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Abstract—Anthropometric body measurements are important
for industrial design, garment fitting, medical diagnosis and
ergonomics. A number of methods have been proposed to
estimate the body measurements from images, but progress has
been slow due to the lack of realistic and publicly available
datasets. The existing works train and test on silhouettes of
3D body meshes obtained by fitting a human body model to
the commercial CAESAR scans. In this work, we introduce the
BODY-fit dataset that contains fitted meshes of 2,675 female and
1,474 male 3D body scans. We unify evaluation on the CAESAR-
fit and BODY-fit datasets by computing body measurements from
geodesic surface paths as the ground truth and by generating two-
view silhouette images. We also introduce BODY-rgb - a realistic
dataset of 86 male and 108 female subjects captured with an RGB
camera and manually tape measured ground truth. We propose a
simple yet effective deep CNN architecture as a baseline method
which obtains competitive accuracy on the three datasets.

I. INTRODUCTION

Recovery of 3D body information from 2D images is
an important yet challenging problem with applications in
industrial design [1], garment fitting and online shopping [2],
medical diagnosis [3] and ergonomics [4]. Recovery can be
decomposed into 3D pose and 3D shape. Recently research
on 3D pose estimation has been active [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], but shape recovery has received
less attention.

Many applications do not need recovery of the full 3D
shape, but only a set of suitable body variables, anthropometric
body measurements, such as the head, waist and chest circum-
ferences (Figure 1). Estimation of the body measurements is
addressed in several works [15], [16], [17], [18], [19], [20],
[21], [22] which process one or multiple silhouette images of
persons in a fixed pose. The earliest works were based on en-
gineered features and regression [15], [16], [17], [18], [19] and
the recent works adopt various deep architectures [20], [21],
[22]. For training and testing these methods use silhouettes
rendered using 3D body meshes. The body meshes are either
completely synthetic or generated by learning a parametric
body model from real 3D body scans. A popular dataset is
CAESAR [23] that contains 4,400 scans and tape measured
ground truth. However, CEASAR is commercial and its license
prevents its public use. The license allows derivative works
such as the fitted meshes and measurement ground truth can
be generated by defining geodesic paths on the mesh surfaces.

In this work, we provide a number of datasets that will
be made publicly available to facilitate fair comparisons. Our
main contributions are:
• A novel train/test dataset - BODY-fit - for benchmarking

silhouette based body measurement methods. The dataset
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Fig. 1. Examples from the proposed benchmarks, “BODY-fit” and “BODY-
rgb”, and the 16 body measurements (A-P) used in the method comparison.
The blue meshes represent the original BODY scans containing missing
points and noise (mainly in the head, feet and hand regions). The yellow
meshes result from non-rigid ICP fitting of the mean shape template from
the CAESAR fits datasets [24] so that the both datasets now share the same
topology. RGB images were captured using Apple iPad.

is obtained from the local clothing company who have
2,675 female and 1,474 male 3D scans of their customers.

• A novel testing dataset - BODY-rgb - of recently captured
RGB images of 86 males and 108 females and tape
measured ground truth.

• A strong baseline which achieves good accuracy on
the new datasets and the existing data - CAESAR-fit -
provided by Pishchulin et al. [24] and for which we define
train/test splits files and generated silhouette images.

II. RELATED WORK

a) Body measurements.: Anthropometric body measure-
ments provide detailed information about the body shape. The
measurements are conventionally measured manually using a
tape measure, but there is wide interest toward computerized
tools. The first commercial products for 3D scan based an-
thropometric measurements were unsatisfactory. For example,
Paquette et al. [25] reported that automatic point-cloud based
measurements differ largely w.r.t manual tape measurements.
They reported systematic errors of up-to 30− 40 mm despite
the fact that standard measurement procedures were imple-
mented in softwares used for their comparison (ISO-8559 and
U.S. Army). Gordon et al. [26] defined accuracy thresholds for
a number of anthropometric measurements and these vary from
±4.0 mm (ankle, elbow and knee circumference) to ±15.0 mm
(chest).



