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Abstract—Fiducial marker-based tracking is an effective
method for pose estimation in coffined environments, such as
the International Thermonuclear Experimental Reactor. In this
paper, we propose a novel framework for marker detection
and identification that is moderately robust to occlusion, even
while using a relatively small number of marks. The proposed
approach consists of a hybrid pipeline that extracts marker
candidates from images using classical methods and identifies
uncoded markers using a shallow feed forward neural network.
The method requires minimal parameter tuning, data collection
and annotation. The methods can be easily adapted to different
use cases with varying number and positions of the marks. We
test the robustness of our approach in three different use cases
in ITER’s divertor, using either retro reflective markers or laser
engravings and achieve high detectability rates. We demonstrate
how the proposed approach can be used to accurately and
robustly retrieve the six-degree-of-freedom pose of the targets.

Index Terms—pose estimation, optical markers, fiducial mark-
ers, retro refletive markers, marker detection, marker identifica-
tion, remote handling, ITER

I. INTRODUCTION

Fiducial markers are artificial elements that can be added
to a scene to help establish robust correspondences between
captured image points and 3D models of targets. Marker
based pose estimation is a particularly attractive strategy in
applications where the targets are human-made structures in
confined environments and the accuracy requirement is high.
The approach takes full advantage of the constraints in such
scenarios and is often able to reach more accurate and reliable
results with less complex algorithmic methods.

Remote handling in the International Thermonuclear Exper-
imental Reactor (ITER) is an example of such an application.
ITER constitutes one of the world’s most hostile environments,
where operators need to perform tight tolerance alignment
tasks remotely and in poor visibility conditions. High temper-
ature and radiation levels restrict the equipment that can be
used to sense the environment and the quality of the acquired
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images. In this context, there is a need to develop reliable and
accurate methods for pose estimation of specific targets. The
estimates can aid the operators in conducting remote handling
tasks.

Earlier work has addressed marker based pose estimation
in ITER [1], with the development of dedicated markers and
of computational methods to detect and identify them and
estimate the pose. That work considers the localization of a
specific target: the knuckle of the divertor cassette locking sys-
tem. The end to end accuracy of the overall hardware-software
system was evaluated and reached the targeted millimeter
level accuracy. However, the strategies for marker detection
and identification struggle with robustness, particularly in
cases where markers are occluded or missing. Furthermore,
there is a need to apply marker based pose estimation to
different targets and operational cases in ITER. The methods
are not readily adaptable to different use cases and marker
constellation geometries.

The objective of the present work is to develop a novel
marker detection and identification framework for ITER’s retro
refletive (RR) markers [2]. It should be able to reliably identify
circular, uncoded marks with a moderate level of resilience to
occlusion and minimal manual parameter adjustment. It should
rely only on a relatively small number of markers and be easily
adaptable to different constellations with varying sizes of the
available area and number of marks. Further, as there are use
cases where RR markers cannot be used, the approach should
be able to handle, even with lower degree of robustness, diffuse
marks such as laser engravings. Processing speed is not the
main constraint as the detection is not expected to run on
a video sequence, although it should still be kept within a
reasonable time.

This paper is organized as follows: In Section I we have
introduced the research question and motivated our work. In
Section II we overview and analyse existing solutions. In
Section III we detail our proposed approach. In Section IV
we evaluate the performance of our proposed solutions and in
Section V we draw conclusions and outline future development
prospects.



Fig. 1. Example image of an operational piece (knuckle of ITER divertor’s
cassette locking system) fitted with RR markers [2]. The image emulates the
expected greyscale, low resolution output of a radiation tolerant camera and
is purposely underexposed to facilitate the segmentation of the RR elements.

II. BACKGROUND

Visual marker systems have been extensively studied in
the literature [3], [4]. However, the large majority of existing
approaches is not directly applicable to the ITER use case.
Marks occupying a large area or with very fine details are
not feasible to be applied in this context. ITER’s RR pattern
resembles a dot-like structure, as seen in Figure 1. Therefore,
we focus our overview on point-based or concentric circle-
based systems with a relatively small number of markers.
Table I shows the visual appearance of selected approaches.
Concentric contracting circles (CCC) [5], small white circles
whose centre is coincidental with a larger black circle, are
popular alternatives to circular markers. The advantage in us-
ing CCCs resides in the unlikelihood that random contrasting
intensity regions have nearly coincident centroids.

