
231

Image and Video Coding Techniques for Ultra-low Latency

JAKUB ŽÁDNÍK, MARKKU MÄKITALO, JARNO VANNE, and PEKKA JÄÄSKELÄINEN,
Tampere University, Finland

The next generation of wireless networks fosters the adoption of latency-critical applications such as XR, con-
nected industry, or autonomous driving. This survey gathers implementation aspects of different image and
video coding schemes and discusses their tradeoffs. Standardized video coding technologies such as HEVC
or VVC provide a high compression ratio, but their enormous complexity sets the scene for alternative ap-
proaches like still image, mezzanine, or texture compression in scenarios with tight resource or latency con-
straints. Regardless of the coding scheme, we found inter-device memory transfers and the lack of sub-frame
coding as limitations of current full-system and software-programmable implementations.

CCS Concepts: • Computing methodologies → Image compression; • Computer systems organiza-

tion → Real-time system architecture; • General and reference → Surveys and overviews; Evaluation;
Performance;

Additional Key Words and Phrases: Video coding, texture compression, low latency, real-time video system

ACM Reference format:

Jakub Žádník, Markku Mäkitalo, Jarno Vanne, and Pekka Jääskeläinen. 2022. Image and Video Coding Tech-
niques for Ultra-low Latency. ACM Comput. Surv. 54, 11s, Article 231 (September 2022), 35 pages.
https://doi.org/10.1145/3512342

1 INTRODUCTION

Since the advent of digital video, the need for saving network bandwidth and storage space has
driven the effort for efficient compression. Over the years, the network speed has been increasing
together with the processing power, but so did the video parameters—frame rate, resolution, or bit
depth—putting more requirements on the video compression systems. To this end, Motion Pic-

ture Experts Group (MPEG) and International Telecommunication Union Telecommuni-

cation Standardization Sector (ITU-T) have introduced a steady line of video coding standards
starting with H.261 [116] in 1988 through the nowadays ubiquitous Advanced Video Coding

(AVC/H.264) [151] and High-efficiency Video Coding (HEVC/H.265) [132] up to the newest
Versatile Video Coding (VVC/H/266) [20]. Each standard generation aims to approximately
double the compression ratio for the same subjective and objective visual quality. However, the
computation complexity also increases along with these improvements.

This work was financially supported by the Tampere University Graduate School and is part of the FitOptiVis project
[4] funded by the ECSEL Joint Undertaking under Grant No. 783162. It also received funding from the European Union’s
Horizon 2020 research and innovation programme under grant number 871738 (CPSoSAware).
Authors’ address: J. Žádník, M. Mäkitalo, J. Vanne, and P. Jääskeläinen, Tampere University, Korkeakoulunkatu 7, 33720
Tampere, Finland; emails: {jakub.zadnik, markku.makitalo, jarno.vanne, pekka.jaaskelainen}@tuni.fi.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2022 Copyright held by the owner/author(s).
0360-0300/2022/09-ART231
https://doi.org/10.1145/3512342

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.

https://orcid.org/0000-0002-1562-0881
https://doi.org/10.1145/3512342
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3512342


231:2 J. Žádník et al.

Solely improving the coding efficiency is not the only motivation for compression. Because
often the energy cost of computation is much lower than the energy required for transmission, a
lightweight compression scheme can achieve energy savings [14]. Battery life improvements are
especially important in the context of multi-access edge computing [135]. In addition, even with
the compression computation overhead, the decreased time spent on transferring the compressed
data might result in a lower total time than transporting raw data without compression. In these
types of scenarios, the tradeoff between computational complexity and achieved compression ratio
must be carefully considered.

For non-interactive video systems, such as video playback, the coding1 latency is not as impor-
tant as the quality or file size—as long as the coding speed is fast enough to process the video
at a required frame rate. Indeed, modern video codecs can exploit redundancies between frames,
which requires frame buffering and an additional delay when buffering the future frames. How-
ever, interactive video applications require low latency to be usable. As shown later in the survey,
with the current generation of wireless networks, the network transfer time is usually the main
factor contributing to the total latency in real-world applications. Even with multi-gigabit Ether-
net connections, it can be challenging to achieve sufficiently low latencies. However, recent ad-
vances in network technologies, such as WiFi-6 or 5G, promise to lower the transmission latency
down to units of milliseconds. With such low latencies, the video coding pipeline becomes the
bottleneck.

Faster networks open up space for new applications, such as cloud gaming, extended reality (XR),
or internet of skills [37]. However, high latency can either hinder the user experience (cloud gam-
ing) or contribute to motion sickness (virtual reality (VR)). While human-centered applications are
tolerant to a degree of latency limited by perception, some automation systems such as robotized
factories or autonomous vehicles rely on machine vision to control their actions. In the case of fast-
moving and safety-critical applications, the latency requirements can be much stricter. Therefore,
it is necessary to consider the coding latency also from the perspective of applications where hu-
mans with their imperfect brains are not involved, but the video stream is used to make ultra-low
latency control decisions with robots.

Another trend motivating low latency video coding is “edge computing,” or more specifically,
the slight reversal of this trend: Instead of integrating more computing power to all sensors (“smart
cameras”) in cyber-physical systems, there is now a move back towards more centralized comput-
ing architectures, with processing done in a powerful computer connected with a fast network
link to “dumber cameras” [125]. In response to the trend, AUTOSAR, the global leading auto-
motive standardization partnership, has released an Adaptive Platform [49] with the focus on
high-performance computing needed by intelligent cars, as an alternative to their previous classic
decentralized architecture. Many car features, especially automated and autonomous driving, rely
on fast video processing, where compression would play an important role in reducing the band-
width and the latency between the sensors and the central server.

In general, video coding latency can be reduced by faster algorithms and their intelligent map-
ping (implementation) to the underlying compute platforms. Since the maximum clock frequencies
do not scale anymore according to Moore’s law, more processing power is achieved by paralleliza-
tion, and so “faster” nowadays usually translates to “more parallel.” The computational perspective
shift requires reformulating traditional approaches to suit parallel execution models, which opti-
mally should be visible at algorithm-level design decisions.

1In this survey, the word “coding” is used as a general term for both “encoding” and “decoding,” since both parts are equally
important in a full video system.

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



Image and Video Coding Techniques for Ultra-low Latency 231:3

1.1 Contributions and Research Questions

To our best knowledge, this is the first comprehensive overview of video2 coding techniques that
(a) focuses primarily on the low latency aspect and (b) considers a wide range of alternative tech-
niques, apart from the most common ones. The goal of this survey is also to settle the state-of-
the-art video coding implementations into the context of full video systems with the upcoming
networking trends in mind.

For categorization, we first define a precise limit for low and ultra-low latencies based on human
perception limits and requirements of the upcoming networking standards. Then, by analyzing
the state-of-the-art implementations of video coding schemes, we answer the following research
questions:

(1) What are the main approaches to decreasing latency of video coding schemes and their
implementations?

(2) What are the limitations of the current state-of-the-art video coding schemes in terms of
latency?

(3) What are the computational requirements of the state-of-the-art video coding schemes?

1.2 Survey Outline

The rest of the survey is organized as follows. Section 2 formulates video system requirements from
the perspective of low latency—we define how low should the latency be in different applications,
and how it projects to a required coding speed and compression gain. Section 3 provides a general
overview of image and video compression and categorizes existing approaches into four categories.
Sections 4–6 contain the results of the survey, providing details about the findings in each of the
categories. Section 7 summarizes our findings and proposes possible future research directions.

The main source of literature was the Scopus database, where we searched for each category
introduced in Section 3 separately with a focus on real-time and low-latency keywords. The search
results were sorted in reverse chronological order to prioritize the most current results. Papers
reporting latency (i.e., not just the coding time) and a coding throughput of more than 50 MP per
second were included with a priority. Furthermore, papers found outside this procedure were also
included, when appropriate. A snowballing approach [153] was used in Section 4 with the help of
the pybliometrics library [119] to discover possible related works within citations and references
of included papers.

2 REQUIREMENTS OF A LOW-LATENCY VIDEO SYSTEM

Let us define a video system as the end-to-end chain that source video frames have to pass through
until they are consumed by a target device. For this survey, the system’s latency is the most impor-
tant requirement. Hand-in-hand with low latency goes high throughput, since the system must be
able to process a certain amount of data in a fixed time frame. The compression ratio is limited by
the transport channel and directly affects the transmission speed. Therefore, whenever possible,
we try to assess also the compression ratio. Visual quality, while certainly one of the key parame-
ters of video compression, is hard to compare objectively. For this reason, we do not concentrate
much on visual quality, unless Bjøntegaard metric [17] evaluation is provided, which estimates
either the peak signal-to-noise ratio (PSNR) change for the same bitrate or the bitrate change for
the same PSNR.

Figure 1 shows a generic diagram of a video system. Every arrow in the diagram represents a
data transfer and therefore a possible source of latency. Furthermore, every device performs some

2We consider “video coding” in a broader sense as “image and video” coding.

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



231:4 J. Žádník et al.

Fig. 1. Top-level view of a networked video system.

computation and internal memory transfers, again increasing the latency. In practice, devices can
be merged. An example video coding system can look as follows: graphics processing unit (GPU)
captures and encodes rendered frames from a running game. The encoded video stream has to be
transferred to the central processing unit (CPU) to be sent via an operating system network stack.
Receiving CPU then sends the encoded data into a hardware decoder integrated within a GPU
from where the decoded video is transferred to an head-mounted device (HMD). In this example,
the capture and encoding device is the same GPU while on the decoding side, the data has to pass
three different devices.

2.1 Setting Latency Constraints

In interactive video systems, the “top-level” latency, also called motion-to-photon latency, is the
time elapsed between a user’s input on the source device and the observation on the display device.
In machine control systems where the consumer is an algorithm and not a human, this term refers
to the latency from the source video acquisition until the point when the transcoded signal is
delivered to the input of the vision system. Even though the network is often a major latency
contributor, the scope of the survey is limited to the encoder and decoder only.

How low the latency needs to be depends on the application. Kadowaki et al. [66] studied the
users’ performance solving a simple pointing task with their hand being projected at different
motion-to-photon latencies. The authors concluded that if the latency is greater than 24.3 ms, the
user’s performance starts to decrease. Two articles by Lago and Kon [80] and Mäki-Patola and
Hämäläinen [92] suggested that an audio latency below 20–30 ms is either imperceptible or ac-
ceptable for humans. Even though the articles refer to sound latencies, video is often accompanied
by audio, and therefore, audio latency requirements have to be met as well.

Mochizuki et al. [98] face a restriction on the latency of a car surround view system to be under
100 ms, otherwise, the safety of the driver during parking could be violated. As the authors state,
100 ms corresponds to the migration distance of approximately 30 cm at the speed of 10 km/h.
While 100 ms is sufficient for a parking system, to maintain the same travel distance of 30 cm at a
speed of 100 km/h, the required latency would have to be 10 ms. From the example, it is apparent
that low latency is critical for systems like autonomous driving where the vehicle moves fast. For
example, a white paper by Ixia [63] defined end-to-end automotive Ethernet latency requirements
as 0.25–1 ms for driver assistance and driver safety applications and <10 ms for human-machine
interface systems.

A specification by the 3rd generation partnership project (3GPP) [1] defined use cases and re-
quirements for 5G communication in automation. The specification refers to “low latency” as a
latency lower than 10 ms and an “end-to-end” latency as a network end-to-end latency—different
from the motion-to-photon latency defined for a complete video system. Among other things, la-
tency requirements are mentioned for multiple use cases such as augmented reality (AR) (50 ms
motion-to-photon to prevent motion sickness) or “mobile robots” (cycle time <10 ms for machine
control, 10–100 ms for video-operated remote control).

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



Image and Video Coding Techniques for Ultra-low Latency 231:5

Based on the above observations, we define low latency as a motion-to-photon latency between
20–50 ms and ultra-low latency as a motion-to-photon latency lower than 20 ms. For non-critical
systems with a human in the loop, low latency ensures a high-quality user experience. Ultra-low

latency sets a requirement for latency-critical systems where a precision higher than the human
perception threshold is required to prevent damage or injuries.

The typical latency of current wireless technologies (e.g., 4G and 802.11ac, a.k.a. Wi-Fi 5) is in the
order of tens of milliseconds, which by itself is too high for achieving ultra-low latency. The newest
and upcoming wireless network standards (5G and 802.11ax, a.k.a. Wi-Fi 6) promise to reduce
the latency towards units of milliseconds, making them possible to be used in latency-critical
applications. For example, the ultra-reliable and low-latency communication (URLLC) paradigm
used for the upcoming 5G standard requires 1 ms end-to-end network latency [16].

2.2 Throughput Versus Latency

High coding throughput (i.e., number of pixels encoder/decoder can process per unit of time) is
a necessary condition to achieving low latency, although by itself it may not be sufficient. A pro-
cessing latency of one frame might be too high to achieve ultra-low latency even at high frame
rates—for example, a coding speed of 120 frames per second (FPS) corresponds to 1,000/120 = 8.3
ms coding time. Therefore, the ability of sub-frame coding would allow for achieving lower la-
tencies without the necessity of significantly increasing the coding throughput, which is a very
challenging task.

Theoretically, it should be possible to reduce the latency indefinitely, assuming the algorithm
can support it. For example, mezzanine compression algorithms are capable of reaching latencies
down to below one line of pixels [35]. In practice, however, sub-frame coding has its limits. Even if
the algorithm and its implementation allow for sub-frame coding, the integration into a complete
system might require buffering between the system pipeline stages, thus lowering the low-latency
potential. Furthermore, the control overhead of managing multiple sub-frame streams might be too
large if the sub-frame size is too small. Also, for highly parallel devices, most notably GPUs, the
workload of encoding a small sub-frame can be too low to fully utilize its computational resources.
Therefore, in some scenarios, optimizing for the lowest possible latency can paradoxically damage
the coding throughput.

As the last point, data transfers between devices such as CPUs and GPUs are a known source of
latency as well as a throughput bottleneck. Thus, spreading the computation across devices must
be considered carefully.

2.3 Compression Ratio

The channel bandwidth plays an important role in determining the necessary compression ratio.
Table 1 shows the minimum necessary theoretical compression ratios required to transport video
(assuming 60 FPS without subsampling) over different digital video interfaces and network chan-
nels. The examples are given for 1080p, 4K (3,840 × 2,160) and 8K (7,680 × 4,320) resolutions with
10 bits per color component (assuming three components per pixel). The channel throughput val-
ues listed are theoretical maximum values not reflecting the channel overhead, and therefore, the
required compression ratios should be perceived as slightly underestimated.

3 GENERAL COMPRESSION TECHNIQUES

We divided the possible video compression algorithms into four categories based on their design
goals and coding principles: still image compression, video compression, mezzanine compression,
and texture compression. Furthermore, we briefly discuss the impact of machine learning on image
and video compression. The following subsections give an overview of these categories.

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



231:6 J. Žádník et al.

Table 1. Required Compression Ratios of Video (60 FPS, No Subsampling, 10 Bits/channel) at Different
Resolutions Transferred Over Various Channels

Raw (60 FPS, 10-bit, 4:4:4)
Video Interfaces Networks

3G-SDI DP 1.4 HDMI 2.1 4G 5G mm WiFi-5 WiFi-6 25 GbE 5G fu
Resolution Gb/s 2.9 25.9 42.6 1.0 2.0 3.5 11 25 50
1080p 3.7 1.3 — — 3.7 1.9 1.1 — — —
4K 14.9 5.1 — — 14.9 7.5 4.3 1.4 — —
8K 59.7 20.6 2.3 1.4 59.7 29.9 17.1 5.4 2.4 1.2

The channel bandwidths are listed as theoretical maximum values. “DP”: DisplayPort standard; “5G mm”: 5G
mmWave standard; “5G fu”: future 5G at short wavelengths.

