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ABSTRACT 

Maximum and efficient utilization of available resources has been a central theme of 

research on various areas of science and engineering. Wireless communication is not 

an exception to this. With the rapid growth of wireless communication applications, 

radio frequency spectrum has become a valuable commodity. Supporting very high 

demands for data rate and throughput has become a challenging problem which 

requires innovative solutions. Dynamic spectrum sharing (DSS) based cognitive 

radio (CR) is envisioned as a promising technology for future wireless 

communication systems, such as fifth generation (5G) further development and sixth 

generation (6G). Extensive research has been done in the areas of CRs and it is 

considered to mitigate the spectral crowding problem by introducing the notion of 

opportunistic spectrum usage. Spectrum sensing, which enables CRs to identify 

spectral holes, is a critical component in CR technology. Furthermore, improving 

the efficiency of the radio spectrum use through spectrum sensing and dynamic 

spectrum access (DSA) is one of the emerging trends.  

In the first part of this thesis, we focus on enhancing the spectrum usage of CR’s 

using interference cancellation methods that provides considerable performance 

gains with realistic computational complexity, especially, in the context of the widely 

used multicarrier waveforms. The primary focus is on interference rejection 

combining (IRC) methods, applied to the black-space cognitive radio (BS-CR). 

Earlier studies on the BS-CR in the literature were focused on using CRs as repeaters 

for the primary transmitter to guarantee that the CR is not causing significant 

interference to nearby primary users’ receivers. This kind of approaches are 

transmitter-centric in nature. In this thesis, receiver-centric approaches such as 

multi-antenna diversity combining, especially enhanced IRC methods, are 

considered and evaluated.  IRC methods have been widely studied and adopted in 

several practical wireless communication systems. We focus on developing such BS-

CR schemes under strong interference conditions, which has not been studied in the 

CR literature so far. Spatial covariance matrix estimation under mobility and high 

carrier frequencies is found to be the most critical part of such scheme. Algorithms 

and methods to mitigate these effects are developed in this thesis and they are 
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evaluated under realistic BS-CR receiver operating conditions.  We use sample 

covariance estimation approach with silent gaps in the CR transmisison. Covariance 

interpolation between silent gaps improves greatly the robustness with time-varying 

channels. Good link performance can be reached with low mobility at carrier 

frequency considered for the TV white-spaced case. The proposed BS-CR scheme 

could be feasible at below 6 GHz frequencies with pedestrian mobilities.  

 The second part of this thesis investigates the effect of radio frequency (RF) 

impairments on the performance of the cognitive wireless communication. There 

are various unavoidable imperfections, mainly due to the limitations of analog high-

frequency transmitter and receiver circuits. These imperfections include power 

amplifier (PA) non-linearities, receiver nonlinearities, and carrier frequency offset 

(CFO), which are considered in this study. These effects lead to significant signal 

distortion and, as a result of this, the wireless link quality may deteriorate. In 

multicarrier communications such signal distortions may lead to additional 

interference, and it is important to evaluate their effects on spectrum sensing quality 

and on the performance of the proposed BS-CR scheme. This part of the thesis 

provides critical analysis and insights into such issues caused by RF imperfections 

and demonstrates the need for designing proper compensation techniques required 

to avoid/reduce such degradations. It is found that the transmitter’s PA 

nonlinearities affect in the same way as in basic OFDM systems and BS-CR receiver’s 

linearity requirements are similar to those for advanced DSP-intensive software 

defined radios. The CR receiver’s CFO with respect to the PU has the most critical 

effect. However, synchronizing the CR with the needed high accuracy is considered 

achievable due to the PU signal’s high-power level. 

The final part of the thesis briefly looks at alternate waveforms and techniques that 

can be used in CRs. The filter bank multicarrier (FBMC) waveforms are considered 

as an alternative to the widely used OFDM schemes. Here the core idea is 

interference avoidance, targeting to reduce the interference leakage between CRs and 

the primary systems, by means of using a waveform with good spectrum localization 

properties. FBMC system’s performance is compared with OFDM based system in 

the context of CRs. The performance is compared from a combined spectrum 

sensing and resource allocation point of view through simulations. It is found that 

well-localized CR waveforms improve the CR link capacity, but with poorly localized 

primary signals, these possibilities are rather limited. 
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1 INTRODUCTION 

1.1 Background and Motivation 

The electromagnetic spectrum is a scarce and precious resource. Like any other 

natural resource, efficient utilization of the electromagnetic spectrum is not only an 

essential condition for sustainable development, but also for competitiveness in 

telecommunication industry.   Traditionally, the entire available spectrum is divided 

into smaller bands and each band is licensed for the exclusive use of one or few 

wireless applications. Some of the available spectrum is left as unlicensed spectrum 

or bands for free usage to encourage innovation. For example, the bands of 

frequencies between both 2.4 - 2.5 GHz and 5.725 - 5.875 GHz are used for 

industrial scientific and medical (ISM) applications without the need to obtain a 

license to use the spectrum from the local regulator. Unlicensed spectrum is almost 

completely occupied by a host of devices from Wi-Fi and Bluetooth devices to 

cordless devices.   

A US Federal Communications Commission (FCC) report [1] published in 

November 2002 (for which measurements and studies had already started in 1995) 

shows that once the time and space variations of spectrum occupation are 

considered and fixed, a rigid utilization plan emerges. Such a rigid spectrum licensing 

policy results in inefficient spectrum allocation and low spectrum utilization. This 

imbalance between the spectrum scarcity and low utilization motivates the concept 

of cognitive radio (CR) networks. The inefficient allocation of spectrum leads to 

unused or under used spectrum. At any particular time in a particular geographical 

location, the unused parts of radio spectrum are called spectrum holes or white 

space. Shared usage of such spectrum through secondary (unlicensed) users can help 

to increase the spectrum utilization. This process of using the spectrum owned by a 

licensed spectrum user by one or many unlicensed secondary users is called spectrum 

sharing [7], [24], [69], [107], [108]. Thus, spectrum sharing can help to increase the 

spectrum efficiency [147]. Encouraged by these findings, FCC introduced the 
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secondary markets initiative [2]. This initiative aims to remove unnecessary 

regulations which act as a barrier to new, secondary market-oriented policies like 

spectrum leasing, dynamic spectrum access (DSA) or sub-leases of spectrum and 

spectrum pooling [147]. As continuation of these policy efforts, and getting these 

policies implemented, there emerged, three major standardization activities. These 

standards targets were to work on the algorithms and architectures related to the 

CRs.    

1. The IEEE 802.22 [40], [80] standards committee, aiming at developing CR 

algorithms and architectures for wireless regional area networks (WRANs) 

for local and regional coverage.  

2. The IEEE Dynamic Spectrum Access Networks Standards Committee 

(DySPAN-SC) develops basic CR system and DSA technology standards 

[27] with the focus on the improved use of spectrum in any spectrum band.  

3. The third major standardization body is the ETSI’s Reconfigurable Radio 

Systems Technical Committee (RRC) on CRs and software defined radio 

(SDR)[3], [4], [111]. The ETSI’s RRC is a European initiative which is 

complimentary to the IEEE 802.22 standard and the DySPAN activities, 

aimed on SDR standards beyond the IEEE scope, CR/SDR standards 

addressing the specific needs of the European Regulatory Framework, and 

CR/SDR TV white space (TVWS) standards adapted to the digital TV signal 

characteristics in Europe and elsewhere. 

 One of the key aspects of the SDR/CR standards activities were aimed at getting 

both the wide area wireless network and the short-range wireless networks to co-

exist in a particular geographical location.  

Spectrum sharing techniques are broadly classified [67], [69], [78], [151] as real-

time secondary spectrum access and non-real-time secondary spectrum access, based 

on the way in which they access the spectrum in the time dimension.  From the 

perspective of coexistence, the spectrum sharing can be classified as underlay, 

overlay, and interweave [67], [78], [151]. In interweave systems, the CRs 

opportunistically exploit spectral holes to communicate without disrupting other 

transmissions. The interweave systems can also be thought of as an interference 
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avoidance type of a communication system. For this type of system, the secondary 

users need to know the time-frequency gaps in the spectrum of primary user (PU). 

The constraints that need to be satisfied here are that there must be no interference 

between the primary and secondary transmissions and the primary and secondary 

transmissions are orthogonal either in time or frequency. The most common and 

well-known examples are the time division multiple access (TDMA) and frequency 

division multiple access (FDMA) approaches.  

In the underlay paradigm, cognitive users could operate if the interference caused 

to noncognitive users is below a given threshold. Here the secondary and primary 

users are allowed to transmit over the same spectrum, in such a way that the 

interference seen by the PUs from the cognitive users is controlled to an acceptable 

level as seen by the primary with respect to some quality of service (QoS) constraints. 

The cognition required here is the knowledge of the “acceptable levels” of 

interference at PUs within a cognitive user’s transmission range. This type of system 

can be thought of as an interference control type of spectrum sharing method. After 

identifying such transmission opportunities, they are aggregated and grouped to 

form a wideband transmission channel. 

In overlay systems, the CRs use the same spectrum as PUs by means of 

sophisticated signal processing and coding to maintain or improve the 

communication of noncognitive radios while also obtaining some additional 

bandwidth for their own communication. This method of spectrum sharing mainly 

aims at interference mitigation. This method needs information about the primary’s 

waveform and codebook in details, in addition to channel information of primary 

and secondary. 

The CR can be thought of as a flexible SDR which is envisioned to be a solution 

that improves the spectrum utilization [4], [107], [111]. Generally, the CR is a generic 

term used to describe a radio that is aware of the radio environment around it and 

can adapt its transmissions according to the interference it sees. Some of the defining 

characteristics of CR are agility and cognition for coexistence, through cooperation.  

One of the definitions for CR according to [69] and publications  [67], [78], [140], 

[151] is: “Cognitive radio is an intelligent wireless communication system” where 

“intelligence” can be thought of as the capability to analyze and understand the radio 

environment, namely the radio channel conditions, radio spectrum of operation, 

waveforms and codebooks and the messages of other radio systems that co-exists in 

the same spectrum in which it operates.  
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Cognition is not a new concept in wireless communications. In a wireless 

communication system, essential information describing the radio environment, like 

the wireless channel condition, modulation types, transmit and received power, 

usage of available radio resources, etc., can be usually obtained by sensing the 

surrounding wireless environment from received signals or it can be explicitly 

signaled to the receiving end. Techniques like channel estimation and sensing the 

presence of other users, can be seen as elementary forms of applying cognition in 

wireless networks. CRs further this idea of cognition to enable dynamic spectrum 

access, so that the temporal and spatial variation in the spectrum utilization can be 

exploited for enhancing its usage. While DSA is the goal, the spectrum usage 

etiquettes need to still be observed by the CR [32].  

