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ABSTRACT

Joni Pesonen: Dimensionality reduction in generating decision-based adversarial examples
Master of Science Thesis
Tampere University
Master’s Programme in Computing Sciences
November 2022

As the ever-increasing popularity of machine learning continues to rise, its reliability is of ut-
most importance. Despite the enormous progress and its excellent performance, it has been
discovered that machine learning is vulnerable to so-called adversarial examples. While they are
based on a naturally occurring machine learning phenomenon, they can be exploited by malicious
attackers for their own purposes, as it is possible to generate them. In the decision-based attack
category, the key to the more efficient generation of adversarial examples has been dimensional-
ity reduction. However, the effect different dimensionality reduction methods and their magnitudes
have in this generation process has been poorly researched.

The thesis provides a diverse view of the phenomenon and discusses the often exagger-
ated security concerns raised by adversarial examples before focusing more specifically on the
decision-based attack scenario. We explore three main research questions. First, we explore
the current state and challenges of decision-based attacks in the scientific literature. Secondly,
we present a few dimensionality reduction methods that could be used for our purposes. Lastly,
tests are implemented to quantify the differences the dimensionality reduction methods with their
differently sized subspaces have on the adversarial example generation.

The study showcases these differences and identifies the turning point after which the dimen-
sionality reduction starts to be detrimental. We provide novel ways to perform dimensionality
reduction and discuss the advantages and disadvantages of the methods. We demonstrate that
there is room for improvement in generating decision-based adversarial examples by utilizing more
extensive dimensionality reduction than is customary in the scientific literature.

Keywords: machine learning, adversarial examples, decision-based attack, dimensionality reduc-
tion, artificial intelligence

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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TIIVISTELMÄ

Joni Pesonen: Dimensioiden vähentäminen päätöspohjaisten peukaloitujen syötteiden generoimi-
sessa
Pro gradu -tutkielma
Tampereen yliopisto
Master’s Programme in Computing Sciences
Marraskuu 2022

Koneoppimisen laajamittaisen suosion kasvaessa sen toimintavarmuus tilanteesta riippumat-
ta on äärimmäisen tärkeää. Valtavista edistysaskelista ja erinomaisista suorituksista huolimatta
koneoppimisen on havaittu olevan haavoittuvainen niin kutsuttuja peukaloituja syötteitä kohtaan.
Vaikka ilmiö pohjautuukin luonnolliseen koneoppimisen ilmiöön, voi pahansuopa hyökkääjä hy-
väksikäyttää kyseistä ilmiötä generoimalla peukaloituja syötteitä. Avain tehokkaampaan päätös-
pohjaisten hyökkäysten generoimiseen on ollut dimensioiden vähentäminen. Eri dimensioiden vä-
hentämiseen keskittyvien menetelmien ja niiden suuruuksien vaikutusta tähän generoimiseen ei
ole kuitenkaan tutkittu kovin syvällisesti.

Tässä työssä tarjoamme monipuolisen yleiskatsauksen peukaloiduista syötteistä ja käymme
läpi niiden usein liioiteltuja turvallisuushuolia, minkä jälkeen keskitymme tarkemmin päätöspoh-
jaisiin hyökkäyksiin. Tutkimme kolmea tutkimuskysymystä: ensiksi tutkimme tieteellisessä kirjal-
lisuudessa esiintyvien päätöspohjaisten hyökkäysten nykytilaa sekä niiden kohtaamia haasteita.
Sen jälkeen esittelemme muutamia tähän käyttötarkoitukseen soveltuvia menetelmiä dimensioi-
den vähentämiseen. Viimeisenä suoritamme kokeita mitataksemme, kuinka eri dimensioiden vä-
hentämismenetelmät ja niiden erikokoiset aliavaruudet vaikuttavat peukaloitujen syötteiden gene-
roimiseen.

Tutkielma esittelee menetelmien väliset erot ja havainnollistaa käännekohdan, jonka jälkeen
dimensioiden vähentäminen alkaa haitata generoimista. Tuomme esiin uudenlaisia tapoja dimen-
sioiden vähentämiseen ja teemme yhteenvedon eri menetelmien hyödyistä ja haitoista. Lisäksi
osoitamme, kuinka päätöspohjaisten peukaloitujen syötteiden generoimisessa on parantamisen
varaa hyödyntämällä aiempaa kirjallisuutta laajamittaisempaa dimensioiden vähentämistä.

Avainsanat: koneoppiminen, peukaloidut syötteet, päätöspohjainen hyökkäys, dimensioiden vä-
hentäminen, tekoäly

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1. INTRODUCTION

The ever-increasing popularity of machine learning has led to its ubiquity in a variety of

systems, some of which are critical in their operational reliability. The main contributor

to this surge in popularity has been machine learning’s excellent performance even on

challenging tasks, which in turn has partly been enabled by the advances in computational

power. Machine learning has been a revolutionizing factor in many different fields with

numerous real-world applications, such as computer vision, healthcare, and predictive

analytics.

As machine learning systems are deployed more frequently in environments where safety

and security are critical, concerns regarding the reliability of machine learning systems

are warranted. Despite the enormous progress made, it has been discovered that ma-

chine learning is vulnerable to so-called adversarial examples [46]. Oftentimes, these

adversarial examples are made from deliberately perturbed normal inputs to obtain an

erroneous classification from the machine learning system. These perturbations are usu-

ally imperceivable for a human observer, yet they can consistently cause the machine

learning system to err in classification. However, as we discuss later in Section 3.2, the

input can be adversarial even without manipulation due to the nature of this phenomenon.

The adversarial examples as a phenomenon gained traction after Szegedy et al. [46]

published their paper in 2013, where they studied them on neural networks. The number

of publications in this research direction has witnessed exponential growth ever since

then [5]. However, the concept of adversarial examples can be traced all the way back to

2004, with Dalvi et al. [12] examining linear classifiers detecting email spam as the first

demonstration on this subject.

The majority of the scientific literature on adversarial examples focuses on neural net-

work classifiers, presumably due to their omnipresence and high performance in real-life

scenarios. Regardless, adversarial examples have been shown to affect other types of

classifiers as well, such as decision trees, support vector machines, and k-nearest neigh-

bor classifiers [35]. Thus, adversarial examples are not an unwanted property of neural

networks alone but are inherent to machine learning itself. Despite their niche status in

real-life scenarios as of yet, there has been an abundant amount of research on this topic.

However, the existence of this phenomenon is puzzling; regardless of this research, it is
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still unclear exactly why these errors arise.

Due to the breadth of this subject, adversarial examples can be divided further into sub-

categories. In this thesis, we focus on the subcategory called decision-based attacks.

Previous publications in this category poorly quantify the differences between different di-

mensionality reduction methods in their adversarial example generation algorithms. The

magnitude of this dimensionality reduction and its effect on the process is also seldom ex-

plored. Quite often, the authors only state the selected dimensionality reduction method

and its magnitude. Only sometimes, this choice is ratiocinated with a passing reference

to their experiments, and even more rarely, any actual results of these experiments are

reported. Therefore, this thesis aims to quantify better the difference between different

dimensionality reduction methods and their magnitudes. The research questions in this

thesis are:

1. What are the current state and challenges of decision-based attacks in the scientific

literature?

2. What are some of the different dimensionality reduction methods that could be pos-

sibly utilized in attack generation?

3. What are the differences between the performances of different dimensionality re-

duction methods, and how much can the dimensions be reduced?

This thesis consists of six chapters. First, we offer background on machine learning and

the chosen dimensionality reduction methods in Chapter 2. Then, the scientific literature

is reviewed to understand the current state of the adversarial examples themselves in

Chapter 3. We provide a diverse view of the phenomenon and discuss the often exagger-

ated security concerns there. In addition, we further motivate this thesis before focusing

on the decision-based scenario in more detail. In Chapter 4, the chosen algorithm and the

implementation details are discussed. The selected methods are applied, and the results

are analyzed in Chapter 5 to offer a more quantitative look into the effect of dimensionality

reduction. Closing thoughts and conclusions are provided in Chapter 6. In the end, we

hope the reader is left with a solid understanding of this multifaceted phenomenon and

satisfying experimental results.
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2. BACKGROUND ON MACHINE LEARNING

Machine learning (ML) is a field of artificial intelligence aiming to create a system capable

of performing tasks autonomously. In general, the purpose of ML algorithms is to "learn"

from given training data. Learning is a process in which the algorithm learns to utilize

given data to improve its performance in the given task. It has the advantage of not

having to explicitly specify decision rules and operational instructions for every possible

scenario, which is often infeasible in real-life problems. When properly implemented, the

system can generalize to unseen cases and, compared to human performance, enables

the utilization of the information embedded in much larger datasets. The focus of this

thesis is on supervised tasks; for that reason, ML is inspected from that viewpoint only.

We mostly follow the book by Russell and Norvig [41] up until Section 2.2.

Supervised learning is an ML paradigm where the training data provided to the ML system

is labeled. In labeled data, each input vector is associated with a label. The objective of

supervised learning is to learn an approximation of the true underlying function of a given

phenomenon since finding the exact true function is almost always impracticable. As the

task’s difficulty rises, so does the challenge of finding this exact true function.

The goal of supervised learning is to learn a function f : X → Y that maps input

values from input space X ∈ Rd to output values in output space Y ∈ Rc. The learn-

ing takes place by providing the algorithm a training set of n example input-output pairs

(x1, y1), (x2, y2), . . . , (xn, yn). Each xi is a d-dimensional vector with d features (or vari-

ables) in it, and yi is the class (or label) of that input vector. In single-label classification

tasks1 yi ∈ {1, 2, . . . , c}, or if y is one-hot encoded, yi is a vector of size c that is all zeros

except for the class that it has returned as its output, which is indicated with 1. One-hot

encoding is common in multi-class settings (c > 2) for the algorithm to avoid creating a

fictitious ordinal relationship in the data when the class is a nominal variable.

As each yi is generated by the unknown true function2 y = f(x), the goal is to find

a function f̂ that approximates the true function f well enough. As the training data

cannot practically ever contain all the possible input vectors, it cannot completely model

1In regression tasks, yi would be real-valued, but this thesis focuses on classification tasks. Multi-label
classification is also not the focus of this thesis.

2The function f can also be stochastic, and thus y would not be strictly a function of x, but it is out of
the scope of this thesis.
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the target phenomenon. The function f̂ is called a hypothesis, and the learning process

is a search through the hypothesis space H to find a hypothesis that performs well. In

order to evaluate how well the function f̂ performs, i.e., fits the actual function f , a loss

function L : Y × Y → R+ is defined. For example, the loss of predicting the value ŷ

for (xi, yi) is L(yi, ŷ). The goal is to minimize the output of this loss function over the

given dataset. Therefore, a loss function must be chosen to quantify this amount of loss

between the predicted and the actual output. Common choices of loss functions are,

for example, cross-entropy and log-loss. Because the true function f cannot be directly

observed, the fit is measured between the outputs of the hypothesis function f̂ and the

data used in the learning process, with 0 meaning a perfect fit.

With enough training, the loss on the training examples will eventually reach 0. However,

it is not an unbiased evaluation of the model’s performance. In fact, the model has then

overfitted itself to the training examples, following them too closely with no guarantees of

how it will generalize to examples outside of them. Therefore, additional validation and

test datasets are needed. They are separate sets of examples previously unseen by the

learning algorithm and independent of the training set.