3.1 Still Image Compression

Because video is essentially a stream of images, image compression algorithms can be used to
compress video. This is the broadest and most generic category we define. Typical image compres-
sion is performed in three stages. First, the input samples are decorrelated. Decorrelation can be
achieved with a variety of methods such as transform (e.g., discrete cosine transform, DCT), pre-
diction (e.g., median edge detection, MED) or sub-band coding (e.g., discrete wavelet transform,
DWT), often prepended by a color transform that splits the color channels into luminance and
chrominance components. Decorrelated samples are then subjected to statistical modeling such
as quantization discarding the least important samples, reordering that ensures the most impor-
tant samples are transported first, or context modeling, which can be used to exploit local image
features by predicting the error residuals. The final step is entropy coding, which reduces the sta-
tistical redundancies between samples, for example, Huffman, arithmetic, or Golomb-Rice coding.
Decompression is performed by repeating the inverse operations of the encoding steps in reverse
order: entropy decoding, sample restoration (de-quantization), and inverse transform, possibly fol-
lowed by a color transform into the original domain.

The most widely used algorithms in this category are variants of the joint photographic experts
group (JPEG) algorithm: The original JPEG [143], its more complex improvement JPEG 2000 [130],
or JPEG-LS [149] meant primarily for lossless or near-lossless image coding. New JPEG XL [118]
standard is intended to supersede the original JPEG for web applications.

3.2 Hybrid Video Compression

Nearly all modern video codecs share the same hybrid coding scheme: First, they look for redun-
dancies both spatially (intra-frame) and temporally (inter-frame) and represent the differences
between similar blocks instead of encoding all the redundant pixel data. This enables a reasonably
accurate prediction of the original data. The prediction residuals are then encoded via a proce-
dure similar to transform-based still image coding. Typically, a variation of discrete cosine trans-
form (DCT) is used as a decorrelation transform, followed by a quantization driven by a psycho-
visual model. Finally, the quantized coefficients are entropy-encoded, typically through context-
adaptive variable-length coding (CAVLC) or context-adaptive binary arithmetic coding (CABAC).
In addition, the modern video encoding flow also includes in-loop filtering, especially for deblock-
ing. Because of the added coding tools, hybrid video codecs can achieve rate-distortion perfor-
mance superior to typical still image codecs.

Figure 2 shows generalized block diagrams of a video encoder and decoder. The blocks in the
gray zone denote the core of the video coding algorithms, which is not fundamentally different
from transform-based still image coding. However, the block diagram illustrates that apart from
the additional computation of the prediction residuals, the intra and inter prediction complicate
the data flow by introducing a feedback loop that replicates a part of the decoding process. Apart

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



Image and Video Coding Techniques for Ultra-low Latency 231:7

Fig. 2. Block diagram of a hybrid video encoder (left) and decoder (right). Gray zones denote the core of
the algorithms that is similar to transform-based still image coding. Grey arrow pins denote intra-/inter-
prediction and filter control data transferred to (from) the entropy encoder (decoder).

from the residuals, additional control data from the prediction estimation modules and the in-loop
filters, required to restore the frames on the decoding side, are also encoded by the entropy coder
(denoted by gray arrow pins in the figure). Additional memory storage is required for storing
reference frames required by inter prediction.

Apart from regular video streams, special video formats were encountered during the survey,
which often require additional processing steps during encoding. Notably, 360◦ video used in VR
applications require stitching or a reprojection of the multi-camera view into a rectangular planar
format [112].

First group of video coding standards are codecs developed by MPEG: AVC (H.264) [151], HEVC

(H.265) [132], and the newest VVC (H.266) [20]. Each generation aims to approximately double
the compression ratio for the same quality. Compared to Advanced Video Coding (AVC), HEVC
simplified the in-loop filtering and added explicit support for parallelism via wavefront parallel pro-
cessing (WPP), slices, and tiles. VVC further improves the coding efficiency of HEVC and extends
its scope to be more versatile, i.e., usable in a broader range of applications such as wide-gamut,
high dynamic range (HDR) or 360◦ video, still image coding or lossless coding.

Another line of codecs are open, royalty free formats by Google (the latest by Aliance for Open
Media): VP8 [13], VP9 [100], and AOMedia video 1 (AV1) [28].

In addition, audio and video coding standard Workgroup of China developed their variants of
video codecs: AVS [46], AVS2 [50], and AVS3 [160].

3.3 Mezzanine Compression

Mezzanine compression algorithms are intended to reduce the bitrate of high-resolution video
transferred over high-bandwidth links, such as HDMI, DisplayPort, or a 10 Gb Ethernet. These
algorithms are intended to be visually lossless with low latency and low complexity. Common
use cases of mezzanine compression are professional video production chains or compression of
a high-resolution video stream between a video card and a monitor. Willème et al. [152] define
requirements for mezzanine compression as follows:

• Support for 1080p–8K, 8–12 bits per component, 4:4:4 and 4:2:2 chroma subsampling.
• Compression ratio in the range of 1.5–6:1.

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



231:8 J. Žádník et al.

• Visually lossless quality.
• Quality robustness in case of multiple encode-decode passes.
• Low computational complexity and low latency (<32 lines of a frame).

While mezzanine compression could be categorized as a part of still image compression, the low
complexity, and low latency requirements justify a separate category. However, since the number
of publications found was very low, the results are merged into the still image coding category in
Section 4.

Some of the most well-known mezzanine compression algorithms are VC-2 [18], VESA
DSC [144], and the newest standard JPEG XS [35]. Multiple proprietary formats exist such as
LLVC by Sony or tiny codec (TICO) by intoPIX.

3.4 Texture Compression

Texture compression algorithms are primarily designed for offline compression of textures, which
are stored into a GPU memory in the compressed state. During rendering, the texture components
(texels) are repeatedly read from and decompressed at runtime during the display process. The fast
decoding is therefore of utmost importance, and modern GPUs support hardware texture decom-
pression to make the decoding process as fast as possible. Beers et al. [15] define the following
design goals of a texture compression algorithm:

• Very fast decoding speed.
• Fast random access to the pixels in the texture, which implies a fixed compression ratio.
• Visual quality can be compromised for higher compression.
• Fast encoding is useful but not necessary.

Typically, the encoding process evolves around designing a codebook that quantizes the
original color space and representing pixels as indices pointing into the quantized codebook.
Decompression is thus achieved simply with a table lookup. Compared to previous categories, tex-
ture compression lacks the entropy coding step, which typically results in worse rate-distortion
performance.

There are many variants of texture compression formats, mostly depending on the platform.
Desktop GPUs support hardware decompression of the S3 texture compression (S3TC) family (also
called block compression (BC) or DirectX texture compression (DXT)): BC1–5 [21, 62, 123] or the
more complex BC6H (for HDR textures) and BC7 (for ordinary textures) [88, 124]. The newest
evolution of this family is adaptive scalable texture compression (ASTC) [101], which supports
variable block sizes and therefore multiple possible compression ratios. It is also the most complex
texture compression format up to this date. Contrary to BCx, ASTC is only supported on mobile
devices and Intel GPUs. For mobile Android-based devices, Ericsson texture compression (ETC)-
based compression is used: ETC1 or ETC2 and EAC. Apple devices support their PowerVR texture
compression (PVRTC) compression standard.

3.5 The Role of Machine Learning

In the past decade, the use of machine learning, and especially deep learning, has risen dramat-
ically. We dedicate this last category to two distinct concepts connecting machine learning and
image/video compression: the use of machine learning for image/video compression and the com-
pression of visual content for machine vision applications (which typically utilize machine learning
for the vision algorithm).

Machine Learning for Compression. As in many other fields, machine learning has also been used
for solving hard optimization problems in image and video compression. Following a distinction

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



Image and Video Coding Techniques for Ultra-low Latency 231:9

made by Lie et al. [89] and Hoang and Zhou [59], we can divide applications of machine learning
in video compression into two categories:

(1) Novel compression schemes built primarily with deep learning techniques.
(2) Use of deep learning tools in traditional coding pipelines.

Due to the high computational complexity of deep learning algorithms, most end-to-end im-
plementations struggle to achieve high coding speed, which was confirmed during our literature
search. Therefore, we decided to omit the end-to-end implementations from the survey. The men-
tioned studies [59, 89] can provide a further overview of this topic.

In some cases, we found deep learning used for accelerating complex steps in existing codecs.
These publications are further discussed in their respective sections.

Compression for Machine Vision. Hand in hand with advances in machine learning, the range
of machine vision applications has grown steadily. As pointed out by Le et al. [83], Cisco Annual
Internet Report [30] predicts the share of machine-to-machine connections will grow from 33% in
2018 to 50% by 2023. Furthermore, the upcoming 5G latency improvements are expected to further
accelerate the adoption of machine vision in low-latency systems. Thus, there is a growing need
for compression optimized specifically for machine vision algorithms. However, only a handful of
implementations were yet published, which we shortly list in this subsection without introducing
a new category.

From the machine vision perspective, it can be beneficial to compress and transmit features
extracted from the source pixels, instead of the pixels themselves. This is known as “feature com-
pression” and two MPEG standards accompany this effort in the context of visual search appli-
cations: compact descriptors for visual search (CDVS) [41] and compact descriptors for visual
analysis (CDVA) [42]. CDVS defines a set of handcrafted descriptors and a processing pipeline
to ensure better reproducibility and interoperability between applications. CDVA further extends
the concept CDVS by including deep features alongside the handcrafted ones and exploiting tem-
poral redundancies between video frames. We found only three real-time implementations of
CDVS [43, 51, 133] reaching 98, 144, and 39 MP per second on desktop-grade GPUs, respectively.
Compared to other implementations reported later in the survey, the results are relatively slow,
and more research would be necessary to decrease the computational complexity of CDVS and
CDVA.

“Feature compression” might lead to optimal compression for machine vision, but the results are
not directly interpretable by humans. The recent proposal of video coding for machines (VCM) [40]
tries to find the balance between both the human and machine vision perception by finding a
collaborative coding model.

Recently, end-to-end frameworks based on the idea of an autoencoder were proposed, specif-
ically targeting the compression for machine vision [82, 83, 111]. In Reference [82], the authors
achieved a throughput of only 14 MP per second on a high-end desktop GPU. However, the pro-
posed method shows a great potential by outperforming Versatile Video Coding (VVC) in terms
of machine vision accuracy.

Another meaning to “feature compression” was given by works that propose compressing in-
termediate deep features (e.g., Reference [45]). That is, instead of compressing the visual signal
itself, part of the target vision neural network is executed on the source device, followed by the
deep feature compression, transmission, feature decompression, and computing the rest of the
neural network. However, we consider the approach a separate topic out of the scope of this
survey.

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



231:10 J. Žádník et al.

4 STILL IMAGE COMPRESSION

This section presents the implementation results of still image and mezzanine compression
algorithms. First, in Section 4.1, we mention implementations evaluating motion-to-photon latency.
Then, the rest of the section is organized as follows:

JPEG Variants. (Section 4.2) This category includes both software (CPU and GPU) and hardware
(field-programmable gate array (FPGA)) implementations of different JPEG standards. The results
vary greatly given the wide range of design goals and target platforms.

Frame Memory Compression. (Section 4.3) A large group of the results consists of dedicated hard-
ware accelerators (mostly application-specific integrated circuit (ASIC) but also FPGA) designed
to reduce the memory footprint within another application (such as reference frame buffering in a
video codec or a computer vision application). Despite being used as a part of a larger system, they
can still be viewed as standalone image compression algorithms. Common characteristics of these
systems are (a) pipelined architecture with a latency of units–tens of clock cycles, (b) lossless or
near-lossless quality, (c) low compression ratio usually between 2–3, and (d) custom adaptations
of basic statistical algorithms focusing on simplicity.

Mezzanine Compression. (Section 4.4) The mezzanine compression results are merged into this
section, because only three implementations were found in the search process and the structure of
the algorithms closely matches general still image coding. More specifically, VESA display stream
compression (DSC) and JPEG XS algorithms are covered.

Other. (Section 4.5) Implementations of algorithms that do not fit to any of the above categories.

Table 2 summarizes basic properties of the reviewed implementations. Because of the large va-
riety of different algorithms, the “Algorithm” column denotes the algorithm’s decorrelation and
coding steps. The “Format” column denotes the color format and subsampling as specified by the
authors. The “Len.” (length) column specifies whether the implementation uses variable-, semi-
fixed-, or fixed-length coding. The “∼” character anywhere in the table denotes an approximate
value—for example read from a plot. The entries are sorted first by the coding type (encoding,
then decoding), then by a throughput.

Figure 3 shows a visual comparison of throughputs and compression ratios of those reviewed
implementations that report both values. Because the encoding and decoding throughputs usually
vary, the figure shows them in two separate plots. The compression ratio is equal for both of the
plots.

4.1 Implementations Reporting Latency

Holub et al. [60] proposed a GPU-accelerated coding of the JPEG standard. All encoding and de-
coding steps were performed on a GPU except the code stream parsing on the decoding side. The
results in Table 2 correspond to encoding/decoding throughput of an 8K image at a quality level
(Q) of 10 (highest TP) and 95 (lowest TP) for both the encoder and the decoder with and with-
out memory transfers. With JPEG coding, the whole system exhibits a latency of 4 frames (133
ms), the same as an uncompressed video (with 1080i video input). Apart from JPEG, the pub-
lication also described GPU texture compression encoding, which is covered in more detail in
Section 6.1.

Ubik et al. [138] proposed an FPGA implementation of TICO integrated into a 1080p video
streaming system with the latency of 0.58 ms. The choice of a lightweight mezzanine compression

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



Image and Video Coding Techniques for Ultra-low Latency 231:11

Table 2. Comparison of Reviewed Still Image Coding Implementations

Co-Processing
1st author Algorithm Len. TP Format Platf. Host Device

(Mpx/s)
Holub [60] DCT## + Huff./RLE## var 1625◦◦ E YCbCr444 Q=10 CPU+GPU Intel i7 3GHz GTX 580

824 E
1322◦◦ E YCbCr444 Q=95

634 E
2057◦◦ D YCbCr444 Q=10

899 D
1060◦◦ D YCbCr444 Q=95

586 D
Bruns [24] DWT++ + MSB++ var 1584◦ D YCbCr422 CPU+GPU — GTX 1080

1269◦ D YCbCr444

Standalone HW
1st author Algorithm Len. TP Format Platf. Tech Freq Pow. Ga/LUT Mem

(Mpx/s) (nm) (Mhz) (mW) (·103) (B)
Kim [72] DWT + SPIHT fix 4448 E YUV420 ASIC 65 556 — 76.5 512

4000 D 500 107.8 0
Guo [56] MDA + SFL semi 2133 E YUV420 ASIC 90 300 — 45.1 —

4267 D 34.5
Guo [57] DPCM + GOQ var 800 E YUV420 ASIC 40 300 2.05 4.95 —

1600 D 2.60 9.75
Lian [87] custom + ExpGR var 1540 E YUV420 ASIC 65 578 5.3 36.5 192

780 D 599 5.0 34.7 256
Kim [73] custom + GR-like fix 1113 E RGBW ASIC 130 167 — 56.1 1K

1113 D 39.6 0
Kim [74] DWT + SPIHT fix 440 E YCgCr422 ASIC 130 143 — 50.0 —

477 D 167 68.8
354 E FPGA x 115 — — 0
397 D 139

Kefalas [69] custom† + DSU† var 124 E YCoCg422 FPGA x 62 — — —
62 E YCoCg444

Carneiro [25] MED# + GR# var 121 E — FPGA x 30 — — —
Kim [70] MED# + GR# var 120 E — FPGA x — — — —
Kau [68] MED# + GR# var 113 E — FPGA x 113 — 1.55 13K‡

Alonso [6] LHE + Huff. var 95 E YUV/gray FPGA x 95 — 8.1 —
Chen [27] PEP + GR# var 52 E 12-bit gray FPGA x — — — 264K
Kamalavasan
[67] DCT∗∗ + Huff.∗∗ var 276 D — FPGA x 200 900∗ 7.0 248K

Kim [75] custom† + DSU† var 246 D — ASIC 65 82 62 — —

Standalone SW
1st author Algorithm Len. TP Format Platf. Model #Cores

(Mpx/s)
de Cea-Dominiquez [34] DWT+ + BPC-PaCo var ∼810◦◦ E grayscale GPU GTX 1080 Ti 3584

∼760◦◦ D
Bruns [23] DWT+ + EBCOT+ var 186◦ E — GPU — —

159◦ E
Rubino [121] DWT + ordering var 69 E — CPU Cortex-A53 4

∗Dynamic power only, ∗∗JPEG XT, +JPEG 2000, ++JPEG XS, #JPEG-LS or LOCO-I, ##JPEG, †DSC, ‡ plus one row, ◦only
one-way memory transfers, ◦◦without memory transfers.
TP denotes throughput where E, D, and S denote encoding, decoding, and full system throughput, respectively. Ga/LUT
denotes either the number of gates (ASIC) or LUTs (FPGA). “Cores” denotes the number of CPU or GPU cores.

algorithm was motivated by its latency of only several pixel lines and visually lossless quality.
The system was used for distributed streaming of a musical performance over 300 km with an
end-to-end latency of approximately 5 ms. However, the authors do not provide throughput mea-
surements, therefore, we omit this publication from Table 3.

