function in Rust for seeding. FromEntropy first attempts to use OsRng
(/dev/urandom of the ASCII Devuan Linux distribution [145] in our case) as the entropy

source, and if that fails, JitterRng (which uses the jitter in the CPU execution time) as

a backup. We used ChaCha12 as opposed to the more common ChaCha20 because, ac-

cording to Aumasson [149], utilising ChaCha with significantly fewer than 20 rounds does

not increase the security risk, but makes it significantly faster. In particular, according to

Aumasson, ChaCha would be secure with only eight rounds, but we opt for twelve rounds

as a prudent tradeoff between a reduced execution time and a larger security margin.

The actual code for the entropy generation function is as follows:

fn get_random_u32() -> u32 {
let mut csprng = rand_chacha::ChaCha12Rng::from_entropy();
let random_u32 = csprng.next_u32();
return random_u32;

}

To get the networking to function, we utilised an asynchronous HTTP server mini_http
[150]. For the asymmetric encryption of the data that the server provides to the IoT

42

client, we used the client’s public SSH key. Similarly, we used the TES’s SSH keys (with

Ed25519 algorithm) for the generation and validation of the digital signature.

Our simulation demonstrates that an EaaS system can be implemented in practise. Since

Magi cluster was successfully utilised in the simulation, we can confidently answer RQ3:

implementation of an EaaS system utilising an embedded computer cluster is feasible.

Since we are able to use the strong entropy from the EaaS with the IoT clients, EaaS

seems to be a practical solution for solving IoT RNG problems related to entropy genera-

tion. This gives an partial answer to RQ6.

5.2 Practicality of developing TAs for the EaaS simulation that

utilise TEEs

As presented in Subsection 2.3.1 and Section 4.5, Enarx cannot be used to develop TAs

that run on actual TrustZone hardware. However, it can be used to develop TAs that run

on Intel SGX and AMD SEV, and with the “nil” backend, the same TAs can run on other

hardware, such as the RPi 3b+’s used in the Magi cluster, albeit without the TEE hardware

component.

When attempting to implement a simple TCP client networking using sockets, we encoun-

tered issues even with the nil backend. To make client-side networking function, we had

to contribute additional development time and effort to the Enarx project. Also, Enarx

does not currently support reading and writing files. This meant that the key values in our

code had to be hardcoded. Moreover, we discovered that the documentation is frequently

insufficient or out of date, necessitating direct contact with Enarx developers to resolve a

number of our issues. These issues demonstrated that Enarx is not yet mature enough for

all development aspects, and that the concept of “simply running an existing application

binary within Enarx” is still a long way off.

In our SoK paper [2], we found that there do not appear to be any open-source devel-

opment frameworks or containers for TrustZone; rather, developers rely on proprietary

development frameworks to run their applications within TrustZone. To circumvent this

limitation and actually run the EaaS system within a TEE, we would need to switch to

hardware that supports Intel SGX or AMD SEV.

However, despite the aforementioned limitations, we were able to implement a working

distributed EaaS system that utilises TAs. The related code and script files can be found

from our GitLab repository [1]. In order for networking to function within Enarx, we had

to preopen a socket and pass it to the TA in the Enarx.toml file. In the actual code,

we differentiated between a WASI (Enarx) build and a non-WASI (“normal”) build. In the

case of a WASI build, the pre-opened TCP stream was passed to the TA by reading the

existing pre-opened connection from the Enarx.toml file in the following line:

43

let stdstream = unsafe { std::net::TcpStream::from_raw_fd(3) };

In the case of a non-WASI build, we simply established a new TCP connection in the line

below:

std::net::TcpStream::connect("127.0.0.1:3445")

Afterwards, the TCP streams were handled identically in the code.

On the basis of these observations, we can answer RQ5: it is possible to develop TAs for

an EaaS system, albeit with limitations. In our case, we were unable to use the actual

hardware protections of the TEE because we had to use the nil backend of Enarx. Fur-

thermore, due to other limitations in Enarx, we had to use hardcoded public key values,

and to get simple TCP networking to work between a client and server, we first had to do

additional open-source development to the Enarx project.

44

6. CONCLUSIONS

After providing the necessary background information, we designed and built an embed-

ded computer cluster and used it to simulate EaaS. The purpose of the simulation was to

address the existing issues with IoT RNG. In addition, we utilised TEEs in our simulation

to assess the viability of using TEEs in a distributed manner in the EaaS simulation and

to improve the service’s integrity and confidentiality.

In this chapter, we provide detailed responses to the research questions posed in Sec-

tion 1.3, followed by a discussion of potential future research in the form of open questions

based on the limitations of our EaaS simulation.

6.1 Answers to research questions

We presented the following research questions in Section 1.3:

RQ1. How did we implement a computer cluster to meet the needs of our re-

search group?

RQ2. How does IoT RNG fail in practice?

RQ3. Is it feasible to create an EaaS system using an embedded computer clus-

ter?

RQ4. How can TEEs be used to harden the security of an EaaS system?

RQ5. Is it feasible to develop TAs that utilise TEEs for the EaaS system?

RQ6. Is EaaS capable of resolving existing IoT RNG issues?

Chapter 3 provided a comprehensive response to RQ1, while Section 2.1 explained the

theoretical context of the implementation. The key points were that the design must be

based on the use cases of the specific cluster and the stakeholders’ available resources.

Consequently, each computer cluster is unique. When discussing computer clusters de-

signed for specific research groups, the HPC use cases are typically not nearly as im-

portant as the research-specific use cases. In university research groups, learning about

distributed computing principles and HPC practice are typically important motives for con-

structing and employing computer clusters [22, 23, 26]. In the case of NISEC, the require-

ments were primarily associated with embedded or distributed system research. Conse-

45

quently, the Magi cluster was implemented as an embedded computer cluster comprised

of 640 RPi 3s, and the EaaS simulation was performed to test the cluster with a practical

use case in order to conduct research on both embedded and distributed systems.

RQ2 was answered in detail in Subsection 2.5.6, while Section 2.2, Section 2.4 and Sec-

tion 2.5 provided the needed background information to understand Subsection 2.5.6.

The main findings were that IoT devices typically lack access to CSPRNG subsystems

due to their lack of a modern OS, that developers frequently make incorrect calls to the

HWRNG components, that handling HWRNG errors correctly is difficult, if not impossible,

at times, that documentation for bare-metal function calls is frequently inadequate, which

makes their proper use challenging, and that numerous IoT devices generate HWRNG of

subpar quality. In addition, IoT devices are susceptible to weak entropy generation during

boot process, even if they employ an OS that supports a proper CSPRNG subsystem.

RQ3, RQ4, and RQ5 were answered in Chapter 4 where we presented the design for our

EaaS simulation and in Chapter 5 where we presented the results from the simulation.

The results from the EaaS implementation presented in Section 5.1 gave a definite answer

to RQ3. Implementing a working EaaS system is feasible on an embedded cluster, as was

demonstrated by our EaaS implementation running on the Magi cluster. Furthermore,

we published the code repository [1] under open-source (MIT) license, allowing other

developers and researchers to freely use it for future EaaS implementations.

RQ4 was answered in Section 4.4 where we explained the threat model for the EaaS

simulation and how TEEs can be used to enhance the system’s integrity and confidential-

ity against adversaries with root access to the Trusted Execution Server and the entropy

sources, thus hardening the EaaS system.

In Section 5.2 we determined that the development of TAs for our EaaS system with

Enarx is possible, but not straightforward. RQ5 cannot therefore be answered with a

simple yes/no response. In theory, there are tools for developing TAs for various TEE

architectures; however, in practise, these tools may not be suitable for developing TAs that

run on actual TEE hardware, and software developers with no prior experience working

with TEEs may find them extremely difficult to use due to frequently outdated or lacking

documentation. As was the case with Enarx, the available tools may also be immature

in the sense that they cannot be used for things such as networking or file reading and

writing.

For RQ6, Section 2.6 provided a theoretical foundation for solving the problem with IoT

RNGs using either randomness beacons or EaaS, and in Chapter 4, we presented our

own EaaS design aimed at resolving these issues. The simulation results presented in

Chapter 5 seem to indicate that EaaS is indeed capable of resolving IoT RNG issues in

a practical manner. However, our implementation of the EaaS is not secure for real-world

46

implementations due to the limitations highlighted in Section 4.5. Therefore, additional

research must be conducted on our EaaS system. The real-world industry EaaS imple-

mentations by various companies [111–115] seem to also suggest that EaaS is a good

solution for providing IoT devices with strong entropy.

6.2 Future work and open questions

Our EaaS implementation is not secure in the real world, as described in Section 4.5. To

make our EaaS system truly secure, we would need to implement the following:

• Utilise additional hardware entropy sources, such as QRNG devices [56–58] or

TRNGs based on ring oscillator PUFs [61–66]. Currently, our simulation is com-

prised solely of entropy sources with identical hardware and software architectures,

as well as identical entropy generation. In a truly secure implementation, multiple

entropy sources should be combined to ensure that a bias in one source does not

affect the generated entropy.

• Utilise decentralisation rather than a centralised TES/TTP server, to get rid of the

single-point-of-trust problem.

• Implement proper remote attestation to harden the system integrity in a decen-

tralised design.

• Evaluate the generated entropy statistically, so that we can be certain that the sys-

tem is not absolutely insecure.

• Secure the EaaS system against SCAs. CPU manufacturers often exclude SCAs

from their TEE threat model [52], and there are many examples of real-world TEE

vulnerabilities [147, 148]. Since we employ no additional SCA defences, we must

assume that our system is susceptible to SCA attacks.

Nevertheless, our EaaS implementation demonstrates that a secure distributed EaaS

system can be created using TEEs by adhering to all the aforementioned steps.

The major unanswered question is whether utilising DRBs would be preferable to

EaaS. With DRBs, we could collaborate with other open-source parties conducting re-

search on the subject, such as the league of entropy [109]. Based on our findings of

related projects in Section 2.6 and Section 4.1, DRBs and randomness beacons are be-

ing studied significantly more than EaaS; therefore, this may be a better direction overall.

Finally, we must study how to more effectively utilise TEEs within an EaaS or DRB

system. Utilising a proper TEE backend is the first and most essential step. Based on

our SoK paper [2], it appears that the TrustZone TEE included in the RPi3’s ARM SoC

does not permit easy open-source development, so we used Enarx’s nil backend in our

simulation. In the absence of open-source development tools for TrustZone, a truly secure

47

implementation would require a switch to a different hardware architecture. Similarly, our

EaaS design lacks a remote attestation mechanism. However, if we were to generalise

our design into a decentralised version that could be utilised by multiple parties, it would

be necessary to implement remote attestation to strengthen the system’s integrity.