These three datasets are usually partitioned from all the data available for the model cre-

ation process, with varying strategies and partition sizes depending on the circumstances.

The validation set is used during development to tune the model’s hyperparameters and

to select the best model. The test set provides the final performance evaluation of the

chosen model. Sometimes, the validation phase is omitted. Confusingly enough, the

terms validation set and test set are at times used with reversed meanings. Nevertheless,

the last stage should provide the final evaluation of the selected model.

As discussed above, the training data cannot practically ever contain all the possible input

vectors, as the input space consists of all the possible combinations of values. It means

that usually, a large portion of the input space can be considered nonsense that cannot be

classified meaningfully. Instead, the data lies on a manifold, which represents the region

the data occupies in the input space. Each class has its own manifold; combined, they

form the data manifold.

The task in classification is to find a decision boundary (DB) that separates these different

classes well enough. Incorrect modeling of these manifolds enables the existence of

adversarial examples (AEs). Usually, the manifold is representable with fewer dimensions

than it occupies in the input space. For example, a sheet of paper crumbled and twisted

into a ball is in three dimensions, but it can be perfectly represented with two. However,

finding this lower-dimensional representation is not a trivial task.
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Figure 2.1. A neuron nj takes a weighted sum of all the inputs, applies an activation
function g to it, and sends its output aj = g(

∑︁n
i=0wi,jai) to the next layer.

2.1 Neural networks

Artificial neural networks, or simply just neural networks (NNs), are computing systems

that draw their inspiration from the biological NNs found inside animal brains. However,

they and their structure soon deviated from their true real-life precursors. They have found

the most use in complex applications of ML, such as image classification and speech

recognition, where they are used in a supervised manner. NNs can achieve competi-

tive performance with humans in complex, albeit very narrow tasks, such as traffic sign

recognition [11]. While the history of NNs goes all the way back to 1943 with McCulloch

and Pitts [30], only recent advances in computational capacity with the old repurposed

backpropagation algorithm have unlocked their current potential.

Practically all state-of-the-art image classification models are either based on or utilize

NNs [31] due to their high performance and theoretical capability to learn any function.

Because we also use an NN classifier in the testing phase of this thesis, this section

serves as an introduction to them, even though AEs affect other types of ML as well

[35]. NNs can also be used with alternative approaches in addition to the supervised

approach, but since the focus of this thesis is on supervised tasks, we will inspect NNs

from that viewpoint only.

An NN consists of units called neurons or nodes, depicted in Figure 2.1. These neurons

are then connected to other neurons; these connections can also be called synapses or

links. The purpose of a connection is to propagate the neuron’s activation (or output) ai
from neuron ni to neuron nj . Each connection has its own weight wi,j , which determines

the strength and sign of that particular connection. In other words, the weight of a con-

nection determines the impact the output of a neuron ni has on neuron nj . Usually, the

weights are assigned random numerical values at initialization. Adjusting the weights to

increase or decrease the impact of a given connection is an essential part of the learning

phase of NNs.
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The inputs to a neuron come from the data itself, or they can be outputs of other neurons.

The output of a neuron is computed by taking a weighted sum of all the inputs to that

particular neuron. Each connection to the given neuron carries one input signal with the

weight of that particular connection. This includes the bias term a0 and its weight w0,j .

Then, an activation function g is applied to the result. The final output of a neuron nj is

then represented as aj = g(
∑︁n

i=0wi,jai). Thus, each neuron can have multiple inputs,

but they produce a single output. This single output can be sent to multiple other neurons,

however. The initial inputs to the network are the data itself, such as images or text, and

the ultimate outputs of the network complete the task, such as image classification.

The activation function determines the output of a neuron; for example, it can impose a

threshold the output value must exceed for the neuron to send its signal forward. The ac-

tivation function can either be, e.g., a hard threshold or a logistic function. If the activation

function is nonlinear, it enables the NN to represent a nonlinear function. It is an important

property to have, as many real-life classification problems are not linearly separable.

An NN is composed of different layers. The first layer is the input layer, where the signal is

fed to the NN, and the last layer is the output layer, where the result is given; in between

are the hidden layers. These hidden layers may each perform different kinds of operations

on their inputs. If there are multiple hidden layers, the network is called deep neural

network, and the learning process is called deep learning. Two layers can be connected

in different ways. In fully connected layers, every neuron in one layer connects to every

neuron in the subsequent layer. In pooling layers, a group of neurons in one layer connect

to a single neuron in the subsequent layer. NNs can also be categorized by the direction

in which their connections flow. If they only go to the following layer, the network is called

a feedforward network ; alternatively, a recurrent network allows connections between

neurons in the same or previous layers.

When designing the network architecture, hyperparameters must be set. They are things

such as the number of hidden layers, the number of neurons in each layer, the learning

rate, and the connectedness of each layer. There are multiple different types of NNs, such

as convolutional neural networks (CNNs) and residual neural networks (RNNs). Despite

this, they always consist of these same building blocks of neurons, connections, weights,

biases, and activation functions. Also, ultimately the signal always traverses from the input

layer to the output layer, possibly going through the layers multiple times in the process.

More neurons and connections allow for more complex function representations. But if

the network becomes too large, the weights between the neurons must be kept small.

It prevents the network from overfitting the training data, preserving its generalization

properties. However, this causes the activation values to stay in the linear region of the

activation function. It means the network behaves like a linear function representable with

far fewer parameters. Hence, a larger network is not always automatically a better one.
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2.1.1 Training neural networks

For any ML model to complete its task, it must be trained first. The training consists of

adjusting the weights and optional neuron thresholds of the network. The objective is to

improve the accuracy, i.e., to minimize the observed errors. The error vector describes

the error between the true values and the network outputs in the training phase. The

training continues as long as the error decreases; the learning algorithms usually have an

early stop mechanism if the error does not decrease meaningfully. Should the error rate

be too high after the training has finished, the network must be redesigned or discarded.

However, this error describes the situation only at the output layer. NN consists of mul-

tiple layers with multiple neurons and weights between them that need to be adjusted

to minimize the error at the output layer. The most common algorithm for this adjusting,

or training, is called backpropagation. Let ∆k be the measured error at neuron nk at

the output layer. The idea behind backpropagation is that a neuron nj in the preceding

hidden layer can be thought to be contributing to some fraction of the error ∆k. Thus,

the ∆k values are divided between the connections to the neuron nk according to the

connections’ weights and then propagated back to provide the ∆j values for the preced-

ing hidden layer. Propagating the ∆ values back to the previous layer and updating the

weights between the two layers starts from the output layer. It is repeated for each layer

in the network, all the way to the earliest hidden layer.

2.2 Dimensionality reduction

In dimensionality reduction (DR), data is transformed from a higher-dimensional variable

space Rd into a lower-dimensional variable space Rm, where 0 < m < d. The objective

is that the lower-dimensional representation of the data loses as little meaningful infor-

mation as possible. Ideally, this lower-dimensional representation is close to the intrinsic

dimension of the dataset, i.e., the number of variables needed for a minimal representa-

tion of the original dataset.

DR is vital as d grows. The increasing dimensions make it more difficult and sometimes

completely intractable to analyze the data or to search for a solution to a given task. For

example, a square RGB image of only 224 pixels already has 3 × 224 × 224 = 150 528

dimensions in it. This makes searching for the adversarial directions more difficult as the

number of dimensions increases rapidly. Very rarely, all the dimensions are needed to

represent the data if the d is large, for high-dimensional data matrices are often sparse

due to the curse of dimensionality.

DR has been the key in most of the recent and more efficient attacks in our selected

category. The generation of perturbations is limited to a lower-dimensional subspace,

after which they are projected back into the original space. It allows the attacker to find
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AEs faster and more efficiently due to the smaller search space. On the downside, this

limits the attacker’s degrees of freedom and can sometimes result in larger perturbations

in scenarios with unlimited queries.

DR as part of the attacks is further discussed in Subsection 3.5.2. In the following sub-

sections, we will present the DR methods used in this thesis. Their formal definitions are

left out for conciseness. Further details surrounding their implementation are provided in

Section 4.2.

2.2.1 Discrete cosine transform

Discrete cosine transform (DCT) is a signal transformation technique that expresses a

given signal in a sum of cosine functions of varying frequencies. There are different

variants of DCT; we will use the most common variants, DCT-II and DCT-III, for the trans-

formation and its inverse, respectively. DCT is closely related to Fourier transforms and

similar to the discrete Fourier transform (DFT). The difference is that DCT uses only

cosine functions instead of both sine and cosine functions used by DFT. Thus, DCT is

represented with only real numbers, whereas DFT requires a complex number represen-

tation.

DCT is equivalent to DFT of roughly twice the length, which is why DFT is not compared

in this thesis at all. There are also many other reasons why DCT triumphs over DFT

in compression tasks. The boundary conditions of DCT allow for better compression

over DFT and better computational convenience. These conditions smooth the function

being represented by reducing discontinuities, which means better compression as fewer

sinusoids are needed to represent that function. Using cosine over sine functions is also

more efficient; fewer cosine functions are needed to approximate a typical signal. Hence,

DCT is preferred over DFT in these circumstances.

DCT is not a DR technique per se, but it can be used to restrict the perturbations only

to the low-frequency components of the image. The more pixels it takes to undergo a

change, the lower the frequency is, and vice versa. In images, low-frequency components

refer to regions where the pixel intensity changes slowly, such as a blue sky. The high-

frequency components refer to the fine detail in the image.

The choice to focus only on the low-frequency components draws inspiration from image

compression and especially the JPEG codec, which also utilizes DCT to compress the

image. The low end of the frequency spectrum is more crucial in defining the image

and its contents, while high frequencies are more associated with noise. Guo et al. [21]

demonstrated the efficacy of restricting the perturbation to the low end of the frequency

spectrum. This prompted the subsequent papers which utilize DCT to do the same since

then.
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2.2.2 Interpolation, maxpooling and minpooling

Interpolation is an estimation method for finding new intermediate data points within the

range of known data points. In other words, interpolation estimates a value between pre-

viously measured data points. There are many different types of interpolation, such as

nearest neighbor, linear, and cubic interpolations. In this thesis, we use bicubic interpola-

tion to scale the image both up and down. Despite being the slowest option available, it is

the smoothest applicable option and usually results in the best quality in image processing

applications.

Maxpooling is a standard method used in the hidden layers of CNNs. Maxpooling slides

a k × k window called kernel over the image and retains only the highest value within

that window. Here, the stride is equal to the kernel’s size, meaning that each pixel in the

image is visited exactly once. The difference between interpolation and maxpooling is that

interpolation does not use the highest value. While maxpooling is used very differently in

CNNs, it can be applied here to see whether it is easier to craft AEs with the highest value

rather than the value provided by interpolation. For the same reason, we also experiment

with minpooling, which works exactly the same way as maxpooling, except that it retains

the smallest value within the window. As with interpolation, the upscaling is done via

bicubic interpolation.

2.2.3 Principal component analysis

Principal component analysis (PCA) aims to extract the most important information in a

given n× d data matrix by computing new vectors called principal components. They are

linear combinations of the original variables that explain the most variance in the given

data in decreasing order. Therefore, the first principal component is the linear combination

of the original variables explaining the most variance. The second principal component

then has the constraint of having to be orthogonal to the first principal component, and it

has to explain the second most variance. This process is then repeated for the rest of the

principal components. Each is orthogonal to the others and explains the most variance

in decreasing order, resulting in a total of min(n, d) principal components. PCA can be

utilized in DR by keeping fewer principal components than there are in total.

