
Role of Drones in Characterizing Soil Water 

Content in Open Field Cultivation 

 

Antti Halla, Nathaniel Narra, Tarmo Lipping 

Antti Halla 

Tampere University, Pohjoisranta 11 A, 28190 Pori, e-mail: antti.halla@tuni.fi 

 

Nathaniel Narra 

Tampere University, Pohjoisranta 11 A, 28190 Pori, e-mail: nathaniel.narra@tuni.fi 

 

Tarmo Lipping 

Tampere University, Pohjoisranta 11 A, 28190 Pori, e-mail: tarmo.lipping@tuni.fi 

 

Soil water content is a central topic in open field cultivation. In Finland’s boreal 

region with four thermal seasons it has many roles which alter throughout the year. 

Climate change is changing the weather patterns, affecting all water-related pro-

cesses and challenging the current farming practices. Better understanding of soils 

and their characteristics regarding response to water processes is called for, and data 

collection has a key role in this. Precision agriculture has been driving data-intensi-

fication in farming. Unmanned aerial vehicles, or drones, have many applications 

and overall wide interest as an emerging technology in agriculture. Yet they lack an 

established role in day-to-day farming practices. Regarding data collection in open 

field cultivation, drones can be compared – or combined – with satellites, rovers, 

stationary devices as well as plain old on-site observations by the farmer. In this 

study we give an overview of recent published literature, looking at data collection 

from the perspective of soil water information. We assess the opportunities and 

challenges of using drones in characterizing soil water content, mainly using soil 

and plant properties as proxies for it. Drones are useful in on-demand, non-intrusive, 

high-resolution spatial mapping of field properties. Soil moisture monitoring how-

ever requires frequent measurements, limiting the applicability of current drones. 
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1. Introduction  

Open field cultivation relies on a complex interdependent system of plants, soil and 

weather. Water, essential for plant growth and the upkeep of soil biota, is a critical 

component in this system. Its movement between and within each part of the system 

(Figure 1) is guided by equally complex hydrological factors. Weather largely de-

termines how much water enters a non-irrigated crop field and how much exits 

through evaporation loss. Water in the plants is essential for photosynthesis and 

other biological functions as well as for transport of soluble nutrients. Roots of most 

plants also need oxygen, therefore excess water at root level can damage the crops 

by creating anaerobic conditions.  

Besides being crucial to plant growth plants, water can influence working con-

ditions, soil biota and soil morphology, all of which can in turn lead to lasting qual-

itative changes in the soil. Heavy machinery in wet, soft soil can lead to compaction 

in the soil (Alaoui and Diserens, 2018) while freeze-thaw-cycles can alleviate it 

(Jabro et al., 2014). 

Soil water can be naturally recharged from above by precipitation under gravita-

tional force and from below by capillary forces on ground water. How the soil re-

sponds to incoming water is defined by soil hydrological properties which are 

largely a function of mineral texture, aggregate structure and soil organic content. 

These properties show significant spatial variation at scales small enough to show 

heterogenous distributions between fields and even within individual fields, both 

horizontally and vertically. A combination of multiple sensor platforms and meas-

urements help in forming a complete picture of the water dynamics within a field: 

satellites, aircrafts, ground vehicles, weather stations, ground probes – and drones. 
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Figure 1 Weather, soil and plants form a dynamic system. a) A combination of sensor plat-
forms is needed for comprehensive measurements. b) Soil water can be naturally recharged 
from above by precipitation and gravity and from below by ground water and capillary rise. 
c) Rainwater needs to infiltrate the surface or it accumulates in puddles and flows overland. 
d) Percolation to deeper layers may be prevented by a compacted hardpan. e) Excess water 
is drained through underground drainage pipe. f) Plants take in water through their roots 
and transpire water vapor through their leaves. g) Part of the water is evaporated back to 
the atmosphere. 