48

REFERENCES

[1] Network and Information Security Group (NISEC) at Tampere University. EaaS-

TEE: Entropy as a Service Within Trusted Execution Environment. 2022. URL:

https://gitlab.com/nisec/eaastee (visited on 11/03/2022).

[2] Paju, A., Javed, M. O., Savimäki, J., Nurmi, J., and Brumley, B. B. SoK: A System-

atic Review of TEE Usage for Developing Trusted Applications. Preprint. (can be

found from: https://trepo.tuni.fi/). Nov. 2022.

[3] Gómez López, J., Villar, E., Molero, G., and Cama-Pinto, A. Evaluation of High

Performance Clusters in Private Cloud Computing Environments. Distributed Com-

puting and Artificial Intelligence - 9th International Conference, DCAI 2012, Sala-

manca, Spain, 28-30th March, 2012. Ed. by S. Omatu, J. F. De Paz Santana,

S. Rodríguez-González, J. M. Molina, A. M. Bernardos, and J. M. Corchado Ro-

dríguez. Vol. 151. Advances in Intelligent and Soft Computing. Springer, 2012,

pp. 305–312. DOI: 10.1007/978-3-642-28765-7_36. URL: https://doi.org
/10.1007/978-3-642-28765-7_36.

[4] Cheung, A. L. and Reeves, A. P. High Performance Computing on a Cluster of

Workstations. Proceedings of the First International Symposium on High Perfor-

mance Distributed Computing, HPDC ’92, Syracuse, NY, USA, September 9-11,

1992. IEEE, 1992, pp. 152–160. DOI: 10.1109/HPDC.1992.246477. URL: https
://doi.org/10.1109/HPDC.1992.246477.

[5] TOP500. List Statistics. URL: https://www.top500.org/statistics/list/
(visited on 06/14/2022).

[6] Yeo, C. S., Buyya, R., Pourreza, H., Eskicioglu, M. R., Graham, P., and Sommers,

F. Cluster Computing: High-Performance, High-Availability, and High-Throughput

Processing on a Network of Computers. Handbook of Nature-Inspired and Innova-

tive Computing - Integrating Classical Models with Emerging Technologies. Ed. by

A. Y. Zomaya. Springer, 2006, pp. 521–551. DOI: 10.1007/0-387-27705-6_16.

URL: https://doi.org/10.1007/0-387-27705-6_16.

[7] IBM. IBM® Power® AIX® Operating System. URL: https://www.ibm.com/it-
infrastructure/power/os/aix (visited on 11/01/2022).

[8] Khalidi, Y. Y. A., Bernabéu-Aubán, J. M., Matena, V., Shirriff, K., and Thadani, M.

Solaris MC: A Multi Computer OS. Proceedings of the USENIX Annual Technical

Conference, San Diego, California, USA, January 22-26, 1996. USENIX Associa-

tion, 1996, pp. 191–204.

https://gitlab.com/nisec/eaastee
https://doi.org/10.1007/978-3-642-28765-7_36
https://doi.org/10.1007/978-3-642-28765-7_36
https://doi.org/10.1007/978-3-642-28765-7_36
https://doi.org/10.1109/HPDC.1992.246477
https://doi.org/10.1109/HPDC.1992.246477
https://doi.org/10.1109/HPDC.1992.246477
https://www.top500.org/statistics/list/
https://doi.org/10.1007/0-387-27705-6_16
https://doi.org/10.1007/0-387-27705-6_16
https://www.ibm.com/it-infrastructure/power/os/aix
https://www.ibm.com/it-infrastructure/power/os/aix

49

[9] Hoffmann, G.-R. High-Performance Computing and Networking for Numerical Weather

Prediction. High-Performance Computing and Networking, International Confer-

ence and Exhibition, HPCN Europe 1994, Munich, Germany, April 18-20, 1994,

Proceedings, Volume II: Networking and Tools. Ed. by W. Gentzsch and U. Harms.

Vol. 797. Lecture Notes in Computer Science. Springer, 1994, pp. 1–4. DOI: 10.1
007/3-540-57981-8_86. URL: https://doi.org/10.1007/3-540-57981-8
_86.

[10] Faeldon, J., Espana, K., and Sabido, D. J. Data-Centric HPC for Numerical Weather

Forecasting. 43rd International Conference on Parallel Processing Workshops,

ICPPW 2014, Minneapolis, MN, USA, September 9-12, 2014. IEEE Computer

Society, 2014, pp. 79–84. DOI: 10.1109/ICPPW.2014.23. URL: https://doi.o
rg/10.1109/ICPPW.2014.23.

[11] Monteiro, A., Teixeira, C., and Pinto, J. S. HPC in Weather Forecast: Moving to the

Cloud. Int. J. Cloud Appl. Comput. 5.1 (2015), pp. 14–31. DOI: 10.4018/ijcac
.2015010102. URL: https://doi.org/10.4018/ijcac.2015010102.

[12] Hoyle, D. C., Delderfield, M., Kitching, L., Smith, G., and Buchan, I. E. Shared Ge-

nomics: High Performance Computing for Distributed Insights in Genomic Medical

Research. Healthgrid Research, Innovation and Business Case - Proceedings of

HealthGrid 2009, Berlin, Germany, 29 June - 1 July 2009. Ed. by T. Solomonides,

M. Hofmann-Apitius, M. Freudigmann, S. C. Semler, Y. Legré, and M. Kratz. Vol. 147.

Studies in Health Technology and Informatics. IOS Press, 2009, pp. 232–241. DOI:

10.3233/978-1-60750-027-8-232. URL: https://doi.org/10.3233/978-
1-60750-027-8-232.

[13] Zhou, L., Rekik, I., Yan, C., and Wu, G. Special Issue on High Performance Com-

puting in Bio-Medical Informatics. Neuroinformatics 16.3-4 (2018), p. 283. DOI:

10.1007/s12021-018-9393-x. URL: https://doi.org/10.1007/s12021-0
18-9393-x.

[14] Filatova, V. and Pestov, L. Medical Ultrasound Tomography Problem: Experimental

Data Processing with High-Performance Computing. Proceedings of the Work-

shop on Mathematical Modeling and Scientific Computing: Focus on Complex

Processes and Systems - dedicated to the memory of Nikolai Botkin, Munich,

Germany, November 19-20, 2020. Ed. by V. L. Turova, A. E. Kovtanyuk, H. G.

Bock, F. Holzapfel, and E. A. Kostina. Vol. 2783. CEUR Workshop Proceedings.

CEUR-WS.org, 2020, pp. 57–67. URL: http://ceur-ws.org/Vol-2783/paper
05.pdf.

[15] Davé, R. Monstrous Galaxies Unmasked. Nature 525.7570 (Sept. 2015), pp. 465–

466. ISSN: 1476-4687. DOI: 10.1038/525465a. URL: https://doi.org/10.10
38/525465a.

[16] Almeida, F., Mediavilla, E., Oscoz, A., and De Sande, F. Applying High Perfor-

mance Computing Techniques in Astrophysics. Applied Parallel Computing, State

https://doi.org/10.1007/3-540-57981-8_86
https://doi.org/10.1007/3-540-57981-8_86
https://doi.org/10.1007/3-540-57981-8_86
https://doi.org/10.1007/3-540-57981-8_86
https://doi.org/10.1109/ICPPW.2014.23
https://doi.org/10.1109/ICPPW.2014.23
https://doi.org/10.1109/ICPPW.2014.23
https://doi.org/10.4018/ijcac.2015010102
https://doi.org/10.4018/ijcac.2015010102
https://doi.org/10.4018/ijcac.2015010102
https://doi.org/10.3233/978-1-60750-027-8-232
https://doi.org/10.3233/978-1-60750-027-8-232
https://doi.org/10.3233/978-1-60750-027-8-232
https://doi.org/10.1007/s12021-018-9393-x
https://doi.org/10.1007/s12021-018-9393-x
https://doi.org/10.1007/s12021-018-9393-x
http://ceur-ws.org/Vol-2783/paper05.pdf
http://ceur-ws.org/Vol-2783/paper05.pdf
https://doi.org/10.1038/525465a
https://doi.org/10.1038/525465a
https://doi.org/10.1038/525465a

50

of the Art in Scientific Computing, 7th International Workshop, PARA 2004, Lyn-

gby, Denmark, June 20-23, 2004, Revised Selected Papers. Ed. by J. J. Dongarra,

K. Madsen, and J. Wasniewski. Vol. 3732. Lecture Notes in Computer Science.

Springer, 2004, pp. 530–537. DOI: 10.1007/11558958_63. URL: https://doi
.org/10.1007/11558958_63.

[17] Stoilov, T., Stoilova, K., and Vladimirov, M. Modeling and Assessment of Finan-

cial Investments by Portfolio Optimization on Stock Exchange. Advances in High

Performance Computing - Results of the International Conference on "High Perfor-

mance Computing", HPC 2019, Borovets, Bulgaria, September 2-6, 2019. Ed. by I.

Dimov and S. Fidanova. Vol. 902. Studies in Computational Intelligence. Springer,

2019, pp. 340–356. DOI: 10.1007/978-3-030-55347-0_29. URL: https://do
i.org/10.1007/978-3-030-55347-0_29.

[18] Somasekaram, P., Calinescu, R., and Buyya, R. High-Availability Clusters: A Tax-

onomy, Survey, and Future Directions. J. Syst. Softw. 187 (2022), p. 111208. DOI:

10.1016/j.jss.2021.111208. URL: https://doi.org/10.1016/j.jss.202
1.111208.

[19] Furuya, S. and Ueda, K. Load Balancing Method for Data Management Using

High Availability Distributed Clusters. 23rd Asia-Pacific Conference on Communi-

cations, APCC 2017, Perth, Australia, December 11-13, 2017. IEEE, 2017, pp. 1–

6. DOI: 10.23919/APCC.2017.8303970. URL: https://doi.org/10.23919
/APCC.2017.8303970.

[20] Yang, P., Gao, H., Xu, H., Bian, M., and Chu, D. A Load Balancing Method Based

on Node Features in a Heterogeneous Hadoop Cluster. Collaborative Computing:

Networking, Applications and Worksharing - 13th International Conference, Col-

laborateCom 2017, Edinburgh, UK, December 11-13, 2017, Proceedings. Ed. by

I. Romdhani, L. Shu, T. Hara, Z. Zhou, T. J. Gordon, and D. Zeng. Vol. 252. Lecture

Notes of the Institute for Computer Sciences, Social Informatics and Telecommu-

nications Engineering. Springer, 2017, pp. 344–354. DOI: 10.1007/978-3-030-
00916-8_32. URL: https://doi.org/10.1007/978-3-030-00916-8_32.