Before PCA is applied, the original variables (i.e., columns) are centered so that the

mean of each variable is 0. Their scales are also unified to the same scale by, e.g.,

standardizing the data. This is done because PCA finds principal components that explain

the most variance. If the scales of the variables are different by orders of magnitude, the

higher values will dominate the variance. Thus, the variables with high values will form

the principal components, with little or no contribution from the other variables. A unified

scale ensures that all the variables will be taken into account, as the variables with a
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smaller scale might be more useful than the variables with a higher scale.

2.2.4 Independent component analysis

Independent component analysis (ICA) attempts to decompose a multivariate signal into

its independent components. The original signal x is assumed to be consisting of in-

dependent source signals s that are weighted by the mixing weights a. Thus, the as-

sumption is that x is a linear mixture between these two. ICA also assumes that the

underlying sources are statistically independent of each other and that their distributions,

even though unknown, are non-Gaussian. The goal is to perform a linear transformation

of the original data into these maximally independent components.

Whereas PCA finds axes of most variance and projects the data onto them, ICA assumes

that the original signal consists of multiple independent components with varying weights

and tries to separate them. While ICA is not a DR method in and of itself, we will test its

impact in finding the directions for the perturbations out of curiosity.
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3. ADVERSARIAL EXAMPLES AND RELATED WORK

Now that all the background information is available to the reader, the AEs themselves

are introduced in this chapter. More precisely, they are presented in Section 3.1. We

discuss the security concerns and distinguishability in Section 3.2, and a concept called

threat models is examined in Section 3.3. We explore a collection of hypotheses for the

existence of AEs in Section 3.4 and present a selection of the history of our selected

attack category in Section 3.5.

3.1 Adversarial examples

AEs are inputs that have been deliberately manipulated to obtain an erroneous classifi-

cation result from an ML system. They are usually constructed by adding perturbation (or

distortion) to unmanipulated inputs called clean inputs or original inputs. A demonstration

of a minimized AE is shown in Figure 3.1. On the left is the original image, in the middle

is the added perturbation and on the right is the AE. For humans, the difference is indis-

tinguishable due to the minimality constraint. Despite the apparent resemblance between

the perturbation and random noise, the difference is that the perturbation is manufactured,

which is why their statistical properties differ. For this reason, the AEs affect ML models

differently than random noise. Feeding an AE to an ML system to get a misclassification

is called an attack ; its alternative names include evasion and dodging attack.

Per Szegedy et al. [46], AEs are defined as an optimization problem:

min
x′

||x′ − x||p,

s.t. f(x′) = l′,

f(x) = l,

l ̸= l′,

x′ ∈ [0, 1]d, (3.1)

where x and l are original input and its label, x′ and l′ are AE and its label, || · ||p is the

distance between samples with a chosen distance metric (here, lp-norm), and x′−x = ϵ

is the perturbation. The input is represented with values in a range from 0 to 1. The

objective in this often referenced definition is to minimize the perturbation.
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Figure 3.1. A demonstration of a minimized AE. By adding a small perturbation to the
original image, it can be seen how a tiny modification can cause a seemingly irrational
change in classification. Original image is from the ImageNet [40] dataset.

3.2 Distinguishability and security concerns

In this section, we will discuss AEs from a security standpoint and explore their motiva-

tions. A more interested reader is referred to the thorough paper by Gilmer et al. [18],

as we concisely examine this topic. Firstly, despite our demonstration in Figure 3.1, the

security concerns raised by AEs are often exaggerated from an economical point of view.

Crafting AEs requires extensive ML know-how, and there are usually other simpler alter-

natives. Perhaps the most famous example of real-life AEs is by Eykholt et al. [14], where

they slightly modify a stop sign to fool autonomous vehicles. While these types of scenar-

ios certainly are to be taken seriously, in this case, it usually is easier for the attacker to

merely cover or displace the sign altogether to achieve the same effect.

Secondly, it has been argued that the minimality constraint is often overemphasized, and

the size of the perturbation does not matter [18, 44]. Hence, the chase for imperceptible

perturbations should be motivated better, as the ML system does not have the concept

of "indistinguishable" and "distinguishable" perturbations. Thus, it will give an erroneous

classification when facing an adequate perturbation, regardless of its magnitude. This

concept of distinguishability only applies to the human viewpoint, and the difference be-

tween human and machine perception has indeed been highlighted [18, 44] (see also

Section 3.4). Ergo, with this argument, the perturbation size should not matter should the

machine operate effectively autonomously.

If this restriction for minimizing the perturbation is then removed, any input that aims to

force a mistake from the classifier qualifies as an AE. This includes inputs humans would

deem as nonsense. Furthermore, it has been questioned whether the currently used

similarity measurement methods suit the human perceptual system sufficiently [50, 45].

Nevertheless, this phenomenon does exist, despite its niche status in real-life scenarios,

as of yet. It could prove to be more problematic in the future as the popularity of ML
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increases. For example, sensor wear and minor statistical anomalies are possible in real-

life scenarios, yet they should not affect the model the way AEs do. Indeed, as the AEs

exploit the natural imperfections of the model, there might not be an attacker in the first

place. Technically, an unmanipulated but misclassified input acts the same way as an AE.

However, the attacker’s presence is not ruled out; they can exploit this naturally occurring

phenomenon.

In addition, it must be noted that the attacker does benefit from an indistinguishable at-

tack. They might be able to utilize it for longer before being detected, even though this

rarely is a strict requirement. The black-box decision-based scenario provides a real-

istic experiment to see how easy it would currently be to fool an unknown classifier in

this way. The query count and other parameters can be limited to allow perturbations of

any size, while indistinguishable ones are achievable with a larger query budget. Thus,

indistinguishability is not a strict requirement but rather an option.

Despite all this, most of the research focuses on this formulation of minimizing the per-

turbation, as defined in Equation 3.1. Indeed, while Szegedy et al. [46] revitalized this

research direction with their minimized optimization problem, even Dalvi et al. [12] in the

first paper on this subject focused on minimizing the cost, i.e., the perturbation, of their

AEs. Instead of blindly pursuing the imperceptible perturbations, this thesis aims to pro-

vide research into a more efficient generation of AEs. Therefore, our goal is to provide

an ML contribution with hopefully generalizable results rather than to raise the alarm with

security concerns.

3.3 Threat models

Threat models is a term used to describe the attacker’s capabilities. As the attacks can

be categorized in various ways, this section is meant to provide a taxonomy of the AEs

for the reader. While defending against AEs is also one aspect of this phenomenon, it is

omitted for brevity since it is not the focus of this thesis.

3.3.1 Attacker’s knowledge of the target model

White-box attacks are attacks where the attacker knows the target model thoroughly. This

information includes, for example, the model’s parameters, training data used, weight

matrices, and the model’s architecture. While this allows for a very precise and fine-

tuning approach, it is not a relatively realistic scenario since the information about the

target model is rarely accessible to the attacker.

Sometimes in the scientific literature, the term grey-box attack is used to describe a situ-

ation where some, but not all, knowledge of the target model is available to the attacker.

These can be, for example, some of the training data used, the model’s architecture, or
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some of its defenses. In any case, the information available about the target model is

partial and not complete.

In black-box attacks, the attacker has very limited or no information at all about the target

model. This makes it significantly harder to craft AEs with small perturbations, especially

with images, as their dimensionality rapidly grows the larger the images become. Black-

box attacks are usually further subcategorized into:

i) Transfer-based attacks, in which a substitute model for the target model is trained.

As the attacker has white-box knowledge of the substitute model, they can utilize

more efficient AE generation algorithms. The attacker then tries to fool the target

model by feeding it an AE generated on this substitute model, trying to exploit an

adversarial property called transferability [46, 35]. According to it, an AE generated

on one model has a considerable probability of fooling another model, given that

they are trained to perform the same task. However, training a substitute model is

usually expensive resource-wise.

ii) Score-based attacks, in which the attacker has access to the logit output or the

class probabilities of the target model. In other words, the attacker might get access

to the top-k classes and their probabilities for a given input.

iii) Decision-based attacks (DBAs) (also known as hard-label attacks or query-based

attacks), in which the attacker only receives the most probable class predicted by

the ML system for a given input. In other words, the attacker only receives the top-1

class information with no probabilities whatsoever, making this a stricter scenario

than the score-based attacks. DBA is considered the most challenging and most

realistic of these scenarios, as it depends on nothing else but the most probable

class information.

iv) Non-traditional attacks. Whereas most attacks try to minimize the perturbation ei-

ther regarding the l2-norm or l∞-norm, non-traditional attacks abandon these norm-

based constraints. The approaches in this category include, for example, recoloring

the image or replacing a certain area of the image with an adversarial patch.

Black-box attacks, and more specifically DBAs, are considered to be the most realistic

scenario in the sense that the attacker only has little or no information about the target

model. It is usually the case in a real-life scenario, and the algorithm selected for this

thesis is indeed from the DBA category.

3.3.2 The targeting method

The attacks can also be categorized by their specificity:

i) Untargeted attacks are counted as successful if they manage to change the classi-
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fication of an input to any other class than its original class, i.e. f(x) ̸= f(x′).

ii) Targeted attacks are more specific in that for them to be successful, they have to

change the classification of an input to a specific pre-defined target class t, i.e.,

f(x′) = yt.

A targeted attack is more specific in its criterion, as there is a single target class instead

of c − 1 target classes. This makes the targeted attack the more challenging scenario

since this single target class resides in a smaller region in the input space than the c− 1

classes. Depending on the algorithm, it can be either untargeted or targeted. They may

also provide an option to choose either via an attacker-controlled parameter. Note that in

binary classification there is no difference between these two scenarios, as they reduce

to the same task. In this thesis, we examine only the untargeted scenario, as the authors

of the selected algorithm [29] have not implemented the targeted version at the time of

this thesis.

3.3.3 Distance metrics

A distance metric is used to measure the distance between two elements in a metric

space; here, the elements are vectors. In this use case, they are utilized to measure

the magnitude of the perturbation by comparing different AEs to the original image. By

examining this magnitude, it is possible to see if the AEs generated by the algorithm are

moving closer or further away from the original image.

Different papers use different metrics, making it sometimes hard to get an objective view

of their performance when comparing them to each other. This is because different dis-

tance metrics produce different results. The goal of this subsection is to serve as a guide

to the distance metrics used in the DBA literature.

The most common way of measuring this distance are norms, which map vectors to non-

negative scalar values. Norms can also be used to measure the size of a vector. Formally,

the lp-norm is defined as:

||x||p =

(︄
n∑︂

i=1

|xi|p
)︄ 1

p

.

The distance between two vectors is acquired by taking the norm of their difference:

||x − x′||p. Usually, the perturbation is optimized only with one pre-selected norm. The

most used norms in the scientific literature are:

1. l0-norm: even though this is not technically a norm, this term is used in the literature

to measure how many values were changed between the two vectors, i.e. xi ̸= x′i.

For example, in images, the l0-norm is used to measure how many pixels1 were

1In RGB images, every pixel consists of 3 color channels, and a pixel changes if at least one of the color
channel values is changed.
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changed, disregarding the information about how large the changes were.