1.2 Objectives and Scope of the Thesis 

In this thesis, the focus is mainly directed towards overlay cognitive approach, with 

high power primary transmission present in the frequency channel used by the CR. 

This is also known as black space cognitive radio (BS-CR) [69]. Traditionally, one of 

the efficiency metrics of any wireless communication system is spectral efficiency. 

Spectral efficiency can be seen as the number of bits that can be communicated per 

channel use. It is well known that the efficiency of spectrum utilization is a function 

of channel attenuation, noise in that channel and the interference from the other 

transmissions using the same channel.  Huge amounts of time and effort have been 

spent in research to improve the spectral efficiency, especially, by designing 

innovative waveforms and signal processing. Multi-antenna systems and large 

antenna arrays are important recent additions to the traditional selection of such 

tools. They aim at improving spectral efficiency by increasing the signal to 

interference and noise ratio (SINR) or by cancelling the interference between various 

simultaneous channel uses or transmissions.  

In this thesis, especially, we work on multi-antenna interference cancellation-

based BS-CR using various signal processing methods. Even though the CR 

methods are applicable for many different primary systems like WLAN and cellular 

systems, we focus on the terrestrial television spectral bands and TVWS as an 

application area to test and explore the algorithms considered in this thesis.   

One of the best ways to aggregate the available transmission opportunities for 

CR is by using multicarrier communication methods. Of the various multicarrier 
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techniques that are available, in this thesis, orthogonal frequency-division 

multiplexing (OFDM) based multicarrier methods [38], [118], [149] are primarily 

studied and used. Additionally, enhanced multicarrier techniques such as filter bank 

multicarrier (FBMC) methods [15], [16], [23] [124], [137] are explored as an 

alternative to OFDM. Actually, the second topic of the thesis is investigating the 

benefits of FBMC versus OFDM in case of interference avoidance, i.e., the 

interweave CR paradigm. In this part we consider resource allocation in the presence 

of adjacent channel interference (ACI) leakage between primary and secondary 

systems due to imperfect spectrum localization and transmitter power amplifier (PA) 

nonlinearity. Other important enhanced multicarrier waveforms, especially in the 5G 

and beyond context, include windowed OFDM (known as WOLA) [14], [105], [148], 

[154] and filtered OFDM [57], [88], [101], [124], [156]. We find that many of our 

results and conclusions on the proposed interference avoidance and interference 

cancellation techniques are applicable also with these waveforms, as shown in [P1], 

[48] for the interweave scenario.  

The main objective of this thesis is to study and analyze existing CR techniques 

and newly develop CR algorithms for interference cancelation and interference 

avoidance in order to answer the following questions:  

1. Interference cancellation in BS-CR systems: How well can the secondary 

receiver adapt to the very strong primary interference and which algorithms 

are the most effective for the secondary receiver? In the process of 

answering this question, we have developed enhanced interference 

cancellation algorithms using multiple antenna techniques that can enable 

the design and practical implementation of enhanced interference 

cancellation-based receivers. 

2. Concerning both interweave and BS-CR schemes, how do the transmitter 

and receiver impairments, especially the RF and front-end impairments, 

impact the performance of such algorithms? The role of carrier frequency 

offset (CFO), power amplifier nonlinearities, as well as receiver 

nonlinearities and quantization effects in ADC are considered. 

3. Interference avoidance in interweave CR systems: Can spectrum localization 

of secondary transmission improve cognitive wireless communication 

performance under ACI? Can proper resource allocation strategies help to 

improve the wireless transmission under ACI?  
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1.3 Thesis Contribution and Structure 

In achieving the above objectives, we develop models, methods, and enhanced 

algorithms. These proposed methods are simulated and evaluated to ensure their 

performance, reliability, and suitability in practice.  

• In Chapter 2, we discuss CR technology, specifically overlay CRs in the 

context of BS-CR, particularly explaining the use of black spaces, which are 

occupied by PUs as high-power interferers. We explain the principle and use 

of multi-antenna-based interference cancellation, analyze the signal-to-

interference ratio (SIR) in the basic BS-CR scenario based on the PU and 

CR transmission powers and path losses. This chapter’s contents are partially 

based on the publication [139] where the basic multi-antenna-based BS-CR 

scheme is proposed and developed.  
• In Chapter 3, an enhanced interference cancellation method with spatial 

covariance matrix interpolation-based, interference rejection combining 

(IRC) for BS-CR is developed and the resulting performance is evaluated 

with mobility. The contents of this chapter are based on the publication [P3], 

[P4], and [139]. [P3] presents an initial study with sub-optimal resource 

allocation process, also ignoring the interference leakage from CR to PUs, 

while [P4] presents a comprehensive study on the topic. Here we develop 

the enhanced interference cancellation model and elaborate the utilization 

of silent gaps and spatial covariance interpolation in the IRC process.  

• In Chapter 4, the effects of RF impairments, such as PA nonlinearities, CFO 

issues, receiver nonlinearities, and ADC quantization effects on the 

interference cancellation algorithms are studied. This chapter’s work is based 

on the publication [P5]. The studies of Section 4.4 on the effects of receiver 

nonlinearities and quantization in ADC have not been published elsewhere. 

• In Chapter 5, the waveforms that could be used in the CRs are explored, 

especially in the context of joint resource allocation and spectrum sensing as 

applied to the interweave type CR systems. Detailed performance analysis is 

completed on OFDM and FBMC based multicarrier methods for CR 

systems. This chapter’s contents are due to [P1], [P2], and [52]. [P1] presents 



 

 

7 

 

an initial study with sub-optimal resource allocation process, also ignoring 

the interference leakage from CR to PUs, while [P2] presents a 

comprehensive study on the topic.   

• Chapter 6 summarizes the thesis and lists the directions for further studies. 

This thesis work summarizes the methods, algorithms and techniques 

investigated primarily in [P1]-[P5]. For detailed analysis, elaborate treatment of the 

topics and thorough discussion of the results kindly refer to the publications listed 

above. The publications [P1]-[P5] were partly based on the learnings and work done 

by the author in publications [48], [52] [138], and [139], even though they are not 

included in this thesis. 

1.4 Authors Contribution to the Publications 
Altogether, most parts of this thesis are based on the works reported in publications 

which were all carried out at the Electrical Engineering unit of the Faculty of 

Information Technology and Communication Sciences, Tampere University, 

Finland. From the technical contributions, the contents of Section 4.4 on receiver 

nonlinearity effects have not yet been published elsewhere. The author of the thesis 

is the first author and main contributor in publications [P1], [P3], [P4] and [P5]. In 

the [P1] the initial idea was proposed by Prof. Markku Renfors and further developed 

by the author of the thesis along with Dr. Sener Dikmese. In [P2] the resource 

allocation idea was suggested, formulated, and simulated by the author of the thesis, 

partly based on earlier studies by Dr. Musbah Shaat and Prof. Faouzi Bader in [134]. 

Dr. Sener Dikmese along with Prof. Markku Renfors suggested and helped to 

combine the spectrum sensing and the resource allocation parts. In [P3] & [P4] the 

author of the thesis performed the mathematical analysis, system simulations and 

results formulation based on the ideas and inputs given by Prof. Markku Renfors. 

Dr Sener Dikmese greatly helped with refining covariance estimation and provided 

extensive feedback on the writing of the publication. In [P5] the author carried out 

the formulation of the issue and ran extensive system simulations based on the inputs 

from Prof. Markku Renfors. Dr. Sener Dikmese helped in the proper modeling of 

the power amplifier and with the writing of the publication.  In [P2], on resource 

allocation and spectrum sensing, the technical contents and presentation were 

equally contributed by the Author and Dr. Sener Dikmese, and this publication is 
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included also in Dr. Dikmese’s thesis. Dr. Sener Dikmese is a co-author of [P1], [P2], 

[P4] and [P5] and has collaborated in the research on spectrum sensing, interference 

cancellation and filter bank-based methods. The thesis supervisor Prof. Markku 

Renfors is a co-author of all publications and made valuable contributions regarding 

the technical contents and presentation.  
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2 COGNITIVE RADIO SYSTEMS 

The CR systems rely on the idea of spectrum reuse as discussed in the previous 

chapter. The idea of spectrum reuse is not new and has been a well-established 

concept in the areas of cellular network planning [106]. Static spectrum reuse is a 

well-known and well understood concept in wireless cellular systems. One of the 

biggest limitations that previously prevented the dynamic reuse of cellular spectrum 

is the inflexibility in configuring the radio hardware dynamically so that it can adapt 

to its radio environment. With the emergence of SDRs and circuit design technology 

and architectures [29], [56], [116], [120], [122], [126], [160] that allow practical 

implementation, real-time frequency, transmission parameter, and waveform 

changes can be made on the fly by higher layers in a wireless communication system. 

Apart from this, there has been several advances in the areas of analog and digital 

RF hardware required for the CR, such as effective algorithms which are needed at 

the baseband and digital front-end, high sampling rate capability, high resolution 

analog to digital converters (ADCs) with large dynamic range, and high-speed signal 

processors. With the evolution of technology and the advent of better processors 

and other systems such as the 5G/6G wireless systems, such capabilities are 

prevalent in both the baseband processing and the RF electronics these days.  

According to [69], the primary functions performed by CRs can be broadly 

classified as the functions done at the transmitter and receiver:  

• The radio-scene analysis and channel identification are usually done in 

the receiver of the CR system. 

• The dynamic spectrum management and power control are done in the 

transmitter side of the CR system. 

During the radio-scene analysis, the CR estimates the interference temperature 

and detects the spectral holes. Both these tasks are dynamic and adaptive in nature. 

Even though they are performed by the receiver, these activities are essential for the 

transmitter to adapt its signal transmission. The receiver, through the process of 
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feedback, provides this information to the transmitter. This feedback information 

about the spectrum and the channel is very useful in many transmitters related 

actions, like understanding the time-frequency characteristics of the primary signal 

& spectrum, transmit power control, adaptive beamforming for interference 

cancelation, and resource allocation.  

  The RF environments in the present day are heavily transmitter centric [77]. The 

transmission power and its spectral characteristics are designed in such a way that 

the transmitted power attains a predefined noise floor for a given distance. This is 

generally known as the “radio signal coverage”. The coverage situation changes if 

there is interference, in addition to the common channel degradation processes like 

path loss, fading, and thermal noise [68], [118]. The most important metric defined 

in the CR research community, to quantify and measure interference is the 

interference temperature [67], [108]. This metric can be used to characterize and 

manage the sources of interference.  The term interference temperature limit [1] can 

be used to define the worst-case RF environment in a frequency band and in a 

geographical location in which a transmitter can function without causing additional 

performance degradation. It can also be viewed as the additional margin available 

for cognitive or secondary systems in terms of the RF energy that can be introduced 

by the secondary system without introducing any performance degradation to the 

primary receivers.   In CRs and more generally radio signals are non-stationary. Due 

to the non-stationarity of the radio signals generated by the transmitters [69], the 

time component is included in the analysis of such signals. The time-frequency 

analysis of signals and extensive results on this topic can be found in [39], [141] and 

references therein. Given the nature of CR as a receiver centric system, efficient 

spectrum and interference estimation is very crucial for the reliable functioning of 

CR. Passive sensing of the RF-scene based on the spectra is classified into three 

broad categories as follows [69]: 

• White spaces in spectrum are generally free of any interfering 

transmission such as primary or other CR transmissions and contain only 

the thermal noise and possible other natural sources of radio noise.  