 

1.1. The Need for Water Data 

Knowing the current and forecasted state of soil water content and its availability 

to plants has significant implications to optimizing resources. Indeed, an ecologi-

cally sound management of the farm requires this information. Understanding the 

dynamics of this soil-water-plant system requires data that can characterize it and 

help explain the underlying processes. As this understanding develops, more needs 

for additional data collection can be identified. Improvements in technology enable 

us to measure properties of this system that has previously been out of reach. They 

can also increase the quantity and quality of the collected data in general as well as 

the efficiency of the data collection process itself.  

Climate change is expected to disrupt water related phenomena. The outlook  in 

western Finland is more precipitation from Autumn to Spring, less snow coverage, 
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longer dry periods during growing season although more intense rainfall events 

(Ruosteenoja, Räisänen and Pirinen, 2011). Predicting water content in different 

weather scenarios can help in assessing the risk to crop production. The current crop 

growth models in use that depend on soil moisture content are typically calibrated 

for regional water patterns of recent history. If these patterns are to change then it 

becomes essential to re-calibrate management practices. In addition, increasing 

awareness of and drive to end inefficient practices that lead to nutrient leaching, or 

water wastage, has made soil moisture monitoring an important aspect in open field 

farming. 

1.2. Measuring Soil Water Content 

Soil hydrology and measurement of true soil water content have been presented 

comprehensively by Novák et al. (Novák and Hlaváčiková, 2019). While providing 

accuracy these methods are labor, time and resource intensive, which limit their 

practical application in everyday farming context. Notably, the gravimetric method 

requires extracting a soil sample and drying it in an oven. They do however serve 

an important role in ascertaining the true value with some confidence, in instrument 

calibration and model development. Data on features whose correlation with soil-

water is established can also be used, albeit with lower confidence. If a correlation 

can be established, there is value in low fidelity characterization of soil-water with 

high acquisition ease and resolution. Remote sensing methods together with the 

necessary data post-processing steps can be computationally more intensive and 

also laborious to set up but are more conducive for automation. 

Water content varies with space and time. Spatial variation is, for example, due 

to differences in soil properties, topology, precipitation level, relative location re-

spective to underground drainage, which makes reliable extrapolation from point 

measurements difficult. The rate of change can be high especially during growing 

season. 

In this study, instead of direct measurement, we look at the most common meth-

ods for estimating the soil water content through indirect proxy measurements that 

correlate with the actual soil moisture. For the purposes of this study, we divide 

these proxy variables into soil proxies and plant proxies, which measure soil water 

content through soil or plant properties, respectively. Soil proxies measure proper-

ties of the bare ground, such as its dielectric permittivity or spectral reflectance. 

Plant proxies measure for example the plant canopy’s spectral reflectance or tem-

perature. The list of variables here is not meant to be exhaustive. Any variable that 

correlates with soil water content could be included. Well-known examples are 

given while the focus of the study is in the methodology. 

A conceptual model is presented in Figure 2 describing how, for the purposes of 

this study, the water related phenomena and variables are assumed to be related to 

the measurements of proxy indicators. As an example, the Normalized Difference 
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Water Index NDWI (sometimes called moisture index NDMI) uses two infrared 

spectral bands of an image sensor to measure liquid water content of vegetation 

canopies. Similarly, the commonly used vegetation index NDVI is calculated from 

red and near-infrared channels, measuring chlorophyll related leaf reflectance in the 

plants (Gao, 1996). Plant available water is a necessary, although not sufficient, 

condition for the existence of chlorophyll in leaves. Thus, both NDWI and NDVI 

are plant related proxies for plant available water. However, as virtually all proxies, 

they are influenced by many other factors. Two main factors, namely soil charac-

teristics and plant type, are shown in the figure as parameters, which may need to 

be calibrated for when interpreting proxy measurements. 

The model in Figure 2 is static, depicting the state of the system at a given mo-

ment. Each arrow represents an assumed causal influence in the direction of the 

arrow. This framework is used as a guiding structure for organizing the literature 

overview in this study.  
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Figure 2 Soil and plant properties as proxies for water related information in the soil. 
Measurements are typically several steps apart from the actual phenomena of interest. 
There are several paths that can be taken, depending on the situation, available technology 
and  resources. Outputs from multiple sensors can be combined for more reliable indicators. 