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



231:12 J. Žádník et al.

Fig. 3. Throughput of still image encoders (left) and decoders (right) compared to a compression ratio. Dotted
lines represent multiple compression ratios reported over a range of values.

4.2 JPEG Variants

Three FPGA implementations of a JPEG-LS encoder were presented by Kim et al. [70], Kau and
Lin [68] and Carneiro et al. [25]. Both References [68, 70] used a pipelined architecture while Ref-
erence [25] presented a parallel architecture for better scalability. LOCO-I, the core of the JPEG LS
algorithm, was also implemented by Chen et al. [27] with a parallel error prediction (PEP).

Bruns et al. [23] evaluated different CPU/GPU co-processing models for post-compression rate-
distortion optimization (PCRD-Opt) and packetization routines of JPEG 2000. The authors con-
cluded that all coding steps should be executed on the GPU for the highest throughput. The
throughput values in Table 2 refer to the low-bitrate (100 Mb/s, upper) and high-bitrate (2500 Mb/s,
lower) scenarios reported in the publication. The authors reported that performing the whole en-
coding on a GPU reduces the device-to-host data transfers significantly.

A GPU implementation of JPEG 2000, proposed by de Cea-Dominiquez [34], replaced the embed-
ded block coding with optimized truncation (EBCOT) entropy coding by a custom bit plane parallel
coder called BPC-PaCo [44] and a bit stream tightening algorithm. The authors reported only a
grayscale throughput; The corresponding throughput of an 8-bit RGB image would be 800/3 = 267
Mpx/s. Also, the reported throughput does not take memory transfers to/from a GPU into account.

Kamalavasan et al. [67] proposed an FPGA JPEG XT decoder targeting decompression of 4K
HDR images at 30 FPS in VR headsets. JPEG XT is a backwards-compatible extension to the original
JPEG standard. The authors chose this standard for its lower computational complexity compared
to JPEG 2000.

4.3 Frame Memory Compression

Guo et al. [55, 56] proposed a lossless embedded compression method based on multi-mode differ-
ential pulse code modulation (DPCM) and averaging (MDA) prediction followed by a semi-fixed
length (SFL) coding. The length of a SFL-coded partition can be read from a fixed-length part of
the partition, thus decreasing the number of data dependencies within the partition compared to
a conventional variable-length coding. The basic processing unit is an 8 × 8 pixel block.

Kim et al. [74] proposed FPGA and ASIC implementations of a lossy frame memory compression
(FMC) based on a discrete wavelet transform (DWT) and a 1D set partitioning in hierarchical
trees (SPIHT). Contrary to the usual dynamic order of SPIHT, the encoder produces a fixed-length

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



Image and Video Coding Techniques for Ultra-low Latency 231:13

output and therefore has a fixed compression ratio and higher processing speed. By minimizing
dependencies between different algorithm passes, the authors achieved a throughput of about one
bit-plane per cycle. The results are obtained with a block size 1×64 and DWT decomposition level
3, evaluated on a Kodak dataset [48] transformed and subsampled into a YCbCr 4:2:2 format.

The previous design was improved by Kim et al. [72] by dividing a larger block into sub-blocks
and processing them in parallel by small SPIHT processing elements. The results were obtained
with a block size 8 × 8 and DWT decomposition level 2.

Another work by Kim et al. [73] introduced a lossy compression scheme for RGBW images. The
algorithm consists of two custom RGBW prediction steps followed by a fixed-length Golomb-Rice
coding. A coding block size 32 × 1 was used to obtain the results. Apart from a lossy mode, the
algorithm can support lossless encoding as well.

A lossless FMC was proposed by Lian et al. [87]. Compared to previous works (e.g., Reference
[56]), the implementation supports higher bit depths (such as 10 or 12 bits/sample) without a qual-
ity degradation and requires less memory. The authors developed a directional prediction method
followed by a dynamic unary/Exp-Golomb-Rice coding and implemented the algorithm as two-
core to maximize the throughput. The implementation uses encoding partition size 16 × 16 for
luma and 8 × 8 for chroma channels.

Guo et al. [57] proposed a DPCM-based compression method where DPCM-predicted values are
coded with a lossy gradient-oriented quantization (GOQ) coding. The choice of optimizing for a
minimal gradient error was motivated by the fact that in computer vision applications the gradient
information is more important. The encoder reads the input in n× 1 sub-blocks and reorders them
into n × k blocks suitable for vision processing. Because of that, the decoder reads its input in a
block-based order.

4.4 Mezzanine Compression

Bruns et al. [24] proposed a GPU-based JPEG XS decoder. All decoding steps were performed on
the GPU except for the initial depacketization, which was performed on a CPU due to its serial
nature. To fully utilize the GPU and maximize the throughput, the computing kernels operate
on the whole frame, thus sacrificing the low latency potential of the algorithm. The GPU–CPU
memory transfer was a bottleneck for an unsubsampled 4K video with a bit depth of more than 8
bits. Compression ratios in Figure 3 were calculated from reported bits per pixel (bpp) values and
12 bits/channel video.

Kim et al. [75] proposed an ASIC implementation of a DSC decoder aiming for high power-
efficiency. The work concentrates mostly on optimizing the line buffer, which was shown to be a
major bottleneck in both area and power consumption.

Kefalas and Theodoridis [69] proposed an FPGA implementation of a DSC encoder without any
external memory requirements. The encoder achieves a latency of less than one line. The achieved
throughput is twice as high for 4:2:2- and 4:2:0-subsampled video than without subsampling.

4.5 Other

Alonso et al. [6] proposed an FPGA implementation of a logarithmical hopping encoding (LHE)
prediction and quantization algorithm [9]. For the entropy coding step, the authors chose Huffman
coding. Because the prediction is calculated as an average of the top and left pixels, the predicted
value depends on the previous line of the image (as well as on the previous pixel of the current
line). The authors demonstrated the algorithm’s low complexity and memory requirements by
implementing it on a small-factor FPGA-based system on chip (SoC) with a low resource con-
sumption but still achieving enough throughput to stream 1080p video with a latency of 23 clock
cycles.

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



231:14 J. Žádník et al.

Rubino et al. [120, 121] proposed a novel image compression algorithm depth embedded block
tree (DEBT) in the context of underwater robotics applications. DEBT is a DWT-based progressive
compression scheme that does not have an explicit entropy coding step. Instead, it scans the list
of the transform coefficients ordered by their significance, sending the most significant elements
first. According to the authors, the algorithm is highly parallelizable. An implementation of DEBT
on a Raspberry Pi 3 embedded computer can achieve 30 FPS at 1080p resolution.

4.6 Summary

None of the results except Reference [60] (discussed in Section 6.1) and Reference [138] explicitly
state full-system latency measurements. In the case of hardware implementations, the authors
often report the length of the underlying pipelined architecture in clock cycles, which can be used
to determine the resulting latency of the encoder/decoder. Software implementations only report
encoding times for the whole image, therefore a latency of one frame has to be assumed.

As shown in Table 2, fixed-function ASIC or FPGA implementations of FMC are the fastest [55–
57, 73, 74, 87]. Combined with low latency and good visual quality, they can be seen as a viable
target for ultra-low latency video coding applications. However, the low compression ratio limits
their usability to high-bandwidth transfer channels.

Only References [73, 74] implement fixed-length coding. This property is important in case
any of these algorithms were implemented as software encoders, as fixed-length coding allows
predictive memory allocations and simplifies the decoding process.

The results of Reference [24] showed that optimizing for maximum throughput might come at
the expense of not achieving a sub-frame latency, which is one of the defining features of mezza-
nine codecs.

Some slower results come from implementations on small-scale embedded devices with a limited
computational capacity [6, 121].

An apparent overall trend is to move away from typical entropy coding algorithms and focus
on simpler solutions with fewer data dependencies. For applications following a co-processing
execution model (most notably CPU-GPU), memory transfers between the device and the host
can be a bottleneck.

5 HYBRID VIDEO COMPRESSION

Before reviewing the existing implementations, in Section 5.1, we shortly analyze the underlying
complexity of the algorithms used in hybrid video codecs. This is possible, because algorithms pre-
sented in this subsection share similar coding principles, unlike, e.g., still image coding (Section 4).
Furthermore, the complexity of dedicated video codecs is generally higher compared to other cate-
gories, thus giving a non-exhaustive overview of the underlying algorithms might provide a better
insight into the possible limitations.

Publications reporting motion-to-photon latency of a full video system are presented in Sec-
tion 5.2. The rest of the results is split into Intra-frame Compression (Section 5.3) and Inter-frame

Compression (Section 5.4) depending on whether the implementation uses only intra-frame predic-
tion or also inter-frame prediction. The division to intra-only and inter-frame coding is based on
the fact that inter-frame prediction significantly increases the algorithm’s complexity, data depen-
dencies, and memory requirements to improve the coding efficiency. Results that do not fit any of
the categories (e.g., because it is not clear whether they include inter-frame prediction or not) are
reported in Section 5.5.

Table 3 shows a summary of the collected results. The pixel format column indicating the
color space and bit-depth was omitted as most of the reviewed publications did not mention it

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



Image and Video Coding Techniques for Ultra-low Latency 231:15

specifically. However, the most common video configuration corresponds to the High Efficiency
Video Coding (HEVC) main profile, which assumes YUV420 format with a bit depth of 8.

Table 4 shows Bjøntegaard metric [17] results from those publications that report them. Bjøn-
tegaard metric calculates average PSNR (BD-PSNR) and bitrate (BD-Rate) difference between two
rate-distortion curves. Other error metrics can be considered for the BD-Rate calculation, but we
consider only PSNR unless noted otherwise. In the table, the reference column denotes the source
of the reference rate-distortion curve—an HEVC or a AVC reference software (HM or JM, respec-
tively) or an x265 open-source encoder [155].

5.1 Computational Complexity Analysis

Bossen et al. [19] provided an overview of HEVC complexity compared to AVC and described the
reference HEVC software encoder and decoder. While the decoding complexity is designed to be
similar to the previous-generation AVC format, a full-featured HEVC encoder is significantly more
complex to meet the design goal of doubling the compression efficiency. Vanne et al. [139] con-
ducted a rate-distortion-complexity analysis of HEVC against AVC. In the analysis, HEVC showed
a 23–40% BD-Rate improvement at the cost of 3.2–1.2× encoding and 2.0–1.4× decoding over-
head, depending on the test condition. Corrêa et al. [31] studied HEVC encoder complexity and
concluded that just by selecting the right parameters, the encoding complexity can be decreased
significantly without a significant efficiency cost.

Similar to HEVC, VVC increased the encoding complexity compared to its predecessor. Accord-
ing to Mercat et al. [96], the encoding efficiency (BD-Rate) of the reference VVC test model (VTM)
compared to the reference HEVC model (HM) improved by 23–33.1% at the cost of 34–7.5× encod-
ing complexity depending on the test condition. The authors reported a constant 1.8× increase of
the decoding complexity. Similar results were reported by Siqueira et al. [128] and Pakdaman et
al. [106]. Cerveira et al. [26] conducted a similar analysis focusing on memory usage profiling.

Multiple studies also included the AV1 codec in their comparisons: [52, 81, 94]. According to
García-Lucas et al. [52], AV1 reference encoder does not outperform the HEVC reference encoder in
terms of coding efficiency, despite the higher encoding complexity. However, both Mansri et al. [94]
and Laude et al. [81] report AV1 as more efficient than HEVC. Saldanha et al. [122] conducted a
review on hardware implementations of AV1 and VVC coding tools. The authors concluded that in
the case of AV1, there are no hardware-based solutions for 2D hybrid transforms supporting any of
the 16 allowed combinations. In the case of VVC, the authors claim that hardware implementations
of inter prediction are still missing.

The next paragraphs provide a short overview of complexity reduction and dedicated accelera-
tion of hybrid coding modules. Because considering all modules is out of the scope of this survey,
we focus only on those commonly reported as the most expensive in the literature (e.g., References
[19, 96, 106, 139]).

Inter prediction. Usually, inter prediction is reported as the most computationally expensive step,
strongly affected by the quantization parameter (QP) value. Unlike its predecessor, HEVC adopted
recursive splitting of macroblocks into coding units (CUs) and then into intra/inter prediction
units. To reduce the added complexity, Shen et al. [126] proposed a CU split decision and early
termination method for HEVC achieving 42/41% savings of encoding time at the cost of 1.49/1.15%
of BD-Rate and 0.049/0.037% BD-PSNR increase. Shen et al. [127] proposed an inter-mode decision
algorithm based on a statistical analysis. The authors saved 49–52% of the encoding time at a 0.60–
0.88% BD-Rate increase. Another acceleration strategy is to offload the full inter prediction step,
or a part of it, to a GPU [53, 58, 134] or an FPGA [10, 12]. A comprehensive review by Zhang
et al. [164] covers literature on inter prediction of HEVC up to the year 2019.

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



231:16 J. Žádník et al.