TABLE I
APPEARANCE OF RELEVANT FIDUCIAL MARKER SYSTEMS

WhyCon [6]–[8]

Pattern of 5 CCC [9], [10]

Circular ring marker [11]

Pi-Tag [12], [13]

4 Dots [14], [15]

MarkePose [16]

Most systems identify markers by arranging them in a
distinctive geometric pattern and identifying them based on
a set of rules [9]–[13]. Heuristics for marker identification are
often based on projective invariants, such as collinearity of
points. This type of approach is very likely to fail if one of
the marks is occluded or missing. In Pi-Tag [12], [13] the
use of a larger number of marks (12 in total) creates some

redundancy and provides a moderate robustness to occlusion.
The main challenge in applying of Pi-Tag to our targeted
use case is the relatively high number of markers needed. It
needs at least 7 markers to function without any occlusion
resilience. Further, Pi-tag is limited to occupying a square
shaped area and cannot fully utilize the available space in
irregularly shaped targets. Further we find that the approach
requires a certain level of parameter tuning to work in varying
light conditions. In WhyCon [6]–[8] the pose is calculated
based on a single mark, based on the estimated parameters of
a fitted ellipse. In this type of approach the accuracy of pose
estimation heavily relies on the accuracy to which the ellipse
centre and semi-axes are estimated and is likely to fail when
the circle has low resolution.

In [14], [15] a learning based approach is proposed to find
four dots placed at corners of a square. The strategy con-
sists of collecting a sample of fiducial images under varying
conditions and training a classifier that exhaustively classifies
image patches. The data is annotated using a simple detection
algorithm that is reset manually upon failure. MarkerPose [16]
follows a deep learning based approach similar to that of
Deep Charuco [17]. Both share the network structure of “Su-
perpoint” [18](learning-based version of the classical SIFT)
that estimates key point coordinates and their descriptors. In
MarkerPose, circle’s centres and IDs are estimated with a two
headed deep neural network that takes full images as an input.
The IDs are used to solve the correspondence problem between
two stereoscopic views. The marker 2D locations are used to
extract square patches from the image containing the ellipses.
Another deep neural network (EllipSegNet) is used for ellipse
contour estimation and sub-pixel centroid estimation.

The current approach to find retro reflective (RR) markers in
ITER [1] has some resemblances to the classical techniques we
have mentioned thus far. Marker detection is done by adaptive
thresholding, filtering is based on calculation and sorting of
morphological features of detected blobs and identification
follows a set of rules similar to that of [9] and [10]. It was
developed for a constellation of eight RR markers and the
identification strategy fails if any of the markers is missing.
Further, this approach requires a certain degree of manual
parameter tuning of segmentation and filtering thresholds.

When applying the marker based pose estimation methods
to different tasks in ITER, a set of challenges comes up. In
different use cases, the geometry of the tracked pieces can be
rather different. Further, different pieces may have different
limitations on the areas where markers cannot be placed. It
is unlikely that one constellation geometry optimally fits all.
With the need to adapt the marker detection and identification
strategy to different use cases in ITER, comes the challenge of
developing an identification strategy than can easily be adapted
to different constellation geometries. The previous strategies,
where a different set of heuristics needs to be created to
address each use case is not a viable one.
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Fig. 2. Proposed marker detection and recognition pipeline.

III. METHODOLOGY

Classical approaches for marker identification often rely on
many heuristics and manual parameter tuning. They have a
limited performance when it comes to occlusion resilience,
especially while using a small number of markers, as seen
from the examples in the literature [1], [9]–[13]. Convolution
neural network-based approaches, such as those of [16], [17]
have been applied to a wide variety of computer vision
problems in recent years. These approaches take as input
full images and output marker’s locations and/or IDs in a
black box manner, where the algorithm is responsible for
identifying the relevant features. They can often achieve very
good results, even in very challenging conditions. However,
these models are not easily explainable, their training requires
large, realistic, labelled datasets and the determination of a
potentially high number of hyper-parameters. We hypothesize
that the task of identifying RR markers in a relatively con-
trolled environment can be solved with enough accuracy using
models and strategies with lower complexity. Therefore, in this
work we propose a hybrid approach as illustrated in Figure 2.
A list of marker candidate coordinates is generated by classical
blob detection and extraction. This stage is followed by an
operation that filters out wrong matches based on the mor-
phological characteristics of the candidates. At the last step,
the correspondence is established between each marker and its
match in the constellation model. We explore the possibility of
using, at this last step, a shallow feed forward neural network
for fault tolerant (occlusion resilient) constellation recognition.