2. l2-norm: measures the Euclidean distance between the vectors. Even if there are

many changes between the corresponding values, Euclidean distance can remain

small, if the changes themselves are small.

3. l∞-norm: measures the maximum change to any value:

||x− x′||∞ = max(|x1 − x′1|, . . . , |xn − x′n|).

This means that only the highest change in any of the values is measured, and the

information about how many of the values were changed is disregarded.

For example, Li et al. [24] used an alternative to lp-norms by using mean squared error

to measure the distance between two images:

MSE =
1

w · h · c

w∑︂
i=1

h∑︂
j=1

c∑︂
k=1

(x[i, j, k]− x′[i, j, k])2.

This approach was also adopted by Wang et al. [49], where they utilized root mean

squared error: RMSE =
√
MSE.

However, as lp-norms poorly measure how humans perceive differences [50, 45], it has

been questioned whether other alternatives should be used in signal processing applica-

tions. Using a metric that mimics the human perception system better would also bet-

ter motivate the chase for imperceptible perturbations. Since MSE and RMSE are very

closely related to lp-norms, they do not hold an advantage in this matter. Nevertheless,

the scientific literature primarily uses lp-norms, so this thesis will also adopt the l2-norm

as the distance metric. In the end, there is no consensus on what distance metric should

be used, so it is at the authors’ discretion to choose one.

3.4 On the existence of adversarial examples

AEs are a fascinating phenomenon haunting the research community. Countless hy-

potheses have been presented in the scientific literature, but many of them either fail

to generalize or are in conflict with each other. In this section, we explore some of the

explanations presented in the literature for the existence of this peculiar phenomenon.

This is not a complete overview for the sake of brevity; a more interested reader is referred

to excellent papers such as the ones by Akhtar et al. [1], Balda et al. [2], and Serban et al.

[44] for a more thorough overview. Despite the traces of adversarial ML going as far back

as 2004 with Dalvi et al. [12], the reader is referred to the paper by Serban et al. [44] for

these early phases. Again for brevity, we restrict ourselves to the literature from the year

2013 and onwards when this phenomenon resurged, as most of the literature does. Even
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Figure 3.2. Visualization of the AEs in the input space. Two classes, X and O, are
separated by the curved red DB. Due to the model’s approximation of this DB (depicted
with the slightly curved blue line), the model misclassifies the slightly modified normal
input.

though this phenomenon has been mostly studied on NNs, the adversarial vulnerability

exists independent of the ML model in question [35]. Indeed, there are papers specifically

for, e.g., decision-tree AEs.

While the exact reasons for the existence of AEs are unknown — as in, what is the true

culprit and how to fix it — the basic idea is as follows. As noted above in Chapter 2,

in supervised ML, the goal is to find a good enough approximation for the ground truth

function describing the given phenomenon. It is because finding the exact ground truth

function is almost always impossible. However, it is this property of ML enabling the

existence of AEs, since the approximated DB does not exactly match the ground truth

DB. In our image classification task, the ground truth can be thought of as representing

human perception.

This mismatch leads to regions in the input space where the attacker can "push" an

otherwise correctly classified sample over one of the boundaries without crossing the

other. Thus, the ML model makes an erroneous classification from a human perceptual

standpoint. We illustrate this in Figure 3.2. The two classes, X and O, are separated

by the red ground truth DB, and the model has approximated it with the slightly curved

blue DB. The attacker can nudge the normal input into the adversarial region, prompting
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a misclassification. In addition, as discussed in Section 3.2, the input can be adversarial

even without an adversary. If the model encounters an unmanipulated input in place of

the orange O in Figure 3.2, the true class should be X, but the model misclassifies it as O

nonetheless.

Note that this is a perfectly valid model; the classifier has correctly classified every input it

has encountered. However, the training data cannot feasibly cover the entire input space,

and thus the model’s DB is practically always an approximation. As the phenomenon

becomes more complex, it is increasingly difficult to model the real DB sufficiently.

Then the question is, what causes this mismatch between the ground truth and learned

DBs to be large enough to be exploited? Despite the substantial research, it is still not

clear. However, there are hypotheses about them, which we will now explore.

3.4.1 Initial hypothesis and linearity of the model

In the initial paper that caused the resurgence of research into AEs, Szegedy et al. [46]

theorize that the AEs are inputs of extremely low probability. They claim that while input

transformations are used during training in many models to improve performance, they are

highly correlated, unlike AEs. The authors continue by stating that these low-probability

areas are hard to reach efficiently by this kind of sampling and that they form "adversarial

pockets" in the data manifold. Furthermore, they speculate that the discontinuities of the

model contribute to this phenomenon’s existence.

Gu and Rigazio [20] followed by examining these adversarial regions, which they found to

be relatively large and locally continuous. They claim the training procedure and objective

function to be the culprits and call for changes in the training procedure. They suggest

the model should learn flat and invariant regions around the training data to combat this

problem.

Goodfellow et al. [19] first presented the linearity hypothesis on NNs. They argue that

even though NNs are nonlinear in nature, they exhibit linear behavior. They demonstrate

this experimentally by generating AEs efficiently using a first-order approximation of NNs

around a given instance. Goodfellow et al. continue by stating that the input space is not

full of small adversarial "pockets"; instead, they found the adversarial space to be large

and high-dimensional. They also add that the direction of perturbance is more important

than the specific point in the input space and that models trained to model the input

distribution are not resistant to AEs.

Despite its results, the linearity hypothesis was at least partly challenged, as nonlinear

ML models are equally vulnerable to AEs. Furthermore, the general nonlinearity of NNs

also makes them unable to be replaced by a linear classifier completely. The linearity

hypothesis was also refuted with AEs which cannot be explained by it [27, 42]. Luo et
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al. [27] refined the linearity hypothesis further by proposing that the DBs can be approx-

imated well by a linear boundary around the objects recognized by the model. In other

words, they are locally linear and can exhibit nonlinear behavior around instances not

recognized by the model.

Fawzi et al. [15, 16] continued and examined the effect of the curvature of the DB, provid-

ing complementary results for the local linearity hypothesis. They show that the robust-

ness of the classifier against AEs can be increased by introducing a bit of curvature to

the DB. Thus, they assume that limiting the curvature of DBs increases sensitivity to AEs.

They also show that the AEs can exist if the boundaries are flat along most directions and

highly curved only along a few.

While the (local) linearity hypothesis has been challenged, it is utilized effectively in some

AE generation methods. This means that while the (local) linearity cannot explain the

phenomenon by itself, it most likely is an important contributing factor in the existence of

AEs.

3.4.2 Feature selection

Tsipras et al. [48] argue that there exists a trade-off between standard accuracy and

adversarial robustness, which arises from standard and robust classifiers using different

sets of features in classification. Ilyas et al. [22] make a case for feature selection and

divide the features into robust and non-robust ones. They suggest that perturbing these

non-robust features could explain the existence of AEs.

Ilyas et al. [22] continue that while robust features are more resistant to adversarial per-

turbations, non-robust ones are essential for generalization despite their brittleness to

perturbations. These features are inherent to the data distribution, meaning different

classifiers trained on that distribution likely utilize robust and non-robust features in a sim-

ilar way. Since the perturbations target the non-robust ones, which are similar between

different classifiers, it would also explain the transferability of AEs.

Ilyas et al. [22] also highlight the difference between human and machine perceptions by

disentangling the features. They show that non-robust features are valuable in boosting

model performance, but robust features align more with human perception. According to

the authors, the training process requires "explicit human priors" encoded into it to have

robust and human-interpretable models that adhere to how humans perceive similarity.

This is in line with earlier findings by Jetley et al. [23], where they assert that the directions

NNs utilize to achieve better performance are the same that causes their vulnerability to

AEs. However, AEs can exist even if there are no vulnerable directions to exploit in the

data distribution [33]. This further hints at the existence of both on-distribution and off-

distribution AEs.
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3.4.3 Model geometry and other explanations

The evolutionary stalling hypothesis by Rozsa et al. [39] suggests that most of the train-

ing data lie close to a DB, and therefore small perturbations are enough to change the

classification. In a similar vein to Gu and Rigazio [20], they argue that this stems from

the inability of the training process to create flat regions around the training samples.

They suggest that as the network weights are adjusted using the gradient of loss during

training, the contribution of already correctly classified inputs to the loss diminishes.

Tanay and Griffin [47] put forward boundary tilting as their hypothesis. Instead of the

higher dimensional space, they assume that the data lies on a low-dimensional manifold.

They argue for the existence of many classifiers with similar accuracy, with the difference

being that the boundary is tilted w.r.t. the ground truth boundary. This results in easier

AE generation since the tilted boundary lies closer to the data subspace than the ground

truth boundary, which enables smaller perturbations to fool the classifier.

Universal perturbations — where a single perturbation can be applied to any input — were

shown to be possible by Moosavi-Dezfooli et al. [32]. They hypothesize that the universal

perturbations exploit the geometric correlations between different parts of the DBs. A

prerequisite for the existence of universal perturbations for flat and even for curved DBs

seems to be a shared subspace along which the DB is positively curved, at least for most

directions.

Gilmer et al. [17] studied an idealized dataset and hypothesize that most of the correctly

classified points are close to an incorrectly classified input. This means that the points

lie close to a DB in a similar vein Rozsa et al. [39] presented in evolutionary stalling.

Gilmer et al. argue that the AEs exist due to the high-dimensional geometry of data

manifolds whenever the classifier has non-zero error rates. They also suggest that the key

to defending against AEs is to reduce test error significantly. In other words, the model

generalization should be improved. They managed to remove AEs on their idealized

dataset, given enough data and a proper model, but the authors call for more research

on real-world datasets.

The off-manifold hypothesis argues that the AEs lie off the data manifold rather than

on it. This assumption means that the AEs would follow a different distribution when

compared to the clean data distribution, which could lead to easy detection methods.

However, Gilmer et al. [17] refute this hypothesis by arguing that the opposite setting of

the typical adversarial scenario is also true. Because a typical incorrectly classified point

can be changed into a correctly classified one with a small perturbation, there exists no

identifying character for AEs for easy detection. This argument is further reinforced by

Carlini and Wagner [6]. Nevertheless, there are arguments for both on-manifold [22] and

off-manifold [33] AEs, with evidence on both sides hinting that both are possible.
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Deniz et al. [13] also call for changes to the training process. Their hypothesis points

to the bias-variance (also known as fitting-generalization) dilemma incorporated in ML

algorithms as the root cause. It states that there is an inevitable trade-off between gener-

alization and fitting. They question whether this has to be so, as such a trade-off may be

fundamentally different from any such trade-off potentially used by the human perceptual

system.

Deniz et al. [13] continue by arguing that the algorithm must have both overfitting and

good generalization simultaneously, whereas the current algorithms are biased towards

the latter. They clarify their definition of overfitting to be good fitting to the training samples.

According to them, model flexibility should be improved by fitting better without sacrificing

generalization, as they show that better fitting increases robustness towards AEs. They

add that as the goal is to find a boundary that best separates two sets of samples, the

best way to do it might not be to have the best separation between each individual sample

and other samples.

Complementary results were provided by Pedraza et al. [37]; even though better fitting de-

creases performance on the test set, it increases the adversarial robustness. While there

are studies that vice versa show that improved generalization results in better robustness

[17], this highlights that both might indeed be needed for better robustness.

