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ABSTRACT

In the last few decades, the field of wireless communications has witnessed sig-
nificant technological advancements to meet the needs of today’s modern world.
The rapidly emerging technologies, however, are becoming increasingly sophis-
ticated, and the process of investigating their performance and assessing their
applicability in the real world is becoming more challenging. That has aroused
a relatively wide range of solutions in the literature to study the performance of
the different communication systems or even draw new results that were difficult
to obtain. These solutions include field measurements, computer simulations,
and theoretical solutions such as alternative representations, approximations,
or bounds of classic functions that commonly appear in performance analy-
ses. Field measurements and computer simulations have significantly improved
performance evaluation in communication theory. However, more advanced
theoretical solutions can be further developed in order to avoid using the ex-
pensive and time-consuming wireless communications measurements, replace
the numerical simulations, which can sometimes be unreliable and suffer from
failures in numerical evaluation, and achieve analytically simpler results with
much higher accuracy levels than the existing theoretical ones.

To this end, this thesis firstly focuses on developing new approximations and
bounds using unified approaches and algorithms that can efficiently and accu-
rately guide researchers through the design of their adopted wireless systems
and facilitate the conducted performance analyses in the various communica-
tion systems. Two performance measures are of primary interest in this study,
namely the average error probability and the ergodic capacity, due to their
valuable role in conducting a better understanding of the systems’ behavior
and thus enabling systems engineers to quickly detect and resolve design issues
that might arise. In particular, several parametric expressions of different ana-
lytical forms are developed to approximate or bound the Gaussian 𝑄-function,

vii



which occurs in the error probability analysis. Additionally, any generic func-
tion of the 𝑄-function is approximated or bounded using a tractable exponential
expression. Moreover, a unified logarithmic expression is proposed to approx-
imate or bound the capacity integrals that occur in the capacity analysis. A
novel systematic methodology and a modified version of the classical Remez
algorithm are developed to acquire optimal coefficients for the accompanying
parametric approximation or bound in the minimax sense. Furthermore, the
quasi-Newton algorithm is implemented to acquire optimal coefficients in terms
of the total error. The average symbol error probability and ergodic capacity
are evaluated for various applications using the developed tools.

Secondly, this thesis analyzes a couple of communication systems assisted
with reconfigurable intelligent surfaces (RISs). RIS has been gaining significant
attention lately due to its ability to control propagation environments. In
particular, two communication systems are considered; one with a single RIS
and correlated Rayleigh fading channels, and the other with multiple RISs
and non-identical generic fading channels. Both systems are analyzed in terms
of outage probability, average symbol error probability, and ergodic capacity,
which are derived using the proposed tools. These performance measures reveal
that better performance is achieved when assisting the communication system
with RISs, increasing the number of reflecting elements equipped on the RISs,
or locating the RISs nearer to either communication node.

In conclusion, the developed approximations and bounds, together with the
optimized coefficients, provide more efficient tools than those available in the
literature, with richer capabilities reflected by the more robust closed-form per-
formance analysis, significant increase in accuracy levels, and considerable re-
duction in analytical complexity which in turns can offer more understanding
into the systems’ behavior and the effect of the different parameters on their
performance. Therefore, they are expected to lay the groundwork for the in-
vestigation of the latest communication technologies, such as RIS technology,
whose performance has been studied for some system models in this thesis using
the developed tools.
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1 INTRODUCTION

Wireless technology has seen significant evolution, from the third generation
(3G) to the fourth-generation long-term evolution (4G LTE), and then to the
fifth-generation (5G) era. Nevertheless, it still has immense potential to revo-
lutionize our daily life and create a fully connected world over the following few
decades. In particular, the focus has recently turned to develop solutions be-
yond 5G, i.e., the sixth generation (6G) and beyond. Future wireless networks
are expected to overcome the shortages of the current technologies and provide
higher data rates, higher system capacity, lower latency, higher bandwidth,
and improved quality of service (QoS). In addition, rapid major technological
breakthroughs with increased complexity are coming to light regularly, such
as millimeter wave (mmwave) technologies, terahertz (THz) communication,
intelligent communication environments, pervasive artificial intelligence, large-
scale network automation, ambient backscatter communications, and cell-free
massive multiple-input multiple-output (MIMO) communication networks [1].

The accurate prediction of these technologies’ performance is a critical factor
in the timely adoption of these technologies in real-world systems. More specifi-
cally, measuring their different performance metrics is an essential step toward a
better understanding of their behavior in the real world. The complexity of the
analytical solutions’ performance depends on the complexity of the encountered
system and channel models. Most wireless communication systems encounter
signal attenuation with different variables, including time, geographic location,
and radio frequency. Thus, the received signals have different strengths and
phases. This leads to the concept of fading, which is considered a random pro-
cess. Therefore, the corresponding communication channel is referred to as a
fading channel, and the corresponding performance analysis is referred to as the
statistical performance analysis since it includes mathematical averaging over
the statistical characterization of the fading channel. Statistical performance
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measures include average signal-to-noise ratio (SNR), outage probability, aver-
age symbol error probability (SEP), etc. In many cases, when evaluating the
different statistical performance measures of a communication system, compli-
cated integrals that cannot be solved in closed form in terms of elementary
functions occur.

Generally, performance assessment can be conducted through field measure-
ments, computer simulations, or closed-form analytical solutions. However,
wireless communications measurements are expensive, time-consuming, and ne-
cessitate the need for collaboration to construct comprehensive systems. On the
other hand, numerical simulations performed on the different software packages
can sometimes suffer from instability and oscillating issues that might cause
wrong evaluations of the encountered integrals. Moreover, some formulations
can also suffer from the issue of overflow and underflow of the very small or large
floating point values, causing failures in numerical evaluation. This has raised
the need for improved analytical tools to enable the study of the different com-
munication systems and contribute to the communication fundamentals rather
than using time-consuming computer simulations and expensive field measure-
ments. It is much safer and more reliable to compute a performance measure
through trusted tabulated functions tested and verified in the different software
packages (instead of direct numerical integration). In addition, the closed-form
analytical expressions can sometimes provide insightful observations into the ef-
fect of the different system parameters on its performance, especially when the
results can be made simpler with some convenient approximations or bounds.
It can also facilitate the design and optimization of various communication
systems due to the availability of explicit analytical expressions.

1.1 Motivation and Scope of the Thesis

The general objective of this thesis is to facilitate statistical performance anal-
ysis, ease its calculations, render new analytical solutions that were previously
deemed unfeasible and provide new theoretical insights into the effect of the
different system’s parameters on its performance. This requires creating and
developing new mathematical tools that enable researchers to find closed-form
approximations, bounds, or even exact expressions for measuring the perfor-
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mance of wireless communication systems with enough accuracy and reason-
able complexity. Furthermore, the applicability and reliability of the proposed
tools need to be verified by implementing them in analyzing the most recent
and promising technologies in wireless communication.

Among the different performance measures used to study the various com-
munication systems, this thesis focuses on the average error probability and the
ergodic capacity measures. This is because these two are the most common to
appear in the broad literature of performance analysis, the most challenging
to evaluate, and the most revealing about the system’s behavior. Therefore,
it is essential to have tools that enable their evaluation in a tractable closed
form with high accuracy. The main source of difficulty in evaluating the av-
erage error probability and the ergodic capacity is that the conditional error
probability on the fading channel and the instantaneous channel capacity are
generally non-linear functions of the instantaneous SNR.

In particular, the conditional error probability for coherent detection under
additive white Gaussian noise (AWGN) channel is usually a polynomial of the
so-called Gaussian 𝑄-function. The Gaussian 𝑄-function measures the tail
probability of a standard normal random variable 𝑋 having unit variance and
zero mean, i.e., 𝑄(𝑥) = Pr(𝑋 ≥ 𝑥). Since the 𝑄-function is an integral that
cannot be solved in closed form and the corresponding average error probability
requires working with integrals involving it, the error probability most often
cannot be expressed in closed form in terms of elementary functions. This
leads to the first scope of this thesis which is the Gaussian 𝑄-function for which
the presented contributions are inclined toward developing approximations and
bounds for the classical mathematical function in order to characterize the
error probability performance of the different communication systems in a more
desirable analytical form. The importance of the 𝑄-function is not only limited
to communication theory, but also to many other fields of statistical sciences
such as diffusion problems in heat, mass, and momentum transfer applications
and various branches of mathematical physics [2].

The second scope of the thesis is the ergodic capacity which specifies the
maximum transmission rate of reliable communication that can be achieved
over time-varying channels. It is calculated by taking the expectation of the in-
stantaneous channel capacity. More specifically, the ergodic capacity for AWGN
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channels is the mean of the Shannon capacity, which is a logarithmic function
of the SNR. Therefore, computing the ergodic capacity might result in compli-
cated integrals that cannot be solved in terms of elementary functions and are
specific to the studied system. In fact, most of the approximations and bounds
or even exact closed-form expressions available in the literature are unique to
the system under study, so a complete analysis is required for each system in-
dependently and using different mathematical steps. Furthermore, as far as the
author is aware, no unified approach for analyzing the performance of any com-
munication system in terms of ergodic capacity exists. Therefore, the thesis’
contributions for this scope are inclined toward developing unified approxima-
tions and bounds for the ergodic capacity of any communication system.

This study also focuses on the different communication systems whose anal-
yses employ the developed mathematical tools, i.e., the novel approximations
and bounds. In particular, it does not limit their applicability to classical wire-
less systems that have already been studied in the vast literature, but it also
explores their importance in one of the most promising and revolutionizing
techniques for 6G, namely, the reconfigurable intelligent surfaces (RISs) tech-
nology which is the third and last scope of this thesis. The importance of this
technology comes from its ability to achieve more control over the wireless envi-
ronment, which has long been recognized as an uncontrollable communication
medium that chaotically reflects the transmitted signals. Therefore, it provides
significantly improved spectral and energy efficiency. The thesis’ contributions
in this scope tend toward evaluating the performance of RIS-aided systems in
terms of the different performance measures through the use of the developed
tools. Other secondary concepts are also covered in this thesis and are used to
achieve the targeted objectives.

The following are the main research questions that further elaborate on the
objective and scope of the thesis.

1. How to enable the analysis of complicated systems and allow deriving
new results that have been typically unobtainable?

2. How to analytically simplify error probability analysis to produce simple-
form solutions with minimal accuracy loss?

3. How to unify capacity analysis in the different communication systems
and render highly accurate yet tractable closed-form capacity expressions?
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4. What benefits do the developed approximations and bounds have for
communications, and what kind of communication systems can they be
implemented at to enable performance evaluation?

1.2 Contributions of the Thesis

The general contribution of this study is a collection of tight and tractable
approximations and bounds that facilitate statistical performance analyses, in-
cluding the analysis of the RIS-aided systems. The thesis’ major contributions
can be summarized as follows.

Several tractable approximations and lower/upper bound of different math-
ematical forms are developed in this thesis for the Gaussian 𝑄-function to-
gether with optimizing them in terms of the minimax absolute/relative error
and the total absolute/relative error to sufficiently increase the approximations’
or bounds’ accuracy. A novel systematic methodology and a modified version
of the classical Remez algorithm are developed in order to implement the min-
imax error optimization. Furthermore, simple approximations and bounds for
integer powers and polynomials of the 𝑄-function or any generic function of the
𝑄-function that accepts a Taylor series expansion are developed.

Unified approximations/bounds that enable the evaluation of the ergodic
capacity in any communication system are provided, together with redeveloping
the novel systematic methodology and the modified Remez algorithm of the 𝑄-
function in such a way as to make them comply with the capacity analysis. The
high efficiency and applicability of the proposed approximations/bounds are
extensively validated through theoretical analyses, simulations, and application
examples.

The proposed approximations/bounds are implemented in this thesis to an-
alyze the performance of RIS-aided systems. Particularly, two different system
models are considered with developing a different mathematical framework for
each system setting to characterize each of the studied systems’ end-to-end
equivalent channels. Performance analysis for each system model is conducted
in terms of outage probability, average SEP, and ergodic capacity, for which
analytical expressions in closed form are derived, and the effect of the different
system parameters is studied.
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1.3 Author’s Contributions to the Publications

This thesis comprises eight published scientific articles in total. The author of
this thesis, referred to as the Author in what follows, is the primary contributor
to all of the work presented herein while working under the supervision and
guidance of Prof. Taneli Riihonen, who suggested the Author’s research topic
for her doctoral studies. Publications are divided into three categories based
on the research challenge being addressed.

Publication [P1] was the starting point of this thesis, after which the publi-
cations [P2]–[P5] were produced to tackle the same research problem of finding
approximations and bounds for the Gaussian 𝑄-function using novel implemen-
tation methods. The original ideas of the publications [P1]–[P5] were developed
by the Author with the help of Prof. Riihonen. The Author implemented the
encountered optimization methodologies, acquired the data sets of optimized
coefficients, conducted the theoretical and numerical analyses, and performed
simulations for all of these publications. Prof. Riihonen supervised the Author
during the whole writing process by providing important tips to improve the
quality of the papers together with revising the manuscripts.

For publication [P6], Prof. Taneli Riihonen suggested to consider ergodic ca-
pacity after error probability analysis. The Author has considerably expanded
this idea to its current form, in which a unified method is proposed to facilitate
the capacity analysis of any wireless communication system. The Author was
responsible for planning and implementing the study, in terms of methodology,
analysis, acquiring the data sets, simulations, and writing, under the guidance
of Prof. Riihonen, who also helped to copyedit the manuscript.

The topics of publications [P7] and [P8], which are concerned with applying
the novel tools developed in publications [P1]–[P6], were proposed solely by
the Author to analyze the performance of RIS-aided networks. The Author’s
contributions also include everything else, i.e., the development of the presented
methodologies, their implementation, preparing numerical results, and writing
the whole papers, which were only reviewed internally by Prof. Taneli Riihonen
for valuable feedback that helped strengthen the quality of the papers.
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1.4 Structure of the Thesis

The remainder of the thesis is organized as follows.
Chapter 2 defines some important concepts that are needed in the technical

chapters that follow. It also provides a brief overview of the different approx-
imations and bounds available in the literature for the Gaussian 𝑄-function
along with simple tractability and accuracy comparisons and a few application
examples from the literature. In addition, it presents a survey on related exact
and approximated capacity analyses of various communication systems perti-
nent to the scope of this research. Finally, this chapter overviews the most
relevant RIS-aided systems from the literature to this study and presents their
system models.

Chapter 3 introduces two optimization criteria to be adopted in the follow-
ing two chapters for constructing optimal approximations of the considered per-
formance measures. Specifically, this chapter starts by introducing the minimax
approximation theory, as well as proposing two novel iterative implementation
approaches and a brief discussion of the initial guesses required to initiate these
methods. These approaches are then reformulated to construct novel lower and
upper bounds. The concept of total error optimization and how to implement
it is also presented in this chapter.

Chapter 4 studies the Gaussian 𝑄-function for which the main novel con-
tribution lies in developing tight approximations and bounds for it or its poly-
nomials. The chapter presents two types of approximations/bounds for which
the mathematical frameworks contributed in Chapter 3 are used herein to opti-
mize their coefficients in terms of minimax and total errors. It also presents an
overview and a performance comparison of all the commonly-used numerical
integration techniques to approximate the 𝑄-function.

Chapter 5 studies the ergodic capacity performance metric for which novel
approximations and bounds are developed to enable the accurate evaluation
of ergodic capacity in any communication system in a unified form. To opti-
mize the corresponding coefficients, the mathematical frameworks presented in
Chapter 3 are also employed herein. Lastly, an extensive overview of the wide
range of fundamental and recent applications is presented to demonstrate their
applicability.
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Chapter 6 studies the performance of two reconfigurable intelligent surfaces-
aided system models in terms of outage probability, average SEP, and ergodic
capacity, for which analytical expressions in closed form are derived using the
developed tools proposed in the previous two chapters.

Chapter 7 concludes the thesis with a discussion that summarizes the re-
search’s primary outcomes and contributions. Future research directions are
suggested.
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2 BACKGROUND

This chapter provides an overview of the existing approximations and bounds
for the Gaussian 𝑄-function and their applications in calculating error proba-
bilities for various communication systems. It also presents an overview of the
most relevant capacity analyses conducted in the literature, as well as a brief
overview of the RIS technology, which is a critical and relevant application of
the proposed novel tools. Some baseline concepts regarding signal and fading
models are also clarified.

In particular, statistical performance analysis is often performed in the pres-
ence of fading, as discussed in Chapter 1. Fading is a random process that oc-
curs in wireless links due to some impairments such as multipath propagation
and shadowing that effect the transmitted radio signal strength and attenu-
ate it. Wireless channels that have these properties are called fading channels.
Table 2.1 lists the probability density function (PDF) denoted by 𝜓(·) of the
instantaneous SNR per symbol denoted by 𝛾, with average SNR denoted by 𝛾,
for the most relevant fading models to the contents of this dissertation, namely
Rayleigh, Nakagami-𝑚, Rician, 𝜂−𝜇, 𝜅−𝜇, 𝛼−𝜇, and lognormal fading models.

For Nakagami-𝑚, 1
2 ≤ 𝑚 ≤ ∞ is the fading parameter, for the Rice fading,

𝐾 is the Rician factor, and for Fisher–Snedecor F , 𝑚 is the fading severity
parameter, 𝑚𝑠 is the shadowing parameter and 𝐵(·, ·) is the beta function [3].
For 𝜂 − 𝜇 fading of format 1, 0 < 𝜂 < ∞ is the scattered wave power ratio
between the inphase and quadrature components of each multipath cluster,
ℎ = (2 + 𝜂−1 + 𝜂)/4 and 𝐻 = (𝜂−1 − 𝜂)/4, whereas for 𝜂 − 𝜇 fading of format 2,
−1 < 𝜂 < 1 is the correlation coefficient between the inphase and quadrature
components of each multipath cluster, ℎ = 1

(1−𝜂2) and 𝐻 = 𝜂/(1 − 𝜂2) with
𝜇 being the number of multipath clusters in the fading environment for both
formats. For 𝜅 − 𝜇 and 𝛼 − 𝜇 fading, 𝜅 > 0 is the ratio between the total power
of the dominant components and the total power of the scattered waves, 𝛼 is
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Table 2.1 PDF of the SNR for some common fading models

Fading Model PDF (𝜓𝛾 (𝛾))
Rayleigh [5] 1

�̄� exp
(
− 𝛾

�̄�

)
Nakagami-𝑚 [6] 𝑚𝑚𝛾𝑚−1

�̄�𝑚Γ (𝑚) exp
(
−𝑚𝛾

�̄�

)
Rician [6] (1+𝑘)𝑒−𝑘

�̄� exp
(
− (1+𝑘)𝛾

�̄�

)
𝐼0

(
2
√

𝑘 (1+𝑘)𝛾
�̄�

)
Fisher–Snedecor F [7] 𝑚𝑚 (𝑚𝑠−1)𝑚𝑠 �̄�𝑚𝑠 𝛾𝑚−1

𝐵(𝑚,𝑚𝑠) (𝑚𝛾+(𝑚𝑠−1) �̄�)𝑚+𝑚𝑠

𝜂 − 𝜇 [8] 2
√
𝜋𝜇𝜇+ 1

2 ℎ𝜇𝛾𝜇− 1
2

Γ (𝜇)𝐻𝜇− 1
2 �̄�𝜇+ 1

2
exp

(
−2𝜇𝛾ℎ

�̄�

)
𝐼𝜇− 1

2

(
2𝜇𝐻𝛾

�̄�

)
𝜅 − 𝜇 [8] 𝜇 (1+𝜅)

𝜇+1
2 𝛾

𝜇−1
2

𝜅
𝜇−1
2 exp (𝜇𝜅) �̄�

𝜇+1
2

exp
(
− 𝜇 (1+𝜅)𝛾

�̄�

)
𝐼𝜇−1

(
2𝜇
√

𝜅 (1+𝜅)𝛾
�̄�

)
𝛼 − 𝜇 [9] 𝛼

2Γ (𝜇)

(
Γ
(
𝜇+ 2

𝛼

)
�̄�Γ (𝜇)

) 𝛼𝜇
2

𝛾
𝛼𝜇
2 −1 exp

(
−𝛾𝛼

(
Γ
(
𝜇+ 2

𝛼

)
�̄�Γ (𝜇)

)𝛼/2)
lognormal [10] 1√

2𝜋𝜎𝛾
exp

(
− (log𝑒 (𝛾)−𝜂𝛾)2

2𝜎2

)

the nonlinearity parameter, and 𝜇 > 0 is the number of multipath clusters and
describes the severity of fading process. For the lognormal fading, 𝜂𝛾 and 𝜎

are the mean and the standard deviation of the corresponding instantaneous
SNR’s natural logarithm, respectively. The function 𝐼𝛼 (·) in the Rician, 𝜂 − 𝜇

and 𝜅− 𝜇 fading is the modified Bessel function of the first kind and order 𝛼 [4,
Eq. 9.6.12].

2.1 Error Probability Analysis

In general, the error probability of a communication system is defined as the
probability that a random variable 𝑋 exceeds a certain value 𝜖 , i.e., Pr(𝑋 ≥
𝜖) [11]. Thus, the symbol error probability (SEP) denoted by 𝑃𝑠 is the error
probability in the transmission of a single symbol. Since this study is concerned
with error performance analyses over AWGN channels, a brief discussion of
various types of digital modulation schemes with coherent detection is given
in this section. In particular, modulation is the act of changing one or more
features of a periodic waveform, known as the carrier signal, in accordance with
a distinct signal, known as the modulation or message signal, which often carries
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information to be sent. The goal of modulation is to imprint information on the
carrier wave, which is then utilized to transport the information to another site.
Modulation schemes can be analog or digital based on the message/modulation
signal being continuous (sine wave) or discrete (square wave) [11].

On the other hand, detection or, alternatively, demodulation is the process
of recovering message signals from the received signals. Coherent detection
refers to the case where the optimal receiver, which minimizes the possibility of
disagreement between the sent and detected messages, has perfect knowledge
of the amplitude, phase, frequency, or any combination of them based on the
modulation scheme being used, i.e., based on the attributes of the carrier being
modulated [6]. The derivation of the SEP performance with coherent detection
for one of the simplest digital modulation schemes, namely the binary phase
shift keying (BPSK), is presented herein in detail to serve as a stepping stone for
understanding the derivation of SEP for other relatively complex modulation
schemes.

The constellation diagram of the BPSK system shown in Fig. 2.1 consists
of two signal waveforms 𝑠0 and 𝑠1 that correspond to two phases separated by
180◦ to map the binary digits 0 and 1, respectively. The two signal waveforms,
which have equal transmission probabilities (Pr(𝑠0) = Pr(𝑠1) = 1

2), are located
at equal distance of

√
𝐸𝑠 from the origin which forms the decision boundary of

zero between the decision regions 𝐷1 and 𝐷2. The parameter 𝐸𝑠 is the energy
per symbol, which is equal herein to the energy per bit 𝐸𝑏 since each symbol
consists of one bit only.

The transmission link between transmitter and receiver in a BPSK system
is illustrated in Fig. 2.2. The received signal is

𝑦 = 𝑠 + 𝑤, (2.1)

where 𝑠 ∈ {𝑠0, 𝑠1}, and 𝑤 is the AWGN with zero mean and variance 𝑁0

2 . The
PDFs of 𝑦 conditioned on the two transmitted signal waveforms are

𝜓
(
𝑦 | 𝑠0

)
=

1√
𝜋𝑁0

𝑒
−(𝑦+√𝐸𝑏)2

𝑁0 , (2.2)

𝜓
(
𝑦 | 𝑠1

)
=

1√
𝜋𝑁0

𝑒
−(𝑦−√𝐸𝑏)2

𝑁0 . (2.3)
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In particular, an error occurs in BPSK when 𝑦 is not in 𝐷0 while 𝑠0 is trans-
mitted, or when 𝑦 is not in 𝐷1 while 𝑠1 is transmitted. The symbol error
probability is calculated using [11, Eq. 4.1-13] as

𝑃𝑠 = Pr (𝑠0) Pr
(
𝑒 | 𝑠0

) + Pr (𝑠1) Pr
(
𝑒 | 𝑠1

)
, (2.4)

where Pr
(
𝑒 | 𝑠0

)
and Pr

(
𝑒 | 𝑠1

)
denote respectively the error probability when

𝑠0 and 𝑠1 are transmitted, and are calculated using (2.2) and (2.3) according
to [11, Eq. 4.1-14] as

Pr
(
𝑒 | 𝑠0

)
=
∫ ∞

0
𝜓
(
𝑦 | 𝑠0

)
d𝑦 =

1√
𝜋𝑁0

∫ ∞

0
𝑒

−(𝑦+√𝐸𝑏)2
𝑁0 d𝑦 = 𝑄

(√
2𝐸𝑏

𝑁0

)
, (2.5)

and

Pr
(
𝑒 | 𝑠1

)
=
∫ 0

−∞
𝜓
(
𝑦 | 𝑠1

)
d𝑦 =

1√
𝜋𝑁0

∫ 0

−∞
𝑒

−(𝑦−√𝐸𝑏)2
𝑁0 d𝑦 = 𝑄

(√
2𝐸𝑏

𝑁0

)
. (2.6)

After substituting (2.5), (2.6), and Pr(𝑠0) = Pr(𝑠1) = 1
2 in (2.4),

𝑃𝑠 = 𝑄

(√
2𝐸𝑏

𝑁0

)
. (2.7)

The function 𝑄(·) in (2.7) is the Gaussian 𝑄-function which is the first
scope of this study and is defined next in Section 2.1.1. The SEP for other
digital communication systems that employ coherent detection, namely ℵ-ary
amplitude shift keying (ℵ-ASK), ℵ-ary quadrature amplitude modulation (ℵ-
QAM), quadrature phase shift keying (QPSK), differentially encoded BPSK,
and differentially encoded QPSK, are given in Table 2.2, for which ℵ = 2𝑛𝑏

is the number of modulation states with 𝑛𝑏 being the number of binary bits
per symbol. Following this discussion, it is evident the crucial importance of
the Gaussian 𝑄-function in communication theory where the Gaussian/normal
distribution is frequently encountered. This importance can be best seen in
error probability analysis for various communication systems such as those in
Table 2.2.

When fading is present, the received instantaneous signal power is atten-
uated by the square of the fading amplitude. Therefore, conditioned on the
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Figure 2.1 Constellation diagram of BPSK modulation scheme.
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Figure 2.2 BPSK modulation transmission link.

13



fading, the SEP of any of the modulations schemes considered in Table 2.2 is
obtained by replacing 𝐸𝑠/𝑁0 by the instantaneous SNR per symbol, 𝛾. The
SEP over the non-fading AWGN channel is actually equivalent to the condi-
tional SEP in the presence of fading and is denoted as 𝑃𝑠 (𝐸 ; 𝛾). Thus, the
average SEP over fading is calculated as

𝑃�̄� =
∫ ∞

0
𝑃𝑠 (𝐸 ; 𝛾) 𝜓𝛾 (𝛾) d𝛾, (2.8)

where 𝜓𝛾 (𝛾) is the PDF of the instantaneous SNR. In general, the average
SEP decreases with increasing 𝛾. For fading channels, the change in slope of
the probability of error defines the diversity gain, which occurs due to the usage
of some diversity scheme. More specifically, diversity gain is the reduction in
the transmitted power required to achieve a certain performance criterion, e.g.,
a certain SEP level, when using a diversity scheme [12]. A diversity scheme
refers to any method that enhances the reliability of a communication signal
by utilizing two or more communication channels with different properties, such
as the RIS technology.

Since 𝑃𝑠 (𝐸 ; 𝛾) in (2.8) for coherent detection is generally a polynomial of the
Gaussian 𝑄-function, which itself is integral that does not have a closed-form
solution, complicated integrals will occur when evaluating the average error
probabilities for the different modulation/detection schemes and the various
fading channel models. This motivates the need for approximations and bounds
to substitute the Gaussian 𝑄-function with closed-form expressions that can
ultimately allow for the evaluation of the encountered error probability measure
in closed form.

2.1.1 Definition of 𝑄−Function and its Applications

The 𝑄-function is often referred to as the Gaussian probability integral since it
is the complement of the cumulative distribution function (CDF) corresponding
to the standard Gaussian random variable 𝑋 and is defined as
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Table 2.2 SEP for different modulation schemes with coherent detection [6]

Modulation Scheme SEP (𝑃𝑠)

ℵ-ASK 2
(
ℵ−1
ℵ
)
𝑄

(√
6𝐸𝑠

𝑁0(ℵ2−1)
)

ℵ-QAM 4
(√

ℵ−1√
ℵ

)
𝑄

(√
3𝐸𝑠

𝑁0 (ℵ−1)

)
− 4

(√
ℵ−1√
ℵ

)2
𝑄2

(√
3𝐸𝑠

𝑁0 (ℵ−1)

)
QPSK 2𝑄

(√
𝐸𝑠
𝑁0

)
−𝑄2

(√
𝐸𝑠
𝑁0

)
Differentially encoded BPSK 2𝑄

(√
2𝐸𝑏
𝑁0

)
− 2𝑄2

(√
2𝐸𝑏
𝑁0

)
Differentially encoded QPSK 4𝑄

(√
𝐸𝑠
𝑁0

)
− 8𝑄2

(√
𝐸𝑠
𝑁0

)
+ 8𝑄3

(√
𝐸𝑠
𝑁0

)
− 4𝑄4

(√
𝐸𝑠
𝑁0

)

𝑄(𝑥) � 1√
2𝜋

∫ ∞

𝑥
exp

(
−1

2 𝑡
2
)
d𝑡 (2.9a)

=
1

𝜋

∫ 𝜋
2

0
exp

(
− 1

2 sin2 𝜃
𝑥2
)
d𝜃 [for 𝑥 ≥ 0]. (2.9b)

For the Gaussian 𝑄-function, the case 𝑥 ≥ 0 is presumed throughout the thesis
since the results can usually be extended to the negative real axis using the
relation 𝑄(𝑥) = 1 − 𝑄(−𝑥). The latter integral (2.9b) is the so-called Craig’s
formula [13], [14] obtained by manipulating the original results of [15], [16]
to eliminate the function’s argument from the lower limit of the integral in
(2.9a) and thus reduce the analytical difficulty when this argument is dependent
on other random parameters that eventually require statistical averaging over
their probability distributions, i.e., solving multiple integrals. The 𝑄-function
is related to the error function erf (·), and the complementary error function
erfc(·), which have equal importance in communication theory, respectively by

𝑄(𝑥) = 1

2
− 1

2
erf

(
𝑥√
2

)
, (2.10)

𝑄(𝑥) = 1

2
erfc

(
𝑥√
2

)
. (2.11)
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Following the discussion in Section 2.1, the Gaussian 𝑄-function is not only
limited to error probability analysis of basic modulation schemes such as those
mentioned in Table 2.2, but it also has a variety of applications in statistical
performance analysis for various system models and fading channels [17]–[22].
For example, it occurs in the bit error probability (BEP) expressions for ℵ-
PSK with Gray, natural binary or folded binary bit-mappings in [17], [18], in
bit error rate (BER) approximations for ℵ-PSK and ℵ-QAM with Gray code
bit mapping based on a geometric approach in [19], in average BER expressions
of ℵ-QAM in flat Rayleigh fading with imperfect channel estimates in [20], in
BER expressions of dual-hop orthogonal frequency division multiplexing-based
amplify-and-forward (AF) relay system in [21], and in average SEP asymptotic
expressions for composite lognormal with any small-scale fading in [22], as
well as in measuring the performance of energy detectors for cognitive radio
applications in [23], [24].

These applications often require working with complex integrals of the 𝑄-
function, mainly in the presence of fading, such as that in (2.8) whose 𝑃𝑠 (𝐸 ; 𝛾)
is actually a polynomial of the 𝑄-function for coherent detection. In general,
complicated integrals of the form∫

𝐹
(
𝑄( 𝑓 (𝛾))) 𝑌 (𝛾) d𝛾, (2.12)

are expected to be encountered in the performance analysis of many commu-
nication systems. Above, 𝑌 (𝛾) is some integrable function and 𝐹

(
𝑄( 𝑓 (𝛾))) is

some well-behaved function of the 𝑄-function that accepts a Taylor series ex-
pansion for 0 ≤ 𝑄( 𝑓 (𝛾)) ≤ 1

2 . Since the 𝑄-function itself cannot be expressed in
closed form, (2.12) cannot be represented in closed form using elementary func-
tions as well. As a result, finding tractable approximations and bounds for the
𝑄-function becomes essential in order to make expression manipulations easier
and to apply it to a wider range of analytical research. Several approximations
and bounds are already available in the literature to meet this demand.

2.1.2 Existing Approximations/Bounds and Applications

A brief summary of the approximations and bounds already available in the
literature for the Gaussian 𝑄-function is provided herein with a basic assessment
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of tractability and accuracy that are related through a trade-off relationship.
The first and simplest known substitution for the 𝑄-function is the so-called
Chernoff bound which is in the form of a single exponential function [25] that
was later tightened in [26] to become

𝑄(𝑥) ≤ 1

2
exp

(
−−𝑥

2

2

)
. (2.13)

This bound was further extended by Chiani et al. in [27] to include multiple
exponential functions with the aim of improving its accuracy to approximate
or bound 𝑄(𝑥) as

𝑄(𝑥) ≈
𝑁∑
𝑛=1

𝑎𝑛 exp
(
−𝑏𝑛𝑥2

)
, (2.14)

for which, Chiani et al. found the coefficients 𝑎𝑛 and 𝑏𝑛 for two exponential
terms (𝑁 = 2) using the trapezoidal integration rule with optimized mean
relative error and for any 𝑁 using the rectangular integration rule with non-
optimized equispaced points, that despite them giving better accuracy than
(2.13), their accuracy still not quite adequate for statistical analysis.

Other works have also considered developing more accurate exponential
approximations and bounds of the same form as (2.14) with different ap-
proaches [28]–[31]. A sum of two or three exponentials, which is known as
the Prony approximation, is proposed in [28] together with an iterative proce-
dure for obtaining its parameters. Another approximation of the exponential
form that is easily invertible and shows a good trade-off between computational
efficiency and mathematical accuracy is proposed in [29]. The composite trape-
zoidal rule with an optimally chosen number of sub-intervals is used in [30] to
realize (2.14). A single-term exponential lower bound is introduced in [31] by
bounding from above the logarithmic function with a tangent line at some point
that sets the limit’s tightness.

More complicated approximations and bounds are also available in the liter-
ature. The authors in [32] propose a relatively tractable and tight mathematical
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expression based on a second-order exponential function as

𝑄(𝑥) ≈ exp(𝑎𝑥2 + 𝑏𝑥 + 𝑐), (2.15)

where 𝑎, 𝑏, and 𝑐 are numerically-calculated fitting parameters. The semi-
infinite Gauss–Hermite quadrature rule is used in [33] to realize a new expres-
sion in the form of summation of (2.15). Moreover, tight upper and lower
bounds are presented in [34] as a sum of two exponentials with respective con-
stant and rational factors as

𝑄(𝑥) ≤ 1

50
exp

(
−𝑥2

)
+ 1

2(𝑥 + 1) exp

(
−𝑥2
2

)
, (2.16)

𝑄(𝑥) ≥ 1

12
exp

(
−𝑥2

)
+ 1√

2𝜋(𝑥 + 1)
· exp

(
−𝑥2
2

)
. (2.17)

More accurate approximation for 𝑄(𝑥) that guarantees sufficient accuracy
for all positive values of 𝑥 is provided in [35], [36] as

𝑄(𝑥) ≈ 1√
2𝜋

(
1 − exp

(
−𝐴 𝑥√

2

))
𝐵 𝑥

exp

(
−𝑥2

2

)
, (2.18)

for which 𝐴 and 𝐵 are optimized in order to minimize the mean relative error.
This approximation was later modified to derive an upper bound in [37] and
to derive a simpler approximation that does not have the argument 𝑥 in the
denominator using Taylor series expansion in [38] as

𝑄(𝑥) ≈ 1√
2𝜋

⎡⎢⎢⎢⎢⎣
𝑛𝑎∑
𝑛=1

(−1)𝑛+1(𝐴)𝑛
𝐵(√2)𝑛𝑛!

𝑥𝑛−1
⎤⎥⎥⎥⎥⎦ exp

(
−𝑥2/2

)
, (2.19)

with 𝐴 and 𝐵 being the same as for (2.18). A complicated truncated-infinite
series expression that is more accurate for large values of 𝑥 is derived in [39] as

Q(𝑥) ≈
ℎ 𝑥 exp

(
− 𝑥2

2

)
2 𝜋

����
2

𝑥2
+ 2

𝑁∑
𝑛=1

exp
(
−𝑛2ℎ2

)
𝑛2ℎ2 + 𝑥2

2

���� , (2.20)
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with ℎ and 𝑁 being empirically determined to achieve relative error less than
10−10.

The authors in [40] present an accurate polynomial approximation based on
the observation that a Gaussian random variable can be approximated well by
a sum of uniform random variables as

𝑄(𝑥) ≈1 −
𝑛∑

𝑚=0

𝑛∑
𝑝=0

(−1)𝑚+𝑝 (𝑛
𝑝

)
𝑚!(𝑛 − 𝑚)!

(
𝑛

12

) 𝑝/2 (
𝑛

2
− 𝑚

)𝑛−𝑝
𝑥𝑝

× 𝑢

[
𝑥 −

√
12

𝑛

(
𝑛

2
− 𝑚

)]
, (2.21)

where 𝑢(·) is the unit step function. The authors in [41] introduce a more
complicated but tighter approximation in the form

𝑄(𝑥) ≈ 1√
2𝜋

1√
𝑥2 + 1

exp

(
−𝑥2

2

)
. (2.22)

More complex approximations and bounds that are not very suitable for
algebraic manipulation related to communication systems’ performance analysis
are also derived in the same paper as

𝑄(𝑥) ≈ 1√
2𝜋

1

(1 − 𝑎)𝑥 + 𝑎
√
𝑥2 + 𝑏

exp

(
−𝑥2

2

)
, (2.23)

for which the accuracy can be controlled by the choice of the two parame-
ters 𝑎 and 𝑏 using any numerical optimization procedure in order to minimize
the global relative error. It is worth noting that as the mathematical form
of the approximation/bound becomes more sophisticated, the accuracy of the
approximation/bound is likely to improve. A detailed comparison in terms of
accuracy, tractability as well as computational complexity between the different
approximations and bounds accessible in the literature can be found in [42].

The approximations and bounds mentioned above have been implemented in
the different areas of communication theory to evaluate systems’ performance
over fading channels in closed form. A few application examples from the
literature are provided herein. The exponential approximation/bound in (2.14)
is used to compute error probabilities for space–time codes and phase-shift
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keying in [27], to derive the average BER for free-space optical systems in [43]
and to evaluate the symbol error rate (SER) of phase-shift keying under Rician
fading in [44]. Moreover, the frame error rate for a two-way decode-and-forward
(DF) relay link is derived in [45], and the average BER of adaptive Walsh–
Hadamard transform-aided quadrature amplitude modulation is derived in [46],
using (2.19) for both. Furthermore, the average of integer powers of the 𝑄-
function over 𝜂 − 𝜇 and 𝜅 − 𝜇 fading whose PDFs are defined in Table 2.1, is
derived in [47], and the probability of detection in an energy detector under
Rayleigh fading in cognitive radio networks is evaluated in closed form in [32]
by utilizing (2.15) for both applications.

2.2 Ergodic Capacity Analysis

Channel capacity is a crucial and fundamental measure to analyze and study
the performance of the various wireless communication systems [48]. In fact,
whatever wireless technology is in use, all communication techniques have a
tight upper bound on the rate at which information can be reliably transmitted
over a communication channel, which is known as channel capacity, i.e., channel
capacity is the maximum mutual information of the wireless channel. In the
presence of additive white Gaussian noise, the channel capacity is calculated
according to Shannon–Hartley theorem as

C = log2 (1 + SNR) [bit/s/Hz], (2.24)

and is referred to as the Shannon capacity. On the other hand, in the presence
of multipath fading, the channel capacity varies with the channel state (SNR).
Thus, the metric ergodic capacity is used to express the capacity of the fading
channel, which is defined as the statistical average of the mutual information.
The ergodic capacity is calculated by taking the expectation or mean of the
random capacity that results from the random channel and is calculated for
the AWGN channel as

C̄ � E[C] = E
[
log2 (1 + SNR)] [bit/s/Hz]. (2.25)

Establishing closed-form expressions for the ergodic capacity is essential in
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communication theory since it allows us to obtain scientific knowledge of how
communication systems behave and how their parameters affect performance.
The ergodic capacity has been studied well in the literature and exact closed-
form formulas for it for various transmission schemes and under different as-
sumptions on transmitter and receiver channel knowledge for several fading
distributions have been derived [49]–[65]. In particular, the ergodic capac-
ity over Rayleigh fading has been derived for numerous single-antenna sys-
tems and multi-antenna systems, namely multiple-input single-output (MISO),
single-input multiple-output (SIMO), and MIMO systems for correlated and
non-correlated channels with different combining techniques at the receiver
in [49]–[59]. The ergodic capacity has also been derived for single-antenna
and multi-antenna systems with non-correlated channels under Nakagami and
Rician fading in [60]–[64]. Furthermore, it has been derived in [65] for single-
input single-output (SISO) system under 𝜅 − 𝜇 fading whose PDF is defined in
Table 2.1.

In general, the exact evaluation of the ergodic capacity in terms of analytical
functions is quite challenging. More specifically, since the ergodic capacity is
the expectation of the Shannon capacity, it is then calculated as the integral

C̄ =
∫ ∞

0
log2(1 + 𝛾) 𝜓𝛾 (𝛾) d𝛾, (2.26)

which can be referred to as capacity integral whose analytical evaluation depends
on the system’s complexity and the specific channel characteristics. Therefore,
analytical tools are needed to facilitate the conducted capacity analysis and
derive closed-form expressions. For that, many approximations and bounds are
available in the literature, from which the most relevant ones to the scope of
the thesis are [66]–[72]. The authors in [66] give a lower bound for the ergodic
capacity of MIMO Rayleigh channels with frequency-selective fading and/or
channel correlation, as well as an asymptotic estimate of the ergodic capacity
over flat fading.

In [67], asymptotic results are presented for particular multi-antenna scenar-
ios with channel information first at the receiver, then at the transmitter. In
[68], various bounds are presented for the encountered channel capacity compu-
tations under fast Rayleigh fading, perfect channel knowledge at the receiver,
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and with/without channel information at the transmitter. Two tractable yet
relatively tight approximations for the ergodic capacity that enable the con-
struction of analytical resource allocation techniques in Rayleigh MIMO sys-
tems are derived in [69]. In [70], the authors suggest two simple and reliable
approximations for the ergodic capacity in the low-SNR area. In [71] and [72],
complicated analytical bounds for the ergodic capacity in dual-hop fixed-gain
AF relay networks are presented for Rayleigh and Nakagami fading channels,
respectively.

In addition to the small-scale fading, approximations and bounds are also de-
veloped for systems experiencing the shadowing effect, which is normally mod-
eled by lognormal distribution whose PDF is defined in Table 2.1. In particular,
closed-form expressions for the ergodic capacity of the different communication
systems over lognormal fading channels do not exist. For that, number of ap-
proximations and bounds that enable its evaluation in closed form are available
in the literature [10], [73]–[76]. Alouini et al. in [10] were the first to propose
lower and upper bounds for the ergodic capacity under lognormal fading chan-
nels. However, these bounds are very simple and thus loose, especially for the
lower range of the SNR. More accurate approximations for SISO systems were
later presented in [73], [74] and the results were extended to approximate the
capacity of diversity combining techniques with or without channel correlation.
Furthermore, the authors in [75] propose accurate closed-form approximations
for the ergodic capacity for SISO and MIMO indoor ultra-wideband systems
under lognormal fading. Closed-form approximations for the ergodic capacity
of multiple adaptive transmission schemes are derived in [76].

2.3 Reconfigurable Intelligent Surfaces

The RIS is a large two-dimensional meta-surface that consists of small, low-cost,
almost passive reflecting elements (REs) that can be intelligently controlled by a
smart controller, e.g., a field-programmable gate array (FPGA), to collectively
steer the incident electromagnetic signals into the desired direction. This is
achieved by adjusting the phase shifts of the REs to regulate the directionality
of the dispersed signals. The motivation behind using the RIS technology can
be summarized by the following points [77]:
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• Spectrum efficiency improvement: Since the RISs are able to recon-
figure the wireless environment, virtual line-of-sight (LoS) links between
base stations and users can be formed by controlling the direction of
the reflected signals, allowing for improvements in the received signal-to-
interference-plus-noise ratio which in turn implies enhanced diversity gain
which has been introduced in Section 2.1.

• Energy efficiency improvement: Since the RIS does not need energy-
hungry hardware components and is able to shape the incoming signal
instead of using a power amplifier, RIS is more energy-efficient than con-
ventional AF and DF systems which are two common relaying schemes.
The former amplifies and retransmits the received signal without decod-
ing, while the latter decodes, re-encodes, and retransmits the signal.

• Easy to implement: The RIS is flexible to be deployed and extended
to many structures, e.g., buildings and traffic signs, due to its compatible
size, low-cost elements, and minimal digital signal processing require-
ments. Nevertheless, the limited signal processing capabilities cause the
acquisition of channel state information (CSI) to be quite difficult since
the RIS consists of passive elements that are not capable of transmitting
training sequences independently [78]. Therefore, the transmitter has to
perform CSI estimation. Several estimation strategies for the RIS-aided
systems are available in the literature [78]–[81].

Extensive research has been carried out to investigate the design [82]–[84],
optimization [85]–[87] and applications [88]–[90] of RIS-aided systems. Specifi-
cally, the authors in [82] focus on the key mechanisms and typologies in design-
ing the reflectarray and array lens technologies to adopt them in realizing recon-
figurable designs. A digitally controlled RIS whose REs can be independently
controlled is designed in [83] to dynamically manipulate the electromagnetic
waves and thus achieve more versatility. In [84], a tunable metasurface is de-
signed to function as a spatial microwave modulator with energy feedback, and
it has been demonstrated to efficiently shape the complex existing microwave
fields in reverberating indoor environments.

Earlier works have additionally examined optimizing the performance of
RIS-aided systems. In [85], the authors tackle a non-convex optimization prob-
lem during the process of optimizing the phase shifts and the downlink transmit
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powers in such a way as to efficiently maximize the system’s energy. In [86],
the authors optimize the discrete phase shifts, as well as the transmit beam-
forming of a multi-antenna base station, in order to minimize the transmitted
power. Furthermore, in [87], the authors employ the RIS technology at the edge
of cells to improve the downlink transmission for cell-edge users. In addition,
they optimize the active precoding matrices of the transmitter, as well as the
RIS phase shifts, in order to maximize the weighted sum rate of all users.

The usefulness and efficiency of the RIS technology can be best seen in its
diverse applications that span the different areas of wireless communications.
Among the various applications found in the literature, few are given herein.
In particular, the RIS is adopted to improve the communication in unmanned
aerial vehicles-assisted wireless systems in [88] and to assist the data transmis-
sion between a base station and a single-antenna receiver in a mmwave system
in [89]. This technology can also be implemented in the different wireless sys-
tems to improve physical layer security, as seen in [90].

In general, the fundamental performance measures of RIS-aided systems
are not fully investigated yet. In fact, due to the difficulties in assessing the
statistical characterization of the received SNR, relatively few research works
have been conducted to study the performance of these systems. As a result,
this thesis focuses on the theoretical study of the RIS-aided systems and mainly
on the SISO system with single RIS and multiple RISs. In the literature,
a number of approximations, bounds, or asymptotic analysis techniques have
been devised to analyze the different RIS-aided systems. For example, the
average BER of a RIS-aided non-orthogonal multiple-access (NOMA) system
is approximated in [91] by utilizing the central limit theorem (CLT), and the
average error probability of a RIS-based wireless system with phase errors is
investigated in [92] after modeling the transmission through a RIS by a direct
channel with Nakagami scalar fading.

2.3.1 Conventional SISO System Model with a Single RIS

A conventional RIS-aided SISO transmission link is illustrated in Fig. 2.3 that
consists of a single-antenna source (S), a single-antenna destination (D), and a
RIS equipped with 𝑀 REs. As depicted in the figure, the REs on the RIS receive
the superposed multipath signals from S and then scatter the combined signal
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Figure 2.3 A SISO wireless system with a single RIS. The S–RIS and RIS–D links consist of multiple
propagation paths through the 𝑀 REs

towards D after adjusting the amplitude and phases as if it was transmitted
from a single point source [93].

Signal Model

For the system model in Fig 2.3, D can overhear the transmitted signal from
S through the RIS as well as the direct path. Therefore, the received signal
at D consists of three components, namely the reflected signal, the direct-path
signal, and the channel noise. Thus, the received signal is written as

𝑦 = g𝑇 𝚯 h 𝑠︸���︷︷���︸
Reflected Signal

+ 𝑢 𝑠︸︷︷︸
Direct-Path Signal

+ 𝑤︸︷︷︸
Noise

= 𝐴 𝑠 + 𝑤, (2.27)

for which 𝐴 = g𝑇𝚯h+𝑢 is the channel response, 𝑠 is the transmitted signal whose
transmitted power is 𝐸𝑠 = E[|𝑠 |2], 𝑤 ∼ NC (0, 𝑁0) is the AWGN that is circularly
symmetric Gaussian distributed with zero mean and variance 𝑁0 = E[|𝑤 |2], and
Θ = � diag(ej𝜃1 , . . . , ej𝜃M) is the diagonal phase-shift matrix for which � = [0, 1]
denotes the reflection coefficient and controls the reflected signal’s amplitude,
whereas {𝜃𝑖}𝑀𝑖=1 denotes the set of phase shifts of the 𝑀 REs. The channel
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vectors h = [ℎ1, . . . , ℎ𝑀 ]𝑇 ∈ C𝑀 and g = [𝑔1, . . . , 𝑔𝑀 ]𝑇 ∈ C𝑀 correspond
to the links S–RIS and RIS–D, respectively, for which the fading coefficients
{ℎ𝑖}𝑀𝑖=1 = {|ℎ𝑖 |𝑒 𝑗∠ℎ𝑖 }𝑀𝑖=1 and {𝑔𝑖}𝑀𝑖=1 = {|𝑔𝑖 |𝑒 𝑗∠𝑔𝑖 }𝑀𝑖=1. The variable 𝑢 = |𝑢 |𝑒 𝑗∠𝑢 ∈ C
is the fading coefficient of the direct S–D link.

Related Work from the Literature

Several research papers in the literature have analyzed the performance of SISO
systems without a direct link. In particular, the CLT scheme is used to ap-
proximate the PDF of the equivalent channel and thus derive the different
performance measures in [94], [95] under Rayleigh distribution. A different
approximating approach is also developed under Rayleigh distribution in [96]
and under Rician distribution in [97] to approximate the different performance
measures with high accuracy despite the number of equipped REs on the RIS
opposing to [94], and [95] which have low accuracy for the lower number of
the REs. The same system model is again investigated in [98] under Rician
distribution but with a direct link between S and D, and approximations are
derived for the ergodic capacity and outage probability.

Other research papers have considered analyzing the performance of multi-
antenna systems with a single RIS, from which a few examples are mentioned
herein. In [99], the statistical properties of the received SNR are characterized
and used to derive closed-form approximations for the different performance
measures for a MISO system aided by a RIS. In [100], the performance of a 2×2
MIMO system assisted with a RIS with optimized phase shifts over Rayleigh
fading is investigated in terms of outage probability and throughput, whereas
in [101], the ergodic capacity of a downlink multi-user MISO system is derived
and used together with CSI to propose new RIS configuration algorithm.

2.3.2 Generic SISO System Model with Multiple RISs

A more generic SISO system that is aided by multiple RISs is shown in Fig. 2.4
and consists of a single-antenna source, a single-antenna destination, and M
geographically distributed RISs, with the 𝑙th RIS equipped with 𝑀𝑙 REs.
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Figure 2.4 A SISO wireless system with M RISs. Each S–RIS𝑙 and RIS𝑙–D link consists of multiple
propagation paths through the 𝑀𝑙 REs. For simplicity, we illustrate the multipath compo-
nents via two RISs only.

Signal Model

For the system model in Fig 2.4, all the M RISs collaboratively participate
in the transmission process between S and D, in addition to the direct path.
Therefore, the received signal at D consists of the reflected signal, direct-path
signal, and the channel noise and can be written as

𝑦 =
M∑
𝑙=1

g𝑇𝑙 𝚯𝑙 h𝑙 𝑠︸����������︷︷����������︸
Reflected Signal

+ 𝑢 𝑠︸︷︷︸
Direct-Path Signal

+ 𝑤︸︷︷︸
Noise

= 𝐴 𝑠 + 𝑤, (2.28)
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for which 𝐴 =
∑M

𝑙=1 g
𝑇
𝑙 𝚯𝑙 h𝑙 + 𝑢 is the combined channel response, and 𝚯𝑙 =

�𝑙 diag(𝑒 𝑗 𝜃𝑙,𝑖 , . . . , 𝑒 𝑗 𝜃𝑙,𝑀𝑙 ) is the diagonal phase-shift matrix of the 𝑙th RIS for
which �𝑙 and {𝜃𝑙,𝑖}𝑀𝑙

𝑖=1 denote respectively the reflection coefficient of the 𝑙th
RIS and the set of phase shifts of the 𝑀𝑙 REs equipped on the 𝑙th RIS. The
channels vectors h𝑙 = [ℎ𝑙,1, . . . , ℎ𝑙,𝑀𝑙 ]𝑇 ∈ C𝑀𝑙 and g𝑙 = [𝑔𝑙,1, . . . , 𝑔𝑙,𝑀𝑙 ]𝑇 ∈ C𝑀𝑙

correspond to the links S–RIS𝑙 and RIS𝑙–D, respectively, for which {ℎ𝑙,𝑖}𝑀𝑙

𝑖=1 =

{|ℎ𝑙,𝑖 |𝑒 𝑗∠ℎ𝑙,𝑖 }𝑀𝑙

𝑖=1 and {𝑔𝑙,𝑖}𝑀𝑙

𝑖=1 = {|𝑔𝑙,𝑖 |𝑒 𝑗∠𝑔𝑙,𝑖 }𝑀𝑙

𝑖=1.