Table 3. Comparison of Surveyed Hybrid Video Coding Implementations

Full System
1st author Standard Pred. TP Encoding Device Decoding Device

(Mpx/s)
Viitamäki [140] HEVC intra 829 S Xeon E5-2699v4 + 2x Arria 10 3x laptop

747 S
Tu [137] AVC∗ — 442 S i7-6800k + NVIDIA Titan Xp hwenc HMD
Kim [71] HEVC/SHVC∗ — 126 S i7-7700HQ Galaxy S7 + i7-7700HQ
Pitkänen [112] HEVC∗ — 62 S i7-7820HK Galaxy S8 SoC hwdec
Fouladi [47] VP8 — 55 S Xeon E3-1240v5 Xeon E3-1240v5

Co-Processing
1st author Standard Pred. TP Type Host Device

(Mpx/s)
Sjövall [129] HEVC intra 995 E CPU+FPGA Xeon E5-2680v4 2x Arria 10
Takano [134] HEVC inter 498 E CPU+GPU 2x Xeon E5-2667v3 2x Titan X
Grossi [53] VP8 inter 266 E CPU+GPU Xeon E5-2620v3 GeForce GTX 980
Adeyemi-Ejeye [3] AVC — 166 E CPU+GPU — NVIDIA
Wang [145] HEVC inter 1,990+ D CPU+GPU Xeon E5-2699v3 Titan X
Ayadi [11, 12] HEVC inter 498 D CPU+FPGA Cortex-A9 Kintex-7
Liu [91] MV-HEVC inter 292 D CPU+FPGA Zynq UltraScale+ ZCU102

Standalone HW
1st author Standard Pred. TP Type Tech Freq Power Gates/LUTs Mem

(Mpx/s) (nm) (MHz) (mW) (·103) (kB)
Omori [103] HEVC inter 995 E ASIC 28 600 15,000 — —
Yang [158] AVC — 553 E ASIC Titan X hwenc

— 202 E ASIC Iris 540 hwenc
— 157 E ASIC Intel HD 5000 hwenc

Jiang [65] AVC — 415 E ASIC GTX 1080 hwenc
— 586 D ASIC GTX 1080 hwdec

Xu [156] HEVC — 265 E ASIC 28 350 103 2,880 117
Liu [90] HEVC inter 250 E ASIC 10 504 57 3,550 172
Pastuszak [110] HEVC intra 249 E ASIC 90 200 273 1,086 52

FPGA x 100 — 93.2 52
Zhang [162] HEVC intra 249 E ASIC 90 320 236 2,288 120
Zhang [163] HEVC intra 249 E ASIC 90 320 290 2,186 127
Ding [36] HEVC intra 124 E FPGA x 175 2,337 63.5 62.3
Zhang [162] HEVC intra 93 E FPGA x 120 — 201 120
Zhang [163] HEVC intra 93 E FPGA x 120 — 196 127
Mochizuki [98] AVC — 750 D ASIC 16 400 197 — —

Standalone SW
1st author Standard Pred. TP Type Model #Cores

(Mpx/s) (used)
Tang [136] HEVC∗ — 252 S CPU i7-6700k 4 (1)
Huang [61] AVC inter 72 E CPU Intel Quad Core 3.3GHz 4
Jiang [64] HEVC inter 52 E DSP TMS320C6678 8
Wieckowski [150] VVC inter ∼684 D CPU i9-9980HK 8 (8)
Zhu [166] VVC inter 537 D CPU i7-9700 8 (8)
Gudumasu [54] VVC inter 193 D CPU i9-9900X 10 (10)
Zhang [161] AVS2 inter 131 D CPU Cortex-A57 + Cortex-A53 4+4 (4)
Wang [146] AVS3 inter 70 D CPU Cortex-A73 + Cortex-A53 4+4 (1)

∗360◦ video; +only one-way memory transfers.
TP denotes throughput where E, D, and S denote encoding, decoding and full system throughput. “cores” denotes the
number of CPU cores. “hwenc” and “hwdec” denote the usage of a GPU-integrated hardware encoder or decoder.

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



Image and Video Coding Techniques for Ultra-low Latency 231:17

Table 4. Quality and Bitrate Comparison of Publications That Report
BD-Rate or BD-PSNR

1st author Standard TP BD-Rate BD-PSNR Reference
(Mpx/s) (%) (dB)

Takano [134] HEVC inter 498 E 7.5 — x265
Tang [136] HEVC 252 S −10.7 0.33∗ —
Zhang [162] HEVC intra 249 E 4.39 −0.21 HM 15.0
Zhang [163] HEVC intra 249 E 2.79 −0.13 HM 15.0
Pastuszak [110] HEVC intra 249 E 5.46 −0.13 HM 16
Ding [36] HEVC intra 124 E 10.5 — HM
Zhang [162] HEVC intra 93.3 E 4.39 −0.21 HM 15.0
Zhang [163] HEVC intra 93.3 E 2.79 −0.13 HM 15.0
Huang [61] AVC inter 72.4 E −18.1 0.93 JM 19.0

−22.9 1.24
Jiang [64] HEVC inter 52.1 E — −0.93 HM 10.0

∗spherical PSNR.

Han et al. [58] implemented a motion compensation algorithm for VVC decoding on a high-end
desktop GPU, reaching 5 ms prediction time for 4K resolution (16× improvement over the reference
inter prediction on a CPU and 46% acceleration of the whole decoding). Pan et al. [107] used a
convolutional neural network to accelerate the VVC inter prediction, achieving 31% encoding time
savings at the expense of 3% BD-Rate increase.

Intra prediction. The overall complexity of an encoder can be decreased by disabling the inter
prediction and using the “all-intra” mode. In such a case, inter prediction overhead is zero and
most of the computational burden lies on transform and quantization, intra prediction, entropy
coding, and in-loop filtering.

Cho and Kim [29] proposed a decision strategy for early CU split and pruning decisions of HEVC
intra coding based on a rate-distortion cost estimation. The combined method yielded an encoding
time savings of approximately 50% with only 0.6% BD-Rate increase. Zhang and Ma [159] proposed
a two-stage intra mode decision strategy that achieved 60% encoding time savings at the cost of
1.0% BD-Rate increase.

Compared to HEVC, the complexity of VVC intra prediction increased significantly by expand-
ing the number of block partitionings and directional prediction modes and introducing new tools.
Yang et al. [157] reduced the intra precision complexity of VVC by proposing a low-complexity
coding tree unit partitioning and intra prediction mode decision scheme, achieving 63% encoding
time savings at the cost of 1.93% BD-Rate increase over the reference VTM encoder. Lei et al. [84]
addressed the increased coding tree unit partitioning complexity by pruning redundant partitions
and deciding on the binary/ternary splitting direction in advance. This greatly reduces the number
of modes to be searched, resulting in a 41% reduction of the encoding time and only a 0.84% increase
of bitrate, compared to VTM. Dong et al. [39] reduced the VVC intra prediction complexity by prun-
ing and early termination of non-important prediction modes. The authors achieved up to 53% en-
coding time savings at the cost of 1.08% BD-Rate increase. Li et al. [86] developed a tunable decision
model for estimating the VVC CU partition allowing for early termination. The achieved encoding
time savings range between 23–68% at the cost of 0.56–2.6% BD-Rate increase. A deep learning
method for predicting the CU partitioning of VVC was presented by Li et al. [85]. The authors
managed to reduce the overall encoding time by 45–67% with only a 1.3–3.2% BD-Rate increase.

Entropy coding. Entropy encoding and decoding present a challenge due to its serial nature and
high branch divergence [145]. For this reason, Sjövall et al. [129] leave the CABAC encoding on

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



231:18 J. Žádník et al.

the CPU side, together with other control logic, in their FPGA-based HEVC encoder. Similarly, a
GPU-based HEVC decoder by Wang et al. [145] also leaves the CABAC decoding on the CPU side
while the rest of the algorithm is implemented on a GPU. Despite the serial nature of CABAC,
there have been efforts to reduce its data dependencies (Pastuszak [108, 109]) and increase its
parallelism (Menasri et al. [95]). Notably, [108] achieves a throughput of 13.4 bins/cycle—high
enough to encode high tier level 6.2 video (i.e., equivalent of 8K at 120 FPS). To the best of our
knowledge, no literature has been published targeting the computational complexity of entropy
coding specifically for VVC. However, as both HEVC and VVC use CABAC, improvements made
for HEVC entropy coding are likely to be applicable also in the VVC context.

5.2 Implementations Reporting Latency

Tu et al. [137] proposed a 360◦ VR video viewing system with AVC coding and a 3,840 ×
1,920 resolution operating at 60 FPS. Video is generated with six GoPro cameras, encoded on a
GPU-equipped desktop computer, and sent over a wireless network to be displayed on an HMD.
The authors measured the latency as approximately 500 and 160 ms with and without a wireless
network and display overhead, respectively. For encoding, the authors used hardware codec in-
tegrated within the GPU and accelerated some preprocessing steps with compute unified device
architecture (CUDA).

Yang et al. [158] proposed a desktop screen sharing system with AVC compression. To save
the computation time, the authors exploited high temporal inter-frame redundancy and low-
noise characteristics typical for screen content. The encoding was performed by up to four
GPU-integrated hardware encoders. The results presented in Table 3 correspond to a high screen
activity over the whole 4K screen as this scenario better corresponds to a general video streaming.
The authors achieved 17–25 ms motion-to-photon latency on a high-end workstation with a 4K
screen capture over a wired network for low–high screen activity. Over the wireless network, the
authors achieved 33–65 ms latency for a 2,736 × 1,824 resolution.

Fouladi et al. [47] proposed Salsify—a real-time video conferencing architecture using a VP8
codec and a custom network transport protocol. The authors achieved 449 ms motion-to-photon

latency over an emulated long-term evolution (LTE) network channel. The Salsify system combines
a packet congestion control and a video codec rate control into a single algorithm to prevent them
from disrupting each other.

Viitanen et al. [142] proposed a VR gaming cloud-edge system. The source 360◦ 1080p video is
generated on a server running a game. Each frame is split into slices, which are encoded indepen-
dently, each by its own instance of an open-source Kvazaar HEVC encoder [141], making use of
WPP. The encoded video is streamed over a Gigabit Ethernet and decoded on the client with Open-
HEVC software decoder [105]. The client laptop accepts control from and sends display frames to
an HMD device. The authors were able to achieve close to 30 ms motion-to-photon latency while
the system can maintain 30 FPS.

A direct continuation of Reference [142] is presented by Pitkänen et al. [112]. Instead of a laptop
client, the authors used a smartphone mounted as an HMD and connected via a standard WiFi
network. The authors achieved the same video throughput with a motion-to-photon latency close
to 50 ms.

Tang et al. [136] proposed an omnidirectional stereoscopic video (ODSV) system achieving 2.2 s
motion-to-photon latency and 0.5 s encoding latency. The relatively high system latency is caused
by the complicated nature of the ODSV optical flow calculations. Based on the application and the
presence of wireless network modules, we assume a wireless network was used even though this
information was not clearly stated in the publication. Nevertheless, the system can maintain 30

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



Image and Video Coding Techniques for Ultra-low Latency 231:19

FPS at 4,096 × 2,048 resolution with encoding performed by a modified x265 HEVC encoder [155]
running on a single thread.

5.3 Intra-frame Compression

Pastuszak and Abramowski [110] proposed ASIC and FPGA implementations of an HEVC intra
encoder achieving 30 FPS ecoding speed for a 4K video. The encoder is computationally scalable
allowing to trade off the lower compression efficiency for higher throughput by choosing simpler
methods for rate-distortion estimation and mode preselection.

Sjövall et al. [129] proposed an FPGA-accelerated Kvazaar HEVC encoder. The encoder runs
on a Nokia AirFrame server—a 14-core Intel Xeon processor with two Arria 10 FPGA boards con-
nected over peripheral component interconnect express (PCIe), each board accommodating three
accelerator instances. The CABAC and the control logic are processed by the CPU due to the serial
nature of the algorithm. The authors used WPP and picture-level parallel processing for increased
parallelism. The setup is capable of encoding 4K video at 120 FPS.

Viitamäki et al. [140] demonstrated the previous approach on a more compact setup with 3 ×
4K at 30 FPS interactive and 4K at 100 FPS non-interactive video streaming.

Zhang and Lu [162] proposed an HEVC intra encoder implemented as both ASIC and FPGA. The
computational complexity is reduced at the expense of a slightly higher bitrate and quality loss.
The design simplifies the luma and chroma prediction mode preselection, CU mode decision, and
CABAC rate estimation algorithms to achieve higher throughput and fewer data dependencies.
The design uses a pipelined architecture.

A follow-up work by Zhang and Lu [163] aims for a similar tradeoff between computational com-
plexity and higher bitrate and quality loss. The main difference is a change in the mode prediction,
which helps to reduce the worst-case BD-Rate but causes more data and timing dependencies. The
potentially lower throughput was countered by improving the timing diagrams and optimizing
the hardware architecture.

Ding et al. proposed a flexible HEVC intra encoder [36] implemented on an FPGA. The encoder
is designed as a configurable framework of basic processing elements, which implement the en-
coder functionality. Overall, the encoder is implemented as a four-stage pipelined architecture.
The authors parallelize the design by minimizing data dependencies between neighboring blocks
in the intra prediction.

5.4 Inter-frame Compression

Onishi et al. [104] developed the first single-chip HEVC encoder (labeled as NARA) capable of
encoding 4K resolution at 60 FPS with 4:2:2 subsampling that can also achieve 8K encoding in
a multichip configuration. This encoder was then used in future works by Kobayashi et al. [76],
Omori et al. [103] and Omori et al. [102]. In Reference [76], the authors improved the perceptual
quality of HDR video encoding. In Reference [103], the authors achieved 4K, 120 FPS encoding by
using four parallel NARA encoders, each configured for 2K, 120FPS encoding. Temporal scalability
(i.e., encoding in a 60 or 120 FPS mode) was achieved by a base 60 FPS encoding stream optionally
interleaved with another 60 FPS stream encoding frames in between the base layer frames. Similar
principle is used in Reference [102] to achieve 4K, 120 FPS encoding. However, it uses two 4K
instead of four 2K encoders. The encoder focuses specifically on a low latency achieving 21.8 ms
encoding latency. Only the results from Reference [103] are included in Table 3 as it provides also
the implementation details.

Takano et al. [134] proposed an HEVC encoder with an inter prediction (including transform
and quantization of inter symbols) implemented on a GPU while the rest (intra prediction and
entropy coding) is executed on a CPU. Instead of using neighboring blocks during the motion

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



231:20 J. Žádník et al.

search, the authors separate the process into multiple layers with each layer reusing results from
the previous one. This method relaxes the data dependencies between blocks and allows for better
parallelization. The BD-Rate in Table 4 corresponds to a value reported at 60 FPS.

Liu et al. [91] proposed an FPGA-accelerated multi-view HEVC (MV-HEVC) decoder. The de-
coder operates on several inter-frames in parallel without considering data dependencies between
them. Based on profiling of the reference HTM software, the authors decided to accelerate the slice
decompression function. The authors made use of WPP for increased parallelism. The throughput
presented in Table 3 is calculated from the highest achieved decoding speed for a three-view video
at a total resolution of 1,920 × 1,088, QP of 25 and PIP inter-frame ordering.

Xu et al. [156] proposed a low-power ASIC HEVC encoder. The implementation makes use of
frame memory compression to reduce the necessary memory bandwidth and power consumption.
Also, the encoder can operate at three different performance levels offering a performance versus
power savings tradeoff. The results in Table 3 are extracted from the high-performance profile.

Wang et al. [145] proposed a parallel GPU-accelerated HEVC decoder running on a server-grade
CPU. The authors exploited both intra and inter levels of parallelism with WPP overlapping mul-
tiple inter-frames. All decoding steps except entropy decoding were performed on the GPU. The
throughput value listed in Table 3 corresponds to the reported 8K encoding speed of 60 FPS. The
authors specifically mentioned encoding the whole frame at once to achieve maximum available
GPU throughput—as opposed to a block-based execution in their previous multi-core CPU-based
design.

Grossi et al. [53] studied a CPU-GPU cooperative design of a VP8 encoder. The authors focused
especially on accelerating the motion estimation stage as it was determined to be the main contrib-
utor to the execution time on a reference encoder. To achieve short encoding times, maximizing
the usage of shared memory was shown to be more efficient than maximizing the GPU utilization.
The throughput value in Table 3 was derived from a reported average total encoding time of 500
frames of a 1080p video sequence.

Zhang et al. [161] proposed an audio-video coding standard (AVS2) decoder intended for multi-
view 3D applications on mobile devices. Based on an execution time analysis of a reference decoder,
the authors focused on accelerating mostly the motion compensation module with single instruc-
tion multiple data (SIMD) extensions of the ARM CPU.

Liu et al. [90] proposed a ASIC implementation of a deep learning–assisted HEVC encoder ca-
pable of 4K encoding at 30 FPS. A neural network is trained to recognize the human visual contact
field to estimate the visual attention distribution, which is then used to guide the selection of
encoding parameters.