A. MSER Candidate Detection

At the marker detection stage we use the maximally sta-
ble extremal regions (MSER) algorithm [19], as we have
empirically found that it is able to consistently generate
very suitable candidates with minimal parameter tuning. This
approach works by integrating over segmentation thresholds
and identifying areas that are most stable throughout the varia-
tion. MSER segmentation outputs multiple mutual overlapping
regions corresponding to different segmentation thresholds.
For each set of overlapping regions we consider only the
candidate with smallest area and discard others.

B. Candidate Filtering

Once marker candidates are identified in an image we aim
to discriminate which correspond to actual markers. In the
previous work, a hierarchical clustering strategy was applied
to solve this problem. The approach consisted of pruning the
hierarchical cluster tree at the lowest point where there is a
cluster with N elements, with N being the number of markers
in the constellation. The assumptions behind this approach is
that the cluster with the correct number of elements likely
corresponds to the correct one. This approach cannot handle
missing or occluded markers since, in these cases, the number
of elements in the correct cluster is not known. The expected
number of clusters is also not known a priori, since outlier
blobs may have highly varying characteristics. This poses a
challenge in identifying which cluster corresponds to the class
“marker”.

For the reasons presented above we opted to formulate the
problem as a binary classification rather than a clustering one.
This requires a set of training data to be labelled so that for
each blob detected in the image there is a label of ”marker”
or ”non marker”. We have found that labelling a set of few
tens of images is often enough to obtain a suitable filter-
ing performance. Labeling is done through a semi-automatic
procedure, where the candidates are presented as highlighted
spots in the image and the user selects which correspond
to actual markers. The process is rather straightforward and
intuitive. Re-training would only be needed in cases where
the operational scenario is significantly changed, such as when
working on a different use case or there are significant changes
to the expected working range.

The classification problem is solved using a random forest
algorithm [20] as we found it provides fairly good results
with a relatively small amount of training data. The following
features are extracted from the candidate regions: Normalized
Area, Circularity, Solidity, Extent, Mean Greyscale Intensity
of Area and Centroid.

C. Marker Identification

We establish the correspondence between detected marker
centroids and their known world coordinates using a shallow
feed forward neural network. The network takes as inputs
centroid distances of filtered markers. One of the advantages



of this type of approach is that the expected image position of
centroids can be easily computed for a given pose. By gener-
ating a set of random poses we straightforwardly generate a
realistic dataset to train the network.

Problem Formulation: The problem is formulated as a
classification task where each detected marker in one image
is classified into categories: “1”, “2”, “3”, “4” or “5”. The
contextual information of each marker’s centre coordinates
in relation to the others is used as input information. The
extracted features are the 2D distances of the marker to each of
the other N-1 detected markers: (dxi, dyi)i∈[1,N ]. N markers
detected in one image generate N rows of data. Each row is an
independent entry to the classification process. Pairs of (x,y)
distances are sorted based on their ascending x-coordinates
to reduce the permutations, while keeping the correspondence
between the two (x,y) dimensions.

Pre-Processing Steps: The camera calibration parameters
are known at detection time and the intrinsic matrix, K, is used
to normalize the point coordinates to the interval [-1,1]. An
image point expressed in normalized coordinates is given by:
x′ = K−1x, where K−1 is the inverse of the intrinsic matrix
and x the original coordinates [21]. The normalization step is
a common strategy to make optimization better behaved [22].
Further it removes the dependence of features on the camera
parameters.

We process unknown inputs by replacing them with the
mean value of their respective row. Unknown inputs happen
when not all constellation markers are detected in the image.
When this happens, not only will a row be eliminated but
all other markers in the same image will have one pair of
unknown features.

One-hot encoding is used to represent target and output
data. One-hot encoding is a common way of representing
categorical data to be presented to algorithms that require their
inputs and outputs to be numerical and when there is no order
relationship between the classes. We normalize inputs to have
zero mean and unity variance, which has a positive impact on
classification output.