• Black spaces in spectrum which are occupied by high-power local 

interferers, at least some part of the time over the expected channel 

access period.  

• Grey spaces are partially occupied by low-power interferers. 
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Generally, in the CR literature [19], [66], [67], [75], [76], [78] the whitespaces and grey 

spaces are recommended to be used, but the black spaces are generally not as interesting 

as the white and grey spaces due to the high-powered nature of the primary signals. 

Given that the CRs’ resources are functions of the triplet time, frequency, and location 

and when the geographical locations of the primary and secondary are considered, black 

spaces become very interesting especially in the terrestrial TV bands [17], [26], [133], 

[128], [129]. In this thesis, the primary concern is about overlaying a CR system on a 

digital TV frequency channel.  

2.1 Cognitive Radios in Television Spectrum 

 

TV transmitters are high-powered broadcast transmitters, transmitting TV signals to 

a large geographical area. Given the high-powered nature and the large areas that 

these transmitters cover, they are usually far apart from each other. This is done 

deliberately to ensure that there is limited or no cochannel interference. By design, 

the TV network and receiver are designed to withstand certain amount of cochannel 

inference. There is also a frequency separation between geographically close 

transmitters, to further reduce any possibility of the cochannel interference. This 

encourages us to use secondary systems that share the TV bands in such a way that 

they are not adding to the interference and affecting the TV reception. The SINR 

for any wireless receiver and in particular TV receivers [127], [128] can be given by 

the formula  

                                                𝑆𝐼𝑁𝑅 =  
𝑃𝑟𝑥

∑ 𝐼𝑘+𝑃𝑛𝑘
                                           (2.1) 

where 𝑃𝑟𝑥 , 𝑃𝑛 and 𝐼𝑘 are the received power, thermal noise power and interference 

power from other cochannel interferers, respectively. A detailed discussion on the 

digital TV’s performance and characteristics can be found from [5]. 

We are particularly focused on the case where the CR is operating in the same 

frequency channel as the digital TV transmission. We refer to this type of 

simultaneous usage of the same frequency channel as the primary TV signal as “TV 

black space”. This contrasts with the TVWS where secondary or cognitive 

transmission is allowed only when there is no primary transmission. An extensive 
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study of CR in TVWS is done in [128]. TVWSs have a disadvantage that they are 

mainly available in the rural areas where the population density is lower and hence 

have lower demand for wireless communications. Therefore, black-space 

transmission becomes attractive option in areas with higher population density, 

where also the terrestrial TV signal levels are usually high. Feasibility of such BS-CR 

in the TV band with cellular mobile network as the secondary service is studied in 

[17], [26], [129] and [133]. 

2.2 Capacity of Cognitive Networks  

A generic communication channel is usually characterized by its probabilistic nature 

and modeled by the conditional probabilities of inputs and outputs. Such a 

characterization leads to the notion of fundamental limits of communication that is 

possible through the channel. There are many metrics that can be used for expressing 

these fundamental limits. One of the well-known and useful metrics is the capacity 

of the channel.  Capacity is defined as the supremum over all rates for which reliable 

communication may take place [135], [136]. 

 

                                    C = supp(x)I(X; Y)                                                      (2.2) 

 

where supremum is taken over all possible probabilities of the input X, 𝑝(𝑥). 

Any simple communication system can be modeled by the affine equation as 

follows: 

                            𝑟(𝑛) = √𝑃𝑔 ∙ 𝑥(𝑛) + 𝜂(𝑛)                                                       (2.3) 

in which the received signal is a scaled version of transmitted signal with additive 

white Gaussian noise (AWGN), where  𝑥(𝑛) ∈ ℂ, is the complex baseband 

equivalent of the transmitted signal  𝑃, 𝑔 ∈ ℝ+  where 𝑃  and 𝑔 are the transmitted 

power and the channel gains respectively, and 𝜂(𝑛)𝜖 ℂ  is the complex AWGN 

sequence. For the AWGN channel, the capacity achieving distribution is shown to 

be circular Gaussian distributed signal [135], [136]. 
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Figure 1. TV broadcast and secondary access regions. 

The maximum capacity in bits per transmitted symbol for the AWGN channel with 

channel bandwidth 𝐵 is given by  

                                 𝐶 = 𝐵 log2(1 +
𝑃s

𝐵𝑃n
),                                                      (2.4) 

where 𝑃s and 𝑃n are the signal and noise power, respectively. In OFDM-based 

multicarrier communication systems, each subcarrier is flat-fading and follows the 

AWGN channel capacity expression. With practical multipath channel models, linear 

convolution of the transmitted signal with the channel impulse responses is used 

instead of the gain factor in Eq. (2.3). In OFDM, the capacities of different 

subcarriers are different, and the overall capacity is obtained as the sum of capacities 

of active subcarriers. The same model applies approximatively for FBMC systems. 

While channel capacity is fundamental in nature to the study of information 

theory, finding the capacity of practical mobile channels is challenging. Usually as an 

alternative, achievable rates and outer bounds are readily available for various 

channels in [55], [93], [94] and the references therein. In CR context, the cognition 

of primary can be used as side information and the achievable capacity regions can 

then be plotted [43]-[46]. 
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Generally, in wireless communication networks, and specifically in CR networks, 

there are multiple transmitters and receivers. At any given point in time, it is very 

likely that there are multiple communication links active simultaneously. This leads 

to some additional terms in the Eq. (2.3) and it changes into  

                   𝑟(𝑛) = ℎ𝑇(𝑛)𝑥𝑇(𝑛) + ∑ ℎ𝑙(𝑛)𝑥𝑙
𝐿
𝑙=1 (𝑛) + 𝜂(𝑛).                        (2.5) 

Here 𝑟(𝑛) is the received signal,  ℎ𝑇(𝑛) = 𝑃𝑇𝑔𝑇(𝑛)  is related to target transmission 

and ℎ𝑙(𝑛) = 𝑃𝑙𝑔𝑙(𝑛) is related to the interference from the primary and other 

cochannel interferers. In this thesis publications, we start with an assumption that 

the there is only one interfere, namely the primary transmission, and later generalize 

the discussion to multiple interferes, mainly considering also possible other co-

channel CR systems. 

2.2.1 Interference Channels in Cognitive Radios 
 

As discussed in the previous chapter of this thesis, we have three CR paradigms that 

are well known, the overlay, the underlay, and the interweave approaches [67], [78], 

[151]. This thesis largely focuses on the overlay approach which is interesting 

scenario because the primary system is transmitting all the time and the CR is within 

the same region of coverage as the primary. The foundation for analyzing two user 

channels originate from the seminal works of [130], [131] later expanded to multiple 

users in the celebrated paper [31].  In the basic interference channel, as shown in 

Figure 2 , we have two transmitters and two receivers, and more generally, there are 

multiple transmit-receive pairs communicating in the presence of mutual 

interference. This means that transmission of each user’s message is affected by the 

channel perturbations which are random in nature and affect the interference power 

received from the other users.  

Although the information theoretic view of CRs and their analysis are 

foundational, the research topics of this thesis are more towards the signal 

processing aspects of CRs. A concise summary of the information theoretical topics  
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Figure 2. Basic interference channel. 

 

can be found in [19], [31], [43]-[46], [83], [130]. Detailed discussion and survey of 

cognitive information theoretic topics can be found in [43]-[46], [65], [84], [86], [112]. 

The basic interference channel, when applied in the CR context, changes to the 

form shown in Figure 3. As can be seen in [43], the cognitive channel is the same as 

the two-user interference channel with the additional knowledge of the waveform 

and the power that the primary is transmitting. This knowledge or cognition can be 

translated into knowledge about interference that the secondary or the cognitive 

transmission will encounter.  The achievable rate region for such CRs is derived in 

[43]. Network aspects of cognitive radios can be found in publications [26], [33], 

[76], [84], [96]. 

Figure 3.Cognitive interference channel. 
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Practical CR setups mainly must handle the interference in two directions: the 

interference that emanates from the CR to the primary and, on the other hand, we 

have to combat the interference that comes from PU to the CR. Of course, when 

multiple CR systems are operating in the same region, we have the CR-to-CR 

interference which can be treated as multiuser interference and handled in the 

receiver with sophisticated signal processing. The interference that comes to the 

primary due to CR is measured using the interference temperature metric [108]. As 

a digression from traditional transmitter centric approaches that seek to regulate 

interference indirectly by controlling the emission power, geographical locations of 

interfering transmitters, or time, the interference temperature model takes a receiver-

centric approach and aims to directly manage interference at primary receivers 

through interference temperature limits.  These limits characterize the worst-case 

interference scenario that is permissible towards a PU in each geographical location 

and in its frequency band of operation. Several practical models of such interference 

are presented in [26], [33], [34], [74] and [97]. The interference to the PU can be 

avoided by ensuring that the secondary system transmission does not influence the 

primary connections at all, for example, by making the primary and the cognitive 

transmissions orthogonal to each other. Or by making sure that the link degradation 

due to the introduction of the cognitive transmission is small enough that the 

primary link does not suffer in quality. This way of working is widely known as the 

“underlay approach” [67], [69], [151]. This is also the simplest approach as the 

knowledge of the primary transmission parameters are not essential.   

The last way is to ensure the primary link quality that is to make CR system 

cooperate with the primary system and amplify the primary connection quality using 

a fraction of the CR’s transmission power to retransmit the primary signal [19], [69], 

[128], [129], [151]. Then, the interference from cognitive signal transmission brings 

up the quality at least to the minimum required level, ensuring the primary 

connection target quality. 

For the interference from the primary towards the CR network, as already 

discussed, the CR receivers use passive sensing techniques to measure the impact of 

primary signals on the CR reception. The power spectral density (PSD) of the 

interfering primary signal determines if spectrum is black space, whitespace, or a gray 

space. Such classifications of the spectrum are very crucial and essential for the 

cognitive receiver to assess its interference. Theoretical models for such 
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classifications are developed and discussed in [75]. Figure 1 illustrates the regions of 

black, grey, and white spaces in a TV transmission scenario. 