Huang et al. [61] proposed a modified AVC encoder with shaky video stabilization. The video
stabilization is embedded directly into an existing encoder instead of encoding frames after the
stabilization. To reduce the overall computational complexity, the stabilization vectors are used
also during the motion vector search stage. The encoder was implemented both on a desktop and
ARM-based mobile CPU.

Jiang et al. [64] proposed a SIMD-accelerated HEVC encoder implemented on a digital signal
processor (DSP). The authors focused on improving data parallelism and minimizing the memory
traffic overhead. The throughput value in Table 3 corresponds to a maximum reported FPS value
for a 1080p video.

In References [11, 12], Ayadi et al. proposed an FPGA-accelerated HEVC decoder on a Zynq SoC
platform. Based on the decoding time distribution of the reference decoder running on an ARM
processor, the authors determined the calculation of interpolation filters during motion compen-
sation to be the most computationally expensive part and implemented this function on the FPGA
part of the Zynq board.

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



Image and Video Coding Techniques for Ultra-low Latency 231:21

Wang et al. [146] developed a software implementation of a audio-video coding standard (AVS3)
decoder on a mobile platform (Huawei P10). Even with a single thread, the authors achieved real-
time decoding of a 1080p video.

A full software VVC decoder was proposed by Wieckowski et al. [150]. Their implementation
achieved efficient decoding by using SIMD instructions. The authors also explored thread-level
parallelism with both frame-level and coding tree unit (CTU)–level granularity. The throughput
reported in Table 3 corresponds to the maximum achieved frame rate for 1080p video over the
whole output bitrate range.

Gudumasu et al. [54] proposed a parallelized VVC software decoder. The authors achieved an
average decoding speed of 23.3 FPS on Class A video sequences (4K resolution with a bit depth of
10 and YUV420 format).

Another real-time VVC software decoder was proposed by Zhu et al. [166]. The authors achieved
a decoding speed over 60 FPS of a 4K video by the means of SIMD optimizations, multi-level
parallelism, and efficient selection between 8- and 16-bit code paths. The result in Table 3 corre-
sponds to the maximum achieved FPS with a QP of 37.

5.5 Other

Jiang et al. [65] proposed an accelerated AVC library that operates on top of existing encoders
(either NVIDIA GPU hardware codec or a libx264-based software encoder [97, 154]). The authors
were able to reduce the video streaming delay to only one frame and achieved 4K frame compres-
sion/decompression times 21.3/15.1 ms.

Mochizuki et al. [98] proposed an ASIC implementation of a 12-channel 1080p AVC video pro-
cessing SoC for a car surround view system. The implementation achieved 70 ms decoding and
skew compensation latency by concurrent execution of decoding processing units without waiting
for several frames to buffer.

Kim et al. [71] proposed a 360◦ video streaming system based on the scalability extension of
HEVC (SHVC) extension of HEVC. The video is encoded by a powerful server and sent over a 60
GHz wireless network (802.11ad) where it is displayed on a VR HMD (smartphone). To conserve
the limited computational resources on the mobile device, parts of the decoding and postprocessing
tasks were offloaded over the network back to the streaming server.

Adeyemi-Ejeye et al. [3] conducted a review of current possibilities and limitations of video
streaming systems. The authors also implemented a GPU-accelerated AVC encoder with a 4K en-
coding speed of 15–30 FPS, depending on the test video sequence. As a part of the study, the authors
measured the transmission latency of a 4K video, compressed with max. 160:1 ratio, via an 802.11n
network operating at 5 GHz over a total distance of 40 m. Depending on the source video frame
rate (24 or 30 FPS) and subsampling (4:2:0 or 4:2:2), the network latencies were in the range of
40–71 ms.

5.6 Summary

Viitanen et al. [142] and Pitkänen et al. [112] achieved low latency over a wireless network with
their VR game streaming systems. Desktop streaming system by Yang et al. [158] also achieved low

latency over a wireless network and even reached ultra-low latency when using a wired network
at a low screen activity. The mentioned systems are relatively simple—the number of devices is
limited and the network transfer is carried over a short distance. The collected results of motion-

to-photon latencies suggest that the current generation of wireless networks is not suitable for
low latency applications over a greater distance [47]. Likewise, achieving low latency is problem-
atic for complicated setups involving external cameras or additional video processing steps [136].

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



231:22 J. Žádník et al.

Furthermore, most of the 360◦ video processing systems reviewed in this survey report also motion-

to-photon latency, which underlines the importance of latency to VR systems.
The general trend to improve the coding speed is to reduce data dependencies to promote par-

allelism. In the case of software-programmable solutions, heterogeneous co-processing execution
models (such as CPU+GPU or CPU+FPGA) seem to be more common than in the still image coding
category, likely due to the more complex nature of video coding algorithms. Usually, the entropy
coding is left to be performed on the CPU side. Implementations using inter prediction focus mostly
on optimizing the motion estimation/compensation stage, which was shown to be the most com-
putationally expensive part of the algorithms. Intra-only implementations most commonly focus
on optimizing the intra prediction stage.

In the context of HEVC, the WPP feature proved to be essential for achieving high through-
put [91, 129, 140, 145].

The newest VVC standard shows a promising decoding performance; however, we did not en-
counter any real-time encoders, likely due to the high computational complexity of VVC encoding
and its early adoption stage.

A deep learning approach to reduction of HEVC encoding complexity by Liu et al. [90] shows
the lowest power consumption of all the reviewed HEVC/AVC ASIC encoders. Deep learning
tools have been also used [85, 107] to reduce the inter and intra prediction complexity of VVC,
respectively.

The complexity reduction techniques for inter and intra prediction mentioned in Section 5.1
achieved time savings in the range of 31–67% at the expense of BD-Rate degradation of 0.6–3.2%.
Table 4 shows that fast encoder implementations typically sacrifice the rate-distortion perfor-
mance. Notable exceptions are References [61, 136], which managed to improve it.

6 TEXTURE COMPRESSION

This section presents the implementation results of texture compression algorithms.
In Section 6.1, systems reporting motion-to-photon latency are reviewed. Sections 6.2 and 6.3

cover encoding into simple and advanced formats, respectively. The division to simple and ad-
vanced is motivated by the large complexity variety between texture compression formats and
their implementations. For the purpose of this article, BC7 and ASTC formats are classified as ad-
vanced because of the large number of possible configurations compared to other formats (e.g.,
BC1, BC3, ETC1/2, etc.). Furthermore, custom texture compression methods are also classified as
advanced. Section 6.4 summarizes publications reporting decoding results. This includes decoding
of native GPU formats as well as so-called “supercompressed” textures: textures compressed first
with a standard texture compression algorithm, then again with a lossless encoder (e.g., LZMA)
for a higher compression ratio.

Table 5 summarizes the results of the surveyed texture compression implementations. Since
the volume of literature covering texture compression is relatively scarce, older results, as well
as results with less throughput than 50 MP per second, are included in the comparison. Figure 4
visualizes the achieved throughput and compression ratio of the implementations.

6.1 Implementations Reporting Latency

Holub et al. [60] proposed a GPU encoding of BC1 and YCoCg-BC3 formats using a method orig-
inally developed by van Waveren and Castaño [148]. The authors also describe a GPU implemen-
tation of JPEG as discussed in Section 4.2. Memory transfers between a CPU and a GPU were
identified as the major bottleneck, degrading the performance of the otherwise faster GPU. The
publication also describes a video system consisting of a capture card (video source), 10 Gb Ether-
net link, decoding device, and another capture card (display). The motion-to-photon latency of the

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



Image and Video Coding Techniques for Ultra-low Latency 231:23

Table 5. Comparison of Surveyed Texture Compression Implementations

Full System & Co-Processing & Standalone HW

1st author Format Year Type TP Implementation Details
(Mpx/s)

Pohl [113] BC1 2017 full sys. 516–811 S 4x Xeon E5-2699 v3 enc + Intel HD 530 dec
Dolonius [38] custom 2019 CPU+GPU 0.0025 E i7-3930K
Pratapa [114] MPTC-BC1 2017 CPU+GPU 320 D HTC Nexus 9 with Tegra-K1 GPU

MPTC-ASTC 4×4 149 D
MPTC-ASTC 8×8 546 D

Zhou [165] BC1 2016 FPGA 44 E 90 MHz, 1133 LUTs, 406 registers

Standalone SW

1st author Format Year Type TP Model #Cores
(Mpx/s) (th. used)

Holub [60] BC1 2013 GPU 3485◦◦ E GTX 580 512
798 E

YCoCg-BC3 2942◦◦ E
593 E

BC1 17898◦◦ E ATI 5990 2 × 1536
349 E

YCoCg-BC3 12016◦◦ E
305 E

Pohl [113] BC1 2017 CPU 7373 E Xeon E5-2699v3 18
ETC1 3686 E
ETC2 2836 E

Waveren [148] BC1 2007 GPU 1690◦◦ E GeForce 8800 GTX 128
YCoCg-BC3 939◦◦ E

Renambot [117] BC1 2007 CPU 207 E — —
Waveren [147] BC1 2006 CPU 201 E Core 2 2.9 Ghz 2

BC3 128 E

Krajcevski [78] PVRTC 2014 CPU 2.70 E i7-4770k 4 (1)
Krajcevski [77] BC7 2013 CPU ∼2.10 E Xeon 2.4 GHz 40 (64)
Krajcevski [79] BC7 2014 CPU 0.46 E i7-4770k 4 (1)
Pratapa [115] ASTC 2019 CPU 0.012 E — - (1)
Andries [8] custom (Haar) 2017 GPU 20700◦◦ D GTX 980 2,048

custom (bior(2,2)) 12500◦◦ D
Dolonius [38] custom 2019 GPU 2621◦◦ D GTX 1080 2,560
Cui [33] BC1 2016 — 143 D — —

custom BC1 127 D
ETC1 146 D
custom ETC1 130 D

Cui [32] ETC1 2016 — 131 D — —
custom ETC1 146 D

Strom [131] ETC1 + custom 2016 CPU 0.87 D laptop 1.3 GHz —
ETC1 + ZIP 4.37 D

◦◦without memory transfers.
TP denotes throughput where E, D, and S denote encoding, decoding and full system throughput. “cores” denotes the
number of CPU cores (with the number of threads used).

system was 4 frames (133 ms) for an uncompressed and JPEG-encoded video while both texture
compression algorithms resulted in latency of 5 frames (166 ms).

Pohl et al. [113] proposed a foveated video streaming system consisting of a four-server en-
coding setup and a thin desktop client for decoding. The compression was performed with opti-
mized BC1, ETC1, and ETC2 encoders using only one CPU. The authors achieved motion-to-photon

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



231:24 J. Žádník et al.

Fig. 4. Throughput of texture compression encoders (left) and decoders (right) compared to a compression
ratio. Dotted lines represent multiple compression ratios reported over a range of values. Gray data points
denote implementations older than the year 2015. ∗including memory transfers.

latency of 40–60 ms when streaming over a 10 Gb Ethernet link at both 5K and 1440p resolution.
Compared to the AVC encoding, the authors achieved lower latency at the price of a higher data
rate.

6.2 Encoders of Simple Formats

Van Waveren [147] proposed a real-time implementation of BC1 and BC3 encoders on a CPU
using SIMD extensions. The codebook endpoints are selected using a bounding box method, i.e.,
selecting minimum and maximum color values within a block. Van Waveren and Castaño [148]
proposed a GPU implementation of the same formats with BC3 modified to utilize the YCoCg color
space [93] instead of the original RGBA. By storing the luminance (Y) value in the high precision
alpha channel of the BC3 format, the authors achieve superior visual quality compared to BC1.

Renambot et al. [117] expanded upon van Waveren [147] by using C/C++ intrinsic functions
instead of hard-coded SSE2 assembly instructions.

Krajcevski and Manocha [78] proposed a low-frequency signal modulated method for texture
compression and applied it for a PVRTC encoding. By minimizing the number of computing passes
through the entire texture, the authors managed to accelerate the encoding process and achieved
97 ms encoding time for a 512 × 512 texture.

Zhou et al. [165] proposed an FPGA implementation of a BC1 algorithm used for a frame memory
compression. Even though the authors achieve low throughput, the resource utilization is minimal.

6.3 Encoders of Advanced Formats

Krajcevski et al. [77] proposed FasTC—an accelerated BC7 CPU encoder. For each block parti-
tioning, the endpoints are estimated by a bounding box method [147] followed by a cluster-fit
algorithm [22] to compute the indices. A texture of size 2,048 × 2,048 was encoded on a 40-core
processor in about 2 s using 64 threads.

Krajcevski and Manocha [79] further accelerated FasTC by using image segmentation to se-
lect the block partitions (SegTC). Instead of choosing the partitioning for each block separately,
the authors used a simple linear iterative clustering (SLIC) superpixels method [2] to assign the

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



Image and Video Coding Techniques for Ultra-low Latency 231:25

partition subset labels globally for the whole image. The method achieves about 4× speedup com-
pared to FasTC while maintaining a similar quality.

Dolonius et al. [38] proposed their own block-based algorithm for compressing color data of
voxelized surfaces. The algorithm follows an endpoint-based scheme similar to BC1. However,
the encoding is variable-length and the decompression requires a binary search to locate a spe-
cific block. The most time-consuming part is the iterative search for the best endpoint color
approximation. The results reported in Table 5 and Figure 4 correspond to the fastest results for
an “Epic” scene in the publication.

Pratapa et al. [115] took a neural network approach to compress textures in the ASTC format.
The most computationally intensive parts (partition selection and color endpoint approximation)
are offloaded to the training phase. During the compression itself, the partition/endpoints search
step is replaced by a neural network inference. The authors were able to achieve a speedup of
almost 10× compared to a standard reference implementation.

6.4 Implementations Mentioning Decoding Speed

Ström and Wennersten [131] proposed a lossless compression of already compressed textures to
further reduce the size of the texture—an approach also referred to as “supercompressed textures.”
With the proposed method, the authors were able to achieve the same bitrate as JPEG with similar
quality. The reported decompession time in Table 5 corresponds to the CPU decompression time
of a 512 × 512 texture with the ZIP algorithm, not the actual GPU texture decompression.

Pratapa et al. [114] proposed a supercompressed MPTC format and demonstrated it on real-
time 360◦ video rendering. Unlike other texture compression formats, MPTC exploits both spatial
coherence between multiple pixel blocks and temporal coherence between frames. The results in
Table 5 correspond to a frame rate at which MPTC-compressed frames with 2K (2,560 × 1,280)
resolution can be read from a disk and rendered to a mobile device’s screen.

Andries et al. [8], expanding previous work [7], proposed wavelet transform as an improve-
ment to traditional texture compression formats. The wavelet coefficients are packed into a regu-
lar texture compression format and reconstructed on the decoding side in a shader. The authors
list decoding times in the form of GPU fillrates for the different wavelet transform variants. The
values reported in Table 5 correspond to the fillrate when restoring texture compressed with the
Haar and biorthogonal(2,2) transforms with one level of wavelet decomposition. The method of-
fers more fine-grained bitrate selection than conventional texture codecs and outperforms both
ASTC and BC3 formats in terms of quality on the Kodak dataset [48].

Cui et al. [32, 33] proposed a novel texture compression method based on intra-frame block
matching. When the encoder encounters an already encoded block, it encodes it as a reference to
the encoded block, thus increasing the compression ratio. Since the number of the derived blocks
is not known in advance, the resulting bitstream is of a variable length. The compression ratio in
Figure 4 was calculated from the reported bpp values.