b) Datasets.: Since the introduction of 3D scanners
there have been several campaigns. For example, the UMTRI
dataset was collected to find the safest sitting posture of
young children in cars [27]. ANSUR 88 (1988) and ANSUR
2012 datasets contain 3D scans and 93 tape measured body
measurements of US Army Force soldiers. ANSUR 2012
contains 4,082 male and 1,986 female subjects of varying
age. UMTRI and ANSUR datasets are not publicly available.
CAESAR dataset [23] is a commercial dataset that contains
3D scans of 2,400 U.S. and Canadian and 2,000 European
civilians with tape measured ground truth. CAESAR license
and expensive price prevent its wide adoption for research
purposes. Several authors have performed mesh registration
on the CAESAR scans to bring them in correspondence and
use pre-defined geodesic distances as the ground truth [28],
[20], [24], [22]. Pishchulin et al. [24] and Yang et al. [28]
have made their data available. Pischulin et al. data covers
nearly 98% of the original CAESAR scans and is thus the
best for method comparisons.

c) Methods.: Human 3D pose recovery “in the wild” has
recently gained momentum [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14]. A number of these methods also estimate
body volume [9], [10], [11], [12], [13], [14], but only a few
provide quantitative results [11], [14]. In this work we assume
that the pose is approximately fixed which makes the problem
substantially easier, but which is a fair assumption for many
applications.

Earlier works use engineered features and regression [15],
[16], [17], [18], [19], [29], [30], but recently deep architectures
have become more popular. Dibra et al. [20], [21], [22]
have proposed multiple architectures. In [21] the hand-crafted
features are extracted from silhouettes and mapped to the
shape PCA (Principal Component Analysis) sub-space via the
Random Forest regressor, then the body measurements are
obtained from the reconstructed meshes. HS-NET [20] learns
a global mapping from silhouettes to shape parameters by
training CNNs. In the most recent work [22] Dibra et al. firstly
construct a rich body shape representation space from the pose
invariant Heat Kernel Signature (HKS) descriptors, then learn
a mapping from silhouettes to this embedded space.

III. BENCHMARK DATASETS

The data used in the existing works can be divided to
generated body shapes [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14] and fitted body shapes [19], [20], [21], [22]. The
generated shapes are not from real subjects, but are generated
synthetically by varying shape parameters of a 3D body model
such as SCAPE [31], BlendSCAPE [32] or SMPL [33]. Here
we focus on fitted body shapes captured from real subjects.

A. CAESAR fits

The license of the CAESAR dataset prevents public use of
the original body scans and the tape measured ground truth.
However, a 3D body mesh can be fitted to the scans and
geodesic surface paths can be defined as alternative ground
truth measurements. For example, Dibra et al. [20], [21], [22]

learn a statistical model from CAESAR dataset to synthesize
training data. Yang et al. [28] provide 1,517 male and 1,531
female CAESAR fits and Pishchulin et al. [24] provide another
set of 2,211 and 2,095 CAESAR fits. For our benchmark, we
selected the fitted meshes of Pischulin et al. [24] since it covers
98% of the original samples

We rendered the silhouette images by a weak-perspective
camera model with the focal length f =4.15mm and physical
pixel size 1.5 µm. These settings correspond approximately
the settings of iPhone 5S rear camera. The virtual camera
was positioned to the height of 1.6 m from the ground and
distance of 2.4 m from the body. 2240×2240 pix images were
generated. In our rendering functionality these parameters can
be easily adapted for specific purposes.

The anthropometric body measurements were defined as 16
circumference paths that match the definitions in [20], [21],
[22], [19] and which are illustrated in Figure 1.