2.2.2 Managing & Mitigating Interference in Cognitive Networks 

In cognitive networks, effective interference management is essential for its 

coexistence with the primary networks.  CR networks are not supposed to cause any 

significant interference to the primary system [76]. To this end, interference 

management becomes an important consideration in CR networks. Interference 

management can be handled in CR networks using various ways like signal 

processing at the physical layers, radio resource management in the medium access 

control (MAC) layer, and through the radio network planning and other system 

design aspects [117]. In Chapter 3 of this thesis, we focus on the interference 

cancellation aspects at the physical layer, while ACI management in interweave CR 

systems is considered in Chapter 5.  

Interference in wireless communication can be handled at the transmitter and/or 

at the receiver. Most of the interference avoidance and interference alignment 

schemes are transmitter oriented, while the interference cancellation schemes are 

receiver oriented. The idea of interference avoidance is to be proactive and avoid 

interfering with other users using techniques such as the transmitter precoding or 

beamforming to steer the transmission in such a way that the interference victim is 

in the null space [12]. Under the interference cancelation (IC) schemes, there are 

many well-known techniques, such as [13], [97]: 

• Using an adaptive scheme, like Wiener filtering, to filter out the 

interfering primary signal in the CR receiver.  

• Using some transform domain characteristics of the interfering signal to 

eliminate it in the receiver; or using statistical properties of interference 

signal, that vary periodically over time, for filtering them out from the 

received signal; or use higher order statistical difference (usually, statistics 

of order greater than two) between the target signal and the interference 

to eliminate the interference.  

• In certain scenarios, a receiver may manage the interference by detecting 

first the dominant interferer signal and cancelling it from the received 

signal, before detecting the target signal. Such schemes are considered in 
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the BS-CR approach of [17], [129], and [133] and for device-to-device 

(D2D) communication underlaying a cellular network in [158] and [159].   

• There is also the idea of receiver beamforming, where the receiver uses 

multiple antenna signals, which are weighted differently, so that the 

received signal from a particular direction is emphasized in comparison 

to other directions [92].  As an application and extension of this case, we 

introduce the multiantenna IRC method in the next section. 

2.3 Multiantenna Based Interference Rejection Combining 

Generally, interference rejection through receiver antenna arrays has been well 

studied in [13], [35], [42], [54], [70], [90], [91], [97], [114], [115], [150], [159] and the 

references therein. In multiuser scenarios like the BS-CR, for a detector to be 

optimum under interference, it must be a multi-user detector [146]. The overriding 

constraint to this fact is that such optimum detectors require sufficient information 

about other users, such as modulation order and radio channel propagation 

characteristics, and are therefore highly complex. An implicit interference 

cancellation technique, like IRC, which eliminates some of the above requirements, 

becomes attractive in these situations.  

The use of multiple antennas in CRs has been considered in earlier studies, for 

example in [12], [13] and [150]. These systems reduce the effects of the channel by 

forming a linear combination of multiple copies of the received signal, obtained 

through different antennas, and thereby improve the detection of the transmitted 

signal. The use of multiple antennas allows for spatio-temporal signal processing, 

which improves the detection capability of the receiver under fading multipath 

channel and interference. Various other methods of interference cancellation are 

found in [13], [91] and [97]. 

Motivated by this, in [P3], we study the interference rejection capabilities of multi-

antenna CR receivers, focusing on the performance of the well-known linear 

minimum mean square error (LMMSE) [103] based IRC [11], [13], [42], [70], [90], 

[91], [115], [123] and [143]. Recently, IRC has been considered widely especially in 

the context of LTE and 5G new radio (NR) networks [35], [42], [115], [123] and 

[143]. However, to the best of our knowledge, it has not been applied to the BS-CR 

scenario before [138] and [P3]. IRC can be used in cases of both CCI and ACI. ACI 
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rejection helps in utilizing whitespace more effectively, while CCI rejection forms 

the foundation for black-space CR. 

2.4 SIR Analysis  

SIR analysis is fundamental for CRs. The critical parameters in BS-CR operation are 

the SIRs at the CR and PU receivers. In the basic scenario with PU interference only, 

the SIRs can be expressed in dB units as follows: 

                  𝑆𝐼𝑅CR = (𝑃CR − 𝐿CR−CR) − (𝑃PU − 𝐿PU−CR)                                    (2.6) 

                  𝑆𝐼𝑅PU = (𝑃PU − 𝐿PU−PU) − (𝑃CR − 𝐿CR−PU),                            (2.7) 

where 𝑃CR and 𝑃PU are the transmission powers of CR and PU, respectively, in dBm 

units, while the other parameters, such as 𝐿PU-CR, are transmission losses in dB units 

of relevant transmission links. The first part of the subscript indicates the transmitter 

and second part the receiver of the corresponding link. From these equations, it is 

straightforward to derive the maximum SIR of the CR receiver in terms of the 

minimum SIR of a PU receiver, 𝑆𝐼𝑅PU,min: 

  𝑆𝐼𝑅CR,max = (𝐿CR−PU − 𝐿CR−CR) + (𝐿PU−CR − 𝐿PU−PU) − 𝑆𝐼𝑅PU,min.     (2.8) 

The maximum SIR of the CR link depends on the differences of the channel losses 

from CR TX to both receivers and from PU TX to both receivers. For example, if 

the losses of the main links (CR-CR and PU-PU) are equal to the losses of the 

corresponding interfering links (CR-PU and PU-CR), then the CR RX would be able 

to operate with the SIR of   −𝑆𝐼𝑅PU,min. If the main link losses are lower than those 

of the interference links, the 𝑆𝐼𝑅CR,max  would be higher. The critical cases are:  

1. If the losses of the main links (CR-CR and PU-PU) are much higher than the 

losses of the corresponding interfering links (CR-PU and PU-CR), then SIR of 

the CR receiver may be limited by the minimum acceptable PU SIR to a highly 

negative value.  

2. If the PU transmitter is very close to the (short-range) CR system, then 
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      𝑆𝐼𝑅CR,max = 𝑃CR,max − 𝐿CR−CR − (𝑃PU − 𝐿PU−CR ).                              (2.9) 

Then the SIR of the CR receiver may be limited to a highly negative value by the 

maximum transmit power of the CR device, which could be much lower than that 

of the PU transmitter.    

In both cases, the performance of the IRC scheme would be limited by the RF 

imperfections (e.g., receiver nonlinearity effects) in practice. The latter limitation 

appears especially in the TVWS application, but in rather limited geographical 

regions. Considering the first kind of limitation in the worst-case scenario, one 

should consider the hidden node margin (typically around 25-30 dB in the TVWS 

case [8] for the loss difference from PU (𝐿PU−PU − 𝐿PU−CR), which would lead to 

very low SIR for the CR TX, unless the loss from the CR to the PU RX can be 

guaranteed to be much higher than that of the CR link. On the other hand, in short-

range CR communication, especially if PU receivers would use directive (possibly 

roof-top) antennas, the mentioned case where the SIR of CR RX is no less than  

−𝑆𝐼𝑅PU,min should be possible. Then, if the CR system is able to operate with 

𝑆𝐼𝑅CR=-30 dB (which can be considered feasible for IRC based BS-CR based on the 

results of Chapter 4), then the SIR of the PU link would be no less than 30 dB. 

Generally, the CR TX should have knowledge of the link losses in order to maximize 

its transmission power while not causing excessive interference to the PU link. The 

physical layer capabilities of IRC based BS-CR, and detailed procedures for 

controlling the CR operation remain as a topic for future studies. One possible way 

to enhance BS-CR operation would be cooperative spectrum sensing of CR devices 

to reliably estimate the PU power level in the CR operation region.  Since the BS-

CR is assumed to utilize multicarrier waveform, it can choose to operate on a partial 

frequency band of the PU signal, on strong subcarriers where the safely achievable 

SIR of the CR link is maximized. 
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3 ENHANCED INTERFERENCE CANCELLATION 
FOR BS-CR  

There are various scenarios and radio conditions in which CRs could be 

implemented. Advanced signal processing algorithms have been used at the 

transmitter and/or at the receiver end of the CR link to enhance the communication 

performance. In this chapter, we consider the CR receiver-based signal processing 

methods that enable it to successfully operate under higher levels of interference 

from primary networks. Considering a CR receiver operating in a given frequency 

band, it first performs primary signal sensing and identifies the band as a white, grey, 

or black space. Based on the sensing results, the CR receiver can then choose to 

apply corresponding advanced signal processing techniques to obtain optimized 

performance. Even though various alternatives are possible for any given situation, 

the BS-CR operation is the topic of interest in this chapter. 

BS-CR is a CR that deliberately transmits simultaneously along the primary signal 

at the same time-frequency resources without causing objectionable interference. An 

underlay CR is ignorant about the existence of PUs in its frequency band. 

Commonly, it uses very low PSD and wide bandwidth, such that it does not cause 

interference to the PU transmission under any conditions [67], [69], [144], [151]. BS-

CR adapts its waveform and signal parameters depending on the on-going PU 

transmissions and uses advanced signal processing techniques on the receiver side 

to facilitate low SIR at the receiver. BS-CR systems effectively reuse the spectrum 

for communication over short distances as illustrated in Figure 4.  

It can operate with limited spectrum resources and can be used without any 

additional spectrum sensing. One of the major requirements for CR operation is to 

minimize the interference to the primary transmission system. In BS-CR, this is 

reached by setting the CR transmission power at a small-enough level. Theoretically, 

the most important factor that enables such a radio system is that stronger 

interference is easier to deal with as compared to weaker interference [31], [43] if 

proper interference cancellation techniques are utilized. Previous studies on this 

from information theory provide theoretically achievable bounds for such CRs [43], 
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[44], [46].  To improve the sensitivity of the CR receivers and to enhance signal 

reception under interference multi-antenna systems could be used. Multi-antenna 

systems allow for spatio-temporal signal processing, which not only improve the 

detection capability of the receiver, but also improve performance in fading 

multipath channels with interference [19], [68], [114], [150]. 

3.1 BS-CR in Terrestrial TV Bands  

In the scenario considered here, the CR operates within the frequency band of 

the PU, the terrestrial TV frequency band. The PSD of the PU is very high in 

comparison to the CR. The PU is assumed to be always present and transmitting 

when the secondary user is operating. The primary transmitter is usually the 

dominant interfere to the cognitive transmission. The CR in this case operates closer 

to the noise floor of the primary receiver, and due to this the primary communication 

link is protected. If the TV channel becomes inactive, this can be easily detected by 

each of the CR stations in the reception mode. Then, the CR system may, for 

example, continue operation as a spectrum sensing based CR system. We focus on a 

scenario with multi-antenna CR receiver having IRC capability to mitigate CCI 

generated by a single PU transmitter and multiple independent (uncoordinated) CR 

systems. Generally, interference covariance matrix estimation is a key element of IRC 

schemes. For this purpose, we propose to use sample covariance calculated from the 

received signal during silent periods (gaps) in the target CR transmission. 