Classification: We explore the use of a shallow neural
feed-forward neural network with 1 hidden layer and 30
neurons. One advantage of 1-hidden layer neural networks is
that they are easier to interpret and analyse than their more
complex counterparts [23]. This type of network is considered
a “universal approximator”. It should be able to approximate
any continuous function, given that it has enough neurons
in the hidden layer. We expect that with increasing number
of neurons we will be able to decrease the error up to a
point where performance will decrease due to the loss of
generalization. We found that using more than 30 neurons
does not significantly improve performance. The network is
trained with scaled conjugate gradient back-propagation. We
use cross entropy as a performance function.

The output of the network after softmax consists of values
between 0 and 1 for each class, which all sum up to one.
These can be inferred as a probability distribution. For a set
of N=5 input markers we obtain an output matrix similar to

Output Matrix

0.2080 0.2080 0.0000 0.0032 0.0004

0.1983 0.1983 0.0001 0.9968 0.0055

0.1414 0.1414 0.0000 0.0000 0.0172

0.2533 0.2533 0.9996 0.0000 0.0001

0.1990 0.1990 0.0002 0.0000 0.9768

Max Value 4 4 4 2 5

Proposed 3 1 4 2 5

Permutation 

of Markers

Summed 

Probabilities

“54321” 1.4495

“54312” 0.4609

“54231” 0.4528

“54113” 0.4578

“31425” 3.3226

… …

Fig. 3. Example output matrix. Chosen classes according to ‘max row’
strategy which leads to duplicate classifications, and our proposed approach

Fig. 4. Example successful detection and identification - knuckle use case

that of Figure 3 (left side). Each matrix column represents a
separate network output for each of the markers in one image.
In choosing the most likely class for each marker we want to
find a method that enforces both of the following conditions:

1. Same marker cannot belong to more than one class (only
one match is correct in each column).

2. There cannot be more than one marker of the same class
in an image (only one match is correct in each row).

The most obvious approach of choosing the maximum value
for each sample/ column enforces condition 1. However, it
does not enforce condition 2, which may lead to several
markers in the same image being classified as corresponding to
the same model point. In order to enforce both conditions we
calculate, for each permutation of markers (‘12345’, ‘23451’,
‘24351’, etc.) the sum of its probabilities. The correct combi-
nation should be that with the highest value of that sum. See
Figure 3 (right side).

IV. PERFORMANCE EVALUATION

In testing the success of out methodology we consider
two very significantly different use cases in ITER’s divertor:
the knuckle of the cassette locking system [24] (using RR
markers) and divertor pipe flange [25] (using laser engravings).
Realistic true scale prototypes are built for these two use
cases. We also consider the localization of the bridging link
in-vessel connector [26]. We analyse and evaluate the last case
using synthetically generated data based on 3D models of the
environment. The geometry of the pieces can be inferred from
the example images in Figures 4, 5 and 6.



Fig. 5. Example successful detection and identification - pipe flange use case

Fig. 6. Example successful detection and identification - bridging link use
case

A. Robustness of Marker Detection Pipeline

We evaluate the performance of the marker detection
pipeline in terms of robustness at each of its steps and as a
whole. Results are shown in Table II. The proposed method-
ology succeeds at detecting and identifying RR markers in
usecase I at a very high rate. As would be expected, detection
of laser engravings is more challenging than detection of RR
markers. There is a much higher rate of false candidates in the
second usecase. This is partially due to the small size of the
marks and the similarity of their visual appearance to other
dark, diffuse elements in the environment. Detection rates are
considerably higher in use case III due to the less challenging
characteristics of the synthetic images.

Table III quantifies the performance of the identification
stage when specific markers are occluded/ not detected. Re-
sults demonstrate that the algorithm is moderately robust to
occlusion and is often able to recover from cases where one
of the marks is missing. We note that identification is more
likely to fail if specific marks are missing (for example marker
number 7 in use case II and markers number 5 or 6 in
use case III). In such cases the missing marks lead different
constellation orientations to appear visually similar. This effect
can be minimized to a certain extent if occlusion is considered
when building the constellations.