6.5 Summary

Considering motion-to-photon latency, Pohl et al. [113] managed to achieve low latency even at
5K resolution. The relatively high latency of 4–5 frames achieved by Holub et al. [60] seems to
be caused by a more complicated pipeline where the additional capture cards can cause several
frames of latency. Interestingly, even though the texture encoding itself was shown to be faster
than JPEG encoding, the texture compression setup resulted in higher total latency. However, the
authors do not discuss this difference further.

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



231:26 J. Žádník et al.

Fig. 5. Latency of video systems compared to the achieved throughput; ∗network type not 100% clear from
the publication, +emulated.

Implementations of BC7 and ASTC encoders were shown to be too slow even for real-time
encoding due to the complex nature of the algorithms. However, by reducing the number of con-
figuration options, it is possible to reduce the complexity.

Fast encoding has been demonstrated for real-time implementations of simpler methods such as
BC1, BC3, or ETC1/2. However, as illustrated by, e.g., Reference [148], real-time encoders of these
formats compromise on visual quality compared to thorough offline encoders.

Fast decoding of compressed textures was demonstrated by Andries et al. [8], reporting GPU
fillrates in the order of tens of gigapixels per second. The fillrate of NVIDIA GTX 980 GPU used by
the authors is 144 gigatexels per second, which can be seen as a theoretical limit to the decoding
performance. The real performance including the wavelet coefficients’ restoration is thus only
about an order of magnitude lower than the theoretical maximum.

The supercompressed approach yield promising rate-distortion performance [131] and decoding
speed [114], however, the ecoding procedure is relatively complex and likely challenging to achieve
in real time.

7 DISCUSSION AND CONCLUSIONS

7.1 Latency Discussion

In Figure 5, motion-to-photon latencies of video systems are visualized as a function of the system
throughput. Reference [138] is not depicted, since the achievable throughput was not clear from
the publication. However, the implementation achieves ultra-low latency over a long distance. Oth-
erwise, it can be seen that reaching low latency is challenging for real-time video systems with high
resolutions. The screen sharing system by Yang et al. [158] managed to achieve low latency (even
ultra-low latency with a low screen activity) for a 4K resolution. Such a low latency was possible
thanks to dedicated hardware encoders within a GPU and the rather simple nature of the screen
sharing system consisting of only two interconnected computers. As seen in the previous sections,
data transfers between multiple devices (such as external capture cards in Reference [60]) require
buffering and can cause delays of several frames. Of course, the network is also a major contribu-
tor to the latency. Especially wireless networks are more unpredictable, with the link bandwidth
being more dependent on the device proximity than in wired networks.

If we look at the achieved throughput only, then we can see that even though high-speed en-
coders and decoders exist, their employment in real systems is still rather limited. This suggests
that the coding speed is not the main latency bottleneck of current video systems.

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



Image and Video Coding Techniques for Ultra-low Latency 231:27

Table 6. Theoretical Expected End-to-end Latencies of Selected Implementations Taking Into Account
Network Transport Times

Latency Enc. Total
Video Enc. Encoder Network Decoder CR bitrate latency
input unit (ms) (ms) (ms) — (Gb/s) (ms)

(a) 8K@120 FPS 12 bpp 8 lines [72] 0.014 40 GbE 0.009 [72] 0.015 2 23.9 0.038

(b) 5K@60 FPS 24 bpp 1 frame [113] 2.00 10 GbE 5.90 — ∼0.59 6 3.54 8.49

5G future 1.18 3.77

(c) 4K@120 FPS 12 bpp 1 frame [129] 8.34 802.11n 1.17 [145] 4.17 142 0.084 13.7

WiFi-6 0.06 12.6

(d) 4K@60 FPS 36 bpp 1 frame — 8.34 WiFi-6 7.54 [24] 6.54 3.6 4.98 22.4

“CR”: compression ratio.

7.2 Theoretical Achievable Latency Examples

To draw better conclusions, in Table 6, we estimate a theoretically expected latency of selected
implementations from each category when transferred over a network channel. The total latency
includes the encoding, decoding, and network data transfer latency, without taking into account
the overhead of the network technology.

(a) Custom FMC ASIC by Kim et al. [72] operates on 8× 8 blocks, therefore the minimal achiev-
able latency is 8 lines assuming a row-major scanning order. The model input is 8K120FPS 8-bit
video with 4:2:0 subsampling, which can fit into a 40 Gb Ethernet’s bandwidth with the encoder’s
compression ratio of 2:1. Assuming a minimum achievable latency of 8 pixel lines, the final latency
can be under 40 μs when transferred over a 40 Gb Ethernet. Such setup can be implemented as a
part of a tightly integrated lightweight video system. This example assumes the whole system can
operate at 8 lines granularity.

(b) This example uses BC1 compression in an in-home streaming system for 5K (5,120 × 2,880)
video developed by Pohl et al. [113]. Since the decompression speed for BC1 was not reported
during the survey, we can use the fastest reported throughput 25 gigapixels per second of wavelet
texture compression by Andries et al. [8] and consider it as a conservative estimate. By upgrading
the network to a future 5G standard, it is possible to reduce the theoretical latency by more than
twice.

(c) An example of a high-performance HEVC system uses an all-intra FPGA-accelerated encoder
by Sjövall et al. [129] and a GPU-accelerated decoder by Wang et al. [145]. Since Reference [129]
does not specify encoded bitstream size, it is extracted form a follow-up demonstrator by Viitamäki
et al. [140] where the encoded bitstream was 21 Mb/s for a 4K@30FPS video. Both the encoder and
the decoder require high-performance servers, which limits their usability in consumer applica-
tions. However, the high compression ratio makes it possible to efficiently transfer the bitstream
even through an older wireless network (assuming a bitrate of 600 Mb/s for the 802.11n network).
The new WiFi-6 could reduce the network latency to negligible values.

(d) JPEG XS GPU decoder by Bruns et al. [24] can decode one frame of 12-bit unsubsampled
4K video (i.e., 36 bpp) in 6.54 ms. Since no encoder was found during the survey, a hypothetical
encoder with a throughput of 120 FPS is assumed. Decoded frames are assumed to stay in the
GPU memory. This setup could be hypothetically used in a live HDR video streaming setup, still
achieving low latency.

Only in case (a), we assumed sub-frame encoding. If buffering of the whole frame was required
after the encoding and before the decoding stage, then the latency would increase 1, 080× to 42
ms. If we look at it from the other end, then case (b) uses a texture compression algorithm that
is trivially parallelizable. By reducing the coding unit to 1/8 of the frame, it would be possible to
reach a theoretical latency of 1.1 ms.

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



231:28 J. Žádník et al.

7.3 Summary of Reviewed Implementations

(1) Decreasing Latency. The main approach to decreasing video coding latency seems to be, not
so surprisingly, increasing the coding throughput, since these goals usually go hand-in-hand.

We observed the following patterns used to improve the throughput or latency:

• Pipelined hardware architecture (e.g., Reference [57]).
• Reduction of computational complexity (e.g., Reference [34]).
• Increased parallelism (e.g., Reference [145]).
• More computing resources (e.g., Reference [113]).
• Utilization of hardware accelerators (e.g., References [65, 129]).

Very often, the above approaches are used in combination and are even prerequisites to each other.
For example, it might be necessary to simplify an algorithm by removing data dependencies to
achieve a higher degree of parallelism.

(2) Limitations of the State-of-the-Art. Most of the reviewed implementations (except for the
pipelined ASIC and FPGA architectures) consider coding whole frames. An example of sub-frame
AVC encoding with a programmable media processor was presented by Mody et al. [99]. The
authors managed to reduce the latency from one frame (33 ms) to only 2 ms by using a sub-
frame coding approach, which indicates a strong potential of sub-frame coding even for software-
programmable implementations. As mentioned in References [24, 145], encoding whole frames
might be necessary to preserve the high encoding throughput when utilizing massively parallel
hardware such as GPUs.

When accelerating the coding process on parallel hardware, the most common step left to be
performed on the CPU side is entropy coding. The serial nature of most of the entropy coding algo-
rithms makes their parallel implementations challenging. Even though there has been a successful
effort to parallelize and accelerate the process in hardware [108], parallel software implementa-
tions still seem to either execute entropy coding on a CPU [129] or implement a less complex
parallel algorithm [34, 60].

To summarize the bottlenecks of each category, the fastest still image coding algorithms lack
a high compression ratio. Therefore, their use is limited to only high-bandwidth networks. Hy-
brid video codecs achieve a high compression ratio at the expense of increased computational
complexity. While some implementations achieve very high coding speeds, they usually require
a significant amount of processing power. Although mezzanine codecs seem to be a promising
solution for low-latency video coding, more research is necessary, as the number of discovered
implementations is too low and their performance was found to be limited. Fast texture encoding
can only be achieved with basic methods, which are limited in quality. High-quality formats re-
quire navigating through a large configuration space, which was shown to be too slow to achieve
in low latency.

(3) Computational Requirements. For JPEG-based algorithms, desktop computers with high-end
GPUs were used for coding at resolutions higher than 4K while both ASIC and FPGA, as well as
embedded implementations, were found to be insufficient for processing high resolutions. ASIC
implementations of FMC require about 20–80× fewer gates and a fraction of power consumption
compared to HEVC, which makes it suitable for including into remote embedded systems.

High-throughput implementations of hybrid video codecs such as AVC or HEVC require a signif-
icant amount of processing resources and power [103, 129, 140, 145]. Decoding of the newest VVC
standard was demonstrated at high throughput on consumer CPUs [150, 166]. A co-processing im-
plementation by Ayadi et al. [12] was able to reach 4K@60FPS on a high-end Zyng-7045 embedded

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



Image and Video Coding Techniques for Ultra-low Latency 231:29

platform by utilizing both the CPU and FPGA parts, which makes it possibly the most lightweight
solution for high-throughput HEVC compression covered in this survey.

Software implementations of texture encoding for resolutions higher than 4K use high-end desk-
top computers [60] and multi-server setups [113], although most of the processing power of the
latter was used for rendering. Hardware GPU texture decompression was shown to be extremely
fast, even with a custom restoration shader overhead [8]. The only hardware (FPGA) implementa-
tion of texture encoding [165] shows very low performance but also very low resource usage.

7.4 Future Prospects

Due to the increasing complexity of modern video codecs (such as VVC), latency-critical appli-
cations might require reformulating design goals of video compression with latency being the
primary goal. After the latency target is met, improvements may be made towards a better qual-
ity or compression ratio. A promising standard in this regard is the recently introduced JPEG XS,
which meets both high-quality and low-latency criteria. However, academic publications about
this codec are scarce and to our best knowledge, no open implementation exists.

Deep learning has been used to accelerate complex steps of existing algorithms [85, 90, 107, 115].
While the computational cost of deep learning inference is very high, it might still be lower than
some parts of modern complex formats such as ASTC or VVC. With hardware improvements and
more research on lightweight neural network inference, this method can become a viable strategy
for achieving low latency.

Machine vision–optimized compression can significantly outperform traditional human-
centered video coding algorithms in terms of the rate-accuracy tradeoff, which in turn allows
reducing the encoding configuration search space and thus accelerating the coding process. How-
ever, more research is necessary to explore this direction.

Even though it is possible to select a pipelined ASIC implementation of, e.g., an FMC en-
coder/decoder with a latency of less than one pixel line, system integration might prevent exploit-
ing the low-latency potential due to buffering, since most of the encountered video systems assume
a frame-level granularity. Therefore, research on sub-frame video system integration would help
to leverage the full potential of existing ultra-low latency encoders and decoders.

Existing commercial GPUs feature hardware texture decompression, which is naturally simple
and might as well be one of the overall fastest decompression solutions. From a video system
integration perspective, a hardware texture compression would enable more optimal encoding
performance as utilizing parallel hardware such as GPU is limited by the memory transfer over-
head, despite the otherwise superior processing speed. In general, texture compression is limited
by a poor quality versus complexity ratio and more research is necessary to achieve an acceptable
encoding speed with advanced texture compression formats.

REFERENCES

[1] 3rd Generation Partnership Project (3GPP). 2018. Study on Communication for Automation in Vertical Domains (CAV).
Technical Report 22.804.

[2] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. 2010. SLIC Superpixels. Technical Report.
[3] F. Adeyemi-Ejeye, M. Alreshoodi, L. Al-Jobouri, and M. Fleury. 2018. Prospects for live higher resolution video stream-

ing to mobile devices: Achievable quality across wireless links. J. Real-Time Image Process. 16, 1 (2018).
[4] Z. Al-Ars et al. 2019. The FitOptiVis ECSEL project: Highly efficient distributed embedded image/video processing

in cyber-physical systems. In Proceedings of the International Conference on Computing Frontiers.
[5] O. Alexandersson, C. Gurell, and T. Akenine-Möller. 2006. Compressing dynamically generated textures on the GPU.

In Proceedings of the ACM SIGGRAPH 2006 Sketches.
[6] T. Alonso, M. Ruiz, Á. L. García-Arias, G. Sutter, and J. E. L. de Vergara. 2018. Submicrosecond latency video compres-

sion in a low-end FPGA-based system-on-chip. In Proceedings of the International Conference on Field-Programmable

Logic and Applications.

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.



231:30 J. Žádník et al.

[7] B. Andries, J. Lemeire, and A. Munteanu. 2014. Optimized quantization of wavelet subbands for high quality real-time
texture compression. In Proceedings of the International Conference on Image Processing.

[8] B. Andries, J. Lemeire, and A. Munteanu. 2016. Scalable texture compression using the wavelet transform. Visual

Comput. 33, 9 (2016).
[9] J. J. G. Aranda, M. G. Casquete, M. C. Cueto, J. N. Salmerón, and F. G. Vidal. 2015. Logarithmical hopping encoding:

A low computational complexity algorithm for image compression. IET Image Process. 9, 8 (2015).
[10] L. A. Ayadi, T. Damak, H. Loukil, M. A. B. Ayed, and N. Masmoudi. 2018. HEVC decoder analysis on ARM processor.

In Proceedings of the International Multi-Conference on Systems, Signals Devices.
[11] L. A. Ayadi, H. Loukil, M. A. B. Ayed, and N. Masmoudi. 2018. Efficient implementation of HEVC decoder on Zynq

SoC platform. In Proceedings of the International Conference on Advanced Technologies for Signal and Image Processing.
[12] L. A. Ayadi, H. Loukil, M. A. B. Ayed, and N. Masmoudi. 2020. Hardware-software implementation of HEVC decoder

on Zynq. Multimedia Tools Appl. 79, 11 (2020).
[13] J. Bankoski, P. Wilkins, and Y. Xu. 2011. Technical overview of VP8, an open source video codec for the web. In

Proceedings of the International Conference on Multimedia and Expo.
[14] K. C. Barr and K. Asanović. 2006. Energy-aware lossless data compression. ACM Trans. Comput. Syst. 24, 3 (2006).
[15] A. C. Beers, M. Agrawala, and N. Chaddha. 1996. Rendering from compressed textures. In Proceedings of the Annual

Conference on Computer Graphics and Interactive Techniques.
[16] M. Bennis, M. Debbah, and H. V. Poor. 2018. Ultrareliable and low-latency wireless communication: Tail, risk, and

scale. Proc. IEEE 106, 10 (2018).
[17] G. Bjøntegaard. 2001. Calculation of average PSNR differences between RD-curves. VCEG-M33. https://www.itu.int/

wftp3/av-arch/video-site/0104_Aus/VCEG-M33.doc.
[18] T. Borer. 2013. The VC-2 Low Delay Video Codec. White Paper WHP 238.
[19] F. Bossen, B. Bross, K. Suhring, and D. Flynn. 2012. HEVC complexity and implementation analysis. IEEE Trans. Circ.

Syst. Video Technol. 22, 12 (2012).
[20] B. Bross et al. 2021. Overview of the versatile video coding (VVC) standard and its applications. IEEE Trans. Circ. Syst.