1.3. Drones in Agriculture 

The use of drones, or more formally – unmanned aerial vehicles (UAV), in agri-

culture is increasing rapidly. UAVs are used in crop production, forestry and 
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disaster risk reduction. Applications in crop production range from crop health mon-

itoring and irrigation planning to weed detection and insurance. (FAO and ITU, 

2018)  

Broadly speaking, the role of drones can be seen either as passive or active, de-

pending on how much they interact with their environment. Active drones can spray 

pesticides or take physical samples. This study is focused on passive data collection. 

The actual end application of the data can be crop stress monitoring, crop detection, 

seasonal planning, loss estimation, etc. In these roles, drones can be seen as an al-

ternative or a complementary tool for acquiring the needed information. In addition, 

drones have been used in ancillary roles, such as in collecting data from wireless 

sensor networks (Uddin et al., 2018; Zhan, Zeng and Zhang, 2018). 

Drones, ground vehicles, airplanes and satellites can all be equipped with same 

or similar measurement technology. Therefore, much of the literature regarding soil 

water measurement is presented under the topic of the given technology. Data ac-

quisition by drones typically has specific advantages and constraints in terms of 

spatial and temporal resolution of the data as well as practical considerations of 

operating a drone. The wide and growing range of different types and sizes of drones 

from large military drones to ‘smart dust’, their properties in terms of endurance, 

range, weight, altitude as well as their applications has been reviewed and classified 

by Hassanalian and Abdelkefi (Hassanalian and Abdelkefi, 2017).  

The ability to do on-demand high-resolution mapping of fields without disturb-

ing either soil or plants is a main advantage of a drone in open-field farming. Con-

straints on a drone as a sensor carrier platform are due to factors such as weight of 

the instruments, required proximity to ground and flight-time. Airborne vehicles 

measuring soil and canopy surface only through reflectance and spectrometry have 

limitations. Some of the sub-surface properties can be estimated from these images, 

if the data generating processes are known. Using manual sampling to acquire ref-

erence data on parameters such as soil texture, soil structure and organic content, 

for example would allow for more accurate estimates compared to visual examina-

tion of the obtained images alone.   

Drones themselves are becoming commodity items. The value of drones in data 

collection however would come from their capabilities and limitations as a sensor 

carrying platform. Utility for a farmer additionally requires a mature data processing 

workflow that can routinely turn the raw collected data into relevant information 

that improves their field management decisions.    
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1.4. Objectives 

This is a preliminary study to map out the different aspects related to measuring 

water content in a crop field and to provide an overview of recent literature on the 

topic. We approach the crop field as system from two different perspectives – water 

state and soil properties. We look at methods to measure the water state on the field 

at a given moment, as a snapshot of the dynamic system. That enables water stress 

detection in monitored conditions. We also look at measuring system properties, 

those relatively stable soil hydrologic properties that could aid in characterization 

of soil’s response to water events. Knowledge of this response would allow us to 

better estimate the soil moisture conditions at a given time, even with scarce data. 

It would also enable forecasting the availability of water to plants and simulate the 

behavior of the field in different scenarios such as prolonged drought or excess rain-

fall. We look at how drones have been used in these tasks and what is the future 

outlook.   

2. Measurement Targets 

 The target is to estimate the actual water content in the soil, and the plant available 

water specifically. As discussed above and shown in Figure 2, we focus on measur-

ing the variables of interests indirectly through proxies in soil and plants. There are 

also other variables, such as weather data, that covary with soil water content and 

could therefore be used to improve estimations of it. 

 

2.1. Soil proxies 

Spectral properties of soil correlate with soil moisture and can be used to monitor 

moisture conditions in bare soil (Fabre, Briottet and Lesaignoux, 2015), such as 

drying of the soil in Spring.  Remote sensing soil surface reflectance has limited 

utility as a proxy, as it provides information mostly about the soil surface, which 

can differ considerably from moisture below. Soil surface characteristics in itself 

have a large role in determining the amount of infiltration and runoff, especially 
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with crusting (Corbane et al., 2012). Furthermore, even the soil surface is hidden 

below the crop canopy during the growing season. 