Related Work from the Literature

The generic SISO system with multiple RISs in Fig. 2.4 is studied in [102]–[106]
and its performance is investigated after approximating the channel statistics
using different approaches. In particular, the authors in [102] use a mathe-
matical derivation that involves the CLT to tightly approximate the received
SNR over independent and identically distributed (i.i.d.) Nagakami-𝑚 fading
channels, whereas the authors in [103] demonstrate that the received SNR over
i.i.d. Rayleigh fading channels can be approximated by a non-central chi-square
distribution assuming no direct path exists, and only the RIS with the highest
transmitted SNR is selected to assist transmission. In [104], the authors present
several RIS selection strategies based on the location information of the RISs
whose number of REs can be arbitrarily adjusted with the assumption that the
channel coefficients associated with various RISs are i.i.d. RVs.

Moreover, the authors in [105] propose two transmission models over multi-
ple RISs for indoor and outdoor environments and analyze their performance,
as well as develop novel selection strategies. In addition, a practical multi-RISs
system is considered in [106] with two selection schemes; one scheme includes
all the RISs in the communication process, while the other selects the best RIS
in terms of maximum received SNR at the destination. Two approximating
schemes are used to model the received SNR, which is used afterward to derive
approximations for the different performance measures.
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3 APPROXIMATION THEORY AND OPTIMIZATION

Halfway through the twentieth century, the field of approximation theory was
born in the hands of the Russian mathematician Pafnuty Lvovich Cheby-
shev [107]. Approximation theory, in broad terms, is an area of mathematics
concerned with the issue of approximating a given function 𝑓 (𝑥) by some other
simpler function �̃� (𝑥). In the scope of this thesis, 𝑓 (𝑥) would be the Gaus-
sian 𝑄-function defined in (2.9b) or the capacity integral defined in (2.26). An
example of �̃� (𝑥) for the 𝑄-function would be the exponential approximating
function defined in (2.14). Other approximating functions are introduced in
the following chapters for both the 𝑄-function and the capacity integral, all
of which are parametric functions. A parametric function refers to a mathe-
matical expression that consists of one or more variables called parameters or
coefficients, for which the choice of the coefficients affects the accuracy of the
approximation.

In general, formulating tight approximations needs a careful choice of the
corresponding coefficients. An efficient choice would be through optimization.
This chapter introduces several optimization methodologies to be adopted in
the following chapters by the developed approximation or bound for the investi-
gated performance measure to produce a highly accurate analytical performance
analysis in terms of the minimax or total error that are to be defined shortly.
In particular, two novel approaches are presented to minimize the maximum
error, while the quasi-Newton algorithm is adopted to minimize the total error.
The contents of this chapter are elaborated in publications [P1], [P2],[P4]–[P7].
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The most relevant errors of measurement for the context of this thesis are
the absolute and relative error functions which are defined respectively as

𝑑 (𝑥) � �̃� (𝑥) − 𝑓 (𝑥), (3.1)

𝑟 (𝑥) � 𝑑 (𝑥)
𝑓 (𝑥) =

�̃� (𝑥)
𝑓 (𝑥) − 1, (3.2)

where �̃� (𝑥) is the approximation of some function 𝑓 (𝑥). The shorthand 𝑒 ∈
{𝑑, 𝑟} represents both error measures collectively in what follows. On the other
hand, the most relevant optimization criteria for the context of this thesis are
the minimax absolute/relative error optimization and minimum total abso-
lute/relative error optimization for which the maximum and total errors are
defined, respectively as

𝑒max � max
𝑅1≤𝑥≤𝑅2

##𝑒(𝑥)## , (3.3)

and

𝑒tot(u) =
∫ 𝑅2

𝑅1

|𝑒(𝑥) |d𝑥. (3.4)

Another related optimization criterion is the minimum mean error, whose mean
error is denoted by �̄�𝑡𝑜𝑡 and is obtained by simply dividing the total error in
(3.4) by the range of values of interest 𝑅 = 𝑅2 − 𝑅1 as

�̄�𝑡𝑜𝑡 =
𝑒tot
𝑅

. (3.5)

3.1 Minimax Error Optimization

When establishing an approximation for a complicated function 𝑓 (𝑥), a proper
coefficients choice for the considered approximation could be obtained by op-
timizing it in such a way as to minimize the corresponding maximum error
in order to give sufficient accuracy for the whole argument range of interest.
Pafnuty Lvovich Chebyshev [107] was the first to present the best minimax
approximation or, alternatively, the Chebyshev approximation. The theory of
the minimax approximation started by approximating a given function 𝑓 (𝑥) by
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a polynomial

𝑝(u, 𝑥) =
𝑁∑
𝑛=1

𝑎𝑛 𝑥
𝑛, (3.6)

where 𝑝(u, 𝑥) ∈ P𝑁 with P𝑁 being the space of polynomials of degree ≤ 𝑁 and
u = {𝑎𝑛}𝑁𝑛=1 is the set of coefficients to be optimized.

In particular, for a continuous function 𝑓 (𝑥) on the closed interval [𝑅1, 𝑅2],
i.e., 𝑓 ∈ 𝐶 [𝑅1, 𝑅2] where 𝐶 is a function space of all continuous functions
defined on a closed interval [𝑅1, 𝑅2], its best minimax approximation 𝑝(u∗, 𝑥)
from the set P𝑁 with the optimized coefficients u∗ = {𝑎∗𝑛}𝑁𝑛=1 must satisfy$$ 𝑓 − 𝑝∗

$$
∞ ≤ ‖ 𝑓 − 𝑝‖∞, (3.7)

for all other polynomials 𝑝 ∈ P𝑁 , or alternatively

max
𝑅1≤𝑥≤𝑅2

| 𝑓 (𝑥) − 𝑝(u∗, 𝑥) | ≤ max
𝑅1≤𝑥≤𝑅2

| 𝑓 (𝑥) − 𝑝(u, 𝑥) |, (3.8)

where ‖ · ‖∞ denotes the uniform norm or the supremum norm.
The presented theory is not limited to ordinary polynomials only, but it

can also be applied to approximate functions by generalized polynomials of the
form

�̃� (u, 𝑥) =
𝑁∑
𝑛=1

𝑎𝑛 𝑔𝑛 (𝑥), (3.9)

for which �̃� (𝑥) ∈ F�̂�, with F�̂� being the space of continuous functions of degree
≤ �̂�, and {𝑔𝑛 (𝑥)}𝑁𝑛=1 is a system of continuous functions that can implicitly
include other coefficients to be optimized, hence u will include {𝑎𝑛}𝑁𝑛=1 and
any other coefficients encountered by {𝑔𝑛 (𝑥)}𝑁𝑛=1. The degree of a generalized
polynomial is the number of its corresponding coefficients which are to be opti-
mized, i.e., size of u [108]. For example, the degree of the ordinary polynomial
in (3.6) is �̂� = 𝑁.

A key point to discuss in the minimax approximation theory is the unique-
ness of the approximation, where the best minimax approximation is always
unique. The uniqueness condition is met when the approximation �̃� (u, 𝑥) to
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a function 𝑓 ∈ 𝐶 [𝑅1, 𝑅2] satisfies the Haar condition, i.e. when the system of
continuous functions {𝑔𝑛}𝑁𝑛=1 in (3.9) satisfies the Haar condition [109] and thus
is called a Chebyshev system. In particular, the system {𝑔𝑛}𝑁𝑛=1 is a Chebyshev
system (meets the Haar condition) if each nontrivial linear combination of the
form (3.9) has at most 𝑁 −1 distinct zeros on [𝑅1, 𝑅2] or equivalently when the
determinant

𝐷 [𝑥1, . . . , 𝑥𝑁 ] =

##########
𝑔1 (𝑥1) · · · 𝑔𝑁 (𝑥1)

...
. . .

...

𝑔1 (𝑥𝑁 ) · · · 𝑔𝑁 (𝑥𝑁 )

########## (3.10)

is nonzero whenever {𝑥𝑛}𝑁𝑛=1 are all distinct. Some approximation families that
satisfy the Haar condition can be found in [110].

A best minimax approximation of a certain function family with degree �̂�

always results in an absolute error function 𝑑 (𝑥) (defined in (3.1)) that uni-
formly alternates �̂� times between �̂� + 1 extrema points of the same value of
error and alternating signs [111]. Extrema points can be critical points where
the corresponding function changes from decreasing to increasing or vice versa,
and the function’s derivative disappears, or they can be endpoints. An illus-
tration example of the expected uniform shape of the absolute error function
with �̂� = 4 and [𝑅1, 𝑅2] = [0,∞) is given in Fig. 3.1. In fact, Fig. 3.1 illustrates
𝑑 (𝑥) defined in (3.1) for 𝑓 (𝑥) = 𝑄(𝑥) and �̃� (𝑥) being the exponential approxi-
mation in (2.14) with 𝑁 = 2. In particular, �̃� (u∗, 𝑥) with degree �̂� is the best
approximation for 𝑓 (𝑥) if and only if there exist �̂� + 1 points, {𝑥𝑘}�̂�+1

𝑘=1 with
𝑅1 ≤ 𝑥1 < . . . < 𝑥𝑘 < . . . < 𝑥�̂�+1 ≤ 𝑅2, such that

𝑓 (𝑥𝑘) − �̃� (u∗, 𝑥𝑘) = (−1)𝑘 𝑑max, (3.11)

for which

𝑑max � max
𝑅1≤𝑥≤𝑅2

|𝑑 (𝑥) | = ‖𝑑‖∞ , (3.12)

is the maximum absolute error. Although the theory on the minimax approxi-
mation was first proposed to minimize the maximum absolute error as discussed
above, it can also be extended to minimize the maximum relative error defined
in (3.2) as done in [112], for which the same minimax theory principles apply.
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Figure 3.1 The uniform error function, 𝑑 (𝑥), that corresponds to the best minimax approximation with
degree �̂� = 4.

3.1.1 Methods of Implementation

The best approximation is the member of a certain function family that is the
tightest of them all and always occurs with optimal set of coefficients u∗ that
minimizes the maximum absolute or relative error over the range of values of
interest [𝑅1, 𝑅2], as

u∗ � argmin
u

𝑒max, (3.13)

where 𝑒max is defined in (3.3). New approaches are proposed to solve the
minimax optimization problem and thus calculate the corresponding coefficients
in (3.13).

New Scheme: Non-Linear System of Equations

The weighted sum of continuous functions with degree �̂� in (3.9) is adopted
to derive minimax approximations for some function 𝑓 (𝑥). The original idea
in this scheme is to describe the uniformly oscillating error function between
�̂� + 1 maximum and minimum values of equal magnitude and alternating signs
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at {𝑥𝑘}�̂�+1
𝑘=1 extremum points by a set of non-linear equations, for which the

number of equations equals the number of unknowns. The complete set of
equations that describes the minimax error function can be split into three
subsets as follows:

The first subset consists of the equations that describe the error value
at the critical points, which are defined herein as the local extrema points,
excluding those that might occur at one or both endpoints of the consid-
ered range [𝑅1, 𝑅2].
The second subset consists of the equations that describe the zero
derivative of the error function at the critical points.

The third subset pertains to the endpoints of the considered range
[𝑅1, 𝑅2] after evaluating their corresponding error values either directly or
by taking the limit, and they could be maxima or minima. The endpoints
can only contribute with one equation describing their corresponding error
value. For the functions 𝑓 (𝑥) considered in this study and the proposed
approximating expressions �̃� (𝑥), the following characteristics are noted.
When 𝑥 tends to 𝑅1, the error function normally converges to a constant
value that is to be fixed to the equalized error value of the local extrema
points, −𝑒max, for both the absolute and relative errors; otherwise, a
condition is imposed to bound the error which in turns decrease the degree
of the approximating function by one. Therefore, 𝑥1 = 𝑅1 for both error
measures. Nevertheless, when 𝑥 tends to 𝑅2, the absolute error function
converges to zero and hence 𝑥�̂�+1 < 𝑅2. As for the relative error when 𝑥

tends to 𝑅2, the error function either converges to a constant value that
is to be fixed to −𝑟max or converges to infinity or −1 for which a finite
interval on the 𝑥-axis is chosen. Therefore, 𝑥�̂�+1 = 𝑅2 always for the
relative error in this study.

The ultimate goal is to find the best set of coefficients, u∗, which solves the
following minimax set of equations that stems from the aforementioned three
subsets for 𝑒 ∈ {𝑑, 𝑟} as⎧⎪⎪⎨⎪⎪⎩

f𝑘 (v) = 𝑒(𝑥𝑘) + (−1)𝑘+1 𝑒max = 0, for 𝑘 = 1, 2, 3, . . . , �̂� + 1,

f ′𝑘 (v) = 𝑒′(𝑥𝑘) = 0, for 𝑘 = 2, 3, 4, . . . , 𝐿
(3.14)
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for which 𝐿 = �̂� for 𝑒 = 𝑟 and 𝐿 = �̂�+1 for 𝑒 = 𝑑, and v is a vector of the approx-
imation’s coefficients with 𝑒max which are to be optimized, i.e., v = [u, 𝑒max].
Although only the set u is needed to construct the minimax error function,
other unknowns will also appear when solving the optimization problem in
(3.14), which are {𝑥𝑘}�̂�+1

𝑘=1 and 𝑒max. In the rest of this chapter, the problem
formulations cover the relevant functions to the scope of this thesis and their
approximations. These problem formulations can be, however, generalized to
other functions out of the scope of this thesis by simply constructing f𝑘 for all
the extrema points and constructing f ′𝑘 for all the critical points.

After formulating (3.14), the non-linear set of equations with an equal num-
ber of equations and unknowns can be solved using any numerical tool such
as fsolve command in Matlab to yield the set of optimized coefficients u∗

which, when substituted in (3.9), yields the best minimax approximation for
all 𝑥 ∈ [𝑅1, 𝑅2]. The key difficulty in implementing this scheme is its necessity
for good initial guesses for the unknowns that can ultimately converge to the
optimized solution. An alternative method that is less sensitive to the right
choice of the initial guesses is introduced next.

Modified Remez Algorithm

Another method for solving (3.13) is developing the well-known Remez ex-
change algorithm established by Evgeny Yakovlevich Remez in 1934. The Re-
mez algorithm is an iterative procedure used to establish the best minimax ap-
proximation using non-linear approximating functions of the form (3.9), which
are typically Chebyshev systems that satisfy the Haar condition. The best
minimax approximation is characterized by the uniform alternation of the cor-
responding error function as shown in Fig. 3.1 and explained previously. The
original Remez algorithm encounters solving a linear system of equations. The
linearity of the resulting system of equations depends on the mathematical form
of the chosen approximating function. For example, the ordinary polynomial
in (3.6) results in a linear system. Nevertheless, some approximating functions
can result in a non-linear system of equations. For that, a variation of the Re-
mez exchange algorithm that complies with the nonlinearity that might occur
from the approximating function is introduced herein. The modified Remez
algorithm is less with �̂� − 1 equations for 𝑒 = 𝑟 and with �̂� equations for 𝑒 = 𝑑
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than the non-linear system of equations method. The absence of the derivative
equations makes it less sensitive to the right choice of initial guesses.

The Remez algorithm can be implemented to find the optimized set of co-
efficients u∗ of the minimax approximation (3.9) for some function 𝑓 (𝑥) by
following the steps summarized in Algorithm 1. In particular, a system of �̂� +1
simultaneous non-linear equations that describe the �̂� + 1 equalized extrema,
including those that might occur at the endpoints of the considered range, is
constructed as

f𝑘 (v) = 𝑒(𝑥𝑘) + (−1)𝑘+1 𝑒max = 0, for 𝑘 = 1, 2, 3, . . . , �̂� + 1, (3.15)

for which v is the vector of unknowns of length �̂� + 1 and is defined in (3.14).
The locations of the extrema points {𝑥𝑘}�̂�+1

𝑘=1 are then initialized. In fact, the
location of the extrema points that occur at the endpoints (𝑥1 = 𝑅1 for 𝑒 ∈ {𝑑, 𝑟}
and 𝑥�̂�+1 = 𝑅2 for 𝑒 = 𝑟) are always fixed to those values. The iterations
𝑡 of the Remez algorithm begin after that and are referred to as the outer
iterations, and in each iteration, f = [f1(v), f2(v), . . . , f�̂�+1(v)]𝑇 is solved for
v using any numerical tool. Following each iteration, the new extrema points
of the resulting error function are located and used to initialize the following
Remez iteration. This procedure is repeated until the difference between the
old, and new �̂� + 1 extrema lies below a predefined threshold value �, i.e., until
the extrema are of equal values.

Algorithm 1 Remez Exchange Algorithm

Initialize {𝑥 (0)𝑘 }𝐿𝑘=2, with 𝐿 = �̂� for 𝑒 = 𝑟 and 𝐿 = �̂� + 1 for 𝑒 = 𝑑
Set 𝑡 ← 0, 𝑥1 ← 𝑅1 for 𝑒 ∈ {𝑑, 𝑟}, 𝑥�̂�+1 ← 𝑅2 for 𝑒 = 𝑟
repeat
Solve f = [f1(v), f2(v), . . . , f�̂�+1(v)]𝑇 for the vector of unknowns v, using any
numerical method for system of non-linear equations.
Locate new {𝑥 (𝑡)𝑘 }𝐿𝑘=2, with 𝐿 = �̂� for 𝑒 = 𝑟 and 𝐿 = �̂� + 1 for 𝑒 = 𝑑

Replace 𝑥 (𝑡−1)𝑘 by 𝑥 (𝑡)𝑘 for all the extrema points
𝑡 ← 𝑡 + 1
until

###{𝑥 (𝑡)𝑘 }�̂�+1
𝑘=1 − {𝑥 (𝑡−1)𝑘 }�̂�+1

𝑘=1

### < �

Best minimax approximation is obtained
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Newton–Raphson Method

Both the non-linear system of equations method and the modified Remez al-
gorithm encounter non-linear sets of equations that can be solved numerically
using any numerical-analysis software. One explicit example of a numerical
method that the software can use is the Newton–Raphson method. In particu-
lar, Newton–Raphson is used to solve the whole system of equations in (3.14)
for w = [v, 𝑥2, 𝑥3, . . . , 𝑥𝐿] with 𝐿 = �̂� for 𝑒 = 𝑟 and 𝐿 = �̂� + 1 for 𝑒 = 𝑑.
On the other hand, it is used to solve (3.15) for w = [v] after initializing 𝑥𝑘 ,
𝑘 = 2, 3, 4, . . . , 𝐿, in the outer iterations of the Remez algorithm.

The Newton–Raphson method is a root-finding technique that is quadrati-
cally convergent while approaching the root, making it a fairly optimal solver
for this system of non-linear equations. This method also starts from good
initial guesses for the unknowns and is based on approximating a continuous
and differentiable function by a straight line tangent to it, which results when
applied to both of the considered non-linear systems of equations (3.14) and
(3.15) in the iteration

w(𝜏+1) = w(𝜏) −
[
J(𝜏)

(
w(𝜏)

) ]−1
f
(
w(𝜏)

)
, (3.16)

where 𝜏 is its counter, J(·) is the Jacobian matrix defined as

J (w) =
[

𝜕f

𝜕𝑤1
,

𝜕f

𝜕𝑤2
, . . . ,

𝜕f

𝜕𝑤𝐿

]
,

with 𝐿 = �̂� when 𝑒 = 𝑟 and 𝐿 = �̂� + 1 when 𝑒 = 𝑑 for the non-linear system of
equations method, whereas 𝐿 = �̂� + 1 for the modified Remez algorithm when
𝑒 ∈ {𝑑, 𝑟}.

On the other hand,

f (w) � [
f1(w), f2(w), . . . , f�̂�+1(w), f ′2(w), f ′3(w), . . . , f ′𝐿 (w)]𝑇

for the non-linear system of equations method, whereas

f (w) � [
f1(w), f2(w), . . . , f�̂�+1(w)]𝑇
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for the modified Remez algorithm. The iterations of the Newton–Raphson
method in (3.16) are repeated until the differences between the values of w of
two successive iterations are smaller than a predefined threshold value. It should
be noted that the Newton–Raphson method is implemented on the modified
Remez algorithm to find the vector of unknowns in every outer iteration of the
Remez algorithm.

Initial Guesses

Before starting to implement the non-linear system of equations or the modi-
fied Remez algorithm, along with the Newton-Raphson method, one must have
good initial guesses for the unknowns, namely, u, 𝑒max and 𝑥𝑘 , 𝑘 = 2, 3, 4, . . . , 𝐿.
Although the Remez method, like the non-linear system of equations, requires
initial guesses for the unknowns, it is far more resistant to the accuracy of the
used guesses and converges to the optimal solution more rapidly. A general ap-
proach was employed throughout this study to achieve good initial guesses with
certain differences specific to the investigated approximation. The good initial
guesses lead to quick convergence to the optimum values that can accomplish
the requisite uniform shape for the related error function.

In particular, for the lower values of the summation terms (𝑁) in (3.9), dif-
ferent random values are assigned repeatedly for u from which 𝑒(𝑥) is calculated
per (3.1) or (3.2) for each 𝑁. Once any 𝑒(𝑥) with the correct number of �̂� + 1

extrema occurs, {𝑥𝑘}�̂�+1
𝑘=1 and 𝑒max are calculated and used together with the

corresponding u to solve the considered optimization problem (3.14) or (3.15)
to find the optimal solution. After reaching certain 𝑁, curve fitting techniques
have been used for the higher values of 𝑁 to formulate equations that can give
good initial values for u or at least to work as mean values around which small
random variance is introduced, and from which 𝑒(𝑥) is plotted and {𝑥𝑘}�̂�+1

𝑘=1 and
𝑒max are calculated thereof. The choice of the initial guesses that is specific to
the studied approximation is more elaborated in Chapter 4 together with pub-
lications [P1]–[P5] for the Gaussian 𝑄-function, and in Chapter 5 together with
publication [P6] for the ergodic capacity.
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3.1.2 Lower and Upper Bounds

The minimax approximation theory introduced in Section 3.1 can be extended
to derive upper and lower bounds of the same form as (3.9) with degree �̂� for a
given function 𝑓 (𝑥) rather than approximations by controlling the correspond-
ing coefficients. In fact, the same uniform shape for the corresponding error
function 𝑒(𝑥) is expected, but with a different number of extrema points and
different placement of the error function about the 𝑥-axis. Furthermore, the
non-linear system of equations and the modified Remez algorithm described
in Section 3.1.1, which were originally proposed to implement the minimax
approximation theory, can also be used to implement the derived bounds.

In particular, the same approach as for the approximations is used herein
with ensuring that 𝑒(𝑥) ≤ 0 and 𝑒(𝑥) ≥ 0 for the lower and upper bounds,
respectively, when 𝑥 ∈ [𝑅1, 𝑅2]. Both types of bounds will also alternate in
sign between �̂� + 1 extrema points. However, the alternation will be either
above (upper bound) or below (lower bound) the 𝑥-axis, not crossing it as for
the approximations. In addition, one should be extra careful when evaluating
the limits at the right endpoint of the considered interval [𝑅1, 𝑅2], where 𝑅2

is considered as an extremum point only if the error function converges to a
constant value or it converges to infinity or −1 for which a finite interval on the
𝑥-axis is chosen. Otherwise, if the error function converges to zero, no extremum
occurs at 𝑅2. More specifically, for the absolute error, which converges to zero
when 𝑥 tends to 𝑅2 as discussed in the third subset in Section 3.1.1, the last
extrema will never occur at 𝑅2.

The optimized set of coefficients for the lower bound can be obtained by
implementing the modified Remez algorithm to solve the following system of
non-linear equations that describe the �̂�+1 extrema, including those that might
occur at the endpoints of the considered range as⎧⎪⎪⎨⎪⎪⎩

f𝑘 (v) = 𝑒(𝑥𝑘) + 𝑒max = 0, for 𝑘 = 1, 3, 5, . . . ,

f𝑘 (v) = 𝑒(𝑥𝑘) = 0, for 𝑘 = 2, 4, 6, . . . ,
(3.17)

whereas the optimized set of coefficients for the upper bound can be obtained
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using the modified Remez algorithm by solving⎧⎪⎪⎨⎪⎪⎩
f𝑘 (v) = 𝑒(𝑥𝑘) = 0, for 𝑘 = 1, 3, 5, . . . ,

f𝑘 (v) = 𝑒(𝑥𝑘) − 𝑒max = 0, for 𝑘 = 2, 4, 6, . . . .
(3.18)

Alternatively, the non-linear system of equations can be used by adding into the
above system of equations in (3.17) and (3.18) the set of equations that describes
the zero-derivative at the extrema points, excluding those at the endpoints,
which are described by

f ′𝑘 (v) = 𝑒′(𝑥𝑘) = 0, for 𝑘 = 2, 3, 4, . . . , 𝐿, (3.19)

for which 𝐿 = �̂� for 𝑒 = 𝑟 and 𝐿 = �̂� + 1 for 𝑒 = 𝑑.
An illustration example of the expected uniform shape of the relative error

function with �̂� = 4 and [𝑅1, 𝑅2] = [0,∞) is given in Fig. 3.2. In fact, this figure
illustrates 𝑟 (𝑥) defined in (3.2) for 𝑓 (𝑥) being the capacity integral in (2.26)
for a SISO system under Rayleigh fading and �̃� (𝑥) being a novel logarithmic
bound that is to be proposed in Chapter 5. It should be mentioned that some
lower bounds can start the alternation from zero instead of −𝑒max and hence
the extrema points at the odd abscissa would be equal to zero, and those at
the even abscissa would be equal to −𝑒max. The same applies for the upper
bounds, where it is possible that the upper bounds would start the alternation
from 𝑒max instead of zero, and hence the extrema points at the odd abscissa
would be equal to 𝑒max, and those at the even abscissa would be equal to zero.

3.2 Total Error Optimization

When approximating a complicated function 𝑓 (𝑥) with a simpler function
�̃� (u, 𝑥) of degree �̂� in (3.9), a proper coefficients choice for the considered ap-
proximation could be obtained by optimizing the set of coefficients u in such a
way as to minimize the corresponding total absolute/relative error. In addition
to the minimax error optimization discussed in the previous section, total error
optimization is the second most relevant optimization criterion for the context
of this thesis to improve the overall approximation accuracy. This optimization
criterion is widely used in the literature to optimize the target function and to
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0

Figure 3.2 The uniform error function, 𝑟 (𝑥), that corresponds to the best minimax lower and upper
bounds with degree �̂� = 4.

evaluate the achieved accuracy of the studied systems [27], [35].
The total absolute/relative error optimization is performed as

u∗ � argmin
u

𝑒tot, (3.20)

where 𝑒tot is defined in (3.4). The total error optimization can be implemented
using the numerical quasi-Newton algorithm. Generally, the quasi-Newton al-
gorithm is an iterative technique used to find the roots of a certain differentiable
function. Nevertheless, this algorithm can also be utilized in the context of op-
timization by implementing it to the derivative of a twice-differentiable target
function. This will result in the optimized roots of the function’s derivative. In
particular, the quasi-Newton algorithm is implemented in this study to mini-
mize the target function 𝑒tot, which corresponds to an approximating function
of degree �̂�. It starts from good initial guesses for the vector of unknowns u, of
size �̂�, to converge ultimately to the optimized one. The optimized coefficients
result in the target function having the smallest possible value.
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Each iteration of this algorithm is carried out as follows

u(𝜏+1) = u(𝜏) − 𝛿

[
H̃

(𝜏)
]−1

G(𝜏)
(
u(𝜏)

)
, (3.21)

for which 𝜏 is the iteration counter, 0 < 𝛿 ≤ 1 is the iteration step size, G(·) is
the gradient vector calculated as

G =

[
𝜕𝑒tot (u)

𝜕𝑢1

𝜕𝑒tot (u)
𝜕𝑢2

. . . 𝜕𝑒tot (u)
𝜕𝑢�̂�

]𝑇
,

and H̃ is an approximation to the Hessian matrix H which is calculated as

H =

[
𝜕𝐺 (u)
𝜕𝑢1

𝜕𝐺 (u)
𝜕𝑢2

. . . 𝜕𝐺 (u)
𝜕𝑢�̂�

]
.

To compute H̃, many algorithms have been devised from which the well-
known Broyden–Fletcher–Goldfarb–Shanno (BFGS) method is used herein. The
BFGS method begins with some symmetric positive-definite matrix H̃

(0)
, which

is updated in consecutive iterations as

H̃
(𝜏+1)

= H̃
(𝜏) + ΔG(𝜏) [ΔG(𝜏) ]𝑇

[ΔG(𝜏) ]𝑇 Δu(𝜏) − H̃
(𝜏)

Δu(𝜏) [Δu(𝜏) ]𝑇 [H̃(𝜏) ]𝑇

[Δu(𝜏) ]𝑇 H̃
(𝜏)

Δu(𝜏)
, (3.22)

where [·]𝑇 denotes the transpose, ΔG(𝜏) = G(𝜏+1)
(
u(𝜏+1)

)
− G(𝜏)

(
u(𝜏)

)
and

Δu(𝜏) = u(𝜏+1) −u(𝜏) . This method’s iterations are repeated until the difference
between the values of u of two subsequent iterations is less than some preset
threshold value.

Due to the recent advancements in the different programming languages,
the quasi-Newton algorithm can be implemented directly using built-in func-
tions. For example, Matlab software can be used herein through the fminunc

command with setting its corresponding algorithm to ’quasi-newton’ and
choosing good initial values for u to find u∗ in (3.20). If some constraints are
added to the optimization problem, the command fmincon is used instead.
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4 GAUSSIAN 𝑄−FUNCTION

Having defined the Gaussian 𝑄-function, emphasized its importance in commu-
nication theory, and listed its approximations and bounds from the literature in
Chapter 2, the next consideration is to develop new approximations and bounds
for the 𝑄-function that are generally better than the existing ones in terms of
accuracy and analytical complexity. This chapter is divided into three main
sections with each of the first two sections introducing novel approximation or
bound for the 𝑄-function with the optimization methods presented in Chapter 3
implemented in such a way as to optimize the performance. The third section
introduces the various applications of the proposed approximations/bounds and
investigates their performance. This chapter is based on publications [P1]–[P5].

4.1 Exponential-Type Approximations

The approximations and bounds presented in [32], [33], [37], [39]–[41] which
have rather difficult mathematical forms, achieve high accuracy and can some-
times lead to closed-form expressions that would otherwise be impossible to
solve. For example, the polynomial approximation in [40] succeeds in analyti-
cally evaluating the average SER of pulse amplitude modulation in lognormal
channels whose PDF is defined in Table 2.1. However, their mathematical
complexity makes them not preferable for algebraic manipulations in statistical
performance analysis despite being accurate. For example, the approximation
provided by Börjesson and Sundberg in [41] is extremely sophisticated and is
best suited for programming applications.

As a result, Chiani et al. in [27] suggested the simplest known family in the
form of a sum of exponentials (2.14). In particular, they apply the trapezoidal
integration rule along with optimizing the center point to minimize the mean
error defined in (3.5) in order to derive a new exponential approximation with
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two terms (𝑁 = 2). They also apply the rectangular integration rule on (2.9b)
to produce an exponential upper bound that requires a large number of terms
to achieve appropriate precision.

Nevertheless, neither their approximation nor bound is as accurate as it
could be in order to be used as a reliable substitute for the Gaussian 𝑄-function.
In addition, the elegance and potentials of the exponential expression in (2.14)
can still be exploited further, where not only the 𝑄-function can be approx-
imated by the exponential sum, but also its powers, polynomials, or many
well-behaved functions of the 𝑄-function. This is because the integer powers
of the 𝑄-function or any linear combination will result in the same exponen-
tial form as in (2.14). This has motivated the need for improved accuracy
and higher versatility for this tractable family to be used most effectively in
statistical performance analysis. Therefore, this section aims to develop new
tight exponential approximations and bounds for the Gaussian 𝑄-function and
its functions, including powers and polynomials of the 𝑄-function, that do not
exist in the literature.

4.1.1 Functions of 𝑄−Function

The exponential family can be used to approximate or bound many well-
behaved functions of the 𝑄-function, i.e., 𝐹

(
𝑄(𝑥)), by implementing Taylor

series expansion. A well-behaved function means that both the function and
its derivatives are defined and continuous in the range of the expansion around
some point 𝑞0. Taylor series is an expansion of an infinitely differentiable func-
tion 𝐹 (𝑞) around 𝑞0 by a polynomial of infinite degree as follows [3, Eq. 0.317.1]

𝐹 (𝑞) =
∞∑
𝑝=0

𝐹 (𝑝) (𝑞0)
𝑝!

(𝑞 − 𝑞0) 𝑝, (4.1)

where 𝐹 (𝑝) (𝑞0) denotes the 𝑝th derivative of 𝐹 (·) evaluated at point 𝑞0. Taylor
polynomial approximation of degree 𝑃 is obtained by truncating the infinite
expansion in (4.1). In general, the Taylor series can be applied to approximate
a 𝑃-times differentiable function 𝐹

(
𝑄(𝑥)) around a given point, 0 ≤ 𝑄(𝑥0) ≤ 1

2 ,
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by a polynomial of the 𝑄-function, Ω
(
𝑄(𝑥)), of degree 𝑃 that is defined as

Ω
(
𝑄(𝑥)) � 𝑃∑

𝑝=0

𝑐𝑝 𝑄𝑝 (𝑥), (4.2)

where {𝑐𝑝}𝑃𝑝=0 are constants and called the polynomial coefficients.
The exponential expression in (2.14) is used to directly approximate or

bound any polynomial of the 𝑄-function by

�̃�Ω(𝑥) =
𝑁∑
𝑛=1

𝑎𝑛 exp
(
−𝑏𝑛𝑥2

)
, (4.3)

and thus approximating any function of the 𝑄-function that accepts a Taylor
series expansion. In addition, the polynomial (4.2) comprises the integer powers
of the 𝑄-function as special cases, including the first power (𝑝 = 1), where
(4.2) is a linear combination of non-negative integer powers of the 𝑄-function.
Therefore, instead of limiting the exponential approximations/bounds to the
𝑄-function or its integer powers only, they can be sufficiently generalized to
polynomials or even functions of the 𝑄-function. For that purpose, the focus is
on the research problem of finding new, improved coefficients for the exponential
sum (4.3).

4.1.2 Minimax Error-Based Solution

Using the theory presented in Section 3.1 on the best Chebyshev approximation,
the polynomial function (4.2) or any of the nested special cases, which are
all defined on the interval [0,∞), are approximated by the best exponential
approximation of the form (4.3). In particular, the approximating function
(4.3), which is an example on the generalized polynomial defined in (3.9), is of
degree �̂� = 2𝑁 and thus u = {𝑎𝑛, 𝑏𝑛}𝑁𝑛=1 is the set of coefficients to be optimized.
The best approximation is derived by finding the optimized coefficients u∗ =

{𝑎∗𝑛, 𝑏∗𝑛}𝑁𝑛=1 that satisfies (3.13) together with (3.3).
The best exponential approximation with optimized coefficients is unique

since the system of continuous functions {exp(−𝑏𝑛 𝑥2)}𝑁𝑛=1 satisfies the Haar
condition, where each nontrivial linear combination of the form (4.3) has at
most 𝑁 − 1 distinct zeros on [0,∞). The minimax exponential approximation
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will result in an error function that uniformly alternates 2 𝑁 times between
2 𝑁 + 1 extrema points of the same value of error and alternating signs. In
addition, the absolute error converges to zero when 𝑥 tends to infinity, i.e.,
lim
𝑥→∞ 𝑑 (𝑥) = 0, whereas for the relative error,

lim
𝑥→∞ 𝑟 (𝑥) =

⎧⎪⎪⎨⎪⎪⎩
∞, when min{𝑏𝑛}𝑁𝑛=1 = 1

2 ,

−1, otherwise.
(4.4)

This renders some specific restrictions for all upper bounds and optimization
w.r.t. the relative error as is shortly observed.

The minimax error optimization methods presented in Section 3.1.1, namely
the non-linear system of equations method and the modified Remez algorithm,
are implemented to optimize the sets of coefficients {(𝑎𝑛, 𝑏𝑛)}𝑁𝑛=1 that corre-
spond to (4.3) or any of the nested special cases denoted for simplicity by
�̃�𝑝 (𝑥) for integer powers of 𝑄-function and �̃� for the Gaussian 𝑄-function (its
first power) in publications [P1], [P2].

Minimax solution based on the non-linear system of equations

This solution is based on describing the expected uniform shape of the corre-
sponding error function 𝑒(𝑥), which is defined herein as

𝑑 (𝑥) � �̃�Ω(𝑥) −
𝑃∑
𝑝=0

𝑐𝑝 𝑄𝑝 (𝑥), (4.5)

for the absolute error and as

𝑟 (𝑥) � 𝑑 (𝑥)∑𝑃
𝑝=0 𝑐𝑝 𝑄𝑝 (𝑥)

=
�̃�Ω(𝑥)∑𝑃

𝑝=0 𝑐𝑝 𝑄𝑝 (𝑥)
− 1, (4.6)

for the relative error. The above two equations are obtained by substituting
(4.2) and (4.3) in the definitions of errors of measurement in (3.1) and (3.2),
respectively. The three equations subsets presented in Section 3.1.1 are used to
formulate the following system of equations that corresponds to the exponential
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approximation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f𝑘 (v) = 𝑒(𝑥𝑘) + (−1)𝑘+1 𝑒max = 0, for 𝑘 = 2, 3, . . . , 𝐿,

f ′𝑘 (v) = 𝑒′(𝑥𝑘) = 0, for 𝑘 = 2, 3, . . . , 𝐿,

f1(v) =
∑𝑁

𝑛=1 𝑎𝑛 − 1
2 + 𝑑max = 0, for 𝑒 = 𝑑,⎧⎪⎪⎨⎪⎪⎩

f1(v) =
∑𝑁

𝑛=1 𝑎𝑛 − 1
2 + 1

2 𝑟max = 0,

f2𝑁+1(v) = 𝑟 (𝑥2𝑁+1) + 𝑟max = 0.
for 𝑒 = 𝑟

(4.7)

for which 𝐿 and v are defined generally for (3.14). More specifically, they are
defined for the considered exponential approximation as 𝐿 = 2𝑁 for 𝑒 = 𝑟 and
𝐿 = 2𝑁 + 1 for 𝑒 = 𝑑, and v = [𝑎1, 𝑎2, . . . , 𝑎𝑁 , 𝑏1, 𝑏2, . . . , 𝑏𝑁 , 𝑒max].

The equations f1 and f2𝑁+1 in (4.7) pertain to the third subset which de-
scribes the endpoints that can be extrema points. In particular, f1 results from
substituting 𝑄(0) = 1

2 and �̃�Ω(0) =
∑𝑁

𝑛=1 𝑎𝑛 in the corresponding error func-
tion, whereas f2𝑁+1 results from choosing a finite interval on the 𝑥-axis since
the relative error function does not converge to zero or to a constant value
when 𝑥 tends to infinity as illustrated by (4.4). Thus, the right boundary of
the relative error function is equal to 𝑥2𝑁+1 and the relative error function is
minimized globally over [0, 𝑥2𝑁+1] instead of [0,∞) like for the absolute error.

The formulated system of equations has 4𝑁 + 1 equations for 𝑒 = 𝑑 and
4𝑁 equations for 𝑒 = 𝑟, that is equal to the number of unknowns, namely v
and {𝑥𝑘}𝐿𝑘=2. System (4.7) can be solved by implementing the iterative New-
ton–Raphson method discussed in Section 3.1.1 to acquire the optimized so-
lution or by directly implementing any numerical software tool, e.g., Matlab.
Nevertheless, good initial guesses are needed to start any numerical iterative
solver. Detailed information about the used initial guesses for the developed
exponential approximations can be found in publication [P1].

Minimax solution based on the modified Remez algorithm

The optimized set of coefficients {(𝑎∗𝑛, 𝑏∗𝑛)}𝑁𝑛=1 for (4.3) can be found by imple-
menting the modified Remez algorithm developed in Section 3.1.1 according to
the steps summarized in Algorithm 1. The modified Remez algorithm solution
is less with 2𝑁 − 1 equations for 𝑒 = 𝑟 and with 2𝑁 equations for 𝑒 = 𝑑 than
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the non-linear system of equations solution. In particular, a system of 2𝑁 + 1

simultaneous non-linear equations that describes the 2𝑁 + 1 equalized extrema
including those that might occur at the endpoints of the considered range is
constructed as f = [f1(v), f2(v), . . . , f2𝑁+1(v)]𝑇 for which f𝑙, 𝑙 = 1, 2, . . . , 2𝑁 + 1

and v are defined in (4.7).
In each outer iteration of the Remez algorithm, the Newton–Raphson method

is implemented to solve f and find v, after which the locations of the extrema
points are updated, and the following Remez iteration takes place. Detailed
information about one possible heuristic method to find good initial guesses for
the unknowns, i.e., {𝑥𝑘}𝐿𝑘=2 for the outer Remez iterations and v for the inner
Newton–Raphson iterations, can be found in publication [P2].

Lower and Upper bounds for the Gaussian 𝑄-function

As explained in Section 3.1.2, it is possible to use the minimax approxima-
tion theory to derive lower and upper bounds for (4.2) using (4.3) by imposing
additional constraints on the expected shape of the corresponding error func-
tion. In particular, the best lower exponential bound of degree 𝐷 = 2𝑁, which
alternates between 2𝑁 + 1 extrema, is constructed by numerically finding the
optimized coefficients that solve the same system of equations as that of (4.7)
but with replacing

f𝑘 (v) = 𝑒(𝑥𝑘) + (−1)𝑘+1 𝑒max = 0, for 𝑘 = 2, 3, . . . , 𝐿,

which ensures that 𝑒(𝑥) alternates around the 𝑥-axis for the approximation, by

⎧⎪⎪⎨⎪⎪⎩
f𝑘 (v) = 𝑒(𝑥𝑘) + 𝑒max = 0, for 𝑘 = 3, 5, . . . , 𝐿 − 1 for 𝑒 = 𝑟 or 𝐿 for 𝑒 = 𝑑,

f𝑘 (v) = 𝑒(𝑥𝑘) = 0, for 𝑘 = 2, 4, . . . , 2𝑁,

(4.8)

which ensures that 𝑒(𝑥) < 0 for the lower bound. The parameter 𝐿 = 2𝑁 for 𝑒 =

𝑟 and 𝐿 = 2𝑁 + 1 for 𝑒 = 𝑑, and v = [𝑎1, 𝑎2, . . . , 𝑎𝑁 , 𝑏1, 𝑏2, . . . , 𝑏𝑁 , 𝑒max]. The
modified Remez algorithm can also be used to find the optimized coefficients
after deleting f ′𝑘 , 𝑘 = 2, 3, 4, . . . , 𝐿, from the system of equations.
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On the other hand, for the upper bound, the lowest value in the set {𝑏𝑛}𝑁𝑛=1 is
forced to be 1

2 in order to get positive 𝑒(𝑥) as concluded from (4.4). Otherwise,
𝑟 (𝑥) will converge to a negative value and 𝑑 (𝑥) would be negative for large 𝑥 too.
The best upper exponential bound of degree �̂� = 2𝑁−1 (since min{𝑏𝑛}𝑁𝑛=1 = 1

2),
which alternates between 2𝑁 extrema, is constructed by numerically finding the
optimized coefficients that solves the following system of equations and ensures
𝑒(𝑥) > 0⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f𝑘 (v) = 𝑒(𝑥𝑘) = 0, for 𝑘 = 3, 5, . . . , 2𝑁 − 1,

f𝑘 (v) = 𝑒(𝑥𝑘) − 𝑒max = 0, for 𝑘 = 2, 4, . . . , 𝐿 − 1 for 𝑒 = 𝑟 or 𝐿 for 𝑒 = 𝑑,

f ′𝑘 (v) = 𝑒′(𝑥𝑘) = 0, for 𝑘 = 2, 3, 4, . . . , 𝐿,

f1(v) =
∑𝑁

𝑛=1 𝑎𝑛 − 1
2 = 0, for 𝑒 ∈ {𝑑, 𝑟},

f2𝑁 (v) = 𝑟 (𝑥2𝑁 ) − 𝑟max = 0 for 𝑒 = 𝑟

(4.9)

for which 𝐿 = 2𝑁 − 1 for 𝑒 = 𝑟 and 𝐿 = 2𝑁 for 𝑒 = 𝑑. The modified Remez
algorithm can also be used by simply deleting the zero-derivative equations,
i.e., f ′𝑘 , 𝑘 = 2, 3, 4, . . . , 𝐿, from (4.9).

4.1.3 Quadrature-Based Solution

The exponential approximation in (4.3) for the Gaussian 𝑄-function results
from applying the different numerical integration methods [113], which are also
referred to as the quadrature rules, to approximate Craig’s formula in (2.9b)
with numerical coefficients instead of the optimized minimax coefficients dis-
cussed above. More specifically, any integral of the form

∫ 𝑣

𝜍
𝑊 (𝜃) 𝑓 (𝜃) d𝜃, can

be represented by a finite sum of the form [113]∫ 𝑣

𝜍
𝑊 (𝜃) 𝑓 (𝜃) d𝜃 ≈

𝑁∑
𝑛=1

𝑤𝑛 𝑓 (𝜃𝑛), (4.10)

for which 𝑊 (𝜃) is some weighting function, [𝜍, 𝑣] is the integration domain,
{𝜃𝑛}𝑁𝑛=1 are the quadrature points/nodes and {𝑤𝑛}𝑁𝑛=1 are the quadrature weights.
Hence, for 𝑊 (𝜃) = 1, 𝑓 (𝜃) equals the integrand in (2.9b) and [𝜍, 𝑣] = [0, 𝜋/2],
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the Gaussian 𝑄-function can be numerically approximated by (4.3) whose set
{(𝑎𝑛, 𝑏𝑛)}𝑁𝑛=1 is the set of numerical coefficients, which depends on the applied
numerical integration technique.

The quadrature integration techniques can be categorized into Newton–
Cotes and Gaussian quadrature formulas. In general, as the number of quadra-
ture points increases, the accuracy of the corresponding quadrature method
increases. However, the instability of higher-order numerical methods increases
too, especially with the Newton–Cotes rules which have negative weights that
can result in subtractive cancellation. Therefore, the composite integration rule
can be used as an efficient technique for approximation. For the composite rule,
the integration interval, [𝜍, 𝑣] = [0, 𝜋/2], can be divided into smaller uniform
or non-uniform sub-intervals at which simpler integration rules with a lower
number of nodes can be used for each sub-interval.

A comprehensive overview of all the possible numerical integration tech-
niques that can be applied to approximate the Gaussian 𝑄-function is pre-
sented in publication [P3], together with a unified method for optimizing the
coefficients of the resulting exponential approximation for any number of expo-
nentials, any optimization criterion, and using any numerical quadrature rule.

4.2 Generalized Karagiannidis–Lioumpas Approximations

Karagiannidis and Lioumpas in [35] proposed a tight, although analytically
tractable, approximation for the Gaussian 𝑄-function as (2.18) with 𝐴 and 𝐵

being optimized in order to minimize the mean relative error defined in (3.5).
Although the Karagiannidis–Lioumpas (KL) approximation has received some
early criticism in [36], it has still established itself as one of the most usable
alternative representations of the 𝑄-function in the different problems of com-
munication theory, where it has received a large number of citations. However,
this approximation has only been optimized in terms of one optimization crite-
rion, which limits its versatile potential. Therefore, this section aims at making
the best use of the KL approximation not only by optimizing its coefficients
in terms of other criteria for better accuracy depending on the application but
also by repurposing it to derive lower and upper bounds and, most impor-
tantly, to generalize it into a new expression for approximating or bounding
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the 𝑄-function, for which the original KL approximation is a special case, with
optimizing its coefficients in terms of other criteria for significantly improved
accuracy.

4.2.1 Mathematical Form and Origin

Based on the Karagiannidis–Lioumpas (KL) approximation, a new expression
to approximate or bound the 𝑄-function is derived as

�̃�(𝑥) � 1 − exp (−𝑐 𝑥)
𝑥

·
𝑁∑
𝑛=1

𝑎𝑛 exp
(
−𝑏𝑛 𝑥2

)
, (4.11)

which is referred to as the generalized KL (GKL) expression since (4.11) yields
the original KL expression in (2.18) when 𝑁 = 1. The GKL expression is de-
rived using a similar approach as that in [35], where the 𝑄-function is first
approximated by the exponential sum as in (2.14). This results in an un-
bounded relative error for the higher argument values 𝑥 and, thus, lower accu-
racy. To overcome this accuracy issue, the exponential sum is then multiplied
by 1−exp(−𝑐 𝑥)

𝑥 in order to bound the relative error from the right side with
setting 𝑏1 � min{𝑏𝑛}𝑁𝑛=1 = 1

2 .
The new approximation (4.11) is well exploited in terms of accuracy by op-

timizing it in terms of the minimax or total errors using the theory already
presented in Section 3.1 and Section 3.2, respectively. For that purpose, the
focus is on the research problem of finding optimized coefficients, {(𝑎∗𝑛, 𝑏∗𝑛)}𝑁𝑛=1
and 𝑐∗, for the GKL approximation. The optimized coefficients may be con-
strained by some conditions depending on the behavior of the GKL expression
at the endpoints of the range [0,∞) which is described by

𝑑0 � lim
𝑥→0

𝑑 (𝑥) = 𝑐
𝑁∑
𝑛=1

𝑎𝑛 − 1
2 , (4.12)

lim
𝑥→∞ 𝑑 (𝑥) = 0, (4.13)

𝑟0 � lim
𝑥→0

𝑟 (𝑥) = 2 𝑐
𝑁∑
𝑛=1

𝑎𝑛 − 1, (4.14)

51



lim
𝑥→∞ 𝑟 (𝑥) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∞, if 𝑏1 < 1

2 ,√
2𝜋 𝑎1 − 1, if 𝑏1 = 1

2 ,

−1, if 𝑏1 > 1
2 ,

(4.15)

where 𝑎1 is the counterpart of 𝑏1 � min{𝑏𝑛}𝑁𝑛=1. Based on (4.15), it can be
concluded that for 𝑏1 = 1

2 only, there are global approximations and bounds
in terms of relative error. On the other hand, the absolute error function is
always bounded regardless of the value of 𝑏1. Therefore, two variations of
approximations w.r.t. absolute error are considered, i.e., first variation with
𝑏1 < 1

2 , which provide higher accuracy, and second variation with 𝑏1 = 1
2 .

The proposed GKL expression in (4.11) together with the optimized coeffi-
cients, can also be expanded in the same way as done in [114] for the original KL
expression. In particular, the presence of the argument 𝑥 in the denominator is
avoided by implementing Taylor series expansion [3, Eq. 0.317.1] on the term
exp(−𝑐 𝑥) and truncating it to several terms, L, which results in the following
approximation that has the same analytical complexity as the original one in
[114]

�̃�(𝑥) =
L∑
𝑙=1

𝑁∑
𝑛=1

(−1)𝑙+1 𝑎𝑛 𝑐𝑙

𝑙!
exp

(
−𝑏𝑛 𝑥2

)
𝑥𝑙−1. (4.16)

4.2.2 Minimax Error-Based Solution

The Gaussian 𝑄-function is approximated by the best approximation of the
form (4.11) using the minimax approximation theory in the same way as for the
exponential approximating function. In particular, (4.11) is of degree �̂� = 2𝑁+1
for first variation of 𝑒 = 𝑑, while �̂� = 2𝑁 for the second variation of 𝑒 = 𝑑 and
for 𝑒 = 𝑟. The unique best approximation is derived by finding the optimized
coefficients u∗ = {{𝑎∗𝑛, 𝑏∗𝑛}𝑁𝑛=1, 𝑐∗} that satisfies (3.13) and result in a uniformly
oscillating error function between 2𝑁 + 2 extrema points for first variation of
𝑒 = 𝑑, and between 2𝑁 + 1 extrema points for the second variation of 𝑒 = 𝑑 and
for 𝑒 = 𝑟. The non-linear system of equations method and the modified Remez
algorithm can be implemented herein to optimize the sets of coefficients. In

52



fact, the detailed formulation of the associated systems of equations for the best
GKL approximation, their solutions, and the used initial guesses are presented
in publication [P5] for both methods of implementations for which the same
general theory presented in Section 3.1 is followed.

The GKL expression can also be repurposed to derive lower and upper
bounds for the Gaussian 𝑄-function, whose mathematical problem formulation
is stated herein explicitly since they are not covered in detail for the bounds in
[P5]. In particular, for the lower bound, 𝑏1 = 1

2 is always used for both absolute
and relative errors in order to ensure that 𝑒(𝑥) < 0, and thus �̂� = 2𝑁. The
solution is based on describing the expected uniform shape of the error function
𝑒(𝑥), defined herein as 𝑑 (𝑥) � �̃�(𝑥) −𝑄(𝑥) for 𝑒 = 𝑑 and as 𝑟 (𝑥) � �̃� (𝑥)

𝑄 (𝑥) − 1 for
𝑒 = 𝑟, for which �̃�(𝑥) and 𝑄(𝑥) are defined respectively by (4.11) and (2.9a).