Schmidt et al. [43] propose that the available datasets are insufficient to train robust mod-

els. They demonstrate that the greater the model complexity is, the greater the sample

complexity becomes for robust learning. They add that this difference in sample complex-

ity for robust and "standard" learning can be significant.

In summary, it can be argued that the root cause of this phenomenon remains unsolved.

It is unclear whether the AEs exist due to the limited number of samples in the training

phase, generalization and fitting trade-off, or local anomalies in the model. Maybe the

models lack expressive power, the points are too close to the DB, or the input dimension

is too large to solve this problem efficiently. Or perhaps, the features ML systems learn

to utilize differ too much from the equivalents used by human perception, and the models

are fundamentally flawed by design. In any case, the phenomenon continues to exist,

even though it is uncertain whether it is unavoidable.

3.5 History of decision-based attacks

In this section, a brief history of DBAs and the tracks of improvement in that category are

presented. We confine ourselves solely to the DBA category in this thesis. The reasoning

for this is that the selected algorithm is from the DBA category, and the advances in each

of the other attack categories are just as numerous. As noted in Subsection 3.3.1, the

only information DBAs receive from the target classifier for any given input is the most
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probable class called top-1 class. Formally, the classifier is represented as f : Xd → Y c,

the top-1 label is represented as f(x) := argmaxk fk(x), where fk(x) is the predicted

probability of class k, 1 ≤ k ≤ c.

This section does not serve as a complete list of all the papers in the DBA literature. In-

stead, it represents a subjective selection of often referenced and influential publications,

as the goal is to give the reader a general overview of overall trends. A list of papers

mentioned in this and the following subsection can be found in Table 3.1. Even though

they are not complete lists either, there exist more thorough surveys, such as the ones by

Bhambri et al. [3] in 2020, Akhtar et al. [1] in 2021, and Mahmood et al. [28] in 2021. It

must be noted that these surveys may use alternative names, such as hard-label attacks

or query-based attacks, to describe DBA.

There have been even more recent papers in this category after the aforementioned sur-

veys; some examples include AHA by Li et al. [25], a Bayesian optimization approach

BO-DBA by Zhang and Yu [51], Triangle Attack by Wang et al. [49], and f-attack by

Li et al. [26]. Despite the numerous newer candidates in the DBA category, the selection

of the chosen algorithm SurFree [29] is motivated in Section 4.1.

3.5.1 Previous work

For a timeline of the attack algorithms, see Table 3.1. The first paper in the DBA category

was by Brendel et al. called Boundary Attack [4] in 2017. The idea behind Boundary
Attack is to find the DB between the original and an adversarial image. Then, a random

walk is utilized along the DB to move the adversarial image closer to the original image.

The query count for this inaugural paper was reported to be in the hundreds of thousands,

even as high as one million queries on the ImageNet [40] dataset.

This was followed by OPT attack and the improved Sign-OPT attack by Cheng et al.

[9, 10]. They re-formulate the attack as a real-valued optimization problem and use a

zeroth-order optimization2 algorithm to solve it. HopSkipJumpAttack by Chen et al. [7]

was the first to implement gradient estimation at the DB. The gradient is the direction

and the rate of the fastest increase; it can be used locally to estimate the geometry of

DB. This idea was developed further in QEBA by Li et al. [24], where they estimate the

gradient in various subspaces instead of the full input space. GeoDA by Rahmati et al. [38]

is a geometry-based attack that approximates the DB locally with a hyperplane to find its

normal vector. This normal vector can then be used to craft an AE.

Moving away from using any gradient estimation, RayS by Chen and Gu [8] re-formulates

the problem of finding the direction to the closest DB as a discrete optimization problem.

2In zeroth-order optimization, the goal is to minimize the objective function when only the function value
can be evaluated at chosen inputs.
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Attack name Date Author

Boundary Attack 12 Dec 2017 Brendel et al. [4]

OPT 12 Jul 2018 Cheng et al. [9]

HopSkipJumpAttack 3 Apr 2019 Chen et al. [7]

Sign-OPT 24 Sep 2019 Cheng et al. [10]

GeoDA 13 Mar 2020 Rahmati et al. [38]

QEBA 28 May 2020 Li et al. [24]

RayS 23 Jun 2020 Chen and Gu [8]

SurFree 25 Nov 2020 Maho et al. [29]

BO-DBA 4 Jun 2021 Zhang and Yu [51]

AHA 13 Oct 2021 Li et al. [25]

Triangle Attack 13 Dec 2021 Wang et al. [49]

f-attack 3 Mar 2022 Li et al. [26]

Table 3.1. Attacks mentioned, their original publication dates, and their authors.

The selected algorithm SurFree by Maho et al. [29] exploits geometrical properties by

assuming the DB to be locally linear. They then construct a circle on the DB with the

original image and an adversarial point. After that, the optimal perturbation is found in the

intersection of this circle and the DB.

As the efficiency of the attack algorithms increased, the query count was cut down to tens

of thousands and even to a few thousand, with SurFree [29] claiming to be the first to

explore DBA scenarios with less than one thousand queries. The tracks of improvement

that enabled this increase in efficiency will be explored in the following subsection.

3.5.2 Improvements

There have been two major tracks of improvement in the recent works in this category:

firstly, the gradient estimation step has been mostly omitted. A typical step in performing

a DBA is to find the DB by finding a point in the vector space that gets labeled differently

than the original input. The DB then lies somewhere between these two points and can

be found, e.g., with a binary search. Then, some algorithms used a gradient estimation

step to estimate the gradient of this DB and used that information to update the AE.

However, the issue with gradient estimation is that it requires multiple queries, as many

small changes are made to the point lying on the boundary to estimate the boundary’s

gradient. It rapidly increases the number of queries the attack requires, making it very ex-

pensive from a query count viewpoint. Some algorithms [7, 38] try to mitigate this problem

by dynamically modifying the queries spent for gradient estimation w.r.t. the iteration num-

ber. Even though the gradient estimation would more accurately give the new direction,
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the impact this gradient estimation has in the direction search does not seemingly justify

its cost. When fewer queries are spent for gradient estimation leading to a smaller de-

crease in perturbation, it still decreases at a higher rate since the size of the perturbation

does not plateau. Thus, recent papers increasingly stray away from gradient estimation.

The second track of improvement in many recent papers [38, 29, 24, 49] is DR, which

constrains the perturbation to a lower-dimensional subspace of the original input space.

This makes the attack converge faster to a smaller perturbation due to the smaller search

space. On the other hand, the perturbation might become larger than its non-restricted

counterpart the higher the query count becomes, as the lower-dimensional subspace

simultaneously lowers the attacker’s degrees of freedom.

In other words, the DR vastly reduces the number of possible directions to search through.

Eventually, it may result in a larger perturbation, if the query count is allowed to increase

high enough since all the directions are not available for searching. However, faster attack

convergence is more crucial in low query count settings, as the objective is to minimize

the distance between the original and adversarial inputs as fast as possible. Our goal is

to test if any particular choice of subspace and its size works better than others for finding

the directions of perturbations.
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4. IMPLEMENTATION OF THE TESTS

In this chapter, the details about the chosen algorithm and its motivation are presented.

Furthermore, the experimental setup is specified. The results themselves are evaluated

separately in Chapter 5, with further discussion in Chapter 6.

4.1 SurFree

SurFree (a fast surrogate-free black-box attack) is a recent DBA algorithm proposed by

Maho et al. [29] in late 2020 to achieve small perturbations with minimal query counts.

While it is not the newest algorithm in the DBA category, it can nonetheless be considered

state-of-the-art. Many of the more recent entries in this category [25, 49, 26] compare

their performance to SurFree while it retains competitive results.

The "surrogate-free" in the subtitle refers to the algorithm not using any gradient surrogate

estimations nor a surrogate of the target model; the algorithm only utilizes the input itself

in crafting the AE. Training a surrogate model is very expensive, as the target model is

queried for non-adversarial classification to learn the surrogate for it. Often, this target

model might not be conveniently available in practice, and the queries might not be free

of charge. Some algorithms, on the other hand, such as QEBA [24] for its PCA version,

need a large set of inputs for the perturbation sampling, which is an additional overhead

for the algorithm.

There were varying reasons why some newer algorithm was not chosen for this thesis.

Some of them were not chosen as they did not have a public source code when the algo-

rithm for this thesis was selected, or their implementation did not allow for a convenient

comparison of DR. Others only evaluated their results with algorithms not considered

state-of-the-art nowadays, depriving us of a more objective look at their performance.

While some preceding algorithms attain comparable or better results than SurFree when

the query count is allowed to grow high enough, it importantly achieves better results

in scenarios with limited queries (e.g., one thousand queries). It also does not need any

additional data besides the input to be perturbed. All in all, SurFree was chosen due to its

good performance, public source code, independence of external data, and convenience

in implementing this thesis.
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4.1.1 The setting and notation

In this subsection, the basic idea of SurFree and its setting is presented, with a visual-

ization available in Figure 4.1. For a more thorough explanation of the algorithm and its

proofs, the reader is pointed to the original paper [29]. Note that the original notation is

slightly altered here to avoid confusion with the notation used in this thesis.

To put it briefly, SurFree exploits geometric properties by assuming the DB to be locally

linear. First, it finds a point on the DB between the original image and a random noisy

adversarial point. Then, the algorithm constructs a circle on the DB with the original image

and the point on the DB. The optimal perturbation is found in the intersection of this circle

and the DB, and the algorithm iteratively moves closer toward it. We will now explore the

algorithm in more detail.

While studying previous attacks [7, 38, 24] from the query budget viewpoint, Maho et

al. noticed a presence of plateaus in the perturbation’s size due to the queries used for

the gradient estimation step. It is utilized in many DBA algorithms, and Subsection 3.5.2

offers more discussion on it. SurFree omits it completely and uses this saved query

budget to investigate more directions instead.

The rationale behind this is that even though the size of the perturbation decreases more

slowly without gradient estimation, it does so at a higher rate since it does not plateau.

Instead of using the gradient descent approach, the approach of SurFree can be seen

as a coordinate descent on a random basis. Maho et al. [29] do note that, in theory, the

random coordinate descent is essentially the same as the worst-case rate of the gradient

descent [34]. However, the saved query budget seems to outweigh the advantage of gra-

dient estimation. As a result, Maho et al. call for more investigation into these conflicting

arguments.

SurFree follows the optimization problem presented in Equation 3.1. Let the original

correctly classified image be xo, and the outside region O := {x ∈ Rd : f(x) ̸= f(xo)}.

In other words, O represents all the images in the input space labeled differently than the

original image and its label.

Maho et al. make the usual assumption that when knowing a point y ∈ O, it is possible

to find a so-called boundary point xb between xo and y such that it lies on the DB,

denoted by ∂O. Due to the local linearity hypothesis presented in Subsection 3.4.1, it is

also assumed that the boundary can be approximated by a hyperplane locally around the

boundary point xb. They note that this might not always be the case, and the boundary

might be convex. They offer optional methods such as interpolation and vector cycling to

aid in this case. However, the original paper does not utilize these methods outside of its

ablation studies, and thus they are ignored in this thesis as well.
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Figure 4.1. The geometrical setting of SurFree visualized. Adapted from the original
paper by Maho et al. [29].