Video Technol. 31, 10 (2021).
[21] P. Brown, S. Ian, N. Haemel, A. Pooley, A. Rasmus, and M. Shah. 2013. EXT_texture_compression_s3tc. Retrieved

from https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_compression_s3tc.txt.
[22] S. Brown. 2015. Libsquish. Retrieved from https://code.google.com/archive/p/libsquish.
[23] V. Bruns, M. Á. Martínez del Amor, and H. Sparenberg. 2017. Evaluation of GPU/CPU co-processing models for JPEG

2000 packetization. In Proceedings of the International Workshop on Multimedia Signal Processing.
[24] V. Bruns, T. Richter, B. Ahmed, J. Keinert, and S. Föel. 2018. Decoding JPEG XS on a GPU. In Proceedings of the Picture

Coding Symposium.
[25] C. A. Carneiro, F. P. Garcia, H. C. Freitas, C. P. S. Martins, and F. M. F. Ferreira. 2017. Scalable spatio-temporal parallel

parameterizable stream-based JPEG-LS encoder. IEICE Electronics Express 14, 2 (2017).
[26] A. Cerveira, L. Agostini, B. Zatt, and F. Sampaio. 2020. Memory assessment of versatile video coding. In Proceedings

of the International Conference on Image Processing.
[27] L. Chen, L. Yan, H. Sang, and T. Zhang. 2018. High-throughput architecture for both lossless and near-lossless com-

pression modes of LOCO-I algorithm. IEEE Trans. Circ. Syst. Video Technol. 29, 12 (2018).
[28] Y. Chen et al. 2018. An overview of core coding tools in the AV1 video codec. In Proceedings of the Picture Coding

Symposium.
[29] S. Cho and M. Kim. 2013. Fast CU splitting and pruning for suboptimal CU partitioning in HEVC intra coding. IEEE

Trans. Circ. Syst. Video Technol. 23, 9 (2013).
[30] Cisco. 2020. Cisco Annual Internet Report (2018–2023) White Paper. Retrieved from https://www.cisco.com/c/en/us/

solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html.
[31] G. Corrêa, P. Assunção, L. Agostini, and L. A. da Silva Cruz. 2012. Performance and computational complexity as-

sessment of high-efficiency video encoders. IEEE Trans. Circ. Syst. Video Technol. 22, 12 (2012).
[32] L. Cui and E. S. Jang. 2016. Intra-picture block-matching method for codebook-based texture compression. KSII Trans.

Internet Info. Syst. 10, 10 (2016).
[33] L. Cui, H. Kim, and E. S. Jang. 2016. A hybrid texture coding method for fast texture mapping. J. Comput. Sci. Eng.

10, 2 (2016).
[34] C. d. Cea-Dominguez, P. Enfedaque, J. C. Moure, J. Bartrina-Rapesta, and F. Auli-Llina. 2018. High throughput im-

age codec for high-resolution satellite images. In Proceedings of the International Geoscience and Remote Sensing

Symposium.
[35] A. Descampe, J. Keinert, T. Richter, S. Fößel, and G. Rouvroy. 2017. JPEG XS, a new standard for visually lossless

low-latency lightweight image compression. In Proceedings of the Applications of Digital Image Processing XL.
[36] D. Ding, S. Wang, Z. Liu, and Q. Yuan. 2019. Real-time H.265/HEVC intra encoding with a configurable architecture

on FPGA platform. Chinese J. Electr. 28, 5 (2019).

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.

https://www.itu.int/wftp3/av-arch/video-site/0104_Aus/VCEG-M33.doc
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_compression_s3tc.txt
https://code.google.com/archive/p/libsquish
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html


Image and Video Coding Techniques for Ultra-low Latency 231:31

[37] M. Dohler et al. 2017. Internet of skills, where robotics meets AI, 5G and the tactile internet. In Proceedings of the

European Conference on Networks and Communications.
[38] D. Dolonius, E. Sintorn, V. Kämpe, and U. Assarsson. 2017. Compressing color data for voxelized surface geometry.

In Proceedings of the Symposium on Interactive 3D Graphics and Games.
[39] X. Dong, L. Shen, M. Yu, and H. Yang. 2021. Fast intra mode decision algorithm for versatile video coding. IEEE Trans.

Multimedia 24 (2021), 400–414.
[40] L. Duan, J. Liu, W. Yang, T. Huang, and W. Gao. 2020. Video coding for machines: A paradigm of collaborative

compression and intelligent analytics. IEEE Trans. Image Process. 29 (2020).
[41] L.-Y. Duan et al. 2015. Overview of the MPEG-CDVS standard. IEEE Trans. Image Process. 25, 1 (2015).
[42] L.-Y. Duan et al. 2018. Compact descriptors for video analysis: The emerging MPEG standard. IEEE MultiMedia 26, 2

(2018).
[43] L.-Y. Duan et al. 2018. Fast MPEG-CDVS encoder with GPU-CPU hybrid computing. IEEE Trans. Image Process. 27, 5

(2018).
[44] P. Enfedaque, F. Aulí-Llinàs, and J. C. Moure. 2017. GPU implementation of bitplane coding with parallel coefficient

processing for high performance image compression. IEEE Trans. Parallel Distrib. Syst. 28, 8 (2017).
[45] A. E. Eshratifar, A. Esmaili, and M. Pedram. 2019. Bottlenet: A deep learning architecture for intelligent mobile cloud

computing services. In Proceedings of the International Symposium on Low Power Electronics and Design.
[46] L. Fan, S. Ma, and F. Wu. 2004. Overview of AVS video standard. In Proceedings of the International Conference on

Multimedia and Expo.
[47] S. Fouladi, J. Emmons, E. Orbay, C. Wu, R. S. Wahby, and K. Winstein. 2018. Salsify: Low-latency network video

through tighter integration between a video codec and a transport protocol. In Proceedings of the Symposium on

Networked Systems Design and Implementation.
[48] R. Franzen. 2020. Kodak Lossless True Color Image Suite. Retrieved from http://r0k.us/graphics/kodak.
[49] S. Fürst and M. Bechter. 2016. AUTOSAR for connected and autonomous vehicles: The AUTOSAR adaptive platform.

In Proceedings of the International Conference on Dependable Systems and Networks Workshop.
[50] W. Gao and S. Ma. 2014. An overview of AVS2 standard. In Advanced Video Coding Systems. Springer, 35–49.
[51] A. Garbo and S. Quer. 2018. A fast MPEG’s CDVS implementation for GPU featured in mobile devices. IEEE Access

6 (2018).
[52] D. García-Lucas, G. Cebrián-Márquez, and P. Cuenca. 2020. Rate-distortion/complexity analysis of HEVC, VVC, and

AV1 video codecs. Multimedia Tools Appl. 79, 39 (2020).
[53] G. Grossi, P. Paglierani, F. Pedersini, and A. Petrini. 2018. Enhanced multicore–manycore interaction in high-

performance video encoding. J. Real-Time Image Process. 17, 4 (2018), 887–902.
[54] S. Gudumasu, S. Bandyopadhyay, and Y. He. 2020. Software-based versatile video coding decoder parallelization. In

Proceedings of the Multimedia Systems Conference.

[55] L. Guo, D. Zhou, and S. Goto. 2013. Lossless embedded compression using multi-mode DPCM averaging prediction
for HEVC-like video codec. In Proceedings of the European Signal Processing Conference.

[56] L. Guo, D. Zhou, and S. Goto. 2014. A new reference frame recompression algorithm and its VLSI architecture for
UHDTV video codec. IEEE Trans. Multimedia 16, 8 (2014).

[57] L. Guo, D. Zhou, J. Zhou, S. Kimura, and S. Goto. 2018. Lossy compression for embedded computer vision systems.
IEEE Access 6 (2018).

[58] X. Han, S. Wang, S. Ma, and W. Gao. 2020. Optimization of motion compensation based on GPU and CPU for VVC
decoding. In Proceedings of the International Conference on Image Processing.

[59] T. M. Hoang and J. Zhou. 2021. Recent trending on learning based video compression: A survey. Cogn. Robot. 1 (2021),
145–158.

[60] P. Holub, M. Šrom, M. Pulec, J. Matela, and M. Jirman. 2013. GPU-accelerated DXT and JPEG compression schemes
for low-latency network transmissions of HD, 2K, and 4K video. Future Gen. Comput. Syst. 29, 8 (2013).

[61] H. Huang, X.-X. Wei, and L. Zhang. 2019. Encoding shaky videos by integrating efficient video stabilization. IEEE

Trans. Circ. Syst. Video Technol. 29, 5 (2019).
[62] K. I. Iourcha, K. S. Nayak, and Z. Hong. 1999. System and Method for Fixed-rate Block-based Image Compression

with Inferred Pixel Values. U.S. Patent 5,956,431. (1999).
[63] Ixia. 2014. Automotive Ethernet: An Overview. White Paper Rev. A. Retrieved from https://support.ixiacom.com/sites/

default/files/resources/whitepaper/ixia-automotive-ethernet-primer-whitepaper_1.pdf.
[64] H. Jiang, R. Fan, Y. Zhang, G. Wang, and Z. Li. 2019. Highly paralleled low-cost embedded HEVC video encoder on

TI KeyStone multicore DSP. IEEE Trans. Circ. Syst. Video Technol. 29, 4 (2019).
[65] J. Jiang, T. Fogal, C. Woolley, and P. Messmer. 2016. A lightweight H.264-based hardware accelerated image compres-

sion library. In Proceedings of the Symposium on Large Data Analysis and Visualization.

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.

http://r0k.us/graphics/kodak
https://support.ixiacom.com/sites/default/files/resources/whitepaper/ixia-automotive-ethernet-primer-whitepaper_1.pdf


231:32 J. Žádník et al.

[66] T. Kadowaki, M. Maruyama, T. Hayakawa, N. Matsuzawa, K. Iwasaki, and M. Ishikawa. 2018. Effects of low video
latency between visual information and physical sensation in immersive environments. In Proceedings of the Sympo-

sium on Virtual Reality Software and Technology.
[67] K. Kamalavasan, R. Natheesan, K. Pradeep, S. Gowthaman, S. Aravinth, and A. Pasqual. 2019. FPGA IP for real-time

4K HDR image decoding in VR devices. In Proceedings of the Latin American Symposium on Circ. Systems.
[68] L.-J. Kau and S.-W. Lin. 2013. High performance architecture for the encoder of JPEG-LS on SOPC platform. In

Proceedings of the Workshop on Signal Processing Systems: Design and Implementation.
[69] N. Kefalas and G. Theodoridis. 2019. Implementing VESA display stream compression encoder in FPGAs. In Proceed-

ings of the International Symposium on Power and Timing Modeling, Optimization and Simulation.
[70] B.-S. Kim, S. Baek, D.-S. Kim, and D.-J. Chung. 2013. A high performance fully pipeline JPEG-LS encoder for lossless

compression. IEICE Electronics Express 10, 12 (2013).
[71] H.-W. Kim, T. T. Le, and E.-S. Ryu. 2018. 360-degree video offloading using millimeter-wave communication for

cyberphysical system. Trans. Emerg. Telecommun. Technol. 30, 4 (2018).
[72] S. Kim, J. H. Jang, H.-J. Lee, and C. E. Rhee. 2017. Fine-scalable SPIHT hardware design for frame memory compres-

sion in video codec. J. Semiconduct. Technol. Sci. 17, 3 (2017).
[73] S. Kim, M. Kim, J.-S. Kim, and H.-J. Lee. 2016. Fixed-ratio compression of an RGBW image and its hardware imple-

mentation. IEEE Trans. Emerg. Sel. Topics Circ. Syst. 6, 4 (2016).
[74] S. Kim, D. Lee, J.-S. Kim, and H.-J. Lee. 2016. A high-throughput hardware design of a one-dimensional SPIHT

algorithm. IEEE Trans. Multimedia 18, 3 (2016).
[75] S. W. Kim, S. Park, J. Jun, and Y. Han. 2019. Design and implementation of display stream compression decoder with

line buffer optimization. IEEE Trans. Consum. Electron. 65, 3 (2019).
[76] D. Kobayashi, K. Nakamura, T. Onishi, H. Iwasaki, and A. Shimizu. 2018. A 4K/60p HEVC real-time encoding system

with high quality HDR color representations. IEEE Trans. Consum. Electron. 64, 4 (2018).
[77] P. Krajcevski, A. Lake, and D. Manocha. 2013. FasTC: Accelerated fixed-rate texture encoding. In Proceedings of the

Symposium on Interactive 3D Graphics.
[78] P. Krajcevski and D. Manocha. 2014. Real-time low-frequency signal modulated texture compression using intensity

dilation. In Proceedings of the Meeting of the Symposium on Interactive 3D Graphics and Games.
[79] P. Krajcevski and D. Manocha. 2014. SegTC: Fast texture compression using image segmentation. In Proceedings of

the Symposium on High Performance Graphics.
[80] N. Lago and F. Kon. 2004. The quest for low latency. In Proceedings of the International Computer Music Conf.

[81] T. Laude, Y. G. Adhisantoso, J. Voges, M. Munderloh, and J. Ostermann. 2019. A comprehensive video codec compar-
ison. APSIPA Trans. Signal Info. Process. 8 (2019).

[82] N. Le, H. Zhang, F. Cricri, R. Ghaznavi-Youvalari, and E. Rahtu. 2021. Image coding for machines: An end-to-end
learned approach. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing.

[83] N. Le, H. Zhang, F. Cricri, R. Ghaznavi-Youvalari, H. R. Tavakoli, and E. Rahtu. 2021. Learned image coding for
machines: A content-adaptive approach. In Proceedings of the International Conference on Multimedia and Expo.

[84] M. Lei, F. Luo, X. Zhang, S. Wang, and S. Ma. 2019. Look-ahead prediction based coding unit size pruning for VVC
intra coding. In Proceedings of the International Conference on Image Processing.

[85] T. Li, M. Xu, R. Tang, Y. Chen, and Q. Xing. 2021. DeepQTMT: A deep learning approach for fast QTMT-based CU
partition of intra-mode VVC. IEEE Trans. Image Process. (2021).

[86] Y. Li, G. Yang, Y. Song, H. Zhang, X. Ding, and D. Zhang. 2021. Early intra CU size decision for versatile video coding
based on a tunable decision model. IEEE Trans. Broadcast. 67, 3 (2021), 710–720.

[87] X. Lian, Z. Liu, W. Zhou, and Z. Duan. 2016. Lossless frame memory compression using pixel-grain prediction and
dynamic order entropy coding. IEEE Trans. Circ. Syst. Video Technol. 26, 1 (2016).

[88] B. Lichtenbelt et al. 2019. ARB_texture_compression_bptc. Retrieved from https://www.khronos.org/registry/
OpenGL/extensions/EXT/EXT_texture_compression_s3tc.txt.

[89] D. Liu, Y. Li, J. Lin, H. Li, and F. Wu. 2020. Deep learning-based video coding: A review and a case study. ACM Comput.

Surv. 53, 1 (2020).
[90] T.-M. Liu et al. 2018. A 0.76 mm2 0.22 nJ/Pixel DL-assisted 4K video encoder LSI for quality-of-experience over

smartphones. IEEE Solid-State Circ. Lett. 1, 12 (2018).
[91] W. Liu, W. Li, P. S. Un, and Y. B. Cho. 2018. High-throughput HW-SW implementation for MV-HEVC decoder. In

Proceedings of the International SoC Design Conference.

[92] T. Mäki-Patola and P. Hämäläinen. 2004. Latency tolerance for gesture controlled continuous sound instrument
without tactile feedback. In Proceedings of the International Computer Music Conference.

[93] H. S. Malvar and G. J. Sullivan. 2003. Transform, Scaling & Color Space Impact of Professional Extensions. ISO/IEC
JTC1/SC29/WG11 and ITU-T SG16 Q.6 Document JVT-H031.