Soil relative dielectric permittivity is a typical soil proxy and can be measured 

using ground probes (Novák and Hlaváčiková, 2019) as well as radar (Klotzsche et 

al., 2018), (Chantasen et al., 2020).  

When there is plant canopy, the soil is typically not directly observable using 

reflectometry, but a soil probe or radar is needed.  

2.2. Plant proxies 

Plant physiological properties can be used to detect water stress, which in turn is 

an indicator of plant available water content at root level. Gago et al. (Gago et al., 

2015) reviewed literature on using UAVs to measure water stress by using leaf re-

flectance and temperature and called for studies measuring leaf chlorophyll fluores-

cence as a more direct indicator of photosynthesis. 

Spectral imaging, both within and beyond the visible spectrum, is the main 

method for measuring plant proxies. Information from different spectral bands is 

combined into specialized indices that target specific phenomena of interest, for 

example NDVI for crop vegetation vigor, NDWI for water content of crop canopy 

(Gao, 1996) and Leaf Area Index LAI for estimating evapotranspiration among 

other properties (Zheng and Moskal, 2009). Candiago et al. evaluated vegetation 

indices for precision farming applications from multispectral UAV images in 

(Candiago et al., 2015). 

Hassan-Esfahani et al. (Hassan-Esfahani et al., 2015) used plant proxy together 

with gravimetric reference samples to produce a machine learning model for surface 

soil moisture estimation. In addition to multispectral and thermal images, their best 

performing input combinations required knowledge of field capacity, derived from 

soil texture samples.  

2.3. Soil Characteristics 

Soil characteristics are those relatively stable properties of the soil that affect the 

interaction between soil and water: i.e. how rainfall infiltrates the surface, percolates 

through soil layers, how much of it is retained in the soil, and how much available 

for plants to use (Novák and Hlaváčiková, 2019). Mineral texture and aggregate 

structure of the soil as well as its organic matter content are the main components. 

These are relatively stable properties, which can be considered constant at least 

within a single season. There can however be considerable spatial variation within 

a field, both on the surface and sub-surface. The presence, type and condition of 
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underground drainage systems and other installed infrastructure that affect the water 

dynamics of the field are similarly stable factors in the system. 

Soil characteristics don’t generally vary with water content, but knowledge of 

them can aid in the estimation of water content and its behavior over time, as they 

affect the sensor measurements and may need to be calibrated for. They can also be 

used as inputs to pedotransfer functions (PTF) to estimate soil hydrological proper-

ties, such as field capacity and wilting point, based on their statistical relationships 

in large soil data sets (Van Looy et al., 2017). The traditional way to characterize 

soils is by collecting soil samples and analyzing them in a laboratory. Technologies 

that would measure soil properties in-situ or reducing the number of needed soil 

samples would therefore also help in estimating soil water content.  

3. Measurement Technology 

Technology for measuring proxies for soil water content in soil and plants is 

divided here into image sensors, radar and ground probes. As same or similar sen-

sors can be mounted on different platforms, sensor specific reviews irrespective of 

platform are also included here for broad perspective and summarized in Table 1. 

Selected case studies that exhibit utility of drones as a platform are summarized in 

Table 2. An overview on the literature is given briefly below. 