The formulated system of the equation whose solution minimizes the error
globally on [0,∞), is given as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f𝑘 (v) = 𝑒(𝑥𝑘) = 0, for 𝑘 = 2, 4, . . . , 2𝑁,

f𝑘 (v) = 𝑒(𝑥𝑘) + 𝑒max = 0, for 𝑘 = 3, 5, . . . , 𝐿 − 1 for 𝑒 = 𝑟 or 𝐿 for 𝑒 = 𝑑,

f ′𝑘 (v) = 𝑒′(𝑥𝑘) = 0, for 𝑘 = 2, 3, 4, . . . , 𝐿,

f1(v) = 𝑒0 + 𝑒max = 0, for 𝑒 ∈ {𝑑, 𝑟},
f2𝑁+1(v) = 𝑎1 + 𝑟max−1√

2𝜋
= 0, for 𝑒 = 𝑟,

(4.17)

where 𝐿 = 2𝑁 for 𝑒 = 𝑟 and 𝐿 = 2𝑁 + 1 for 𝑒 = 𝑑, and

v = [𝑎1, 𝑎2, . . . , 𝑎𝑁 , 𝑏2, . . . , 𝑏𝑁 , 𝑐, 𝑒max] .

The equations f1 and f2𝑁 pertain to the endpoints whose corresponding er-
ror values are evaluated by taking the limits in (4.15). System (4.17) can
be solved by implementing any numerical software tool or by implementing
Newton–Raphson method. Alternatively, the optimized coefficients can be ac-
quired by implementing the modified Remez algorithm to (4.17) with excluding
f ′𝑘 (v), 𝑘 = 2, 3, 4, . . . , 𝐿.

On the other hand, the problem formulation for the upper bounds, whose
degree �̂� = 2𝑁 + 1 for 𝑒 = 𝑑 and �̂� = 2𝑁 for 𝑒 = 𝑟 since min{𝑏𝑛}𝑁𝑛=1 = 1

2 , is
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formulated as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f𝑘 (v) = 𝑒(𝑥𝑘) − 𝑒max = 0, for 𝑘 = 2, 4, . . . , 𝐿,

f𝑘 (v) = 𝑒(𝑥𝑘) = 0, for 𝑘 = 3, 5, . . . , 𝐿 − 1,

f ′𝑘 (v) = 𝑒′(𝑥𝑘) = 0, for 𝑘 = 2, 3, 4, . . . , 𝐿,

f1(v) = 𝑒0 − 𝑒max = 0, for 𝑒 ∈ {𝑑, 𝑟},
f2𝑁+1(v) = 𝑎1 − 1√

2𝜋
= 0, for 𝑒 = 𝑟,

(4.18)

for which 𝐿 = 2𝑁 for 𝑒 = 𝑟 and 𝐿 = 2𝑁 + 2 for 𝑒 = 𝑑. The modified Remez
algorithm can also be used by simply deleting the zero-derivative equations,
i.e., f ′𝑘 , 𝑘 = 2, 3, 4, . . . , 𝐿, from (4.18).

4.2.3 Total Error-Based Solution

The GKL approximation can be optimized in terms of the total error defined
in (3.4) with 𝑅 = [0,∞) for the absolute error since 𝑑 (𝑥) converges to zero
when 𝑥 tends to infinity and with 𝑅 = [0, 𝑅2], where 𝑅2 is some constant, for
the relative error with 𝑏1 = 1

2 since 𝑟 (𝑥) converges to a constant value when 𝑥

tends to infinity. Starting from good initial guesses, which could be obtained
using the corresponding optimized coefficients of the minimax optimization as
mean values around which small random variance is introduced, the quasi-
Newton algorithm can be implemented according to the theory presented in
Section 3.2.

4.3 Applications and Performance Analysis

The developed approximations and bounds can be implemented in the different
fields of communication theory. In general, the exponential approximation (4.3)
and the GKL approximation (4.11) with the optimized coefficients can be used
as substitutions to the intractable Gaussian 𝑄-function whenever the applica-
tion’s mathematics defines them as tractable alternatives for it. Therefore, this
section demonstrates the wide applicability of the proposed approximations and
bounds in communication theory. In addition, it validates their accuracy by
comparing their performance to key reference cases.
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4.3.1 Applications

Whenever (4.3) or (4.11) is preferred, the optimized coefficients with the gen-
eralized expressions offer variety to tailor accuracy for the application or to use
bounds. The most popular example of applications on the 𝑄-function is the
error probability analysis. More specifically, calculating the bit, symbol, and
block error probabilities for various digital modulation schemes and coherent
detection under AWGN channels.

On the one hand, the optimized coefficients for the exponential approxi-
mation can be used as one-to-one replacements for those used in the different
applications utilizing (2.14) such as [27], [43], [44]. In particular, the elegance
of the exponential approximation in the error performance analysis which en-
counters the 𝑄-function, its integer powers, or its polynomials, is emphasized by
unifying the evaluation of the average error probability of digital communica-
tion systems over the different fading channels in terms of the channel’s moment
generating function (MGF). In particular, the average SEP in coherent detec-
tion is calculated according to (2.8) whose conditional SEP is a polynomial
of the 𝑄-function which can be substituted directly by (4.3) and result in the
unified MGF-based expression as

𝑃�̄� ≈
𝑁∑
𝑛=1

𝑎𝑛

∫ ∞

0
exp(−𝑏𝑛 𝛼2 𝛾) 𝜓𝛾 (𝛾)d𝛾 (4.19)

=
𝑁∑
𝑛=1

𝑎𝑛 𝑀𝛾 (−𝑏𝑛𝛼2), (4.20)

where 𝑀𝛾 (𝑠) =
∫ ∞
0

exp(𝑠𝛾) 𝜓𝛾 (𝛾) d𝛾 is the MGF associated with the instan-
taneous SNR (𝛾) and 𝛼 is a constant that depends on the digital modulation
scheme.
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Closed-form expressions for the average SEP are derived in [P2] using (4.20)
together with the optimized coefficients over different fading channels, namely
Nakagami-𝑚, Fisher–Snedecor F 1, 𝜂−𝜇, and 𝜅−𝜇 fading channels whose PDFs
are defined in Table 2.1. It is important to note that increasing the number
of exponentials in the summation (4.3) will not usually cause increased ana-
lytical complexity while increasing the accuracy sufficiently since summation
and integration can be reordered in the expression as in (4.19) under certain
conditions and thus, the integral is solved only once. In addition, the computa-
tional and/or analytical complexity of the exponential approximations/bounds
for the polynomials of the 𝑄-function and integer powers thereof is significantly
less than using any other form of approximations from the literature including
the exponential ones in [27]–[30]. This is because the reference approximations
need to use linear combinations of multinomial expansions of the implemented
approximation in order to evaluate the conditional SEP first (which is generally
a polynomial of the 𝑄-function), where none of the references has presented di-
rect approximations or bounds for the polynomials and powers thereof of the
𝑄-function.

On the other hand, the proposed GKL expression can be applied to sub-
stitute the original KL expression (2.18) in [116]–[120]. More specifically, it
can be used to derive the sampling BER of BPSK in [116], to approximate the
phase noise PDF in the system of [117], and to derive the coherent LoRa®

SER under AWGN channel in [118]. Another application example is given in
[P5], in which the average SEP is evaluated for coherent detection over 𝜅 − 𝜇

fading. Moreover, GKL approximation/bound can also be used beyond commu-
nications. For example, it enables approximating the distribution functions of
particles experiencing compound subdiffusion [119] and calculating the predic-
tive error of the probability of failure [120]. It should be noted that the original

1It is worth mentioning that the general average SEP integral under Fisher–Snedecor
F derived in the attached publication [P2, Section IV.B] is slightly modified in this the-

sis summary part using [7, Eq. 10] as 𝐼𝑝 (𝛼) ≈ ∑𝑁
𝑛=1 𝑎𝑛 1𝐹1

(
𝑚; 1 − 𝑚𝑠;

𝑏𝑛𝛼
2 �̄� (𝑚𝑠−1)
𝑚

)
+

Γ (−𝑚𝑠)
𝛽 (𝑚,𝑚𝑠)

(
𝑏𝑛𝛼

2 �̄� (𝑚𝑠−1)
𝑚

)𝑚𝑠

1𝐹1

(
𝑚 +𝑚𝑠; 1 +𝑚𝑠;

𝑏𝑛𝛼
2 �̄� (𝑚𝑠−1)
𝑚

)
, for which 𝛽(·, ·) and 1𝐹1 (·; ·; ·) de-

note beta and Kummer confluent hypergeometric functions, respectively, with 𝑚𝑠 > 1. This
minor error occurred in [P2] due to using the highly cited MGF [115], which was later pointed
out and corrected in a newer publication [7] through only a footnote, which made this minor
mistake hard to spot. The modification does not cause any visible effect on numerical results.
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KL expression and the GKL expression have the same analytical complexity.
In addition, for the special case of the GKL expression with 𝑁 = 1 that re-

sults in the same original KL expression (2.18), the set of optimized coefficients
can work as one-to-one substitutions for the original ones when utilized on the
different applications such as those in [121]–[123] to achieve the same analytical
results with significantly improved accuracy. More specifically, it can be used
in [121] to tightly approximate the average probability of error for a MIMO
recurrent neural network predictor, in [122] to derive the spectral efficiency of
the round-robin scheduler, and in [123] to derive the caching distribution with
arbitrary noise, path loss exponent of 4 and under Nakagami or Rician fading.
Furthermore, since (4.16) can be used as a direct substitute for [114, Eq. 3], the
novel GKL approximations are also useful to increase the accuracy for those
applications that use [114, Eq. 3] such as [124]–[126]. In particular, they can be
used in [124] to derive the packet error probability in a transmit beamforming
system with imperfect feedback, and in [125] to derive the average SER of a DF
cooperative transmission scenario with relay selection, and in [126] to evaluate
the average SER in an unmanned aerial vehicles IRS-assisted communication
system with imperfect phase compensation.

4.3.2 Performance Evaluation

The performance of the proposed approximations and bounds in (4.3) and (4.11)
is evaluated in terms of accuracy. More specifically, the accuracy is interpreted
by plotting the absolute and relative errors, which are defined in (3.1) and (3.2),
respectively, for the proposed approximations together with the most relevant
approximations which have been overviewed in Section 2.1.2.

The absolute error comparison in Fig. 4.1 illustrates the considerably gained
accuracy by the exponential approximation (4.3) when using the optimized
set of coefficients obtained by either implementing the minimax optimization
presented in Section 4.1.2 or when using the optimized quadrature Legendre
rule in terms of the mean error. The Quadrature Legendre rule is considered
to formulate one of the tightest approximations among the various quadrature
rules, as concluded in [P3]. The new coefficients for 𝑁 = 2 and 𝑁 = 3 not only
provide lower minimax/global error but also adequate accuracy for the whole
considered 𝑥-range, opposing to the exponential reference cases, which have
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Figure 4.1 Comparison between (4.3) and the references approximations [27]–[29] in terms of the
absolute error.

poor accuracy for the lower values of the argument 𝑥. This accuracy can be
increased significantly by simply increasing the number of exponential terms,
like for 𝑁 = 10 and 𝑁 = 25, without affecting the analytical complexity.

The relative error comparison in Fig. 4.2 depicts the high accuracy of the
novel GKL approximation (4.11) with optimized coefficients in terms of the
minimax and total error, where it outperforms all the considered key existing
approximations, in addition to the novel exponential approximations with the
minimax coefficients. The accuracy increases significantly when increasing 𝑁, as
seen when comparing 𝑁 = 2 and 𝑁 = 10. This observation is further investigated
in Fig. 4.3 for both the exponential and the GKL expression, whose accuracy
increases with increasing number of terms used in the expression, not only for
the approximations but also for the lower and upper bounds.

In addition, the accuracy of the exponential approximations when integrated
with another function, i.e., accuracy over fading, is investigated in [P2, Fig. 4].
This figure depicts a very small error and thus high accuracy. Furthermore, the
performance of the developed exponential bounds is studied in [P1, Fig. 5] for
the whole considered range of the argument. It shows that the proposed bounds
not only outperform the other exponential bounds over the whole argument’s
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Figure 4.2 Comparison between (4.11), (4.3), and the references approximations, [27], [35], [41] in
terms of the relative error.

range but also outperform the other more complicated ones from the literature.
More accuracy comparisons for both types of approximations can be found
in [P1]–[P5].
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Figure 4.3 Relative error of the exponential (4.3) and GKL (4.11) approximations and bounds.
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5 CAPACITY INTEGRALS

Perusing the key references related to capacity analysis as summarized in Sec-
tion 2.2, it is noted that the ergodic capacity has been studied thoroughly but
using different comprehensive studies and analyses that are specific for each con-
sidered system separately and using different mathematical steps. The main
limitation of the earlier research works is the lack of presence of a unified ap-
proach for analyzing the performance of any communication system in terms of
ergodic capacity. As a result, this chapter’s contributions are oriented toward
developing unified tractable and highly accurate approximations and bounds
for any communication system’s ergodic capacity.

5.1 Mathematical Form and Origin

Since the instantaneous capacity, C, of any wireless system always exists and is
calculated according to (2.24), an effective SNR (𝛾eff) whose average is 𝛾eff �
E
[
𝛾eff

]
can always be calculated from C � log2

(
1 + 𝛾eff

)
. The effective SNR

could be the same as the actual SNR of the communication system. Assuming
the instantaneous capacity with its PDF denoted by 𝑓C (𝑐) is conditioned on
fading states, the ergodic capacity is calculated according to (2.25) as

C̄ = E[C] =
∫ ∞

0
𝑐 𝑓C (𝑐) d𝑐. (5.1)

By changing the integration variable to 𝑧 � (2𝑐 − 1)/𝛾eff which corresponds to
the random variable 𝑍 � 2C−1

�̄�eff
= 𝛾eff

�̄�eff
whose PDF is denoted by 𝑓𝑍 (𝑧), C̄ can be

rewritten as

C̄ =
∫ ∞

0

𝛾eff 𝑓C (log2(1 + 𝛾eff 𝑧))
log𝑒 (2) (1 + 𝛾eff 𝑧)︸�������������������������︷︷�������������������������︸

� 𝑓𝑍 (𝑧)

log2(1 + 𝛾eff 𝑧) d𝑧. (5.2)
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The integral in (5.2) can be expanded using the well-known Riemann sum
rule for which the integration interval [0,∞) is divided into an infinite number
of partitions that is then truncated into 𝑁 partitions, each of length 𝛿. This
results in approximating (5.2) as a sum of logarithmic functions as

C̄ ≈
𝑁∑
𝑛=1

𝑎𝑛 log2
(
1 + 𝑏𝑛 𝛾eff

)
, (5.3)

with

𝑎𝑛 � 𝛿 𝛾eff 𝑓C (log2(1 + 𝛾eff 𝑛𝛿))
log𝑒 (2) (1 + 𝛾eff 𝑛𝛿) , (5.4)

and

𝑏𝑛 � 𝑛 𝛿. (5.5)

It is noted from (5.4) that the set of coefficients {𝑎𝑛}𝑁𝑛=1 generally depends
on 𝛾eff. Nevertheless, 𝑓C (𝑐) can be represented in terms of 𝑓𝑍 (𝑧) as

𝑓C (𝑐) =
2𝑐 log𝑒 (2)

𝛾eff
𝑓𝑍

(
2𝑐 − 1

𝛾eff

)
. (5.6)

This results in 𝑎𝑛 = 𝛿 𝑓𝑍 (𝑛 𝛿) after substituting (5.6) into (5.4). Thus, if 𝑓𝑍 (·)
is independent of 𝛾eff, 𝑎𝑛 is also independent of 𝛾eff, which allow for the same
coefficients per studied system to be used for the logarithmic approximation
regardless of the value of 𝛾eff. In practice, the majority of applications meet this
condition, as has been noted from the wide range of applications studied in this
thesis. The unified logarithmic approximation is also valid for systems where
𝑎𝑛 depends on 𝛾eff. However, different coefficients {(𝑎𝑛, 𝑏𝑛)}𝑁𝑛=1 are needed for
each value of 𝛾eff.

The proposed approximation (5.3) with 𝑁 logarithmic terms is, in fact, a
weighted sum of the Shannon capacities defined in (2.24) of basic static AWGN
channels. Therefore, in terms of capacity, any communication system in the
presence of fading is equivalent to a system with a scheduler that employs
randomly one of 𝑁 + 1 parallel static channels for the transmission of each data
block, or alternatively, with a scheduler that employs the parallel channels
sequentially for data blocks with relative durations 𝑎𝑛, 𝑛 = 0, 1, . . . , 𝑁. For
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this equivalent system, any Channel 𝑛 have SNR of 𝑏𝑛𝛾eff and is selected with
probability 𝑎𝑛, whereas Channel 0 represents a blocked channel (𝑏0 = 0), with
probability 𝑎0 = 1 − ∑𝑁

𝑛=1 𝑎𝑛. This interpretation of the ergodic capacity is
illustrated in [P6, Fig. 1].

5.2 Developed Approximation and Bounds

The ergodic capacity of any communication system can be approximated using
(5.3) by choosing appropriate values for the coefficients {(𝑎𝑛, 𝑏𝑛)}𝑁𝑛=1. One
possible yet inefficient choice is the Riemann sum coefficients which are given
explicitly in (5.4) and (5.5) and lead to the usage of a very high number of
logarithmic terms in order to achieve adequate accuracy. Therefore, (5.3) needs
to be developed into an efficient and useful tool to be used in performance
statistical analysis. This can be done by optimizing the coefficients {(𝑎𝑛, 𝑏𝑛)}𝑁𝑛=1
that correspond to the logarithmic expression (5.3) to directly approximate the
ergodic capacity C̄ = 𝐶 (1/𝛾eff)/log𝑒 (2) of any communication system with high
accuracy. The function 𝐶 (·) is referred to as the generic capacity function,
which can be of any mathematical form. Nevertheless, for the analysis of most
communication systems, 𝐶 (·) can be represented as the generic capacity integral
as

𝐶 (𝑥) �
∫ ∞

0
log𝑒

(
1 + 𝑡

𝑥

)
𝑓𝑍 (𝑡) d𝑡, (5.7)

where 𝑓𝑍 (·) is defined in (5.2).
Based on (5.3), a new family of simple functions is developed as

�̃� (𝑥) �
𝑁∑
𝑛=1

𝑎𝑛 log𝑒

(
1 + 𝑏𝑛

𝑥

)
, (5.8)

for approximating or bounding 𝐶 (𝑥) by �̃� (𝑥) with proper coefficients choice.
The approximation (5.8) directly stems from (5.3) where �̃� (1/𝛾eff)/log𝑒 (2) re-
sults in (5.3).
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5.2.1 Nakagami and Lognormal Capacity Integrals

An alternative way for approximating the ergodic capacity is through devel-
oping approximations for specific capacity integrals that frequently appear as
intermediate steps when evaluating the capacity of more complicated wireless
systems. In other words, logarithmic approximations with optimized coeffi-
cients are calculated and used as building blocks to derive the capacity integral
of many complicated communication systems [49]–[52], [54]–[65], [127]–[133].
Two specific capacity integrals are developed in this study, namely Nakagami
capacity integral which originates from evaluating (5.7) for Nakagami fading,
and lognormal capacity integral which originates from evaluating (5.7) for log-
normal fading. Both Nakagami-𝑚 and lognormal distributions are defined in
Table 2.1.

Following the above discussion, the Nakagami capacity integral denoted by
𝐶𝑚(·) is defined as

𝐶𝑚(𝑥) �
∫ ∞

0

𝑚𝑚

Γ(𝑚) log𝑒

(
1 + 𝑡

𝑥

)
𝑡𝑚−1 exp(−𝑚 𝑡) d𝑡

= exp(𝑚 𝑥)
𝑚−1∑
𝑘=0

Γ(−𝑘, 𝑚 𝑥) (𝑚 𝑥)𝑘 , (5.9)

for 𝑥 > 0 [60, Eqs. 21 and 23] and 𝐶𝑚(𝑥) is approximated by �̃�𝑚(𝑥) in (5.8).
The function Γ(�, 𝑥) =

∫ ∞
𝑥

𝑡𝜁−1 exp(−𝑡) d𝑡 is the upper incomplete gamma func-
tion [4, Eq. 6.5.3]. The closed-form expression above is only valid for the integer
values of the fading parameter 𝑚. For 𝑚 = 1, the Rayleigh capacity integral is
obtained as

𝐶1(𝑥) =
∫ ∞

0
log𝑒

(
1 + 𝑡

𝑥

)
exp(−𝑡) d𝑡

= exp(𝑥) E1(𝑥), (5.10)

for 𝑥 > 0 [49, Eqs. 4 and 5]. The function E1(𝑥) =
∫ ∞
𝑥

exp(−𝑡)/𝑡 d𝑡 is the
exponential integral [4, Eq. 5.1.1].

On the other hand, the lognormal capacity integral denoted by 𝐶𝜎 (·) is
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defined for 𝛾 = exp(𝜂𝛾 + 𝜎2

2 ) as

𝐶𝜎 (𝑥) �
∫ ∞

−∞

1√
𝜋
log𝑒

���1 + 1

𝑥
exp

(√
2𝜎2 𝑡 − 𝜎2

2

)��� exp(−𝑡2) d𝑡, (5.11)

for 𝑥 > 0 [10, Eq. 29] and 𝐶𝜎 (𝑥) is approximated by �̃�𝜎 (𝑥) in (5.8). This
integral cannot be evaluated in closed form in terms of elementary functions.

5.2.2 Minimax Error-Based Solution

Using the theory presented in Section 3.1 on the best Chebyshev approxima-
tion, the generic capacity function 𝐶 (·) as well as the generic, Nakagami, and
lognormal capacity integrals in (5.7), (5.9), and (5.11), respectively, which are
all defined on the interval (0,∞), are approximated by the best logarithmic
approximation of the form (5.8). In particular, the corresponding absolute and
relative error functions which are defined using (3.1) and (3.2) respectively as

𝑑 (𝑥) � �̃� (𝑥) − 𝐶 (𝑥), (5.12)

𝑟 (𝑥) � 𝑑 (𝑥)
𝐶 (𝑥) =

�̃� (𝑥)
𝐶 (𝑥) − 1, (5.13)

are expected to be bounded, uniform, and oscillating between equalized ex-
trema of alternating signs. However, it is noted that for Nakagami and lognor-
mal capacity integrals, and for all the considered applications in this chap-
ter, 𝑑 (𝑥) actually diverges from the left, i.e., lim𝑥→0 𝑑 (𝑥) = ±∞ which is
equivalent to lim�̄�eff→∞ 𝑑

(
1

�̄�eff

)
since 𝑥 = 1

�̄�eff
as noted from approximating

C̄ = 𝐶 (1/𝛾eff)/log𝑒 (2) by �̃� (1/𝛾eff)/log𝑒 (2), unless the condition
∑𝑁

𝑛=1 𝑎𝑛 = 1

holds. When this condition is met, 𝑑 (𝑥) will converge toward a constant value.
The relative error function is always bounded.

The approximating function (5.8), which is an example of the generalized
polynomial defined in (3.9), is of degree �̂� = 2𝑁 − 1 for the absolute error
since there is an imposed condition, while �̂� = 2𝑁 for the relative error.
Thus u = {𝑎𝑛, 𝑏𝑛}𝑁𝑛=1 is the set of coefficients to be optimized. The best ap-
proximation is derived by finding the optimized coefficients u∗ = {𝑎∗𝑛, 𝑏∗𝑛}𝑁𝑛=1
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that satisfy (3.13) together with (3.3). The best logarithmic approximation
with optimized coefficients is unique since the system of continuous functions
{log𝑒

(
1 + 𝑏𝑛

𝑥

)
, 𝑛 = 1, 2, . . . , 𝑁} satisfies the Haar condition on (0,∞) with a

null set {∞}, where each nontrivial linear combination of the form (5.8) has at
most 𝑁 − 1 distinct zeros on (0,∞). The minimax logarithmic approximation
will result in an error function that uniformly alternates between 2 𝑁 extrema
points for 𝑒 = 𝑑 and between 2 𝑁 + 1 extrema points for 𝑒 = 𝑟 [110], [134].

The two methods of implementation of the minimax error optimization,
which are presented in Section 3.1.1 can be used to optimize the sets of co-
efficients {(𝑎𝑛, 𝑏𝑛)}𝑁𝑛=1 that correspond to (5.8). On the one hand, for the
non-linear system of equations method, the solution is based on describing the
expected uniform error function using the three equations subsets presented in
Section 3.1.1 to formulate the following system of equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f𝑘 (v) = 𝑒(𝑥𝑘) + (−1)𝑘+Ξ 𝑒max = 0, for 𝑘 = 2, 3, . . . , 2𝑁,

f ′𝑘 (v) = 𝑒′(𝑥𝑘) = 0, for 𝑘 = 2, 3, . . . , 2𝑁,

f1(v) = lim𝑥→0 𝑒(𝑥) + (−1)1+Ξ𝑒max = 0, for 𝑒 ∈ {𝑑, 𝑟},⎧⎪⎪⎨⎪⎪⎩
f2𝑁+1(v) =

∑𝑁
𝑛=1 𝑎𝑛 − 1 = 0, for 𝑒 = 𝑑,

f2𝑁+1(v)
∑𝑁

𝑛=1 𝑎𝑛 𝑏𝑛 + 𝑟max − 1 = 0, for 𝑒 = 𝑟,

(5.14)

for which Ξ = 0 for 𝑒 = 𝑑, Ξ = 1 for 𝑒 = 𝑟 and

v = [𝑎1, 𝑎2, . . . , 𝑎𝑁 , 𝑏1, 𝑏2, . . . , 𝑏𝑁 , 𝑒max] .

The equations f1 and f2𝑁+1 in (5.14) pertain to the third subset which de-
scribes the endpoints that can be extrema points. In particular, f1 expresses the
first extrema point, which occurs asymptotically at zero, i.e., 𝑥1 is chosen to be a
very small value near zero. On the other hand, f2𝑁+1 expresses the imposed con-
dition when 𝑒 = 𝑑, while it expresses the (2𝑁 + 1)th extrema when 𝑒 = 𝑟, where
the relative error converges to a constant value when 𝑥 tends to infinity oppos-
ing to 𝑑 (𝑥) which converges to zero, i.e., lim𝑥→∞ 𝑟 (𝑥) = ∑𝑁

𝑛=1 𝑎𝑛 𝑏𝑛 − 1 = −𝑟max.
The formulated system (5.14) can be solved by implementing the iterative New-
ton–Raphson method discussed in Section 3.1.1 to acquire the optimized solu-
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tion or by directly implementing any numerical software tool, e.g., Matlab.
Nevertheless, good initial guesses are needed to start any numerical iterative
solver. Detailed information about the used initial guesses for the developed
logarithmic approximations can be found in publication [P6].

The optimized coefficients corresponding to Nakagami (including Rayleigh)
and lognormal capacity integrals are calculated for this study using the above
methodology for a wide range of the parameters’ values 𝑚 and 𝜎. The presented
tool, together with the proposed methodology for obtaining the coefficients, can
be repurposed to derive lower and upper bounds for the ergodic capacity using
the presented framework in Section 3.1.2.

In particular, the optimized set of coefficients for the lower bound can be
obtained by solving the following system of non-linear equations that describes
the 2𝑁 extrema for 𝑒 = 𝑑 and the 2𝑁 +1 extrema for 𝑒 = 𝑟, including those that
might occur at the endpoints of the considered range as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f𝑘 (v) = 𝑒(𝑥𝑘) + 𝑒max = 0, for 𝑘 = 2 + Ξ, 4 + Ξ, . . . , 2𝑁,

f ′𝑘 (v) = 𝑒′(𝑥𝑘) = 0, for 𝑘 = 2, 3, . . . , 2𝑁,

f1(v) = lim𝑥→0 𝑒(𝑥) + Ξ 𝑒max = 0, for 𝑒 ∈ {𝑑, 𝑟},⎧⎪⎪⎨⎪⎪⎩
f2𝑁+1(v) =

∑𝑁
𝑛=1 𝑎𝑛 − 1 = 0, for 𝑒 = 𝑑,

f2𝑁+1(v)
∑𝑁

𝑛=1 𝑎𝑛 𝑏𝑛 + 𝑟max − 1 = 0, for 𝑒 = 𝑟,

(5.15)

for which Ξ = 0 for 𝑒 = 𝑑 and Ξ = 1 for 𝑒 = 𝑟.
On the other hand, the optimized set of coefficients for the upper bound

can be obtained by solving the following system of non-linear equations that
describes the 2𝑁−1 extrema for 𝑒 = 𝑑 and the 2𝑁+1 extrema for 𝑒 = 𝑟 including
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those that might occur at the endpoints of the considered range as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f𝑘 (v) = 𝑒(𝑥𝑘) − 𝑒max = 0, for 𝑘 = 2 + Ξ, 4 + Ξ, . . . , 2𝑁,

f ′𝑘 (v) = 𝑒′(𝑥𝑘) = 0, for 𝑘 = 2, 3, . . . , 2𝑁 − 1 for 𝑒 = 𝑑 or 2𝑁 for 𝑒 = 𝑟,

f1(v) = lim𝑥→0 𝑒(𝑥) − Ξ 𝑒max = 0, for 𝑒 ∈ {𝑑, 𝑟},
f2𝑁+1(v) =

∑𝑁
𝑛=1 𝑎𝑛 𝑏𝑛 − 1 = 0, for 𝑒 ∈ {𝑑, 𝑟},

f2𝑁+2(v) =
∑𝑁

𝑛=1 𝑎𝑛 − 1 = 0, for 𝑒 = 𝑑,

(5.16)

for which Ξ = 1 for 𝑒 = 𝑑 and Ξ = 0 for 𝑒 = 𝑟. It should be mentioned that for
the absolute error, an extra condition

∑𝑁
𝑛=1 𝑎𝑛 𝑏𝑛 − 1 = 0 is added in order to

obtain the best upper bound.
The modified Remez algorithm, together with the Newton–Raphson method

presented in Section 3.1.1, can also be used to calculate the optimized coeffi-
cients for the approximations, lower bounds, and upper bounds. This can be
done by implementing Algorithm 1 on the system of equations in (5.14), (5.15),
and (5.16) with excluding the equations describing the zero derivative of the
corresponding error function at the extrema points.

5.2.3 Quadrature-Based Solution

As explained in Section 5.1, the logarithmic approximation (5.3) for the ergodic
capacity (5.1), and (5.8) for generic capacity integral (5.7) thereof, result from
applying the Riemann sum expansion. Nevertheless, the same logarithmic ap-
proximation but with more direct and efficient numerical coefficients, can be
obtained from applying the different numerical quadrature integration meth-
ods [113] according to (4.10), for which the weighting function is 𝑊 (𝑡) = 1 and
𝑓 (𝑡) is given in (5.7), (5.9), and (5.11) for the generic, Nakagami, and lognormal
capacity integrals, respectively. The argument 𝜃 used in (4.10) is exchanged
with argument 𝑡 herein in order to preserve manuscript’s cohesiveness.

Therefore, the numerical coefficients corresponding to (5.8) are given for the
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three capacity integrals, respectively as

{(𝑎𝑛, 𝑏𝑛)}𝑁𝑛=1 =
{(
𝑤𝑛 𝑓𝑍 (𝑡𝑛), 𝑡𝑛

)}𝑁
𝑛=1 , (5.17)

{(𝑎𝑛, 𝑏𝑛)}𝑁𝑛=1 =
{(

𝑤𝑛
𝑚𝑚

Γ(𝑚) 𝑡
𝑚−1
𝑛 exp(−𝑚 𝑡𝑛), 𝑡𝑛

)}𝑁

𝑛=1

, (5.18)

and

{(𝑎𝑛, 𝑏𝑛)}𝑁𝑛=1 =
⎧⎪⎨⎪⎩
(
𝑤𝑛√
𝜋
exp(−𝑡2𝑛), exp

(√
2𝜎2 𝑡𝑛 − 𝜎2

2

))⎫⎪⎬⎪⎭
𝑁

𝑛=1

, (5.19)

for which {𝑡𝑛}𝑁𝑛=1 are the nodes and {𝑤𝑛}𝑁𝑛=1 are the quadrature weights of the
corresponding numerical integration method.

In particular, since the capacity integral is an improper convergent inte-
gral, it can be directly approximated using Gauss–Laguerre or Gauss–Hermite
quadrature rules. Alternatively, the infinite integration interval can be lim-
ited by taking a large yet finite interval or by using variable transformation
and then implementing the various numerical integration techniques including
Newton–Cotes and Gaussian quadrature methods [4]. However, the logarith-
mic approximations and bounds with numerical coefficients are generally loose,
especially in terms of global error. Therefore, they require a high number of
logarithmic terms to achieve adequate accuracy.

5.3 Applications

The logarithmic approximation (5.8), together with the minimax optimization
methodology, can be implemented directly to derive the ergodic capacity of any
communication system. On the other hand, the logarithmic approximation of
the Nakagami and lognormal capacity integrals (�̃�𝑚(𝑥) and �̃�𝜎 (𝑥)) together
with calculated optimized coefficients can be used as building blocks for de-
riving the ergodic capacity whenever possible in the different communication
scenarios and will mostly result in the same logarithmic form as that of (5.8)
as end expressions. While this chapter does introduce a general framework to
directly implement the proposed tool for any communication system, its main
focus is on the second approach, which takes advantage of the available opti-
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mized coefficients for the Nakagami and lognormal capacity integrals and how
to efficiently implement them for capacity analyses without the need to redo
the optimization methodology to derive specific coefficients for each studied
system.

In particular, a similar integral to that of the Nakagami capacity integral of
the form

𝐼𝑚,𝜙 (𝑥) �
∫ ∞

0
log𝑒 (1 + 𝑥 𝑡) 𝑡𝑚−1 exp(−𝜙 𝑡) d𝑡

= 𝜙−𝑚 Γ(𝑚) 𝐶𝑚(𝜙/(𝑥 𝑚)) ≈ 𝜙−𝑚 Γ(𝑚) �̃�𝑚(𝜙/(𝑥 𝑚)), (5.20)

is frequently seen in the intermediate steps when evaluating the ergodic capac-
ity of many wireless communication systems [49]–[52], [54]–[65], [127]–[133].
Therefore, �̃�𝑚(𝑥) can be used in the process of evaluating the ergodic capacity
in the different communications systems over small-scale fading which encoun-
ters 𝐼𝑚,𝜙, after which �̃�𝜎 (𝑥) can be used to approximate the ergodic capacity
when lognormal shadowing is present in the system.

More specifically, since the modified Bessel function of the first kind is in-
cluded in the PDF of many of the fading distributions as noted from Table 2.1
and can be expanded as a power series [4, Eq. 9.6.12], �̃�𝑚 can be used then to
approximate the ergodic capacity of SISO systems over the more complicated
distributions as

C̄ ≈ 1

log𝑒 (2)
∞∑
𝑗=0

Φ 𝑗 �̃�𝑚 𝑗

(
𝜃 𝑗

𝛾

)
≈

𝑁∑
𝑛=1

𝑎𝑛 log2
(
1 + 𝑏𝑛 𝛾

)
, (5.21)

where Φ 𝑗 , 𝑗 = 0, 1, . . ., are constants whose values are listed in [P6, Table 1]
together with 𝑚 𝑗 and 𝜃 𝑗 for the different fading distributions. The infinite
series in (5.21) can be truncated to a few terms that achieve adequate accu-
racy, and the double-summation, when including the approximation sum, can
be rearranged into a single summation which has the same form as in (5.3).
Moreover, �̃�𝑚(𝑥) can be used to derive the ergodic capacity of a wide vari-
ety of point-to-point multi-antenna systems that encounter similar integrals as
𝐼𝑚,𝜙 (𝑥) in (5.20). The ergodic capacity for some application examples such
as SIMO, MISO, and MIMO systems with different diversity, combining, and
multiplexing schemes are stated in [P6, Table 2] in closed form.
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Another aspect of novelty about this unified tool is that it evaluates the
ergodic capacity of various communication systems in the presence of shadowing
together with small-scale fading and yields the same approximation as (5.3).
More specifically, for a composite fading channel whose SNR is 𝛾eff = 𝜓 𝑠, for
which 𝜓 is a random variable that models small-scale fading and 𝑠 is a random
variable that models lognormal fading with 𝜓 and 𝑠 being independent, the
average SNR of the small-scale fading is lognormally distributed. Therefore,
the capacity integral can be evaluated as

C̄ = E𝛾eff [log2(1 + 𝛾eff)] = E𝑠 [E𝛾eff|𝑠 [log2(1 + 𝛾eff)]] . (5.22)

Above, �̃�𝑚(𝑥) can be used to evaluate the inner expectation, which is linked to
small-scale fading. This yields a similar expression as in (5.11) when consid-
ering the shadowing effect represented by the outer expectation, which is then
evaluated using �̃�𝜎 (𝑥). This concept is not only limited to the lognormal shad-
owing, but it can also be applied to the other distributions that could model
the shadowing effect, including inverse Gaussian, inverse Gamma, and Gamma
distributions. It is worth noting that �̃�𝑚 can be used directly for the Gamma
shadowing.

Multiple examples on deriving the ergodic capacity for some single-antenna
and multi-antenna systems using �̃�𝑚(𝑥) and �̃�𝜎 (𝑥) for the the concatenation
concept presented in (5.22) are given in [P6]. In particular, a generic expression
for the ergodic capacity of the more complicated small-scale distributions with
lognormal shadowing in SISO systems is derived in [P6, Eq. 27], the ergodic
capacity of MIMO spatial multiplexing [128], [129] is derived in [P6, Eq. 28],
and of cooperative spatial multiplexing [130] over Rayleigh fading channels with
lognormal shadowing is derived in [P6, Eq. 29].

The applicability and usefulness of the proposed approximations and bounds
are not only limited to fundamental applications but also to the most timely
communication systems. This importance is illustrated in [P6, Eqs. 30 and
31] by directly approximating the ergodic capacity of a NOMA system over
the 𝛼 − 𝜇 fading distribution [135] whose PDF is given in Table 2.1 by (5.8)
together with implementing the minimax optimization method to calculate the
optimized coefficients. The Nakagami capacity integral is not used for this ap-
plication since its capacity analysis does not encounter 𝐼𝑚,𝜙 (𝑥). Furthermore,
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�̃�𝑚(𝑥) and �̃�𝜎 (𝑥) are used to derive the ergodic capacity expressions for a sys-
tem with coordinated multipoint reception for mmwave uplink with blockages
and Nakagami-𝑚 fading [131], for a mmwave downlink NOMA system over
fluctuating two-ray channels under general power allocation [132], and for RIS-
assisted SISO system with correlated channels [133] in [P6, Eq. 32, Eq. 33, and
Eq. 34, respectively].

5.4 Performance Evaluation

The performance of the proposed logarithmic approximations and bounds in
(5.8) is evaluated in terms of tractability and accuracy. Their mathematical
tractability, which reveals insightful observations about the behavior of the
communication system in terms of ergodic capacity, is assessed for the different
communication systems in comparison with the corresponding capacity expres-
sions derived in the literature. It has been illustrated in [P6, Section IV.E]
that the proposed tool results in a unified, elegant, and simple expression for
many communication systems such as those of the single-antenna and multi-
antenna systems under small-scale fading, e.g., [P6, Table 2] or when combined
with lognormal shadowing. The references, however, admit different analyt-
ical expressions for their ergodic capacity and utilize different mathematical
evaluations.

In particular, the ergodic capacity is written in terms of complicated func-
tions in the references such as exponential integral function, incomplete gamma
function, Meijer 𝐺-function, Gaussian 𝑄-function, or combinations of them.
The timely applications considered in [P6] strongly support the significant gain
in analytical tractability of the proposed tool, where the ergodic capacity ex-
pressions can be evaluated in this study in unified logarithmic form as opposed
to in the references where they are evaluated using Meijer 𝐺-function and Fox
𝐻-function, both of which are unsolvable integrals. In contrast to the capacity
expressions that consist of complex special functions, the tractable mathemat-
ical form of the proposed approximations reflects direct or even visual insights
into the system’s behavior, e.g., [P6 Table 2], draws some behavioral patterns
about the effect of the different systems’ parameters on their performance.

On the other hand, the accuracy of the proposed tool for the different com-
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Figure 5.1 Effect of increasing 𝑁 on the accuracy of (5.8) for the Nakagami and lognormal capacity
integrals in terms of global absolute error.

munication systems is assessed by mainly comparing the absolute error (5.12)
resulting from applying the logarithmic approximations and bounds with those
resulting from the previously derived capacity expressions in the corresponding
references, in addition to the most relevant numerical approximations. More
specifically, for the Nakagami capacity integral, Gauss–Laguerre quadrature
rule is used to obtain the numerical coefficients, whereas for the lognormal
capacity integral, Gauss–Hermite quadrature rule is used.

The extensive set of numerical results presented in [P6, Section V], confirms
the high accuracy of (5.8) with the optimized coefficients for the various sys-
tems considered in this study. In particular, the sufficiently higher accuracy
of the proposed approximations for both capacity integrals (5.9) and (5.11) is
illustrated in [P6, Figs. 2 and 3] in terms of global absolute error and over
the whole range of the argument, when compared to the numerical and refer-
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ence approximations. Therefore, the same high accuracy is expected for the
other communications systems whose ergodic capacity is evaluated using the
Nakagami and lognormal capacity integrals. This is indeed confirmed by eval-
uating the performance of some example applications using the proposed tool
in [P6, Fig. 5] for Rician fading channel with lognormal shadowing and in [P6,
Fig. 6] for 2×2 MIMO network over a shadowed-Rayleigh channel. It should be
mentioned that this higher accuracy compared to the reference cases is achieved
with much less analytical tractability.

The accuracy of the direct application of (5.8) to approximate the ergodic
capacity in a NOMA system over 𝛼−𝜇 fading distribution with two users is also
investigated in terms of the absolute error in [P6, Fig. 7] and it depicts virtual
alignment with the exact capacity evaluated in [135]. In addition, Fig. 5.1
herein shows that as the number of logarithmic terms in (5.8) increases, the
accuracy of the approximation increases sufficiently for both capacity integrals
(5.9) and (5.11), and for different values of the parameters 𝑚 and 𝜎.
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6 RECONFIGURABLE INTELLIGENT SURFACES

This chapter analyzes the performance of two RIS-aided systems by deriving
closed-form expressions for the outage probability, average symbol error proba-
bility, and ergodic capacity via employing the novel mathematical tools devel-
oped in Chapters 4 and 5, as well as in [P1]–[P6]. In addition, it investigates the
behavior of the considered system models and draws some observations about
the effect of the different systems’ parameters on their performance.

6.1 RIS-Aided System with Spatially Correlated Channels

Most of the related theoretical studies accessible in the literature focus on the
performance analysis when the fading channels are assumed to be i.i.d. [94]–
[97]. Nevertheless, the REs of the RIS are closely located to each other. Hence,
dependence is expected between the encountered REs’ channels. Björnson and
Sanguinetti in [136] introduce a more realistic SISO RIS-aided system setup,
namely a spatially correlated Rayleigh fading system model, which can serve as
a baseline for the theoretical research on RIS-aided communications. However,
the performance of this model has not been investigated yet. Therefore, the
first RIS-aided system studied in this thesis is the conventional system model
depicted in Fig. 2.3 with the adopted correlated Rayleigh channels from [136].
The derived expressions in this section stem from the system and signal model
introduced in Section 2.3.1. The developed tools in Chapters 4 and 5 are used
to derive the different performance measures, namely the outage probability,
average SEP, and ergodic capacity.

Based on the adopted spatially correlated Rayleigh fading model, the faded
S-D, S-RIS, and RIS-D links are characterized as follows

𝑢 ∼ NC (0,Ω𝑢) , h ∼ NC
(
0,Λ𝜇ℎR

)
, g ∼ NC

(
0,Λ𝜇𝑔R

)
, (6.1)
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for which their large-scale fading coefficients (path strength) are referred to
respectively as Ω𝑢, Λ𝜇ℎ and Λ𝜇𝑔, with Λ = 𝑑𝐻 × 𝑑𝑉 being the area of each
RE whose horizontal width is denoted by 𝑑𝐻 and its vertical height is denoted
by 𝑑𝑉 , whereas 𝜇ℎ and 𝜇𝑔 being the average intensity attenuation of the cor-
responding link. The spatial channel correlation of the channels h and g is
characterized by the spatial correlation matrix R ∈ C𝑀×𝑀 which is assumed to
be the same for both RIS links. Its elements are calculated according to [136,
Eq. 10] as

R𝑛,𝑚 = sinc

(
2‖a𝑛 − a𝑚‖

𝜆

)
, 𝑛, 𝑚 = 1, . . . , 𝑀, (6.2)

for which 𝜆 is the wavelength, and a𝑛 and a𝑚 are the respective locations of the
𝑛th and 𝑚th elements w.r.t. the origin.

In order to maximize the end-to-end SNR when assuming perfect CSI at the
RIS, optimal phase configuration is considered for the signal model introduced
in Section 2.3.1 for this system by choosing reflection coefficient � = 1 and

𝜃𝑖 = ∠𝑢 − (
∠ℎ𝑖 + ∠𝑔𝑖

)
, 𝑖 = 1, . . . , 𝑀. (6.3)

Hence,

|𝐴| =
𝑀∑
𝑖=1

##ℎ𝑖 𝑔𝑖 ## +|𝑢 | . (6.4)

The analytical evaluation of the different performance measures normally in-
cludes dealing with the PDF of the end-to-end SNR (𝛾), which is defined at
the receiver for the considered system as

𝛾 = 𝛾0 |𝐴|2 , (6.5)

for which 𝛾0 = 𝐸𝑠/𝑁0 denotes the transmit SNR. From (6.5), it follows that
finding the exact distribution density of 𝛾 is infeasible due to its complicated
structure. Therefore, an approximating methodology is followed to determine
the PDF of 𝛾 (𝜓𝛾). In particular, two approximating schemes are adopted for
the studied system model, namely the non-central chi-square and the Gamma
distribution.
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Scheme 1: Non-Central Chi-Square Distributed Approximation

The channel’s response in (6.4) is a sum of an independent random variable |𝑢 |
plus weakly correlated/dependent random variables, i.e., weak correlation exists
between the multiplicative terms

##ℎ𝑖 𝑔𝑖 ## , 𝑖 = 1, 2, . . . , 𝑀 although the channel
vectors h and g are independent of each other. Therefore, (6.4) converges
toward a Gaussian random variable according to the central limit theorem
(CLT), and thus the end-to-end SNR in (6.5) is distributed according to the
non-central chi-square distribution with one degree-of-freedom as

𝜓𝛾 (𝑥) � 1

2𝛾0ℓ2

(
𝑥

𝛾0𝜌

)− 1
4

exp

(
−𝑥 + 𝜌𝛾0

2𝛾0ℓ2

)
𝐼− 1

2

( √
𝜌𝑥

√
𝛾0ℓ2

)
, (6.6)

where 𝜌 = (E[|𝐴|])2 and ℓ2 = Var[|𝐴|] are evaluated respectively as

𝜌 =

(
𝑀 𝜋Λ
4

√
𝜇ℎ𝜇𝑔 +

√
𝜋Ω𝑢

2

)2
, (6.7)

and

ℓ2 =
𝑀∑
𝑖=1

𝑀∑
𝑗=1

ΨΛ2𝜇ℎ𝜇𝑔R𝑖, 𝑗

4

[
ΨR𝑖, 𝑗 + 𝜋

]
+ ΨΩ𝑢

2
, (6.8)

for which Ψ =
(
4−𝜋
2

)
. Interested readers are kindly requested to refer to [P7]

for the complete derivations of (6.7) and (6.8).

Scheme 2: Gamma Distributed Approximation

The PDF of the non-central chi-square distributed end-to-end SNR for Scheme 1
above has a similar shape to that of the Gaussian PDF, where both have a
single maximum, and their tails extend to infinity from the right side but are
truncated to zero from the left side. As a result, the first term of a Laguerre
series expansion, as stated in [137], can be used to closely approximate the PDF
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of the non-central chi-square distribution as

𝜓𝛾 (𝑥) � 𝑥𝛼−1

(𝛾0 𝛽)𝛼 Γ(𝛼) exp

(
− 𝑥

𝛾0 𝛽

)
, (6.10)

with

𝛼 =
(E[|𝐴|2])2
Var[|𝐴|2]

and 𝛽 =
Var[|𝐴|2]
E[|𝐴|2]

, (6.11)

where

E[|𝐴|2] =
𝑀∑
𝑖=1

𝑀∑
𝑗=1

Ψ
Λ2𝜇ℎ𝜇𝑔R𝑖, 𝑗

4

[
ΨR𝑖, 𝑗 + 𝜋

]
+ 𝜋2Λ2𝑀2𝜇ℎ𝜇𝑔

16
+ 𝑀 𝜋Λ

√
𝜇ℎ𝜇𝑔𝜋Ω𝑢

4
+Ω𝑢, (6.12)

and

Var[|𝐴|2] =
𝑀∑
𝑖=1

𝑀∑
𝑗=1

𝑀∑
𝑘=1

𝑀∑
𝑚=1

[
Ψ4Λ4𝜇2ℎ𝜇

2
𝑔

16
�̂�
2 +

Ψ3Λ4𝜇2ℎ𝜇
2
𝑔𝜋

16
�̂��̃�

+
Ψ2Λ4𝜇2ℎ𝜇

2
𝑔𝜋

2

32

(
�̂� + �̃�

2

2

)
+
ΨΛ4𝜇2ℎ𝜇

2
𝑔𝜋

3

64
�̃� +

Λ4𝜇2ℎ𝜇
2
𝑔𝜋

4

256

]
+ 2

√
𝜋Ω𝑢

𝑀∑
𝑖=1

𝑀∑
𝑗=1

𝑀∑
𝑘=1

[(𝜋Λ
4

)3
(𝜇ℎ𝜇𝑔)

3
2 + Ψ

𝜋2Λ3(𝜇ℎ𝜇𝑔) 3
2

16
�̄�

+ Ψ2Λ
3(𝜇ℎ𝜇𝑔) 3

2 𝜋

16
�̄�
2

]
+ 6Ω𝑢

𝑀∑
𝑖=1

𝑀∑
𝑗=1

[
Ψ2Λ2𝜇ℎ𝜇𝑔R

2
𝑖, 𝑗

4
+ Ψ𝜋Λ2𝜇ℎ𝜇𝑔R𝑖, 𝑗

4

+ 𝜋2Λ2𝜇ℎ𝜇𝑔

16

]
+ 𝑀𝜋Λ

√
𝜇ℎ𝜇𝑔𝛽

3
2Γ

(
5

2

)
− (

E[|𝐴|2])2. (6.13)

Above �̂� =
[
R𝑖, 𝑗R𝑘,𝑚+R𝑖,𝑘R 𝑗 ,𝑚+R𝑖,𝑚R 𝑗 ,𝑘

]
, �̃� =

[
R𝑖, 𝑗+R𝑘,𝑚+R𝑖,𝑘+R 𝑗 ,𝑚+R𝑖,𝑚+

R 𝑗 ,𝑘

]
, and �̄� =

[
R 𝑗 ,𝑘 + R𝑖,𝑘 + R𝑖, 𝑗

]
. Interested readers are kindly requested to

refer to [P7] for the complete derivations of (6.12) and (6.13). This thesis uses
slightly different notations than the original publication [P7] for consistency.
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6.1.1 Performance Analysis

The performance of the conventional SISO RIS-aided system is investigated in
terms of outage probability, average SEP, and ergodic capacity.

Outage Probability

Outage probability is the probability that the end-to-end instantaneous SNR
takes a value less than a predefined threshold value (𝛾th(·)). It is mathemati-
cally calculated as

𝑃𝑂 = Pr
(
𝛾 ≤ 𝛾th

)
= Ψ𝛾 (𝛾th), (6.14)

where Ψ𝛾 is the cumulative distribution function (CDF) of the end-to-end in-
stantaneous SNR. Therefore, the outage probability is calculated using the PDF
of 𝛾 as

𝑃𝑂 =
∫ 𝛾th

0
𝜓𝛾 (𝑥) d𝑥. (6.15)

Here, two expressions for the outage probability are obtained. The first
expression results from substituting the non-central chi-square distributed PDF
(6.6) in (6.15) and using [138, Eq. 1] as

𝑃𝑂𝜒2
= 1 −𝑄 1

2

(√
𝜌

ℓ
,

√
𝛾th√
𝛾0ℓ

)
, (6.16)

for which 𝑄𝑣 (·, ·) is the Marcum 𝑄-function [138]. The second expression results
from substituting the Gamma distributed PDF (6.10) in (6.15) and using [3,
Eq. 8.350.1] as

𝑃𝑂Γ =
𝛾
(
𝛼, 𝑥

𝛾0𝛽

)
Γ(𝛼) , (6.17)

for which 𝛾(·, ·) is the lower incomplete Gamma function [3, Eq. 8.350.1].
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Symbol Error Probability

The average SEP under fading is generally calculated using (2.8), for which its
conditional SEP for coherent detection is a polynomial of the 𝑄-function of the
form (4.2). Among the different modulation schemes available in Table 2.2, the
average SEP for QPSK system is calculated using the non-central chi-square
distribution and the developed exponential approximation (4.3), which can di-
rectly substitute the conditional SEP in (2.8). This leads to the average SEP to
be evaluated in terms of the MGF of the non-central chi-square distribution [11]
using (4.20) as

�̄�𝑠𝜒2
=

𝑁∑
𝑛=1

𝑎𝑛

(
1

1 + 2𝛾0𝑏𝑛ℓ2

) 1
2

exp

(
− 𝜌 𝛾0 𝑏𝑛
1 + 2𝛾0𝑏𝑛ℓ2

)
. (6.18)

The corresponding coefficients {(𝑎𝑛, 𝑏𝑛)}𝑁𝑛=1 are the optimized coefficients in
terms of the minimax or total error as reported in Section 4.1.