Figure 4, we especially consider frequency reuse over small distances, such as an 

indoor CR system. The multi-antenna configuration studied here is that of single-

input multiple-output (SIMO). Here the PU is an OFDM-based DVB-T system. The 

CR system is also an OFDM based multicarrier system similar to 802.11af [58] but 

with different OFDM numerology. Both the primary and the CR systems use M-

QAM subcarrier modulation. The cognitive transmitter is assumed to have a single 

transmit antenna while the CR receiver terminal is assumed to have multiple receiver 

antennas.  

In the basic scenario, the received CR signal consists of contributions from both 

the desired CR communication signal and the primary transmission signal 

(constituting the interference), which are received through different block-fading 

multipath channels. 
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Figure 4. Set up of black-space CR in TV spectrum. 

 A block-fading channel model assumes that the fading is constant for a pre-

defined number of symbols called “a block”. The fading process is also assumed to 

change independently from one block to another.  We also consider scenarios where 

there are other CR systems introducing additional interference to the target CR 

transmission.  

3.2 IRC for Black-Space Cognitive Radio 

The IRC receivers have the significant advantage in comparison to the other 

receivers. Especially, in multi-user scenarios that they do not need detailed 

information about the interfering signals, such as modulation order and radio 

channel propagation characteristics. For CR scenarios, IRC receivers in general are 

simple and desirable compared to optimum detectors. IRC techniques and 

algorithms are widely applied for mitigating CCI, e.g., in cellular mobile radio systems 

like 5G and LTE-A [42], [115]. The IRC algorithm makes a linear combination of 

the CR receiver antenna signals in such a way that the PU interference is cancelled 

[54], [90], [91], [150] and the SIR of the target CR signal is maximized. This process 

also implements subcarrier-wise channel equalization for the CR link. Generally, IRC 

can cancel interference from multiple sources. This is useful in situation where other 

nearby CR systems are introducing interference to the target CR link, in addition to 

the PU. 𝐿 + 1 antennas are needed at the CR receiver to cancel interference from 𝐿 

sources with different spatial channels. If 𝑁 is the number of CR receiver antennas, 

then 𝑁 − 𝐿 is the diversity order of the CR transmission. It is assumed that the target 
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CR transmission is silent while observing the (noisy) interference signal(s) for IRC 

weight calculation.  

The following developments are presented at the subcarrier level of the target CR 

system. For the CR transmission link, block-fading channel model is assumed, and 

frequency-flat subcarrier model is valid as CP-OFDM based CR system is assumed. 

CR systems use the same OFDM numerology as PU and operate quasi-

synchronously, meaning that the CP length is sufficient to cover the channel delay 

spread in the presence of timing offsets. Ideally, there are no frequency offsets 

between the target CR and interfering transmissions. The effects of CFO analysed 

in Chapter 4. The CR receiver is synchronized to the PU transmission, but the 

subcarrier spacing is assumed to be small enough such that the flat-fading model 

applies also to link from the PU transmitter to the CR receiver. The CR transmitter 

is assumed to cause some negligible interference to the primary transmission system 

[97]. However, the secondary transmission system experiences huge interference due 

to the strong PU. The challenge from the CR perspective is to effectively 

communicate under severe interference due to the primary transmission. The 

transmitter is assumed to transmit in a subcarrier an M-QAM symbol 𝑥𝑇 through 

the channel 𝒉𝑇 to the receiver antennas. The receiver is assumed to use 𝑁 receive 

antennas and therefore the received signal 𝒓 is an 𝑁 × 1 vector 

                       𝐫 = 𝐡T𝑥T + ∑ 𝐡I,𝑙𝑥I,𝑙
𝐿
𝑙=1 + 𝜼.                                               (3.1) 

 

 

 
 

Figure 5. System model for the BS-CR link at subcarrier level. 
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Here 𝐡T = [ℎT,1, ℎT,2, … , ℎT,𝑁]
T
, 𝑥𝐼,𝑙 is the 𝑙th interfering signal, and 𝐡I,l =

[ℎI,l,1, ℎI,l,2, … , ℎI,l,𝑁]
T
is the channel vector for the 𝑙th interferer. The channel 

vectors consist of the complex channel gains from the corresponding transmit 

antenna to 𝑛th antenna of the CR receiver. Finally, 𝜼 is the AWGN vector. In this 

generic system model, it is assumed that the PU is the dominant interferer, and the 

other interference sources are other CR systems introducing CCI at relatively low 

power level. The overall interference to the CR is still very high and under such 

circumstances the channel estimation process for the target CR is not possible.  So, 

the interference covariance matrix is estimated during silent gaps in the target CR 

transmission. The proposed algorithm [P4] extracts from the received signal a set of 

signals which span the interference-free subspace in spatial domain. The weight 

vector for the target CR signal is based on pilot-based target channel estimation in 

this subspace. The target CR link performance is very sensitive to the quality of the 

interference covariance estimate. Therefore, linear interpolation is used for the 

interference covariance matrix to track the channel variations between consecutive 

interference covariance estimates, obtained during the consecutive silent gaps. The 

use of multiantenna interference cancellation techniques in the CR receiver helps to 

mitigate CCI generated by a single PU transmitter and multiple independent 

(uncoordinated) CR systems. The algorithm is portrayed in Figure 6 and explained in 

detail in [P4]. 

3.2.1 Covariance Matrix Estimation  

As it is illustrated in Figure 6, the interference minimizing IRC weights are obtained 

during a silent period in the target CR transmission, while the CCI sources are active. 

Due to that, Eq. (3.1) can be modified during silent gaps of CR operation as  

                                      �̂� = ∑ 𝐡I,𝑙𝑥𝐼,𝑙
𝐿
𝑙=1 + 𝜼 .                         (3.2) 

Here it is assumed that only interferences and noise are present during the silent 

period in the signal �̂� observed by the CR. Linear combiner is used for the signals 

from different antennas with a weight process in detection as follows:  

                                                   𝑦 = 𝐰H𝐫 ,                         (3.3) 
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where 𝑦 is the detected signal,  𝐰 is the weight vector with 𝑁 elements, and 

superscript H denotes the Hermitian (complex-conjugate transpose).  

 
Figure 6. IRC combining in BS-CR with silent gap interpolation. 

Determining the optimum weight values is an optimization problem which can be 

solved with the linear minimum mean-squared error (LMMSE) criterion [35], [123] 

that aims to minimize the mean-squared error with respect to the target signal 𝑥𝑇, 

                               𝐽 = 𝐸[|𝑥T − 𝐰H𝐫|2].                                 (3.4) 

When knowledge of the covariance matrix is available, IRC can be applied. Two 

cases are considered below: (i) calculating interference covariance from known PU 

channel coefficients and (ii) sample covariance-based approaches. 

To solve the LMSSE problem, the famed Wiener-Hopf Eqs. [70], [113] are used. 

The solution of the minimization problem can be written as    

                                         𝐸[𝐫𝐫H]𝐰 = 𝐸[𝐫𝑥𝑇
∗ ]                                                 (3.5) 

and 
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                                    (𝐡𝑇𝑃𝑇𝐡𝑇
∗ +  𝚺NI)𝐰 = 𝑃𝑇𝐡𝑇.                                        (3.6) 

Here the interference covariance matrix can be expressed as  

                                   𝚺NI = ∑ 𝑃𝑙𝐡I,𝑙𝐡I,𝑙
H𝐿

𝑙=1 + 𝑃N𝐈,                                             (3.7) 

where  𝑃N and 𝑃I,𝑙 are the noise variance and variance of interferer at the transmitter 
𝑙  , respectively, Ι is the identity matrix of size 𝑁 × 𝑁.  Here the first term is due to 

interfering PU and CR transmissions and the last term is due to AWGN. Interference 

covariance matrix can be considered as a matrix representing the correlation of the 

different antenna signals, i.e., the spatial correlation of the received signal including 

noise and interference from other users of the channel. Assuming that the matrix 

𝐡𝑇𝑃𝑇𝐡𝑇
𝐻 +  𝚺NI is invertible, the solution for the optimum weights becomes  

   

                                𝐰 = (𝐡𝑇𝑃𝑇𝐡𝑇
∗ +  𝚺NI)

−1𝑃𝑇𝐡𝑇.                                       (3.8) 

Using the matrix inversion lemma [70], the general solution for the optimization 

using LMMSE criteria is 

                                𝐰 = 𝚺NI
−1𝐡T (𝐡T

H𝚺NI
−1𝐡T +

1

𝑃T
)

−1

.                                    (3.9) 

where 𝑃𝑇 is the target CR transmitters signal power and unit noise variance is 

assumed. This is known as the IRC solution [P3]. In the special case of AWGN or 

spatially uncorrelated noise only, 𝚺𝑁𝐼 = 𝐸[𝛈𝛈∗] = 𝑃𝑁𝐈, and the solution becomes 

the maximum ratio combiner (MRC):  

                                      𝐰 = 𝐡𝑇(‖𝐡𝑇‖2 + 𝑃𝑁 𝑃𝑇⁄ )−1  .                                (3.10) 

3.2.2 Sample Covariance-Based Case without PU Channel Information 

The IRC process starts from interference covariance matrix estimation during silent 

gaps in the receiver. It is difficult to have the perfect channel state information of 

the PU at the CR receiver side.  Alternatively, the joint interference and noise 

covariance matrix can be estimated for each subcarrier by the sample covariance 
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matrix of the corresponding received subcarrier signal (after CP removal and FFT) 

in the absence of the target transmission, i.e., during the silent gaps as    
 

                       �̄�NI =
1

𝑀
 ∑ �̂�(𝑚)�̂�(𝑚)𝐻𝑀

𝑚=1 .                            (3.11) 

 

Here 𝑚 is the OFDM symbol index and 𝑀 is the observation length in subcarrier 
samples, which is chosen equal to the length of the silent gap. 

In the IRC process, the linear interference minimizing weights are calculated 

directly using Eq. (3.11), without explicit estimation of the spatial channels of the 

interference.  The spatial channels from the interferers are implicitly estimated 

through the interference covariance matrix. This covariance estimate, as well as the 

weights must be recomputed within a small enough interval, depending on the 

coherence time of the channel [P4]. 

3.3  Covariance Tracking Under Mobility 

The mobility of PU transmitter, CR transmitter and the CR receiver have 

different effects. If the PU transmitter and CR receiver are stationary, the mobility 

of CR transmitter is easier to handle, because the dominating PU interference is 

stationary, and the variations in the noise and interference covariance matrix are only 

due to the co-channel CR interferes. However, even in this case, radio environment 

of the CR receiver may vary due to the movement of people or vehicles nearby. 

Therefore, some tolerance to mobility is required also in such scenarios, at least with 

pedestrian mobilities. The mobility of PU transmitter or CR receiver makes the 

dominant interference time-varying, and in the BS-CR scenario, the CR link 

performance is very sensitive to the quality of the PU interference covariance matrix 

estimate. Therefore, it is important to investigate these mobility effects and consider 

enhanced schemes for tracking the interference covariance with mobility.  