 
Table 1 Generic sensor related reviews 

Ref Title Sensor 

(Gago et al., 2015) UAVs challenge to assess water stress for sus-

tainable agriculture 

RGB, multispec-

tral, hyperspectral, 

thermal 

(Barbedo, 2019) A Review on the Use of Unmanned Aerial Vehi-

cles and Imaging Sensors for Monitoring and 

Assessing Plant Stresses 

 

RGB, multispec-

tral, hyperspectral, 

thermal 

(Adão et al., 2017) Hyperspectral Imaging: A Review on UAV-

Based Sensors, Data Processing and Applica-

tions for Agriculture and Forestry 

Hyperspectral 

(Lu et al., 2020) Recent advances of hyperspectral imaging tech-

nology and applications in agriculture 

Hyperspectral 

(Messina and 

Modica, 2020) 

Applications of UAV Thermal Imagery in Preci-

sion Agriculture: State of the Art and Future Re-

search Outlook 

Thermal 

(Brocca et al., 

2017) 

A Review of the Applications of ASCAT Soil 

Moisture Products 

Radar (ASCAT) 
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(Edokossi et al., 

2020) 

GNSS-Reflectometry and Remote Sensing of 

Soil Moisture: A Review of Measurement Tech-

niques, Methods, and Applications 

Radar (GNSS-R) 

(Liu, Dong and 

Leskovar, 2016) 

Ground penetrating radar for underground sens-

ing in agriculture: a review 

GPR 

(Klotzsche et al., 

2018) 

Measuring Soil Water Content with Ground 

Penetrating Radar: A Decade of Progress 

GPR 

(Zajícová and 

Chuman, 2019) 

Application of ground penetrating radar meth-

ods in soil studies: A review 

GPR 

(Corwin and 

Scudiero, 2020) 

Field‐scale apparent soil electrical conductivity Apparent Electrical 

Conductivity sen-

sor 

(Babaeian et al., 

2019) 

Ground, Proximal, and Satellite Remote Sensing 

of Soil Moisture 

Ground, proximal, 

satellite 

(Hardie, 2020) Review of Novel and Emerging Proximal Soil 

Moisture Sensors for Use in Agriculture. Sen-

sors 

Proximal sensors 

(Jackisch et al., 

2020) 

Soil moisture and matric potential – an open 

field comparison of sensor systems 

Ground probe 
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Table 2 Selected case studies, estimating soil water content using UAV mountable technol-
ogy through proxies in soil and plants or characterizing stable, water related soil properties 

3.1. Ground probes 

Ground measurements can be used to collect continuous time series data such as 

soil moisture data with sub-surface sensors. Calibration can be an issue, as there is 

no generic method that works across all manufacturers. Many manufacturers don’t 

give access to either to the raw data or the internally applied conversion functions.  

(Jackisch et al., 2020)  

One challenge is that ground probes measure point-data. This point data needs 

to be interpolated over potentially highly variable soil properties. In addition to 

point sensors, mobile sensors for apparent soil electrical conductivity have been 

used for soil spatial variability mapping (Corwin and Scudiero, 2020). 

The use of drones here is limited. Using drone mounted ground probes would 

require a mechanism for inserting the probe into the soil without damaging it. The 

Ref Title Sensors Metrics Target 

(Hassan-

Esfahani et 

al., 2015) 

Assessment of Surface Soil 

Moisture Using High-Reso-

lution Multi-Spectral Im-

agery and Artificial Neural 

Networks 

RGB, NIR, 

thermal 

surface soil 

moisture 

plant proxy 

(Matese et 

al., 2015) 

Intercomparison of UAV, 

Aircraft and Satellite Re-

mote Sensing Platforms for 

Precision Viticulture 

Multispectral NDVI 

intra-vineyard 

vegetation vari-

ability 

plant proxy 

(Christiansen 

et al., 2017) 

Designing and Testing a 

UAV Mapping System for 

Agricultural Field Survey-

ing 

Lidar crop height and 

volume 

plant proxy 

(Ge et al., 

2019) 

Combining UAV-based hy-

perspectral imagery and ma-

chine learning algorithms 

for soil moisture content 

monitoring 

Hyperspectral soil moisture 

content moni-

toring 

plant proxy 

(Wu et al., 

2019) 

A new drone-borne GPR for 

soil moisture mapping 

GPR soil moisture 

mapping 

soil proxy 

(Chantasen 

et al., 2020) 

Mapping the Physical and 

Dielectric Properties of Lay-

ered Soil Using Short-Time 

Matrix Pencil Method-

Based Ground-Penetrating 

Radar 

GPR dielectric prop-

erties, dielectric 

constant, bulk 

density 

soil 



13 

 

soil around the inserted probe also needs time to settle for accurate reading. Other-

wise, drones could be used to collect data from sensors with wireless connectivity 

or in combination with a ground vehicle. 