On the other hand, the average SEP for ℵ-ASK system is calculated us-
ing the Gamma distribution and the novel GKL approximation (4.11), which
substitutes the conditional SEP from Table 2.2 in (2.8). This results in

�̄�𝑠Γ =
𝑁∑
𝑛=1

2𝑎𝑛

(ℵ − 1

ℵ

) √ (ℵ2 − 1)
6

1

(𝛾0𝛽)𝛼Γ(𝛼)
𝑐
−𝑐2− 3

2

1

(
√
𝑐3Γ

(
𝑐2 + 3

2

)
× 1𝐹1

(
𝑐2 + 3

2
;
3

2
;
𝑐3
4𝑐1

)
− √

𝑐1Γ(𝑐2 + 1)
(
1𝐹1

(
𝑐2 + 1;

1

2
;
𝑐3
4𝑐1

)
− 1

)��� ,
(6.19)

where 𝑐1 = 6𝑏𝑛
(ℵ2−1) + 1

𝛾0𝛽
, 𝑐2 = 𝛼 − 3

2 , 𝑐3 = 6𝑐2

(ℵ2−1) , and 1𝐹1(·; ·; ·) is the confluent
hypergeometric function [3, Eq. 9.21]. The coefficients {(𝑎𝑛, 𝑏𝑛)}𝑁𝑛=1 and 𝑐 are
the optimized coefficients in terms of the minimax or total error as reported in
Section 4.2.

Ergodic Capacity

The ergodic capacity for this system can be evaluated based on the non-central
chi-square distribution by substituting (6.6) in (2.26). This results in the same
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mathematical expression as [139, Eq. 21] which is rewritten in [P7], with sub-
stituting 𝜌 and ℓ2 by the novel expressions (6.7) and (6.8), respectively. On
the other hand, the ergodic capacity can be evaluated based on the Gamma
distribution by substituting (6.10) in (2.26) as

C̄Γ =
exp

(
1

𝛾0𝛽

)
log(2)

𝛼∑
𝑗=1

Γ

(
−𝛼 + 𝑗 ,

1

𝛾0𝛽

)
(𝛾0𝛽) 𝑗−𝛼. (6.20)

The ergodic capacity in (6.20) is valid for the integer values of 𝛼 only, leaving
the case with non-integer values of 𝛼 intractable.

The two exact ergodic capacity expressions with respect to the adopted
distribution are very complicated, and that in (6.20) is not even valid for all
values of 𝛼. As a result, the novel logarithmic expression proposed in Chapter 5
is adopted for this system for both distributions in order to derive unified and
tight yet tractable approximations for C̄𝜒2 and C̄Γ as

�̃� (𝛾0) �
𝑁∑
𝑛=1

𝑎𝑛 log2
(
1 + 𝑏𝑛 𝛾0

)
. (6.21)

The coefficients {(𝑎𝑛, 𝑏𝑛)}𝑁𝑛=1 are found in terms of the minimax or total ab-
solute/relative error. More information about calculating these coefficients in
the minimax sense can be found in [P7].

6.1.2 Performance Evaluation

In this section, the analytical expressions derived above for evaluating the per-
formance of the studied RIS-aided system with spatially correlated channels
are verified and the effect of the different system’s parameters on its perfor-
mance is investigated. In particular, the adopted two approximating schemes
(6.6) and (6.10), namely the non-central chi-square and the Gamma distribu-
tion show high agreement with the true PDF for different values of 𝑀 as seen
in [P7, Fig. 2]. Therefore, the derived expressions for the outage capacity, av-
erage SEP, and ergodic capacity for both distributions are expected to be well
corroborated with the exact/simulated expressions. This is indeed confirmed
by Fig. 6.1 for the outage probability and Fig. 6.2 for the average SEP and by
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Figure 6.1 The outage probability for different values of 𝑀 and Ω𝑢 with 𝛾th = 10 dB
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Figure 6.2 The average SEP for different values of 𝑀 with Ω𝑢 = −110 dB for QPSK and ℵ-ASK for
different values of ℵ.
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[P7, Fig. 3] for the ergodic capacity.
The outage probability derived in (6.16) for the non-central chi-square dis-

tribution and in (6.17) for the Gamma distribution is plotted in Fig. 6.1. It
can be depicted from the figure that assisting the communication system with
a RIS decreases the outage probability significantly. It also decreases further
with increasing the number of reflecting elements equipped on the RIS, i.e.,
increasing 𝑀 will decrease the transmitted power needed to achieve a certain
outage probability. For example, at Ω𝑢 = −105 dB, an outage probability of
approximately 36% occurs with 𝑀 = 400 at 𝛾0 = 110 dB, whereas it occurs
at 𝛾0 = 105 dB with 𝑀 = 900 dB. Thus, using 500 REs more saves 5 dB of
transmitted power. In addition, as the strength of the direct path increases,
the outage probability decreases sufficiently, e.g., for 𝑀 = 900 and 𝛾0 = 105 dB,
as Ω𝑢 increases from −110 to −105 dB, the outage probability improves by
approximately 50%.

The average SEP derived in (6.18) based on the non-central chi-square dis-
tribution and using the developed exponential approximation (4.3) of the 𝑄-
function for QPSK modulation scheme is plotted in Fig. 6.2, together with the
average SEP derived in (6.19) based on the Gamma distribution and using the
novel GKL approximation (4.11) for ℵ-ASK modulation scheme. The figure
shows that as 𝑀 increases, the average SEP decreases indicating better perfor-
mance. Moreover, as the modulation order of the ℵ-ASK increases, the average
SEP achieved at a certain transmitted power increases indicating worse per-
formance, e.g., for 𝛾0 = 110 dB and 𝑀 = 100, as ℵ changes from 4 to 8, the
average SEP increases by about 93%. This is because higher-order modulation
schemes provide higher data rates within a given bandwidth at the expense
of reduced robustness to noise and interference, which in turn increases error
probabilities.

In [P7], the ergodic capacity is thoroughly investigated for which the unified
logarithmic approximation in (6.21) is derived for both distributions with op-
timized coefficients. This approximation shows excellent agreement with exact
expressions with respect to the adopted distribution and with the simulated re-
sults. In general, the significant increase in ergodic capacity that occurs when
a RIS is imposed on the communication system and when the number of REs
equipped on the RIS is increased is confirmed in [P7, Figs. 3, 4, and 5]. In
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addition, the capacity increases with increasing the transmitted power, 𝛾0, and
with increasing the strength of the direct path. Furthermore, the impact of us-
ing a RIS in the communication process is best demonstrated when the direct
path is weaker. More detailed observations about the behavior of the studied
RIS-aided system can be found in [P7].

6.2 Systems with Multiple RISs over 𝜅 − 𝜇 Fading Channels

The single-RIS-aided systems have been investigated extensively in the litera-
ture [94]–[97], [136], [140]. On the other hand, limited efforts have been made
to study the systems with wireless links that are aided by multiple RISs [102],
[103]. The conducted studies for this generic system in the literature not only
assumed i.i.d. fading channels within the same RIS, but also assumed i.i.d.
fading channels across the different RISs. Nevertheless, this is not a practi-
cal assumption because RISs may be spread throughout a large geographical
region. As a result, various RISs are likely to encounter non-identical and inde-
pendent channels with the same or different fading distribution. On the other
hand, the channels encountered by the REs per RIS may be considered identi-
cal since they are arranged on the same surface, i.e., the REs of a single RIS
are located very close to each other. It should be mentioned that there could
be a dependency between the encountered channels by the REs on each RIS.
Nevertheless, this is left as a future research direction, for which, in this study,
they are assumed to be independent per RIS for simplicity.

As a result, this section focuses on studying the performance of a relatively
more realistic SISO system model that is aided by multiple RISs and a di-
rect path. More specifically, it studies the generic RISs-based system model
discussed in Section 2.3 and illustrated in Fig. 2.4, with independently but
non-identically distributed (i.n.i.d.) fading channels across the geographically
separated and distributed RISs. This implies that each RIS or even each hop
(S–RIS𝑙 and RIS𝑙–D hops) may experience different fading distributions. For
that, a generic 𝜅-𝜇 fading model is adopted, whose PDF is defined in Ta-
ble 2.1 and consists of the most widely-used fading scenarios, namely, Rayleigh,
Rice, Nakagami-𝑚, and one-sided Gaussian distribution. The developed tools
in Chapters 4 and 5 are used in this section to derive the different performance
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measures, namely the outage probability, average SEP, and ergodic capacity.
For the generic RISs-aided system, the entries of the system’s channels vec-

tors h𝑙 = [ℎ𝑙,1, . . . , ℎ𝑙,𝑀𝑙 ]𝑇 and g𝑙 = [𝑔𝑙,1, . . . , 𝑔𝑙,𝑀𝑙 ]𝑇 are slowly varying flat
fading coefficients that are assumed to be statistically independent and identi-
cal per 𝑙th RIS. Their envelopes

##ℎ𝑙,𝑖 ## and
##𝑔𝑙,𝑖 ## follow the generalized 𝜅-𝜇 fading

distribution. Nevertheless, the entries of {h𝑙}M𝑙=1 and {g𝑙}M𝑙=1 are nonidentical
among the different distributed RISs. The average gains of the envelopes of the
𝑀𝑙 fading coefficients per RIS𝑙 link are equal and are defined as

𝜎2
ℎ𝑙

= E
[##ℎ𝑙,𝑖 ##2 ] = 𝜄0

( 𝜛0

𝜛ℎ𝑙

) 𝜉ℎ𝑙
, for the S–RIS𝑙 link,

and
𝜎2
𝑔𝑙 = E

[##𝑔𝑙,𝑖 ##2 ] = 𝜄0

( 𝜛0

𝜛𝑔𝑙

) 𝜉𝑔𝑙
, for the RIS𝑙–D link,

whereas the average gain of the envelope of the S–D link is defined as

𝜎2
𝑢 = E

[|𝑢 |2 ] = 𝜄0

(𝜛0

𝜛𝑢

) 𝜉𝑢
,

where 𝜄0 is the reference path loss at the reference distance 𝜛0, and 𝜛 𝑗 and
𝜉 𝑗 , 𝑗 ∈ {ℎ𝑙, 𝑔𝑙, 𝑢} denote respectively the distance and path loss exponent of
the corresponding link. The direct path follows Rayleigh distribution since no
line-of-sight (LoS) in the S–D link is assumed.

Like in Section 6.1, the end-to-end SNR is maximized by choosing � = 1 and

𝜃𝑙,𝑖 = ∠𝑢 − (
∠ℎ𝑙,𝑖 + ∠𝑔𝑙,𝑖

)
(6.22)

Hence,

|𝐴| =
M∑
𝑙=1

𝑀𝑙∑
𝑖=1

##ℎ𝑙,𝑖 ## ##𝑔𝑙,𝑖 ## +|𝑢 | . (6.23)

By substituting (6.23) in (6.5), the end-to-end SNR (𝛾) can be obtained for the
studied system. Finding the exact PDF of 𝛾 is infeasible due to its significantly
complicated structure. For that, an approximating methodology is followed to
determine the PDF of 𝛾 (𝜓𝛾). Since the first summation in (6.23) comprises
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𝑀𝑙 identical double 𝜅-𝜇 random variables, which all are positive, continuous,
and independent, it converges toward a Gaussian random variable according
to CLT. This causes the second summation in (6.23) to be a sum of the M
resulting Gaussian variables plus a single Rayleigh random variable that will
also converge toward a normally distributed random variable.

As a result, the corresponding PDF will have a single maximum, and its
tails extend to infinity from the right side but is truncated to zero from the
left side which allows this PDF to be further tightly approximated by the first
term of a Laguerre-series expansion according to [137] as

𝜓|𝐴| (𝑥) �
𝑥𝛼

𝛽𝛼+1 Γ(𝛼 + 1) exp

(
− 𝑥

𝛽

)
. (6.24)

Therefore, the end-to-end SNR can be approximated by

𝜓𝛾 (𝑥) � 1

2 𝛽𝛼+1 Γ(𝛼 + 1) 𝛾
− 𝛼+1

2

0 𝑥
𝛼−1
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√

𝑥

𝛽2 𝛾0

)
, (6.25)

where

𝛼 =
(E[|𝐴|])2
Var[|𝐴|] − 1, (6.26)

𝛽 =
Var[|𝐴|]
E[|𝐴|] . (6.27)

The mean and variance of |𝐴| are given, respectively as
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and
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for which 𝜅ℎ𝑙 and 𝜇ℎ𝑙 are the fading parameters of the S–RIS𝑙 hop and 𝜅𝑔𝑙 and
𝜇𝑔𝑙 of the RIS𝑙–D hop, while 1𝐹1(·; ·; ·) is the confluent hypergeometric function
of the first kind [3, Eq. 9.210.1]. The exact derivations of (6.25), (6.28), and
(6.29) can be found in [P8].

6.2.1 Performance Analysis

The performance of the generic SISO RISs-aided system is investigated in terms
of outage probability, average SEP, and ergodic capacity.

Outage Probability

The outage probability for a communication system assisted with multiple RISs
over 𝜅− 𝜇 fading channels is calculated by deriving the CDF of 𝛾 first and then
using (6.14) to obtain

𝑃𝑂 �
𝛾

(
𝛼 + 1, 1

𝛽

√
𝛾th
𝛾0

)
Γ(𝛼 + 1) , (6.30)

where 𝛼 and 𝛽 are defined respectively in (6.26) and (6.27). The detailed
derivation of (6.30) is available in [P8].

Symbol Error Probability

The average SEP of ℵ-QAM modulation scheme whose SEP is given in Table 2.2
is calculated as an example herein using the exponential approximation (4.3).
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This leads to the average SEP to be calculated using (4.19). The closed-form
expression is obtained by substituting (6.25) in (4.19) and using [3, Eq. 3.462.1]
as
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) ����
����� , (6.31)

for which 𝛼 and 𝛽 are defined respectively in (6.26) and (6.27).

Ergodic Capacity

The ergodic capacity for the studied system is derived by substituting (6.25)
in (2.26). This results in the same analytical form as [97, Eq. 11] which is
rewritten in [P8] with utilizing the novel expressions of 𝛼 and 𝛽, which are
calculated for this system model using the derived mean and variance of the
combined channel response in (6.28) and (6.29), respectively.

On the other hand, the ergodic capacity can also be tightly approximated
herein using the unified logarithmic approximation proposed in Chapter 5 as

�̃� (𝛾0) �
𝑁∑
𝑛=1

𝑎𝑛 log2
(
1 + 𝑏𝑛 𝛾0

)
, (6.32)

for which the coefficients {(𝑎𝑛, 𝑏𝑛)}𝑁𝑛=1 are found in terms of the minimax or
total absolute/relative error by implementing the non-linear system of equations
method or the modified Remez algorithm for the former, and quasi-Newton
algorithm for the latter.
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6.2.2 Performance Evaluation

In this section, the analytical expressions derived above for evaluating the per-
formance of the studied RISs-aided system with 𝜅 − 𝜇 fading channels are ver-
ified, and the effect of the different system parameters on its performance is
investigated. In general, the results for the communication system that is as-
sisted by multiple RISs over a generic fading distribution confirm those of the
communication system that is assisted by a single RIS with correlated chan-
nels in Section 6.1. In particular, the adopted approximating scheme (6.24)
coincides well with the true PDF for different values of 𝑀 and different combi-
nations of the fading distributions as seen in [P8, Fig. 2]. Therefore, the derived
expressions for the outage probability, average SEP, and ergodic capacity are
expected to be well corroborated with the exact/simulated expressions. This is
indeed confirmed by [P8, Fig. 3].

More specifically, it can be depicted from [P8, Fig. 3] that assisting the
communication process with multiple RISs, improves the three performance
measures. This can be noted by comparing the performance achieved when
transmission takes place through the direct path only with that when the trans-
mission is assisted with the RISs. The performance is improved even further
by increasing the total number of REs (𝑀) equipped on the distributed RISs.
In addition, [P8, Fig. 3 (b)] shows that as the order of the modulation scheme
increases, the transmitted power 𝛾0 needs to be increased to achieve a certain
SEP requirement, e.g., to achieve an average SEP of 10% with 𝑀 = 200, as ℵ
changes from 16 to 64 for the ℵ-QAM, 𝛾0 needs to be increased by approxi-
mately 6.4 dB.

Furthermore, the increase of the rate of change in the slope of the outage
probability and the average SEP in Fig. 3 with increasing 𝑀 indicates a higher
diversity gain. The impact of the horizontal and vertical placement of the dis-
tributed RISs between S and D on the system’s performance is studied in [P8,
Fig. 4]. In general, it is noted that as the RISs are horizontally or vertically
nearer to either S or D, the performance enhances, whereas the performance de-
grades when placing them near halfway between S and D, where path losses are
maximized, and thus the RISs contribute less efficiently to the communication
process.
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Figure 6.3 The average SEP versus the strength of the direct path (Ω𝑢) for different values of 𝛾0 with
𝑀 = 100 and ℵ = 8.

Additionally, the effect of the strength of the direct path on the system’s
performance is studied in Fig. 6.3. The same system setup as that in [P8]
is used herein but with 𝑑𝑢 = 50 and the 𝑥 cartesian coordinate of each RIS
(𝑑𝑥𝑛) divided by 2. Ranging the direct path loss exponent 𝜉𝑢 from 3.2 to 4.2
results in decreasing the path strength Ω𝑢 from nearly −85 dB to −100 dB.
It can be depicted from the figure that as the strength of the direct path
increases, the average SEP improves sufficiently. The accuracy of the proposed
logarithmic sum approximation of the ergodic capacity in (6.32) is illustrated
in Fig. 6.4. The tractable approximation shows excellent agreement with the
simulated ergodic capacity for different values of 𝑀 with two logarithmic terms
only whose coefficients are optimized in terms of the minimax absolute error.
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Figure 6.4 The ergodic capacity for different values of 𝑀 with 𝑁 = 2 and Ω𝑢 = −72.5 dB.
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7 CONCLUSIONS AND FUTURE WORK

This thesis’ final chapter summarizes the most important findings and out-
comes and possible future research directions. As this study provides general
methodologies and frameworks for approximation but limits their use to error
probability and capacity analyses, the presented theory can be further extended
to generate new tools for many other performance measures and special func-
tions to make statistical performance analysis easier not only in the wireless
communication field but also in many other statistical sciences.

7.1 Conclusions and Main Results

The primary goal of this thesis, which was to facilitate statistical performance
analysis in terms of closed-form expressions, is achieved by developing several
mathematical tools that can be efficiently implemented when analyzing sys-
tems’ performance. The developed tools were intended to achieve very high
accuracy levels while keeping their analytical forms as simple as possible. This
necessitated certain types of optimization in order to select the appropriate
coefficients to meet those requirements. Chapter 3 together with publications
[P1]–[P6] presented two optimization criteria that are targeted in order to opti-
mize the developed approximations, alongside their methods of implementation
and the needed initial guesses. In addition, a generalization of these implemen-
tation methods was presented in order to generate new lower and upper bounds
of the same mathematical form as the approximation understudy. The provided
general theory set the foundation for the following chapters.

Chapter 4, together with publications [P1]–[P5], answers the first and sec-
ond research questions introduced in Section 1.1 where it presented two main
parametric approximations/bounds for the Gaussian 𝑄-function with multiple
choices for the corresponding coefficients that stem from either implementing
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the optimization methods presented in Chapter 3 or from applying the different
quadrature numerical rules with or without optimizing them with respect to
any optimization criterion. One of the approximations was extended to ap-
proximate integer powers, polynomials, or any well-behaved function of the 𝑄-
function with maintaining the same analytical form of the approximation, while
the other was extended to approximate the 𝑄-function with a simpler mathe-
matical form using Taylor series expansion. Both types of approximations were
evaluated for the absolute/relative minimax or total error by comparing them
to relevant existing or numerical approximations. Numerical results proved
the significant gain in accuracy achieved by the tractable approximating ex-
pressions, whose accuracy increases even further with increasing the number of
approximating terms while keeping the analytical complexity the same. Their
importance in communication theory was illustrated by implementing them in
calculating the average SEP in closed form for many wireless communication
systems, thus partially answering this thesis’ fourth research question.

Chapter 5 and publication [P6] answer the first and third research questions
introduced in Section 1.1, where a novel expression was proposed to directly
approximate or bound the ergodic capacity of any communication system in
a unified form without restrictions on the PDF of the channel. While this
approach can be implemented in any communication system, it has been par-
ticularly implemented in this thesis to derive tight approximations/bounds for
the Nakagami and lognormal distributions since they most frequently appear as
building blocks for many complex communication systems. Therefore, instead
of calculating the optimized coefficients for each studied system using the pre-
sented optimization methodologies in Chapter 3, the Nakagami and lognormal
approximations/bounds with their optimized coefficients are used to evaluate
the ergodic capacity of various communication systems that experience small-
scale fading with or without the lognormal shadowing and allow for simplifying
the complicated integrals encountered when evaluating the ergodic capacity in
different communication scenarios. Furthermore, the applicability of the pro-
posed approximations and bounds was verified by applying them to a wide
range of classical and timely applications in communication theory, for which
they illustrated sufficient accuracy where they virtually coincide with the true
measures, thus partially answering this thesis’ fourth research question.
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Chapter 6 of this thesis, as well as publications [P7] and [P8], completes
the answer to the fourth research question where it studied a very timely
and promising technology as a use-case for the developed approximations and
bounds, namely RIS-aided system with correlated channels, and multiple RISs-
aided system with non-identical channels. Since the performance analysis of
these systems is quite difficult, the proposed approximations are used to derive
tight closed-form formulas for the average SEP and the ergodic capacity. Addi-
tionally, closed-form expressions for the outage probability were also acquired
for the two system models. The derived expressions were plotted and demon-
strated excellent agreement with the true measures. Moreover, they showed
that better performance is achieved by increasing the transmitted SNR, the
number of REs equipped on the RISs, the strength of the direct path, and
placing the RIS closer to either the source or destination. Moreover, the results
showed that the effect of using a RIS to aid the communication process is best
depicted when the direct path is weak.

In summary, this thesis shows that statistical performance analysis of the
various communication systems is indeed simplified with high levels of accu-
racy by using the proposed mathematical tools in this study. In fact, they even
lead to closed-form solutions in situations where they are typically unobtain-
able. In addition, insightful observations are sometimes gained from the derived
expressions.

7.2 Future Work

This thesis’ results open up a number of new research areas. Firstly, the general
approach of approximating any integral by a sum of the integrand evaluated at
specific points (quadrature nodes) and multiplied by constants (weights), can
be used to approximate other special functions than the ones studied in this
thesis by using the novel methodologies of optimization presented in this study
in order to replace the quadrature coefficients, i.e., nodes and weights, with new
optimized coefficients that enable these approximations to be highly efficient
and accurate tools for statistical evaluations.

In addition, most of the approximations available in the literature for the
Gaussian 𝑄-function can still be improved in terms of accuracy while keeping
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the analytical complexity the same using a similar approach as that done for
the KL approximation, for example. Moreover, the potentials of the novel
logarithmic tool for evaluating the ergodic capacity can be further examined and
extended to systems with non-Gaussian or non-additive noise, too, since this
logarithmic approximation actually holds with any noise model, and probably
nothing prevents one from applying the provided optimization methodologies
to find the optimal coefficients.

In addition, the potential of the proposed tools can be further exploited
by implementing them in the recent and future technologies that are rapidly
emerging, including grant-free and semi-grant free NOMA, physical layer secu-
rity, wireless power transfer, unmanned aerial vehicles assisted wireless commu-
nications systems, etc. Their applications do not only include wireless commu-
nication, but they can be implemented in many other scientific fields such as
geothermal energy, astrophysics, and thermal vision. At last, the performance
of the RIS-aided systems can be further explored for many system setups and
assumptions using the new mathematical tools, e.g., systems with phase errors
and a single RIS, systems with multiple RISs in the presence of dependency
between the REs per RIS together with phase errors, and RIS-aided multi-
antenna systems with beamforming. In conclusion, while significant progress
has already been made in this field of research, there is still much potential to
efficiently develop this research direction of mathematical analysis, for which
further research is likely to be beneficial.
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Global Minimax Approximations and Bounds for
the Gaussian Q-Function by Sums of Exponentials

Islam M. Tanash and Taneli Riihonen , Member, IEEE

Abstract—This paper presents a novel systematic methodology
to obtain new simple and tight approximations, lower bounds,
and upper bounds for the Gaussian Q-function, and functions
thereof, in the form of a weighted sum of exponential functions.
They are based on minimizing the maximum absolute or relative
error, resulting in globally uniform error functions with equalized
extrema. In particular, we construct sets of equations that
describe the behaviour of the targeted error functions and
solve them numerically in order to find the optimized sets of
coefficients for the sum of exponentials. This also allows for
establishing a trade-off between absolute and relative error by
controlling weights assigned to the error functions’ extrema. We
further extend the proposed procedure to derive approximations
and bounds for any polynomial of the Q-function, which in
turn allows approximating and bounding many functions of the
Q-function that meet the Taylor series conditions, and consider
the integer powers of the Q-function as a special case. In the
numerical results, other known approximations of the same and
different forms as well as those obtained directly from quadrature
rules are compared with the proposed approximations and
bounds to demonstrate that they achieve increasingly better
accuracy in terms of the global error, thus requiring significantly
lower number of sum terms to achieve the same level of accuracy
than any reference approach of the same form.

Index Terms—Gaussian Q-function, error probability, mini-
max approximation, bounds, quadrature amplitude modulation
(QAM), statistical performance analysis.

I. INTRODUCTION

THE Gaussian Q-function and the related error function
erf(·) are ubiquitous in and fundamental to communica-

tion theory, not to mention all other fields of statistical sciences
where the Gaussian/normal distribution is often encountered.
In particular, the Q-function measures the tail probability of a
standard normal random variable X having unit variance and
zero mean, i.e., Q(x) = Prob(X ≥ x), by which

Q(x) � 1√
2π

∫ ∞

x

exp
(
− 1

2 t
2
)
dt (1a)

=
1

π

∫ π
2

0

exp
(
− 1

2 sin2 θ
x2
)
dθ [for x ≥ 0]. (1b)

The latter integral is the so-called Craig’s formula [1], [2],
obtained by manipulating the original results of [3], [4].
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The Gaussian Q-function has many applications in statis-
tical performance analysis such as evaluating bit, symbol,
and block error probabilities for various digital modulation
schemes and different fading models [5]–[11], and evaluat-
ing the performance of energy detectors for cognitive radio
applications [12], [13], whenever noise and interference or
a channel can be modelled as a Gaussian random variable.
However, in many cases formulating such probabilities will
result in complicated integrals of the Q-function that cannot
be expressed in a closed form in terms of elementary functions.
Therefore, finding tractable approximations and bounds for
the Q-function becomes a necessity in order to facilitate
expression manipulations and enable its application over a
wider range of analytical studies. Toward this demand, sev-
eral approximations and bounds are already available in the
literature.

A. Approximations and Bounds for the Q-Function

A brief overview on the existing approximations and bounds
for the Gaussian Q-function is presented herein with the
focus on those with the exponential form. The approximations
and bounds presented in [14]–[26] have relatively complex
mathematical forms and achieve high accuracy. Although some
of them may lead to closed-form expressions, which would
be otherwise impossible to solve, e.g, the polynomial approx-
imation in [21] succeeds in analytically evaluating the average
symbol error rate of pulse amplitude modulation in log-normal
channels, the mathematical complexity of the aforementioned
approximations make them still not quite convenient for alge-
braic manipulations in statistical performance analysis despite
being accurate. For example, the approximation proposed by
Börjesson and Sundberg in [15] is very complicated and best
suitable for programming purposes. Therefore, the simplest
known family with the form of a sum of exponentials was
proposed by Chiani et al. [27], to provide bounds and approx-
imations based on the Craig’s formula.

The expression for approximating or bounding Q(x) by
Q̃(x) that is generally suitable for applications, where one
needs to express average error probabilities for fading distri-
butions with adequate accuracy, is written as [27, Eq. (8)]

Q̃(x) �
N∑

n=1

an exp
(
−bnx

2
)

[for x ≥ 0 only]. (2)

Chiani et al. use the monotonically increasing property of the
integrand in (1b) and apply the rectangular integration rule to
derive exponential upper bounds. Moreover, when using the
trapezoidal rule with optimizing the center point to minimize
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the integral of relative error in an argument range of interest, an
approximation with two exponential terms, N = 2, is obtained.

Other exponential approximations and bounds are also avail-
able [28]–[32]. A coarse single-term exponential approxima-
tion is presented in [28] based on the Chernoff bound, and a
sum of two or three exponentials is proposed in [29], which is
known as the Prony approximation. Another approximation of
the exponential form that shows good trade-off between com-
putational efficiency and mathematical accuracy is proposed
in [30]. In [31], the composite trapezoidal rule with optimally
chosen number of sub-intervals is used. The authors in [32]
introduce a single-term exponential lower bound by using a
tangent line to upper-bound the logarithmic function at some
point which defines the tightness of the bound.

All of the aforementioned references propose approxima-
tions and bounds for the Gaussian Q-function and they can
be also used as building blocks to approximate the pow-
ers or polynomials thereof. However, none of them directly
derived approximations or bounds to evaluate the powers
or polynomials of the Q-function, which arise frequently
when analyzing various communication systems, e.g., error
probability in quadrature amplitude modulation (QAM).

B. Applications of the Approximations and Bounds

The above approximations and bounds have been imple-
mented in the different areas of communication theory. We
provide herein few examples from the literature. The approx-
imations from [19] and [24] are used respectively to derive
the frame error rate for a two-way decode-and-forward relay
link in [33], and to analytically evaluate the average of integer
powers of the Q-function over η–μ and κ–μ fading in [34]. As
for the exponential form, it is used in [27] to compute error
probabilities for space–time codes and phase-shift keying.
Furthermore, (2) is used to derive the average bit-error rate
for free-space optical systems in [35] and the symbol error
rate of phase-shift keying under Rician fading in [36].

In general, the elegance of the exponential approximation
in (2) can be illustrated by∫

F
(
Q(f(γ))

)
Y (γ) dγ ≈

∑
n

an

∫
exp(−bn[f(γ)]

2)Y (γ) dγ,

where Y (γ) is some integrable function and F
(
Q(f(γ))

)
is

some well-behaved function of the Q-function that accepts
a Taylor series expansion for 0 ≤ Q(f(γ)) ≤ 1

2 . Above, the
polynomial of Q(f(γ)) from the Taylor series of F

(
Q(f(γ))

)
is approximated by (2), either directly or indirectly (by first
approximating Q(f(γ)) by Q̃(f(γ)) and then expanding the
polynomial of the sum), which results in the latter sum.

Evaluating the integral in the above summation is usually
much easier than evaluating the integral in the original expres-
sion at the left-hand side. This idea is applied in [37], when
evaluating the average block error rate for Gamma–Gamma
turbulence models under coherent binary phase-shift keying.
Taylor series can also be used to approximate Y (γ) or parts
of it [9], [37], eventually leading to closed-form expressions.
Finally, it is worth mentioning that increasing the number
of exponential terms in the summation (2) will typically

not increase the analytical complexity since summation and
integration can be reordered in the expression under certain
conditions and, hence, the integral is solved only once.

C. Contributions and Organization of the Paper

The objective of this paper is to develop new accurate
approximations and bounds for the Gaussian Q-function and
functions thereof. To that end, we adopt the exponential sum
expression originally proposed in [27] and restated in (2)
and focus on the research problem of finding new, improved
coefficients for it.1 The coefficients developed herein will
work as one-to-one replacements to those available in existing
literature [27]–[32], but they offer significantly better accuracy
and flexibility as well as generalization to various cases that
have not been addressed before.

The major contributions of this paper are detailed as follows:

• We propose an original systematic methodology to op-
timize the set of coefficients {(an, bn)}Nn=1 of (2) to
obtain increasingly accurate but tractable approximations
for the Q-function with any N in terms of the absolute
or relative error, based on the minimax approximation
theory, by which the global error is minimized when the
corresponding error function is uniform.

• We further repurpose the methodology to find new expo-
nential lower and upper bounds with very high accuracy
that is comparable to, or even better than, the accuracy
of other bounds of more complicated forms.

• We generalize our approximations and bounds to apply
to polynomials and integer powers of the Q-function, or
even implicitly to any generic function of the Q-function
that accepts a Taylor series expansion.

• We show that the proposed minimax procedure reflects
high flexibility in allowing for lower absolute or relative
error at the expense of the other, or in allowing for
higher accuracy in a specified range at the expense of
less accuracy in the remaining ranges and a worse global
error, by controlling weights assigned to the resulting
non-uniform error function’s extrema.

These contributions are verified by means of an extensive set
of numerical results and an application example illustrating
their accuracy and significance in communication theory.

The remainder of this paper is organized as follows. In
Section II, we present the mathematical preliminaries needed
for the formulation of the research problem and proposed
solutions. Section III introduces our new approximations
and bounds for the Q-function. Section IV presents our
new approximations and bounds for the polynomials of the
Q-function. The increasing accuracy of the novel solutions is
demonstrated as well as comparisons with the best numerical
alternatives and other known approximations having the same
exponential form are presented in Section V. Concluding
remarks are given in Section VI.

1Throughout the paper, when referring to ‘our approximation/bound’, we
mean the existing sum expression (2) from [27] with our new coefficients.
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II. PRELIMINARIES

The case x ≥ 0 is presumed throughout this article. The
results can be usually extended to the negative real axis using
the relation Q(x) = 1 − Q(−x). Likewise, the following
discussions focus solely on the Gaussian Q-function but the
results directly apply also to the related error function erf(·)
and the complementary error function erfc(·) through the
identity erfc(x) = 1 − erf(x) = 2Q

(√
2x
)

, as well as to
the cumulative distribution function Φ(·) of a normal random
variable with mean μ and standard deviation σ through the
identity Φ(x) = 1 − Q

(
x−μ
σ

)
, which can be extended to

x < μ using the relation Φ(x) = 1− Φ(2μ− x) = Q
(
μ−x
σ

)
.

The approximations and bounds will be optimized shortly
in terms of the absolute or relative error using the minimax
approach, in which the possible error in the worst-case sce-
nario (i.e., the maximum error over all x) is minimized. The
baseline absolute and relative error functions2 are defined as

d(x) � Q̃(x)−Q(x), (3)

r(x) � d(x)

Q(x)
=

Q̃(x)

Q(x)
− 1, (4)

respectively, and the shorthand e ∈ {d, r} represents both of
them collectively in what follows. In particular, the tightness
of some approximation or bound Q̃(x) over the range [x0, x∞]
is measured as

emax � max
x0≤x≤x∞

|e(x)|, (5)

and the approximations and bounds for minimax error opti-
mization are solved as

{(a∗n, b∗n)}Nn=1 � argmin
{(an,bn)}N

n=1

emax, (6)

where e(x) ≥ 0 for upper bounds and e(x) ≤ 0 for lower
bounds when x ≥ 0.

Our optimization method depends on the extrema of the
error function (cf. Fig. 1), which occur at points xk where
e′(xk) = 0, for which the derivatives are given by

d′(x) = Q̃′(x)−Q′(x), (7)

r′(x) =
Q̃′(x)Q(x)− Q̃(x)Q′(x)

[Q(x)]2
. (8)

The derivatives of the approximation/bound in (2) and of the
Q-function in (1) are

Q̃′(x) = −2 ·
N∑

n=1

an bn x exp
(
−bnx

2
)
, (9)

Q′(x) = − 1√
2π

exp
(
− 1

2x
2
)
, (10)

respectively. Let us also note that the absolute error converges
to zero when x tends to infinity, i.e., lim

x→∞ d(x) = 0, whereas
for the relative error, we have

lim
x→∞ r(x) =

{
∞, when min{bn}Nn=1 = 1

2 ,

−1, otherwise.
(11)

2These should not be confused with the error function erf(·).

emax

−emax

e(x)

x

−1

e ∈ {d, r}
e(x) = d(x)

e(x) = r(x)

e(0) = 0

e(0) = −emax

x1 x2 x3 x4

xK+1

e′(x1) = 0

e(x1) = emax

e′(x2) = 0

e(x2) = −emax

e′(x3) = 0

e(x3) = emax

e(xK+1) = −emax

e′(x4) = 0

e(x4) = −emax

Fig. 1. The optimized minimax error function starts either from e(0) = 0 or
from e(0) = −emax and oscillates between local maximum and minimum
values of equal magnitude; when considering relative error, this is possible
only in a finite range of x as opposed to global bounds obtained w.r.t. absolute
error. The minimax criterion implies uniform error function with wk = 1.

This renders some specific restrictions for all upper bounds and
optimization w.r.t. the relative error as is shortly observed.

For reference, the Craig’s formula in (1b) can also
be approximated using various numerical integration tech-
niques [38]. This results in low-accuracy approximations or
bounds of the same form as (2) with numerical coefficients
that can be directly calculated from the weights and nodes of
the corresponding numerical method.

III. MINIMAX APPROXIMATIONS AND BOUNDS
FOR THE GAUSSIAN Q-FUNCTION

We adopt the weighted sum of exponential functions in (2)
to express global minimax approximations and bounds for the
Gaussian Q-function. In particular, according to Kammler in
[39, Theorem 1], the best approximation in which the maxi-
mum value of the corresponding error function is minimized
to reach its minimax error, occurs when the error function is
uniformly oscillating between maximum and minimum values
of equal magnitude, as illustrated in Fig. 1.

The original idea in our work is that one can describe
the minimax error function by a set of equations, where the
number of equations is equal to the number of unknowns.
These equations describe the error function at the extrema
points in which all of them have the same value of error and
the derivative of the error function at these points is equal to
zero. Our ultimate goal is then to find the optimized set of
coefficients, {(a∗n, b∗n)}Nn=1, that solves the formulated set of
equations. In general, for problem formulation of e ∈ {d, r},{

e′(xk) = 0, for k = 1, 2, 3, . . . ,K,

e(xk) = (−1)k+1 wk emax, for k = 1, 2, 3, . . . ,K,
(12)

where wk is a potential weight for error at xk (set wk = 1 as
default for uniform approximations/bounds) and K is the num-
ber of the error function’s extrema excluding the endpoints.
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TABLE I
NUMBER OF ERROR EXTREMA EXCLUDING ENDPOINTS NEEDED TO

FORMULATE THE PROBLEM IN TERMS OF ABSOLUTE OR RELATIVE ERROR.

Error measure, e Type Number of extrema

Absolute error, d
Upper bound K = 2N − 1
Approximation K = 2N
Lower bound K = 2N

Relative error, r
Upper bound K = 2N − 2
Approximation K = 2N − 1
Lower bound K = 2N − 1

Table I summarizes the values of K in terms of the number
of sum terms N for the different cases considered next.

In this study, we aim to minimize the global error over
the whole positive x-axis, which is possible in terms of the
absolute error. However, the relative error does not converge
to zero when x tends to infinity as seen in (11). Thus, we
must choose a finite interval on the x-axis, in which its right
boundary, x∞, is equal to xK+1 as will be discussed later.
On the other hand, the left boundary of the x-range, x0, is
equal to zero for both error measures. In addition to wk, k =
1, 2, ...,K, the weight set also includes w0 which occurs at
x0, and wK+1 which occurs at xK+1 for the relative error.

Although the minimum global absolute or relative error
is obtained when the error function is uniform, the weight
set that can be controlled is added throughout this article
when formulating the approximation or bound problem to
facilitate a compromise between dmax and rmax when tailoring
it specifically for some application. The weight set can be
even controlled to obtain better accuracy in some specified
range of the argument. It should be mentioned that, in these
cases, at least one of the weights has to be equal to one,
representing the maximum error, and the remaining should be
smaller and positive. When all of the weights are equal to
one, the approximations and bounds are called uniform and
they achieve the global minimax error as discussed earlier.

Two variations of equations can be formulated depending on
whether the error starts from e(0) = 0 or e(0) = −w0 emax

as seen in Fig. 1. The importance of the former case comes
from the fact that such approximation or upper bound gives
the exact same value as the Q-function at x = 0, resulting
in a continuous function when extending it to the negative
values of x. The latter case gives slightly better accuracy at
the expense of the discontinuity that occurs at x = 0.

A. Problem Formulation in Terms of Absolute Error

Here we describe the formulation of the approximations
and bounds of the Q-function when minimizing the global
absolute error according to (5) and (6). The corresponding set
of coefficients, {(an, bn)}Nn=1, in (2) are optimized as follows:

{(a∗n, b∗n)}Nn=1 � argmin
{(an,bn)}N

n=1

max
x≥0

∣∣∣Q̃(x)−Q(x)
∣∣∣ . (13)

1) Approximations: The approximation’s maximum abso-
lute error is globally minimized when all local error extrema
are equal to the global error extrema. The extrema occur where
the derivative of the absolute error function is zero. For the
produced error, all positive and negative extrema have the same

value of error, i.e., dmax. Moreover, we optimize (3) at x0 = 0
for two variations: d(0) = 0 or d(0) = −w0 dmax, where
Q(0) = 1

2 and Q̃(0) =
∑N

n=1 an.
Therefore, we can formulate the approximation problem as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
d′(xk) = 0, for k = 1, 2, 3, . . . ,K,

d(xk) = (−1)k+1 wk dmax, for k = 1, 2, 3, . . . ,K,{∑N
n=1 an = 1

2 , when d(0) = 0,∑N
n=1 an = 1

2 − w0 dmax, when d(0) = −w0 dmax.

(14)

Although only the set {(a∗n, b∗n)}Nn=1 is needed to construct
the minimax absolute error function indicated by e ∈ {d, r}
together with e(x) = d(x) in Fig. 1, other unknowns will also
appear when solving the optimization problem in (13), which
are {xk}Kk=1 and dmax for the uniform approximations and
bounds.

The number of equations throughout this paper is always
equal to the number of unknowns. For the minimax ap-
proximation in terms of absolute error, a set of 4N + 1
equations is constructed to solve 4N +1 unknowns using 2N
extrema points according to Table I. Each extremum yields two
equations; one expresses its value, and the other expresses the
derivative of the error function at that point. An additional
equation originates from evaluating the error function at x0.
This corresponds to either e(0) = 0 or e(0) = −emax as
indicated in Fig. 1. For any N , a solution to the system
of equations yields {(a∗n, b∗n)}Nn=1 that defines the minimax
approximation, and we prove by construction that it exists.

2) Bounds: For the bounds, we use the same approach
as for the approximations with ensuring that d(x) ≤ 0 and
d(x) ≥ 0 for the lower and upper bounds, respectively, when
x ≥ 0. The former results in 4N +1 equations, with the opti-
mized absolute error function starting from d(0) = −w0 dmax,
the maxima equal to zero and the minima equal to −wk dmax.
On the other hand, the latter results in 4N equations with
the corresponding error function starting from d(0) = 0, the
maxima equal to wk dmax and the minima equal to zero,
with forcing the lowest value in the set {bn}Nn=1 to be 1

2 ,
so that both error measures are always positive. Otherwise
r(x) will converge to a negative value as shown in (11), d(x)
would be negative for large x too, and we could not find an
upper bound of the Q-function. Moreover, the derivative of
the corresponding error function is equal to zero at all the K
extrema points for both types of bounds.

B. Problem Formulation in Terms of Relative Error

Here we describe the formulation of the exponential ap-
proximations and bounds of the Q-function when minimizing
the global relative error defined by (4). We optimize the
corresponding set of coefficients, {(an, bn)}Nn=1, as follows:

{(a∗n, b∗n)}Nn=1 � argmin
{(an,bn)}N

n=1

max
0≤x≤xK+1

∣∣∣∣∣ Q̃(x)

Q(x)
− 1

∣∣∣∣∣ . (15)

Unlike the absolute error, the relative error does not converge
to zero when x tends to infinity as shown in (11). This is
why we must limit the minimax approximation in terms of
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the relative error to the finite range by choosing x∞ = xK+1,
as opposed to x∞ → ∞ in the case of absolute error. This
yields{

r (xK+1) = wK+1 rmax, for upper bounds,
r (xK+1) = −wK+1 rmax, otherwise.

(16)

Hence, the relative error function is minimized globally over
[0, xK+1]. This can be seen by the case where e(x) = r(x)
in Fig. 1, in which the point xK+1 is chosen so that its
corresponding error value is equal to −rmax.

1) Approximations: In regard to the relative error, the same
approach as for the absolute error is implemented herein
in order to construct the minimax approximations with the
corresponding uniform error function illustrated by e ∈ {d, r}
together with e(x) = r(x) in Fig. 1. A set of 4N equations
originates from the 2N − 1 extrema and the two endpoints,
which are x0 and xK+1. It is noted that, r′(xK+1) 	= 0
and only one equation can be acquired from this point, since
the minimax approximation herein is limited to the range
0 ≤ x ≤ xK+1. Therefore, the optimized coefficients for
the two variations are found by solving the following set of
equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

r′(xk) = 0, for k = 1, 2, 3, . . . ,K,

r(xk) = (−1)k+1 wk rmax, for k = 1, 2, 3, . . . ,K,{∑N
n=1 an = 1

2 , when r(0) = 0,∑N
n=1 an = 1

2 − 1
2 w0 rmax, when r(0) = −w0rmax,

r(xK+1) = −wK+1 rmax.

(17)

2) Bounds: We optimize the lower and upper bounds for
0 ≤ x ≤ xK+1 in terms of the relative error using the same
problem formulation as for the absolute bounds but with 4N
equations in case of lower bounds, and 4N − 1 equations in
case of upper bounds, and by substituting d by r, in addition
to enforcing (16) that describes the error function at xk+1.

C. Proof by Construction: Solutions for N = 1, 2, 3, . . . , 25

We prove the existence of the proposed solutions to (13) and
(15) by construction, i.e., numerically solving (14) and (16),
(17). In particular, we implemented the set of equations of each
of the considered variations in Matlab and used the fsolve
command with equal number of equations and unknowns to
find the optimized set of coefficients {(a∗n, b∗n)}Nn=1, where the
main challenge was to choose heuristic initial guesses. For
the initial guesses of lower values of N , we used iteratively
random values for emax, {(an, bn)}Nn=1 and {xk}Kk=1 with
K as given in Table I, along the process of finding their
optimal values that solve the proposed research problem. After
reaching certain N which is enough to form a relation between
the previous values, we constructed a pattern to predict their
successive values for higher values of N .

The sets of optimized coefficients are solved herein up to
N = 25 for the novel minimax approximations and bounds as
well as released to public domain in a supplementary digital
file with xK+1 ranging from 1 to 10 in steps of 0.1 for
the relative error. Nevertheless, let us illustrate the sets of

optimized coefficients of the absolute error for d(0) = −dmax

and N = 2, 3, 4 in Table II, in addition to the set of optimized
coefficients of the relative error in the case where r(0) = 0,
xK+1 = 6 and N = 20, for quick reference.

Our optimized coefficients yield very accurate approxima-
tions that outperform all the existing ones in terms of the
global error. For example, for N = 2, our approximation yields
dmax = 9.546 · 10−3 and the reference approximations [27],
[29] and [30], yield dmax = 1.667 · 10−1, 1.450 · 10−1 and
1.297 ·10−1, respectively. The accuracy can be increased even
further by increasing N . For example, the tabulated coeffi-
cients of the relative error for N = 20 render a tight uniform
approximation in terms of the relative error while satisfying
Q̃(0) = Q(0) = 1

2 . Namely, |r(x)| ≤ r∗max < 2.831 · 10−6

when x ≤ 6 and |r(xk)| = r∗max at all the K = 39 local
maximum error points. This approximation is also tight in
terms of the absolute error since |d(x)| ≤ dmax < 1.416 ·10−6

for all x ≥ 0 and the largest local error maxima are observed
when x 
 1 while |d(x)| 
 dmax for x > 1.

TABLE II
THE SET OF OPTIMIZED COEFFICIENTS OF THE ABSOLUTE ERROR FOR

d(0) = −dmax AND N = 2, 3, 4, AND THE SET OF OPTIMIZED
COEFFICIENTS OF THE RELATIVE ERROR FOR r(0) = 0, xK+1 = 6 AND

N = 20.

N n a∗n b∗n
2 1 3.736889599671366e−1 8.179084584179674e−1

2 1.167651897698837e−1 1.645047046852372e+1

3 1 3.259195350781647e−1 7.051797307608448e−1
2 1.302528627687561e−1 5.489376068647640e+0
3 4.047435009465072e−2 1.335391071637174e+2

4 1 2.936683276537767e−1 6.517755981618476e−1
2 1.357580421878250e−1 3.250040490513459e+0
3 5.245255757691102e−2 3.186882707224491e+1
4 1.673209873360605e−2 7.786613983601425e+2

20 1 7.558818716991463e−2 5.071654316592885e−1
2 7.283303478836754e−2 5.678040654656637e−1
3 6.886155063785772e−2 7.104625738749141e−1
4 6.439172935348138e−2 9.994060383297402e−1
5 5.779242444673264e−2 1.601184575755943e+0
6 4.808415837769939e−2 2.928772702717808e+0
7 3.692309273438261e−2 6.019071014437780e+0
8 2.656563850645104e−2 1.358210951915055e+1
9 1.820530043799255e−2 3.304520236491907e+1
10 1.201348364882034e−2 8.584892772825742e+1
11 7.675500579336059e−3 2.375751011169581e+2
12 4.755522827095319e−3 7.025476884457923e+2
13 2.853832378872099e−3 2.237620299200472e+3
14 1.652925274323080e−3 7.776239381556935e+3
15 9.183202474880042e−4 3.007617539336614e+4
16 4.846308477760495e−4 1.334789827558299e+5
17 2.391717111298367e−4 7.146006517383908e+5
18 1.074573496224467e−4 5.056149657406912e+6
19 4.174113678130675e−5 5.790627530626244e+7
20 1.229754587599716e−5 2.138950747557404e+9

IV. APPROXIMATIONS AND BOUNDS FOR
POLYNOMIALS OF THE Q-FUNCTION

In this section, we generalize the novel minimax optimiza-
tion method presented in Section III, to derive approximations
and bounds for any polynomial of the Q-function and any
integer power of the Q-function as a special case. In fact,
this method can be applied to expressing approximations and
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bounds for many well-behaved functions of the Q-function
using Taylor series expansion, in which it is represented as an
infinite sum of terms. Therefore, Taylor series is a polynomial
of infinite degree [40] that one needs to truncate to get a Taylor
polynomial approximation of degree P .

In general, any P th degree polynomial of the Q-function is
expressed as

Ω
(
Q(x)

)
�

P∑
p=0

cp Q
p(x), (18)

where {cp}Pp=0 are constants and called the polynomial co-
efficients. In particular, the novel optimization methodology
is extended to such polynomials by directly approximat-
ing/bounding Ω

(
Q(x)

)
by Q̃Ω(x) that has the same expo-

nential form as Q̃(x) in (2). We optimize the coefficient set,
{(an, bn)}Nn=1, in order to minimize the maximum absolute
or relative error of the polynomial, which results in a uniform
error function as described before.

The absolute and relative error functions for any polynomial
of the Q-function are defined respectively as

dΩ(x) � Q̃Ω(x)−
P∑

p=0

cp Q
p(x), (19)

rΩ(x) �
dΩ(x)∑P

p=0 cp Q
p(x)

=
Q̃Ω(x)∑P

p=0 cp Q
p(x)

− 1. (20)

The derivatives of the error functions are

d′Ω(x) = Q̃′
Ω(x)−

P∑
p=1

p cpQ
p−1Q′(x), (21)

r′Ω(x) =
Q̃′

Ω(x)
∑P

p=0 cp Q
p(x)− Q̃Ω(x)

∑P
p=1 p cpQ

p−1Q′(x)[∑P
p=0 cp Q

p(x)
]2 ,

(22)
where Q̃′

Ω(x) has the same expression as Q̃′(x) in (9) and
Q′(x) is given by (10).

Following the procedure explained in Section III, and using
the mentioned definitions, approximations/bounds for polyno-
mials of the Q-function are formulated in terms both error
measures. More specifically, what applies to error functions
with the Q-function described by (13)–(17) also applies herein,
with replacing

∑N
n=1 an = 1

2 by
∑N

n=1 an =
∑P

p=0(
1
2 )

p cp
for the absolute and relative errors of the approximations
that start from e(0) = 0 and for the upper bounds. Fur-
thermore, one should replace

∑N
n=1 an = 1

2 − w0 dmax by∑N
n=1 an =

∑P
p=0(

1
2 )

p cp − w0 dmax for the absolute error
and

∑N
n=1 an = 1

2− 1
2w0rmax by

∑N
n=1 an =

∑P
p=0(

1
2 )

p cp−∑P
p=0(

1
2 )

p cp w0 rmax for the relative error of the approxima-
tions that start from e(0) = −w0 emax and for lower bounds.