[21] Ding, L., Zheng, W., Liu, S., and Han, Z. Research and Optimization of the Cluster

Server Load Balancing Technology Based on Centos 7. Human Centered Com-

puting - Third International Conference, HCC 2017, Kazan, Russia, August 7-9,

2017, Revised Selected Papers. Ed. by Q. Zu and B. Hu. Vol. 10745. Lecture

Notes in Computer Science. Springer, 2017, pp. 201–207. DOI: 10.1007/978-3
-319-74521-3_23. URL: https://doi.org/10.1007/978-3-319-74521-3
_23.

[22] Ludin, M., Weeden, A., Houchins, J., Thompson, S., Peck, C., Babic, I., Muterspaw,

K., and Sergienko, E. LittleFe: The High Performance Computing Education Ap-

pliance. 2013 IEEE International Conference on Cluster Computing, CLUSTER

2013, Indianapolis, IN, USA, September 23-27, 2013. IEEE Computer Society,

https://doi.org/10.1007/11558958_63
https://doi.org/10.1007/11558958_63
https://doi.org/10.1007/11558958_63
https://doi.org/10.1007/978-3-030-55347-0_29
https://doi.org/10.1007/978-3-030-55347-0_29
https://doi.org/10.1007/978-3-030-55347-0_29
https://doi.org/10.1016/j.jss.2021.111208
https://doi.org/10.1016/j.jss.2021.111208
https://doi.org/10.1016/j.jss.2021.111208
https://doi.org/10.23919/APCC.2017.8303970
https://doi.org/10.23919/APCC.2017.8303970
https://doi.org/10.23919/APCC.2017.8303970
https://doi.org/10.1007/978-3-030-00916-8_32
https://doi.org/10.1007/978-3-030-00916-8_32
https://doi.org/10.1007/978-3-030-00916-8_32
https://doi.org/10.1007/978-3-319-74521-3_23
https://doi.org/10.1007/978-3-319-74521-3_23
https://doi.org/10.1007/978-3-319-74521-3_23
https://doi.org/10.1007/978-3-319-74521-3_23

51

2013, p. 1. DOI: 10.1109/CLUSTER.2013.6702649. URL: https://doi.org/1
0.1109/CLUSTER.2013.6702649.

[23] López, P. and Baydal, E. Teaching High-Performance Service in a Cluster Com-

puting Course. J. Parallel Distributed Comput. 117 (2018), pp. 138–147. DOI: 10
.1016/j.jpdc.2018.02.027. URL: https://doi.org/10.1016/j.jpdc.201
8.02.027.

[24] Doucet, K. and Zhang, J. The Creation of a Low-Cost Raspberry Pi Cluster for

Teaching. Proceedings of the 24th Western Canadian Conference on Computing

Education, WCCCE ’19, Calgary, AB, Canada, May 3-4, 2019. Ed. by B. Stephen-

son. ACM, 2019, 7:1–7:5. DOI: 10.1145/3314994.3325088. URL: https://doi
.org/10.1145/3314994.3325088.

[25] Penyala, H., Ibrahim, S., and El Mesalami, A. M. The Raspberry Pi Education

Mine: For Teaching Engineering and Computer Science Students Concepts Like,

Computer Clusters, Parallel Computing, and Distributed Computing. 2020 IEEE

International Conference on Electro Information Technology, EIT 2020, Chicago,

IL, USA, July 31 - August 1, 2020. IEEE, 2020, pp. 624–628. DOI: 10.1109/EIT4
8999.2020.9208242. URL: https://doi.org/10.1109/EIT48999.2020.920
8242.

[26] Shoop, E., Brown, R. A., Adams, J. C., and Matthews, S. J. Teaching Distributed

Computing Fundamentals using Raspberry Pi Clusters. SIGCSE 2022: The 53rd

ACM Technical Symposium on Computer Science Education, Providence, RI,

USA, March 3-5, 2022, Volume 2. Ed. by L. Merkle, M. Doyle, J. Sheard, L.-K.

Soh, and B. Dorn. ACM, 2022, p. 1201. DOI: 10.1145/3478432.3499161. URL:

https://doi.org/10.1145/3478432.3499161.

[27] Noergaard, T. Embedded Systems Architecture - A Comprehensive Guide for En-

gineers and Programmers. Elsevier, 2005. ISBN: 978-0-7506-7792-9.

[28] Gupta, B. B. and Quamara, M. Internet of Things Security: Principles, Applica-

tions, Attacks, and Countermeasures. Feb. 2020. ISBN: 9780429353529. DOI: 10
.1201/9780429353529.

[29] National Institute of Standards and Technology. Networks of ‘Things’. Tech. rep.

Special Publication 800-183, July 28, 2016. Washington, D.C.: U.S. Department

of Commerce, 2016. DOI: 10.6028/NIST.SP.800-183.

[30] Shaukat, K., Alam, T. M., Hameed, I. A., Khan, W. A., Abbas, N., and Luo, S. A

Review on Security Challenges in Internet of Things (IoT). 26th International Con-

ference on Automation and Computing, ICAC 2021, Portsmouth, United Kingdom,

September 2-4, 2021. IEEE, 2021, pp. 1–6. DOI: 10.23919/ICAC50006.2021.9
594183. URL: https://doi.org/10.23919/ICAC50006.2021.9594183.

[31] Zahra, A. and Shah, M. A. IoT Based Ransomware Growth Rate Evaluation and

Detection Using Command and Control Blacklisting. 23rd International Confer-

ence on Automation and Computing, ICAC 2017, Huddersfield, United Kingdom,

https://doi.org/10.1109/CLUSTER.2013.6702649
https://doi.org/10.1109/CLUSTER.2013.6702649
https://doi.org/10.1109/CLUSTER.2013.6702649
https://doi.org/10.1016/j.jpdc.2018.02.027
https://doi.org/10.1016/j.jpdc.2018.02.027
https://doi.org/10.1016/j.jpdc.2018.02.027
https://doi.org/10.1016/j.jpdc.2018.02.027
https://doi.org/10.1145/3314994.3325088
https://doi.org/10.1145/3314994.3325088
https://doi.org/10.1145/3314994.3325088
https://doi.org/10.1109/EIT48999.2020.9208242
https://doi.org/10.1109/EIT48999.2020.9208242
https://doi.org/10.1109/EIT48999.2020.9208242
https://doi.org/10.1109/EIT48999.2020.9208242
https://doi.org/10.1145/3478432.3499161
https://doi.org/10.1145/3478432.3499161
https://doi.org/10.1201/9780429353529
https://doi.org/10.1201/9780429353529
https://doi.org/10.6028/NIST.SP.800-183
https://doi.org/10.23919/ICAC50006.2021.9594183
https://doi.org/10.23919/ICAC50006.2021.9594183
https://doi.org/10.23919/ICAC50006.2021.9594183

52

September 7-8, 2017. IEEE, 2017, pp. 1–6. DOI: 10.23919/IConAC.2017.8082
013. URL: https://doi.org/10.23919/IConAC.2017.8082013.

[32] Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E., Cochran, J.,

Durumeric, Z., Halderman, J. A., Invernizzi, L., Kallitsis, M., Kumar, D., Lever, C.,

Ma, Z., Mason, J., Menscher, D., Seaman, C., Sullivan, N., Thomas, K., and Zhou,

Y. Understanding the Mirai Botnet. 26th USENIX Security Symposium, USENIX

Security 2017, Vancouver, BC, Canada, August 16-18, 2017. Ed. by E. Kirda and

T. Ristenpart. USENIX Association, 2017, pp. 1093–1110. URL: https://www.u
senix.org/conference/usenixsecurity17/technical-sessions/presen
tation/antonakakis.

[33] Butun, I., Österberg, P., and Song, H. Security of the Internet of Things: Vulnerabil-

ities, Attacks, and Countermeasures. IEEE Commun. Surv. Tutorials 22.1 (2020),

pp. 616–644. DOI: 10.1109/COMST.2019.2953364. URL: https://doi.org/1
0.1109/COMST.2019.2953364.

[34] Kietzmann, P., Schmidt, T. C., and Wählisch, M. A Guideline on Pseudorandom

Number Generation (PRNG) in the IoT. ACM Comput. Surv. 54.6 (2021), 112:1–

112:38. DOI: 10.1145/3453159. URL: https://doi.org/10.1145/3453159.

[35] The Confidential Computing Consortium. Confidential Computing: Hardware-Based

Trusted Execution for Applications and Data. White paper. Jan. 2021. URL: https
://confidentialcomputing.io/wp-content/uploads/sites/85/2021/0
3/confidentialcomputing_outreach_whitepaper-8-5x11-1.pdf (visited

on 02/09/2022).

[36] Sabt, M., Achemlal, M., and Bouabdallah, A. Trusted Execution Environment:

What It is, and What It is Not. 2015 IEEE TrustCom/BigDataSE/ISPA, Helsinki,

Finland, August 20-22, 2015, Volume 1. IEEE, 2015, pp. 57–64. DOI: 10.1109/Tr
ustcom.2015.357. URL: https://doi.org/10.1109/Trustcom.2015.357.

[37] ARM. ARM Security Technology — Building a Secure System using TrustZone®

Technology. Tech. rep. 2009. URL: https://documentation-service.arm.co
m/static/5f212796500e883ab8e74531?token= (visited on 05/04/2022).

[38] Enarx. Getting Started > Enarx. URL: https://enarx.dev/docs/Start/Enarx
(visited on 07/27/2022).

[39] Hoyer, H. From MacOS to Raspberry Pi — Extending the Enarx Development Plat-

forms. URL: https://blog.enarx.dev/backend-nil/ (visited on 07/27/2022).

[40] Paar, C. and Pelzl, J. Understanding Cryptography - A Textbook for Students and

Practitioners. Springer, 2010. ISBN: 978-3-642-04100-6. DOI: 10.1007/978-3-6
42-04101-3. URL: https://doi.org/10.1007/978-3-642-04101-3.

[41] Smart, N. P. Physical Side-Channel Attacks on Cryptographic Systems. Softw.