Let us define δ := ||xb − xo|| and u := (xb − xo)/δ, ||u|| = 1. The search for a

closer adversarial point is restricted to a random two-dimensional affine plane P , which

is spanned by vectors u and a random orthogonal direction v ∈ Rd, ||v|| = 1. This plane

P also contains both points xo and xb. It is assumed that the intersection ∂O ∩ P is a

line that passes by xb with normal vector n ∈ P that is pointing in the direction of O,

||n|| = 1. In polar coordinates, n := cos(ψ)u+ sin(ψ)v, with ψ ∈ (−π/2, π/2).

The adversarial point in P is represented with polar coordinates z(α, θ); the point is at a

distance of δ(1− α) from xo and makes an angle θ with u:

z(α, θ) = δ(1− α)(cos(θ)u+ sin(θ)v) + xo, (4.1)

with α ∈ [0, 1] and θ ∈ [−π, π]. Hence, z(0, 0) = xb and z(1, θ) = xo,∀θ. Because the

goal is to minimize the distance from xo, the optimal point z(α, θ) ∈ ∂O∩P would be the

projection of xo onto this intersecting line ∂O∩P , and it is obtained when θ = ψ and α =

1−cos(ψ). Because of this coupling between θ and α, the adversarial point can generally

be represented as z∗(θ) := z(1− cos(θ), θ). By substituting n and α = 1− cos(ψ) into

Equation 4.1, the optimal point can now be represented as z∗(θ∗) = δ cos(ψ)n+xo. The

problem for the attacker in finding this optimal point z∗(θ∗) is that the angle ψ is unknown.

In order to find the optimal adversarial point, i.e., the projection of xo to the boundary,

SurFree iterates over orthonormal directions. Let xb,k, uk, and vk be their respective

vectors at iteration k. It is assumed that the boundary ∂O is an affine hyperplane passing
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through xb,1 in Rd with normal vector N . Consider a random basis of span(xb,1 − xo)
⊥

composed of d − 1 vectors {vi}d−1
i=1 . In a generalized form, the normal vector is decom-

posed in spherical coordinates:

N = sin(ψd−1)vd−1 + cos(ψd−1) sin(ψd−2)vd−2 + . . .+ cos(ψd−1) . . . cos(ψ2)n1,

with n1 := sin(ψ1)v1 + cos(ψ1)u1 being the l2-normalized projection of N onto hyper-

plane P1, which is spanned by vectors v1 and u1 := (xb,1 − xo)/δ. Then, xb,2 :=

z∗(θ∗) ∈ O ∩ P1 can be found as given in the definition of z∗(θ∗) and u2 is defined as

u2 := (xb,2 − xo)/δ cos(ψ1) = n1. After that, the problem in P2, spanned by v2 and u2,

is solved. Note that N⊤u2 ≥ N⊤u1.

Iterating this process increases the scalar product between N and (xb,k − xo) ∝ uk

given by:

N⊤uk =
d−k∏︂
i=1

cos(ψd−i).

In the end, this process converges to the adversarial point with minimal distortion: xb,d ∈
O and xb,d −xo is colinear with N . Thus, it points towards the optimal adversarial point,

i.e., the projection of xo to the hyperplane boundary. However, this would mean there

would have to be as many iterations as there are dimensions. A clever strategy instead

goes through the directions in decreasing order of their angles (|ψk|)k, which means that

the biggest distortion decreases first. This is unavailable for the attacker who does not

take N into account and is unwilling to spend queries to estimate it.

4.1.2 The algorithm

SurFree consists of four stages: initialization, direction generation, sign search, and

binary search of an angle. In this subsection, the basic ideas behind each of these four

steps are presented. For the complete algorithm, the reader is referred to the original

paper [29].

i) Initialisation. Here, the goal is to find an initial point xb,1 that is close to the bound-

ary ∂O. First, a point y0 ∈ O is generated. In the targeted version, y0 is an image

belonging to the target class, and in the untargeted version, it is a noisy version of

xo. Then, a binary search between xo and y0 is utilized to find the initial point xb,1

lying close to the boundary.

ii) New direction. At iteration k, the point close to the boundary xb,k ∈ O defines

the vector uk ∝ xb,k − xo, ||uk|| = 1. A random direction tk that is perceptually

shaped as xo is generated by transforming xo into a lower-dimensional represen-

tation. Then, its coefficients are multiplied with a random sample from the uniform

distribution over the values {−1, 0, 1}. After that, the amplitude function and in-
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verse transformation are applied. This new direction is then made orthogonal to uk

and to (at most) the last L directions Vk−1 := {vj}k−1
j=max(k−L,1) with Gram-Schmidt

procedure, producing the new directions vk.

iii) Sign search. Because the sign of θ depends on the sign of the unknown ψ (see

original paper [29]), angles with alternating + and − signs are tested. The an-

gles are tested in the order of decreasing amplitude: θmax · τ , τ := (1,−1, (T −
1)/T,−(T − 1)/T, . . . , 1/T,−1/T ), with T being a user-controlled parameter. If

an adversarial image is found, the search is stopped; otherwise, θmax is decreased,

direction v is given up, and another direction is generated.

iv) Angle binary search. When an adversarial point is found by the sign search, the

angle θ is refined by a binary search with at most l steps. The result is θ∗, and

z∗(θ∗) ∈ O is the new boundary point xb,k+1.

4.2 Experimental setup

In this section, we specify the details of our implementation of the experiments. We

follow the original paper’s [29] setup to provide a fair comparison. As in the original

paper, we choose ImageNet1 [40] as our dataset, and a pre-trained ResNet18 available

in the PyTorch environment2 [36] as our classifier. 200 correctly classified images were

randomly sampled from ImageNet’s validation set, with their pixel values scaled between

0 and 1, and their size limited to 3 × 224 × 224 pixels. The correct classification of the

original images was ensured after these modifications.

The algorithm was given a budget of 5 000 queries. We consider it reasonable for the

current state of the DBAs, as many of the more recent ones aim for results with less than

1 000 queries. With 5 000 queries, however, it is possible to examine better when the

perturbation starts to plateau due to the limited search space in the smaller dimensions.

It is also customary in the scientific literature to run tests with more than 1 000 queries

and report the results.

The tests were run on a PC with AMD Ryzen 5 3600 CPU and NVIDIA GeForce RTX

2070 GPU, with CUDA3 enabled whenever possible in the code. With CUDA enabled, it

is possible to utilize GPU for computations, cutting down the runtimes. SurFree’s stan-

dalone version4 was used with parameters from the original paper. It must be noted that

SurFree has received updates to its GitHub after the original publication. Despite some

parameters being changed as well, the changes are seemingly mostly updates for depre-

cated libraries, which enable the codebase to work in the first place. For this reason, we

1https://www.kaggle.com/competitions/imagenet-object-localization-challenge/data
2https://pytorch.org/
3https://developer.nvidia.com/cuda-toolkit
4https://github.com/t-maho/SurFree

https://www.kaggle.com/competitions/imagenet-object-localization-challenge/data
https://pytorch.org/
https://developer.nvidia.com/cuda-toolkit
https://github.com/t-maho/SurFree
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use the latest version (c9920f2) with the old parameters from the original paper, including

the tanh amplitude function.

We compare our results to Triangle Attack5 (5c468fc) by Wang et al. [49], who

claimed superior performance over SurFree in their paper. We did not choose Triangle
Attack initially, as its source code was published when this thesis was already well un-

derway. For fairness, we adopt original parameter values for Triangle Attack as well.

By comparing both with their original parameter values, we hope to have a better compa-

rability of our results.

The original paper of SurFree [29] tested 1/2 (50%) and 1/4 (25%) of the dimensions for

DR but settled on using 1/2 after their initial tests. With DCT, we test both the full-frame

version and the block DCT approach. In block DCT, we divide the image into 8× 8 blocks

and then perform DCT on each of these blocks. It is the version used in the original paper.

We denote the full frame version DCT-F and the block version DCT-B. Thus, DCT-B 1/2

is equal to the performance of the original paper.

We keep halving the amount of DR with each method until the performance degrades.

The halving was done out of convenience as then the DR evenly divides the fixed image

size of 3 × 224 × 224. This property is crucial for methods such as maxpooling, which

otherwise would have to deal with the edges of the image as a special case. Indeed,

we confirmed this by a quick test with 1/10 (10%) without handling it as a special case,

resulting in poor performance due to the uneven dividing of the image. The lowest amount

of DR we will examine in this thesis is 1/256 (0,390625%).

With minpooling, maxpooling, and interpolation, we set the upscaling6 parameters to

mode=’bicubic’ and align_corners=True. With interpolation, we used the same

parameters to reduce the size of the image. We tested different combinations of the

available functions and their parameter values, but they either did not have much of an

impact or the performance worsened.

In addition, it is not possible to perform PCA or ICA on a single vector with 3×224×224 =

150 528 dimensions. Hence, with them, the image has been divided into 8× 8 blocks as

well; each block can then be represented as a 64-dimensional vector. As each image is

composed of 2 352 blocks of this size, we can then form a 2 352× 64 matrix, on which it

is possible to perform PCA and ICA.

For evaluation, we use the l2-norm as defined in Subsection 3.3.3 to measure the average

size of the perturbation. In addition, we use attack success rate (ASR) to determine the

percentage of perturbations lower than a target ϵ at query budget K. We also measure

the runtimes for each method. We will present the results in the following chapter.

5https://github.com/xiaosen-wang/TA
6For scaling up the image, PyTorch offered functions for interpolation and upsampling. Our small-scale

experiments implied equal performance between the two, so we used upsampling.

https://github.com/xiaosen-wang/TA
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5. EVALUATION OF THE RESULTS

In this chapter, we present the results of our experiments. First, we inspect how the size

of the perturbation decreases w.r.t. the query count. Then, we examine the ASR and

consider three different query budgets, K ∈ {200, 500, 1 000}. As the objective in these

attacks is to spend as few queries as possible, these relatively low query budgets allow

us to examine the effect DR has in the crucial early steps. Lastly, we also present the

averaged runtimes of each method. We discuss the results further in Section 6.1.

We use the term no reduction here to refer to the SurFree itself without any DR and

original paper [29] to refer to SurFree with DCT-B 1/2 (50%) as the DR method. As

presented in Section 4.2, DCT-F refers to the full-frame DCT, while DCT-B refers to the

block DCT. We also compare our results to the more recent Triangle Attack by Wang

et al. [49] with its original parameters. We did not provide the same starting point for the

algorithms nor for different DR methods, which introduces very slight randomness to our

results. However, we believe this randomness does not meaningfully affect the results, as

all the starting points are randomized. We discuss this topic further in Section 6.2.

5.1 Average size of the perturbation

We present the benchmark on the average size of the perturbation w.r.t. the query count

with each method in Figure 5.1. Note that we omitted DCT-F 1/32 (3,125%) for visual

clarity; it had a similar performance to DCT-F 1/64 (1,5625%). We offer a zoomed-in

version in Figure 5.2 to better showcase the decrease in perturbation in the crucial early

steps. Due to the limited space, interpolation’s results and the zoomed-in version are

provided separately in Figure 5.3. Note also that for Figures 5.1 - 5.4, we have limited

the perturbation axis for better readability. Due to the random initialization step, the first

queries are highly perturbed, and the figures would thus be hard to interpret without this

limitation. We have provided the reasoning for the selected magnitudes of DR in Section

4.2; in short, they keep halving from the original 1/2 until degradation in the performance

is observed.