A. Special Case: Integer Powers of the Q-Function

In general, any polynomial of the Q-function as per (18)
is a linear combination of non-negative integer powers of
the Q-function. The integer powers themselves are important
special cases in communication theory, where they appear
frequently on their own. To that end, one may derive the

optimized approximations and bounds for them by simply
setting the coefficient cp of the required power p in (18)–
(22) to one and the remaining to zero while following exactly
the same optimization procedure as explained above for the
general case of polynomials. It should also be mentioned that,
for the upper bounds, min{bn}Nn=1 = p

2 . We refer to the
approximations and bounds of this special case by Q̃p(·) to
differentiate it from the general case of polynomials.

In the coefficient data that we release to public domain
along with this paper, the sets of optimized coefficients
{(a∗n, b∗n)}Nn=1 for the approximations/bounds of the exponen-
tial form shown in (2) are numerically solved with p = 1, 2, 3,
4 and N = 1, 2, . . . , 25 for the novel minimax approximations
and bounds with xK+1 ranging from 1 to 10 in steps of 0.1
for the relative error. However, the provided approximations
and bounds can be extended to any value of p.

If not approximating directly, the approximations/bounds
for any polynomial of the Q-function with N terms can be
obtained by using the integer powers’ approximations/bounds
(including the first power) as follows:

Ω
(
Q(x)

) ≈ P∑
p=0

cp Q̃p,Np
(x)

=

P∑
p=0

cp

L∏
l=1

Q̃pl,Npl
(x)

=

P∑
p=0

cp

Np1∑
np1

=1

Np2∑
np2

=1

...

NpL∑
npL

=1

L∏
l=1

anpl
[l]

× exp

⎛
⎜⎝−

⎛
⎝ L∑

l=1

bnpl
[l]

⎞
⎠ x2

⎞
⎟⎠, (23)

where
∑L

l=1 pl = p,
∏L

l=1 Npl
= Np,

∑P
p=0 Np = N ,

and anp
[l], bnp

[l] are the coefficients of Q̃pl,Npl
(x). The

ultimate number of terms in (23) may be less than N if some
of them can be combined. The above implies also that the
approximations/bounds of any integer power of the Q-function
with Np terms can be obtained using the product rule.

B. Application Example: Evaluation of the Average SEP in
Optimal Detection of 4-QAM in Nakagami-m Fading

Let us emphasize on the elegance of (2) for approximating
or bounding the Q-function, its integer powers or any poly-
nomial thereof by giving an application example of average
error probabilities over fading channels. In general, they are
obtained for coherent detection in most cases by evaluating

P̄E =

∫ ∞

0

Ω
(
Q(α

√
γ)
)
ψγ(γ)dγ, (24)

where Ω
(
Q(α

√
γ)
)

is some polynomial of the Q-function as
per (18) and refers to the error probability conditioned on the
instantaneous signal-to-noise ratio (SNR), i.e., γ, with ψγ(γ)
being its probability density function, and α is a constant that
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TABLE III
THE SET OF OPTIMIZED COEFFICIENTS OF THE ABSOLUTE ERROR FOR

dΩ(0) = −dmax AND N = 5.

n a∗n b∗n
1 4.920547396876422e−1 5.982476003750250e−1
2 1.587491012166297e−1 2.024383866054074e+0
3 6.460001610510117e−2 1.323465438792062e+1
4 2.567521272080907e−2 1.314581690889673e+2
5 8.236936034796302e−3 3.211202445024321e+3

depends on the digital modulation and detection techniques.
Substituting our approximation into the above equation yields

P̄E ≈
N∑

n=1

an

∫ ∞

0

exp(−bn α
2 γ)ψγ(γ)dγ (25a)

=

N∑
n=1

anΘγ(−bnα
2), (25b)

where Θγ(s) =
∫∞
0

exp(sγ)ψγ(γ) dγ is the moment gener-
ating function associated with the random variable γ.

Let us next evaluate the average symbol error probability
(SEP) in optimal detection of 4-QAM over Nakagami-m
fading channels, under which it is often hard to derive closed-
form expressions for error probabilities if m is not an integer.
Thus, we first solve exponential approximations and bounds
for the conditional SEP in 4-QAM that is a second-order
polynomial of the Q-function as follows [5, Eq. 8.20]:

PE (γ) = 2Q
(√

γ
)−Q2

(√
γ
)
. (26)

By comparing to (18), c0 = 0, c1 = 2, and c2 = −1. This
SEP is approximated by Q̃Ω(x) as described above. Finally,
we substitute the gamma probability distribution in (25a) and
evaluate the integral using [41, Eq. 3.351.3] as

P̄E =
mm

γmΓ(m)

N∑
n=1

an

∫ ∞

0

γm−1 exp

(
−γ

(
bn +

m

γ

))
dγ

=
mm

γm

N∑
n=1

an

(
bn +

m

γ

)−m

, (27)

where m defines the fading parameter, ranging from 0.5 to ∞,
γ is the average SNR, and Γ(·) denotes the gamma function.

The sets of optimized coefficients {(a∗n, b∗n)}Nn=1 for the
approximations and bounds of the conditional SEP in 4-QAM
were solved for N = 1, 2, . . . , 25 for the minimax approach in
terms of both error measures. Table III shows an example of
the coefficients optimized in terms of the absolute error in the
case where dΩ(0) = −dmax and N = 5. These render a tight
uniform approximation with |dΩ(x)| ≤ d∗max < 6.84 · 10−4.

The computational and/or analytical complexity using our
approximations and bounds for the integer powers and the
polynomials of the Q-function is much less than using any
other approximation from the literature, in which none of
them has proposed approximations or lower/upper bounds for
the powers or the polynomials of the Q-function. Therefore,
directly substituting the SEP polynomial by our exponential
approximations is more tractable than evaluating it by applying
reference approximations to (26).
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Fig. 2. Optimal absolute error versus optimal relative error for the first four
powers of the Q-function for the approximations starting from e(0) = 0. The
two-sided vertical arrows indicate rmax for xK+1 ranging from 1 to 10.

V. NUMERICAL RESULTS AND DISCUSSION

Let us next compare the proposed approximations and
bounds with the existing ones having the same exponential
form, in addition to the best approximations among the dif-
ferent numerical integration techniques. The optimized sets of
coefficients, {(a∗n, b∗n)}25n=1 for the cases considered in this
paper, all in terms of both absolute and relative error, are
constructed in this paper to form round 37 000 coefficient sets
in total. Due to Matlab’s fixed (64-bit) floating-point precision,
some other programming software with adjustable precision is
required to pursue the proposed minimax approach for finding
approximations and bounds for values of N much beyond
25. This is because some an become very small when the
corresponding bn become very large resulting in underflow
when computing an exp

(−bnx
2
)

numerically for (2).
To begin, we plot the minimax absolute error versus min-

imax relative error for p = 1, 2, 3, 4, and N = 1, 2, 3, ..., 25
of the approximation starting from e(0) = 0, in Fig. 2, with
showing xK+1 ranging from 1 to 10 for N = 5, 10, 15, 25
in terms of relative error. The other types of approximations
and the lower/upper bounds follow similar behaviour as the
one shown in Fig. 2. It is clear from the figure that, as the
number of exponential terms increases, the minimax absolute
and relative error decrease significantly.

For reference, we have investigated the different numerical
integration techniques and their h-point composites (up to
h = 4) that can be implemented to approximate the Gaussian
Q-function as a weighted sum of exponentials in terms of
both absolute and relative errors. However, we only include
the Legendre rule and its four-point composite formula in
Fig. 3, where they achieve the least global error among all
the other numerical methods and their composites, respec-
tively, along with the two types of the proposed minimax
approximations. In addition, the global error values of the
existing approximations of the same form are also calculated
and plotted in the same figure for specific number of terms,
namely, N = 1, 2, 3, 4, where Q̃(·) is expressed using one
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Fig. 3. Comparison of the absolute error between our approximations and
those obtained using [27], [29], [30] and [31], as well as those calculated
using Legendre rule and its 4-point composite version.

exponential in [30], two exponentials in [27], [29] and [30],
three exponentials in [29], [30] and [31], and four exponentials
in [31]. The composite right-rectangular rule, which was used
to approximate Q(·) in [27], is also plotted for comparison.
In Fig. 3, we only include the absolute error since the relative
error illustrates similar results, and only the maximum error
over x ≥ 0 is compared.

It is evident from the figure that our approximations out-
perform all of the existing approximations as well as those
obtained from numerical integration in terms of the global
error, and as the number of terms increases, even better
accuracy is obtained. In contrast, we can see that the numerical
methods are converging slowly, causing the number of terms
required by the numerical integration to be much higher than
that required by our approximations in order to achieve the
same level of error.

Table IV compares the values of N between the proposed
approximations and the best integration rules that achieve
certain absolute error levels. Clearly, our approximations are
much more tractable than any other numerical approximation
in terms of the global error, where only a few exponential
terms are needed to achieve high accuracy. For the non-
composite Legendre rule, when applied to approximate the
Q-function, the error will start to oscillate for N > 41 and
eventually converge to infinity. This implies that Legendre
approximations are not reliable and cannot achieve high level
of accuracy. After illustrating the efficiency of our proposed
approximations in terms of the global error, we further verify
the accuracy for the whole considered range of the positive
argument by comparing the relative error function obtained
when applying our approximations and the existing ones for
N = 2 and N = 4 as shown in Fig. 4. In addition to the
fact that our approximations have the least global error, their
accuracy surpass all the reference approximations over the
range [0, 0.4] and attain comparable accuracy for x > 0.4.

For the ranges, where other approximations have better
accuracy, the error function can be reshaped in such a way
that the accuracy over the specified range is improved at the

TABLE IV
COMPARISON BETWEEN N VALUES FOR THE PROPOSED APPROXIMATIONS

AND BOTH COMPOSITE AND NON-COMPOSITE LEGENDRE INTEGRATION
RULES THAT ACHIEVE CERTAIN ABSOLUTE ERROR LEVEL.

Absolute
error

N for approx.
with d(0) = 0

N for composite
Legendre rule

N for non-composite
Legendre rule

1 · 10−2 2 4 4
1 · 10−3 4 44 15
1 · 10−4 8 452 41
1 · 10−5 12 3504 −

cost of less accuracy in the other ranges and, hence, increased
global error. We do that by controlling the weights of the
error function’s extrema of our approximations when setting
the problem conditions.

As an example, let us consider the problem conditions in
(17) that formulates the relative error shown in Fig. 4. We can
increase the accuracy of the approximation which has three
extrema for N = 2 and starts from r(0) = −w0 rmax over the
range [−2, 14], by controlling the weights of the extrema to be
w0 = 1, w1 = w2 = w3 = w4 = 1/10, w4 is the weight at the
right boundary of the interval of optimization. This example is
illustrated in the figure by the solid-diamond line. We can see
that the error has decreased to be more accurate in the specified
range and outperforms the other reference approximations over
most of the range. However, the global error has increased
substantially. This demonstrates how our approximations’ and
bounds’ accuracy can be tailored for specific ranges of values,
depending on their application.

The accuracy of our upper and lower bounds was investi-
gated in terms of both error measures but only the relative
error is shown in Fig. 5 to save space. It is obvious that
our bounds not only have the least global error but they
also outperform the other exponential bounds presented in
[27], [28]. Moreover, over a wide range of the argument, our
bounds have even better accuracy than the other bounds of
more complicated forms. For instance, our lower bound is the
best over the whole positive range x > 0. On the other hand,
our upper bound has better accuracy than that of [22] and
comparable accuracy to [26], although [23] is more accurate
over the range [0, 3.5], where it has a more complex form.

As mentioned earlier, we can achieve better absolute or
relative error at the expense of the other by controlling
the weights of the extrema. We test the trade-off behaviour
herein by starting from the uniform relative error with equal
weights and gradually decreasing the weights’ values, wk, for
k = 1, 2, ...,K while maintaining wK+1 = 1. The maximum
obtained relative and absolute error values are measured and
plotted in Fig. 6 for N = 1, 2, ..., 10. The cross marker in the
figure refers to the minimax error obtained when formulating
the minimax approximation in terms of absolute error, for any
N . In the same way, the plus marker refers to the minimax
error obtained when formulating the minimax approximation
in terms of relative error, for any N . We can see from Fig. 6
that as the absolute error decreases, the relative error increases,
forming smooth transition and a trade-off between the two
error measures. Other transition lines can be formed between
the extremes based on how the weight set is controlled.
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Fig. 4. Comparison among our approximations and the references approx-
imations, [27], [29], [30] and [31] for N = 2 and N = 4 in terms of the
relative error.
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Fig. 5. Comparison between our bounds and the references bounds [22], [23],
[26]–[28] in terms of relative error.

For the relative error, the effect of changing the value
of xK+1 is illustrated in Fig. 7. As the value of xK+1

increases, rmax increases too for the approximations and
bounds, achieving worse accuracy. Furthermore, like noted
before, higher values of N result in highly improved accuracy
as can be seen in the figure, in which the relative error for
N = 25 is several orders of magnitude lower than for N = 5.

In Fig. 8, we compare the absolute error of the pro-
posed approximations and bounds for the third power of the
Q-function, with the error calculated using (23) for all N . The
minimum error among all errors obtained using all the possible
combinations of Npl

, l = 1, . . . , L is considered in this
comparison for each combination set of the Q-function whose
powers add to three. It is noted that representing the integer
powers of the Q-function as weighted sum of exponentials
using (2), is more accurate and simpler than representing it
using the different combinations.

Finally, approximating SEP in (26) directly using (2) in the
coherent detection of 4-QAM is compared in Fig. 9(a) with
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Fig. 6. The trade-off between the absolute and relative error. To obtain better
absolute error than obtained when optimizing the relative error, the weight set
when formulating the optimization problem can be controlled to achieve less
absolute error but with increased relative error, and vice versa.
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Fig. 7. The effect of changing xK+1 on the relative error of the proposed
approximations and bounds, for N = 5 and N = 25.

those obtained using the different combinations when applying
(23). The direct solutions give increasingly higher absolute
and relative accuracy as expected. Figure 9(b) together with
Table V compares the accuracy of the corresponding average
SEP in 4-QAM when evaluated for different values of the
fading parameter m using our exponential approximation,
Q̃Ω(·), with the optimized coefficients that are listed in Ta-
ble III, and the other reference exponential approximations.
The results demonstrate excellent agreement over the entire
range of average SNR between the exact average SEP and
our approximation that is very tight even for lower values
of SNR, in contrast to the references that are accurate only
at higher SNRs. Furthermore, the tightness of our approx-
imation is preserved when changing the value of m, while
the approximation from [27] is accurate only for small values
of m. It should be noted that, when we substitute the refer-
ence approximations with two terms in (26), we get a five-
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Fig. 8. Comparison of the absolute error of the proposed exponential
approximations and bounds for p = 3, with the minimum error among all
errors obtained using all the possible combinations as given in (23).

TABLE V
COMPARISON OF ACCURACY OF AVERAGE SEP FOR 4-QAM OVER

NAKAGAMI-m FADING.

For m = 0.8
Exact 0.530436 0.379629 0.216681 0.101863
[27], N = 5 0.478317 0.368463 0.220893 0.106127
[29], N = 5 0.487660 0.363137 0.211014 0.099769
[30], N = 5 0.499954 0.369262 0.213148 0.100468
Our approx., N = 5 0.530440 0.379629 0.216629 0.101753
Our approx., N = 10 0.530436 0.379629 0.216680 0.101859

For m = 1.9
Exact 0.509397 0.333819 0.142200 0.034658
[27], N = 5 0.474948 0.346634 0.160587 0.040565
[29], N = 5 0.482288 0.333805 0.144435 0.035039
[30], N = 5 0.493865 0.337280 0.143837 0.034678
Our approx., N = 5 0.509432 0.333780 0.142188 0.034474
Our approx., N = 10 0.509398 0.333819 0.142200 0.034652

γ (in dB) −5 0 5 10

term exponential approximation for the SEP. As the number
of exponential terms increases, our approximation becomes
virtually exact, outperforming all the existing approximations
as seen in Table V with already N = 10.

VI. CONCLUSIONS

This paper proposed accurate and tractable approximations,
lower bounds and upper bounds for the Gaussian Q-function
and any polynomial of the Q-function as a weighted sum of
exponential functions. The novel sets of coefficients of the
sum terms are optimally solved in minimax sense to minimize
the global absolute or relative error of approximations/bounds,
where in the limit of a larger number of terms, they approach
very close to their corresponding exact functions. Moreover,
we show that the weights set to the extrema of the error
function can be controlled to compromise between the absolute
and the relative error. The significantly (i.e., by several orders
of magnitude) improved accuracy of the proposed expressions
with optimized coefficients has been demonstrated by compar-
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Fig. 9. (a) Comparison of both absolute and relative error of the proposed
exponential approximations and bounds for SEP in 4-QAM, with those
obtained by applying (23). (b) Average SEP plots for 4-QAM over Nakagami-
m using our approximation and the reference exponential approximations for
N = 5.

ing the results with approximations from numerical integration
and other existing approaches.
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Abstract—In this paper, we present simple and tight approx-
imations for the integer powers of the Gaussian Q-function, in
the form of exponential sums. They are based on optimizing
the corresponding coefficients in the minimax sense using the
Remez exchange algorithm. In particular, the best exponential
approximation is characterized by the alternation of its absolute
error function, which results in extrema that alternate in sign and
have the same magnitude of error. The extrema are described by
a system of nonlinear equations that are solved using Newton–
Raphson method in every iteration of the Remez algorithm, which
eventually leads to a uniform error function. This approximation
can be employed in the evaluation of average symbol error
probability (ASEP) under additive white Gaussian noise and
various fading models. Especially, we present several application
examples on evaluating ASEP in closed forms with Nakagami-m,
Fisher–Snedecor F , η − μ, and κ − μ channels. The numerical
results show that our approximations outperform the existing
ones with the same form in terms of the global error. In addition,
they achieve high accuracy for the whole range of the argument
with and without fading, and it can even be improved further
by increasing the number of exponential terms.

I. INTRODUCTION

The Gaussian Q-function and the directly related error func-
tion erf(·) are of fundamental importance to communication
theory—and many other statistical sciences—whenever noise
and interference or a channel can be modelled as a Gaussian
random variable. This importance is reflected by the different
applications in statistical performance analysis including the
evaluation of error probabilities for various digital modulation
schemes and different fading models [1]. The Q-function does
not have an exact closed expression and it usually exists as a
built-in numerical function in most of the software programs.
Nevertheless, many of the Q-function applications encounter
complicated integrals of it that cannot be simplified to closed-
form expressions in terms of elementary functions.

Therefore, several approximations and bounds are available
in [2]–[13]. The authors in [2] and [3] have proposed rela-
tively complicated, but highly accurate, approximations and
bounds that are impractical for actual evaluation of systems’
performance and more suitable for improving the calculation
efficiency. More accurate approximations for the Q-function
are provided in [4], [5]. The approximation of the first power
in [4] is later simplified in [6] using Taylor series expansion.
An accurate polynomial approximation for Q(x) is derived in

This research work was funded in part by the Academy of Finland under
the grant 326448 “Generalized Fading Distributions and Matrix Functions for
the Analysis of Wireless Communication Systems.”

[7]. A single-term exponential approximation with polynomial
argument of the second degree is presented in [8]. The simplest
form of exponential approximations and bounds were first
proposed by Chiani et al. in [9], and other ones are also
developed using different approaches in [10]–[13].

The aforementioned approximations and bounds find appli-
cations in various communication problems. For example, the
approximations in [7] are applied to analytically calculate the
average symbol error rate of pulse amplitude modulation in
log-normal channels. In [8], the authors derive the probability
of detection for an energy detector over a Rayleigh fading
channel. Moreover, the exponential approximations in [9] are
implemented to compute error probabilities for space–time
codes and phase-shift keying.

The aim of this work is to develop new accurate approx-
imations for the Gaussian Q-function and its integer powers
by adopting the simple exponential form originally proposed
in [9] with acquiring novel, improved coefficients for it. The
work in [9] is limited to two-term approximation without
methodology for optimally extending it to higher number
of terms and integer powers. In particular, we minimize the
maximum absolute difference between the exponential sum (3)
and Qp(x) to obtain the best global minimax approximation
for any number of terms like we did in [13], but now we avoid
complicated nonlinear equations thereof, numerical solving of
which is very sensitive to the right choice of initial guesses.

We solve the coefficients by the Remez exchange algorithm
and propose a new heuristic method to find the initial guesses
needed for it. The resulting approximations render significantly
higher accuracy in terms of global error and adequate accuracy
for the whole range of the argument when compared to the
existing ones of [9]–[11] with the same form and number
of terms. The accuracy can even be increased further by
increasing the number of exponential terms. Finally, some
application examples on evaluating average error probabilities
over different generalized fading distributions are provided
to validate the high accuracy of the new approximations in
comparison to the reference approximations.

II. PROBLEM FORMULATION

The Gaussian Q-function is defined classically as

Q(x) � 1√
2π

∫ ∞

x

exp
(
− 1

2 t
2
)
dt. (1)

An alternative representation in the polar domain was devel-
oped by Craig [14] for communication theory applications as



Q(x) =
1

π

∫ π
2

0

exp
(
− 1

2 sin2 θ
x2
)
dθ, (2)

that is valid for x ≥ 0 only. Indeed, throughout this article,
we shall confine our discussions to the domain x ≥ 0 since
the results can be trivially extended to the negative real axis
using the relation Q(x) = 1−Q(−x).

The weighted sum of exponential functions adopted herein
for approximating Qp(x) is written as [9, Eq. (8)]

Q̃p(x) �
N∑

n=1

an exp
(
−bnx

2
)
, (3)

that is likewise valid for x ≥ 0 only. In [9], Chiani et al. use the
trapezoidal integration rule to find {(an, bn)}Nn=1 for N = 2
by optimizing the center point of (2) to minimize the integral
of relative error in an argument range of interest. Moreover,
other approximations for any N are also derived using the
rectangular rule with non-optimized equispaced points.

Our research problem is to optimize the coefficients of the
approximation in the sense of minimax absolute error as

{(a∗n, b∗n)}Nn=1 � argmin
{(an,bn)}N

n=1

dmax, (4)

in which dmax refers to the global tightness of the approxi-
mation Q̃p(x) over the range [0,∞) and is measured as

dmax � max
x≥0

|d(x)|. (5)

The above absolute error function is defined as

d(x) � Q̃p(x)−Qp(x), (6)

and it converges to zero when x tends to infinity, i.e.,
limx→∞ d(x) = 0. Thus, in plain words, our goal that is
expressed in (4) is to solve the optimized set of coefficients
{(a∗n, b∗n)}Nn=1 to minimize dmax given in (5), substitute them
in (3), and so obtain increasingly accurate approximations not
only for the Q-function but also for its integer powers.

III. SOLUTION BY REMEZ EXCHANGE ALGORITHM

We solve (4) by applying the famous exchange algorithm
established by Evgeny Remez in 1934. The Remez algorithm
is an iterative methodology that can be used to derive the best
approximation in the minimax sense using different nonlinear
approximating functions (that are typically Chebyshev polyno-
mials) and is characterized by the uniform alternation of the
corresponding error function [15] as seen in Fig. 1 after the
third iteration. In this paper, we use the sum of exponentials
defined in (3) as the approximating function to obtain the
best unique approximation for the power of the Q-function,
since it is a completely monotonic function [16], [17]. The
corresponding error function should alternate exactly 2N times
on [0,∞) between maximum and minimum values of equal
magnitude, resulting in a total of 2N +1 extrema points. The
exponential approximation also results in 2N + 1 unknowns,
namely the 2N coefficients of (3) and the global error per (5).
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Fig. 1. Iterations of the Remez exchange algorithm for N = 3.

A. Algorithm Formulation

The steps for applying the Remez exchange algorithm to
approximate the Q-function are summarized in Algorithm 1.

First, we construct a system of 2N + 1 simultaneous
equations that describe the 2N + 1 extrema of the required
uniform error function as

f (r) �

⎡
⎢⎢⎢⎢⎣

f0(r)
f1(r)

...
f2N (r)

⎤
⎥⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d(x0) + dmax

d(x1)− dmax

...
d(xk) + (−1)k dmax

...
d(x2N ) + (−1)2N dmax

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0, (7)

where xk is the abscissa value of the kth extremum of the error
function and r = [a1, a2, . . . , aN , b1, b2, . . . , bN , dmax]

T is a
vector of the unknowns. The first extremum occurs always
at x0 = 0, which results in d(0) =

∑N
n=1 an − ( 12 )

p since
Qp(0) = ( 12 )

p and Q̃p(0) =
∑N

n=1 an. The adopted expo-
nential approximation results in a nonlinear type of equations,
opposing to the linear type which usually occur with the best
polynomial approximations and often accompanied with the
Remez algorithm whenever it is presented in the literature.

The Newton–Raphson method is a root finding technique
that can be regarded as a somewhat ideal solver for this system
of nonlinear equations since it is quadratically convergent
when approaching the root. It is also an iterative method that
requires initial guesses for the unknowns (roots) and we refer
to its iterations as the inner iterations to differentiate them
from the outer ones of the Remez algorithm. Furthermore,
it is based on approximating a continuous and differentiable
function by a straight line tangent to it, which results when
applied on our system of equations (7) in

r(v+1) = r(v) −
[

J(v)
(

r(v)
)]−1

f
(

r(v)
)
, (8)



where v is the inner-iteration counter, and J(·) is the Jacobian
matrix that is calculated as

J (r) =

⎡
⎢⎢⎢⎢⎢⎣

∂f0(r)
∂r0

∂f0(r)
∂r1

. . . ∂f0(r)
∂r2N

∂f1(r)
∂r0

∂f1(r)
∂r1

. . . ∂f1(r)
∂r2N

...
...

. . .
...

∂f2N (r)
∂r0

∂f2N (r)
∂r1

. . . ∂f2N (r)
∂r2N

⎤
⎥⎥⎥⎥⎥⎦ , (9)

with [r0, r1, . . . , r2N ] = [a1, a2, . . . , aN , b1, b2, . . . , bN , dmax],
∂fk(r)
∂an

= exp(−bn x
2
k),

∂fk(r)
∂bn

= −an x
2
k exp(−bn x

2
k), and

∂fk(r)
∂dmax

= (−1)k. This procedure is repeated until the
differences between the values of r of two successive
iterations are smaller than a predefined threshold value. The
Newton–Raphson method is implemented on (7) to find the
vector of unknowns in every iteration of the Remez algorithm.

Assuming that we have a reasonably good initial guess for
{(an, bn)}Nn=1 that formulates the proposed approximation and
enables the construction of the corresponding absolute error
function, we can locate extrema points thereof and the value
of global error and use them for initializing {xk}2Nk=1 (but
fixing x0 = 0) and dmax, respectively. We start the iterative
procedure by solving the nonlinear system of equations using
the aforementioned Newton–Raphson method, together with
the initialized vector of unknowns r(0). The obtained error
function that has the same error value at each of the initial
extrema points with alternating signs does not (yet) necessarily
give the minimax solution since these points may not be at the
extrema of the error function. Therefore, we need to find the
new set of {xk}2Nk=1 by first locating the 2N roots of d(x),
which we denote by {zi}2Ni=1 using any root-finding numerical
technique such as the bisection method or even the Newton–
Raphson method yet again. Then we split the positive x-axis
into 2N + 1 sub-intervals as [0, z1], [z1, z2], . . . , [z2N ,∞).

For each sub-interval, we locate the point at which the error
function attains its maximum magnitude by setting d′(x) = 0,
for which the derivative is defined as

d′(x) = −2
N∑

n=1

an bn x exp
(
−bnx

2
)

(10)

+ p
1√
2π

exp
(
− 1

2x
2
)
Qp−1(x).

In particular, we numerically find xk that meets d′(xk) = 0
after substituting the kth sub-interval in (10). If the root does
not exist, we take the endpoint that gives the larger absolute
value of the two.

Finally, we replace the previous extrema points by the new
ones and continue repeating the above steps for a number of
iterations until the difference between the previous extrema
points and the new ones are below a predefined threshold ε.

B. Initial Guesses

Before we can start the Remez method, we must obtain
good initial guesses for {(an, bn)}Nn=1. In this subsection, we
describe one possible, heuristic method that works for the
cases illustrated in this paper. In particular, we focus on finding

Algorithm 1 Remez Exchange Algorithm
Initialize {x0

k}2Nk=1, ε
Set t ← 0, x0 ← 0
repeat

Solve (7) for unknowns {(an, bn)}Nn=1, dmax using
Newton–Raphson method
Find {zi}2Ni=1

Divide [0,∞) into 2N+1 sub-intervals by using {zi}2Ni=1

as boundaries
for k ← 1 to 2N do

Find the root of d′(x) in the kth sub-interval.
if such root does not exist then

Evaluate d(x) at endpoints and choose the point that
gives the maximum

end if

Denote the obtained root or point by xt+1
k

end for

Set {xt+1
k }2Nk=1 to {xt

k}2Nk=1

t ← t+ 1
until

∣∣∣{xt
k}2Nk=1 − {xt−1

k }2Nk=1

∣∣∣ < ε

Best minimax approximation is obtained

initial guesses for the first power of the Gaussian Q-function,
which we can use as basis for finding initial guesses for higher
values of p as will be explained later in this subsection.

For p = 1 and lower values of N , we assigned repeatedly
different random values for {(an, bn)}Nn=1 and calculated d(x)
per (6) for each N . Once we were lucky enough to come
across any d(x) that has the correct shape with 2N + 1
extrema (e.g., the initial guess in Fig. 1), {xk}2Nk=1 and dmax

were calculated and used together with the corresponding
{(an, bn)}Nn=1 to solve the considered optimization problem
(4) using Algorithm 1. This yields in a unique set of the
optimized coefficients {(a∗n, b∗n)}Nn=1 which gives exactly the
required uniform shape (e.g., the third iteration in Fig. 1).

After reaching certain N , we were able to use curve fitting
techniques to formulate equations that can give good initial
values for {bn}Nn=1 and {zi}2Ni=1 for N = 1, 2, 3, . . . , 10.
Each bn-coefficient of the proposed approximations with
any N has been assigned an equation of the form bn =
An N

Bn + Cn, and An, Bn and Cn are given in Table I.
Moreover, one equation is formulated to calculate all the
initial guesses of zi, i = 1, 2, 3, . . . , 2N , for any value of N
as zi = (0.4845 i−1.364 − 29.72)N (0.003752 i−1.122+0.4884) +
(105.9 i0.1924 − 94.83). Next, the initial guesses for {an}Nn=1

are found by substituting the above calculated initial values in
(6) to formulate a system of linear equations describing the
absolute error function at its roots as d(zi) =

∑N
n=1 cn an −

qi = 0, where cn = exp(−bn z
2
i ) and qi = Q(zi) are constant.

After solving the linear system of equations for the unknowns
{an}Nn=1, we can easily locate the initial guesses for dmax and
{xk}2NK=0 from d(x) that is numerically calculated using the
initial guesses of {(an, bn)}Nn=1.

On the other hand, for higher values of p, we rely on



TABLE I
THE PARAMETERS OF THE POWER EQUATION THAT IS USED TO FIND AN

INITIAL GUESS bn = An NBn + Cn FOR n = 1, 2, . . . , N WITH N ≤ 10.

n An Bn Cn

1 6.514e−1 −1.075e+0 5.051e−1
2 2.389e+1 −1.658e+0 6.633e−1
3 6.908e+2 −2.481e+0 1.217e+0
4 6.699e+4 −3.983e+0 5.022e+0
5 3.002e+6 −4.959e+0 1.183e+1
6 2.793e+8 −6.244e+0 3.453e+1
7 1.063e+14 −1.129e+1 4.356e+2
8 7.474e+16 −1.315e+1 1.188e+3
9 3.721e+19 −1.478e+1 2.790e+3
10 1.048e+20 −1.384e+1 1.808e+4

the optimized coefficients {b∗n}Nn=1 and the corresponding
{xk}2Nk=0 of the first power. We have found that they can be
used to construct initial guesses for the higher powers through
the relations xk,p = xk − 2 p, bn,p = (2.25+ 1.65 (p− 2)) bn,
and dmax,p = dmax where we use the subscripts p only herein
in this equation to differentiate the coefficients of p > 1
from those of the first power. The initial guesses for {an}Nn=1

can be easily found using the linear system of equations that
solves d(xk) =

∑N
n=1 cn an − qk = (−1)k+1dmax, where

cn = exp(−bn x
2
k) and qk = Q(xk) are constant. It is worth

mentioning that using these relations will directly give all the
required initial guesses for p = 2, 3, 4. However, for p ≥ 5,
one might need to use the resulted values from applying the
above relations as a mean value around which small random
variance is introduced; this iterative process is repeated until
the correct number of extrema is obtained.

C. Proposed Approximations
The convergence of the algorithm is illustrated in Fig. 1,

which shows an example of finding the uniform error function
for N = 3 that results in seven extrema points. The approxima-
tion converges to its minimax behaviour after three iterations
starting from a non-uniform error function with the correct
number of extrema and ending with all the extrema points
having the same value of error.

The new sets of the optimized coefficients of the considered
approximation (3) are solved herein for N = 1, 2, 3, . . . , 10
and p = 1, 2, 3, 4 in the minimax sense. In particular, we
have calculated the required initial guesses using the heuristic
method explained in the previous subsection and then applied
the iterative Remez algorithm to obtain the uniform exponen-
tial approximation. In Fig. 2, we illustrate the achieved global
absolute error, dmax, in all the considered cases. We can clearly
see that as the number of terms increases, the global error
decreases resulting in very high accuracy.

IV. APPLICATION EXAMPLES

In general, the ASEP of most of the digital modulation
techniques for coherent detection are linear combinations
of integrals, whose integrand is the product of powers of
the Gaussian Q-function and the fading probability density
function (PDF) of the fading channel as follows:

Ip(α) �
∫ ∞

0

Qp(α
√
γ) fγ(γ) dγ, (11)
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Fig. 2. The global absolute error when Q̃p(x) is the minimax approximation
of Qp(x) for p = 1, 2, 3, 4, and when Q̃1(x) is the non-optimized rectangular
rule in [9], both for N = 1, 2, 3, ..., 10.

where γ is the instantaneous signal-to-noise ratio (SNR), with
fγ(γ) being its PDF, and α is a constant that depends on
the digital modulation and detection techniques. For example,
the conditional SEP in coherent detection of quadrature ampli-
tude modulation (QAM) and differentially encoded quadrature
phase-shift keying (DE-QPSK) are calculated by [1]

PE = 2Q(
√
γ)− Q2(

√
γ), (12)

PE = 4Q(
√
γ)− 8Q2(

√
γ) + 8Q3(

√
γ)− 4Q4(

√
γ), (13)

respectively, and the corresponding ASEPs in terms of (11)
thus become P̄E = 2 I1(1) − I2(1) for 4-QAM and P̄E =
4 I1(1)− 8 I2(1) + 8 I3(1)− 4 I4(1) for DE-QPSK.

Next we substitute the exponential approximation into (11)
to obtain

Ip(α) ≈
N∑

n=1

an

∫ ∞

0

exp(−bn α
2 γ) fγ(γ)dγ

=
N∑

n=1

an Mγ(−bnα
2), (14)

where Mγ(s) =
∫∞
0

exp(sγ) fγ(γ) dγ is the moment gen-
erating function (MGF) associated with the random variable
γ. In what follows, we derive closed-form expressions for
the general ASEP term defined in (11) over different fading
channels, namely Nakagami-m, Fisher–Snedecor F , η − μ,
and κ− μ fading channels.

A. Nakagami-m Fading
For Nakagami-m fading, we substitute the gamma MGF,

i.e., Mγ(s) =
(
1− s γ̄

m

)−m
, in (14) which yields directly

Ip(α) ≈
N∑

n=1

an

(
1 +

bn α
2γ̄

m

)−m

, (15)

where m > 0 is the fading parameter and γ̄ is the average
SNR. The ASEP of 4-QAM and DE-QPSK over Nakagami-m
fading are calculated using (15) and the corresponding abso-
lute error is illustrated in Fig. 3.



B. Fisher–Snedecor F Fading

Next we find analytical results for (11) with Fisher–
Snedecor F distribution which is used to model the composite
effects of both small and large scale fading (shadowing). The
former is assumed to follow Nakagami-m distribution, and the
latter follows inverse Nakagami-m distribution. We substitute
the MGF derived in [18, Eq. 10] in (14), which yields

Ip(α) ≈
N∑

n=1

an 1F1

(
m; 1−ms;

bnα
2γ̄ms

m

)
+

Γ(−ms)

β(m,ms)

×
(
bnα

2γ̄ms

m

)ms

1F1

(
m+ms; 1 +ms;

bnα
2γ̄ms

m

)
,

where m is the fading severity parameter, ms 	= N is the
shadowing parameter, β(·, ·) and 1F1(·; ·; ·) denote beta and
Kummer confluent hypergeometric functions, respectively.

C. Generalized η − μ and κ− μ Fading

Finally, we evaluate the average of arbitrary powers of the
Q-function in (11) over η−μ and κ−μ fading channels. The
former fits well for non-line-of-sight applications and includes
the Nakagami-q (Hoyt) and Nakagami-m fading as special
cases while the latter fits better to line-of-sight applications
and includes the Rice and Nakagami-m fading as special cases.
We calculate their MGFs from their PDFs [19, Eqs. 1, 4] and
we substitute them in (14). Thus, under η−μ fading we obtain

Ip(α) ≈ 2
√
π μμ+ 1

2 hμ

Γ(μ)Hμ− 1
2 γ̄μ+ 1

2

∞∑
u=0

Γ(2μ+ 2u)

u! Γ(μ− 1
2 + u+ 1)

×
(
μH

γ̄

)μ− 1
2+2u N∑

n=1

an

(
bn α

2 +
2μh

γ̄

)−(2μ+2u)

,

where η and μ are the fading parameters, h = (2+η−1+η)/4
and H = (η−1 − η)/4 for Format 1 of the distribution and
h = 1

(1−η2) and H = η/(1 − η2) for Format 2. On the other
hand, for the κ− μ fading model, we obtain

Ip(α) ≈ 1

exp (μκ)

∞∑
u=0

μμ+2u κu(1 + κ)μ+u

γ̄μ+u Γ(u+ 1)

N∑
n=1

an

(
bn α

2 +
μ(1 + κ)

γ̄

)−μ−u

,

(16)
in which κ > 0 is the ratio between the total power of the
dominant components and the total power of the scattered
waves, and μ > 0 is the number of multipath clusters.

V. NUMERICAL RESULTS

Throughout this section, we will be dealing with the ab-
solute error function obtained by subtracting the numerically
calculated exact expression of Ip defined in (11), from the
approximated one in (14). The same applies for ASEP which
is a linear combination of Ip. In Fig. 3, we compare the
absolute error calculated from the proposed approximations
and the existing ones with the same form, for different values
of m. It is observed that our approximation have the least
global error and result in a tighter approximation of the ASEP
over the whole range of the average SNR for m = 0.5 as
seen for 4-QAM plot. For higher values of m, some of the
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Fig. 3. The absolute error of ASEP for 4-QAM and DE-QPSK over
Nakagami-m using the proposed approximation and the reference exponential
approximations.

existing approximations have higher accuracy with exactly the
same number of exponential terms as seen for DE-QPSK plot.
However, when increasing number of terms, the accuracy of
our approximation increases significantly and outperforms the
others for almost the whole range of average SNR. It should
be mentioned that increasing the number of exponential terms
does not affect the analytical complexity. Moreover, when
substituting the reference approximations with two terms in
(12) and (13), we get 5-term and 14-term approximations for
the ASEP in 4-QAM and DE-QPSK, respectively.

Figure 4 compares the difference between the exact Ip in
(11) and its approximations in Nakagami-m, Fisher–Snedecor
F , η − μ, and κ − μ fading channels presented in (15),
after (15), before(16), and in (16), respectively, calculated
using the existing and proposed approximations, for different
values of the fading parameters and different integer powers.
It is seen that the proposed approximations are tight even for
lower SNR values, opposing to the existing ones. In particular,
our approximation outperforms the others for a wide range of
the argument using the same number of exponential terms and
its accuracy can be increased even further by increasing the
number of terms. The reference approximations are derived for
a limited number of terms, namely N = 2, 3 or 4 only, whereas
our approximations are derived till N = 10 to offer higher and
adequate accuracy without affecting analytical complexity.

VI. CONCLUSION

This paper proposed accurate and tractable approximations
for the integer powers of the Q-function as a weighted sum
of exponential functions. The novel sets of coefficients of the
best exponential approximation are optimally solved using the
Remez exchange algorithm to obtain uniform alternating abso-
lute error function. We also considered the general problem of
evaluating the ASEP over different fading channels, in which
we implemented our approximations and showed that they
render high accuracy in terms of global error and for the whole
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Fig. 4. The absolute error of Ip(α) over several fading distributions, all with α = 1 and for different fading parameters.

range of the argument. Even higher accuracy can be achieved
by simply increasing the number of exponential terms.
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Abstract—In this paper, we present a comprehensive overview
of (perhaps) all possible approximations resulting from applying
the most common numerical integration techniques on the Gaus-
sian Q-function. We also present a unified method to optimize
the coefficients of the resulting exponential approximation for any
number of exponentials and using any numerical quadrature rule
to produce tighter approximations. Two new tight approximations
are provided as examples by implementing the Legendre numeri-
cal rule with Quasi-Newton method for two and three exponential
terms. The performance of the different numerical integration
techniques is evaluated and compared, and the accuracy of
the optimized ones is verified for the whole argument-range of
interest and in terms of the chosen optimization criterion.

I. INTRODUCTION

The Gaussian Q-function Q(·) and the related comple-
mentary error function erfc(·) represent significant value in
the performance analysis of different communication systems,
where noise or interference is typically modeled as a Gaussian
random variable, such as evaluating error probabilities. As
the Gaussian Q-function does not have an exact closed-form
expression, several approximations and bounds have been pro-
posed in the literature to facilitate its applications, especially
when complicated integrals involving it are encountered.

The authors in [1] propose tight approximations for the
Q-function using rational Chebyshev functions. In [2], the
authors use integration by parts to derive new bounds and
take their geometric mean to yield an approximation; another
complex approximation with two controllable parameters that
define the level of accuracy is also derived. A relatively
accurate approximation for the Q-function and integer powers
thereof are provided in [3], [4]. Based on [3], an upper bound
is later developed in [5] and the approximation of the first
power is modified in [6] using Taylor series expansion to get
a simpler form. An infinite series expression for erfc(x) that
is more accurate for large values of x is derived in [7].

The authors in [8] present an accurate polynomial ap-
proximation. In [9], a relatively complicated new family of
bounds is proposed using Jensen’s inequality with the Cotes
trapezoidal integration rule and convex–concave partitions of
the integrand of the Craig’s formula:

Q(x) � 1

π

∫ π
2

0

exp
(
− 1

2 sin2 θ
x2
)
dθ [for x ≥ 0]. (1)

Moreover, tight bounds are presented in [10] as a sum of
two exponentials with respective constant and rational fac-
tors. The authors in [11] propose a simple and accurate
mathematical expression as an exponential function with a

polynomial argument of the second degree. In addition, [12]
develops an efficient approximation based on a semi-infinite
Gauss–Hermite quadrature rule that results in a finite sum of
exponential functions.

Chiani et al. in [13] propose a simple family in the form
of exponential sums, in which they apply the trapezoidal
integration rule with optimizing the center point to minimize
the integral of relative error in the range of interest. This family
was later generalized in [14] to be applied to polynomials and
integer powers of the Q-function, or even to generic func-
tions thereof using an original minimax methodology. Other
approximations and bounds of this form are presented in [15]–
[19]. In [15], the composite trapezoidal rule is used with an
optimized number of sub-intervals, whereas in [16], a coarse
single-term approximation from the classic Chernoff bound
is presented. Since the Q-function can be well approximated
as an infinite sum of exponentials, [17] presents the Prony
approximation. An invertible exponential approximation is
presented in [18] and a single-term exponential lower bound is
introduced in [19] by upper-bounding the logarithmic function.

The approximations and bounds in [1]–[12] have relatively
complex mathematical forms, which makes them inconvenient
for algebraic manipulations in statistical performance analysis
despite being accurate. On the other hand, those with the
exponential form [13], [15]–[19] are more suitable to be used
due to their analytical tractability. However, they still provide
an inadequate accuracy for some of the argument range of
interest, i.e., some of them are suitable only for some certain
range. This leads us toward the various numerical integration
methods [20], i.e., quadrature rules, which can be implemented
to approximate the Craig’s form of the Q-function (1) to obtain
a flexible approximations and bounds of the same form as in
[13, Eq. (8)] with numerical coefficients instead. Based on the
accuracy level required in a given range, the suitable numerical
quadrature rule is selected to approximate the Q-function.

The goal of this paper is to present an overview of all the
known numerical integration techniques that are commonly
used to approximate the Gaussian Q-function and compare
their performance. In particular, we consider Newton–Cotes
formulas, Gaussian quadrature formulas and the composite
integration rules. In addition, we generalize the work of Chiani
et al. [13] from only N = 2 exponential terms to any N
and using any numerical integration technique by minimizing
optimization criteria for composite intervals thereof. In terms
of explicit expressions, we provide tight exponential approxi-
mations using the Legendre rule for quick reference.



II. APPROXIMATIONS FROM NUMERICAL INTEGRATION

The quadrature integration techniques that can be used to
approximate the Q-function (viz. Q(x) ≈ Q̃(x)) are catego-
rized herein as Newton–Cotes formulas and Gaussian quadra-
ture formulas. Due to the instability of higher-order numerical
methods (especially with the Newton–Cotes rules, which have
negative weights that can result in subtractive cancellation), the
composite integration rules are also considered in this paper.

In general, any integral of the form
∫ v

u
W (θ) f(θ) dθ, where

W (θ) is some weighting function and [u, v] is the domain of
integration, can be rewritten as a finite sum of the form [20]∫ v

u

W (θ) f(θ) dθ =

G∑
g=1

wg f(θg) +D(ξ), u < ξ < v, (2)

where D(ξ) is the resulting error term, {θg}Gg=1 are the
nodes and {wg}Gg=1 are the quadrature weights. Thus, the
Q-function that is defined by (1) over the interval [0, π/2]
can be numerically approximated after applying (2) as

Q(x) ≈ Q̃(x) �
G∑

g=1

ag exp

(
−bg x

2

)
(3)

such that Q(x) = Q̃(x)+D(ξ, x) for some u < ξ < v, where
x ≥ 0 and {(ag, bg)}Gg=1 is the set of numerical coefficients,
which depends on the specific applied numerical integration
technique as will be explained below.

A. Newton–Cotes Numerical Integration

A Newton–Cotes formula can be either closed or open,
depending on whether it uses the function values at the
endpoints or not. The weights for Newton–Cotes rules are
derived from Lagrange basis polynomials as

wg =

∫ v

u

G∏
t=1
t�=g

θ − θt
θg − θt

dθ = cg Δθ, (4)

where cg, g = 1, 2, . . . , G, are constants that depend on the
type of the applied Newton–Cotes rule and can be found in
many mathematical books, e.g., [21], whereas Δθ is the step
size. For the Newton–Cotes rule, the nodes are always chosen
uniformly in the integration interval. Therefore, when applied
to the Gaussian Q-function, the numerical coefficients of the
exponential summation in (3) are calculated as

{(ag, bg)}Gg=1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{(
cg Δθ

π , 1

2 sin2((g−1)Δθ)

)}G

g=1

, for closed types,

{(
cg Δθ

π , 1
2 sin2(gΔθ)

)}G

g=1

, for open types,

(5)
where Δθ = π

2 (G−1) and Δθ = π
2 (G+1) for the closed and

open types, respectively.
The error term for the Newton–Cotes rules is

D (ξ, x) =
f (G) (ξ, x)

G!

∫ π/2

0

G∏
g=1

(θ − θg) dθ,

0 < ξ < π/2, x ≥ 0, which shows that there exists some
(unknown) point ξ ∈ (0, π/2) for each x, for which the
respective error has exactly the displayed form.

B. Gaussian Quadrature Numerical Integration

Another type of numerical integration techniques is the
Gaussian quadrature family. For this type, the domain of
integration in (2) is [−1, 1], but since the Q-function is
defined over [u, v] = [0, π/2] for Craig’s formula, a change
of variables is needed. This results in multiplying the weights
by v−u

2 and transforming the nodes as v−u
2 θg +

v+u
2 . Thus,

the numerical coefficients of the exponential sum in (3), when
applying Gaussian quadrature numerical rules, are

{(ag, bg)}Gg=1 =

⎧⎨
⎩
(
1

4
wg,

1

2 sin2
(
π
4 θg +

π
4

)
)⎫⎬
⎭

G

g=1

. (6)

Five Gaussian rules are used herein for comparison purposes,
namely Legendre, Chebyshev first and second kinds, Radau’s,
and Lobatto’s rules. For the Chebyshev first and second kind
rules, we should consider their weighting functions which
result in ag = 1

4 wg

√
(1− θ2g) and ag =

wg

4
√

(1−θ2
g)

, respec-

tively. Table I summarizes the expressions for finding wg , θg
and D (ξ, x) of these five Gaussian rules [21] while φG(θ) in
the table is the Legendre polynomial of degree G.

C. Composite Integration

The composite quadrature rules are preferred to approxi-
mate the Q-function for higher orders due to the oscillatory
nature of high-degree polynomials in non-composite rules. The
integration interval, [u, v] = [0, π/2], can be divided into M
smaller uniform or non-uniform sub-intervals, [um, vm] ,m =
1, 2, ...,M , and simpler K-point integration rule is used for
each sub-interval, where K is the number of nodes in each sub-
interval. Therefore, the Gaussian Q-function is approximated
by applying any composite integration rule as

Q̃(x) =

M∑
m=1

K∑
k=1

am,k exp(−bm,k x
2). (7)

The numerical coefficients for the mth sub-interval are given
for the K-point composite Newton–Cotes rules as

{(am,k, bm,k)}Kk=1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{(
ck Δθm

π , 1

2 sin2(um+(k−1)Δθm)

)}K

k=1

, for closed types,

{(
ck Δθm

π , 1
2 sin2(um+kΔθm)

)}K

k=1

, for open types,

(8)
where Δθm = vm−um

K−1 and Δθm = vm−um

K+1 for the closed
and open types, respectively. For the uniform sub-intervals,
Δθm = π

2M (K−1) and Δθm = π
2M (K+1) , respectively.

On the other hand, for composite Gaussian quadratures, the
numerical coefficients for the mth sub-interval are given as

{(am,k, bm,k)}Kk=1 =

⎧⎪⎨
⎪⎩
⎛
⎜⎝ (vm − um)wk

2π
,

1

2 sin2
(

(vm−um)
2 θk + (vm+um)

2

)
⎞
⎟⎠
⎫⎪⎬
⎪⎭

K

k=1

,

(9)



TABLE I
GAUSSIAN QUADRATURE NUMERICAL INTEGRATION METHODS.

Gaussian rule wg θg D(ξ, x), −1 < ξ < 1, x ≥ 0

Legendre rule 2(
1−θ2g

)
φ′2
G

(θg)
gth zero of φG(θ)

22G+1(G!)4

(2G+1)[(2G)!]3
f (2G)(ξ, x)

Chebyshev first kind π
G

cos
(

2g−1
2G

π
)

π
(2G)22G−1 f

(2G)(ξ, x)

Chebyshev second kind π
G+1

sin2
(

g
G+1

π
)

cos
(

g
G+1

π
)

π
(2G)!22G+1 f

(2G)(ξ, x)

Radau’s rule 1

(1−θg)φ′2
G−1

(θg)
gth zero of φG−1(θ)+φG(θ)

θ+1
22G−1.G
[(2G−1)!]3

[(G− 1)!]4f (2G−1)(ξ, x)

Lobatto’s rule 2
G(G−1)φ2

G−1
(θg)

(g − 1)th zero of φ′
G−1(θ)

−G(G−1)322G−1[(G−2)!]4

(2G−1)[(2G−2)!]3
f (2G−2)(ξ, x)

where wk and θk are the same weights and nodes as illustrated
in Table I. When considering equal-spaced intervals, the
numerical coefficients become

{(am,k, bm,k)}Kk=1 =

⎧⎪⎨
⎪⎩
⎛
⎜⎝ wk

4M
,

1

2 sin2
(

π
4M θk + (2m−1)π

4M

)
⎞
⎟⎠
⎫⎪⎬
⎪⎭

K

k=1

.

As a remark, one should note that the single-point Legendre
rule is mathematically the same as the single-point open
Newton–Cotes (a.k.a. rectangular) rule, and the two-point Lo-
batto’s rule is the same as the two-point closed Newton–Cotes
(a.k.a. trapezoidal) rule. In addition, the weighting functions
of Chebyshev rules should be also considered here when
calculating the numerical coefficients as explained above.

D. Implementation Aspects and Numerical Results
Accuracy comparison between the different composite and

non-composite numerical integration techniques is presented
herein for the same number of non-zero exponential terms
which we refer to as N . In general, if the left endpoint of the
integration domain is used in the summation in (3) as a node,
i.e., θ1 = 0, to evaluate the integration then the function’s
value at that node is equal to zero, i.e., integrand in (1)
evaluates to zero, and hence the first term in the summation
is neglected. In this case, in order to establish exactly N
exponential terms in the summation, G = N+1, since the first
term in the (N+1)-term summation is zero and hence the total
number of exponential terms is N . On the other hand, if the
left endpoint is not included in the summation, then G = N .
In plain words, G refers to the total number of terms including
zero if any, and N refers to that of the non-zero terms.