The optimal length of the silent gap (i.e., observation length) is an important and 

depends on the delay spread. While considering the sample covariance-based 

approach, increased observation (silent gap) length gives better PU interference 

covariance estimate in the stationary case or with low mobility. However, the channel 

variations during the silent gap affect critically the quality of the PU interference 

covariance matrix. We apply linear interpolation for the covariance matrix elements 
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when calculating the weight vectors for the data symbols between two consecutive 

silent gaps.  

There are two key parameters in this process, the silent gap length and the data 

block length between two consecutive gaps. Increasing the gap length improves the 

performance with low mobility but degrades the performance with higher mobility 

and increases the overhead in throughput. Increasing the data block length increases 

the throughput but degrades the performance with mobility. These trade-offs are 

investigated through simulations in Section 3.5 and in [P3] and [P4]. 

3.4 IRC Process 

As indicated in the model shown in Figure 6, the CR channel cannot be estimated 

before the step of the interference cancellation, and the optimal steering vector for 

IRC cannot be directly calculated. Here we develop an IRC scheme which utilizes N 

orthogonal virtual steering vectors in the receiver's internal channel estimation 

process, which is based on pilot symbol structures typically used in OFDM systems 

[38], [71], [73], [109], [110], [125], [152].  The 𝑁 − 𝐿 vectors would be enough since 

IRC consumes only 𝐿 degrees of freedom. But this way the model is more 

straightforward, and the IRC process is generic and robust since there is no need to 

estimate the number of interferers. Without loss of generality and for simplified 

computations, the following unit vectors are applied as the virtual steering vectors, 

 

𝐡V,1 = [1,0,0,0, ⋯ ,0]𝑇,     𝐡V,2 = [0,1,0,0, ⋯ ,0]𝑇 

… 
                                              𝐡V,𝑁 = [0,0,0,0, ⋯ ,1]𝑇 .                 (3.12) 

 

Basically, the weight vectors obtained when applying the virtual steering vectors for 

w in Eq. (3.3) span the interference-free subspace in spatial domain. Steering vectors 

are in principle a set of beamforming weights applied in such a way the received 

SINR is maximized. Assuming that the interference covariance is correctly estimated, 

using any linear combination h of these vectors instead of  𝐡T in Eq. (3.9) provides 

interference cancellation. Then, we have to find the linear combination of these 

interference-free weight vectors 𝐰V,𝑛, that maximizes the signal power for the spatial 

CR channel 𝐡T. The following process finds the combination of the virtual steering 

vectors for the actual target signal by first estimating the spatial channel vectors 



 

 

30 

 

corresponding to the different virtual steering vectors. The weight vectors used in 

channel estimation are as follows:  

                                             𝐰V,𝑛 = �̄�NI
−1𝐡V,𝑛 .                                       (3.13) 

It should be noted that the denominator (inverse term in the end) of Eq. (3.9) is a 

complex scaling coefficient, which will be included in the MRC weights in later 

developments.   

3.4.1 Target Channel Estimation with Linear Interpolation and MRC 
Combining 

In the second stage, data symbols of the CR link are transmitted together with the 

training/pilot symbols. While receiving pilot symbols, the weighted output signals 

corresponding to each virtual steering vector are calculated as 

                                  𝑦𝑛 = 𝐰V,𝑛
H 𝐫,  𝑛 = 1,2, … , 𝑁.                             (3.14) 

The IRC process cancels the interference from all of the weighted output signals, 𝑦𝑛 

corresponding to different virtual steering vectors. For each subcarrier, the N 

channel coefficients for each of the weighted output signals can be estimated using 

the pilot symbols as follows: 

                           �̂�V,𝑛 =
𝑦𝑛

𝑝
=

𝐰V,𝑛
H ⋅𝐫

𝑝
,  𝑛 = 1,2, ⋯ , 𝑁,                                   (3.15) 

   

where 𝑝 is the transmitted pilot symbol value.  

3.4.2 Linear Interpolation for Channel Estimation 

In the traditional pilot-based channel estimation process, it is required to use efficient 

interpolation techniques, such as Wiener interpolation, based on the channel 

information at pilot sub-carrier symbols. For simplicity and to avoid excessive 

received signal buffering over high number of OFDM symbols, we apply linear 

interpolation. The performance of linear interpolation technique is better than the 

piecewise-constant interpolation methods [38], [71], [109], [110], [152]. In the 



 

 

31 

 

simulation studies of Section 3.5, a basic training symbol scheme is assumed where 

training symbols contain pilots in all active subcarriers, and the interpolation is done 

in time domain only, between two consecutive pilots in each subcarrier.  

The MRC weights for a data symbol are then calculated as  

                                 𝐰MRC =
[�̅�V,1,�̅�V,2,… ,�̅�V,𝑁]T

√∑ |�̅�V,𝑛|𝑁
𝑛=1

2
,                                           (3.16) 

where �̅�V,𝑛,  𝑛 = 1, … , 𝑁, denote the corresponding interpolated channel estimates. 

Generally, the interpolated channel estimates are different for each subcarrier in each 

OFDM symbol. For simplicity, the subcarrier and OFDM symbol indexes are not 

included in the notation above. Then, the interpolated channel estimates are given 

as                                

                     �̅�V,𝑛
(𝑘,𝑚)

= (𝑚 − 𝑆p) ∙ �̂�
V,𝑛

(𝑘,𝑆p)
+ (𝑆f − 𝑚) ∙ �̂�V,𝑛

(𝑘,𝑆f)
                       (3.17) 

where m is the OFDM symbol index, k is the subcarrier index, S is the pilot spacing, 

𝑆p = ⌊
𝑚

𝑆
⌋ ∙S is the preceding training symbol index, 𝑆f = ⌈

𝑚

𝑆
⌉ ∙ 𝑆 is the following 

training symbol index and ⌊. ⌋ and ⌈. ⌉ stand for the floor and ceiling operations, 

respectively. 

3.4.3 Combining for Detection 

In the final stage, while receiving data symbols, the equalized data symbols are 

calculated by maximum ratio combining the N samples obtained by applying the 

virtual steering vectors. The effective weight vectors for CR can be obtained as, 

𝐰CR = [𝐰V,1, 𝐰V,2, ⋯ , 𝐰V,𝑁]𝐰MCR 

                                      =  ∑
(𝐰V,𝑛 �̅�V,𝑛)

√∑ |�̅�V,𝑛  |
𝟐𝑁

𝑛=1

𝑁
𝑛=1    

   =  ∑
(�̄�NI

−1𝐡V,𝑛  �̅�V,𝑛)

√∑ |�̅�V,𝑛  |
𝟐𝑁

𝑛=1

𝑁
𝑛=1    
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             =
 𝚺NI

−1�̅�

‖�̅�‖
                                                                         (3.18) 

where �̅� = [�̅�V,1, �̅�V,2, ⋯ , �̅�V,𝑁,]
T

 appears as the spatial channel estimate for the 

target CR transmitter.  It is enough to calculate and use this weight vector 𝐰CR, 

instead of separately applying the MRC weights on the samples obtained by the 

weight vectors [𝐰V,𝑛]. The equalized data symbols are then calculated as follows: 

                                                        �̂� = 𝐰CR
H 𝐫.                                                 (3.19) 

Overall, this is the zero-forcing IRC solution which maximizes the received signal 

power over normalized steering vectors. 

3.4.4 Computational Complexity of Proposed IRC Scheme 

IRC has been widely deployed, e.g., in 4th and 5th generation OFDM-based wireless 

cellular systems. Here we briefly discuss the computational complexity of the 

proposed IRC scheme in relation to the existing IRC solutions, which are commonly 

based on estimating the spatial covariance matrix utilizing transmitted pilots or 

reference signals. Here the main difference is due to the use of sample covariance of 

the interference signals during silent gaps in the target transmission. The 

computational complexity is evaluated in terms of real multiplications needed in the 

IRC process per transmitted data symbol. In this way, the complexity metric is 

independent of the number of active subcarriers, depending mainly on the number 

of antennas (𝑁), silent gap length (𝑀), number of data symbols per transmission 

block, and the number of pilot symbols per transmission block.  Continuous stream 

of transmission blocks is assumed, such that the spatial covariance is estimated once 

per transmission block. The IRC signal processing is based on complex signals, and 

it is assumed that one complex multiplication takes 4 real multiplications. 

The complexities of the processing steps (in terms of real multiplications) are as 

follows: 

1. Covariance matrix calculation while making use of the conjugate symmetry 

the covariance matrix.  
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a. Channel estimation based, Eq. (3.7) without noise term: 2𝑁2    

 

b. Sample covariance based, Eq. (3.11): 2𝑀𝑁2   

 

2. Covariance matrix inversion, based on [123]: 4(𝑁3 +
7𝑁2

2
+

5𝑁

2
− 4)  

 

3. Weight coefficient calculation, making use of the real-valued diagonal 

elements of the covariance matrix. 

 

a. Channel estimation based, Eq. (3.9): 4𝑁2 − 2 

 

b. Proposed IRC scheme: 8N2 -4. This includes calculation of the 𝑁 

initial weight vectors, Eq. (3.13), and the final weight vector, Eq. 

(3.18). 

Here also 𝑁 divisions are needed to normalize the final weight coefficients, 

along with the norm calculation.  

 

4. Symbol detection, Eq. (3.19): 4𝑁 

Steps 1 and 2 are done once per processing block, step 3 once for each pilot 

symbol, and step 4 for each data symbol. The weight normalization in step 3, and 

the interpolation of weight coefficients for each data symbol can be done with minor 

additional complexity, which is common to both schemes, and these are not included 

in the following numerical results.  

Generally, the covariance matrix inversion dominates the computational 

complexity, but in the proposed scheme, calculation of the sample covariance matrix 

has a high additional complexity. As an example, we consider the case with N=4 

antennas, silent gap length of M=16 and OFDM block length of 17, consisting of 

14 data symbols and 3 pilots, and assuming covariance interpolation. Then the 

channel estimation-based scheme needs 67.6 real multiplications per data symbol, 

while the sample covariance-based scheme needs 115.1 real multiplications, i.e., the 

complexity is increased by about 70 percent. Naturally, the other elements of the 

OFDM receiver, which are not included in these calculations, contribute significantly 

to the overall complexity. Most importantly, FFT computations have a significant 
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effect on the overall complexity of OFDM systems. As an example, with the FFT-

size of 2048, 1200 active subcarriers, and L=4 antennas, the FFT’s take about 75 real 

multiplications when assuming the basic FFT complexity of N∙log2(N). Then the 

overall complexity is increased by about 33 percent due to the use of sample 

covariance, while ignoring various other signal processing stages which are common 

to both schemes.   