3.2. Radar 

Radar is an active remote sensing method, where the device sends an electro-

magnetic pulse and records the reflected or scattered return wave. Depending on the 

wavelength, radar signal can penetrate the plant canopy or soil. Radar signal fre-

quencies range from high frequency radio waves (MHz) to around 100 GHz micro-

waves. Soil moisture can be derived from the dielectric constant extracted from the 

return signal (Kornelsen and Coulibaly, 2013).  

Advanced Scatterometer ASCAT on board of satellites has been used in meas-

uring surface soil moisture, but is in its own not enough for precision agriculture 

applications (Brocca et al., 2017) due to coarse (1km+) resolution. 

Global Navigation Satellite System Reflectometry GNSS-R is a method that 

combines active satellite signals with an on or near-ground passive receiver and has 

been used to measure surface soil moisture (Edokossi et al., 2020). A prototype for 

UAV mounted GNSS-R for retrieving soil moisture was presented by Jia et al. (Jia 

et al., 2015). 

Ground penetrating radar (GPR) is a term used for radars capable of subsurface 

measurements, with signals in 10 – 2000 MHz range. They have been used in civil 

engineering (Wai-Lok Lai, Dérobert and Annan, 2018) and archeology (Catapano 

et al., 2019) for applications such as object detection and assessing structural health. 

Resolution and maximum measurement depth depend on the signal frequency: 

higher frequency detects finer details but attenuates faster. In agriculture the depth 

of interest is approximately from the surface down to the depth of 2 meters. With a 

proper frequency it is possible to characterize the soil in agriculture-relevant depth 

(Liu, Dong and Leskovar, 2016). 

GPR has been used in characterizing soil characteristics and dielectric properties 

(Chantasen et al., 2020). It can also give information about the soil water content, 

which affects the dielectric permittivity of the soil, which in turn affects the radar 

signal (Klotzsche et al., 2018). Zajícová and Chuman (Zajícová and Chuman, 2019) 

reviewed applications of GPR in soil studies, concluding that it can assist in esti-

mating soil moisture and in detecting soil horizons, especially in sandy soils with 

low cation exchange capacity (CEC). They point out that while clay soils have been 

found to be unfavorable for GPR surveys, more due to CEC than grain size, with 

high attenuation of the radar signal, even a penetration depth of 0.5 m would be 

sufficient for many applications. 

GPR has been has been mounted on drones for landmine detection by Fernández 

et al. in (Garcia Fernandez et al., 2018), using synthetic aperture radar (SAR) 
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algorithm. Wu et al. (Wu et al., 2019) described using a 1.5 kg radar system oper-

ating at 500-700MHz range to map moisture in the top 10-20 cm of the soil. 

 

 

3.3. Spectral imagery  

Cameras are typically categorized as visible light (RGB) cameras, multispectral, 

hyperspectral and thermal cameras depending on the electromagnetic spectral range 

within which the sensors operate. RGB camera operate within the visible spectrum 

(red, green and blue spectral bands). Multispectral cameras include the visible range 

as well as selected bands in the near-infra-red (NIR) short-wave infra-red (SWIR) 

range. Hyperspectral cameras work in the same spectral range, but while both RGB 

and multispectral cameras capture distinct spectral bands, hyperspectral cameras 

capture a contiguous spectral range. A basic premise in spectral imagery is that cer-

tain plant phenological phenomena can be correlated to reflectance values in spe-

cific wavelengths. These wavelengths, or bands, can be further refined into special-

ized indices. For example, NDWI is a combination of two near-infrared channels 

which correlates with liquid water molecules in vegetation canopy (Gao, 1996). 