B. BODY fits

A local clothing company provided us a dataset of real 3D
body scans of people wearing only tight underwear. The scans
were captured using a commercial TC2 device and software1.
Subjects were instructed to step on the rotating platform and
take a standing pose with the feet at around their shoulder
width apart and the arms slightly raised to create a gap between
the arms and torso, i.e. “A”-pose. The platform then rotates
around once, during which three depth sensors produce a
raw 3D scan of the customer and the process takes a few
seconds. The scanner outputs a triangulated mesh structure in
the regular OBJ file format. Each mesh contains on average
57,000 vertices and around 113,000 faces.

Similar to the original CAESAR scans also our scans are of
various qualities and contain holes, in particular, near the feet,
hand and head regions. To compensate the missing regions,
the scans were converted to watertight meshes by applying
the non-rigid ICP algorithm of Amberg et al. [34] and a 3D
body template. The fitting process is explained in more details
in [30]. As the body template we selected the the mean shape
of the CAESAR fits that brings the additional benefit that our
BODY fits and CAESAR fits from Pishchulin et al. [24] share
the same topology. Then silhouette images were generated
similar to the CAESAR fits using the same weak-perspective
camera.

C. RGB Body

In addition to the 3D scan datasets we collected a small
dataset of real RGB images of people in underwear (see ex-
amples in Figure 1). 8-20 body measurements were measured
using a tape measure (multiple persons collected the data with
varying expertise in tailoring). The dataset consists of 86 male
and 108 female subjects. The approximate capturing distance
was 2.4 m and the camera height 1.6 m. Images of front
and side views and their manually segmented silhouettes are
included. Silhouettes regions were extracted manually using a
semi-automatic segmentation tool.

1https://www.tc2.com
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Fig. 2. The overall deep architecture for the baseline method. Blue blocks denote conv kernels, and grey and yellow blocks denote the feature maps. Kernel
sizes and the number of output feature maps are shown as < k × k,C >.

IV. BASELINE

The network architecture is depicted in Figure 2. The inputs
are 224 × 224 binary silhouette images and the output is a
body measurement vector m ∈M. We adopt an AlexNet-like
architecture as the feature extractor for the input silhouettes.
The extractor consists of five conv layers followed by ReLU
layers except the last layer and 3×3 max-pooling layers except
the third and fourth ones. Feature maps extracted from each
silhouette are merged via the element-wised max operation,
then the merged feature maps are feed into the regressor
for body measurement estimation. The regressor consists of
three conv layers followed by the ReLU layers except the
last layer. We adopt 1 × 1 conv layers instead of the fully-
connected layers and an average pooling layer lies between the
second and third conv layers. Kernel sizes and the number of
feature maps in each layers are shown at the top of Figure 2.
In principal the network can be extended to N silhouettes,
but we found that more than two silhouettes provide only
marginal improvement and therefore fixed N = 2. Moreover,
small improvements can be achieved by optimizing the camera
angles, but we fixed the angles to θ1 = 0◦ and θ2 = 90◦

corresponding to the frontal and side views used in the
previous works.

To solve the task of body measurements estimation we adopt
the weighted Mean Square Error loss function:

L(m, m̂) =

|m|∑
i=1

wi(mi − m̂i)
2 , (1)

where w is the weight vector. There is an important finding
related to setting the weight vector weights. In our prelim-
inary experiments we found that selection of the weights
has substantial effect to the accuracy of each measurement.

Therefore, instead of using a single monolithic network for
all measurements, a measurement specific network with op-
timized weights should be trained for each measurement
(1 vs. 16 networks in our experiments). These findings are
experimentally demonstrated in our ablation study in Sec-
tion V-D and also discussed in several recent works [35], [36].
However, since exhaustive search of optimal weights using
cross-validation is slow, this optimization was omitted in the
method comparisons and a single monolithic network with
equal weights w = 116×1 was used.