Generally speaking, DCTs, maxpooling, minpooling, and interpolation have very smooth

curves, and they gain an advantage from a more extensive DR up to a certain point. In-

deed, the dimensions cannot be infinitely reduced to achieve better and better results.
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Figure 5.1. The average size of the perturbation of each method vs. the number of
queries. Note that we omit DCT-F 1/32 to avoid more clutter; it had near-identical results
to DCT-F 1/64.
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Figure 5.2. The average size of the perturbation of each method vs. the number of
queries. This is a zoomed-in version of Figure 5.1.
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Figure 5.3. The average size of the perturbation of interpolation vs. the number of
queries, with a zoomed-in version on the right. Provided separately due to the lack of
space in previous figures.

DCT-B was an exception; we ran out of dimensions to reduce before we found its turning

point. For both pooling methods and interpolation, the magic number where the reduction

begins to be detrimental seems to be 1/8 (12,5%), whereas DCT-F has the best perfor-

mance with 1/128 (0,78125%). The results showcase how aggressive DR improves the

performance of these methods significantly.

As discussed in Subsection 3.5.2, it is observable for these methods that the reduced de-

grees of freedom — caused by overextensive DR — limit the attacker’s capability to gen-

erate AEs. However, this seems to take effect after around 2 000 – 3 000 queries at the

earliest, whereas the current scientific literature aims for results with lower query counts.

Therefore, a dynamic amount of DR that allows using more dimensions as the query

count increases might achieve better results with higher query budgets.

On the other hand, PCA and ICA have peculiar short plateau periods during the early

queries before they transition into smoother curves as well. Due to their different nature,

they do not seem to benefit from DR, despite ICA performing noticeably better. Their

performance also leaves a lot to be desired, which indicates that it is not as straightforward

to find suitable directions for the perturbations in the subspaces PCA and ICA capture.

Additionally, a key step in SurFree’s perturbation generation is to multiply the coefficients

of the lower-dimensional representation randomly. With PCA and ICA, the coefficients

correspond to the individual components. Usually, PCA explains most of the variance

within the first few components, and an 8× 8 block unlikely consists of many meaningful

independent signals for ICA to use. This would explain why neither of those methods

benefits from DR. Even though PCA and ICA have a promising start, the perturbation



35

0 1000 2000 3000 4000 5000
Query count

5

10

15

20

25

30

35
Pe

rtu
rb

at
io

n
DCT-B 1/64
DCT-F 1/128
PCA 1/4
ICA 1/4
Original paper
No reduction

0 200 400 600 800 1000
Query count

5

10

15

20

25

30

35

Pe
rtu

rb
at

io
n

DCT-B 1/64
DCT-F 1/128
PCA 1/4
ICA 1/4
Original paper
No reduction

0 1000 2000 3000 4000 5000
Query count

5

10

15

20

25

30

35

Pe
rtu

rb
at

io
n

Interpolation 1/8
Maxpool 1/8
Minpool 1/8
Original paper
No reduction

0 200 400 600 800 1000
Query count

5

10

15

20

25

30

35

Pe
rtu

rb
at

io
n

Interpolation 1/8
Maxpool 1/8
Minpool 1/8
Original paper
No reduction

0 1000 2000 3000 4000 5000
Query count

5

10

15

20

25

30

35

Pe
rtu

rb
at

io
n

DCT-B 1/64
DCT-F 1/128
Minpool 1/8
Triangle Attack
Original paper
No reduction

0 200 400 600 800 1000
Query count

5

10

15

20

25

30

35

Pe
rtu

rb
at

io
n

DCT-B 1/64
DCT-F 1/128
Minpool 1/8
Triangle Attack
Original paper
No reduction

Figure 5.4. The best performer of each method compared against the original paper
(DCT-B 1/2) and no reduction. They are split into the top two rows to avoid visual clutter
in a single plot. On the right is a zoomed-in version of the plot on the left. The bottom two
images are the best methods compared against Triangle Attack.
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decreases the fastest in the early queries with all the methods. We believe this is be-

cause the algorithm starts from a very noisy point, and any direction in the input space

decreases the perturbation rapidly at the start, regardless of the method used.

For Figure 5.4, we chose the best performer of each method by visual inspection and

compared their performance with each other. Because PCA and ICA performed similarly

regardless of the magnitude of DR, we chose 1/4 for their DR as it narrowly had the best

results with PCA. On the right is a zoomed-in version of the plot on the left. To improve

readability, we split the methods into two rows and selected our best ones for the final

comparison on the bottom row. We added the original paper [29] (DCT-B 1/2) and no

reduction as baselines. In addition, we added a comparison between our best methods

and the more recent Triangle Attack [49] on the bottom row.

Figure 5.4 highlights the significant advantage extensive DR offers to performance. In the

top row, we observe an over 30% decrease with DCTs in the average size of the pertur-

bation at 1 000 queries when compared to the original paper and about a 55% decrease

when compared to no reduction at all. PCA and ICA perform poorly; PCA performs worse

than no reduction until the very end, whereas ICA interestingly manages to catch up to

the original paper’s performance. In the middle row, interpolation, maxpooling, and min-

pooling achieve similar results. Minpooling exhibits the best performance by a narrow

margin, achieving comparable results to both DCTs. Note that both pooling methods

achieve slightly better results than interpolation.

Thus, we will compare DCTs and minpooling against Triangle Attack [49] in the bot-

tom row of Figure 5.4. Its authors claimed superior performance over SurFree within

1 000 queries in their paper, and this claim holds even after our extensive DR. However,

the gap in the average size of the perturbation between the two attack algorithms has be-

come distinctly smaller. Furthermore, Triangle Attack peculiarly plateaus after these

1 000 queries, with SurFree surpassing its competitor after around 1 100 queries now

instead of the original 3 000 queries. It is unclear whether this is an unavoidable limitation

of Triangle Attack.

To summarize this section, DR holds a clear advantage in attack generation. While that is

not a new discovery by any means, we demonstrate that the dimensions can be reduced

significantly more than is customary before it starts to be detrimental. We highlight this

by comparing our results to the results achieved with the original paper’s DR. Minpooling

performs better than maxpooling and interpolation with a narrow margin and achieves

remarkably similar results with both DCTs, with DCT-B reaching the smallest average

perturbation size ever so slightly within the first 1 000 queries. Furthermore, from the

comparison against Triangle Attack, it is clear that while DR is a powerful augmenta-

tion for an attack algorithm, it does not replace an efficient attack algorithm by itself.
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5.2 Attack success rate

In this section, we measure the performance of the different DR methods with ASR. Fig-

ures 5.5 - 5.7 depict the ASR on the three selected query budgets,K ∈ {200, 500, 1 000}.

We follow the SurFree’s original paper [29] by setting our highest target perturbation at

30 and lowest at 5, measured by l2-norm. The figures present the ASR on large pertur-

bations on the left and the ASR on small perturbations on the right. For conciseness, we

selected the best performer of each method from Section 5.1.

We split the comparisons into different figures to avoid visual clutter in a single plot. Figure

5.5 displays the results of the first group of methods and Figure 5.6 of the second group.

In Figure 5.7, we showcase the results of our best methods against Triangle Attack.

All three figures include the same baselines: original paper (DCT-B 1/2) and no reduction.

Figure 5.5 tells the same tale that was apparent in Section 5.1. Extensively reduced DCTs

achieve the best ASR by a wide margin. Meanwhile, PCA struggles to compete with no

reduction, and ICA’s performance is between the original paper and no reduction in these

low query scenarios. However, Figure 5.6 underlines the marginal advantage minpooling

has over maxpooling and interpolation. As in Section 5.1, both pooling methods seem to

achieve slightly better results than interpolation in general, which is an intriguing find.

Figure 5.7 reveals a slightly different story to the average size of the perturbation with its

comparison of our best methods. Here, DCT-F and minpooling tend to perform better in

the ASR with small perturbations. However, DCT-B does surpass them and achieves

a somewhat better ASR with larger ones, where minpooling seems to lose its edge.

Triangle Attack remains uncontested up until 1 000 queries.

We confirm these visual observations of Figure 5.7 by providing Area Under the Curve

(AUC) values for the large perturbations (l2 <= 30) in Table 5.1 and the small perturba-

tions (l2 <= 5) in Table 5.2. AUC — as its name suggests — computes the area under the

curve, which means the higher the values, the better. Triangle Attack reigns supreme,

except in small perturbations after 1 000 queries, where it is rivaled by DCT-F and min-

pooling. As we visually estimated, DCT-F and minpooling have the best performance

with small perturbations, while DCT-B outperforms them with large ones. Minpooling suc-

cumbs to both DCTs in the long run ever so slightly. When compared to our baselines,

these results further highlight how our DR methods alone have almost closed the gap

between the original SurFree and Triangle Attack.

Considering DCT-B had the smallest average perturbation size by a narrow margin, these

results suggest that while minpooling and DCT-F can generate more AEs with smaller

perturbations, they might get "stuck" on some inputs. In other words, DCT-B finds direc-

tions to decrease the perturbation more often. On the other hand, minpooling and DCT-F

are better at generating smaller perturbations, given that they do not get "lost" at the start.
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Figure 5.5. ASR of the best performer of DCTs, PCA, and ICA with query budget
K ∈ {200, 500, 1000} queries compared against the original paper (DCT-B 1/2) and
no reduction. Plots on the right are zoomed-in versions.
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Figure 5.6. ASR of the best performer of minpooling, maxpooling, and interpolation with
query budget K ∈ {200, 500, 1000} queries compared against the original paper (DCT-B
1/2) and no reduction. Plots on the right are zoomed-in versions.
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Figure 5.7. ASR of our best performers compared against the original paper (DCT-B 1/2),
no reduction and Triangle Attack with query budget K ∈ {200, 500, 1000} queries.
Plots on the right are zoomed-in versions.
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Method K = 200 K = 500 K = 1 000

DCT-B 1/64 15,9 19,3 22,1

DCT-F 1/128 15,7 19,1 21,9

Minpool 1/8 15,5 18,9 21,8

Triangle Attack 18,3 21,1 22,5

Original paper 12,2 15,3 18,3

No reduction 8,8 11,3 14,4

Table 5.1. AUC of the large perturbations (l2 <= 30) on the left-hand side in Figure 5.7.

Method K = 200 K = 500 K = 1 000

DCT-B 1/64 0,6 1,0 1,4

DCT-F 1/128 0,6 1,1 1,5

Minpool 1/8 0,7 1,1 1,5

Triangle Attack 0,9 1,3 1,5

Original paper 0,3 0,6 0,8

No reduction 0,2 0,3 0,5

Table 5.2. AUC of the small perturbations (l2 <= 5) on the right-hand side in Figure 5.7.

While Triangle Attack still prevails as the best performer, our methods are close con-

tenders with significant improvement from the original paper’s baseline of DCT-B 1/2. As

with the average perturbation size, our methods almost surpass Triangle Attack at

K = 1 000 in ASR as well.

Evaluating the ASR further cements the notion of DR’s usefulness in more efficient AE

generation. As with the average size of the perturbation, minpooling and both DCTs

achieve similar results, but they have slight differences this time. It opens up the question

if it is possible or worth it to change DR methods on the fly to exploit the strengths of

different ones.