The same applies to the composite rules for which we want
to construct an N -term expression in (7). Hence, N = M K
for the composite open Newton–Cotes, Legendre and Cheby-
shev first and second type rules, while N = M (K−1), for the
composite closed Newton–Cotes and Lobatto’s rules since the
two endpoints of each sub-interval are included, which results
in adding the last term of the mth sub-interval to the first
term of the (m + 1)th sub-interval to produce a single term
(in addition to the fact that the first term of the first sub-interval
is neglected since its b1,1 → ∞). This is also the reason why
for the composite Radau’s numerical rule N = M K − 1.

In Fig. 1, we illustrate the absolute relative error resulted
from applying all the different types of numerical integra-
tion rules and their composites to approximate the Gaussian
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Fig. 1. Comparison among all the different numerical integration techniques
for N = 3. The abbreviation N–C refers to Newton–Cotes rule.

Q-function for N = 3. It is noted that the two-point closed
Newton-Cotes (equivalent to two-point Lobatto’s rule) and
the single-point Legendre (equivalent to single-point open
Newton–Cotes rule) rules are the most accurate for a wide
argument range. However, some techniques outperform the
others for different x-ranges, e.g., the two-point Radau’s rule
has the least error for 13 ≤ x ≤ 15, whereas the four-point
closed Newton–Cotes rule is more accurate for 15 ≤ x ≤ 17.

III. OPTIMIZED NUMERICAL APPROXIMATIONS

The seminal work in [13] has shown that the traditional
trapezoidal rule can be optimized with respect to the integral
of the relative error in the range of values of interest. This
yields a tighter approximation with respect to the optimization
criterion than the un-optimized one. This approach has also
been implemented in [22] to propose a new sum for the trape-
zoidal approximation of three exponentials. In this section, we
present a unified method to optimize any composite numerical
rule with any N and in respect to any optimization criterion.

The composite rule is based on dividing the integration
interval into smaller uniform or non-uniform sub-intervals.
In the previous section, we give explicit expressions for the
numerical coefficients of the uniform composite rules. On
the other hand, for the non-uniform case, the integration
interval can be arbitrarily partitioned and general expression



are presented for their corresponding coefficients. However,
the division can actually be chosen optimally in order to
increase the approximation’s accuracy, e.g., like in [13].

We can conclude from the relations (8) and (9) that the
optimized set of coefficients, {(am,k, bm,k)}Kk=1, are obtained
by optimizing the sub-intervals boundaries, [um, vm], m =
1, 2, ...,M , according to the chosen optimization criterion with
keeping in mind that vm = um+1, m = 1, 2, ...,M − 1. Thus,
the whole integration range has M + 1 boundary points in
which for the Gaussian Q-function, um = 0 and vM = π/2.
This will give a total of M−1 boundary points to be optimized.

Any optimization criterion could be selected for calculating
the approximation’s corresponding optimized numerical coef-
ficients. For consistency with [13], we consider the integral of
the relative error in the range of values of interest [0, R]

F (v) =
1

R

∫ R

0

∣∣∣Q̃(x)−Q(x)
∣∣∣

Q(x)
dx, (10)

and the numerical approximation is optimized as

v∗ � argmin
v

F (v), (11)

where v = [v1, v2, . . . , vM−1] is the vector of unknowns (i.e.,
the boundary points to optimize), Q(x) is defined in (1) and
Q̃(x) with the corresponding expressions of the numerical
coefficients is defined in (7), (8) and (9), respectively. It should
be noted that when using two-point closed Newton–Cotes rule,
i.e., the trapezoidal rule, with M = 2, (7) will become [13,
Eq. (12)] but in terms of the Q-function instead of erfc(·).

We solve this optimization problem for all values of M and
K and for an arbitrary integration rule by applying the Quasi-
Newton method, which is an iterative technique for finding the
roots of a given differentiable function. It can also be used in
the context of optimization by applying it on the derivative
of the target function which is differentiable twice. This will
yield the optimized roots of the function’s derivative.

In particular, we implement the Quasi-Newton optimization
method herein to minimize the target function F (v) in (10).
We start with some initial guesses for the M−1 unknowns that
converge eventually to the optimized values, which give the
minimum possible value for the target function. The iteration
process is performed as

v(t+1) = v(t) − γ

[
H̃

(t)
]−1

J(t)
(

v(t)
)
, (12)

where t is the iteration counter, 0 < γ ≤ 1 is the iteration
step size, J(·) is the gradient vector calculated as J (v) =[

∂F (v)
∂v1

∂F (v)
∂v2

. . . ∂F (v)
∂vM−1

]
, and H̃ is an approximation to the

Hessian matrix. Among the various methods developed to
calculate H̃, we implement the well-known Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method which starts from some
symmetric positive-definite matrix H̃

(0)
that is updated in the

sequential iterations as

H̃
(t+1)

= H̃
(t)

+
ΔJ(t) [ΔJ(t)]T

[ΔJ(t)]T Δv(t)
− H̃

(t)
Δv(t) [Δv(t)]T [H̃

(t)
]T

[Δv(t)]T H̃
(t)

Δv(t)
,

(13)

where [·]T denotes the transpose, ΔJ(t) = J(t+1)
(

v(t+1)
)
−

J(t)
(

v(t)
)

and Δv(t) = v(t+1)−v(t). The iterations of Quasi-
Newton method are repeated until the difference between
the values of v of two successive iterations become smaller
than some predefined threshold value. It is worth mentioning
that, for practical implementation, we can directly use the
fminunc command in Matlab with setting its corresponding
algorithm to ’quasi-newton’ and choosing initial values
in the range

(
0, π

2

)
for v in order to eventually find v∗ in (11).

Let us next develop new tight exponential approximations
by finding new optimized numerical coefficients using the
approach explained above. Based on the observations con-
cluded from Fig. 1, we use Legendre rule to formulate the new
approximations as it is one of the approximations that has the
least relative error among the various quadrature rules.

For N = 2, using the single-point Gauss Legendre rule
(K = 1), the integration interval is divided into M = 2 sub-
intervals which yields one unknown as v = [v1]. Thus, the
approximated Q-function in (7) after using (9) and calculating
wk and θk from Table I, will result in

Q̃(x) =
v∗1
π

exp

(
−x2

2 sin2(
v∗
1

2 )

)

+

(
1

2
− v∗1

π

)
exp

(
−x2

2 sin2(π4 +
v∗
1

2 )

)
. (14)

The optimum value of the parameter v1 is calculated using
Quasi-Newton optimization method with respect to (11) for
the case of R = 13 dB and is found to be v∗1 = 0.967.

For N = 3, the integration interval is divided into M = 3
sub-intervals which yields two unknowns as v = [v1, v2]. Thus,
the Q-function’s approximation is written as

Q̃(x) =
v∗1
π

exp

(
−x2

2 sin2(
v∗
1

2 )

)

+
v∗2 − v∗1

π
exp

(
−x2

2 sin2(
v∗
2+v∗

1

2 )

)

+

(
1

2
− v∗2

π

)
exp

(
−x2

2 sin2(π4 +
v∗
2

2 )

)
. (15)

The optimum parameters are v∗1 = 0.5571 and v∗2 = 1.0702.
In Fig. 2, we compare the accuracy of the optimized single-

point Legendre rule with that of the trapezoidal rule, i.e.,
composite two-point closed Newton–Cotes rule. In particular,
our optimized approximation outperforms that of Chiani et al.
for N = 2 over most of the x-range, and over the whole
x-range for N = 3 where they have the least relative error.
The numerical approximations with N = 3 are tighter than
those with N = 2. The integral of the absolute relative error
is also calculated and plotted in Fig. 3 for the optimized and
un-optimized trapezoidal and single-point Legendre rules up
to N = 10. As expected, the optimized approximation has a
better total accuracy. In addition, it can be concluded from
the decaying curves that, as the number of exponential terms
increases, the accuracy of the numerical method increases.
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Fig. 2. Comparison between the optimized trapezoidal rule and the optimized
Legendre rule.

IV. CONCLUSION

This paper provided a mathematical study on the different
numerical integration techniques that can be applied on the
Craig’s form of the Gaussian Q-function to produce exponen-
tial approximations for it. We presented explicit expressions
for the corresponding coefficients of all the possible approx-
imations of composite and non-composite Newton–Cotes and
Gaussian quadrature rules. We also contributed the optimiza-
tion of the numerical rules to increase their tightness by
adopting Quasi-Newton optimization method. The coefficients
of the exponential approximation with two and three terms are
reported based on the optimized composite Legendre rule.
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Improved Coefficients for the Karagiannidis–Lioumpas

Approximations and Bounds to the Gaussian Q-Function
Islam M. Tanash and Taneli Riihonen , Member, IEEE

Abstract—We revisit the Karagiannidis–Lioumpas (KL) ap-
proximation of the Q-function by optimizing its coefficients in
terms of absolute error, relative error and total error. For
minimizing the maximum absolute/relative error, we describe the
targeted uniform error functions by sets of nonlinear equations so
that the optimized coefficients are the solutions thereof. The total
error is minimized with numerical search. We also introduce an
extra coefficient in the KL approximation to achieve significantly
tighter absolute and total error at the expense of unbounded
relative error. Furthermore, we extend the KL expression to lower
and upper bounds with optimized coefficients that minimize the
error measures in the same way as for the approximations.

Index Terms—Communication theory, error probability.

I. INTRODUCTION

KARAGIANNIDIS AND LIOUMPAS presented in [1] a
relatively tight, yet analytically tractable, approximation

for the Gaussian Q-function [2] as follows:

Q(x) � 1√
2π

∫ ∞

x

exp
(
− 1

2 t
2
)
dt

≈ a exp
(
−b x2

)
· 1− exp (−c x)

x
� Q̃(x)

(1)

for which their original study sets (a, b, c) = ( 1
B
√
2π

, 1
2 ,

A√
2
)

and proposes for error minimization example coefficient values
A = 1.98 and B = 1.135 rendering (a, c) ≈ (0.3515, 1.4001).

Despite drawing some criticism [3] shortly after publication,
the ‘Karagiannidis–Lioumpas (KL) approximation’ has gradu-
ally established itself as one of the most usable substitutes for
the Gaussian Q-function in communication theory problems
and the paper [1] has received a large number of citations; it
is only fitting to begin calling the expression after its inventors.

A diverse set of applications for the KL approximation can
be found in [4]–[8] to name but a few prominent articles.
In general, the approximation is often used in the calculation
of average bit or symbol error probability as a tractable
replacement for the Gaussian Q-function such that analysis can
be carried out and completed in a closed form at the cost of
making results tight approximations instead of exact ones. This
usually involves integrating something like, e.g., f(Q̃(x(y))),
where even simple functions f(q) and x(y), which are derived
from the communication system under study, may forbid exact

Manuscript received November 19, 2020; revised December 18, 2020 and
January 8, 2021; accepted January 9, 2021. Date of publication January ??,
2021; date of current version January 17, 2022. This work was partially
supported by the Academy of Finland under Grant 326448. The associate
editor coordinating the review of this letter and approving it for publication
was A.-A. A. Boulogeorgos. (Corresponding author: Islam M. Tanash.)

The authors are with Tampere University, Tampere 33720, Finland (e-mail:
islam.tanash@tuni.fi; taneli.riihonen@tuni.fi).

Digital Object Identier 10.1109/LCOMM.????.???????

analysis using the actual Q-function [9]–[11]. One should
note especially that the approximation is always used in an
intermediate step of analytical derivations and it is not meant
for numerical probability computations per se — instead,
rational Chebyshev functions [12] are perfect to that end.

This Letter is inspired by the fact that the original study [1]
presents explicit values of a and c for only one approximation
(which has low integrated total error when b = 1

2 , to be exact).
However, the KL approximation family is actually much more
versatile, where new coefficients can be acquired in terms of
other criteria for better accuracy depending on the application.
The KL expression can be also repurposed to achieve lower
and upper bounds (that are also tight approximations) and, in
certain cases, coefficients admit explicit values. Furthermore,
by introducing the extra coefficient b in (1) that originally
was b = 1

2 and permitting b < 1
2 , we achieve significantly

improved accuracy in terms of absolute and total error.
The objective of this Letter is to apply the KL expression

of the Q-function to derive improved approximations and
bounds which are global and tight over x ≥ 0 by optimizing
the coefficients (a, b, c) in respect to their minimum global
absolute or relative error or minimum integrated total error.
Like [11] for another popular expression [9], we present new
formulation that minimizes the maximum global error of (1)
by constructing a set of equations, which describes the corre-
sponding error function, and solve them numerically to find
the optimized coefficients. The total error is optimized with
exhaustive search for reference. In general, when optimizing
one of the three criteria, better performance will be achieved
at the expense of decreased accuracy in terms of the others.

The new coefficients solved herein are applicable as one-to-
one replacements for the original ones of [1] adopted into the
analysis of [4]–[8] and many other studies. Literature is rich in
approximations/bounds for the Q-function and, typically, the
application’s mathematics define, which ones are tractable for
it. Whenever (1) is preferred, our coefficients offer variety to
tailor accuracy for the application or to use bounds.

II. PRELIMINARIES

The case x ≥ 0 is presumed throughout this Letter with
little loss of generality because the relation Q(x) = 1−Q(−x)
extends all the considered functions to the negative real axis.
In fact, this is the main motive for optimizing approximations
and bounds also subject to an additional constraint Q̃(0) = 1

2
that makes their extensions continuous at the origin like Q(x).

This study solves optimized approximations and bounds for
three criteria and for combinations thereof, viz. min(a,b,c) dmax

(‘minimax absolute error’), min(a,b,c) rmax (‘minimax relative



2

error’) and min(a,b,c) dtot (‘integrated total error’ [1]), where

dmax � max
x≥0

|d(x)|, rmax � max
x≥0

|r(x)|, dtot �
∫ ∞

0

|d(x)| dx,
and the error functions are defined as

d(x) � Q̃(x)−Q(x), (2)

r(x) � d(x)

Q(x)
=

Q̃(x)

Q(x)
− 1. (3)

For baseline reference, the coefficients originally given in [1]
render dmax ≈ 0.00789, rmax ≈ 0.119, and dtot ≈ 0.00385.

As implied above, the presented approximations and bounds
will be global ones, i.e., tight over the whole non-negative real
axis (for all x ≥ 0). The error functions converge to explicit
values, which may be local extrema, at both ends of this range:

lim
x→0

d(x) = ac− 1
2 , lim

x→0
r(x) = 2ac− 1, (4)

lim
x→∞d(x) = 0, lim

x→∞r(x) =

⎧⎪⎪⎨
⎪⎪⎩
∞, if b < 1

2 ,

a
√
2π − 1, if b = 1

2 ,

−1, if b > 1
2 .

The last limit shows especially that global approximations and
bounds in terms of relative error exist if and only if we set
b = 1

2 . However, as a novel fact, our study demonstrates
that absolute error and total error can be instead significantly
reduced by permitting b < 1

2 . Therefore, two scenarios of
approximations for the absolute and total error are considered
in this Letter, i.e., approximations with b = 1

2 or b < 1
2 .

Local error extrema may occur also at critical points,
where the derivatives of the continuous error functions vanish.
Denoting differentiation with an apostrophe, they are given by

d′(x) = Q̃′(x)−Q′(x), r′(x) =
Q̃′(x)Q(x)− Q̃(x)Q′(x)

[Q(x)]2
,

where

Q̃′(x) = −
a
((

2bx2 + 1
)
(ecx − 1)− cx

)
e−bx2−cx

x2
, (5)

Q′(x) = − 1√
2π

exp
(
− 1

2x
2
)
. (6)

Two variations of approximations are considered herein:
d(0) = r(0) = 0 and d(0) = −dmax (resp. r(0) = −rmax).
The former case maintains the continuity of the Q-function
when extending to x < 0 and results in c = 1

2 a , when
substituted in limx→0 d(x) (resp. limx→0 r(x)) that is given in
(4). The latter case provides slightly better accuracy at the cost
of discontinuity occurring at x = 0 and results in c =

√
π
2 in

the cases of relative error, by solving limx→0 r(x) = −rmax

with limx→∞ r(x) = −rmax that are defined in (4).

III. ALTERNATIVE IMPROVED COEFFICIENTS FOR (1)

In this section, we describe the methodologies to solve the
new coefficients (a, b, c) for the KL expression. They are opti-
mized either in the minimax sense or in terms of the integrated
total error to yield an approximation, an upper bound or a
lower bound. All the 17 thus-obtained improved/alternative
coefficient sets and accuracy thereof are listed in Table I.

A. Global Uniform Approximations and Bounds

The minimax optimization problems are solved in terms
of both absolute and relative errors defined in (2) and (3),
respectively, by constructing a set of nonlinear equations. This
set describes the resulting error function, which should be
uniform with equal values for all the extrema points. Each
extremum point yields two equations, where one expresses its
value and the other sets the derivative of the error function to
zero at that point. In addition, one equation (for d(x)) or two
equations (for r(x)) is/are obtained from evaluating the limits
at the two endpoints of the considered range, [0,∞], per (4).

The resulting sets of equations, which have equal number
of equations and unknowns, can be solved straightforwardly
by any numerical tool for the considered variations to find the
optimized sets of coefficients that satisfy min(a,b,c) dmax for
the absolute error and min(a,b,c) rmax for the relative error. We
used iteratively random initial guesses for the unknowns in this
approach, namely (a, b, c), dmax or rmax, and the location of
the extrema (xk), until fsolve in Matlab converged to the
solution, which is confirmed by substitution. The formulations
for the minimax approximations/bounds are described below.

1) Approximations in Terms of Absolute Error: The coef-
ficients (a, b, c) are optimized for approximations in terms of
the absolute error by formulating a set of equations as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
d′(xk) = 0, for k = 1, 2 or 1, 2, 3,
d(xk) = (−1)k+1 dmax, for k = 1, 2 or 1, 2, 3,{
a c = 1

2 , when d(0) = 0,

a c = 1
2 − dmax, when d(0) = −dmax,

(7)

where xk is an extremum point. The number of the error
function’s extrema depends on the value of b; if b is fixed
to 1

2 , then we have two extrema, whereas if b is allowed to be
any positive value, then we need three separate extrema.

2) Lower Bounds in Terms of Absolute Error: For the lower
bounds, we need to find the optimized coefficients which
minimize the global absolute error for d(x) ≤ 0 when x ≥ 0.
The value of b must always equal to 1

2 . The tightest resulting
uniform error function will start from d(0) = −dmax, with its
maximum equal to zero and its minimum equal to −dmax so
that we can formulate a set of equations as⎧⎪⎪⎨

⎪⎪⎩
d′(x1) = d′(x2) = 0,

d(x1) = 0, d(x2) = −dmax,

a c = 1
2 − dmax.

(8)

When d(0) = 0, we get a =
√

π
32 and c =

√
8
π by imposing

d′(0) = 0 (only in this case), which produces a c2 =
√

2/π,
and solving with c = 1

2 a that results from setting d(0) = 0.
3) Upper Bounds in Terms of Absolute Error: The set of

equations becomes⎧⎪⎪⎨
⎪⎪⎩
d′(x1) = d′(x2) = d′(x3) = 0,

d(x1) = d(x3) = dmax, d(x2) = 0,

a c = 1
2 .

(9)

In particular, we shape the uniform error function to have three
extrema with d(x) ≥ 0 when x ≥ 0 in which its maxima



3

are equal to dmax and its minimum is equal to zero. The
corresponding error function must always start from d(0) = 0.

4) Approximations in Terms of Relative Error: The targeted
uniform error function in terms of the relative error consists of
only one maximum point and converges to −rmax as x tends
to infinity, which results in −rmax = a

√
2π − 1 according to

(4). Therefore, we can formulate the set of equations as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
r′(x1) = 0, r(x1) = rmax,{
a c = 1

2 , when r(0) = 0,

a c = 1−rmax

2 , when r(0) = −rmax,

a = 1−rmax√
2π

.

(10)

5) Lower Bounds in Terms of Relative Error: We need to
find the optimized coefficients, a and c, in the minimax sense
for r(x) ≤ 0 when x ≥ 0 which converges to −rmax as x
tends to infinity. The resulting error function can either start
from r(0) = −rmax to formulate a set of equations as{

r′(x1) = r(x1) = 0,

a c = 1−rmax

2 , a = 1−rmax√
2π

,
(11)

or from r(0) = 0 yielding a =
√

π
32 and c =

√
8
π like with

the corresponding lower bound in terms of absolute error.
6) Upper Bound in Terms of Relative Error: We must

ensure that r(x) ≥ 0 when x ≥ 0 for the uniform error
function. The resulting error function has only one maximum
point and converges to zero as x tends to infinity. Therefore,
a = 1√

2π
and c =

√
π
2 as proposed earlier in [13] and b is

known to be equal to 1
2 . The optimized upper bound in terms

of relative error is also optimal in terms of absolute error and
integrated total error for the case where b = 1

2 .

B. Numerical Optimization in Terms of Total Error

Instead of defining dtot �
∫ R

0
|d(x)| dx like in [1] and so

making optimized coefficients specific to the value chosen for
R and limited to the range [0, R], we measure total error with
R → ∞ and obtain globally optimized approximations and
bounds. In particular, we optimized the coefficients for the two
variations of the approximations with or without setting b = 1

2
by performing an extensive search, where we evaluated the
target metric (dtot) over wide one/two/three-dimensional grids
for the unknowns a, (a, b), (a, c), or (a, b, c) with granularity
of 0.000001 and selected the grid point with the minimum total
error for each variation. This renders four sets of optimized
coefficients. Extra constraint checks guarantee d(x) < 0 for
the lower bound and d(x) > 0 for the upper bound.

IV. NUMERICAL RESULTS AND CONCLUSIONS

We summarize the improved coefficients for the minimax
approximations and bounds and for the total absolute error in
Table I and illustrate their error functions in Fig. 1, together
with the original KL approximation from [1] and reference
approximations and bounds from [9] and [10].1

1The labels having the form Xy-n in the results refer to the approximations
and bounds as follows: X is U for upper bounds, A for approximations, and
L for lower bounds; whereas y is d for absolute error, r for relative error, and
t for total error; in addition, n refers to rank of the coefficients according to
the accuracy of the absolute error of each variation in an ascending order.

TABLE I
NEW COEFFICIENTS FOR (1) AND APPROXIMATION ERROR THEREOF

#∗ type a b c dmax rmax dtot

[1] Q̃(x)≈Q(x) 0.351491 1/2 1.400071 0.007887 0.1189 0.003847

Ud-1 Q̃(x)≥Q(x), Q̃(0)=Q(0) 0.320848 0.467551 1/(2a) 0.000894 ∞ 0.001638

U-2 Q̃(x)≥Q(x), Q̃(0)=Q(0) 1/
√

2π 1/2
√

π/2 0.019413 0.0953 0.023034

Ad-1 Q̃(x)≈Q(x) 0.321272 0.471452 1.554646 0.000536 ∞ 0.001130

Ad-2 Q̃(x)≈Q(x), Q̃(0)=Q(0) 0.319695 0.469381 1/(2a) 0.000632 ∞ 0.001330

Ad-3 Q̃(x)≈Q(x) 0.335419 1/2 1.484436 0.002092 0.1592 0.003505

Ad-4 Q̃(x)≈Q(x), Q̃(0)=Q(0) 0.332106 1/2 1/(2a) 0.002568 0.1675 0.004272

Ar-6 Q̃(x)≈Q(x) 0.380797 1/2
√

π/2 0.022742 0.0455 0.010439

Ar-5 Q̃(x)≈Q(x), Q̃(0)=Q(0) 0.376056 1/2 1/(2a) 0.013787 0.0574 0.015096

Ld-1 Q̃(x)≤Q(x) 0.329783 1/2 1.506303 0.003247 0.1734 0.004659

L-2 Q̃(x)≤Q(x), Q̃(0)=Q(0)
√

π/32 1/2
√

8/π 0.007148 0.2146 0.010188

Lr-3 Q̃(x)≤Q(x) 0.364230 1/2
√

π/2 0.043505 0.0870 0.013683

Ut-1 Q̃(x)≥Q(x), Q̃(0)=Q(0) 0.323300 0.472329 1/(2a) 0.001326 ∞ 0.001454

At-2 Q̃(x)≈Q(x) 0.326530 0.477951 1.523737 0.002454 ∞ 0.000877

At-1 Q̃(x)≈Q(x), Q̃(0)=Q(0) 0.322612 0.474260 1/(2a) 0.001126 ∞ 0.001185

At-4 Q̃(x)≈Q(x) 0.342771 1/2 1.437908 0.007127 0.1408 0.002881

At-3 Q̃(x)≈Q(x), Q̃(0)=Q(0) 0.336219 1/2 1/(2a) 0.003519 0.1572 0.004058

Lt-1 Q̃(x)≤Q(x) 0.339602 1/2 1.445957 0.008950 0.1505 0.003602

∗notes: U-2=Ud-2=Ur-2=Ut-2 [21], L-2=Ld-2=Lr-2=Lt-2, underlining indicates the error metric(s) that is/are minimized

The numerical results show that the improved coefficients
of the proposed KL approximations and bounds are optimal
subject to their optimization targets, yet expressed precisely in
implicit form as solutions to systems of nonlinear equations
as opposed to relying on numerical search to minimize error
measures. In some specific cases, a part or even all of the three
coefficients can be expressed as explicit constants. The best
approximation/bound from Table I for a specific application
is chosen by contrasting requirements against Fig. 1, provided
that the KL expression (1) is suitable for it to begin with.

As an ultimate conclusion, the presented data suggests good
alternatives to the original coefficients given in [1] for the case
of b = 1

2 : In some applications, the accuracy of the KL ap-
proximation might be improved by choosing instead A = 1.95,
B = 1.113 (a compromise between all Ay-n) for decreasing
both absolute and relative error by round 15% at the cost of
increasing total error by round 65%; or A = 2.03, B = 1.162
(At-4) for decreasing absolute error and total error by round
10% and 25%, respectively, at the cost of increasing relative
error by round 15%. Sometimes it may also be useful to choose
A = B

√
π ≈ 1.88, B = 1.061 (Ar-5) for minimizing relative

error (with round 50% reduction) subject to zero error at the
origin. In contrast, when primarily minimizing absolute error,
accuracy can be improved significantly by generalizing the
KL approximation to allow any positive b: Namely, the choice
a = 0.32, b = 0.4703, c = 1.5625 (Ad-2) guarantees zero
error at the origin while decreasing absolute error and total
error as much as round 90% and 65%, respectively, at the
cost of making relative error unbounded for large arguments.
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Abstract—We develop extremely tight novel approximations,
lower bounds and upper bounds for the Gaussian Q-function
and offer multiple alternatives for the coefficient sets thereof,
which are optimized in terms of the four most relevant criteria:
minimax absolute/relative error and total absolute/relative error.
To minimize error maximum, we modify the classic Remez algo-
rithm to comply with the challenging nonlinearity that pertains
to the proposed expression for approximations and bounds. On
the other hand, we minimize the total error numerically using
the quasi-Newton algorithm. The proposed approximations and
bounds are so well matching to the actual Q-function that they
can be regarded as virtually exact in many applications since
absolute and relative errors of 10−9 and 10−5, respectively, are
reached with only ten terms. The significant advance in accuracy
is shown by numerical comparisons with key reference cases.

Index Terms—Gaussian Q-function, error probability.

I. INTRODUCTION

THE Gaussian Q-function and the related complementary
error function erfc(·) are very important entities for

communication theory (as well as in statistical sciences at
large). They emerge often when noise, interference, or a
signal is characterized by the normal distribution. Although
the Q-function, which has no exact closed form, can be
evaluated using many software packages, the literature is
rich in several approximations and bounds [1]–[10] based on
either the statistical definition [5, Eq. 1] or on the alternative
representation proposed by Craig [11]. Their significant value
is in facilitating closed-form calculations of error probabilities
for different digital modulations and fading models [12]–[14],
in which functions of Q-function usually appear in integrands.

The expression by Karagiannidis and Lioumpas in [1] is
one of the most common tools to approximate the Q-function
in the different problems of communication theory due to its
tractability and accuracy compared to others. In particular,
they approximate erfc(·) by an inverse factorial series which
is then truncated to a single term but the resulted expression
is loose for small arguments. Therefore, they multiply it by a
monotonically increasing function to tighten it there and, thus,
to approximate accurately the Q-function for all x ≥ 0 as

Q(x) ≈ a
(
1− exp (−c x)

) · exp (−b x2
)

x
, (1)

where a = 1
1.135

√
2π

, b = 1
2 , and c = 1.98√

2
originally, while

[2] presents alternative coefficients for tailoring accuracy in
different applications or transforming it into a bound.
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Inspired by the Karagiannidis–Lioumpas (KL) approxima-
tion, our first main contribution is to propose a new expression
to approximate or bound the Q-function:

Q̃(x) � 1− exp (−c x)

x︸ ︷︷ ︸
�g(x)

·
N∑

n=1

an exp
(
−bn x

2
)

︸ ︷︷ ︸
�h(x)

, (2)

which is referred to as the generalized KL (GKL) expression
since it is reduced to the original KL expression in the special
case of N = 1 [1], [2] (but is novel herein for N > 1).
Conceptually, an approach analogous to that in [1] is used by
first approximating the Q-function with the sum of exponen-
tials h(x) as in [3, Eq. 8], which results in unbounded relative
error and thus lower accuracy for the higher arguments; then
it is multiplied by the term g(x) to bound the relative error
with b1 � min{bn}Nn=1 = 1

2 . This yields the accurate GKL
expression in (2) that is limited to the domain x ≥ 0,
not so unlike most related approximations, but the relation
Q(x) = 1−Q(−x) extends it to x < 0.

As the second main contribution, we solve the research
problem of optimizing the coefficients, {(an, bn)}Nn=1 and c,
in order to minimize the global or total absolute/relative error
of the corresponding approximation. Furthermore, the coeffi-
cients are optimized in the minimax sense to derive tight lower
and upper bounds too. We show that the GKL approxima-
tions/bounds together with the optimized coefficients achieve
very high, increasing accuracy so that using not-so-large
number of terms they can become virtually exact, i.e., the error
may not be notable in many applications in communications
systems’ analysis. By these main contributions, we provide
researchers with accuracy-controllable approximations/bounds
in terms of several optimization criteria, from which they
can choose one that best suits their needs in order to ease
expression manipulations with extremely high accuracy.

Two types of complexity are of relevance herein, namely the
analytical and the computational. The former, which refers to
the difficulty of the analytical form of (2) and the tractability
thereof in symbolic calculations for mathematical operations,
is kept the same as for (1) while significantly increasing the
accuracy. On the other hand, the latter can refer herein either to
the difficulty and processing time of the proposed optimization
methodology or to those in using the approximation. The
offline complexity of coefficient optimization is hardly relevant
since it is already implemented by us and the coefficients
are released to public domain1 so that there is no need for
redoing it later, whereas the online complexity of using the
GKL expression is directly proportional to the number of
terms N used in the approximation. Hence, (2) with the
optimized coefficients can reliably substitute the Q-function
in derivations of almost exact closed-form expressions for



2

different performance measures with exactly the same ana-
lytical tractability as with the original KL approximation and
with moderately increased computational complexity that is
controllable with the choice of the number of terms.

The remainder of this paper is organized as follows. The
next section presents our new approximations and bounds
together with the optimization methodologies used for solving
the sets of coefficients. The accuracy of the proposed approx-
imations and bounds is validated in Section III by numerical
results. After an overview of various applications of (2) in
Section IV, the conclusion is given in Section V.

II. NOVEL APPROXIMATIONS AND BOUNDS

This section finds the optimized coefficients, {(a∗n, b∗n)}Nn=1

and c∗, for the proposed GKL expression that offer variety to
tailor accuracy for some specific application or to use bounds.
For this reason, several optimization criteria are considered and
each of them requires more or less different approach. The first
two minimize maximum absolute and relative errors, whereas
the remaining two minimize total absolute and relative errors.

A. Minimax Approximations and Bounds

The GKL expression in (2) is optimized herein in the
minimax sense by solving its corresponding coefficients as

{(a∗n, b∗n)}Nn=1, c
∗ � argmin

{(an,bn)}N
n=1, c

emax, (3)

where

emax � max
x≥0

|e(x)|, (4)

and the shorthand e ∈ {d, r} collectively represents both
the absolute and relative error functions which are defined
respectively as d(x) � Q̃(x)−Q(x) and r(x) � Q̃(x)

Q(x) − 1.
The minimax optimization results in uniform error functions

that oscillate between local maximum and minimum values
of equal magnitude and alternating signs as illustrated by the
minimax approximations in Fig. 1(a). The absolute and relative
error functions’ derivatives vanish at these extrema points
and are given respectively by d′(x) = Q̃′(x) − Q′(x) and
r′(x) = (Q̃′(x)Q(x)− Q̃(x)Q′(x))/[Q(x)]2 where Q′(x) =
− 1√

2π
exp

(− 1
2x

2
)

and Q̃′(x) = − 1
x2

∑N
n=1 an

(
(2bnx

2+1) ·
exp (c x)− 2bnx

2 − c x− 1
)
exp(−bnx

2 − c x).
We will shortly use the fact that the error functions converge

to explicit values, which may be local extrema, at both ends
of the non-negative real axis as follows:

d0 � lim
x→0

d(x) = c
N∑

n=1

an − 1
2 , lim

x→∞d(x) = 0,

r0 � lim
x→0

r(x) = 2 c

N∑
n=1

an − 1,

lim
x→∞r(x) =

⎧⎪⎪⎨
⎪⎪⎩
∞, if b1 < 1

2 ,√
2π a1 − 1, if b1 = 1

2 ,

−1, if b1 > 1
2 ,

(5)

where a1 is the counterpart of b1 � min{bn}Nn=1.

It can be concluded from the above limit that global approx-
imations and bounds exist in terms of the relative error if and
only if b1 = 1

2 , opposing to the absolute error function which
is always bounded regardless of b1’s value. Nevertheless, this
study shows that the absolute and total errors can be reduced
by allowing b1 < 1

2 . Thus, we consider herein two variations
of approximations w.r.t. absolute and total errors, namely, first
variation with b1 < 1

2 and second variation with b1 = 1
2 .

1) Approximations: The optimized coefficients can be
found by solving the following set of equations which de-
scribes the shape of the corresponding error function, for
which xk refers to the location of the error function’s extrema
and K refers to their number excluding the endpoints:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
f0(v) = e0 + emax = 0

fk(v) = e(xk) + (−1)k emax = 0, for k = 1, 2, . . . ,K,

f ′
k(v) = e′(xk) = 0, for k = 1, 2, . . . ,K,

fK+1(v) = a1 +
rmax−1√

2π
= 0, only when e = r.

(6)

Above, v is a vector of the approximation’s coefficients
with emax which are to be optimized. More specifically,
v = [a1, a2, . . . , aN , b1, b2, . . . , bN , c, emax] with excluding
b1 for the second variation of the absolute error and for the
relative error since then b1 = 1

2 . In addition, fk(v) and f ′
k(v)

are two equations that report the error function’s value and
zero-derivative at each of the extrema points, and f0(v) and
fK+1(v) result from evaluating the limits at both ends of the
range [0,∞) as in (5) to give one equation for the absolute
error and two equations for the relative error that converges
to −rmax as x tends to infinity. For both error measures, the
error function is assumed to start from e0 = −emax.

When considering the absolute error, K = 2N + 1 for the
first variation and K = 2N for the second variation. A total of
2K + 1 equations including that at x = 0 are formulated. On
the other hand, for the bounded relative error, a total of 2K+2
equations including those at the endpoint limits are formulated
with K = 2N−1. Generally, the number of equations for both
error measures are equal to the number of unknowns, namely,
v and {xk}Kk=1. It is worth mentioning that the error function
can also start from e0 = 0 to achieve continuity at the origin
when extended to the negative values of x like for Q(x), but
at the expense of slightly less accuracy.

2) Bounds: Here we need to find the optimized sets of
coefficients which, when substituted in (2), give uniform lower
and upper bounds for which e(x) ≤ 0 and e(x) ≥ 0,
respectively. Error of a lower bound oscillates between zero
and −emax, must have b1 = 1

2 and start from e0 = −emax for
both error types. In addition, when it is optimized in terms of
absolute error, K = 2N and its corresponding error function
converges to zero as x tends to infinity, whereas when it is
optimized in terms of relative error, K = 2N −1 and its error
function converges to −rmax as x tends to infinity.

On the other hand, the upper bound oscillates between zero
and emax and must always start from e0 = 0 and converge to
zero as x tends to infinity for both error types. In particular,
for its optimization in terms of absolute error, K = 2N + 1,
whereas K = 2N − 1 for its optimization in terms of relative
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error. Using the aforementioned description, the optimization
problem can be easily formulated in the same way as in (6).

3) Implementation of the Minimax Optimization and the
Remez Exchange Algorithm: The sets of equations formulated
for each of the proposed approximations and bounds can be
straightforwardly solved using any numerical tool. However,
good initial guesses for the unknowns are required in order
for their values to converge to the optimized ones. The initial
guesses used herein are obtained heuristically and it was quite
a challenge to get good ones for N > 5. We have solved
this problem by proposing a variation of the Remez exchange
algorithm for acquiring the optimized coefficients for N > 5
and establishing the same uniform minimax error function but
with K equations ({f ′

k}Kk=1) less than the approach introduced
in Section II-A1. The absence of the derivative equations
makes it less sensitive to the right choice of the initial guesses.

In particular, we construct a system of nonlinear equations
describing the values of the extrema points of the corre-
sponding error function, which alternate exactly L = K
times for the absolute error and L = K + 1 times for the
relative error, as f (v) �

[
f0(v), f1(v), . . . , fL(v)

]T
for which

fl, l = 0, 1, . . . , L and v are defined in (6), and f and v have
equal lengths. We set up the Remez algorithm by initializing
the locations of the K extrema while taking into consideration
both endpoints, which might be local extrema.

Next, we start the first iteration by solving f for v using
the iterative Newton–Raphson method whose iterations also
require initial guesses for v and are performed as

v(t+1) = v(t) −
[
J(t)

(
v(t)

) ]−1

f
(

v(t)
)
, (7)

where t is its counter and J(·) is the Jacobian
matrix defined as J (v) =

[
∂f
∂v0

, ∂f
∂v1

, . . . , ∂f
∂vL

]
.

For the absolute error, ∂f0
∂an

= c, ∂f0
∂bn

= 0,
∂f0
∂c =

∑N
n=1 an, ∂fk

∂an
= (1−exp(−c xk))

xk
exp(−bn x

2
k),

∂fk
∂bn

= −an xk (1 − exp(−c xk)) exp(−bn x
2
k),

∂fk
∂c = exp(−c xk)

∑N
n=1 an exp(−bn x

2
k), whereas for

the relative error, we multiply the above relations ∂f0
∂an

and ∂f0
∂c by two and divide ∂fk

∂an
, ∂fk

∂bn
and ∂fk

∂c by
Q(xk). Also, for the relative error only, ∂fK+1

∂a1
= 1,

∂fK+1

∂an
|n�=1 = ∂fK+1

∂bn
= ∂fK+1

∂c = 0, and ∂fK+1

∂rmax
= 1√

2π
.

In addition, ∂f0
∂emax

= 1 and ∂fk
∂emax

= (−1)k for both error
measures. The Newton–Raphson iterations are repeated until
Δv = v(t+1) − v(t) is less than a threshold value.

Then, we locate the new extrema of the resulting error
function and use them for the following Remez iteration
which we repeat until the difference between the old and
new K extrema lies below a threshold value. Note that the
Newton–Raphson method is implemented in every iteration
of the Remez algorithm. Although the Remez algorithm still
requires initial guesses for the unknowns like the approach in
Section II-A1, it is much more robust against the accuracy of
the initial guesses and converges very rapidly to the optimal
solution. The optimized coefficients of minimax GKL approx-
imations and bounds are solved herein up to N = 10 for the
two variations of the absolute error and for the relative error
and released to public domain as a supplementary dataset.1

B. Numerical Optimization in Terms of Total Error

The coefficients of the GKL expression can also be opti-
mized in terms of the total integrated error as

{(a∗n, b∗n)}Nn=1, c
∗ � argmin

{(an,bn)}N
n=1, c

etot, (8)

where

etot �
∫ R

0

|e(x)| dx. (9)

For e = d, R → ∞ in order to obtain globally optimized
approximations since d(x) converges to zero when x tends to
infinity, whereas R is some constant for e = r which converges
to a constant value when x tends to infinity for b1 = 1

2 . We
apply the quasi-Newton algorithm to perform the optimization

1Available at https://doi.org/10.5281/zenodo.5806271 for download.
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herein. In particular, we used the fminunc command in Mat-
lab with setting its ’Algorithm’ to ’quasi-newton’ in
order to minimize the target function etot. The error function
can also be forced to start from zero by adding the constraint∑N

n=1 an = 1
2c , which results from the limit at zero, and we

then used fmincon command instead.
We start with heuristic initial guesses for the unknowns

that converge eventually to the optimized values. In fact, we
were able to use the minimax-optimized sets as mean values
around which small random variance is introduced to work
as initial guesses for their equivalent cases herein. Note that
the fminunc command finds the local minimum of the target
function. Therefore, we need to repeatedly run the local solver
to locate a solution that has the lowest target function value.
The optimized coefficients to the GKL approximations are also
solved herein for the two variations of the absolute error and
for the relative error with R = 10 in terms of the total error.1

III. NUMERICAL RESULTS

This section demonstrates how excellent the GKL approxi-
mations and bounds perform, were they achieve world-record
low error levels as will be seen next. Figure 1 illustrates the
absolute error functions resulted from applying our approxima-
tions and key existing ones. Obviously, the proposed approxi-
mations are extremely tight and even more interestingly, they
substantially outperform all the reference cases for the whole
non-negative real axis even with only one term as can be noted
from the huge displacement in the corresponding curves in
Fig. 1(b). The accuracy increases considerably further when
increasing N as seen by the comparison between N = 1,
N = 2 and N = 4 for the minimax approximation.

Figure 2 plots the global error of the minimax approxima-
tions and bounds proposed in Section II-A together with the
reference cases (solid lines and markers with solid arrows),
in addition to the total error of the approximations proposed
in Section II-B and the reference cases (dashed lines and
markers with dashed arrows), both for N = 1, 2, . . . , 10 and
in terms of both error measures. With small N = 1, 2, 3, they

already significantly outperform the reference ones and their
accuracy increases considerably by increasing N . Ultimately,
the proposed GKL expression with optimized coefficients
reaches extremely low levels in the order of 10−9 and 10−5

for absolute and relative errors, respectively, with N = 10. It
should be noted that the proposed approximations and bounds
in the special case of N = 1 are the same as those in [2].

IV. OVERVIEW OF APPLICATIONS

The applications of the original KL approximation and the
newly proposed GKL approximation (2)—both have the same
analytical complexity—are about the same and span different
areas of communication theory. A popular application example
would be evaluating the average symbol error probability for
coherent detection, which results in linear combinations of the
following integral with different integer values of P :

IP (γ̄) �
∫ ∞

0

QP (
√
γ)φγ(γ) dγ, (10)

where φγ(γ) is the fading probability density function of the
instantaneous signal-to-noise ratio γ with average γ̄.

When assuming generalized κ − μ distribution, (10) can
be evaluated using [15, Eqs. 3.351.3, 3.462.1, and 8.445]
after applying (2) to express tight approximations for the
P th integer power of the Gaussian Q-function using the
multinomial expansion. This yields

IP (γ̄) ≈
∞∑
τ=0

μμ+2τ

exp(−κμ)

κτ (1 + κ)μ+τ

Γ(μ+ τ)τ !
ΨP (γ̄) (11)

and

IP (γ̄) ≈ mm

Γ(m)
ΨP (γ̄) (12)

in the general case and in the special case of Nakagami-m
fading (that occurs at κ = 0 and μ = m), respectively. The
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convergent infinite series in (11) can be truncated to the desired
accuracy. For the above expressions,

ΨP (γ̄) =
∑

p1+p2+···+pN=P

P∑
j=0

(
P

j

)
(−1)j

1

γ̄μ
GH

[
C−A−1

× Γ(A+ 1)− C−A− 3
2

[√
C Γ(A+ 1)1F1

(
A+ 1;

1

2
;
B2

4C

)

−B Γ

(
A+

3

2

)
1F1

(
A+

3

2
;
3

2
;
B2

4C

)]]
, (13)

in which the first summation is taken over all combinations
of non-negative integer indices p1 through pN such that the
sum of all pn is P . The parameters are G =

(
P

p1,p2,...,pN

)
,

H = ap1

1 ap2

2 · · · apN

N , A = 2μ+2τ−2−P
2 > −1, B = c j, C =

Λ+ μ(1+κ)
γ̄ , and Λ = b1 p1 + b2 p2 + . . .+ bN pN ; moreover,

the parameters A and C reduce to A = 2m−2−P
2 > −1 and

C = Λ+ m
γ̄ for the special case of Nakagami-m fading.

Let us then overview a few examples [16]–[20] from the
wide range of applications available in the literature for which
the proposed GKL expression is applicable as a substitute
for the KL expression that was originally used in those
publications. In particular, the GKL approximation/bound can
be used to calculate the sampling bit error probability of
binary phase shift keying [16], to approximate the phase noise
probability density function in the system considered in [17],
and to derive the coherent LoRa R© symbol error rate under
additive white Gaussian noise [18]. Beyond communications,
it allows to approximate the distribution functions of particles
experiencing compound subdiffusion [19] and to derive the
predictive error of the probability of failure [20], for instance.

Furthermore, the simplified series expansion of the original
KL expression proposed in [21] can be applied likewise to (2)
with the optimized coefficients, which results in

Q(x) ≈
L∑

l=1

N∑
n=1

(−1)l+1 an c
l

l!
exp

(
−bn x

2
)
xl−1. (14)

Since (14) can be used as a direct substitute for [21, Eq. 3],
the proposed GKL approximations are also useful for the
applications considered in [22]–[25] (and many others that
cite [21]) and improve the accuracy of the analysis thereof.

V. CONCLUSION

This Letter presented a new tractable expression for ap-
proximating the Gaussian Q-function together with multiple
alternatives of coefficient sets for it1 that are optimized to
minimize either the global or total absolute/relative errors,
from which the best suitable set is chosen for any application
at hand. The extremely low error levels allow for their usage
as highly reliable substitutions to the Q-function in order
to derive virtually exact analytical expressions for different
performance metrics in communication theory. Moreover, we
extended the proposed expression to minimax bounds (with
comparable accuracy to that of the approximations) that are
useful when the worst/best case scenarios are of interest.
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Abstract—We present tight yet tractable approximations and
bounds for the ergodic capacity of any communication system
in the form of a weighted sum of logarithmic functions, with
the focus on the Nakagami and lognormal distributions that
represent key building blocks for more complicated systems.
A minimax optimization technique is developed to derive their
coefficients resulting in uniform absolute or relative error. These
approximations and bounds constitute a powerful tool for the
statistical performance analysis as they enable the evaluation
of the ergodic capacity of various communication systems that
experience small-scale fading together with the lognormal shad-
owing effect and allow for simplifying the complicated integrals
encountered when evaluating the ergodic capacity in different
communication scenarios. Simple and tight closed-form solutions
for the ergodic capacity of many classic and timely application
examples are derived using the logarithmic approximations. The
high accuracy of the proposed approximations is verified by
numerical comparisons with existing approximations and with
those obtained directly from numerical integration methods.

Index Terms—Ergodic capacity, minimax approximation,
bounds, performance analysis, fading distributions.

I. INTRODUCTION

ERGODIC capacity is an important measure for analyzing
the performance of different communication systems [1].

It specifies the maximum transmission rate of reliable com-
munication that can be achieved over time-varying channels.
Specific formulations of ergodic capacity can be referred to as
capacity integrals based on the way how they are found by
calculating the expectation of instantaneous channel capacity
using probability density functions (PDFs) that model fading.
Establishing closed-form expressions for ergodic capacity is
of great importance in communication theory since they en-
able us to gain scientific understanding of the behavior of
communication systems and the effect of their parameters
on the performance. In this area, our research work aims
at facilitating the statistical performance analysis of wireless
systems by developing novel mathematical tools that build
upon the following general result in this article.

Proposition 1: For any wireless system with instantaneous
capacity C � log2 (1 + γeff) conditioned on fading states,

Manuscript received June 25, 2021; revised January 11, 2022, May 20,
2022; accepted May 21, 2022. This work was supported by the Academy of
Finland under the grants 310991/326448, 315858, 341489, and 346622. The
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Finland (e-mail: islam.tanash@tuni.fi; taneli.riihonen@tuni.fi).
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where γeff � 2C − 1 denotes effective (not necessarily actual)
signal-to-noise ratio (SNR) with average γ̄eff � E [γeff], the
ergodic capacity can be approximated with arbitrary accuracy
as

C̄ � E[C] ≈
N∑

n=1

an log2 (1 + bn γ̄eff) (1)

by choosing the coefficients {(an, bn)}Nn=1 appropriately.
Proof: See Appendix A.

One will instantly notice that the generic approximation (1)
is a weighted sum of the Shannon capacities of basic static
additive white Gaussian noise (AWGN) channels. In other
words, the greatness of Proposition 1 is that it proves that any
system with fading channels is in terms of capacity equivalent
to a system (cf. Fig. 1), wherein a scheduler employs randomly
one of N + 1 parallel static channels for the transmission of
each data block:1 Channel n, n = 1, 2, . . . , N , having SNR of
bnγ̄eff is chosen with probability an and Channel 0 represents
a completely blocked channel (b0 = 0), i.e., an outage event
takes place with remaining probability a0 = 1−∑N

n=1 an.
While Proposition 1 is powerful in proving the general

existence of the approximation (1) for the ergodic capacity
of any wireless system at large, it is not so applicable as
an actual approximation for any specific system. This is
because, firstly, the coefficients an, n = 1, 2, . . . , N , are in
the direct application computed from the PDF of C, which
is typically not derived explicitly in statistical performance
analysis, and it may be cumbersome or even impossible to
express. Secondly and more importantly, when choosing the
coefficients from the Riemann sum according to the proof, the
resulting approximations are inefficient, because a very large
number of logarithmic terms are needed for adequate accuracy.

In this paper, we aim to evolve Proposition 1 into a useful,
efficient tool in two ways. Firstly, we develop a system-
atic methodology to optimize coefficients {(an, bn)}Nn=1 to
approximate any communication system’s ergodic capacity
C̄ = C(1/γ̄eff)/ loge(2) that can be expressed with the
generic function C(·) of some open or closed form. Secondly,
we implement the presented optimization methodology to
find {(an, bn)}Nn=1 explicitly under Nakagami and lognormal
fading (when C(·) becomes Cm(·), the ‘Nakagami capacity
integral’, or Cσ(·), the ‘lognormal capacity integral’) and show

1An alternative interpretation is a scheduler that employs the parallel chan-
nels sequentially for data blocks with relative durations an, n = 0, 1, . . . , N .
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Fig. 1. Interpretation of the ergodic capacity of any communication system
as a scheduler which randomly employs one of the parallel static channels
when transmitting data blocks.

how to use them as building blocks for the capacity analysis
of complex systems that manifest them in intermediate steps.

A. Related Works

Capacity integrals have been investigated extensively in the
literature for countless transmission systems under various
assumptions on transmitter and receiver channel knowledge
and over different fading distributions [2]–[18]. In [2]–[12],
the ergodic capacity over Rayleigh fading is evaluated for
single-antenna systems and multi-antenna systems — namely,
multiple-input single-output (MISO), single-input multiple-
output (SIMO), and multiple-input multiple-output (MIMO)
— for correlated or non-correlated channels and different
combining techniques at the receiver. Moreover, the ergodic
capacity for single-antenna and multi-antenna systems with
non-correlated channels is evaluated over Nakagami fading in
[13], [14] and over Rician fading in [15]–[17]. The ergodic
capacity under κ− μ fading is derived in [18].

Generally, the precise ergodic capacity expressions are
difficult to express in analytical forms. This has motivated the
work toward deriving approximations and bounds for capacity
integrals [19]–[25]. They are also needed among many other
purposes for optimal power allocation and network design. In
particular, the authors in [19] present a lower bound for the
capacity integral of MIMO Rayleigh channels with frequency-
selective fading and/or channel correlation, together with an
asymptotic approximation of the ergodic capacity over flat
fading. Other asymptotic results are derived in [20] for specific
multi-antenna scenarios with the channel knowledge at the
receiver at first, and then at the transmitter as well.

In [21], more generic expressions for bounding the ergodic
capacity are presented. In [22], two less accurate yet tractable

approximations that enable the development of analytical
resource allocation strategies in Rayleigh MIMO systems
are derived. The authors in [23] propose two simple yet
accurate approximations for the ergodic capacity in the low-
SNR region. Closed-form bounds for the ergodic capacity in
dual-hop fixed-gain amplify and forward relay networks are
proposed in [24] over Rayleigh fading channels, and in [25]
over Nakagami fading channels.

In addition to the small-scale fading, the ergodic capacity
is also investigated under the shadowing effect that is usually
modeled by the lognormal distribution. The ergodic capacity
of communication systems under lognormal fading channels
does not admit a closed-form expression. Therefore, several
approximations and bounds have been proposed to express it
in terms of analytical functions [26]–[30]. The very first lower
and upper bounds for evaluating the ergodic capacity over
lognormal fading channels were presented in [26], resulting
in simple yet loose bounds for lower values of SNR.