TABLE II
ROBUSTNESS MEASURE OF MARKER DETECTION AND IDENTIFICATION AT

CONSECUTIVE PIPELINE STAGES - KNUCKLE (I), PIPE FLANGE (II) AND
BRIDGING LINK (III) USE CASES

I II III
Candidate Detection Rate 99% 95% 100%
Generation1

Ndetected/Nmarkers

False Candidate Rate 13% 74% 5%
Nfalse candidates/Ncandidates

Filtering2 True Positive Rate 100% 98% 100%
Ntrue positives/Npositives

False Positive Rate 2% 3% 0%
Nfalse positives/Npositives

Identification3 True Identification Rate 100% 100% 100%
Ntrue identification/Nmarkers

Full Pipeline1 Detection Rate 95% 65% 100%
Nsuccessful images/Nimages

1Over whole image set. 2Over the test set
3Over the set of images where all markers were detected

TABLE III
ROBUSTNESS MEASURE OF CORRESPONDENCE STEP WITH RESPECT TO

OCCLUSION OF MARKERS - KNUCKLE (I) AND PIPE FLANGE (II) AND
BRIDGING LINK (III) USE CASES

True Correspondence Rate I II III
#1 Missing 100% 73% 74.4%
#2 Missing 92% 72% 76.8%
#3 Missing 75% 80% 88.8%
#4 Missing 95% 74% 65.2%
#5 Missing 100% 93% 48.4%
#6 Missing N/A 60% 28.4%
#8 Missing N/A 44% N/A

B. Pose Estimation Performance

For the sake of completeness we present estimates of the
performance of pose estimation based on detected marks. The
methods to estimate the pose and the laboratory setup to
collect the images and methods to determine the ground truth
position are as described in [1]. We do not expect significant
variations in the accuracy of pose estimation, as our work
has focused on improving the robustness of marker detection
strategies. Table IV shows the translational error and Table V
the rotational error.

TABLE IV
AVERAGE AND LOWEST ACCURACY AND PRECISION OF ESTIMATED

TRANSLATIONS - KNUCKLE USE CASE / PIPE FLANGE USE CASE

Accuracy Precision
Average Maximum Average Maximum

et(mm) 1.26 / 0.82 2.50 / 1.44 0.71 / 0.26 1.55 / 0.64
ex(mm) 0.81 / 0.56 2.30 / 1.12 0.49 / 0.17 1.53 / 0.55
ey(mm) 0.89 / 0.57 1.62 / 0.95 0.43 / 0.16 1.49 / 0.46
ez(mm) 2.25 / 0.22 6.48 / 0.53 2.09 / 0.22 5.48 / 0.55

V. CONCLUSIONS

We have developed and tested a novel framework for
uncoded marker detection and identification. Detection rates
are high for the use case using RR markers. In detecting
laser engravings the approach struggles to differentiate marks



TABLE V
AVERAGE AND LOWEST ACCURACY AND PRECISION OF ESTIMATED

ROTATIONS - KNUCKLE USE CASE / PIPE FLANGE USE CASE

Accuracy Precision
Average Maximum Average Maximum

eR(◦) 1.84 / 1.50 4.04 / 1.67 0.53 / 0.05 2.20 / 0.17
ea(◦) 1.51 / 0.29 3.83 / 0.54 0.60 / 0.10 2.32 / 0.24
eb(

◦) 0.91 / 0.12 1.32 / 0.37 0.18 / 0.06 0.50 / 0.25
ec(◦) 0.25 / 1.46 0.98 / 1.63 0.17 /0.05 0.73 / 0.16

from other small dark background elements. Future work
might explore the use of more advanced candidate filtering
methods or the inclusion of more discriminative features. The
use concentric circles rather than dark circles or other similar
strategies might help in differentiating the diffuse marks from
background elements. However, practical considerations such
as available space and resolution need be taken into account
in using more detailed marks.

The developed marker correspondence methods offer mod-
erate resilience to occlusion while using a rather small set of
markers. The system is very often able to recover the pose
when one of the markers is missing. This is a significant
improvement over the previous strategy which did not have
any mechanism to cope with missing marks. However, when
specific marks are missing, constellations might become in-
differentiable. Marker constellations should be built to avoid
such redundancies whenever possible. More advanced methods
or the use of unique coded marks would be required for full
occlusion resilience.

We demonstrated that the proposed approach can be
straightforwardly applied to three use cases in ITER, with
considerably different geometries and limitations on the areas
where marks can be placed. We have evaluated the end-to-end
accuracy and precision of pose estimation and demonstrated
that the overall system works accurately and reliably, fulfilling
the requirements of the application. Further work might test the
applicability and performance of the proposed framework in
other example use cases. It would be interesting to compare the
performance of the proposed approach against more complex
machine learning architectures and perform a more thorough
analysis of the complexity performance tradeoff.
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