V. EXPERIMENTS

A. Settings

a) Data and settings.: The training process of deep
neural networks requires a huge amount of training samples
and the corresponding ground truths. We synthesize training
samples similar to the previous works [20], [21], [22], [14]
using a statistical shape model. Since all subjects in the
CAESAR-fit and BODY-fit are almost in the same ”A” pose,
we ignored the pose variation and learned a statistical shape
model via performing PCA over the training set meshes.
The first 20 principle components were selected and sampled
from a multivariate normal distribution to synthesize samples
from which geodesic distances were computed as the body
measurements and silhouette images rendered. The CAESAR-
fit and BODY-fit datasets were randomly split to the training
set (80%) and test set (20%). For the both datasets we created
100k synthesized meshes for training.

The Dibra et al. [22] method used in the experiments was
trained using the parameters from the original work and the
same train/test splits as our baseline network. The baseline
network was implemented in TensorFlow and used mini-batch
size of 16, learning rate 1e-4 and the Adam optimizer.
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Fig. 3. The error histograms of male/female chest and thigh measurements
in our realistic BODY-rgb dataset.

b) Performance Metrics.: The main performance metric
is the Mean Absolute Error (MAE) of the anthropometric
measurement estimates m̂i against the ground truth mi. For
the i-th measurement, the MAE εi over j subjects is obtained
from

εi =
1

|j|

|j|∑
j=1

|m(j)
i − m̂

(j)
i | . (2)

It is important to notice that the minimum and maximum
values of each measurement are different due to the human
anatomy (e.g. wrist circumference vs. chest circumference)
and therefore the mean over MAEs is a poor overall perfor-
mance measure and therefore not reported.

B. Method Comparison

A number of different methods are discussed in Section II,
but the authors of these methods do not provide code or pre-
trained models. The two most recent works are HS-Net and
UF-US by Dibra et al. [20], [22]. For these experiments, we
obtained the code for UF-US [22] from the original authors.
The two-view version of their method, UF-US-2, was trained
using our train/test splits of the both datasets, CAESAR-fit
and BODY-fit, and using their default parameters. The Heat
Kernel Signature (HKS) step was not used as it is very slow to
compute and provides only marginal improvement (see SFUS-
HKS-1 vs. SFUS-1 in [22]). We also selected the geodesic
distances of the same 16 anthropometric measurements in [22]
as the metrics for comparison. The results for the proposed
baseline (“Our”) and UF-US-2 are in Table I. With the both
datasets and for the most of the anthropometric measurements
our model achieves better results than UF-US-2 using the same
train/test splits.

C. RGB Dataset

5-fold cross-validation was run on the BODY-rgb dataset.
Since some of the tape measurements were missing for some
of the examples the missing values were replaced with the
training set mean value on each fold and in testing the missing
values were omitted. The BODY-fit trained model was used
as the basis model that was fine-tuned using the RGB training
data. The results are shown in Table II. The accuracy is
clearly worse than for the 3D fit datasets in Table I, but also
clearly better than the statistical baseline “1st-stat” indicating
that the network learns essential features for anthropometric
measurement estimation. The error histograms of the male and
female chest (C.) and thigh (L.) circumference are shown in
Figure 3. The histograms are better for female subjects which
is partly due to the small number of male samples.

D. Ablation study

a) Amount of generated data:: An important factor for
the proposed model is how many generated training samples
are needed to reach good accuracy. This was experimented
with CAESAR-fit male and the results for different number of
synthetic samples in training are shown in Table III. We see
that accuracies gradually improve with substantial variation
between the runs, but converge at 100k.

b) Measurement specific networks:: One important find-
ing in our preliminary experiments was that that measurement
specific models can achieve better results than a single mono-
lithic network for all measurements. The problem of specific
networks is that the results strongly depend on the weights
for each measurement during training. To experiment with this
approach we tested the following three approaches: 1) Single
network and the same weight value for all measurements
(wi = 1.0), 2) Specific networks with a larger weight for the
main measurement (wi = 10.0) and 3) Specific networks with
single outputs (wi = ∞). For the case 1) only one network
needed to be trained, but for the cases 2) and 3) we needed to
train 16 networks. The results are summarized in Table IV.