3.5 Results and Discussion  

The simulations were carried out for the system setup explained in Section 3.1. The 

carrier frequencies of CR and PU are the same and it is here set to 700 MHz, which 

is close to the upper edge of the terrestrial TV frequency band. The modulation 

order used by CR varies between 4-QAM, 16-QAM, and 64-QAM. The pilot 

symbols are binary and have the same power level as the data symbols. The primary 

transmitter signal follows the DVB-T model with 16-QAM modulation, 8 MHz 

bandwidth, and CP length of 1/8 times the useful symbol duration, i.e., 28 s. The 

IFFT/FFT length is 2048 for both systems. The DVB-T and CR systems use 1705 

and 1200 active subcarriers, respectively. PUs frame structure and pilots follow the 

DVB-T standard. Data in all signals are generated randomly. ITU-R Vehicular A 

channel model (about 2.5 s delay spread) [85] is used for the CR system. For short-

range/indoor CR communication, Rician-fading channel model would be more 

relevant, but the Rayleigh-fading Vehicular A model is used as worst-case model. We 

have also tested basic scenarios with the Rician-fading SUI-1 model (0.9 s delay 

spread) [85] for the CR, showing slight improvements in performance.  Hilly Terrain 

channel model (about 18 s delay spread) [85] is used for PU transmission. In 

simulations without mobility (“block-fading channel”), the channel is assumed to be 

constant over each transmission block consisting of single silent gap, pilot symbols, 

and data symbols, while the channels for different transmission blocks are 

independent. In simulations with mobility, the channel is continuously fading 

depending on the specified speed of mobility, channel power delay profile, and 

carrier frequency. The CR receiver is assumed to have four antennas, and 

uncorrelated 1x4 SIMO configurations are used for both the primary signal and the 

CR signals.  



 

 

35 

 

The number of spatial channel realizations simulated in these experiments is 300-

1000. The ratio of CR and PU signal power levels at the CR receiver (referred to as 

the SIR) is varied. In case of co-channel CR interference, the average power levels 

of interfering and target CRs are the same at the target receiver and the channels are 

independent instances of the Vehicular A model with random timing offsets, while 

all multipath delays remain with the CP. The lengths of the OFDM symbol frame 

and silent gap for interference covariance matrix estimation are also varied 

(expressed in terms of CP-OFDM symbol durations). A very basic training symbol 

scheme is assumed for the CR: training symbols contain pilots in all active subcarriers 

and the spacing of training symbols is 8 OFDM symbols. Frame length is selected 

in such a way that training symbols appear as the first and last symbol of each frame, 

along with other positions. Channel estimation uses linear interpolation between the 

training symbols. We have tested the BS-CR link performance with SIR values of  

{-10, -20, -30} dB using silent gap durations of {8, 16, 32, 128} OFDM symbols, 

and data block lengths of {17, 25, 33, 41} OFDM symbols.  

3.5.1 The Effect of Silent Gap Length   

This sub-section analyses the BER performance of the proposed sample covariance-

based IRC process using Eqs. (3.11) – (3.15) and (3.17) – (3.19), considering the 

known channel-based process as an ideal reference. As it was explained in Section 

3.2, the known channel case assumes perfect knowledge of the interference channel 

and it provides a theoretical performance bound for practical IRC schemes. It uses 

the LMMSE solution Eq. (3.9) with known channel-based covariance estimate Eq. 

(3.7). Otherwise, the receiver process is the same as in the sample covariance-based 

scheme, thus providing a theoretically achievable bound for the practical sample 

covariance-based approach. First, the known channel model is applied with PU 

interference only, while results with cochannel CR interferers are presented in 

Section 3.5.2.  Some initial results for the sample covariance-based scheme without 

covariance interpolation and with different gap and OFDM block durations can be 

found in [P3]. 

Figure 7 shows the BER performance considering both the known channel and 

sample covariance-based approaches in stationary case (no mobility). Here the silent 

gap durations are 8, 16, 32, and 128 OFDM symbols and the data block length is 17.  
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Figure 7. Performance of QPSK BS-CR systems with known channel based and sample covariance-
based approaches for SIR = -30 dB considering block-fading channel (no-mobility) with silent gap 

lengths of 8, 16, 32 and 128 symbols, and OFDM frame length of 17 symbols. 

With zero-mobility, link performance is independent of the data block length and 

short block is used here mainly to reduce simulation time. 

It can be observed that the sample covariance-based simulation results converge 

to the corresponding known channel results with increasing gap length, since the 

covariance estimate is improved with increasing sequence length. This demonstrates 

that the known channel based bound is theoretically achievable.  

A detailed comparison between the required SNR values of the known channel 

and sample covariance-based approaches for BER=0.01 is provided in Table I. As 

seen in the table, the required SNR values of known channel and sample covariance-

based algorithms match adequately under the gap length of 128 OFDM symbols. 

Additionally, the numerical results clearly show that the differences in required SNR 

values are almost independent of the SIR while considering the SIR values of {-10, 

-20, -30} dB. The SNR loss due to limited gap length is about 0.3 dB, 1 dB, 1.9 dB, 

and 4.4 dB for gap lengths of 128, 32, 16, and 8, respectively.   
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Table 1. Required SNR values of known channel and sample covariance based approaches for the 
BER=0.01 in QPSK BS-CR systems for SIR values of {-10, -20, -30} dB considering block- 
fading channel (no-mobility) with silent gap lengths of 8, 16, 32 and 128 symbols, and OFDM 

frame length of 17 symbols. 

 

3.5.2 Performance Analysis of Proposed Scheme with Mobility 

This sub-section reports the performance analysis of the proposed algorithms also 

considering the effects of mobility and different system parameters. It is noted that 

only sample covariance-based approach is considered in the following results. The 

results presented above still serve as ideal reference when evaluating the effects of 

mobility in different configurations. First, we evaluate the performance with slow 

mobilities with and without covariance interpolation, still assuming that the 

interference is due to the PU only.   

Figure 8 shows the impact of covariance matrix interpolation on the BS-CR link 

performance. Here the data block length and gap duration are fixed to 17 and 16 

OFDM symbols, respectively. This choice provides performance that is no more 

than 1 dB from the configuration reaching 1% or 10% BER with lowest SNR, among 

the tested configurations with even higher overhead. We can see that covariance 

interpolation provides significant improvement of robustness in time-varying  

Req.  SNR 
for BER=0.01 

SIR= -30 dB SIR= -20 dB SIR= -10 dB 

 

Known 
Channel 

 

Sample Cov. 
Known 

Channel. 
Sample Cov 

 

Known 
Channel 

 

Sample Cov. 

Gap =8 7.9 dB 12.3 dB 7.9 dB 12.3 dB 7.9 dB 12.2 dB 

Gap =16 7.9 dB 9.8 dB 7.9 dB 9.8 dB 7.9 dB 9.7 dB 

Gap =32 7.9 dB 8.9 dB 7. 9 dB 8.9 dB 7.9 dB 8.8 dB 

Gap =128 8.0 dB 8.3 dB 8.0 dB 8.3 dB 8.0.  dB 8.2 dB 
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(a)  

(b)  

 

Figure 8. Performance of QPSK and 64-QAM BS-CR systems for SIR = {-10, -30} dB with or 
without covariance matrix interpolation. (a) 0 and 3 km/h CR receiver mobilities. (b) 0 and 10 
km/h CR receiver mobilities. Silent gap length of 16 symbols, and OFDM frame length of 17 

symbols. 

channels. Focusing on the 1 – 10 % BER region, the performance with interpolation 

at 10 km/h mobility clearly exceed the performance at 3 km/h without interpolation. 
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Figure 9. Performance of 16-QAM BS-CR systems for SIR = -20 dB with covariance matrix 
interpolation for CR receiver mobilities of 0, 10 km/h, and 20 km/h. Silent gap length of 8 or 16 

symbols and OFDM frame length of 17 symbols. 

However, for the 64-QAM case with -30 dB SIR, this is true only for BER of 10 

% or higher, due to the high error floor at very low SIR and high mobility. In Figure 

9, the effect of silent gap duration is tested with 16-QAM modulation, SIR of -20 

dB, and data block length of 17. The overhead in data rate is about 58 % and 44 % 

for gap lengths of 16 and 8, respectively. The shorter gap length results in about 1.5 

dB performance loss in the 1 – 10 % range in stationary case and about 1.8 – 3.5 dB 

loss with 10 km/h mobility, compared to the gap length of 16.  With 20 km/h 

mobility, the corresponding loss is about 2.2 dB at 10 % BER, but longer gap leads 

to higher error floor, and the performance with shorter gap becomes better for BER 

below 3 %.  

Finally, we evaluate the link performance in the presence of co-channel CR 

interference, in addition to PU interference in Figure 10. While still assuming four 

antennas in the target CR receiver and -20 dB SIR for the PU signal, also two 

interfering CR signals are included in the model. All CR signals are at the same 

average power level and their channels are independent instances of the Vehicular A  
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.  
Figure 10. Link performance in the presence of PU and two CR co-channel interferers using gap 
lengths of 8 and 16, OFDM frame length of 17 symbols, mobilities of 0 and 3 km/h, 16QAM 

modulation in target CR link, SIR of -20 dB for PU, and equal power levels of all CR signals. 

channel model. The results are shown in Figure10, indicating that the impact of co-

channel CRs on the target link performance is very minor.   

3.6 Chapter Summary 

The performance of BS-CR transmission links in the presence of strong 

interferences and mobility was investigated using spatial covariance interpolation 

between silent gaps. The interference rejection capability of IRC using multiple 

receive antennas for various modulation orders  under varying mobility and channel 

setups was studied. It was found that the IRC performs very well in the basic SIMO-

type BS-CR scenario when stationary channel model is applicable, e.g., in fixed 

wireless broadband scenarios. However, the scheme is rather sensitive to the fading 

of the PU channel, e.g., due to people moving close to the CR receiver. Due to the 

strong interference level, the interference cancellation process is affected by 

relatively small errors in the covariance matrix estimate. For covariance estimation, 

the silent gap length in the order of 16 - 32 OFDM symbols provides best 



 

 

41 

 

performance with stationary channels, but even with 3 km/h mobility, the 

performance degrades significantly when considering SIR levels below -10 dB. The 

data block length should be of the same order or less, which leads to high overhead 

due to the silent gaps. Covariance interpolation was shown to greatly improve the 

robustness with time-varying channels, such that good link performance can be 

obtained with up to 20 km/h mobility at 700 MHz carrier frequency. This indicates 

that the proposed BS-CR scheme could be feasible at below 6 GHz frequencies with 

pedestrian mobilities. However, there is a significant tradeoff between link 

performance and overhead in data rate due to the silent gaps.     