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.

https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_compression_s3tc.txt


Image and Video Coding Techniques for Ultra-low Latency 231:33

[94] I. Mansri, N. Doghmane, N. Kouadria, S. Harize, and A. Bekhouch. 2020. Comparative evaluation of VVC, HEVC,
H.264, AV1, and VP9 encoders for low-delay video applications. In Proceedings of the International Conference on

Multimedia Computing, Networking and Applications.
[95] W. Menasri, A. Skoudarli, A. Belhadj, and M. S. Azzaz. 2019. Field programmable gate array implementation of

variable-bins high efficiency video coding CABAC decoder with path delay optimisation. IET Image Process. 13, 6
(2019).

[96] A. Mercat, A. Mäkinen, J. Sainio, A. Lemmetti, M. Viitanen, and J. Vanne. 2021. Comparative rate-distortion-
complexity analysis of VVC and HEVC video codecs. IEEE Access 9 (2021).

[97] L. Merritt and R. Vanam. 2006. x264: A High Performance H.264/AVC Encoder. Retrieved from http://akuvian.org/
src/x264/overview_x264_v8_5.pdf.

[98] S. Mochizuki et al. 2016. A 197mW 70ms-latency full-HD 12-channel video-processing SoC for car information sys-
tems. In Proceedings of the International Solid-State Circuits Conference.

[99] M. Mody, P. Swami, and P. Shastry. 2014. Ultra-low latency video codec for video conferencing. In Proceedings of the

International Conference on Electronics, Computing and Communication Technologies.
[100] D. Mukherjee et al. 2013. The latest open-source video codec VP9—An overview and preliminary results. In Proceed-

ings of the Picture Coding Symposium.
[101] J. Nystad, A. Lassen, A. Pomianowski, S. Ellis, and T. Olson. 2012. Adaptive scalable texture compression. In Proceed-

ings of the Conference on High-Performance Graphics.
[102] Y. Omori, K. Nakamura, T. Onishi, D. Kobayashi, T. Osawa, and H. Iwasaki. 2019. 4K 120fps HEVC temporal scalable

encoder with super low delay. In Proceedings of the International Conference on Electronics, Circuits, and Systems.
[103] Y. Omori, T. Onishi, H. Iwasaki, and A. Shimizu. 2018. A 120 fps high frame rate real-time HEVC video encoder with

parallel configuration scalable to 4K. IEEE Trans. Multi-Scale Comput. Syst. 4, 4 (2018).
[104] T. Onishi et al. 2015. Single-chip 4K 60fps 4:2:2 HEVC video encoder LSI with 8K scalability. In Proceedings of the

Symposium on VLSI Circuits.
[105] OpenHEVC 2017. Retrieved from https://github.com/OpenHEVC/openHEVC.
[106] F. Pakdaman, M. A. Adelimanesh, M. Gabbouj, and M. R. Hashemi. 2020. Complexity analysis of next-generation

VVC encoding and decoding. In Proceedings of the International Conference on Image Processing.
[107] Z. Pan, P. Zhang, B. Peng, N. Ling, and J. Lei. 2021. A CNN-based fast inter coding method for VVC. IEEE Signal

Process. Lett. 28 (2021), 1260–1264.
[108] G. Pastuszak. 2019. Generative multi-symbol architecture of the binary arithmetic coder for UHDTV video encoders.

IEEE Trans. Circ. Syst. I, Reg. Papers 67, 3 (2019).
[109] G. Pastuszak. 2020. Multisymbol architecture of the entropy coder for H.265/HEVC video encoders. IEEE Trans. Very

Large Scale Integr. Syst. 28, 12 (2020).
[110] G. Pastuszak and A. Abramowski. 2016. Algorithm and architecture design of the H.265/HEVC intra encoder. IEEE

Trans. Circ. Syst. Video Technol. 26, 1 (2016).
[111] N. Patwa, N. Ahuja, S. Somayazulu, O. Tickoo, S. Varadarajan, and S. Koolagudi. 2020. Semantic-preserving image

compression. In Proceedings of the International Conference on Image Processing.
[112] M. Pitkänen, M. Viitanen, A. Mercat, and J. Vanne. 2019. Remote VR gaming on mobile devices. In Proceedings of the

International Conference on Multimedia.
[113] D. Pohl et al. 2017. The next generation of in-home streaming: Light fields, 5K, 10 GbE, and foveated compression.

In Proceedings of the Federated Conference on Computer Science and Information Systems.
[114] S. Pratapa, P. Krajcevski, and D. Manocha. 2017. MPTC: Video rendering for virtual screens using compressed tex-

tures. In Proceedings of the Symposium on Interactive 3D Graphics and Games.
[115] S. Pratapa, T. Olson, A. Chalfin, and D. Manocha. 2019. TexNN: Fast texture encoding using neural networks. Comput.

Graph. Forum 38, 1 (2019).
[116] Recommendation H.261 (11/88) 1988. H.261: Video Codec for Audiovisual Services at p x 384 kbit/s. Standard. ITU-T.
[117] L. Renambot, B. Jeong, and J. Leigh. 2007. Real-time compression for high-resolution content. In Proceedings of the

Access Grid Retreat.
[118] A. Rhatushnyak et al. 2019. Committee Draft of JPEG XL Image Coding System. Retrieved from https://

arXiv:1908.03565.
[119] M. E. Rose and J. R. Kitchin. 2019. pybliometrics: Scriptable bibliometrics using a Python interface to Scopus. Soft-

wareX 10 (2019).
[120] E. M. Rubino et al. 2017. Underwater radio frequency image sensor using progressive image compression and region

of interest. J. Brazil. Soc. Mech. Sci. Eng. 39, 10 (2017).
[121] E. M. Rubino, A. J. Álvares, R. Marín, and P. J. Sanz. 2019. Real-time rate distortion-optimized image compression

with region of interest on the ARM Architecture for Underwater Robotics Applications. J. Real-Time Image Process.

16, 1 (2019).

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.

http://akuvian.org/src/x264/overview_x264_v8_5.pdf
https://github.com/OpenHEVC/openHEVC
https://arXiv:1908.03565


231:34 J. Žádník et al.

[122] M. Saldanha et al. 2020. An overview of dedicated hardware designs for state-of-the-art AV1 and H.266/VVC video
codecs. In Proceedings of the International Conference on Electronics, Circuits and Systems.

[123] M. Satran and M. Jacobs. 2018. Block Compression (Direct3D 10). Retrieved from https://docs.microsoft.com/en-
us/windows/win32/direct3d10/d3d10-graphics-programming-guide-resources-block-compression.

[124] M. Satran and M. Jacobs. 2018. Texture Block Compression in Direct3D 11. Retrieved from https://docs.microsoft.
com/en-us/windows/win32/direct3d11/texture-block-compression-in-direct3d-11.

[125] A. Shankar. 2019. Future automotive E/E architecture. IEEE India Info. Newslett. 14, 3 (2019).
[126] L. Shen, Z. Liu, X. Zhang, W. Zhao, and Z. Zhang. 2012. An effective CU size decision method for HEVC encoders.

IEEE Trans. Multimedia 15, 2 (2012).
[127] L. Shen, Z. Zhang, and Z. Liu. 2014. Adaptive inter-mode decision for HEVC jointly utilizing inter-level and spa-

tiotemporal correlations. IEEE Trans. Circ. Syst. Video Technol. 24, 10 (2014).
[128] Í Siqueira, G. Correa, and M. Grellert. 2020. Rate-distortion and complexity comparison of HEVC and VVC video

encoders. In Proceedings of the Latin American Symposium on Circuits and Systems.
[129] P. Sjövall, V. Viitamäki, J. Vanne, T. D. Hämäläinen, and A. Kulmala. 2018. FPGA-powered 4K120p HEVC intra encoder.

In Proceedings of the International Symposium on Circuits and Systems.
[130] A. Skodras, C. Christopoulos, and T. Ebrahimi. 2001. The JPEG 2000 still image compression standard. IEEE Signal

Process. Mag. 18, 5 (2001).
[131] J. Ström and P. Wennersten. 2011. Lossless compression of already compressed textures. In Proceedings of the ACM

SIGGRAPH Symposium on High Performance Graphics.
[132] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand. 2012. Overview of the high efficiency video coding (HEVC)

standard. IEEE Trans. Circ. Syst. Video Technol. 22, 12 (2012).
[133] W. Sun, X. Zhang, S. Wang, J. Chen, and L.-Y. Duan. 2017. GPU based fast MPEG-CDVS encoder. In Proceedings of

the International Conference on Image Processing.
[134] F. Takano, H. Igarashi, and T. Moriyoshi. 2017. 4K-UHD real-time HEVC encoder with GPU accelerated motion

estimation. In Proceedings of the International Conference on Image Processing.
[135] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella. 2017. On multi-access edge computing: A survey

of the emerging 5G network edge cloud architecture and orchestration. IEEE Commun. Surveys Tuts. 19, 3 (2017).
[136] M. Tang et al. 2019. A universal optical flow based real-time low-latency omnidirectional stereo video system. IEEE

Trans. Multimedia 21, 4 (2019).
[137] J.-S. Tu, K.-S. Lin, C.-L. Lin, J.-Y. Kao, G.-R. Shih, and P.-H. Tsai. 2017. Low-latency implementation of 360 panoramic

video viewing system. In Proceedings of the International Symposium on Intelligent Signal Processing and Communi-

cation Systems.
[138] S. Ubik, J. Halák, J. Melnikov, and M. Kolbe. 2020. Ultra-low-latency video transmissions for delay sensitive collabo-

ration. In Proceedings of the Mediterranean Conference on Embedded Computing.
[139] J. Vanne, M. Viitanen, T. D. Hämäläinen, and A. Hallapuro. 2012. Comparative rate-distortion-complexity analysis

of HEVC and AVC video codecs. IEEE Trans. Circ. Syst. Video Technol. 22, 12 (2012).
[140] V. Viitamäki, P. Sjövall, J. Vanne, T. D. Hämäläinen, and A. Kulmala. 2018. Live demonstration: 4K100p HEVC intra

encoder. In Proceedings of the International Symposium on Circuits and Systems.
[141] M. Viitanen, A. Koivula, A. Lemmetti, A. Ylä-Outinen, J. Vanne, and T. D. Hämäläinen. 2016. Kvazaar: Open-source

HEVC/H.265 encoder. In Proceedings of the International Conference on Multimedia.
[142] M. Viitanen, J. Vanne, T. D. Hämäläinen, and A. Kulmala. 2018. Low latency edge rendering scheme for interactive

360 degree virtual reality gaming. In Proceedings of the International Conference on Distributed Computing Systems.
[143] G. K. Wallace. 1992. The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38, 1 (1992).
[144] F. G. Walls and A. S. MacInnis. 2016. VESA display stream compression for television and cinema applications. IEEE

Trans. Emerg. Sel. Topics Circ. Syst. 6, 4 (2016).
[145] B. Wang et al. 2018. Highly parallel HEVC decoding for heterogeneous systems with CPU and GPU. Signal Process.:

Image Commun. 62 (2018).
[146] Z. Wang, B. Han, R. Wang, K. Fan, and W. Gao. 2020. uAVS3d: Fast decoder for the 3rd generation audio video coding

standard (AVS3). In Proceedings of the International Conference on Digital Signal Processing.
[147] J. M. P. Van Waveren. 2006. Real-time DXT Compression. Technical Report. id Software, Inc.
[148] J. M. P. Van Waveren and I. Castaño. 2007. Real-time YCoCg-DXT Compression. Technical Report. id Software, Inc.

and NVIDIA Corp.
[149] M. J. Weinberger, G. Seroussi, and G. Sapiro. 2000. The LOCO-I lossless image compression algorithm: Principles and

standardization into JPEG-LS. IEEE Trans. Image Process. 9, 8 (2000).
[150] A. Wieckowski et al. 2020. Towards a live software decoder implementation for the upcoming versatile video coding

(VVC) codec. In Proceedings of the International Conference on Image Processing.

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.

https://docs.microsoft.com/en-us/windows/win32/direct3d10/d3d10-graphics-programming-guide-resources-block-compression
https://docs.microsoft.com/en-us/windows/win32/direct3d11/texture-block-compression-in-direct3d-11


Image and Video Coding Techniques for Ultra-low Latency 231:35

[151] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra. 2003. Overview of the H.264/AVC video coding standard.
IEEE Trans. Circ. Syst. Video Technol. 13, 7 (2003).

[152] A. Willème, A. Descampe, S. Lugan, and B. Macq. 2016. Quality and error robustness assessment of low-latency
lightweight intra-frame codecs for screen content compression. IEEE Trans. Emerg. Sel. Topics Circ. Syst. 6, 4 (2016).

[153] C. Wohlin. 2014. Guidelines for snowballing in systematic literature studies and a replication in software engineering.
In Proceedings of the International Conference on Evaluation and Assessment in Software Engineering.

[154] x264 .2020. Retrieved from https://www.videolan.org/developers/x264.html.
[155] x265 HEVC Encoder/H.265 Video Codec. 2020. Retrieved from http://x265.org.
[156] K. Xu et al. 2018. A low-power 4096x2160@30fps H.265/HEVC video encoder for smart video surveillance. In Pro-

ceedings of the International Symposium on Low Power Electronics and Design.
[157] H. Yang, L. Shen, X. Dong, Q. Ding, P. An, and G. Jiang. 2019. Low-complexity CTU partition structure decision and

fast intra mode decision for versatile video coding. IEEE Trans. Circ. Syst. Video Technol. 30, 6 (2019).
[158] S. Yang, B. Li, Y. Song, J. Xu, and Y. Lu. 2018. A hardware-accelerated system for high resolution real-time screen

sharing. IEEE Trans. Circ. Syst. Video Technol. 29, 3 (2018).
[159] H. Zhang and Z. Ma. 2013. Fast intra mode decision for high efficiency video coding (HEVC). IEEE Trans. Circ. Syst.

Video Technol. 24, 4 (2013).
[160] J. Zhang, C. Jia, M. Lei, S. Wang, S. Ma, and W. Gao. 2019. Recent development of AVS video coding standard: AVS3.

In Proceedings of the Picture Coding Symposium.
[161] Y. Zhang, Z. Lin, W. Feng, J. Sun, and Z. Guo. 2018. A real-time multi-view AVS2 decoder on mobile phone. In

Prococeedings of Advances in Multimedia Information Processing—Pacific Rim Conference on Multimedia.
[162] Y. Zhang and C. Lu. 2019. Efficient algorithm adaptations and fully parallel hardware architecture of H.265/HEVC

intra encoder. IEEE Trans. Circ. Syst. Video Technol. 29, 11 (2019).
[163] Y. Zhang and C. Lu. 2019. High-performance algorithm adaptations and hardware architecture for HEVC intra en-

coders. IEEE Trans. Circ. Syst. Video Technol. 29, 7 (2019).
[164] Y. Zhang, C. Zhang, R. Fan, S. Ma, Z. Chen, and C.-C. J. Kuo. 2019. Recent advances on HEVC inter-frame coding:

From optimization to implementation and beyond. IEEE Trans. Circ. Syst. Video Technol. 30, 11 (2019).
[165] Y. Zhou, X. Jin, and T. Xiang. 2016. Fixed-ratio DXT format frame buffer compressor for mobile graphics systems. In

Proceedings of the International Conference on Field-Programmable Technology.
[166] B. Zhu et al. 2021. A real-time H.266/VVC software decoder. In Proceedings of the International Conference on Multi-

media and Expo.

Received July 2020; revised December 2021; accepted January 2022

ACM Computing Surveys, Vol. 54, No. 11s, Article 231. Publication date: September 2022.

https://www.videolan.org/developers/x264.html
http://x265.org