Drone mounted hyperspectral cameras were reviewed by Adão et al (Adão et al., 

2017). They saw potential for drones as platform as the hyperspectral devices are 

becoming smaller and lighter, although the amount of data collected by these de-

vices can be huge and the required processing complex. Hyperspectral camera was 

used by Ewing et al. for soil gradation in laboratory conditions (Ewing et al., 2020). 

Hyperspectral devices have previously been out of reach for many farmers due to 

high price, but more affordable technologies and options are being developed and 

productized. One approach is combining regular digital cameras with passive dif-

fraction grating filter and machine learning (Toivonen, Rajani and Klami, 2021). 

Even open-source do-it-yourself cameras have been built and tested, such as in 

(Salazar-Vazquez and Mendez-Vazquez, 2020).  

Barbedo reviewed the use of drone imaging for monitoring plant stresses. He 

concluded that all approaches for water stress detection found had limitations for 

practical adoption. Combining data from multiple complementary sources was seen 

as the way forward, along with improved sensor technology, computer vision and 

machine learning techniques (Barbedo, 2019).  

Thermal cameras, operating mostly in the mid infrared wavelengths (3-8µm) 

have been used for assessing water stress with Crop Water Stress Index CWSI. This 

and other promising applications of UAV thermal imagery such as subsurface drain-

age mapping are reviewed by Messina and Modica (Messina and Modica, 2020). 

They pointed out that low resolution compared to RGB images, low number of ap-

plications for thermal data and required knowledge of thermography in the process 

are all limiting the adoption of thermal cameras. López and Giraldo proposed a 



15 

 

method for planning an optimal irrigation route and rate, based on CWSI (Lopez 

and Giraldo, 2019). 

Drones have been used to provide variability maps to produce better extrapola-

tions from point measurements. They have been used when the availability of sat-

ellite imagery has been limited or when the spatial resolution hasn’t been high 

enough. The minimum pixel size for multispectral imagery of the Sentinel 2 satellite 

from European Space Agency is 10x10m (Ambrosone et al., 2020) while drones 

can achieve sub-centimeter resolution. 

3.4. Other Measurement Technology 

Light detection and ranging (LiDAR) has been used to create digital elevation mod-

els (Rayburg, Thoms and Neave, 2009) and to map canopy volume and height for 

biomass (Christiansen et al., 2017). This data can be used as proxies for crop vigor 

which in turn can be used with models for field water balance, water flows and 

accumulation points. Fitzpatrick et al. proposed using thermoacoustic imaging that 

combines a microwave source with an ultrasound receiver to overcome some of the 

limitations of current technology, especially GPR (Fitzpatrick, Singhvi and 

Arbabian, 2020). Hardie reviewed a range of soil moisture sensors for use in agri-

culture, identifying their limitations and concluding that current technology for soil 

moisture measurement generally don’t often meet the practical requirements in 

farming (Hardie, 2020). Babaeian et al. did an extensive review on ground, proximal 

and satellite remote sensing of soil moisture, touching also other methods such as 

neutron scattering, nuclear magnetic resonance and gamma ray sensors (Babaeian 

et al., 2019). They found that many common methods only measure surface soil 

moisture, and then proceeded by reviewing modeling approaches for root zone soil 

moisture estimation. 

4. Discussion 

 

Measuring plant available water content at the field scale with confidence re-

quires combining data from multiple data sources. Making conclusive inferences 

about soil water content based solely on remote sensing data can be difficult, if not 

impossible. This uncertainty in the estimations could be reduced by combining the 

empirical models for spectral data with physically based models such as hydrolog-

ical and crop growth models (Babaeian et al., 2019). The cause of the detected fea-

tures can be hard to identify because many causes can lead to similar data patterns. 

While ground probes provide point data with comparatively more proximal sensing 

of data, remote sensing technology can be used for gaining spatial distribution 
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information and drones can be mounted with several types of instruments to meas-

ure additional data on demand. 