Focus 1.2 (2000), pp. 6–13. DOI: 10.1002/1529-7950(200012)1:2<6::AID-
SWF10>3.0.CO;2-W. URL: https://doi.org/10.1002/1529-7950(200012)1
:2%3C6::AID-SWF10%3E3.0.CO;2-W.

https://doi.org/10.23919/IConAC.2017.8082013
https://doi.org/10.23919/IConAC.2017.8082013
https://doi.org/10.23919/IConAC.2017.8082013
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://doi.org/10.1109/COMST.2019.2953364
https://doi.org/10.1109/COMST.2019.2953364
https://doi.org/10.1109/COMST.2019.2953364
https://doi.org/10.1145/3453159
https://doi.org/10.1145/3453159
https://confidentialcomputing.io/wp-content/uploads/sites/85/2021/03/confidentialcomputing_outreach_whitepaper-8-5x11-1.pdf
https://confidentialcomputing.io/wp-content/uploads/sites/85/2021/03/confidentialcomputing_outreach_whitepaper-8-5x11-1.pdf
https://confidentialcomputing.io/wp-content/uploads/sites/85/2021/03/confidentialcomputing_outreach_whitepaper-8-5x11-1.pdf
https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1109/Trustcom.2015.357
https://documentation-service.arm.com/static/5f212796500e883ab8e74531?token=
https://documentation-service.arm.com/static/5f212796500e883ab8e74531?token=
https://enarx.dev/docs/Start/Enarx
https://blog.enarx.dev/backend-nil/
https://doi.org/10.1007/978-3-642-04101-3
https://doi.org/10.1007/978-3-642-04101-3
https://doi.org/10.1007/978-3-642-04101-3
https://doi.org/10.1002/1529-7950(200012)1:2<6::AID-SWF10>3.0.CO;2-W
https://doi.org/10.1002/1529-7950(200012)1:2<6::AID-SWF10>3.0.CO;2-W
https://doi.org/10.1002/1529-7950(200012)1:2%3C6::AID-SWF10%3E3.0.CO;2-W
https://doi.org/10.1002/1529-7950(200012)1:2%3C6::AID-SWF10%3E3.0.CO;2-W

53

[42] Bhasin, S. and Mukhopadhyay, D. Fault Injection Attacks: Attack Methodologies,

Injection Techniques and Protection Mechanisms - A Tutorial. Security, Privacy,

and Applied Cryptography Engineering - 6th International Conference, SPACE

2016, Hyderabad, India, December 14-18, 2016, Proceedings. Ed. by C. Carlet,

M. A. Hasan, and V. Saraswat. Vol. 10076. Lecture Notes in Computer Science.

Springer, 2016, pp. 415–418. DOI: 10.1007/978-3-319-49445-6_24. URL:

https://doi.org/10.1007/978-3-319-49445-6_24.

[43] Boneh, D., DeMillo, R. A., and Lipton, R. J. On the Importance of Checking Cryp-

tographic Protocols for Faults. Advances in Cryptology - EUROCRYPT ’97, Inter-

national Conference on the Theory and Application of Cryptographic Techniques,

Konstanz, Germany, May 11-15, 1997, Proceeding. Ed. by W. Fumy. Vol. 1233.

Lecture Notes in Computer Science. Springer, 1997, pp. 37–51. DOI: 10.1007/3
-540-69053-0_4. URL: https://doi.org/10.1007/3-540-69053-0_4.

[44] Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., and Seifert, J.-P. Fault Attacks on

RSA with CRT: Concrete Results and Practical Countermeasures. Cryptographic

Hardware and Embedded Systems - CHES 2002, 4th International Workshop,

Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers. Ed. by B. S.

Kaliski Jr., Ç. K. Koç, and C. Paar. Vol. 2523. Lecture Notes in Computer Science.

Springer, 2002, pp. 260–275. DOI: 10.1007/3-540-36400-5_20. URL: https:
//doi.org/10.1007/3-540-36400-5_20.

[45] Durumeric, Z., Kasten, J., Adrian, D., Halderman, J. A., Bailey, M., Li, F., Weaver,

N., Amann, J., Beekman, J., Payer, M., and Paxson, V. The Matter of Heartbleed.

Proceedings of the 2014 Internet Measurement Conference, IMC 2014, Vancou-

ver, BC, Canada, November 5-7, 2014. Ed. by C. Williamson, A. Akella, and N.

Taft. ACM, 2014, pp. 475–488. DOI: 10.1145/2663716.2663755. URL: https:
//doi.org/10.1145/2663716.2663755.

[46] The OpenSSL Project Authors. OpenSSL Cryptography and SSL/TLS Toolkit.

URL: https://www.openssl.org/ (visited on 02/08/2022).

[47] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J., Man-

gard, S., Kocher, P., Genkin, D., Yarom, Y., and Hamburg, M. Meltdown: Reading

Kernel Memory from User Space. 27th USENIX Security Symposium, USENIX

Security 2018, Baltimore, MD, USA, August 15-17, 2018. Ed. by W. Enck and

A. P. Felt. USENIX Association, 2018, pp. 973–990. URL: https://www.usenix
.org/conference/usenixsecurity18/presentation/lipp.

[48] Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M.,

Lipp, M., Mangard, S., Prescher, T., Schwarz, M., and Yarom, Y. Spectre Attacks:

Exploiting Speculative Execution. 2019 IEEE Symposium on Security and Privacy,

SP 2019, San Francisco, CA, USA, May 19-23, 2019. IEEE, 2019, pp. 1–19. DOI:

10.1109/SP.2019.00002. URL: https://doi.org/10.1109/SP.2019.00002
.

https://doi.org/10.1007/978-3-319-49445-6_24
https://doi.org/10.1007/978-3-319-49445-6_24
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-36400-5_20
https://doi.org/10.1007/3-540-36400-5_20
https://doi.org/10.1007/3-540-36400-5_20
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://www.openssl.org/
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002

54

[49] Aldaya, A. C., Brumley, B. B., ul Hassan, S., Pereida García, C., and Tuveri, N. Port

Contention for Fun and Profit. 2019 IEEE Symposium on Security and Privacy, SP

2019, San Francisco, CA, USA, May 19-23, 2019. IEEE, 2019, pp. 870–887. DOI:

10.1109/SP.2019.00066. URL: https://doi.org/10.1109/SP.2019.00066
.

[50] Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F., Sil-

berstein, M., Wenisch, T. F., Yarom, Y., and Strackx, R. Foreshadow: Extracting

the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution. 27th

USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, Au-

gust 15-17, 2018. Ed. by W. Enck and A. P. Felt. USENIX Association, 2018,

pp. 991–1008. URL: https://www.usenix.org/conference/usenixsecurit
y18/presentation/bulck.

[51] Lou, X., Zhang, T., Jiang, J., and Zhang, Y. A Survey of Microarchitectural Side-

Channel Vulnerabilities, Attacks, and Defenses in Cryptography. ACM Comput.

Surv. 54.6 (2021), 122:1–122:37. DOI: 10.1145/3456629. URL: https://doi.o
rg/10.1145/3456629.

[52] Johnson, S. P. Intel® SGX and Side-Channels. URL: https://www.intel.com
/content/www/us/en/developer/articles/technical/intel-sgx-and-s
ide-channels.html (visited on 02/17/2022).

[53] Aumasson, J.-P. Serious Cryptography: A Practical Introduction to Modern En-

cryption. USA: No Starch Press, 2017. ISBN: 1593278268.

[54] National Institute of Standards and Technology. A Statistical Test Suite for Random

and Pseudorandom Number Generators for Cryptographic Applications. Tech.

rep. Special Publication 800-22, Revision 1a, April 30, 2010. Washington, D.C.:

U.S. Department of Commerce, 2010. DOI: 10.6028/NIST.SP.800-22r1a.

[55] Khrennikov, A. Y. and Svozil, K. Quantum Probability and Randomness. Entropy

21.1 (2019), p. 35. DOI: 10.3390/e21010035. URL: https://doi.org/10.339
0/e21010035.

[56] Shaw, G., Sivaram, S. R., and Prabhakar, A. Quantum Random Number Genera-

tor with One and Two Entropy Sources. National Conference on Communications,

NCC 2019, Bangalore, India, February 20-23, 2019. IEEE, 2019, pp. 1–4. DOI:

10.1109/NCC.2019.8732222. URL: https://doi.org/10.1109/NCC.2019.8
732222.

[57] Vokic, N., Milovancev, D., Pacher, C., Achleitner, M., Hübel, H., and Schrenk, B.

Quantum RNG Integration in an NG-PON2 Transceiver. Optical Fiber Communi-

cations Conference and Exhibition, OFC 2021, San Francisco, CA, USA, June

6-10, 2021. IEEE, 2021, pp. 1–3. URL: https://ieeexplore.ieee.org/docum
ent/9489917.

[58] Kim, H.-I. and Jeon, J.-C. Quantum LFSR Structure for Random Number Genera-

tion Using QCA Multilayered Shift Register for Cryptographic Purposes. Sensors

https://doi.org/10.1109/SP.2019.00066
https://doi.org/10.1109/SP.2019.00066
https://doi.org/10.1109/SP.2019.00066
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://doi.org/10.1145/3456629
https://doi.org/10.1145/3456629
https://doi.org/10.1145/3456629
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sgx-and-side-channels.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sgx-and-side-channels.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sgx-and-side-channels.html
https://doi.org/10.6028/NIST.SP.800-22r1a
https://doi.org/10.3390/e21010035
https://doi.org/10.3390/e21010035
https://doi.org/10.3390/e21010035
https://doi.org/10.1109/NCC.2019.8732222
https://doi.org/10.1109/NCC.2019.8732222
https://doi.org/10.1109/NCC.2019.8732222
https://ieeexplore.ieee.org/document/9489917
https://ieeexplore.ieee.org/document/9489917

55

22.9 (2022), p. 3541. DOI: 10.3390/s22093541. URL: https://doi.org/10.3
390/s22093541.

[59] Abbott, A. A. and Calude, C. S. Von Neumann Normalisation of a Quantum Ran-

dom Number Generator. Comput. 1.1 (2012), pp. 59–83. DOI: 10.3233/COM-201
2-001. URL: https://doi.org/10.3233/COM-2012-001.

[60] Martínez, A. C., Solís, A., Díaz Hernández Rojas, R., U’Ren, A. B., Hirsch, J. G.,

and Pérez Castillo, I. Advanced Statistical Testing of Quantum Random Number

Generators. Entropy 20.11 (2018), p. 886. DOI: 10.3390/e20110886. URL: http
s://doi.org/10.3390/e20110886.

[61] Maiti, A., Nagesh, R., Reddy, A., and Schaumont, P. Physical Unclonable Function

and True Random Number Generator: A Compact and Scalable Implementation.

Proceedings of the 19th ACM Great Lakes Symposium on VLSI 2009, Boston

Area, MA, USA, May 10-12 2009. Ed. by F. Lombardi, S. Bhanja, Y. Massoud, and

R. I. Bahar. ACM, 2009, pp. 425–428. DOI: 10.1145/1531542.1531639. URL:

https://doi.org/10.1145/1531542.1531639.