The results indicate that substantial improvement can be
achieved by optimizing the cost weights. For example, the
inside leg length measurement accuracy is 26.8 for a single
output network, 13.5 for the network with equal weights and
9.6 for the network emphasizing the specific measurement. On
the other hand, the male chest circumference performs best
using the equal weights for all measurements.

VI. CONCLUSION

We introduced new benchmark datasets2 to boost research
on methods that can estimate anthropometric body measure-
ments from image data. The first dataset, BODY-fit, includes
2,675 female and 1,474 male 3D meshes constructed from the
scans of real subjects. Similar to previous works, a number
of geodesic distance paths on the meshes were measured
to provide body measurement ground truth and silhouette
images were generated. We provide the same measurements,

2Datasets can be accessed from https://doi.org/10.5281/zenodo.4096035



TABLE I
COMPARISON OF THE PROPOSED METHOD (OUR) TO THE PRIOR ART (UF-US-2 [22]). UF-US-2 CODE WAS OBTAINED FROM THE ORIGINAL AUTHORS.

METHODS WERE TESTED USING THE SAME TRAIN/TEST SPLITS AND ALL UNITS ARE MILLIMETERS (MM).

CAESAR-fit BODY-fit
Male Female Male Female

Measure UF-US-2 [22] Our UF-US-2 [22] Our UF-US-2 [22] Our UF-US-2 [22] Our

A. Head circ. 10.6 8.6 18.1 15.9 26.0 17.2 13.9 9.2
B. Neck circ. 11.6 9.3 11.6 15.5 13.4 11.8 14.5 14.6
C. Shoulder-b/c len. 9.9 5.4 10.7 16.3 12.3 11.2 9.4 7.7
D. Chest. circ. 27.4 18.2 32.3 24.8 32.1 23.0 26.2 21.7
E. Waist circ. 27.6 17.0 32.0 22.9 42.5 16.5 22.3 17.1
F. Pelvis circ. 22.9 30.6 29.0 24.0 24.8 13.3 20.6 14.7
G. Wrist circ. 9.5 10.7 12.2 13.3 4.2 4.1 4.8 5.2
H. Bicep circ. 14.9 12.5 16.6 11.5 13.8 11.4 11.9 9.3
I. Forearm circ. 12.4 7.9 13.5 10.7 8.7 7.2 8.6 8.5
J. Arm len. 8.9 4.2 8.9 13.1 9.2 7.6 7.4 6.4
K. Inside leg len. 9.8 13.5 13.3 14.8 11.9 9.2 10.0 6.5
L. Thigh circ. 21.9 16.5 28.2 16.4 16.9 17.8 14.8 11.6
M. Calf circ. 12.5 7.2 16.0 10.3 11.0 8.8 13.6 9.2
N. Ankle circ. 9.2 4.6 10.6 6.1 6.4 5.4 7.2 6.1
O. Overall height 14.8 15.1 20.2 34.7 25.8 9.9 17.1 8.6
P. Shoulder breadth 9.0 5.6 9.8 10.9 12.0 9.2 9.3 7.6

TABLE II
RESULTS FOR BODY-RGB (5-FOLD-CROSS-VALIDATION) WITH TAPE

MEASURED GROUND TRUTH (A, C AND I WERE NOT AVAILABLE).
“1ST-STAT” USES A TRAINING SET MEAN AS THE PREDICTION TO ALL

TEST SAMPLES.