Opportunities for using drones in information collection are found when looking 

at the gaps left by other technologies and seeing how the strengths of drones such 

as spatial resolution, adaptability for different instruments and non-intrusiveness 

can help. Satellites with 10m+ spatial resolution can provide approximate infor-

mation at field level, but within-field variability may require higher resolution, 

which can be acquired using drone-mounted cameras. For example, estimation of 

LAI using Sentinel-2 data was studied and found to be unsatisfactory especially in 

precision agriculture when within-field variability is a concern (Kganyago et al., 

2020). 

Satellite based radars (C-band, L-band) can typically measure soil to a vertical 

depth of 2-7cm of surface soil, but their horizontal surface resolution can be above 

1km (Brocca et al., 2017). On the other hand, near-surface ground penetrating ra-

dars can characterize soils in deeper layers with much higher resolution, both verti-

cally and horizontally (Klotzsche et al., 2018; Wu et al., 2019; Zajícová and 

Chuman, 2019; Chantasen et al., 2020). UAVs have the advantage of non-intrusive-

ness which allows it to be used during growing season to get information about 

subsurface conditions while also enables quick mapping of the whole field. High 

spatial resolution opens up the possibility of measuring chlorophyll fluorescence 

which could provide a more direct indicator of photosynthesis and allow for detec-

tion of water stress (Gago et al., 2015). 

The conceptual model presented in the introduction is a static model with the 

main purpose of guiding the literature research. It could be further extended for use 

as a basis for a numerical model for estimating individual unknown variables, when 

other variables are known. Each arrow would then add uncertainty to the estimate 

as proxies move further away from the actual measurement target. For a useful dy-

namic model, weather and evapotranspiration would need to be included as well. 

All the different methods of measuring soil moisture described here are based on 

indirect measurements of proxy variables and therefore unlikely to be satisfactory 

individually. They are subject to various degrees of uncertainty from multiple dif-

ferent sources, including measurement error, and model error. When proceeding 

from estimation of current state to forecasting, this uncertainty will be further am-

plified. An important task is to quantify the different sources of uncertainty and their 

contribution to the overall prediction. This uncertainty can then be reduced by tar-

geted data collection, including complementary measurements from different types 

of sensors (Dietze, 2017).  
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5. Conclusions 

The interaction of soil and water is a central topic in open field farming and the 

changing weather patterns call for re-evaluating current field management practices. 

Measuring soil water content is a multi-faceted spatio-temporal problem with vary-

ing degrees of uncertainty. A tractable solution can be to measure soil properties 

and assess plant canopy condition. Soil characteristics define the more stable part 

of the system, while the highly variable water content can be estimated through 

plant and soil related proxies.  

  In this study, several key variables related to soil and plant available water con-

tent along with their relationships were identified and presented as a conceptual 

graph model. This graph was then used to guide a literature search to find applica-

tions of for drones in measuring soil water content and characteristics in open field 

cultivation. This graph can be used as a tool to choose measurement methods and 

targets, diagnostics and understanding the field water dynamics in general. It could 

further be used as a basis for developing a model to estimate the yield gap on a given 

field due to water issues. In the future this graph can be iteratively expanded upon 

as the need to include additional features and processes to the model arises.  

Drones have characteristics that make them useful in measuring water content in 

open field cultivation, especially in on-demand, high-resolution spatial mapping. 

Visual range and multispectral cameras are commonplace in drones, but hyperspec-

tral and thermal cameras along with radar technology can be mounted on drones as 

well, taking into account weight and cost limitations in practical applications. 

Continuous monitoring and forecasting soil moisture require frequent measure-

ments. Autonomous drones may be able to do this in the future, but at the moment 

this information needs to be provided by ground probes and other devices deployed 

at the field. In these cases, drones may still have a role in measuring the more stable 

properties and patterns of the field that can be used to improve the soil moisture 

estimates. 

Even with collected data – with or without drones – the challenge of combining 

and analyzing data from different sources remains, before the results can be useful 

in practical decision making for a farmer. The amount of data collected and the 

number of, potentially computationally intensive, post-processing steps required 

can quickly become overwhelming, calling for proper infrastructure and high level 

of automation throughout the data processing chain. 
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