[62] Amaki, T., Hashimoto, M., and Onoye, T. An Oscillator-Based True Random Num-

ber Generator with Jitter Amplifier. International Symposium on Circuits and Sys-

tems (ISCAS 2011), May 15-19 2011, Rio de Janeiro, Brazil. IEEE, 2011, pp. 725–

728. DOI: 10.1109/ISCAS.2011.5937668. URL: https://doi.org/10.1109
/ISCAS.2011.5937668.

[63] Ghandali, S., Holcomb, D. E., and Paar, C. Temperature-Based Hardware Trojan

For Ring-Oscillator-Based TRNGs. CoRR abs/1910.00735 (2019). arXiv: 1910.0
0735. URL: http://arxiv.org/abs/1910.00735.

[64] Derlecki, M., Siwiec, K., Narczyk, P., and Pleskacz, W. A. Design of a True Ran-

dom Number Generator Based on Low Power Oscillator with Increased Jitter.

22nd IEEE International Symposium on Design and Diagnostics of Electronic Cir-

cuits & Systems, DDECS 2019, Cluj-Napoca, Romania, April 24-26, 2019. IEEE,

2019, pp. 1–4. DOI: 10.1109/DDECS.2019.8724643. URL: https://doi.org
/10.1109/DDECS.2019.8724643.

[65] Kumar, D., Anand, R., Singh, S. V., Misra, P. K., Srivastava, A., and Goswami, M.

0.4 mW, 0.27 pJ/bit True Random Number Generator Using Jitter, Metastability

and Current Starved Topology. IET Circuits Devices Syst. 14.7 (2020), pp. 1001–

1011. DOI: 10.1049/iet-cds.2019.0318. URL: https://doi.org/10.1049
/iet-cds.2019.0318.

[66] Wang, X., Liang, H., Wang, Y., Yao, L., Guo, Y., Yi, M., Huang, Z., Qi, H., and Lu, Y.

High-Throughput Portable True Random Number Generator Based on Jitter-Latch

Structure. IEEE Trans. Circuits Syst. I Regul. Pap. 68.2 (2021), pp. 741–750. DOI:

10.1109/TCSI.2020.3037173. URL: https://doi.org/10.1109/TCSI.2020
.3037173.

https://doi.org/10.3390/s22093541
https://doi.org/10.3390/s22093541
https://doi.org/10.3390/s22093541
https://doi.org/10.3233/COM-2012-001
https://doi.org/10.3233/COM-2012-001
https://doi.org/10.3233/COM-2012-001
https://doi.org/10.3390/e20110886
https://doi.org/10.3390/e20110886
https://doi.org/10.3390/e20110886
https://doi.org/10.1145/1531542.1531639
https://doi.org/10.1145/1531542.1531639
https://doi.org/10.1109/ISCAS.2011.5937668
https://doi.org/10.1109/ISCAS.2011.5937668
https://doi.org/10.1109/ISCAS.2011.5937668
https://arxiv.org/abs/1910.00735
https://arxiv.org/abs/1910.00735
http://arxiv.org/abs/1910.00735
https://doi.org/10.1109/DDECS.2019.8724643
https://doi.org/10.1109/DDECS.2019.8724643
https://doi.org/10.1109/DDECS.2019.8724643
https://doi.org/10.1049/iet-cds.2019.0318
https://doi.org/10.1049/iet-cds.2019.0318
https://doi.org/10.1049/iet-cds.2019.0318
https://doi.org/10.1109/TCSI.2020.3037173
https://doi.org/10.1109/TCSI.2020.3037173
https://doi.org/10.1109/TCSI.2020.3037173

56

[67] National Institute of Standards and Technology. Recommendation for Random

Number Generation Using Deterministic Random Bit Generators. Tech. rep. Spe-

cial Publication 800-90A, Revision 1, June 24, 2015. Washington, D.C.: U.S. De-

partment of Commerce, 2015. DOI: 10.6028/NIST.SP.800-90Ar1.

[68] Matsumoto, M. and Nishimura, T. Mersenne Twister: A 623-Dimensionally Equidis-

tributed Uniform Pseudo-Random Number Generator. ACM Trans. Model. Com-

put. Simul. 8.1 (1998), pp. 3–30. DOI: 10.1145/272991.272995. URL: https:
//doi.org/10.1145/272991.272995.

[69] random(4) — Linux Manual Page. Mar. 2021. URL: https://man7.org/linux
/man-pages/man4/random.4.html (visited on 04/19/2022).

[70] Fischer, V., Bernard, F., Bochard, N., and Varchola, M. Enhancing Security of Ring

Oscillator-Based TRNG Implemented in FPGA. FPL 2008, International Confer-

ence on Field Programmable Logic and Applications, Heidelberg, Germany, 8-10

September 2008. IEEE, 2008, pp. 245–250. DOI: 10.1109/FPL.2008.4629939.

URL: https://doi.org/10.1109/FPL.2008.4629939.

[71] Yoo, S.-K., Karakoyunlu, D., Birand, B., and Sunar, B. Improving the Robustness

of Ring Oscillator TRNGs. ACM Trans. Reconfigurable Technol. Syst. 3.2 (2010),

9:1–9:30. DOI: 10.1145/1754386.1754390. URL: https://doi.org/10.1145
/1754386.1754390.

[72] Markettos, A. T. and Moore, S. W. The Frequency Injection Attack on Ring-Oscillator-

Based True Random Number Generators. Cryptographic Hardware and Embed-

ded Systems - CHES 2009, 11th International Workshop, Lausanne, Switzerland,

September 6-9, 2009, Proceedings. Ed. by C. Clavier and K. Gaj. Vol. 5747. Lec-

ture Notes in Computer Science. Springer, 2009, pp. 317–331. DOI: 10.1007/97
8-3-642-04138-9_23. URL: https://doi.org/10.1007/978-3-642-04138
-9_23.

[73] Bayon, P., Bossuet, L., Aubert, A., and Fischer, V. Fault Model of Electromag-

netic Attacks Targeting Ring Oscillator-Based True Random Number Generators.

J. Cryptogr. Eng. 6.1 (2016), pp. 61–74. DOI: 10.1007/s13389-015-0113-2.

URL: https://doi.org/10.1007/s13389-015-0113-2.

[74] urandom(4) — Linux Manual Page. URL: https://linux.die.net/man/4/ura
ndom (visited on 05/01/2022).

[75] Kelsey, J., Schneier, B., Wagner, D. A., and Hall, C. Cryptanalytic Attacks on Pseu-

dorandom Number Generators. Fast Software Encryption, 5th International Work-

shop, FSE ’98, Paris, France, March 23-25, 1998, Proceedings. Ed. by S. Vaude-

nay. Vol. 1372. Lecture Notes in Computer Science. Springer, 1998, pp. 168–188.

DOI: 10.1007/3-540-69710-1_12. URL: https://doi.org/10.1007/3-540-
69710-1_12.

[76] Nitaj, A. and Rachidi, T. Factoring RSA Moduli with Weak Prime Factors. Codes,

Cryptology, and Information Security - First International Conference, C2SI 2015,

https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.1145/272991.272995
https://doi.org/10.1145/272991.272995
https://doi.org/10.1145/272991.272995
https://man7.org/linux/man-pages/man4/random.4.html
https://man7.org/linux/man-pages/man4/random.4.html
https://doi.org/10.1109/FPL.2008.4629939
https://doi.org/10.1109/FPL.2008.4629939
https://doi.org/10.1145/1754386.1754390
https://doi.org/10.1145/1754386.1754390
https://doi.org/10.1145/1754386.1754390
https://doi.org/10.1007/978-3-642-04138-9_23
https://doi.org/10.1007/978-3-642-04138-9_23
https://doi.org/10.1007/978-3-642-04138-9_23
https://doi.org/10.1007/978-3-642-04138-9_23
https://doi.org/10.1007/s13389-015-0113-2
https://doi.org/10.1007/s13389-015-0113-2
https://linux.die.net/man/4/urandom
https://linux.die.net/man/4/urandom
https://doi.org/10.1007/3-540-69710-1_12
https://doi.org/10.1007/3-540-69710-1_12
https://doi.org/10.1007/3-540-69710-1_12

57

Rabat, Morocco, May 26-28, 2015, Proceedings - In Honor of Thierry Berger. Ed.

by S. El Hajji, A. Nitaj, C. Carlet, and E. M. Souidi. Vol. 9084. Lecture Notes in

Computer Science. Springer, 2015, pp. 361–374. DOI: 10.1007/978-3-319-18
681-8_29. URL: https://doi.org/10.1007/978-3-319-18681-8_29.

[77] Nemec, M., Sýs, M., Svenda, P., Klinec, D., and Matyas, V. The Return of Copper-

smith’s Attack: Practical Factorization of Widely Used RSA Moduli. Proceedings of

the 2017 ACM SIGSAC Conference on Computer and Communications Security,

CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. Ed. by B. Thurais-

ingham, D. Evans, T. Malkin, and D. Xu. ACM, 2017, pp. 1631–1648. DOI: 10.11
45/3133956.3133969. URL: https://doi.org/10.1145/3133956.3133969.

[78] Hegadi, R. S. and Patil, A. P. A Statistical Analysis on In-Built Pseudo Random

Number Generators Using NIST Test Suite. 5th International Conference on Com-

puting, Communication and Security, ICCCS 2020, Patna, India, October 14-16,

2020. IEEE, 2020, pp. 1–6. DOI: 10.1109/ICCCS49678.2020.9276849. URL:

https://doi.org/10.1109/ICCCS49678.2020.9276849.

[79] Jenkins, B. ISAAC: A Fast Cryptographic Random Number Generator. URL: h
ttp : / / www . burtleburtle . net / bob / rand / isaacafa . html (visited on

06/21/2022).

[80] Kelsey, J., Schneier, B., and Ferguson, N. Yarrow-160: Notes on the Design and

Analysis of the Yarrow Cryptographic Pseudorandom Number Generator. Selected

Areas in Cryptography, 6th Annual International Workshop, SAC’99, Kingston, On-

tario, Canada, August 9-10, 1999, Proceedings. Ed. by H. M. Heys and C. M.

Adams. Vol. 1758. Lecture Notes in Computer Science. Springer, 1999, pp. 13–

33. DOI: 10.1007/3-540-46513-8_2. URL: https://doi.org/10.1007/3-54
0-46513-8_2.

[81] Ferguson, N., Schneier, B., and Kohno, T. Cryptography Engineering - Design

Principles and Practical Applications. Wiley, 2010. ISBN: 978-0-470-47424-2. URL:

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470474246.ht
ml.

[82] IANIX. ChaCha Usage & Deployment. URL: https://ianix.com/pub/chacha-
deployment.html (visited on 06/21/2022).

[83] Brown, R. G. Dieharder: A Random Number Test Suite. URL: https://webhome
.phy.duke.edu/~rgb/General/dieharder.php (visited on 06/21/2022).