BODY-rgb
Measure Male Female

1st-stat Our 1-stat Our

A. Head circ. - -
B. Neck circ. 19.8 14.3 20.3 13.8
C. Shoulder-b/c len. - - -
D. Chest. circ. 76.1 36.1 101.1 31.7
E. Waist circ. 97.6 35.3 121.9 42.7
F. Pelvis circ. 62.2 35.5 90.4 35.5
G. Wrist circ. 8.5 6.6 8.7 6.9
H. Bicep circ. 27.1 20.9 36.3 19.9
I. Forearm circ. - - - -
J. Arm len. 27.9 22.5 25.1 18.6
K. Inside leg len. 46.7 31.4 37.1 23.7
L. Thigh circ. 43.8 42.8 62.7 44.3
M. Calf circ. 23.1 12.8 29.6 16.7
N. Ankle circ. 12.3 8.5 17.1 13.8
O. Overall height 59.8 14.3 51.5 19.4
P. Shoulder breadth 21.8 15.8 22.0 19.6

similarly generated silhouettes and train/test splits for the
existing 1,531 female and 1,517 male CAESAR fitted meshes
of Pishchulin et al. [24] (CAESAR-fit). Our meshes share the
same topology to CAESAR-fit and therefore allows further
3D and 2D cross-dataset comparisons between them. We

TABLE III
TEST SET ACCURACY FOR DIFFERENT NUMBER OF GENERATED TRAINING

SAMPLES.

CAESAR-fit
Measure 1k 5k 10k 100k

Male
A. Head circ. 17.5 14.3 19.4 8.6
B. Neck circ. 11.5 10.8 9.3 9.3
C. Shoulder-b/c len. 16.3 17.6 20.4 5.4
D. Chest. circ. 37.8 25.7 21.8 18.8
E. Waist circ. 41.2 24.2 17.1 17.0
F. Pelvis circ. 27.9 22.2 31.0 30.6
G. Wrist circ. 8.6 7.6 9.1 10.7
H. Bicep circ. 14.4 11.9 14.8 12.5
I. Forearm circ. 10.6 10.8 13.0 7.9
J. Arm len. 18.6 19.9 15.3 4.2
K. Inside leg len. 25.2 25.1 26.3 13.5
L. Thigh circ. 22.4 18.0 28.1 16.5
M. Calf circ. 12.3 10.2 15.7 7.2
N. Ankle circ. 8.8 7.4 12.0 4.6
O. Overall height 51.0 54.1 60.3 15.1
P. Shoulder breadth 10.5 13.4 11.5 5.6

introduce another realistic dataset of 86 male and 108 female
RGB images and corresponding manually made tape measured
ground truth (BODY-rgb). As a baseline for these datasets
we propose a simple yet effective deep CNN architecture that
obtains competitive accuracy on all three datasets.



TABLE IV
TEST SET ACCURACY FOR SPECIFIC NETWORKS (w = 1.0: SINGLE

NETWORK FOR ALL MEASUREMENTS; w = 10.0 TARGET MEASUREMENT
WEIGHT IS 10.0 AND OTHER MEASUREMENTS 1.0; w =∞: ONLY THE

TARGET MEASUREMENT USED).

CAESAR-fit
Measure wi = 1.0 wi = 10.0 wi =∞

Male
A. Head circ. 8.6 8.2 11.9
B. Neck circ. 9.3 9.2 10.1
C. Shoulder-b/c len. 5.4 8.1 19.9
D. Chest. circ. 18.2 35.9 34.6
E. Waist circ. 17.0 23.5 24.6
F. Pelvis circ. 30.6 30.2 23.0
G. Wrist circ. 10.7 6.8 8.6
H. Bicep circ. 12.5 14.3 10.6
I. Forearm circ. 7.9 6.9 9.5
J. Arm len. 4.2 15.7 13.1
K. Inside leg len. 13.5 9.6 26.8
L. Thigh circ. 16.5 23.4 15.5
M. Calf circ. 7.2 8.5 10.9
N. Ankle circ. 4.6 4.5 6.5
O. Overall height 15.1 8.3 22.1
P. Shoulder breadth 5.6 5.7 7.6
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