Other approximations were later developed in [27], [28]
for single-input single-output (SISO) systems and the results
were also generalized to approximate the capacity of diversity
combining techniques with or without channel correlation,
based on the fact that the sum of lognormal random variables
can be well approximated by an equivalent lognormal one. In
[29], a tight approximation for the lognormal capacity integral
is presented and investigated for SISO and MIMO indoor ultra-
wideband systems. The authors in [30] derive closed-form
approximations for the capacity integral of various adaptive
transmission schemes under lognormal distribution.

B. Contributions and Organization of the Paper

The unified fundamental tool, i.e., (1), contributed in this
article enables the accurate evaluation of ergodic capacity
in any communication system at large in the form of the
weighted sum of logarithmic functions. It requires optimizing
the corresponding coefficients so that they work as highly
efficient replacements for those obtained from the numerical
methods such as the Riemann sum in the proof of Propo-
sition 1. Nevertheless, we also implement the proposed ap-
proach to offer novel logarithmic approximations and bounds
with optimized coefficients specifically for the Nakagami and
lognormal capacity integrals. Since these two integrals most
frequently appear as building blocks for many more-complex
communication systems, this often leads to logarithmic ap-
proximations and bounds in the same format of (1) for
their capacity expressions. This avoids the need to formulate
equivalent methodology and solve the coefficients specifically
for every individual system despite the general tool facilitates
that too.

We can summarize the contributions in this paper as follows.
• We propose a systematic methodology to optimize the

approximations’ coefficients and obtain the best logarith-
mic approximations in terms of the minimax absolute
error for the capacity of any communication system.
This requires redeveloping the related scheme that we
previously presented in [31] for error probability analysis,
which is inherently different from capacity analysis.
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• We implement the optimization methodology on the
Nakagami-m channel (and over Rayleigh fading as a
special case thereof) to derive minimax approximations
for it. Especially, the approximations are valid for any
value of m, opposing to the exact closed-form expression
in [13, Eq. 23], which is valid only for its integer values.

• We show how the optimized approximation of the Nak-
agami capacity integral can be used as a building block
to derive the capacity integral of many complicated
communication systems [2]–[18], [32]–[37] and can even
often lead to the same logarithmic form as an end result.

• Likewise, we find the optimized coefficients for the
approximation of the lognormal capacity integral which
enables the evaluation of the ergodic capacity for vari-
ous communication systems that experience small-scale
fading together with the lognormal shadowing effect, in
the form of a sum of logarithmic terms. In particular,
for a composite lognormal channel, we apply the sum of
logarithms with its optimized coefficients to approximate
the ergodic capacity over the small-scale fading channel
first. The resulting integral has exactly the same form as
the lognormal capacity integral, which we approximate
again by the sum of logarithmic functions.

• We extend the proposed minimax method to find the
optimized parameters of the logarithmic approximation
in terms of the relative error. We also extend it to find
new logarithmic lower and upper bounds with optimized
parameters in terms of both error measures.

We validate the aforementioned contributions with an ex-
tensive set of application examples that demonstrate the wide
range of applicability of the proposed approximations. We
further illustrate their high accuracy by numerical compar-
isons with other existing approximations or those obtained by
numerical integration methods. In fact, their accuracy is so
high that they can be considered to be virtually exact in most
applications while they allow deriving closed-form results in
cases where exact analysis is considered to be impossible.

We organize the rest of this paper as follows. Section II
introduces some needed background information to formulate
and solve the research problem. The main contribution is pre-
sented in Section III, where we propose the new methodology
to acquire tight logarithmic approximations and bounds for
ergodic capacity at large. In Section IV, a wide range of
applications are considered and their capacities are evaluated
in terms of the proposed approximations. In Section V, the nu-
merical results demonstrate the high accuracy of the proposed
approximations compared to other existing and numerical
ones. Finally, we conclude the paper in the last section.

II. PRELIMINARIES

In this paper, we shall develop unified approximations and
bounds in the format of (1) that apply for the ergodic capacity
C̄ = C(1/γ̄eff)/ loge(2) of any communication system, where
the generic capacity function C(x) can be of any mathematical
form. In most communication systems’ analysis, C(x) can be
represented as a capacity integral that calculates the average
of C � log2 (1 + γeff) per the following definitions.

Definition 1: Given average effective SNR γ̄eff with G �
2C−1
γ̄eff

= γeff
γ̄eff

, whose PDF exists and is denoted by fG(·),
the ergodic capacity of the corresponding communication
system is C̄ = C(1/γ̄eff)/ loge(2) [bit/s/Hz], where the generic
capacity integral is defined as

C(x) �
∫ ∞

0

loge

(
1 +

t

x

)
fG(t) dt. (2)

One should note that the generic capacity function C(x) is
not necessarily given by the above generic capacity integral
when the presented tool is still applicable. Nevertheless, we
shall focus on developing the approximations and applications
for the following specific integrals, which originate from eval-
uating (2) for Nakagami (including Rayleigh) and lognormal
fading channels. These integrals appear frequently as part of
longer expressions or in intermediate calculation steps when
analyzing the capacity of more complex wireless systems.

Definition 2: Given average SNR γ̄, the ergodic capacity
of a Nakagami-m fading channel is C̄ = Cm(1/γ̄)/ loge(2)
[bit/s/Hz], where the Nakagami capacity integral is defined as

Cm(x) �
∫ ∞

0

mm

Γ(m)
loge

(
1 +

t

x

)
tm−1 exp(−mt) dt

= exp(mx)
m−1∑
k=0

Γ(−k,mx) (mx)k, (3)

for x > 0 [13, Eqs. 21 and 23] with Γ(ζ, x) =∫∞
x

tζ−1 exp(−t) dt denoting the upper incomplete gamma
function [38, Eq. 6.5.3] and m being the fading parameter;
the latter expression is valid for integer values of m only.

Substituting m = 1 in the above definition, we obtain the
ergodic capacity of a Rayleigh fading channel as a special
case as C̄ = C1(1/γ̄)/ loge(2) [bit/s/Hz], where the Rayleigh
capacity integral is defined as

C1(x) =

∫ ∞

0

loge

(
1 +

t

x

)
exp(−t) dt

= exp(x) E1(x), (4)

for x > 0 [2, Eqs. 4 and 5] with E1(x) =
∫∞
x

exp(−t)/t dt
denoting the exponential integral [38, Eq. 5.1.1].

Definition 3: Given average SNR γ̄ = exp(η + σ2

2 ), in
which η and σ are the mean and the standard deviation of
the corresponding instantaneous SNR’s natural logarithm, re-
spectively, the ergodic capacity of a lognormal fading channel
is C̄ = Cσ(1/γ̄)/loge(2) [bit/s/Hz], where the lognormal
capacity integral is defined as

Cσ(x) �
∫ ∞

−∞

1√
π
loge

⎛
⎝1 +

1

x
exp

(√
2σ2 t− σ2

2

)⎞⎠
× exp(−t2) dt, (5)

for x > 0 [26, Eq. 29]; this integral does not admit a closed-
form expression so its approximations are crucial to have.

The Rayleigh capacity integral in (4) admits a sandwich
bound according to [38, Eq. 5.1.20] as

1

2
loge

(
1 +

2

x

)
< C1(x) < loge

(
1 +

1

x

)
, (6)
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and any linear combination thereof could be used as an
obvious, but loose, approximation for the ergodic capacity
over a Rayleigh fading channel. Inspired by this fact and
Proposition 1, we develop a family of tractable functions

C̃(x) �
N∑

n=1

an loge

(
1 +

bn
x

)
(7)

for x > 0, that offer tight approximations and bounds for C(x)
as C̃(x), for Cm(x) in (3) as C̃m(x) and for Cσ(x) in (5) as
C̃σ(x) by proper parameter choice. They are directly related to
Proposition 1 as C̃(1/γ̄eff)/ loge(2) results in the logarithmic
approximation given in (1). Furthermore, it should be noted
that all N ! permutations of the parameter set {(an, bn)}Nn=1

yield an equivalent function, although we always choose the
canonical (sorted) representation with a1 ≤ a2 ≤ . . . ≤ aN .

The absolute and relative error functions d(x) and r(x),
respectively, as well as their first-order derivatives d′(x) and
r′(x), respectively, are needed in what follows. They are
defined as

d(x) � C̃(x)− C(x), (8)

r(x) � d(x)

C(x)
=

C̃(x)

C(x)
− 1, (9)

and their derivatives are given by

d′(x) = C̃ ′(x)− C ′(x), (10)

r′(x) =
C(x)C̃ ′(x)− C ′(x)C̃(x)

[C(x)]2
, (11)

for which

C̃ ′(x) = −
N∑

n=1

anbn
(x+ bn)x

, (12)

and generally, whenever C(x) is given by (2),

C ′(x) = −
∫ ∞

0

t

(t+ x)x
fG(t) dt. (13)

For Nakagami-m and lognormal fading, (13) becomes

C ′
m(x) = −m

x
+mCm(x) +

[exp(mx)

x

×
m−1∑
k=0

k (mx)kΓ(−k,mx)
]

(14)

and

C ′
σ(x) = −

∫ ∞

−∞

exp (
√
2σ2t− σ2

2 − t2)
√
π
(
exp (

√
2σ2t− σ2

2 ) + x
)
x

dt, (15)

respectively.

III. NEW LOGARITHMIC APPROXIMATIONS AND BOUNDS

Inspired by Proposition 1 and by the table-book bounds
restated in (6) for the Rayleigh capacity integral defined in (4),
we replace the generic capacity function C(x) as well as the
generic, Nakagami and lognormal capacity integrals in (2),
(3) and (5), respectively, by a weighted sum of logarithmic
functions and design appropriate values for the corresponding

coefficients. A possible choice would be to use the numerical
coefficients that result from applying the numerical integration
rules. However, much higher accuracy can be achieved by
optimizing these coefficients in the minimax sense to give
the best logarithmic approximations and bounds as will be
explained soon. To begin with, we can make two minor but
useful observations.

Remark 1: An approximation for the exponential integral,
E1(x), is directly derived from approximating (4) by (7) as

E1(x) ≈ exp(−x)
N∑

n=1

an loge

(
1 +

bn
x

)
. (16)

Thus, the following results are applicable also beyond ergodic
capacity analysis and in other fields of science than commu-
nication engineering, where the exponential integral occurs.

Remark 2: As originally reported in [39], the numerical
evaluation of the latter form of the Rayleigh capacity integral
in (4) is subject to a severe stability issue. In particular with
double-precision floating-point arithmetic, exp(x) overflows
and E1(x) underflows whenever x ≥ 740 although their
product, C1(x), is finite and of the magnitude of 1/x as shown
by [38, Eq. 5.1.19]: 1/(x+ 1) < C1(x) < 1/x for all x > 0.
On the other hand, all approximations and bounds according
to (7) avoid this stability issue completely.

A. Approximations from Numerical Integration

As already mentioned, a possible choice for the parameters
of (7) can be acquired by applying the Riemann sum method.
However, slightly better parameter choice is achieved by
applying the various quadrature numerical integration methods
which are more direct and efficient to be used than the
Riemann sum method. Therefore, the numerical coefficients
can be easily found as given in the following three lemmas, for
which the common proof given underneath holds for all, and
where {tn}Nn=1 are the nodes and {wn}Nn=1 are the quadrature
weights of the corresponding numerical integration rule [40].

Lemma 1: The generic capacity integral can be numerically
approximated by (7) with its numerical coefficients given as

{(an, bn)}Nn=1 =
{(

wn fG(tn), tn
)}N

n=1
. (17)

Lemma 2: The Nakagami capacity integral can be numeri-
cally approximated as (7) with its numerical coefficients given
as

{(an, bn)}Nn=1 =

{(
wn

mm

Γ(m)
tm−1
n exp(−mtn), tn

)}N

n=1

.

(18)

Lemma 3: The lognormal capacity integral can be numeri-
cally approximated as (7) with its numerical coefficients given
as

{(an, bn)}Nn=1 =

⎧⎨
⎩
(

wn√
π
exp(−t2n), exp

(√
2σ2 tn − σ2

2

))⎫⎬
⎭

N

n=1

.

(19)
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Proof: Starting from the capacity integral expressions in
Section II, we implement the quadrature numerical integra-
tion techniques, which approximate any integral of the form∫ v

u
f(t) dt as a finite sum of the form

∑N
n=1 wn f(tn) for

which f(t) is given in (2) for Lemma 1, in (3) for Lemma 2
and in (5) for Lemma 3. This yields the same logarithmic sum
as in (7) with the numerical coefficients stated in the lemmas to
approximate the respective generic, Nakagami and lognormal
capacity integrals.

In particular, the capacity integral is an improper convergent
integral that can be approximated directly by applying the
Gauss–Laguerre or Gauss–Hermite quadrature rules or by
considering a large yet finite integration interval with Newton–
Cotes methods [38]. Another alternative way would be to use
transformation of variables to limit the integration interval
and thus enable the application of various other integration
techniques. Nevertheless, the numerical approximations have
relatively low accuracy in terms of global error and need a
large number of logarithmic terms in order to achieve adequate
accuracy. Therefore, we only consider the commonly used
Gauss–Laguerre and Gauss–Hermite quadrature rules in the
analysis of the proposed approximations in this paper.

B. Minimax Approximations

The adopted weighted sum of logarithmic functions in (7)
can be optimized to establish best minimax approximations
and bounds for the generic capacity function as well as
the generic, Nakagami and lognormal capacity integrals. In
particular, the best approximation or bound refers to the
member of the function family (7) that is the tightest of
them all for given N and always occur with optimal set of
coefficients {(a∗n, b∗n)}Nn=1 that minimizes the maximum error
and is expressed as the solution to the following minimax
optimization problem:

{(a∗n, b∗n)}Nn=1 = argmin
{(an,bn)}N

n=1

emax (20)

where e ∈ {d, r} represents both the absolute and relative
errors collectively in what follows, and emax is the maximum
error, which is defined as

emax � sup {|e(x)| : x > 0}
= max {|e0|, |e1|, . . . , |eL|, |e∞|}. (21)

The latter expression comes from Fermat’s theorem, where
el = e(xl), l = 1, 2, . . . , L, are the error values at the
stationary points xl, l = 1, 2, . . . , L, at which e′(xl) = 0.

In the following proposition, we describe the expected shape
of the solution to the minimax optimization problem in (20)
that gives the best approximation or bound.

Proposition 2: The unique best logarithmic approximation
or bound of the function family (7) with degree D for the
capacity integral occurs when the corresponding error function
e(x) alternates D times between D+1 extrema points of the
same value of error and alternating signs. Its extreme points
are found at the roots of its derivatives or asymptotically at
the endpoints of its open domain.

Proof: According to the theorem in [41], the proposed ap-
proximation defined in (7) with {(a∗n, b∗n)}Nn=1 is the best min-
imax approximation to C(x) (including Cm(x) and Cσ(x)),
if and only if d(x) or r(x) defined respectively in (8) and
(9), alternate D times. Moreover, the uniqueness of the
solution,{(a∗n, b∗n)}Nn=1, is guaranteed since the set of functions
{loge

(
1 + bn

x

)
, n = 1, 2, . . . , N} used in the approximation

in (7) satisfies the Haar condition on (0,∞) with a null set
{∞}, since for every set of N distinct points {xn}Nn=1, x > 0,
the determinant of the N × N matrix, whose (i, j)th entry
is loge

(
1 + bi

xj

)
, is nonzero [42]. This condition is essential

to establish a unique best Chebyshev approximation [43,
Theorem 1].

After characterizing the shape of the minimax error func-
tion, we need to find the solution which gives such an error
function. This is achieved by formulating a set of nonlinear
equations and solving them as explained next.

1) Optimization in Terms of Absolute Error: When consid-
ering the absolute error, the best logarithmic approximation
for the ergodic capacity can be found by optimizing its
corresponding parameters according to (20), which implies
that we seek to minimize the maximum/global error. This
problem can be solved by formulating a set of nonlinear
equations that describe the best absolute error function which
is proved to be uniform with all its extrema points alternating
in sign with the same value of error per Proposition 2.

Corollary 1: The best approximation in terms of the absolute
error is found as the solution to the following set of equations:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
d′(xl) = 0, for l = 1, 2, . . . , L,

d(xl) = (−1)l dmax, for l = 1, 2, . . . , L,

d0 = limx→0 d(x) = dmax,∑N
n=1 an = 1,

(22)

where L = 2N − 1.
The equation

∑N
n=1 an = 1 in (22) is actually a condition

that is necessary to construct a bounded error function from
the left, otherwise d0 = ±∞. In particular, the first extrema
point occurs asymptotically at zero, i.e., we choose x0 to be
a very small value near zero and assign d0 = d(x0) = dmax.
Thus, when meeting the condition, x0 contributes only with
a single equation that expresses the error value at that point,
opposing to the other extrema points which contribute with
two equations; one expresses its value and the other expresses
the zero derivative of the error function at the corresponding
stationary point. The absolute error is also bounded from the
right, i.e., d∞ = limx→∞ d(x) = 0. Therefore, with including
the imposed condition, a total of 4N equations are constructed
and their number is equal to the number of unknowns, namely,
{(a∗n, b∗n)}Nn=1, {xl}Ll=1 and dmax.

It should be noted that C̃(x) has a degree D = 2N
at the optimized set of coefficients {(a∗n, b∗n)}Nn=1. However,
the imposed condition

∑N
n=1 an = 1 decreases its degrees

of freedom by one to be D = 2N − 1. Therefore, C̃(x)
with {(a∗n, b∗n)}Nn=1 is the best Chebyshev approximation that
alternates exactly 2N − 1 times between local maximum and
minimum values of equal magnitude according to Proposi-
tion 2. This confirms exactly with the proposed approach in
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(22) which alternates 2N − 1 times and results in a total of
2N extrema points including x0.

2) Optimization In Terms of Relative Error: Similar to
optimizing the approximation’s parameters in terms of the
absolute error, the best approximation in terms of the relative
error is derived by solving the minimax optimization problem
in (20) through formulating a set of nonlinear equations
describing the uniform minimax relative error function.

Corollary 2: The best approximation in terms of the relative
error is found by the solution to the following set of equations:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
r′(xl) = 0, for l = 1, 2, . . . , L,

r(xl) = (−1)l+1 rmax, for l = 1, 2, . . . , L,

r0 = limx→0 r(x) = −rmax,∑N
n=1 an bn = −rmax + 1.

(23)

In a similar way as for the absolute error, the extrema point
x0 is set to be a very small value near zero and it only
contributes with a single equation (r0 = r(x0) = −rmax). On
the other hand, the relative error converges to a constant value
when x tends to infinity opposing to d(x) which converges
to zero, i.e., r∞ = limx→∞ r(x) =

∑N
n=1 an bn − 1 and

we assign r∞ = −rmax, which results in the last equation
in (23). A solution to this system of equations yields the
required optimized parameters {(a∗n, b∗n)}Nn=1 that define the
best approximation. Since no condition is imposed herein,
D = 2N and, hence, r(x) alternates 2N times as seen in
Fig. 4(a) which confirms with the proposed approach in (23).

3) Lower and Upper Bounds: The proposed minimax opti-
mization method for the logarithmic approximation in (7) can
also be extended to give upper and lower bounds in terms
of both absolute and relative errors. They are additionally
constrained in (21) by e(x) ≤ 0 or e(x) ≥ 0 when solving
for the best lower or upper bound, respectively. Therefore, we
construct the lower bound by shifting down the corresponding
error function in such a way as to make it oscillate between
zero and −emax with 2N extrema and e0 = 0 for the
absolute error, and 2N + 1 extrema and e0 = −rmax for the
relative error. With these properties of the corresponding error
function, the optimization problem can be easily formulated in
the same manner as in (22) and (23) for both error measures.

Similarly, using the shifting approach, the error function
is forced to oscillate between zero and emax for the upper
bound, resulting in an error function with 2N−1 extrema and
e0 = dmax for the absolute error and with 2N + 1 extrema
and e0 = 0 for the relative error. It should be noted that for
the upper bound in terms of absolute error, an extra equation∑N

n=1 an bn − 1 = 0 is added to the system of equations in
order to get an equal number of equations and unknowns. In
addition, for the absolute error, d∞ is never counted as an
extremum since it converges to zero when x tends to infinity,
whereas for the relative error, r∞ is counted as an extremum
since it converges to a constant value when x tends to infinity.

C. Proof by Construction

We prove the existence of the proposed solution to (20)
by construction. While the set of equations in (22) and (23)

can be directly formulated and solved for any communication
system in order to find the optimized sets of coefficients
{(a∗n, b∗n)}Nn=1 for the novel minimax approximations in (7),
we have implemented the proposed methodology to find the
optimized coefficients in terms of the absolute error for the
Nakagami and lognormal capacity integrals which are to be
used as building blocks in the capacity analysis of the more
complicated systems as will be seen shortly. These coefficients
are calculated by constructing (22) through substituting (7)
with (3) for Nakagami capacity integral, or (5) for lognormal
capacity integral, in (8) together with substituting (12) with
(14) for Nakagami capacity integral, or (15) for lognormal
capacity integral, in (10). Each formulated system of equations
is then numerically solved using the fsolve command in
Matlab with an equal number of equations and unknowns after
using good initial guesses for the unknowns.

The coefficients {(a∗n, b∗n)}Nn=1 are calculated for up to N =
10 or when the order of accuracy is 10−9, and are released to
public domain in a supplementary digital file.2 Likewise, we
prove the existence of the solutions to (23) and the bounds by
finding them for two example cases in Section V. Together
with the released data sets, we also provide a basic Matlab
code that implements solving (22) to calculate the optimized
coefficients of (7) for any communication system in terms of
the absolute error.2

Despite the simplicity of implementing this numerical ap-
proach, the challenge is to find heuristic initial guesses for the
unknowns: {(an, bn)}Nn=1, {xl}Ll=1 and emax. In this work,
we have used iteratively random values for the lower values
of N and then used curve fitting techniques to draw some
relationships that indicate their successive values for higher
values of N . We followed this procedure to find the initial
guesses for one certain value for both m and σ and found the
optimized values of the corresponding unknowns which are
then used as initial guesses for the same optimization problem
but with shifted values of m and σ with small steps; the new
optimized values are then used for the next shifted values and
so on. It is worth mentioning that the numerical coefficients
of {(an, bn)}Nn=1 in Lemma 1 can be a very good choice as
initial guesses too, especially for the lower values of N , to
converge to the optimized values or at least to work as mean
values around which small random variance is introduced.

IV. APPLICATIONS OF THE PROPOSED APPROXIMATIONS
AND BOUNDS

As discussed earlier, one can straightforwardly apply the
methodology of Section III-B in order to solve the coefficients
of (1) for any communication system. Alternatively, one can
use C̃m(x) and C̃σ(x) as building blocks to derive the ergodic
capacity whenever possible. Particularly in this section, we
mainly focus on the second approach for which we study
its important role in simplifying the complicated integrals
encountered when evaluating the ergodic capacity in different
communication scenarios.

A frequently seen integral in the intermediate steps when
analyzing the performance of many wireless communication

2Available at https://doi.org/10.5281/zenodo.6641977 for download.



TANASH AND RIIHONEN: TIGHT LOGARITHMIC APPROXIMATIONS AND BOUNDS FOR GENERIC CAPACITY INTEGRALS 7

TABLE I
VALUES OF Φj , mj AND θj FOR THE ERGODIC CAPACITIES OF SISO

SYSTEMS UNDER DIFFERENT FADING DISTRIBUTIONS.

Fading Φj mj θj

Rice Kj

j!
exp(−K) j + 1 1+K

1+j

Nakagami-q (Hoyt) (2j)!q(1+q2)−2j−1(1−q2)2j

j!2 22j−1 2j + 1
(1+q2)2

4(2j+1)q2

η − μ
√

πΓ(2μ+2j)2−2μ−2j+1h−μ−2jH2j

Γ(μ+j+ 1
2
)Γ(μ)Γ(j+1)

2μ+ 2j 2μh
2μ+2j

κ− μ
(μκ)j

j! exp(μκ)
μ+ j

μ(1+κ)
(μ+j)

∗notes: K is the Rician factor, h = (2 + η−1 + η)/4 and H = (η−1 − η)/4 for Format 1 of the
η − μ distribution and h = 1

(1−η2)
and H = η/(1 − η2) for Format 2

systems with respect to their ergodic capacity [2]–[18], [32]–
[37] has a similar form to that of the Nakagami capacity
integral as

Im,φ(x) �
∫ ∞

0

loge (1 + x t) tm−1 exp(−φ t) dt

= φ−m Γ(m)Cm(φ/(xm))

≈ φ−m Γ(m) C̃m(φ/(xm)). (24)

Above, the second line has been written in terms of (3) and
the third line is correspondingly approximated in terms of (7).

In particular, C̃m(x) can be used to directly approximate
the ergodic capacity of a Nakagami-m channel as C̄ ≈
C̃m(1/γ̄)/ loge(2) including Rayleigh fading as a special
case with m = 1, and C̃σ(x) can be used to directly
approximate the ergodic capacity of a lognormal channel as
C̄ ≈ C̃σ(1/γ̄)/ loge(2). Next, we illustrate the use of C̃m(x)
to evaluate the ergodic capacity in different communications
systems under small-scale fading, and then the use of C̃σ(x)
to approximate the ergodic capacity when the lognormal shad-
owing is introduced to the system. One can also use C̃m(x) to
evaluate the ergodic capacity of the more complicated systems
that encounter a similar integral as Im,φ(x) in (24) and do not
eventually result in the logarithmic expression (1); such a case
is illustrated in Section IV-D.

A. Ergodic Capacity Under Small-Scale Fading

In addition to the Nakagami-m distribution (and Rayleigh
distribution thereof), C̃m is used to approximate the capacity
integral of the single-antenna systems over the more compli-
cated distributions as

C̄ ≈ 1

loge(2)

∞∑
j=0

Φj C̃mj

(
θj
γ̄

)
≈

N∑
n=1

an log2 (1 + bn γ̄) ,

(25)

where Φj , j = 0, 1, . . ., are constants. Table I lists the values
of Φj , mj and θj for the ergodic capacities of SISO systems
under different fading distributions. It should be mentioned
that the infinite series in (25) results from expanding the mod-
ified Bessel function of the first kind as a power series (which
is included in the PDF of many of the fading distributions)
[38, Eq. 9.6.12], and it can be truncated up to several terms
that are adequate to obtain the required accuracy. The double-
summation logarithmic terms (when including the approxima-
tion sum) can be rearranged into a single summation, yielding
the same logarithmic approximation as in (1)

Table II lists closed-form expressions for the ergodic capac-
ity of various point-to-point multi-antenna systems in terms
of C̃m(x), where they usually encounter similar integrals
as Im,φ(x) in (24). In particular, we consider two diversity
combining techniques for SIMO, namely, maximum ratio
combining (MRC) and selection combining (SC) at the re-
ceiver (RX). We also consider some MISO schemes including
beamforming (BF) or distributed MISO systems with channel
distribution information (CDIT) at the transmitter (TX), in
addition to space time block codes (STBCs). Finally, some
combined transmit–receive diversity and spatial multiplexing
schemes are considered for MIMO channels.

B. Ergodic Capacity under Small-Scale Fading Channels with
Lognormal Shadowing

Another side of novelty is that this tool enables the eval-
uation of the ergodic capacity for different communication
systems in the presence of shadowing and results in the same
logarithmic approximation as in (1). In particular, the capacity
integral of a composite fading channel with γeff = ψ s, where
ψ and s are two independent random variables representing the
respective small-scale and lognormal fading, is calculated by
averaging the small-scale distributed SNR over the conditional
density of the lognormal-distributed conditional SNR, i.e.,
the average SNR of the small-scale fading is lognormally
distributed, thus

C̄ = Eγeff [log2(1 + γeff)] = Es[Eγeff|s [log2(1 + γeff)]]. (26)

The inner expectation which refers to the small-scale fading
can be directly evaluated in terms of C̃m(x) and it results
in a similar expression as in (5) when considering the outer
expectation which refers to the shadowing effect, for which
we apply C̃σ(x).

Next, we calculate the ergodic capacity for some single-
antenna and multi-antenna systems, for which we use
{(an1,m, bn1,m)}N1

n1=1 to refer to the optimized coefficients of
C̃m of the Nakagami capacity integral in (3). The ergodic
capacity of a Nakagami–lognormal composite fading channel
can be approximated as a function of the lognormal average
SNR (γ̄s) as C̄ ≈ ∑N1

n1=1 an1,m C̃σ(1/(bn1,mγ̄s))/ loge(2)
including Rayleigh fading as a special case with m = 1.

Moreover, it is calculated using Table I for the more com-
plicated small-scale distributions with lognormal shadowing
as

C̄ ≈ 1

loge(2)

∞∑
j=0

N1∑
n1=1

an1,mj
Φj C̃σ

(
θj

bn1,mj
γ̄s

)

≈
N∑

n=1

an log2 (1 + bn γ̄s) =
1

loge(2)
C̃

(
1

γ̄s

)
, (27)

where the latter form occurs after applying C̃(x) twice and
rearranging the triple summation into a single one with trun-
cating the outer summation to sufficient number of terms.

In the same way as above, the ergodic capacity of some
multi-antenna systems under small-scale fading and lognor-
mal shadowing can also be approximated using C̃m(x) and
C̃σ(x). In particular, the ergodic capacity of MIMO spatial
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TABLE II
THE ERGODIC CAPACITY OF SOME MULTI-ANTENNA SYSTEMS IN TERMS OF C̃m(x).

Communication system Fading C̄ · loge(2)
Receiver spatial diversity (SIMO) with
optimal rate adaptation to channel fading
with constant transmit power

Rayleigh MRC at RX [10]: C̃Nr

(
1

Nr γ̄

)

SC at RX [10]: Nr

Nr−1∑
i=0

(−1)i

i+1

(Nr−1
i

)
C̃1

(
i+1
γ̄

)

Nakagami-m MRC at receiver [13]: C̃Nr×m

(
1

Nr γ̄

)

Transmitter spatial diversity (MISO) Rayleigh
STBC for uncorrelated channels: C̃Nt

(
1

Ntγ̄

)

Distributed MISO system [6, Eq. 4]:
M∑
i=1

Ki∑
n=1

ain γ̄n
i C̃n

(
1

nγ̄i

)

Nakagami-m STBC for uncorrelated channels: R C̃m×Nt (
1

mNtγ̄
)

Rice STBC for uncorrelated channels: R
∞∑
i=0

(NtK)i exp (−NtK)
Γ(i+1)

C̃Nt+i

(
1

(Nt+i)γ̄

)

Optimum BF with CDIT at TX [17]: exp(−m2
V

σV
)

∞∑
i=0

m2i
V

i!σi
V

C̃i+1

(
1

(i+1)σV ρ

)
|V=Vθ

Combined transmit–receive diversity

(MIMO) Rayleigh
Maximum ratio transmission with MRC at RX [12]:

m∑
k=1

(n+m−2k)k∑
l=n−m

a′k,lC̃l+1

(
k

(l+1)γ̄

)

STBC for uncorrelated channels [3], [4]: R C̃Nr×Nt

(
1

NrNtγ̄

)

STBC for correlated channels [5]: R
g∑

i=1

νg∑
j=1

Ki,jC̃j

(
1

j a λ̃i

)

Nakagami-m STBC for uncorrelated channels [3], [4]: R C̃m×Nr×Nt (
1

mNrNtγ̄
)

Rice STBC for uncorrelated channels [3], [4]: R
∞∑
i=0

(NrNtK)i exp (−NrNtK)
Γ(i+1)

C̃Nr×Nt+i

(
1

(NrNt+i)γ̄

)

Spatial multiplexing (MIMO)

Rayleigh

i.i.d. channels [8], [9]:
α−1∑
z=0

z∑
j=0

2j∑
i=0

(−1)i(2j)!(β−α+i)!

22z−ij!i!(β−α+j)!

(2z−2j
z−j

)(2β−2α+2j
2j−i

)
C̃β−α+i+1

(
Nt

(β−α+i+1)ρ

)

Correlated channels without CSI at TX: [11, Eq. 25] with{
Ψ1(k)

}
i,j

= ( 1
φj

)t−i+1Γ(t− i+ 1)C̃t−i+1(
1

ρ(t−i+1)φj
), if i = k

Correlated channels with partial CSI at TX: [11, Eqs. 27 and 28] with{
Ψ2B(k)

}
i,j

= ( 1
φj

)s−i+1Γ(s− i+ 1)C̃s−i+1(
1

ρ(s−i+1)φj
), if i = k

∗notes: Nt is the number of transmit antennas, Nr is the number of receive antennas, α = min{Nt,Nr}, β = max{Nt,Nr}, ρ is the transmit SNR, ain,M and Ki are defined in [6],

a′
k,l is derived in [12], R is the code rate of the STBC, K is the Rician factor, Ki,j, a, g and λ̃i are defined in [5], mV , σV and Vθ are defined in [17].

multiplexing over Rayleigh fading channels with lognormal
shadowing [32], [33] is calculated as

C̄ ≈ 1

loge(2)

α−1∑
z=0

z∑
j=0

2j∑
i=0

N1∑
n1=1

an1,β−α+i+1

× (−1)i(2j)!(β − α+ i)!

22z−ij!i!(β − α+ j)!

(
2z − 2j

z − j

)(
2β − 2α+ 2j

2j − i

)

× C̃σ

(
Nt

(β − α+ i+ 1) ρ bn1,β−α+i+1 γ̄s

)
. (28)

Moreover, the ergodic capacity of cooperative spatial multi-
plexing systems with Rayleigh fading and lognormal shadow-
ing [34] is calculated as

C̄ ≈ 1

loge(2)

�∑
k=1

N1∑
n1

an1,Nr−�+1

2

× C̃σ

(
1

(Nr − �+ 1)ρ0 ΩRD,k bn1,Nr−�+1

)
, (29)

where ΩRD,k is the channel mean power for the link from the
kth relay to the destination, � is the number of relays and ρ0
is the average SNR per symbol.

C. Ergodic Capacity in Recent Research Directions

After the above wide range of fundamental applications
for the proposed approximations/bounds, let us proceed to

illustrate their applicability and usefulness in timely wireless
systems with specific applications from the recent literature.3

In particular, the ergodic capacity (2) of downlink non-
orthogonal multiple access (NOMA) system over the α − μ
fading distribution [44] does not admit a similar integral as
Im,φ(x) in (24) as intermediate step and, thus, we cannot
use C̃m(x) to calculate its ergodic capacity. For that, we
implement the first proposed approach which means directly
approximating the ergodic capacity (2) by (7). We have used
the openly released Matlab code2 which we have modified
to make it comply with the studied system in order to find
the optimized coefficients for α = μ = N = 2 with two
users, L = 2, (U1 and U2) in terms of the absolute error to
approximate the ergodic capacity for both users respectively
as

C̄U1
≈ 1

log(2)

[ 2∑
n=1

an log2 (1 + bn γ̄)

−
2∑

n=1

an log2 (1 + bn β2 γ̄)
]
, (30)

with {(an, bn)}2n=1 = {(0.336, 0.172), (0.664, 0.835)}, and

C̄U2
≈ 1

log(2)

2∑
n=1

an log2 (1 + bn β2 γ̄) , (31)

3We had to use some notations and symbols herein which are the same
as in the original publications to preserve comparability, due to which some
unavoidable overloading exists in this subsection compared to the rest of the
article.
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with {(an, bn)}2n=1 = {(0.409, 0.610), (0.591, 1.887)}. The
parameter βl, l = 1, 2, . . . , L is the power allocation coeffi-
cient. In particular, {(an, bn)}Nn=1 can be calculated for the
logarithmic approximation of C̄l = Cl(1/(βl γ̄))/ loge(2) in
[44, Eq. 46] by formulating (22) through substituting (7) and
(2) to (8) together with substituting (12) and (13) to (10).
The PDF fG(t) in (2) corresponds herein to fγ(

γ
γ̄ ) in [44,

Eq. 8]. These equations are then solved using the fsolve
command in Matlab. The openly released code2 can be used
after modification to find the optimized coefficients for any
values of α, μ and L.

On the other hand, we can derive the ergodic capacity in
terms of C̃m(x), if the system encounters similar integral as
Im,φ(x) in (24). For example, the ergodic capacity for a system
with coordinated multipoint reception for mm-wave uplink
with blockages and Nakagami-m fading [35] can be calculated
as

C̄ ≈
N∑

n=1

n∑
i=1

mi∑
k=1

kk

log(2)
qnΛn,i,kC̃k

(
N

k γ̄i

)
, (32)

where mi is the Nakagami parameter of the ith link, N is
the number of base stations, qn is defined in [35, Eq. 8] and
Λn,i,k is recursively obtained using [35, Eq. 9 and Eq. 10].

Likewise, the ergodic capacity is calculated for a mm-wave
downlink NOMA system over fluctuating two-ray channels
under general power allocation in [36] as

C̄ ≈ 1

log(2)

[ ∞∑
jp=0

Hp C̃jp+1

(
1

2σ2
p(jp + 1) aQp γ̄

)

+

∞∑
jp=0

Hp C̃jq+1

(
1

2σ2
q (jq + 1)Qq γ̄

)

−
∞∑

jq=0

Hq C̃jq+1

(
1

2σ2
q (jq + 1) aQq γ̄

)]
, (33)

where its parameters are defined in [36]. In addition, the
ergodic capacity for reflecting intelligent surface-assisted SISO
system with correlated channels [37] can be approximated as

C̄ ≈ 1

log(2)
C̃ka

(
1

ka wa ρ0

)
, (34)

where ka and wa are defined in [37, Eqs. 5 and 6], respectively.

D. Ergodic Capacity of Dual-Hop Fixed-Gain Relay Networks
in Nakagami-m Fading

This subsection gives an application example on the use
of C̃m in the intermediate steps when analyzing the capacity
of the more complex wireless systems without necessarily
resulting in the same logarithmic expression as in (1). In
particular, we study the performance of a dual-hop fixed-

gain relay network under Nakagami-m fading [25]. Its ergodic
capacity can be approximated as

C̄ ≈ 1

loge(2)
exp

(
m1

γ̄1

)
m1

m1

Γ(m1)

N1∑
n1=1

an1,m2

×
[

m1−1∑
j=0

N2∑
n2=1

an2,j+1

(
m1 − 1

j

)
m−j−1

1 j! γ̄−m1+j+1
1

× (−1)
m1−j−1

loge

(
1 +

(j + 1)γ̄1γ̄2bn1,m2
bn2,j+1

m1 κ

)

−
∞∑
i=0

m1−1∑
j=0

(
m1 − 1

j

)
mi

1

i!

(−1)
m1+j+i−1

j + i+ 1

1

γ̄m1+i
1

×
[(

1−
(

−κ

γ̄2 bn1,m2

)j+i+1)
loge

(
1 +

γ̄2 bn1,m2

κ

)

+

j+i+1∑
q=1

(−1)q κq−1

(j + i− q + 2) (γ̄2 bn1,m2
)q−1

]]

− 1

loge(2)
C̃m2

(
κ

γ̄2

)
. (35)

where κ is a constant defined in [45, Eq. 16], γ̄1 and γ̄2 are
the statistical averages of the instantaneous SNRs γ1 and γ2 of
the first and second hop, respectively, whose fading parameters
are m1 and m2. This expression is valid for any value of m1

opposing to [25] which is valid only for integer values of m1.
It is worth mentioning that the same expression in (35) is also
obtained when evaluating the ergodic capacity under Rician,
Nakagami-q (Hoyt), η − μ and κ − μ distributions without
performing individual analysis for each fading distribution.
The detailed derivation of (35) is available in Appendix B.

E. Tractability Comparison

In this section, we illustrate the mathematical tractability
of the proposed approximations and bounds and the insight-
ful observations gained from using them for calculating the
ergodic capacity of the different communication systems. For
that, we consider some of the previous example applications
and compare the novel analytical expressions derived herein
with the corresponding expressions in the literature.

In Sections IV-A and IV-B, the capacity of the single-
antenna and multi-antenna systems under small-scale fading or
when combined with lognormal shadowing is evaluated using
the proposed tool into the elegant simple logarithmic form in
(1) which is unified for all these systems. On the contrary, it is
evaluated in the literature as different complicated expressions
that are unique always to the specific system under study so
that a complete study and analysis are required for each system
independently and using different mathematical steps.

In particular, the ergodic capacity is written in terms of the
exponential integral and the incomplete gamma function in
[15] for Rician fading, and in terms of the Meijer G-function
in [18] for κ− μ fading. In [26]–[29], the ergodic capacity is
written in terms of the Gaussian Q-function or the multiplica-
tion of the complementary error function by the exponential
function. On the other hand, to the best of our knowledge,
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there is no available ergodic capacity analysis for the SISO
system in the literature on the composite lognormal fading
models and only asymptotic analysis is available in [46]. Thus,
the proposed tool renders new analytical solutions that were
previously deemed unattainable.

Table II evaluates the ergodic capacity of different multi-
antenna system models and various fading distributions as a
summation of logarithmic functions, whereas the correspond-
ing references write them using complex functions such as
the exponential integral and incomplete gamma functions.
Moreover, the ergodic capacity of the multi-antenna systems
under combined fading in (28) and (29) is written respectively
in terms of the exponential function together with exponential
integral functions in [32] and in terms of the incomplete
gamma function together with the power function in [34].

The impressive advantage in terms of analytical complexity
is best seen in the timely applications of Section IV-C. In
particular, the ergodic capacity of the downlink NOMA over
the α − μ fading in [44] and of the NOMA-based mm-wave
communications in [36] are written respectively in terms of
the complicated Fox H-function and the Meijer G-function
which are themselves unsolvable integrals, whereas they are
written in (30), (31) and (33) in the unified logarithmic form.

The importance and elegance of the proposed tool are
demonstrated by its ability to provide direct or even visual
insights into the system’s performance opposing to expressions
that comprise special functions. For example, from Table II,
we can immediately see that the ergodic capacity improves
with increasing Nr and γ̄ for the SIMO systems, whereas it
improves with increasing Nt, γ̄, m under Nakagami-m fading,
K under Rician fading and R of the STBC, all for the MISO
systems. On the other hand, none of these observations can be
concluded from the corresponding complicated expressions in
the literature.

V. NUMERICAL RESULTS AND DISCUSSION

This section demonstrates the accuracy of the proposed ap-
proximations and bounds while the actual behavior of the cor-
responding systems has already been analyzed extensively in
the references. In particular, we compare them with previously
derived ones, in addition to the numerical approximations
obtained by applying Gauss–Laguerre and Gauss–Hermite
quadrature rules for the Nakagami and the lognormal capacity
integrals, respectively. Furthermore, we validate and compare
some of the application examples presented in Section IV with
those obtained from the numerical and existing approximations
and bounds.

Let us begin with plotting the global absolute error, dmax,
for the Nakagami capacity integral in Fig. 2(a) for different
values of m, using our approximations and the numerical
approximation resulting from applying the Gauss–Laguerre
quadrature rule. It is clearly realized from the figure that our
minimax coefficients result in much more accurate logarithmic
approximations in terms of the global error than those resulting
from numerical integration. Moreover, as the number of terms
increases, the accuracy increases substantially, especially for
higher values of m. We further verify the accuracy of the

proposed approximation by comparing its absolute error with
that of the Gauss–Laguerre approximation for the whole
considered range of the argument in Fig. 2(b). Obviously, our
optimized coefficients not only have the least global error, but
they also achieve higher accuracy for most of the considered
range of the argument for the different values of m.

Moreover, the same comparisons are made for the lognormal
capacity integral for different values of σ. Our approximations
are compared with those obtained using the Gauss–Hermite
quadrature rule which has the same logarithmic form, in
addition to the existing approximations which encounter very
complicated functions such as the complementary Gaussian
error function and the trigonometric functions [26]–[29]. The
proposed approximations mostly outperform all the other ones
in terms of the global error as depicted in Fig. 3(a). They
also have comparable or even better accuracy than those with
the very complex form over the whole considered range of
the argument as seen in Fig. 3(b) despite their significantly
simpler form.

The minimax optimization method is not only used for
constructing the approximations in terms of the absolute error
but also for the approximations in terms of relative error as
explained in Section III-B2, and for the lower and upper
bounds in terms of both error measures as explained in
Section III-B3. The approximation for the special case of
Rayleigh capacity integral is optimized in terms of the relative
error for N = 3 and the corresponding relative error function
is plotted in Fig 4(a), whereas in Fig. 4(b), we plot the uniform
absolute error functions resulting from the optimized upper
and lower bounds of the Nakagami capacity integral for m = 3
and N = 3. As expected, the resulting error functions oscillate
uniformly and achieve high accuracy. We can conclude from
Figs. 2, 3 and 4 that the proposed approximations with
the optimized coefficients achieve significant improvement in
accuracy by several orders of magnitude when compared to
the numerical and existing approximation. The absolute and
relative errors are so small that they are virtually exact with
the actual capacity measures.

Next, we numerically investigate some of the applications of
the proposed approximations which are included in Section IV.
In Fig. 5, the ergodic capacity for Rician fading channel
with lognormal shadowing is studied and its absolute error
is plotted for different values of the Rician factor using three
approaches, namely, (i) Gauss–Laguerre and Gauss–Hermite
rules respectively, (ii) using (3) for the small-scale stage
and then Gauss–Hermite rule for the shadowing stage and
finally (iii) using (27) with the necessary coefficients from
Table I. We can observe that approach (iii) results in a tighter
approximation than that of approach (i) which has exactly the
same analytical form. It also has the same accuracy as that of
approach (ii).

Figure 6 illustrates the error resulting from applying our
approximation to evaluate the ergodic capacity in 2×2 MIMO
network over shadowed-Rayleigh channel as in (28), and com-
pares it with the theoretical results presented in [32], [33]. Our
optimized coefficients yield significantly higher accuracy than
those of [33], having exactly the same logarithmic form and
number of terms. Despite the simplicity of our approximation’s
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Fig. 2. (a) Comparison between our approximations and those obtained using
Gauss–Laguerre for the Nakagami capacity integral with different values of m
in terms of global absolute error. (b) Same as (a) but in terms of the absolute
error function over the whole considered range of the argument with N = 4.

analytical form compared to that of [32], it achieves higher
accuracy over a wide range of the argument. The ergodic
capacity of both users, (30) and (31), is plotted in Fig. 7 along
with the exact capacity derived in [44] for different selections
of power allocation coefficients. The figure shows virtually
exact match between the logarithmic approximation and the
exact results with only two logarithmic terms (N = 2).

In Fig. 8, the absolute error of the ergodic capacity in a
dual-hop cooperative system is plotted as a function of the
average SNR of each hop, where we considered γ̄1 = γ̄2.
It is clear from the figure that the ergodic capacity resulting
from applying our approximation is extremely accurate. In
particular, the mathematical form of the ergodic capacity in
(35) is not only much more tractable than that in [24] and
[25], but also its accuracy outperforms [24] for the lower and
moderate values, when considering Rayleigh fading channels,

� � � � � � � �
�	
��

�	


�	
�

�	
�

�	
�

�	�

����� � � ���
����� � � ���
����� !"#$%&" � � � ���
'�# ())#*+%$�&%*,� � � ���
����� � � -
����� � � -
����� !"#$%&"� � � -
'�# ())#*+%$�&%*,� � � -

.

/
0
12

345

6789:

67:

;<7 ;=7 ;67 7 67 =7 <7 >7

6789:

67:

?@AB CDE FGHIJ
?@KB CDE FGLIJ ?@MB CDE FGNIJ ?@KB CDE FMIJ

OPQRRSTUVWXYU
?@ZB CDE FNNIJ
?@ZB CDE FNGIJ [\] ^__]`abcdeb`f

g h NiZjk h A

g h Hjk h A

l
m
no
pq
rs
st
to
tu
vw
xy
z

{| }~��

3�5

Fig. 3. (a) Comparison between our approximations and those obtained using
Gauss–Hermite and the existing approximations for the lognormal capacity
integral with different values of σ in terms of global absolute error. (b) Same
as (a) but in terms of the absolute error function over the whole considered
range of the argument with N = 8.

and outperforms [25] over the whole range of the argument
when considering Nakagami-m fading channels, with less
error by three orders of magnitude.

VI. CONCLUSIONS

This paper presented an accurate and efficient tool for
facilitating statistical performance analysis in different wire-
less communication systems in terms of ergodic capacity. A
novel systematic methodology was also developed in order to
optimize its accuracy in the minimax sense. This tool was ap-
plied to a wide range of fundamental and recent applications,
including single-antenna and multi-antenna systems under
small-scale fading and with or without lognormal shadowing
in order to derive tractable closed-form expressions for the
ergodic capacity. We validated the tightness of the proposed
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Fig. 4. (a) The optimized approximation in terms of relative error for Rayleigh
capacity integral with N = 3. (b) The optimized upper and lower bounds in
terms of the absolute error for Nakagami capacity integral with m = 3 and
N = 3.
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ρ = 1 dB and different levels of shadowing.

��� �� � � �� �� �� �� �� �� ��
�

�

�

�

	

��

��

��



��

�
��
��
�
��
��
�

�� ����

��� �� !"#$" % �&'( $) % �&*+
,--. !"#$" % �&'( $) % �&*+
��� �* !)#$" % �&'( $) % �&*+
,--. !)#$" % �&'( $) % �&*+
��� �� !"#$" % �&/( $) % �&-+
,--. !"#$" % �&/( $) % �&-+
��� �* !)#$" % �&/( $) % �&-+
,--. !)#$" % �&/( $) % �&-+

Fig. 7. Ergodic capacity for two NOMA users with α = μ = 2 and for
different values of β2.

tool by numerical comparisons with existing and numerical
ones, in which our tool showed significant improvement in
the accuracy by several orders of magnitude.

APPENDIX A
PROOF OF PROPOSITION 1

Denoting that the PDF of instantaneous capacity C is given
by fC(c), the ergodic capacity is calculated as

E[C] =
∫ ∞

0

c fC(c) dc

=

∫ ∞

0

γ̄eff fC(log2(1 + γ̄eff g))

loge(2) (1 + γ̄eff g)︸ ︷︷ ︸
�fG(g)

log2(1 + γ̄eff g) dg,

(36)
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Fig. 8. The absolute error of the ergodic capacity in a dual-hop cooperative
system with N1 = N2 = 4.

where the second expression is obtained by changing the
integration variable to g � (2c − 1)/γ̄eff. Next, we implement
the Riemann sum method to approximate the above integral
by truncating it and dividing the integration interval into N
partitions, each of length δ. Therefore, the ergodic capacity
can be approximated by a finite sum of logarithmic functions
according to (1) by choosing

an � δ γ̄eff fC(log2(1 + γ̄eff nδ))

loge(2) (1 + γ̄eff nδ)
and bn � n δ, (37)

while arbitrary accuracy can be achieved when δ → 0 and
N → ∞. Furthermore, by applying appropriately the left,
intermediate or the right rule for each partition, one can always
guarantee that

∑N
n=1 an ≤ 1, since each an represents a

part of the total probability mass of random variable G �
(2C − 1)/γ̄eff, whose PDF is denoted by fG(g).

In the general case without making specific assumptions
about the distribution of C, coefficients an, n = 1, 2, . . . , N ,
will depend on γ̄eff, which would make (1) an inconvenient
approximation for the statistical analysis of specific systems.
However, we can express fC(c) in terms of fG(g) as

fC(c) =
2c loge(2)

γ̄eff
fG

(
2c − 1

γ̄eff

)
, (38)

which results, by substitution into (37), in an = δ fG(n δ).
Thus, whenever fG(g) is independent of γ̄eff, an becomes
independent of γ̄eff too, and the same approximation (i.e., the
same coefficients) can be conveniently applied with any value
of γ̄eff. This condition is not very restrictive in practice, and
it is satisfied in the applications discussed in this article.