[84] L’Ecuyer, P. and Simard, R. J. TestU01: A C Library for Empirical Testing of Ran-

dom Number Generators. ACM Trans. Math. Softw. 33.4 (2007), 22:1–22:40. DOI:

10.1145/1268776.1268777. URL: https://doi.org/10.1145/1268776.126
8777.

[85] Hurley-Smith, D. and Hernandez-Castro, J. Great Expectations: A Critique of Cur-

rent Approaches to Random Number Generation Testing & Certification. Secu-

rity Standardisation Research - 4th International Conference, SSR 2018, Darm-

https://doi.org/10.1007/978-3-319-18681-8_29
https://doi.org/10.1007/978-3-319-18681-8_29
https://doi.org/10.1007/978-3-319-18681-8_29
https://doi.org/10.1145/3133956.3133969
https://doi.org/10.1145/3133956.3133969
https://doi.org/10.1145/3133956.3133969
https://doi.org/10.1109/ICCCS49678.2020.9276849
https://doi.org/10.1109/ICCCS49678.2020.9276849
http://www.burtleburtle.net/bob/rand/isaacafa.html
http://www.burtleburtle.net/bob/rand/isaacafa.html
https://doi.org/10.1007/3-540-46513-8_2
https://doi.org/10.1007/3-540-46513-8_2
https://doi.org/10.1007/3-540-46513-8_2
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470474246.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470474246.html
https://ianix.com/pub/chacha-deployment.html
https://ianix.com/pub/chacha-deployment.html
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://doi.org/10.1145/1268776.1268777
https://doi.org/10.1145/1268776.1268777
https://doi.org/10.1145/1268776.1268777

58

stadt, Germany, November 26-27, 2018, Proceedings. Ed. by C. Cremers and

A. Lehmann. Vol. 11322. Lecture Notes in Computer Science. Springer, 2018,

pp. 143–163. DOI: 10.1007/978-3-030-04762-7_8. URL: https://doi.org
/10.1007/978-3-030-04762-7_8.

[86] Soto, J. Statistical Testing of Random Number Generators. In: Proceedings of the

22nd National Information Systems Security Conference. 1999.

[87] Lee, C.-Y., Bharathi, K., Lansford, J., and Khatri, S. P. NIST-Lite: Randomness

Testing of RNGs on an Energy-Constrained Platform. 39th IEEE International

Conference on Computer Design, ICCD 2021, Storrs, CT, USA, October 24-27,

2021. IEEE, 2021, pp. 41–48. DOI: 10.1109/ICCD53106.2021.00019. URL:

https://doi.org/10.1109/ICCD53106.2021.00019.

[88] Petro, D. and Cecil, A. You’re Doing IoT RNG. DEF CON 29. 2021. URL: https:
//bishopfox.com/blog/youre-doing-iot-rng.

[89] Arm Limited. Mbed OS. URL: https://os.mbed.com/mbed-os/ (visited on

06/22/2022).

[90] Zephyr Project. Zephyr – An Operating System for IoT. URL: https://www.z
ephyrproject.org/zephyr-an-operating-system-for-iot/ (visited on

06/22/2022).

[91] Contiki-NG. Contiki-NG: The OS for Next Generation IoT Devices. 2017. URL: ht
tps://github.com/contiki-ng/contiki-ng (visited on 06/22/2022).

[92] Heninger, N., Durumeric, Z., Wustrow, E., and Halderman, J. A. Mining Your Ps

and Qs: Detection of Widespread Weak Keys in Network Devices. Proceedings of

the 21th USENIX Security Symposium, Bellevue, WA, USA, August 8-10, 2012.

Ed. by T. Kohno. USENIX Association, 2012, pp. 205–220. URL: https://www.u
senix.org/conference/usenixsecurity12/technical-sessions/presen
tation/heninger.

[93] Vassilev, A. and Staples, R. Entropy as a Service: Unlocking Cryptography’s Full

Potential. Computer 49.9 (2016), pp. 98–102. DOI: 10.1109/MC.2016.275. URL:

https://doi.org/10.1109/MC.2016.275.

[94] Kelsey, J. The New Randomness Beacon Format Standard: An Exercise in Limit-

ing the Power of a Trusted Third Party. Security Standardisation Research - 4th In-

ternational Conference, SSR 2018, Darmstadt, Germany, November 26-27, 2018,

Proceedings. Ed. by C. Cremers and A. Lehmann. Vol. 11322. Lecture Notes in

Computer Science. Springer, 2018, pp. 164–184. DOI: 10.1007/978-3-030-04
762-7_9. URL: https://doi.org/10.1007/978-3-030-04762-7_9.

[95] Raikwar, M. and Gligoroski, D. SoK: Decentralized Randomness Beacon Proto-

cols. CoRR abs/2205.13333 (2022). DOI: 10.48550/arXiv.2205.13333. arXiv:

2205.13333. URL: https://doi.org/10.48550/arXiv.2205.13333.

[96] Shumow, D. and Ferguson, N. On the Possibility of a Back Door in the NIST

SP800-90 Dual EC PRNG. Advances in Cryptology - CRYPTO 2007, 27th An-

https://doi.org/10.1007/978-3-030-04762-7_8
https://doi.org/10.1007/978-3-030-04762-7_8
https://doi.org/10.1007/978-3-030-04762-7_8
https://doi.org/10.1109/ICCD53106.2021.00019
https://doi.org/10.1109/ICCD53106.2021.00019
https://bishopfox.com/blog/youre-doing-iot-rng
https://bishopfox.com/blog/youre-doing-iot-rng
https://os.mbed.com/mbed-os/
https://www.zephyrproject.org/zephyr-an-operating-system-for-iot/
https://www.zephyrproject.org/zephyr-an-operating-system-for-iot/
https://github.com/contiki-ng/contiki-ng
https://github.com/contiki-ng/contiki-ng
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://doi.org/10.1109/MC.2016.275
https://doi.org/10.1109/MC.2016.275
https://doi.org/10.1007/978-3-030-04762-7_9
https://doi.org/10.1007/978-3-030-04762-7_9
https://doi.org/10.1007/978-3-030-04762-7_9
https://doi.org/10.48550/arXiv.2205.13333
https://arxiv.org/abs/2205.13333
https://doi.org/10.48550/arXiv.2205.13333

59

nual International Cryptology Conference, Santa Barbara, CA, USA, August 19-

23, 2007, Proceedings, Rump session. 2007. URL: https://rump2007.cr.yp
.to/15-shumow.pdf (visited on 06/30/2022).

[97] Bernstein, D. J., Lange, T., and Niederhagen, R. Dual EC: A Standardized Back

Door. The New Codebreakers - Essays Dedicated to David Kahn on the Occasion

of His 85th Birthday. Ed. by P. Y. A. Ryan, D. Naccache, and J.-J. Quisquater.

Vol. 9100. Lecture Notes in Computer Science. Springer, 2016, pp. 256–281. DOI:

10.1007/978-3-662-49301-4_17. URL: https://doi.org/10.1007/978-3
-662-49301-4_17.

[98] National Institute of Standards and Technology. Entropy as a Service. 2016. URL:

https://csrc.nist.gov/Projects/Entropy-as-a-Service (visited on

07/01/2022).

[99] Rabin, M. O. Transaction Protection by Beacons. J. Comput. Syst. Sci. 27.2 (1983),

pp. 256–267. DOI: 10.1016/0022-0000(83)90042-9. URL: https://doi.org
/10.1016/0022-0000(83)90042-9.

[100] National Institute of Standards and Technology. Interoperable Randomness Bea-

cons. 2011. URL: https://csrc.nist.gov/projects/interoperable-rand
omness-beacons (visited on 06/28/2022).

[101] Bierhorst, P., Knill, E., Glancy, S., Zhang, Y., Mink, A., Jordan, S. P., Rommal, A.,

Liu, Y.-K., Christensen, B., Nam, S. W., Stevens, M. J., and Shalm, L. K. Exper-

imentally Generated Randomness Certified by the Impossibility of Superluminal

Signals. Nat. 556.7700 (2018), pp. 223–226. DOI: 10.1038/s41586-018-0019-
0. URL: https://doi.org/10.1038/s41586-018-0019-0.

[102] Kiayias, A., Russell, A., David, B., and Oliynykov, R. Ouroboros: A Provably Se-

cure Proof-of-Stake Blockchain Protocol. Advances in Cryptology - CRYPTO 2017

- 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, Au-

gust 20-24, 2017, Proceedings, Part I. Ed. by J. Katz and H. Shacham. Vol. 10401.

Lecture Notes in Computer Science. Springer, 2017, pp. 357–388. DOI: 10.1007
/978-3-319-63688-7_12. URL: https://doi.org/10.1007/978-3-319-63
688-7_12.

[103] Syta, E., Jovanovic, P., Kokoris-Kogias, E., Gailly, N., Gasser, L., Khoffi, I., Fischer,

M. J., and Ford, B. Scalable Bias-Resistant Distributed Randomness. 2017 IEEE

Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26,

2017. IEEE Computer Society, 2017, pp. 444–460. DOI: 10.1109/SP.2017.45.

URL: https://doi.org/10.1109/SP.2017.45.

[104] Cascudo, I. and David, B. SCRAPE: Scalable Randomness Attested by Public

Entities. Applied Cryptography and Network Security - 15th International Confer-

ence, ACNS 2017, Kanazawa, Japan, July 10-12, 2017, Proceedings. Ed. by D.

Gollmann, A. Miyaji, and H. Kikuchi. Vol. 10355. Lecture Notes in Computer Sci-

https://rump2007.cr.yp.to/15-shumow.pdf
https://rump2007.cr.yp.to/15-shumow.pdf
https://doi.org/10.1007/978-3-662-49301-4_17
https://doi.org/10.1007/978-3-662-49301-4_17
https://doi.org/10.1007/978-3-662-49301-4_17
https://csrc.nist.gov/Projects/Entropy-as-a-Service
https://doi.org/10.1016/0022-0000(83)90042-9
https://doi.org/10.1016/0022-0000(83)90042-9
https://doi.org/10.1016/0022-0000(83)90042-9
https://csrc.nist.gov/projects/interoperable-randomness-beacons
https://csrc.nist.gov/projects/interoperable-randomness-beacons
https://doi.org/10.1038/s41586-018-0019-0
https://doi.org/10.1038/s41586-018-0019-0
https://doi.org/10.1038/s41586-018-0019-0
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1109/SP.2017.45
https://doi.org/10.1109/SP.2017.45

60

ence. Springer, 2017, pp. 537–556. DOI: 10.1007/978-3-319-61204-1_27.

URL: https://doi.org/10.1007/978-3-319-61204-1_27.