5.3 Runtime

Lastly, we measured the execution time for each test run and then divided it by the number

of queries to get an average time a single query takes. We present these runtimes in Table

5.3. We took the average of all of the test runs of the method in question, as the runtimes

within methods did not vary much. Note that our objective here is not to measure runtimes

with absolute precision but rather to give a rough estimation of the potential overhead of

these methods. All the DR methods achieved a similar execution time of 5 − 8ms per

query, except for DCT-B, which took significantly longer with ∼ 110ms per query. The

minor increase in the runtimes of PCA and ICA is presumably explained by our slightly
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Method Runtime per query (ms)

DCT-B 111,0

DCT-F 5,9

Maxpool 5,8

Minpool 5,8

Interpolation 5,8

PCA 7,2

ICA 7,2

No reduction 5,5

Triangle Attack 6,6

Table 5.3. Averaged runtimes of each method for a single query.

inefficient implementation.

DCT-B was the choice for DR in the original paper [29], where no runtimes were reported.

Hence, it is unclear whether the method has always been that slow or whether an update

to the codebase has introduced a bug, making the runtime noticeably longer. To the best

of our knowledge, the excessive runtime results from computing the DCT and its inverse

block by block each iteration. Thus, the runtime would not be a bug; Li et al. [26] also

believe this to be the cause for the long runtime of SurFree with its original parameters. If

this is the case, there are few to no arguments supporting DCT-B judging by the runtimes

alone, as all the other methods achieve comparable runtimes with each other.

In this chapter, we demonstrated our results by three different evaluation metrics. We

measured the average size of the perturbation, the ASR, and the runtime of each method.

We will summarize and discuss our results further in the following chapter.
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6. DISCUSSION

In this chapter, we discuss our results and the previous chapters. The results are ex-

amined in Section 6.1. Threats to the validity of this thesis and avenues for future work

are discussed in Sections 6.2 and 6.3, respectively. We conclude with final thoughts in

Section 6.4.

We explored the current state and the challenges of decision-based attacks in Chapter

3.5, answering research question 1. In Section 2.2, we answered research question 2 by

presenting a few different dimensionality methods. Finally, in Chapter 5, we demonstrated

the differences between the presented methods and answered research question 3.

6.1 On the results

There exists some research on the effect DR has in the attack generation [24, 29, 49,

26], but many papers content themselves with only stating the used method and the

magnitude of DR. Sometimes, they make a passing reference to internal experiments

as a ratiocination. However, none of the existing papers examine the effects of DR as

extensively as we did. Thus, we made a clear cut to the extant research by offering a more

comprehensive and quantitative view of the effects of DR. Indeed, the most extensive DR

we could find in the scientific literature was 1/16 (6,25%), whereas we went as far as

1/256 (0,390625%) before settling on 1/128 (0,78125%).

We also provided novel methods, such as minpooling, and experimented on using differ-

ent ways to utilize already tested methods, such as PCA. QEBA [24] already experimented

on PCA in their perturbation generation process, but due to the algorithm’s nature, it first

required 280 000 external images to generate the perturbations. Due to the differences

between QEBA and SurFree, we managed to perform PCA on a single input without ex-

ternal data. While the performance of our PCA implementation was lackluster, we hope it

either proves that PCA is not a suitable choice for DR in this use case or inspires future

papers to test novel ways to use existing methods.

When it comes to the performance of our methods, DCT-F 1/128, DCT-B 1/64 (1,5625%),

and minpooling 1/8 (12,5%) achieved the best and near-identical performance with slight

differences. DCT-B attained the smallest average perturbation size within the first 2 000
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queries, whereas minpooling and DCT-F gained the highest ASR with small perturba-

tions. We want to emphasize that the differences between our best methods with these

two metrics were minor, and they achieved comparable performance to each other. The

highest disparity between these methods was the runtime; DCT-B took approximately 19

times longer to run than the other two. It was left unclear whether the long runtime was

due to the implementation or whether it was inherent to the block DCT approach used.

Another intriguing aspect we did not discuss in Chapter 5 is how efficiently the differ-

ent methods utilize their coefficients in the perturbation generation. An essential step in

SurFree’s perturbation generation is to multiply the coefficients of the lower-dimensional

representation randomly. For example, with DCT-B, each block consists of 64 coeffi-

cients. Thus, a DR of 1/64 allows SurFree to use only the lowest frequency coefficient

(also known as the DC coefficient) to generate perturbations for each 8× 8 block. DCT-F

uses more of the higher-frequency coefficients with the same amount of DR.

The methods can be split into two groups by how many coefficients they use in total

w.r.t. the amount of DR, as the number of coefficients used in the perturbation gener-

ation decreases asymmetrically. PCA, ICA, and both DCTs share the same amount of

coefficients. With them, the number of coefficients increases rapidly with the number of di-

mensions. On the other hand, maxpooling, minpooling, and interpolation share the same

amount of coefficients, and the number of coefficients increases moderately with the num-

ber of dimensions. They also seem to utilize the coefficients more efficiently throughout

the number of dimensions available, as they achieve comparable performance with the

first group even in higher dimensions despite having fewer coefficients.

It turns out that both DCT 1/64 and minpooling 1/8 use the same amount of coefficients

in total to generate perturbations, while DCT-F 1/128 uses half of their coefficients. Curi-

ously, DCT-F 1/256 and minpooling 1/16 use the same amount of coefficients; they also

exhibited worse performance for the first time at those points. This would suggest that

the sweet spot for DR is near-identical between our methods when measured by the total

number of coefficients, as even maxpooling and interpolation displayed degraded perfor-

mance at 1/16. This is a fascinating finding, hopefully shedding some light on how much

information is actually needed in the generation process.

In the end, the results confirm that the DR offers a massive advantage. The dimensions

can also be reduced surprisingly much before it starts to hinder the process, which is an

intriguing discovery. Sometimes, these tests needed a full-sized test run to observe this

effect, as small-scale tests might not be sufficient due to the intrinsic randomness within

these attack algorithms. However, the results also highlight the importance of an efficient

attack algorithm itself. Despite the considerable boost in performance when compared

to the original SurFree, our implementation does not outperform Triangle Attack [49]

within 1 000 queries, even with extensive DR.
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6.2 Threats to validity

The first threat to the validity of this thesis is whether the results are replicable with other

attack algorithms or even SurFree itself with the new parameters. In other words, the

generalizability of our results is uncertain. Promisingly, many algorithms benefit from the

DR already, even though none of the existing papers have tested as aggressive DR as

we did in this thesis. Secondly, we only tested against one target model, which opens the

question of whether these results generalize to other target models. However, we believe

that the property of transferability [35] makes our results relatively model-agnostic.

In addition, there was a moderate difference between the average size of the perturbation

between the first 100 images and the last 100 images of our dataset. Thus, it is unclear

what is the dataset’s full effect on the results and whether our test set of 200 correctly

classified images is a representative set for performing the tests. Also, the attack algo-

rithms and SurFree specifically include inherent randomness in them. It is uncertain how

much, e.g., the average perturbation size varies between test runs. For what it is worth,

we ran multiple tests a second time, obtaining near-identical results with the first runs.

Alas, due to the computational cost and time a single test run takes, we could not verify

our results by running all the tests multiple times to take the average between each run

for each method. For the same reason, we did not confirm our results with the newest

version of SurFree available.

As noted at the beginning of Chapter 5, we did not provide the same starting point for the

different methods or algorithms. However, we believe it does not meaningfully affect the

results, as these differences in initialization get averaged over the 200 test images. There

is a risk that a singular starting point could distort the results instead. The test would

only measure how effectively the algorithm finds AEs from that single point instead of

general performance. Therefore, should this approach be used, the starting point should

be randomized for each image exactly once and then used in all tests.

We also restricted ourselves solely to the decision-based attack scenario, leaving out

other categories. This means that although the results might generalize within this cate-

gory, it is uncertain whether they generalize between them. The DR methods used are

also simplistic and leave room for more creativity.

The final threat to the validity is runtimes. The implementations are most likely not as

efficient as they could be, and thus it is unsure how comparable the runtimes truly are.

It is also uncertain how much the runtimes even matter. Especially the high runtime of

block DCT raises questions. However, the objective with runtimes was to give a general

idea of how long it takes to run each method, and we believe the runtimes we presented

serve their purpose.



46

6.3 Future work

There are plenty of open questions left for future work. Firstly, we only examined untar-

geted attacks. Even though this is a common scenario in the DBA literature and it was

the only readily available option in SurFree, it is unclear what is the effect of DR in tar-

geted attacks. Secondly, due to the limited scope of this thesis, we did not exhaustively

research the suitability of lp-norms for the similarity measurement. Even though they are

ubiquitous in the literature, their role as the standard has been questioned [50, 45].

As the results demonstrate, DCT-B and DCT-F achieved comparable performance bar the

runtime. However, we ran out of dimensions to reduce with block DCT before we could

observe a deterioration in the performance. Nevertheless, DCT can be used with larger

blocks than 8 × 8. Thus, the dimensions could be reduced even more, which could help

find the turning point for DCT-B as well. We suspect the best performance is encountered

when using the same amount of coefficients as with DCT-F 1/128.

Hybrid approaches might also be considered in the future. As observed in the compari-

son against Triangle Attack [49], some attack algorithms might perform better in the

early stages than others but lose their lead rather quickly. Therefore, perhaps one could

combine two attack algorithms together by starting with the rapidly decreasing one and

switching to another later if the first one plateaus. This could apply to different DR meth-

ods as well. Indeed, we observed minpooling and DCT-F achieving slightly better ASRs

with small perturbations, but supposedly got lost at the start of the process sometimes.

Thus, DCT-B could be used as a kick starter for the generation process, ensuring that the

generation process does not get "stuck" in the beginning. However, it is uncertain how

much there actually is to gain with these hybrid approaches. We leave this question open

for future research.

In addition, the inputs were also not equally challenging for each method; some inputs

were more straightforward for some DR methods and more difficult for others. This is

presumably explained by the somewhat different subspaces our methods capture. We

also noticed by testing a single image multiple times that, sometimes, different DR meth-

ods tended to gravitate towards slightly different adversarial classes. Ergo, it is unclear

whether the second method would efficiently find new directions for the perturbations with

hybrid approaches, even with the first method helping it to get started.

6.4 Conclusion

In conclusion, we have explored the current scientific literature and background on AEs

and demonstrated the efficiency of DR in generating decision-based AEs. The efficiency

was demonstrated by implementing different DR methods with varying magnitudes on an

existing algorithm called SurFree [29]. We confirm with our results the already prevalent
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notion that DR is crucial in achieving noticeably more efficient AE generation. However,

our results indicate that the dimensions can be reduced more extensively than is custom-

ary in the scientific literature for a significant gain in performance. We showcased block

DCT, full-frame DCT, and minpooling to be the best methods for DR. Based on our re-

sults, we call for more aggressive DR, especially in the DBA algorithms. Furthermore, we

question whether there is room for improvement by using more creative methods for DR.

We limited the thesis scope to the DBA category with a few different DR methods and l2-

norm to measure similarity. The scope thus leaves an opening for future work to explore

the effects of DR on various adversarial scenarios with different methods and alternative

similarity measurements.
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