APPENDIX B
DERIVATION OF (35) FOR DUAL-HOP FIXED-GAIN RELAY

NETWORKS UNDER NAKAGAMI FADING

From [24], the end-to-end SNR herein is γe � γ1 γ2

κ+γ2
and

the ergodic capacity is calculated as

C̄ =

A︷ ︸︸ ︷
1

loge(2)
E

[
loge

(
1 +

(1 + γ1) γ2
κ

)]

− 1

loge(2)
E

[
loge

(
1 +

γ2
κ

)]
︸ ︷︷ ︸

B

. (39)

We will consider Nakagami-m fading channels. Part B of (39)
can be directly approximated using our logarithmic approxi-
mation with the optimized parameters {(an1,m2

, bn1,m2
)}N1

n1=1

as

B =
1

loge(2)
C̃m2

(
κ

γ̄2

)
, (40)

whereas part A is evaluated as

A =
1

loge(2)

∫ ∞

0

(
m1

γ̄1

)m1 γm1−1
1

Γ(m1)
exp

(
−m1

γ1
γ̄1

)

×
∫ ∞

0

loge

(
1 +

(1 + γ1) γ2
κ

) (
m2

γ̄2

)m2 γm2−1
2

Γ(m2)

× exp

(
−m2

γ2
γ̄2

)
dγ2 dγ1. (41)

We approximate the inner integral which is of the form
Im2,

m2
γ̄2

(
1+γ1

κ

)
using (24). Therefore, (41) becomes

A =
1

loge(2)

N1∑
n1=1

an1,m2

∫ ∞

0

loge

(
1 +

(1 + γ1) γ̄2 bn1,m2

κ

)

×
(
m1

γ̄1

)m1 γm1−1
1

Γ(m1)
exp

(
−m1

γ1
γ̄1

)
dγ1. (42)

Using change of variables z = 1+γ1

γ̄1
, we obtain

A =
1

loge(2)

m1
m1

Γ(m1)

N1∑
n1=1

an1,m2

×
[∫ ∞

0

P1(z) dz −
∫ 1/γ̄1

0

P1(z) dz

]
, (43)

where

P1(z) = loge

(
1 +

γ̄1 γ̄2 bn1,m2
z

κ

)
γ̄−m1+1
1

× (γ̄1 z − 1)m1−1 exp

(
−m1 z +

m1

γ̄1

)
. (44)

Next, we expand (γ̄1 z − 1)m1−1 using the binomial
theorem, and approximate the resulting expression
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which contains Ij+1,m1

(
γ̄1γ̄2 bn1,m2

κ

)
using (24) with

{(an2,j+1, bn2,j+1)}N2
n2=1to evaluate A1 =

∫∞
0

P1(z) dz as

A1 = exp

(
m1

γ̄1

)m1−1∑
j=0

N2∑
n2=1

an2,j+1

(
m1 − 1

j

)
×m−j−1

1 j! γ̄−m1+j+1
1 (−1)

m1−j−1

× loge

(
1 +

(j + 1)γ̄1γ̄2bn1,m2
bn2,j+1

m1 κ

)
, (45)

whereas for A2 =
∫ 1/γ̄1

0
P1(z) dz, we apply [47,

Eqs. 1.110, 1.211.1, 2.729] as

A2 = exp

(
m1

γ̄1

) ∞∑
i=0

m1−1∑
j=0

(
m1 − 1

j

)
mi

1

i!
(−1)

m1+j+i−1

γ̄−m1+j+1
1

∫ 1/γ1

0

zj+i loge

(
1 +

γ̄1γ̄2bn1,m2
z

κ

)
dz

= exp

(
m1

γ̄1

) ∞∑
i=0

m1−1∑
j=0

(
m1 − 1

j

)
(m1)

i

i!

(−1)
m1+j+i−1

j + i+ 1

1

γ̄m1+i
1

[(
1−

( −κ

γ̄2 bn1,m2

)j+i+1
)
loge

(
1 +

γ̄2bn1,m2

κ

)

+

j+i+1∑
q=1

(−1)q κq−1

(j + i− q + 2) (γ̄2 bn1,m2
)q−1

]
. (46)

We substitute (45) and (46) back into (43) which then are
substituted together with (40) into (39) to obtain a closed-
form approximation for the ergodic capacity in a dual-hop
fixed-gain relay networks over Nakagami-m fading channels
according to (35).
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Abstract—This paper investigates the ergodic capacity of re-
flecting intelligent surface (RIS)-aided single-input single-output
communication systems with spatially correlated Rayleigh-fading
channels. The ergodic capacity for such systems does not admit
an exact closed-form expression. Therefore, we consider two
alternative fading distributions to approximate the systems’
statistical characterization to enable the derivation of closed-
form expressions for the ergodic capacity. We further simplify the
ergodic capacity by proposing novel and unified approximations
in the form of a weighted sum of logarithmic functions with
optimized coefficients. We validate the effectiveness and the high
accuracy of the adopted schemes and the proposed approxima-
tions through numerical results. Performance analysis to study
the impact of several system parameters on the ergodic capacity is
also conducted. Deploying an RIS to the communication system
can significantly increase the ergodic capacity which increases
even further with increasing the number of reflecting elements
equipped on the RIS, and this effect is best seen when the direct
path is weak.

I. INTRODUCTION

The reconfigurable intelligent surfaces (RISs) have emerged
recently as a promising technology to intelligently control the
wireless environment and significantly improve the spectral
and energy efficiency thereof. More specifically, an RIS is a
large metasurface that consists of low-cost, sub-wavelength-
sized passive reflecting elements (REs) that serve as nearly
isotropic scatterers and can be adjusted via a microcontroller
to collaboratively steer the incident electromagnetic signals
into the desired direction.

This topic has attracted many research efforts from both the
academia and industry to extensively study the design [1], [2],
optimization [3]–[5] and the potential applications [6], [7] of
the RIS-aided systems. A considerable amount of theoretical
studies has also been conducted in the literature to analyze
their different performance measures [8]–[13]. The majority
of the existing research assumes independent and identically
distributed (i.i.d.) fading channels [8]–[12]. However, inde-
pendence does not represent a realistic assumption as has been
shown by Björnson and Sanguinetti in [14], who also introduce
a more realistic spatially correlated Rayleigh fading system
model, which will be adopted for our current work too.

Moreover, limited analytical assessment of the ergodic ca-
pacity, which refers to the upper rate at which information can
be reliably transmitted over a time varying channel, has been
reported in the literature for the RIS-aided systems. In fact,
as far as we are aware of, the ergodic capacity in single-input
single-output (SISO) RIS-aided systems has been investigated

only for the case of i.i.d. fading channels in [9]–[11], leaving
the case with spatial correlation unstudied yet. Motivated by
these facts, we present herein a more realistic performance
study in terms of the ergodic capacity for a SISO system model
with direct path and correlated Rayleigh fading channels.

In particular, since the exact statistical characterization of
the end-to-end equivalent channel of the SISO system with
direct path and spatially correlated channels is unknown, we
adopt two distributions to approximate it, namely the non-
central chi-square and the Gamma distribution. This leads us
toward deriving closed-form expressions, which are exact in
respect to the adopted distribution, for the ergodic capacity.
Nevertheless, in order to simplify the ergodic capacity even
further and provide additional engineering insight into it, we
present tractable and tight approximations for the ergodic ca-
pacity in the form of a weighted sum of logarithmic functions
with optimally choosing the corresponding coefficients.

We verify the presented expressions by Monte Carlo simu-
lations that illustrate an excellent match between the adopted
distributions and the exact channel statistics. The high ac-
curacy of the proposed logarithmic approximation, whose
accuracy increases with increasing number of terms in the
summation, is also confirmed. Numerical results show that
the ergodic capacity depends on multiple factors, namely, the
transmitted power, number of REs equipped on the RIS and the
large-scale coefficient of the direct path, where their increase
result in improving the ergodic capacity significantly.

II. SYSTEM AND CHANNEL MODELS

The system under study is illustrated in Fig. 1 and it consists
of a single-antenna source (S), a single-antenna destination (D)
and a two-dimensional RIS equipped with M = MH × MV

REs, where MH is the number of REs per row and MV is
the number of REs per column. Each RE have an area of
Λ = dH × dV , where dH is its horizontal width and dV is its
vertical height. The destination can overhear the signal from
the RIS, as well as through the direct path.

The received signal at the destination can be written as

y = As+ w, (1)

for which the channel response of the RIS-aided system is

A = gTΘh+ u, (2)

where s is the transmitted signal with transmitted power
Es = E[|s|2], w ∼ NC (0, N0) is the additive white Gaussian
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Fig. 1. SISO wireless system with one RIS. The S–RIS and RIS–D paths
consist of multiple propagation paths through the M REs.

noise with zero mean and variance N0 = E[|w|2] that follows
circularly symmetric Gaussian distribution, and Θ is the
diagonal phase-shift matrix Θ = diag(ejθ1 , . . . , ejθM ). On the
other hand, the channel vectors of the links S–RIS and RIS–D,
which are assumed to be independent, are denoted respectively
as h = [h1, . . . , hM ]T ∈ C

M and g = [g1, . . . , gM ]T ∈ C
M

while u = |u|ej∠u ∈ C is the fading coefficient of the direct
S–D link which is independent of the indirect RIS links.

We adopt the spatially correlated Rayleigh fading model
proposed in [14]. Accordingly, we characterize the fading
distribution of the encountered links as u ∼ NC (0,Ωu),
h ∼ NC (0,ΛμhR), and g ∼ NC

(
0,ΛμgR

)
, where Ωu, μh

and μg are the large-scale fading coefficients (path strength) of
S–D, S–RIS and RIS–D, respectively, whereas R ∈ C

M×M is
the spatial correlation matrix, which is assumed to be the same
for both RIS links, and its elements are calculated according
to [14, Eq. 10] as

Rn,m = sinc

(
2 ‖an − am‖

λ

)
, n,m = 1, . . . ,M, (3)

where λ is the wavelength, and an and am are the respective
locations of the nth and mth elements w.r.t. the origin.

Assuming perfect CSI at the RIS, we consider optimal
phase configuration by choosing θi = ∠u − (∠hi + ∠gi),
i = 1, . . . ,M . Therefore,

|A| =
M∑
i=1

|hi gi|+|u| . (4)

Consequently, the instantaneous end-to-end signal-to-noise ra-
tio (SNR) at the receiver is defined as

ρ = ρ0 |A|2, (5)

where ρ0 = Es/N0 denotes the transmit SNR.

III. ERGODIC CAPACITY ANALYSIS

In this section, we derive analytical expressions for the
ergodic capacity of the system under study. The ergodic
capacity [bit/s/Hz] is defined as

C̄ � E
[
log2(1 + ρ)

]
=

∫ ∞

0

log2(1 + x)fρ(x) dx, (6)

where fρ(·) is the probability density function (PDF) of the
end-to-end SNR. Since the exact distribution of ρ given by (4)
and (5) is intractable, it may not be possible to derive the exact
ergodic capacity. Therefore, we shall first approximate fρ(·)
by either the non-central chi-square or the Gamma distribution.

A. Statistical Channel Characterization Based on Non-
Central Chi-Square Distribution

According to the central limit theorem (CLT), the sum of
weakly correlated random variables converges toward a normal
random variable. Therefore, the channel response defined in
(4) will be nearly normally distributed and, consequently, the
PDF of the end-to-end SNR in (5) can be approximated with
a non-central chi-square random variable with one degree-of-
freedom as

fρ(x) � 1

2ρ0κ2

(
x

ρ0η

)− 1
4

exp

(
−x+ ηρ0

2ρ0κ2

)
I− 1

2

( √
ηx√
ρ0κ2

)
,

(7)

for which η = (E[|A|])2, κ2 = Var[|A|] and Iν(·) is the
modified Bessel function of the first kind [15, Eq. 8.406].
We calculate E[|A|] using the linearity property together
with the independency assumption of h and g as E[|A|] =
E[
∑M

i=1|hi gi|] + E[|u|] =
∑M

n=1 E[|hn,i|] E[|gn,i|] + E[|u|],
where E[|u|] =

√
πΩu

2 . Therefore,

η =

(
M πΛ

4

√
μhμg +

√
πΩu

2

)2

. (8)

On the other hand, we calculate κ2 = Var[|A|] as

κ2 =

M∑
i=1

M∑
j=1

ΨΛ2μhμgRi,j

4

[
ΨRi,j + π

]
+

ΨΩu

2
, (9)

where Ψ =
(

4−π
2

)
; see Appendix A for the derivation of (9).

Let us next approximate the ergodic capacity in (6) by
substituting the exact fρ(·) by its non-central chi-square-
distributed approximation in (7) as

C̄χ2 =

∫ ∞

0

1

2κ2
log2 (1 + ρ0 t)

(
t

η

)− 1
4

× exp

(
− t+ η

2κ2

)
I− 1

2

(√
η t

κ2

)
dt. (10)

This integral will result in the same analytical expression as
[16, Eq. 21] that is rewritten in (11) at the top of the next
page, with substituting η and κ2 by the novel expressions (8)
and (9), respectively. In (11), H[·, . . . , ·] is the multivariable
Fox H-function [17, Eq. 8.3.1].

B. Statistical Channel Characterization Based on Gamma
Distribution

Since the PDF of the end-to-end SNR can be approxi-
mated with a non-central chi-square random variable with one
degree-of-freedom in Section III-A, it will look similar to the
Gaussian PDF with a single maximum, and its tails extend to



C̄χ2 =
π

2
√
κ ln 2

(
κ3

8ηρ30

)− 1
4

exp

(
− η

2κ2

)
H0,1:1,0:1,2

1,0:1,3:2,2

[ (
1
4 ; 1, 1

) (
1
4 , 1

)
(1, 1), (1, 1)

− (− 1
4 , 1

)
,
(
1
4 , 1

)
,
(
1
4 , 1

)
(1, 1), (0, 1)

η

2κ2
, 2ρ0κ

2

]
(11)

Var[|A|2] =

P2︷ ︸︸ ︷
M∑
i=1

M∑
j=1

M∑
k=1

M∑
m=1

Ψ4Λ4μ2
hμ

2
g

16
R̂2 +

Ψ3Λ4μ2
hμ

2
gπ

16
R̂R̃+

Ψ2Λ4μ2
hμ

2
gπ

2

32

(
R̂+

R̃2

2

)
+

ΨΛ4μ2
hμ

2
gπ

3

64
R̃+

Λ4μ2
hμ

2
gπ

4

256

+

P3︷ ︸︸ ︷
2
√
πΩu

M∑
i=1

M∑
j=1

M∑
k=1

(πΛ
4

)3
(μhμg)

3
2 +Ψ

π2Λ3(μhμg)
3
2

16
R̄+Ψ2Λ

3(μhμg)
3
2π

16
R̄

2

+ 6Ωu

M∑
i=1

M∑
j=1

[Ψ2Λ2μhμgR
2
i,j

4
+

ΨπΛ2μhμgRi,j

4
+

π2Λ2μhμg

16

]
+MπΛ

√
μhμgβ

3
2Γ

(
5

2

)

−
( M∑

i=1

M∑
j=1

ΨΛ2μhμgRi,j

4

[
ΨRi,j + π

]
+

π2Λ2M2μhμg

16
+

M πΛ
√
μhμgπΩu

4
+ Ωu

)2
(15)

∗note: R̂ =
[
Ri,jRk,m + Ri,kRj,m + Ri,mRj,k

]
, R̃ =

[
Ri,j + Rk,m + Ri,k + Rj,m + Ri,m + Rj,k

]
, R̄ =

[
Rj,k + Ri,k + Ri,j

]

infinity from the right side but is truncated to zero from the
left side. Hence, this PDF can be tightly approximated by the
first term of a Laguerre series expansion as stated in [18] as

fρ(x) � xα−1

(ρ0 β)α Γ(α)
exp

(
− x

ρ0 β

)
, (12)

where

α =
(E[|A|2])2
Var[|A|2] and β =

Var[|A|2]
E[|A|2] . (13)

The mean of |A|2 is calculated as

E[|A|2] =
M∑
i=1

M∑
j=1

Ψ
Λ2μhμgRi,j

4

[
ΨRi,j + π

]

+
π2Λ2M2μhμg

16
+

M πΛ
√
μhμgπΩu

4
+ Ωu, (14)

whereas the variance of |A|2 is given by (15) at the top of this
page. The detailed derivations of (14) and (15) are available
in Appendices B and C, respectively.

Let us next approximate the ergodic capacity in (6) by
substituting the exact fρ(·) by its Gamma-distributed approx-
imation in (12) as

C̄Γ =

∫ ∞

0

1

βαΓ(α)
log2 (1 + ρ0t) t

α−1 exp
(
− t

β

)
dt.

(16)

The integral can be evaluated using [19, Eq. 78] as

C̄Γ =
exp

(
1

ρ0β

)
log(2)

α∑
j=1

Γ
(
− α+ j,

1

ρ0β

)
(ρ0β)

j−α. (17)

However, (17) is only valid for integer values of α, i.e., (16)
has no closed-form expression for non-integer values of α.

C. Unified Logarithmic Approximations for Ergodic Capacity

It can be observed from (11) and (17) that the resulted
ergodic capacity is very complex and it is almost impossible to
get insightful observations from these expressions. In addition,
(16) does not even admit a closed-form expression for the
non-integer values of α. Therefore, we introduce novel and
tractable approximations for C̄χ2 and C̄Γ in the form of a
weighted sum of logarithmic functions as

C̃(ρ0) �
N∑

n=1

an log2 (1 + bn ρ0) , (18)

for which the research problem is to choose appropriate values
for the coefficients {(an, bn)}Nn=1. The proposed approxima-
tion (18) is unified for both of the adopted distributions and
it reveals that the ergodic capacity increases with ρ0.

We acquire {(an, bn)}Nn=1 using the minimax optimization
principle according to the Remez exchange algorithm, which
we slightly modify to make it comply with the nonlinearity
that occurs from the logarithmic approximation. In particular,
the Remez algorithm is an iterative method that can be used to
derive the minimax approximation, which results in a uniform
error function with equalized extrema of alternating signs [20].
In this paper, we use the sum of logarithms in (18) as the ap-
proximating function to obtain the best unique approximations
for (10) and (16) in terms of the relative error. The resulting
relative error function is defined as r(ρ0) � C̃(ρ0)

C̄�(ρ0)
− 1 with

� ∈ {χ2,Γ}, and it should have 2N + 1 extrema on [0,∞).
We start the Remez algorithm by constructing a system of

2N +1 nonlinear equations fk(v) � r(xk)+(−1)k rmax = 0,
k = 0, 1, . . . , 2N , describing the values of extrema points as

f (v) �
[
f0(v), f1(v), . . . , f2N (v)

]T
= 0, (19)



where xk is the location of the kth extremum of the error func-
tion, rmax is the value of the maximum error at the uniform ex-
trema points, and v = [a1, a2, . . . , aN , b1, b2, . . . , bN , rmax]

T

is a vector of the unknowns. The first extrema point always
occurs asymptotically at zero, i.e., we choose x0 to be a very
small fixed value near zero, whereas the last extrema point
always occurs asymptotically at infinity, i.e., we choose x2N

to be a very large fixed value; the other xk are variables
that are found through the outer Remez iterations. Next, we
initialize these remaining locations of the extrema points and
start the first Remez iteration by solving f for v. We then find
the locations of the new extrema points of the resulting error
function and use them for the following Remez iteration which
we repeat until the difference between the locations of the old
and new extrema is smaller than a predefined threshold value.

In each outer iteration of the Remez algorithm, we solve f

for v using the Newton–Raphson method since the logarithmic
approximation results in a nonlinear type of equations. The
Newton–Raphson method is also iterative and requires initial
guesses for the vector of unknowns v. Its iterations are referred
to as the inner iterations to differentiate them from the outer
ones of the Remez algorithm, and are performed as

v(τ+1) = v(τ) −
[
J(τ)

(
v(τ)

) ]−1

f
(

v(τ)
)
, (20)

where τ is its inner-iteration counter and J(·) is the Jacobian
matrix defined as J (v) =

[
∂f
∂v0

, ∂f
∂v1

, . . . , ∂f
∂v2N

]
, for which

∂fk
∂an

= log2(1+bn xk)

C̄�(xk)
, ∂fk

∂bn
= anxk

log(2)(1+bnxk)C̄�(xk)
, ∂fk

∂rmax
=

(−1)k. The Newton–Raphson iterations are repeated until
Δv = v(τ+1) − v(τ) is less than a threshold value.

IV. NUMERICAL RESULTS AND DISCUSSIONS

This section gives insight into the performance of the
considered system in terms of the ergodic capacity, where it
studies the effect of several parameters on the ergodic capacity.
In addition, it verifies the accuracy of the adopted non-central
chi-square and Gamma approximations by means of Monte
Carlo simulations. In particular, we consider herein a network
setup with a carrier frequency of 3 GHz, dH = dV = λ

4 and
μh = μg = −45 dB since the RIS is usually placed in an
elevated place from the ground and thus has less path losses.

In Fig. 2, we examine the accuracy of the non-central
chi-square and Gamma statistical models in (7) and (12),
respectively. As can be seen, both approximations are well
corroborated with the true PDF with or without direct path
and for different values of M . The right shifting of the PDF
which occurs upon increasing the number of REs equipped on
the RIS, indicates an increase in the system power gain.

The ergodic capacity of the considered RIS-aided system is
evaluated using (11) for the non-central chi-square distribution
and using (16) for the Gamma distribution and the correspond-
ing results are plotted in Fig. 3, where they coincide well
with the simulated ergodic capacity for different M values.
Moreover, the approximation proposed in (18) is plotted for
both distributions after finding the optimized coefficients1

1Available at https://doi.org/10.5281/zenodo.6087447 for download.
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Fig. 2. The true PDF of the end-to-end SNR compared to approximated
non-central chi-square and the Gamma PDFs with ρ0 = 110 dB and Ωu =
−120 dB.

using the Remez algorithm. Both approximations match well
with the exact expressions with only four logarithmic terms
(N = 4). The figure also depicts the impact of imposing
an RIS to the communication system, where the ergodic
capacity shows much better performance when compared to
the scenario where communication is achieved only through
the direct path. Moreover, we can see that the ergodic capacity
increases with increasing the transmitted power and better
performance is achieved with increasing the number of REs
i.e., less transmitted power is required to achieve a certain
level of the ergodic capacity. For example, for ergodic capacity
of 1.5 bit/s/Hz, an increment by 300 REs will decrease the
required transmitted power by approximately 6.4 dB.

The impact of the number of REs equipped on the RIS
to the ergodic capacity for different Ωu and ρ0 values is
investigated further in Fig. 4, which illustrates the significant
increase in the ergodic capacity when increasing MH = MV

and M thereof, e.g., for Ωu = −110 dB and ρ0 = 115 dB,
as MH = MV changes from 15 to 25, the ergodic capacity
improves by approximately 75%. The figure also confirms
the significant improvement of the ergodic capacity with
increasing the transmitted power, e.g., for MH = MV = 30,
as ρ0 shifts from 105 to 110 dB, the ergodic capacity improves
by approximately 71%. Moreover, as the strength of the direct
path increases, the ergodic capacity increases considerably,
e.g., for MH = MV = 15 and ρ0 = 110 dB, as Ωu increases
from −110 to −90 dB, the ergodic capacity improves by
approximately 214%.

We further study the effect of utilizing an RIS to assist
the communication between S and D to the ergodic capacity
and how it behaves with changing the strength of the direct
path in Fig. 5. In particular, the RIS increases the ergodic
capacity considerably, especially for lower values of Ωu where
the RIS contributes more to the communication process, e.g.,
for Ωu = −130 dB, the ergodic capacity increases by 2.9, 4.4
and 6.0 bit/s/Hz for ρ0 = 105, 110 and 115 dB, respectively,
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Fig. 3. The ergodic capacity in terms of the transmitted power with Ωu =
−110 dB and for different values of M .

when adding an RIS with 900 REs. On the other hand, the RIS
contributes less to the communication process for the higher
values of Ωu, where the direct path has a strong effect. In
general, the ergodic capacity increases with increasing Ωu.

V. CONCLUSION

This paper studied the ergodic capacity of a SISO commu-
nication system with correlated Rayleigh-fading channels and
direct path between the source and destination. Specifically,
it presented two approximating schemes for the PDF of the
end-to-end SNR and thus derived closed-form expressions for
the corresponding ergodic capacity. Furthermore, it presented
more simplified, but very accurate, logarithmic approxima-
tions to the ergodic capacity for both schemes. Numerical
simulations verified the performed statistical analysis and
confirmed the high accuracy of the proposed approximations.
The conducted analysis revealed that ergodic capacity im-
proves with the transmitted SNR, the number of REs, and the
strength of the direct path. The effect of adding an RIS to the
communication system or increasing the number of its REs,
is best seen for the lower values of the direct path strength.

APPENDIX

A. Derivation of (9)

We calculate the variance of |A| which is defined in (4) as

Var
[|A|] = Var

[ M∑
i=1

|hi gi|
]
+Var

[|u| ]. (21)

By utilizing the definition of the variance, we get

Var
[ M∑

i=1

|higi|
]
= E

[( M∑
i=1

|higi|
)2]

−
(
E
[ M∑

i=1

|higi|
])2

,

(22)
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where

E
[( M∑

i=1

|higi|
)2]

=
M∑
i=1

M∑
j=1

E
[∣∣hihj

∣∣ ]E [∣∣gigj∣∣ ]. (23)

The channel coefficient |hi| is Rayleigh-distributed by which
its mean and variance are given as

E[|hi|] =
√

πΛμh

4
and Var[|hi|] =

(
4− π

2

)
Λμh

2
, (24)

respectively; the corresponding fact applies also for the chan-
nel coefficient |gi| in terms of μg .



Now using [21, Eq. 10], we get

E
[( M∑

i=1

|higi|
)2]

=
M∑
i=1

M∑
j=1

((4− π

2

)ΛμhRi,j

2
+

πΛμh

4

)

×
((4− π

2

)ΛμgRi,j

2
+

πΛμg

4

)
(25)

=
M∑
i=1

M∑
j=1

[(4− π

2

)2Λ2μhμgR
2
i,j

4

+
(4− π

2

)πΛ2μhμgRi,j

4
+

π2Λ2μhμg

16

]
.

On the other hand, from (8) we find

E
[ M∑

i=1

|higi|
]
=

M πΛ
√
μhμg

4
. (26)

By substituting (25) and (26) back into (22), which is then
substituted together with Var

[|u| ] = (
4−π
4

)
Ωu into (21), we

then complete the derivation of (9).

B. Derivation of (14)
We calculate the mean of |A|2, where |A| is defined in (4),

as

E[|A|2] =E
[( M∑

i=1

|hi gi|
)2]

+ 2E[|u|] E
[ M∑

i=1

|hi gi|
]

+ E[|u|2]. (27)

By substituting (25) and (26) in (27) together with using
E[|u|ζ ] = Ωu

ζ
2 Γ

(
1 + ζ

2

)
, we complete the derivation of (14).

C. Derivation of (15)
We calculate the variance of |A|2, where |A| is defined in

(4), as

Var[|A|2] =E
[( M∑

i=1

|hi gi|+|u|
)4]

︸ ︷︷ ︸
P1

− E
[( M∑

i=1

|hi gi|+|u|
)2]2

, (28)

where the first term is given by

P1 = E
[( M∑

i=1

|higi|
)4]

+ 4E[|u|] E
[( M∑

i=1

|higi|
)3]

+ 6E[|u|2] E
[( M∑

i=1

|higi|
)2]

+ 4E[|u|3] E
[ M∑

i=1

|higi|
]

+ E[|u|4], (29)

for which E
[(∑M

i=1|higi|
)4]

and E
[(∑M

i=1|higi|
)3]

are
calculated in a similar way to (25) with using [22, Eq. 1.1]
for the former and [21, Eq. 14] for the latter. This result
in evaluating both terms respectively as P2 and P3 in (15).
Moreover, by trivially solving the remaining terms and then
substituting the resulting P1 term with (27) into (28), we then
complete the derivation of (15).
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Abstract—We analyze the performance of a single-input single-
output wireless link that is aided by multiple reconfigurable
intelligent surfaces (RISs) — in terms of outage probability,
average symbol error probability and ergodic capacity, for which
we derive analytical expressions in closed form. In particular, we
consider a realistic system model, where the direct path may not
be blocked and for which channels corresponding to different
RISs are assumed to be independent but not identical and follow
the generic κ-μ fading distribution, which can be reduced to a
number of fading scenarios (namely Rayleigh, Rice, Nakagami-m,
and one-sided Gaussian). This enables the evaluation of the
system performance when adopting any combination of these
special cases or the generic κ-μ distribution for both hops of
the multiple distributed RISs. The direct path is modeled by
Rayleigh fading assuming no line-of-sight between the source and
the destination. We verify the accuracy of the adopted approach
by means of Monte Carlo simulations and conduct a performance
analysis that demonstrates the significant improvement in the
system performance due to the usage of the RISs. Especially, we
show that increasing the number of reflecting elements equipped
on the RISs and placing the RISs closer to either communication
endpoints improve the performance considerably.

I. INTRODUCTION

The reconfigurable intelligent surface (RIS) is a promis-
ing emerging technology for future wireless communication
networks since it gives more control over the wireless envi-
ronment for the aim of improving the quality-of-service and
spectrum efficiency. It consists of a large surface that has low-
cost passive reflecting elements (REs) that can be adapted
by a microcontroller to collaboratively reflect the incident
electromagnetic signals into the desired direction.

Most of the research work conducted on this topic focuses
on the design [1], [2], optimization [3]–[5] and potential
applications [6]–[8] of RIS-aided systems. Specifically, in
[1], a digitally controlled metasurface, whose units can be
adapted independently, is designed to dynamically manipulate
the electromagnetic waves and, thus, achieve more versatility;
whereas in [2], a tunable metasurface is designed to work as
a spatial microwave modulator with energy feedback.

Prior works have also investigated optimizing the perfor-
mance of RIS-aided wireless systems: In [3], the authors solve
a non-convex optimization problem to maximize their system’s
energy efficiency; and in [4], the discrete phase shifts together
with the transmit beamforming of a multiantenna base station
are optimized to minimize transmission power. In addition,

the authors in [5], who adopt RISs at the edge of cells to
enhance the downlink transmission for cell-edge users, aim
toward maximizing the weighted sum rate of all users by
optimizing the transmitter’s active precoding matrices together
with the REs’ phase shifts.

The applications of RISs span the different areas of wireless
communications, where it is adopted in [6] to support the
communication in unmanned aerial vehicle-assisted wireless
systems and in [7] to assist the data transmission from a
base station to a single-antenna receiver in an RIS-assisted
millimeter wave system. The RIS technology can also be
adopted in wireless networks to enhance the physical layer
security as explained in [8]. On the other hand, the theoretical
study of RIS-aided wireless networks still in its early stage,
where limited number of research works have been estab-
lished to analyze the performance of these systems due to
the difficulty in evaluating the statistical characterization of
the end-to-end signal-to-noise ratio (SNR). Therefore, several
approximations, bounds or asymptotic analysis have been
developed to analyze the RIS-aided systems [9], [10].

Noticeable efforts have been made on studying the generic
single-input single-output (SISO) system model without direct
path, where the central limit theorem (CLT) is used to de-
rive bounds or approximations for the different performance
measures for Rayleigh distribution in [11], [12]. A different
approximating approach is used in [13], [14] to achieve high
accuracy regardless of the number of REs at the RIS. The
SISO system with Rician fading and direct path between the
source (S) and destination (D) is studied in [15], for which
the statistical characterization of the end-to-end SNR is not
evaluated and thus the symbol error rate is not derived either.

A more generic SISO system with multiple RISs is in-
vestigated in [16], [17] and different approaches are used to
approximate the channel statistics. All the fading channels
associated with different RISs are assumed to be independent
and identically distributed (i.i.d.). However, this does not rep-
resent a realistic assumption since the RISs may be distributed
over a wide geographical area. Therefore, different RISs are
expected to experience non-identical channels of the same or
different fading distribution. On the other hand, for each RIS,
the channels encountered by REs can be assumed to be i.i.d.
since they are placed on the same surface, i.e., the REs of a
single RIS are located very close to each other.



Motivated by the fact that the literature only considers the
case where the same fading model is assumed for both hops
(S–RIS and RIS–D) among all the distributed RISs and with
i.i.d. channels, we present herein a more realistic performance
study of a generic SISO system model with multiple RISs and
direct path with independently but non-identically distributed
(i.n.i.d.) fading channels across the distributed RISs which are
geographically far apart from each other, and thus each RIS
may also experience different fading distribution. Therefore,
we choose to evaluate the system’s performance over the
generic κ-μ distribution which can be reduced to a number
of the most used fading scenarios, namely, Rayleigh, Rice,
Nakagami-m and one-sided Gaussian distribution. This allows
us not only to consider the same double fading channels
for all the distributed RISs, but also to consider different
combinations of the special cases or the generic distribution
for the S–RIS and RIS–D links of the different RISs.

In particular, we implement the Laguerre series method
[18] to approximate the statistical characterization of the end-
to-end equivalent channel of the SISO system with multiple
RISs and direct path. Closed-form expressions for the outage
probability and ergodic capacity are presented as well as a
novel expression for the average symbol error probability
(ASEP) is derived. Our work presents generalized results that
are valid for any number of RISs equipped with arbitrary
numbers of REs. It is also valid for any combination of the
fading distributions covered by the κ-μ distribution and with
or without direct path, where the latter represents a special
case of the former when the direct channel gain is set to zero.

II. SYSTEM AND CHANNEL MODELS

The system under study is illustrated in Fig. 1 and it
consists of a single-antenna source (S), N RISs, where the nth
one (RISn) is equipped with Mn REs, and a single-antenna
destination (D). The destination can overhear the signal from
all the distributed RISs as well as through the direct path. It is
worth mentioning that the considered system model includes
the special case of an obstructed direct path between S and D,
for which the channel coefficient u below in (2) equals zero.

A. Signal Models

The received signal at the destination can be written as

y = As+ w, (1)

for which the combined channel response is

A =

N∑
n=1

An + u, (2)

where the channel response of the nth RIS is

An =

Mn∑
i=1

hn,i gn,i rn,i, (3)

and s is the transmitted signal, hn,i, gn,i and u are the fading
coefficients of S–RISn, RISn–D and S–D links, respectively,
while the additive white Gaussian noise is denoted by w in (1)

h1,i

h2,i

hN−1,1

hN−1,2

hN−1,MN−1

hN,i

g1,i

g2,1
g2,2
g2,M2

gN−1,i

gN,i

1st RIS, M1 REs

2nd RIS, M2 REs

N − 1th RIS, MN−1 REs

N th RIS, MN REs

u
S D

Fig. 1. A SISO wireless system with N RISs. Each S–RISn and RISn–D path
consists of multiple propagation paths through the Mn REs. For simplicity,
we illustrate the multipath components via two RISs only.

with zero mean and variance N0 = E[|w|2]. The instantaneous
end-to-end SNR is defined as ρ = Es |A|2/N0 = ρ0 |A|2 with
Es = E[|s|2] being the transmitted power and ρ0 = Es/N0

denoting the transmit SNR. In addition, rn,i = exp(jθn,i)
is the response of the ith RE in the nth RIS for which its
magnitude is assumed to be equal to one and its phase shift is
optimized to maximize the SNR at the receiver by choosing
θn,i = ∠u− (

∠hn,i + ∠gn,i
)
, assuming ideal global channel

state information and centralized coordination.

B. Fading Models

The flat fading coefficients hn,i, gn,i and u are assumed
to be statistically independent, identical per RIS, and slowly
varying. On the other hand, they are not identical for the
different RISs, which are geographically separated far apart
from each other. The average gains of their envelopes are
defined respectively as σ2

hn
= E

[|hn,i|2
]

= ι0 (
d0

dhn
)ηhn ,

σ2
gn = E

[|gn,i|2] = ι0 (
d0

dgn
)ηgn and σ2

u = E
[|u|2] =

ι0 (
d0

du
)ηu , where ι0 is the reference path loss at the reference

distance d0, and dj and ηj , j ∈ {hn, gn, u} denote respectively
the distance and path loss exponent of the corresponding
link. We let |hn,i| and |gn,i| follow generalized κ-μ fading
distribution, for which κ is the ratio between the total power
of the dominant components and the total power of the
scattered waves, and μ is the number of multipath clusters
[19]. Assuming there is no line-of-sight (LoS) in the direct
path, the S–D link can be modeled by Rayleigh fading.

The κ-μ distribution encloses most of common small-scale
fading models as special cases that are obtained by controlling
the values of its fading parameters. In particular, for Rayleigh
(κ = 0, μ = 1), Nakagami-m (κ = 0, μ = m), Rice (κ =
K,μ = 1) and one-sided Gaussian (κ = 0, μ = 0.5), where
m and K refer respectively to the shape parameter of the



Nakagami-m distribution and to the Rician factor. Therefore,
in addition to the generic κ-μ distribution, we can consider the
same or combination of the special-case distributions for both
links of the N distributed RISs by assigning the corresponding
values to κhn

and μhn
of the S–RISn hop and to κg,n and

μg,n of the RISn–D hop.
Toward evaluating the performance measures of the consid-

ered system, we need to derive the probability density function
(PDF) of the end-to-end SNR for the system under study.
We achieve that by first deriving the PDF and the cumulative
distribution function (CDF) of the combined channel response
defined in (2). It is obvious that the channel response of the nth
RIS defined in (3) is a sum of Mn identical double κ-μ random
variables, which all are continuous, independent and defined
over the positive real axis. Therefore, their sum converges
toward a normal random variable according to the central
limit theorem. As a result, the combined channel response,
which is a sum of the N resulted normal variables plus a
single Rayleigh random variable will also be nearly normally
distributed and its PDF will look similar to the Gaussian PDF
with a single maximum, and its tails extend to infinity from
the right side but is truncated to zero from the left side.

The PDF of the combined nearly-Gaussian channel response
can be further tightly approximated by the first term of a
Laguerre series expansion as stated in [18] as

f|A|(x) � xα

βα+1 Γ(α+ 1)
exp

(
−x

β

)
, (4)

where

α =
(E[|A|])2
Var[|A|] − 1, (5)

β =
Var[|A|]
E[|A|] . (6)

The corresponding CDF can be derived [13, Appendix A] as

F|A|(x) �
γ
(
α+ 1, x/β

)
Γ(α+ 1)

, (7)

where γ(·, ·) denotes the lower incomplete Gamma function.
The mean of |A| is calculated using its linearity property

together with the independency assumption as E[|A|] =∑N
n=1 E[|An|]+E[|u|] =∑N

n=1 Mn E[|hn,i|] E[|gn,i|]+E[|u|]
for which the expectation of a κ-μ distributed fading coeffi-
cient is given in [20, Eq. 3] and the cth moment of a Rayleigh-
distributed fading coefficient is E[|u|c] = σc

u Γ
(
1 + c

2

)
. There-

fore,

E[|A|] =
N∑

n=1

Mn

σhn
Γ
(
μhn

+ 1
2

)
exp(−κhn

μhn
)

Γ(μhn
) ((1 + κhn

)μhn
)

1
2

× σgn Γ
(
μgn + 1

2

)
exp(−κgn μgn)

Γ(μgn) ((1 + κgn)μgn)
1
2

× 1F1(μhn
+

1

2
;μhn

;κhn
μhn

)

× 1F1(μgn +
1

2
;μgn ;κgn μgn) +

√
π σ2

u

4
, (8)

where 1F1(·; ·; ·) is the confluent hypergeometric function of
the first kind [21, Eq. 9.210.1].

Likewise, the variance of |A| is calculated as Var[|A|] =∑N
n=1 Var[|An|] + Var[|u|], where

Var[|An|] = Mn Var[|hn,i gn,i|] (9)

= Mn (E[|hn,i|2]E[|gn,i|2]− E[|hn,i|]2 E[|gn,i|]2)
and Var[|u|] = E[|u|2]−(E[|u|])2, which leads us to evaluating
it as shown in (10) at the top of the next page.

Finally, we can derive the PDF of the end-to-end SNR by
taking the derivative of the CDF of ρ that is defined as

Fρ(x) = Pr(ρ ≤ x) = F|A|

(√
x

ρ0

)
. (11)

Therefore,

fρ(x) � 1

2βα+1 Γ(α+ 1)
ρ
−α+1

2
0 x

α−1
2 exp

(
−
√

x

β2 ρ0

)
.

(12)

III. PERFORMANCE ANALYSIS

The performance of the considered system is studied in this
section in terms of three central performance metrics, namely
outage probability, ASEP and ergodic capacity.

The outage probability that is defined as the probability that
the end-to-end instantaneous SNR falls below a predefined
threshold value, ρth, is given directly [13, Eq. 31] by

PO = Fρ(ρth) �
γ

(
α+ 1, 1

β

√
ρth

ρ0

)
Γ(α+ 1)

. (13)

The average symbol error probability (ASEP) under fading
for coherent detection is obtained in most cases by evaluating

P̄E =

∫ ∞

0

Ω

(
Q
(√

ζ x
))

fρ(x) dx, (14)

where Ω(·) is some polynomial of the Q-function that corre-
sponds to the conditional error probability, e.g.,

Ω

(
Q
(√

ζ x
))

= 4

(√M− 1√M

)
Q
(√

ζ x
)

− 4

(√M− 1√M

)2

Q2
(√

ζ x
)

(15)

for square M-quadrature amplitude modulation (M-QAM)
[22], whereas the constant ζ = 3

M−1 . We can derive a
closed-form expression for (14) by substituting the exponential
approximation proposed in [23] into the above integral as

P̄E =

R∑
r=1

ar

∫ ∞

0

exp(−br ζ x) fρ(x) dx, (16)

where {(ar, br)}Rr=1 is some set of coefficients from [24]. The
above expression is presented with an equality because there
is practically no approximation error in the present application
despite its being an approximation in the strict sense.



Var[|A|] =
N∑

n=1

Mn

(
σ2
hn

σ2
gn − σ2

hn
Γ2
(
μhn

+ 1
2

)
exp(−2κhn

μhn
)

Γ2(μhn
) (1 + κhn

)μhn

σ2
gn Γ2

(
μgn + 1

2

)
exp(−2κgn μgn)

Γ2(μgn) (1 + κgn)μgn

× 1F
2
1 (μhn

+
1

2
;μhn

;κhn
μhn

) 1F
2
1 (μgn +

1

2
;μgn ;κgn μgn)

)
+

4− π

4
σ2
u (10)

C̄ � 1

ln(2) Γ(α+ 1)

(
Γ(α− 1) 2F3

(
1, 1; 2, 1− α

2 ,
3
2 − α

2 ;− 1
4β2ρ0

)
β2ρ0

+
π β−α−2 ρ

−α
2 −1

0 csc
(
πα
2

)
1F2

(
α
2 + 1; 3

2 ,
α
2 + 2;− 1

4β2ρ0

)
α+ 2

+
π β−α−1 ρ

−α
2 − 1

2
0 sec

(
πα
2

)
1F2

(
α
2 + 1

2 ;
1
2 ,

α
2 + 3

2 ;− 1
4β2ρ0

)
α+ 1

− 2α2 Γ(α− 1) ln

(
1

β
√
ρ0

)
+ 2αΓ(α− 1) ln

(
1

β
√
ρ0

)

+ 2 (α− 1)αΓ(α− 1)ψ(0)(α+ 1)

)
(18)

By substituting (12) in (16) and using [21, Eq. 3.462.1], we
obtain

P̄E =
1

2βα+1 Γ(α+ 1)

R∑
r=1

ar (ρ0 ζ br)
−α+1

2

(
Γ

(
α+ 1

2

)

× 1F1

(
α+ 1

2
,
1

2
,

1

4β2 ρ0 ζ br

)
−
(
β2 ρ0 ζ br

)− 1
2

×Γ

(
α

2
+ 1

)
1F1

(
α

2
+ 1,

3

2
,

1

4β2 ρ0 ζ br

))
, (17)

for which α and β are defined respectively in (5) and (6).
The ergodic capacity of the considered system has the same

analytical form as [14, Eq. 11] that is rewritten in (18) with
substituting novel expressions of α and β, which are calculated
herein using the mean and variance of the combined channel
response in (8) and (10), respectively. The ψ(0)(·) in (18) is the
0th polygamma function and csc(·) is the cosecant function.

IV. NUMERICAL RESULTS AND DISCUSSIONS

This section gives insight into the performance of the
considered system in terms of the outage probability, ASEP
and ergodic capacity. In addition, it verifies the accuracy
of the adopted Laguerre series approximation by means of
Monte Carlo simulations. We assume five different RISs
(N = 5) whose number of REs is given as {Mn}Nn=1 =
{14, 26, 16, 24, 20} or {Mn}Nn=1 = {28, 52, 32, 48, 40}. Also,
M refers to the total number of REs in all the N distributed
RISs, i.e., M =

∑N
n=1 Mn. Thus, M = 100 and M = 200

for the two considered cases. For calculating the average
gains σ2

hn
, σ2

gn , σ
2
u, we set d0 = 1 m, ι0 = −30 dB,

ηhn
= 2.4, ηgn = 2.3 for all n = 1, 2, . . . , 5 and ηu = 3.

The RISs are assumed to be distributed between S and D
which are located in the x-axis and separated by a distance
du = 100 m. The location of each RIS is given in the
Cartesian coordinate system as (dxn

, dyn
) and the total dis-

tances of the links are calculated as dhn
=
√

d2xn
+ d2yn

and

dgn =
√

(du − dxn
)2 + d2yn

.
Unless otherwise stated, we consider the location setting

D = [(25, 50), (40, 30), (55, 10), (82,−20), (95,−40)] m and
S–RISn–D paths’ distributions with
κh1

= 0, μh1
= 1, κg1 = 0, μg1 = 1 (double Rayleigh),

κh2
= 0, μh2

= 3, κg2 = 0, μg2 = 2 (double Nakagami),
κh3

= 2, μh3
= 1, κg3 = 2, μg3 = 1 (double Rician),

κh4
= 1, μh4

= 2, κg4 = 1, μg4 = 2 (double κ− μ), and
κh5

= 2.5, μh5
= 1, κg5 = 0, μg5 = 3.3 (Rician–Nakagami).

The accuracy of the first-term Laguerre approximation (4)
for the end-to-end channel’s PDF of the considered system
model with and without direct path between S and D is
tested and illustrated in Fig. 2. It can be noted that the used
approximation is very tight for both communication scenarios
(with or without direct path) and for any combination of the
fading distributions, where we verified its accuracy over two
fading scenarios; all links experience Rician fading or each
RIS experiences different fading distribution using the setting
specified above. The high accuracy is maintained for low and
high numbers of the RISs’ REs. The communication scenario,
where only a S–D link exist, is also presented for comparison
and it shows that imposing the RISs in the system increases
its power gain which increases even further by increasing M
as can be depicted from the right-shifting of the PDF.

Figure 3 depicts the impact of using RISs to assist the com-
munication between S and D and enhance the different per-
formance metrics. In particular, the outage probability, ASEP
and the ergodic capacity, whose analytical values coincide well
with the true measures, show much better performance when
compared to the scenario where communication is achieved
only through the direct path. In addition, the impact of in-
creasing the number of REs equipped on the distributed RISs is
clearly noted where as M increases, the outage probability and
ASEP decrease and the ergodic capacity increases, indicating
improved performance, i.e., less transmitted power is required
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Fig. 2. The PDF of the end-to-end channel with and without S–D link for
N = 5 of two different RISs systems.

to achieve a certain level of the considered measure.
The effect of increasing M on the different orders of the

considered M-QAM scheme in Fig. 3(b) is nearly the same,
e.g., for ASEP of 10%, an increment by 100 REs will decrease
the required transmitted power by approximately 2.2 dB for
both schemes. Moreover, it can be noted from Fig. 3(a) and
(b), that as M increases, the rate of change in the slope of the
outage probability and the ASEP increases which indicates
higher diversity gain.

Finally, we demonstrate the impact of the locations of the N
distributed RISs to the system’s performance. To give a better
insight into it, we test the x-position and the y-position sepa-
rately, while keeping the other dimension’s position constant.
In particular, in Fig. 4(a), we choose three different location
settings for the five distributed RISs as indicated by the three
different marker symbols in the smaller subfigure to represent
the different possibilities of movements along the x-axis. The
corresponding ASEP is calculated and plotted. We conclude
from the figure that as the x-position of the RISs is nearer to
either S or D, better performance is achieved. On the other
hand, placing the RISs near the half-way between S and D
results in worse performance since the path losses for both
hops are maximized. Similarly, the y-placement of the RISs
is also tested in Fig. 4(b) and shows better performance when
the RISs are placed vertically closer to S and D, where the
path losses are less and thus they contribute more efficiently
to the communication process.

V. CONCLUSION

This paper studied the performance of a generalized system
setup, namely, a SISO communication system with multiple
RISs and direct path between the source and the destination
over the generic κ-μ fading channels. Specifically, it presented
tight expressions for the corresponding outage probability,
average symbol error probability and ergodic capacity. The
considered fading distribution includes most of the widely
used fading models. This validates the use of all the derived
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Fig. 3. The outage probability, average symbol error probability and ergodic
capacity for different values of M , i.e., the total number of REs.
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Fig. 4. Impact of the x-position in (a) and the y-position in (b) of the N distributed RISs to the ASEP, while keeping the other dimension’s position constant.

expressions for these special cases. The numerical results
verified the performed statistical analysis and confirmed the
high accuracy of the derived performance measures. Moreover,
we showed that increasing the number of reflecting elements
equipped on the RISs and placing them closer either to
the source or destination, improve the system’s performance
significantly and increase its diversity gain.
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[2] N. Kaina, M. Dupré, G. Lerosey, and M. Fink, “Shaping complex mi-
crowave fields in reverberating media with binary tunable metasurfaces,”
Sci. Rep., vol. 4, no. 6693, Oct. 2014.

[3] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and
C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in
wireless communication,” IEEE Trans. Wirel. Commun., vol. 18, no. 8,
pp. 4157–4170, Jun. 2019.

[4] Q. Wu and R. Zhang, “Beamforming optimization for intelligent reflect-
ing surface with discrete phase shifts,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process., May 2019, pp. 7830–7833.

[5] C. Pan, H. Ren, K. Wang, W. Xu, M. Elkashlan, A. Nallanathan,
and L. Hanzo, “Multicell MIMO communications relying on intelligent
reflecting surfaces,” IEEE Trans. Wirel. Commun., Jun. 2020.

[6] M. Al-Jarrah, A. Al-Dweik, E. Alsusa, Y. Iraqi, and M.-S. Alouini, “IRS-
assisted UAV communications with imperfect phase compensation,”
IEEE Trans. Wirel. Commun., 2021.

[7] P. Wang, J. Fang, X. Yuan, Z. Chen, and H. Li, “Intelligent reflecting
surface-assisted millimeter wave communications: Joint active and pas-
sive precoding design,” IEEE Trans. Veh. Technol., vol. 69, no. 12, pp.
14 960–14 973, Oct. 2020.

[8] A. Almohamad, A. M. Tahir, A. Al-Kababji, H. M. Furqan, T. Khattab,
M. O. Hasna, and H. Arslan, “Smart and secure wireless communica-
tions via reflecting intelligent surfaces: A short survey,” IEEE Open J.
Commun. Soc., vol. 1, pp. 1442–1456, Sep. 2020.

[9] V. C. Thirumavalavan and T. S. Jayaraman, “BER analysis of recon-
figurable intelligent surface assisted downlink power domain NOMA
system,” in Proc. Int. Conf. on Commun. Syst. Netw., Mar. 2020.

[10] M. Badiu and J. P. Coon, “Communication through a large reflecting
surface with phase errors,” IEEE Wirel. Commun. Lett., vol. 9, no. 2,
pp. 184–188, Feb. 2020.

[11] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. Alouini, and
R. Zhang, “Wireless communications through reconfigurable intelligent
surfaces,” IEEE Access, vol. 7, pp. 116 753–116 773, Aug. 2019.

[12] D. Kudathanthirige, D. Gunasinghe, and G. Amarasuriya, “Performance
analysis of intelligent reflective surfaces for wireless communication,”
in Proc. IEEE Int. Conf. Commun., Jun. 2020.

[13] A.-A. A. Boulogeorgos and A. Alexiou, “Performance analysis of recon-
figurable intelligent surface-assisted wireless systems and comparison
with relaying,” IEEE Access, vol. 8, pp. 94 463–94 483, May 2020.

[14] A. Salhab and M. Samuh, “Accurate performance analysis of recon-
figurable intelligent surfaces over Rician fading channels,” IEEE Wirel.
Commun. Lett., vol. 10, no. 5, pp. 1051–1055, May 2021.

[15] Q. Tao, J. Wang, and C. Zhong, “Performance analysis of intelligent
reflecting surface aided communication systems,” IEEE Commun. Lett.,
vol. 24, no. 11, pp. 2464–2468, Nov. 2020.

[16] D. L. Galappaththige, D. Kudathanthirige, and G. Amarasuriya, “Per-
formance analysis of distributed intelligent reflective surface aided
communications,” in Proc. IEEE Glob. Commun. Conf., Dec. 2020.

[17] L. Yang, Y. Yang, D. B. da Costa, and I. Trigui, “Outage probability
and capacity scaling law of multiple RIS-aided networks,” IEEE Wirel.
Commun. Letters, vol. 10, no. 2, pp. 256–260, Feb. 2021.

[18] S. Primak, Stochastic Methods and Their Applications to Communica-
tions: Stochastic Differential Equations Approach. Wiley, 2004.

[19] M. D. Yacoub, “The κ-μ distribution and the η-μ distribution,” IEEE
Antennas Propag. Mag., vol. 49, no. 1, pp. 68–81, Feb. 2007.

[20] N. Bhargav and Y. J. Chun, “On the product of two κ-μ random variables
and its application to double and composite fading channels,” IEEE
Trans. Wireless Commun., vol. 17, no. 4, pp. 2457–2470, Apr. 2018.

[21] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and
Products, 7th ed. Elsevier/Academic Press, 2007.

[22] M. K. Simon and M.-S. Alouini, Digital Communication over Fading
Channels, 2nd ed. John Wiley and Sons, Inc., Jan. 2005.

[23] I. M. Tanash and T. Riihonen, “Global minimax approximations and
bounds for the Gaussian Q-function by sums of exponentials,” IEEE
Trans. Commun., vol. 68, no. 10, pp. 6514–6524, Oct. 2020.

[24] I. M. Tanash and T. Riihonen, “Coefficients for global
minimax approximations and bounds for the Gaussian Q-function
by sums of exponentials,” Jul. 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.4112978





Tampere University Dissertations 691

691/2022
ISLA

M
 TA

N
A

SH
    Approxim

ations for Perform
ance Analysis in W

ireless C
om

m
unications and...

Approximations for 
Performance Analysis in 

Wireless Communications 
and Applications to 

Reconfigurable Intelligent 
Surfaces

ISLAM TANASH

TUNI_Tanash_Islam_kansi.indd   1TUNI_Tanash_Islam_kansi.indd   1 12.10.2022   11:50:0712.10.2022   11:50:07


	TUNI_Tanash_Islam_kansi
	TUNI_Tanash_Islam_sisus
	Blank Page
	Blank Page


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