[105] Schindler, P., Judmayer, A., Stifter, N., and Weippl, E. R. HydRand: Efficient Con-

tinuous Distributed Randomness. 2020 IEEE Symposium on Security and Privacy,

SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE, 2020, pp. 73–89. DOI:

10.1109/SP40000.2020.00003. URL: https://doi.org/10.1109/SP40000
.2020.00003.

[106] Cascudo, I. and David, B. ALBATROSS: Publicly AttestabLe BATched Random-

ness Based On Secret Sharing. Advances in Cryptology - ASIACRYPT 2020 -

26th International Conference on the Theory and Application of Cryptology and

Information Security, Daejeon, South Korea, December 7-11, 2020, Proceedings,

Part III. Ed. by S. Moriai and H. Wang. Vol. 12493. Lecture Notes in Computer

Science. Springer, 2020, pp. 311–341. DOI: 10.1007/978-3-030-64840-4_11.

URL: https://doi.org/10.1007/978-3-030-64840-4_11.

[107] Bhat, A., Shrestha, N., Luo, Z., Kate, A., and Nayak, K. RandPiper - Reconfiguration-

Friendly Random Beacons with Quadratic Communication. CCS ’21: 2021 ACM

SIGSAC Conference on Computer and Communications Security, Virtual Event,

Republic of Korea, November 15 - 19, 2021. Ed. by Y. Kim, J. Kim, G. Vigna,

and E. Shi. ACM, 2021, pp. 3502–3524. DOI: 10.1145/3460120.3484574. URL:

https://doi.org/10.1145/3460120.3484574.

[108] Das, S., Krishnan, V., Isaac, I. M., and Ren, L. Spurt: Scalable Distributed Ran-

domness Beacon with Transparent Setup. 43rd IEEE Symposium on Security

and Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022. IEEE, 2022,

pp. 2502–2517. DOI: 10.1109/SP46214.2022.9833580. URL: https://doi.o
rg/10.1109/SP46214.2022.9833580.

[109] League of Entropy. Distributed Randomness Beacon. 2019. URL: https://dran
d.love/ (visited on 07/01/2022).

[110] Ullah, I., Meratnia, N., and Havinga, P. J. M. Entropy as a Service: A Lightweight

Random Number Generator for Decentralized IoT Applications. 2020 IEEE Inter-

national Conference on Pervasive Computing and Communications Workshops,

PerCom Workshops 2020, Austin, TX, USA, March 23-27, 2020. IEEE, 2020,

pp. 1–6. DOI: 10.1109/PerComWorkshops48775.2020.9156205. URL: http
s://doi.org/10.1109/PerComWorkshops48775.2020.9156205.

[111] Crypto4A. Root of QAOS. 2019. URL: https://crypto4a.com/products/roo
t-of-qaos/ (visited on 07/26/2022).

[112] QNU Labs. QOSMOS (Entropy as a Service). 2021. URL: https://www.qnulab
s.com/qosmos-entropy-as-a-service/ (visited on 07/01/2022).

[113] Qrypt. Entropy as a Service. 2021. URL: https://docs.qrypt.com/eaas/
(visited on 07/01/2022).

https://doi.org/10.1007/978-3-319-61204-1_27
https://doi.org/10.1007/978-3-319-61204-1_27
https://doi.org/10.1109/SP40000.2020.00003
https://doi.org/10.1109/SP40000.2020.00003
https://doi.org/10.1109/SP40000.2020.00003
https://doi.org/10.1007/978-3-030-64840-4_11
https://doi.org/10.1007/978-3-030-64840-4_11
https://doi.org/10.1145/3460120.3484574
https://doi.org/10.1145/3460120.3484574
https://doi.org/10.1109/SP46214.2022.9833580
https://doi.org/10.1109/SP46214.2022.9833580
https://doi.org/10.1109/SP46214.2022.9833580
https://drand.love/
https://drand.love/
https://doi.org/10.1109/PerComWorkshops48775.2020.9156205
https://doi.org/10.1109/PerComWorkshops48775.2020.9156205
https://doi.org/10.1109/PerComWorkshops48775.2020.9156205
https://crypto4a.com/products/root-of-qaos/
https://crypto4a.com/products/root-of-qaos/
https://www.qnulabs.com/qosmos-entropy-as-a-service/
https://www.qnulabs.com/qosmos-entropy-as-a-service/
https://docs.qrypt.com/eaas/

61

[114] Quantropi. SEQUR Quantum Entropy Services. 2022. URL: https://www.quan
tropi.com/qispace/sequr/ (visited on 07/26/2022).

[115] QuintessenceLabs. qRand 100 Quantum Entropy Enhancer. 2021. URL: https:
//www.quintessencelabs.com/products#qrand-100 (visited on 10/03/2022).

[116] Haahr, M. RANDOM.ORG: True Random Number Service. 1998. URL: https:
//www.random.org (visited on 06/28/2022).

[117] Huttunen, H. TUNI Narvi Cluster. URL: https://tuni-itc.github.io/wiki
/Technical-Notes/tuni-narvi-cluster/ (visited on 09/15/2021).

[118] Aalto Science-IT. Triton Cluster. URL: https://scicomp.aalto.fi/triton/
(visited on 01/31/2022).

[119] Helin, J. A. and Maisala, S. Helsinki University HPC Environment User Guide.

URL: https://wiki.helsinki.fi/display/it4sci/HPC+Environment+Use
r+Guide (visited on 01/31/2022).

[120] CSC – IT Center for Science. LUMI. URL: https://research.csc.fi/-/lumi
(visited on 09/09/2022).

[121] CSC – IT Center for Science. Puhti. URL: https://research.csc.fi/-/puhti
(visited on 09/09/2022).

[122] CSC – IT Center for Science. Mahti. URL: https://research.csc.fi/-/mahti
(visited on 09/09/2022).

[123] CSC – IT Center for Science. Pouta. URL: https://docs.csc.fi/cloud/pout
a/ (visited on 09/09/2022).

[124] CSC – IT Center for Science. Rahti. URL: https://rahti.csc.fi/ (visited on

09/09/2022).

[125] CSC – IT Center for Science. Allas. URL: https://research.csc.fi/-/allas
(visited on 09/09/2022).

[126] Jahanzeb, M., Oh, S., and Fox, G. C. Evaluating ARM HPC Clusters for Scientific

Workloads. Concurr. Comput. Pract. Exp. 27.17 (2015), pp. 5390–5410. DOI: 10
.1002/cpe.3602. URL: https://doi.org/10.1002/cpe.3602.

[127] Yokoyama, D., Schulze, B., Borges, F., and Mc Evoy, G. V. The Survey on ARM

Processors for HPC. J. Supercomput. 75.10 (2019), pp. 7003–7036. DOI: 10.100
7/s11227-019-02911-9. URL: https://doi.org/10.1007/s11227-019-02
911-9.

[128] Armejach, A., Brank, B., Cortina, J., Dolique, F., Hayes, T., Ho, N., Lagadec, P.-A.,

Lemaire, R., López-Paradís, G., Marliac, L., Moretó, M., Marcuello, P., Pleiter, D.,

Tan, X., and Derradji, S. Mont-Blanc 2020: Towards Scalable and Power Efficient

European HPC Processors. Design, Automation & Test in Europe Conference &

Exhibition, Grenoble, France, February 1-5, 2021. IEEE, 2021, pp. 136–141. DOI:

10.23919/DATE51398.2021.9474093. URL: https://doi.org/10.23919
/DATE51398.2021.9474093.

https://www.quantropi.com/qispace/sequr/
https://www.quantropi.com/qispace/sequr/
https://www.quintessencelabs.com/products#qrand-100
https://www.quintessencelabs.com/products#qrand-100
https://www.random.org
https://www.random.org
https://tuni-itc.github.io/wiki/Technical-Notes/tuni-narvi-cluster/
https://tuni-itc.github.io/wiki/Technical-Notes/tuni-narvi-cluster/
https://scicomp.aalto.fi/triton/
https://wiki.helsinki.fi/display/it4sci/HPC+Environment+User+Guide
https://wiki.helsinki.fi/display/it4sci/HPC+Environment+User+Guide
https://research.csc.fi/-/lumi
https://research.csc.fi/-/puhti
https://research.csc.fi/-/mahti
https://docs.csc.fi/cloud/pouta/
https://docs.csc.fi/cloud/pouta/
https://rahti.csc.fi/
https://research.csc.fi/-/allas
https://doi.org/10.1002/cpe.3602
https://doi.org/10.1002/cpe.3602
https://doi.org/10.1002/cpe.3602
https://doi.org/10.1007/s11227-019-02911-9
https://doi.org/10.1007/s11227-019-02911-9
https://doi.org/10.1007/s11227-019-02911-9
https://doi.org/10.1007/s11227-019-02911-9
https://doi.org/10.23919/DATE51398.2021.9474093
https://doi.org/10.23919/DATE51398.2021.9474093
https://doi.org/10.23919/DATE51398.2021.9474093

62

[129] Mantovani, F., Garcia-Gasulla, M., Gracia, J., Stafford, E., Banchelli, F., Josep-

Fabrego, M., Criado-Ledesma, J., and Nachtmann, M. Performance and Energy

Consumption of HPC Workloads on a Cluster Based on ARM ThunderX2 CPU.

Future Gener. Comput. Syst. 112 (2020), pp. 800–818. DOI: 10.1016/j.future
.2020.06.033. URL: https://doi.org/10.1016/j.future.2020.06.033.

[130] Pardos, V. S., Armejach, A., Suárez Gracia, D., and Moretó, M. On the Use of

Many-Core Marvell ThunderX2 Processor for HPC workloads. J. Supercomput.

77.4 (2021), pp. 3315–3338. DOI: 10.1007/s11227-020-03397-6. URL: https
://doi.org/10.1007/s11227-020-03397-6.

[131] Abrahamsson, P., Helmer, S., Phaphoom, N., Nicolodi, L., Preda, N., Miori, L.,

Angriman, M., Rikkilä, J., Wang, X., Hamily, K., and Bugoloni, S. Affordable and

Energy-Efficient Cloud Computing Clusters: The Bolzano Raspberry Pi Cloud

Cluster Experiment. IEEE 5th International Conference on Cloud Computing Tech-

nology and Science, CloudCom 2013, Bristol, United Kingdom, December 2-5,

2013, Volume 2. IEEE Computer Society, 2013, pp. 170–175. DOI: 10.1109/Clo
udCom.2013.121. URL: https://doi.org/10.1109/CloudCom.2013.121.

[132] D’Amore, M., Baggio, R., and Valdani, E. A Practical Approach to Big Data in

Tourism: A Low Cost Raspberry Pi Cluster. Information and Communication Tech-

nologies in Tourism 2015, ENTER 2015, Proceedings of the International Confer-

ence in Lugano, Switzerland, February 3 - 6, 2015. Ed. by I. Tussyadiah and A.

Inversini. Springer, 2015, pp. 169–181. DOI: 10.1007/978-3-319-14343-9_13.

URL: https://doi.org/10.1007/978-3-319-14343-9_13.

[133] Saffran, J., Garcia, G., Souza, M. A., Penna, P. H., Castro, M., Góes, L. F. W., and

Freitas, H. C. A Low-Cost Energy-Efficient Raspberry Pi Cluster for Data Mining

Algorithms. Euro-Par 2016: Parallel Processing Workshops - Euro-Par 2016 In-

ternational Workshops, Grenoble, France, August 24-26, 2016, Revised Selected

Papers. Ed. by F. Desprez, P.-F. Dutot, C. Kaklamanis, L. Marchal, K. Molitorisz,

L. Ricci, V. Scarano, M. A. Vega-Rodríguez, A. L. Varbanescu, S. Hunold, S. L.

Scott, S. Lankes, and J. Weidendorfer. Vol. 10104. Lecture Notes in Computer

Science. Springer, 2016, pp. 788–799. DOI: 10.1007/978-3-319-58943-5_63.

URL: https://doi.org/10.1007/978-3-319-58943-5_63.

[134] Srinivasan, K., Chang, C.-Y., Huang, C.-H., Chang, M.-H., Sharma, A., and Ankur,

A. An Efficient Implementation of Mobile Raspberry Pi Hadoop Clusters for Ro-

bust and Augmented Computing Performance. J. Inf. Process. Syst. 14.4 (2018),

pp. 989–1009. URL: http://www.jips-k.org/q.jips?cp=pp%5C&pn=588.

[135] An, J., Park, S., and Ihm, I. Construction of a Flexible and Scalable 4D Light Field

Camera Array Using Raspberry Pi Clusters. Vis. Comput. 35.10 (2019), pp. 1475–

1488. DOI: 10.1007/s00371-018-1512-z. URL: https://doi.org/10.1007
/s00371-018-1512-z.

https://doi.org/10.1016/j.future.2020.06.033
https://doi.org/10.1016/j.future.2020.06.033
https://doi.org/10.1016/j.future.2020.06.033
https://doi.org/10.1007/s11227-020-03397-6
https://doi.org/10.1007/s11227-020-03397-6
https://doi.org/10.1007/s11227-020-03397-6
https://doi.org/10.1109/CloudCom.2013.121
https://doi.org/10.1109/CloudCom.2013.121
https://doi.org/10.1109/CloudCom.2013.121
https://doi.org/10.1007/978-3-319-14343-9_13
https://doi.org/10.1007/978-3-319-14343-9_13
https://doi.org/10.1007/978-3-319-58943-5_63
https://doi.org/10.1007/978-3-319-58943-5_63
http://www.jips-k.org/q.jips?cp=pp%5C&pn=588
https://doi.org/10.1007/s00371-018-1512-z
https://doi.org/10.1007/s00371-018-1512-z
https://doi.org/10.1007/s00371-018-1512-z

63

[136] Hosny, K. M., Magdi, A., Lashin, N. A., El-Komy, O., and Salah, A. Robust Color

Image Watermarking Using Multi-Core Raspberry Pi Cluster. Multim. Tools Appl.

81.12 (2022), pp. 17185–17204. DOI: 10.1007/s11042-022-12037-5. URL:

https://doi.org/10.1007/s11042-022-12037-5.

[137] Mappuji, A., Effendy, N., Mustaghfirin, M., Sondok, F., Yuniar, R. P., and Pangesti,

S. P. Study of Raspberry Pi 2 Quad-core Cortex A7 CPU Cluster as a Mini Super-

computer. CoRR abs/1612.07128 (2016). arXiv: 1612.07128. URL: http://arx
iv.org/abs/1612.07128.

[138] Cicirello, V. A. Design, Configuration, Implementation, and Performance of a Sim-

ple 32 Core Raspberry Pi Cluster. CoRR abs/1708.05264 (2017). arXiv: 1708.05
264. URL: http://arxiv.org/abs/1708.05264.

[139] Gupta, N., Brandt, S. R., Wagle, B., Wu, N., Kheirkhahan, A., Diehl, P., Baumann,

F. W., and Kaiser, H. Deploying a Task-Based Runtime System on Raspberry Pi

Clusters. 5th IEEE/ACM International Workshop on Extreme Scale Programming

Models and Middleware, ESPM2@SC 2020, Atlanta, GA, USA, November 11,

2020. IEEE, 2020, pp. 11–20. DOI: 10.1109/ESPM251964.2020.00007. URL:

https://doi.org/10.1109/ESPM251964.2020.00007.

[140] Hawthorne, D., Kapralos, M. P., Blaine, R. W., and Matthews, S. J. Evaluating

Cryptographic Performance of Raspberry Pi Clusters. 2020 IEEE High Perfor-

mance Extreme Computing Conference, HPEC 2020, Waltham, MA, USA, Septem-

ber 22-24, 2020. IEEE, 2020, pp. 1–9. DOI: 10.1109/HPEC43674.2020.928624
7. URL: https://doi.org/10.1109/HPEC43674.2020.9286247.

[141] Cilloni, T., Cai, X., Fleming, C., and Li, J. Understanding and Detecting Majority

Attacks. 2nd IEEE International Conference on Decentralized Applications and

Infrastructures, DAPPS 2020, Oxford, UK, August 3-6, 2020. Ed. by J. Xu, S.

Schulte, P. Ruppel, A. Küpper, and D. Jadav. IEEE, 2020, pp. 11–21. DOI: 10
.1109/DAPPS49028.2020.00002. URL: https://doi.org/10.1109/DAPPS49
028.2020.00002.

[142] Höller, T., Roland, M., and Mayrhofer, R. Analyzing Inconsistencies in the Tor Con-

sensus. iiWAS2021: The 23rd International Conference on Information Integration

and Web Intelligence, Linz, Austria, 29 November 2021 - 1 December 2021. Ed.

by E. Pardede, M. Indrawan-Santiago, P. D. Haghighi, M. Steinbauer, I. Khalil, and

G. Kotsis. ACM, 2021, pp. 485–494. DOI: 10.1145/3487664.3487793. URL:

https://doi.org/10.1145/3487664.3487793.

[143] Raspberry Pi Foundation. Raspberry Pi Documentation. URL: https://www.ras
pberrypi.com/documentation/computers/raspberry-pi.html (visited on

07/28/2022).

[144] systemd(1) — Linux Manual Page. URL: https://man7.org/linux/man-page
s/man1/init.1.html (visited on 09/07/2022).

https://doi.org/10.1007/s11042-022-12037-5
https://doi.org/10.1007/s11042-022-12037-5
https://arxiv.org/abs/1612.07128
http://arxiv.org/abs/1612.07128
http://arxiv.org/abs/1612.07128
https://arxiv.org/abs/1708.05264
https://arxiv.org/abs/1708.05264
http://arxiv.org/abs/1708.05264
https://doi.org/10.1109/ESPM251964.2020.00007
https://doi.org/10.1109/ESPM251964.2020.00007
https://doi.org/10.1109/HPEC43674.2020.9286247
https://doi.org/10.1109/HPEC43674.2020.9286247
https://doi.org/10.1109/HPEC43674.2020.9286247
https://doi.org/10.1109/DAPPS49028.2020.00002
https://doi.org/10.1109/DAPPS49028.2020.00002
https://doi.org/10.1109/DAPPS49028.2020.00002
https://doi.org/10.1109/DAPPS49028.2020.00002
https://doi.org/10.1145/3487664.3487793
https://doi.org/10.1145/3487664.3487793
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html
https://man7.org/linux/man-pages/man1/init.1.html
https://man7.org/linux/man-pages/man1/init.1.html

64

[145] Devuan. Devuan ASCII 2.0.0 Stable Release. URL: https://www.devuan.org
/os/announce/ascii-stable-announce-060818 (visited on 11/04/2022).

[146] Perrin, G. Download FreeBSD. URL: https : / / www . freebsd . org / where/
(visited on 10/10/2022).

[147] Cerdeira, D., Santos, N., Fonseca, P., and Pinto, S. SoK: Understanding the Pre-

vailing Security Vulnerabilities in TrustZone-Assisted TEE Systems. 2020 IEEE

Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-

21, 2020. IEEE, 2020, pp. 1416–1432. DOI: 10.1109/SP40000.2020.00061.

URL: https://doi.org/10.1109/SP40000.2020.00061.

[148] Fei, S., Yan, Z., Ding, W., and Xie, H. Security Vulnerabilities of SGX and Coun-

termeasures: A Survey. ACM Comput. Surv. 54.6 (2021), 126:1–126:36. DOI: 10
.1145/3456631. URL: https://doi.org/10.1145/3456631.

[149] Aumasson, J.-P. Too Much Crypto. IACR Cryptol. ePrint Arch. (2019), p. 1492.

URL: https://eprint.iacr.org/2019/1492.

[150] Hoyer, H. mini_http. 2017. URL: https://github.com/haraldh/mini_http
(visited on 11/03/2022).

https://www.devuan.org/os/announce/ascii-stable-announce-060818
https://www.devuan.org/os/announce/ascii-stable-announce-060818
https://www.freebsd.org/where/
https://doi.org/10.1109/SP40000.2020.00061
https://doi.org/10.1109/SP40000.2020.00061
https://doi.org/10.1145/3456631
https://doi.org/10.1145/3456631
https://doi.org/10.1145/3456631
https://eprint.iacr.org/2019/1492
https://github.com/haraldh/mini_http

	Introduction
	Motivation and goals
	Contributions
	Structure and research questions

	Background
	Cluster computing
	Classification and usage of computer clusters

	Embedded systems and Internet of Things
	IoT security

	Trusted Execution Environments
	Enarx

	Cryptography
	Implementation failures

	Randomness and Random Number Generators
	Defining randomness in computer systems
	RNGs and PRNGs
	Entropy source pitfalls and considerations
	Cryptographically secure PRNGs
	Statistical test suites
	IoT RNG

	Randomness Beacons and Entropy as a Service
	Terminology
	History and Related works

	Implementing an embedded computer cluster
	Related works
	Requirements
	Design overview
	Network configuration

	Raspberry Pi nodes
	Network boot process
	Operating system

	FreeBSD server

	Designing an EaaS simulation with the Magi cluster
	Related works
	Security considerations and threat model
	Goals
	Design and methodology
	Limitations and bias

	Results from the simulation
	Practicality of implementing an EaaS simulation
	Practicality of developing TAs for the EaaS simulation that utilise TEEs

	Conclusions
	Answers to research questions
	Future work and open questions

	References