In the basic TV black-space scenario, there is only one strong TV signal present 

in the channel, in agreement with our assumption about the primary interference 

sources. DVB-T system allows also single-frequency network (SFN) operation and 

the use of repeaters to improve local coverage [5], [81], [129], [133]. In both cases, 

the primary transmissions can be seen as a single transmission, with a spatial channel 

that depends on the specific transmission scenario, and the proposed scheme is still 

applicable. One important issue in the proposed scheme is its sensitivity to the 

nonlinearities of the CR receiver's analog front-end. Wide linear range is required in 

order to prevent nonlinear distortion from the high-power PU signal from degrading 

the CR link performance. This is a common issue with opportunistic CR operating 

in white spaces close to high-power PU channels, and also with digital signal 

processing (DSP) intensive receiver architectures. An interesting technology in this 

context is advanced DSP algorithms for compensating the nonlinear effects of the 

receiver's analog front end [145]. On the other hand, sample covariance-based IRC 

may exhibit some capability to also reject the nonlinear distortion due to the strong 

PU signal. This topic is further studied in the next chapter in this thesis.   
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4 EFFECTS OF RF IMPARIMENTS IN COGNITIVE 
RADIOS 

This chapter investigates the effects of RF transceiver’s imperfections on the IRC 

based BS-CR operation. In particular, the effects of PA nonlinearities, carrier 

frequency offset (CFO), and receiver nonlinearities on the blind IRC technique are 

evaluated. An analytical framework for modeling CFO effects, together with 

experimental study of CFO and nonlinearity effects is considered.  The performance 

of the IRC scheme is evaluated considering terrestrial digital TV broadcasting (DVB-

T) as the primary service.  

CRs are expected to operate in radio environments with a high level of 

interference and, simultaneously, produce negligible interference to the PUs. For this 

condition to be satisfied, CR transmitters (TXs) must have good PAs that have 

reasonably good efficiency and high linearity [104].  Two conflicting requirements of 

the PAs, which further complicate the situation, are the efficiency and linearity 

requirements. In addition, there is also the need to use the spectrum as efficiently as 

possible, which mandates the use of spectrally efficient modulation techniques such 

as OFDM, in which both the phase and the amplitude of the signal carry 

information. OFDM systems are very sensitive to the nonlinear distortions 

introduced by the analogue parts, especially at the TX side. To avoid significant 

degradation of the signal quality, the requirements of the analogue RF components 

such as PA are becoming stricter [104].  

Given these constraints, it is vital to study the effects of RF imperfections also in 

the design of transceivers for CRs [6], [9], [28], [29], [41], [59], [56], [63], [64], [72], 

[89], [102], [104], [121], [122], [126], [132], [145]. This is particularly important for 

interference cancellation-based BS-CR operation as some of the RF imperfections 

may become critical due to the wide signal dynamic range in the receiver [72], [102], 

[122]. In BS-CR, the RF nonidealities may affect in two different ways: (i) directly 

degrading the CR link performance and/or (ii) harming the IRC process leading to 

reduced PU interference suppression capability, e.g., by distorting the spatial 

covariance estimate. 
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4.1 Signal Model and Experimental Setup 

The IRC based BS-CR scenario, shown in Figure 6, is considered with covariance 

interpolation. In this scenario, we consider a CR receiver using multiple antennas to 

receive data from a single-antenna cognitive transmitter. The CR operates within the 

frequency band of the PU, and the PSD of PU is very high in comparison to that of 

the CR. The PU transmitter generates a lot of interference to the CR transmission, 

which operates closer to the noise floor of the primary receiver, and due to this, the 

PU communication link is protected. We consider frequency reuse over relatively 

small distances, such as an indoor CR system. Further, the details of IRC based BS-

CR were described in Chapter 3. In here, we use that model to study the effects of 

PA nonlinearity and how CFO affects the performance of the IRC based BS-CR 

receiver.  

4.2 Effects of Non-Linear PA on BS-CR 

The nonlinearity of transmitter PAs causes significant effects on the performance 

with respect to spectrum characteristics, multiuser interference on the desired signal, 

and transmit power, depending on the used modulation scheme [41], [59], [89], [104], 

[157], [160]. Especially, the non-linearity brings about spectral regrowth causing ACI 

and in-band performance degradation. The latter one is in the focus of our study. 

Generally, the SIR metric quantifies the in-band distortion causing performance loss 

in bit error rate (BER).  

4.2.1 Effects of PA nonlinearity 

The effects of PU and CR transmitter nonlinearities are studied through simulations. 

For simplicity, it is assumed that there are no other interference sources. Firstly, the 

spectral regrowth due to nonlinearities is demonstrated considering both linear PA 

and the 5G uplink PA model [6] for PU TX and CR TX. The details of this model 

can be found in publication [P5]. 

Here and in all later simulations, we use the same main parameters as in Chapter 

3. It is assumed OFDM IFFT/FFT size of 2048 and the subcarrier spacing of 
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4.4643 kHz, corresponding to the 2k mode of DVB-T. The CP length is 
1

8
 times the 

main OFDM symbol duration, and the PU signal has all the elements of DVB-T 

transmission. For the CR signal, we use the same main parameters and 1200 active 

subcarriers in the center of the DVB-T spectrum. Here we use the silent gap length 

of 24 OFDM symbols, and data block length of 65 OFDM symbols between silent 

gaps. Training symbols (with pilots in all active subcarriers) are used for CR channel 

estimation, with the spacing of 8 OFDM symbols. These parameters, which are 

based on the studies of Chapter 3 and [P3], [P4], reach realistic tradeoff between 

overhead and performance under slowly fading channels.  In this case, about 38 % 

of OFDM symbols are used for silent gaps and pilots. 

Both the sample covariance and known channel-based IRC schemes are 

considered in the simulations. In the sample covariance-based case, the covariance 

matrix is estimated from the received signal during silent gaps of length 24 in the 

target CR transmission. Covariance matrix interpolation is not applied since we are 

not considering mobility effects in this context. The reference case is based on 

perfect knowledge of the PU-CR channel. The CR channel is estimated using 

training symbols and 1x4 SIMO antenna configuration is used in all simulations. 

Next, the BER performance of the CR link with PA nonlinearity is discussed. 

The CR TX nonlinearity should not affect the interference covariance estimation, so 

we expect that it affects the BS-CR link performance in the same way as in basic 

OFDM transmission with the same numerology. Regarding the PU TX nonlinearity, 

we notice that basic PA nonlinearity models do not harm the cyclic convolution 

model of CP-OFDM, i.e., the end part of the main OFDM symbol is affected in the 

same way as its copy, the CP. Then the interference covariance should not be 

affected by PU TX nonlinearity, and we don’t expect significant effects in the link 

performance. However, if the PA exhibits strong memory effects, the cyclic 

convolution model might be distorted, and this effect is worth investigating in future 

studies. 

Monte Carlo simulation results are provided for the CR link performance with 

PA nonlinearity, assuming the CR/PU power ratio of 𝑆𝐼𝑅PU = −30 dB and 

64QAM subcarrier modulation. We use a back-off value of 9 dB as the modest case 

for the CR TX, and a back-off value of 5 dB as the worst case for the PU TX. The 

latter choice, as well the use of 5G-UL PA model for the PU TX is for demonstrating 

the robustness of BS-CR operation towards the PU TX nonlinearity. For these 

results, we use the Hilly terrain (HT) channel model having about 18 s maximum  
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Figure 11. BER performance of sample covariance based BS-CR with 64QAM modulation vs. basic transmission link 
with MRC based receiver diversity. 5G-UL PA model with 9 dB backoff is used for the target link, linear PA in PU TX. 

delay spread for the PU signal and the ITU-R Vehicular A (VehA) model with 

about 2.5 s maximum delay spread for the CR signal [85]. 

Figure 11 shows the sample covariance-based BS-CR link’s BER performance 

with linear and nonlinear PA models in comparison to a basic interference-free link 

using MRC based receiver diversity. We can see that the used modest nonlinearity 

affects in a similar way in BS-CR and basic OFDM systems with the same 

numerology and same antenna configuration. With used parameters, the sample 

covariance-based BS-CR has about 3.5 dB SNR loss due to PU interference at 

1 % BER level.  

In Figure 12, the BER performances with linear/nonlinear PA in PU or CR TX 

are depicted for both sample covariance and known channel-based schemes. We can 

see that even very hard nonlinearity tested for PU TX has very minor effect on the 

CR link performance. It is also interesting to notice that, at 1 % BER level, the 

proposed sample covariance-based method has about 1.2 dB SNR loss in 

comparison to the known channel-based reference method. 
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Figure 12.BER performance of BS-CR with 64QAM subcarrier modulation and linear or nonlinear 5G-UL PA model 

for PU or CR transmitter. 

4.3 Analysis of CFO Effects in BS-CR 

The effect of non-synchronized interferers on OFDM systems using MMSE-based 

IRC has been investigated in [161] in terms of outage probability for a given channel 

power delay profile. Here we develop an analytical expression for the SIR at a CR 

receiver in IRC-based BS-CR scenario, based on knowledge of the root-mean-square 

(RMS) channel delay spread of the PU-to-CR channel.  

In the following analysis, we assume that the CR receiver is synchronized to the 

target CR signal while there is a frequency offset between the PU and CR carrier 

frequencies. We ignore the possible inconsequential initial phase offset in the 

receiver. For convenience of notation, without loss of generality, we also assume that 

the active subcarriers are indexed from 0 to NA-1. Then the PU interference part of 

the received digital baseband multi-antenna signal can be expressed in the presence 

of CFO as:  

                       𝐫PU(n) = �̃�PU(n) ∗ xPU(n)e
j2πδCFOn

N                                           (4.1) 
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where n is the time index, 𝛿CFO is the CFO normalized to the subcarrier spacing, 

�̃�PU(𝑛) is the vector of channel impulse responses from PU to the CR receiver 

antennas, 𝑥PU(𝑛) is the PU signal, and ∗ denotes cyclic convolution. Then, after the 

receiver’s FFT process, the corresponding PU interference contributions to the kth 

subcarrier samples of different antenna branches can be expressed as [9]. 

𝐘PU,k = ∑ ( ∑ 𝐡PU,ldPU,le
j2πln/N

NA−1

l=0

e
j2πδCFOn

N )

N−1

n=0

e−
j2πkn

N  

                           = ∑ 𝐡PU,ldPU,l ∑ e
j2π(l−k+δCFO)n

NN−1
n=0

NA−1
l=0                                  (4.2)                           

              = ∑ ϕ(l − k + δCFO)β(l − k + δCFO)𝐡PU,ldPU,l
NA−1
l=0                                   

where 𝒉PU,𝑙 is the PU channel vector for subcarrier l, dPU,l  is the PU data symbol in 

subcarrier l, and 

ϕ(z) = e
jπz(N−1)

N  

                                                         β(z) =
sin(πz)

N sin(
πz

N
)
                                              (4.3)            

with 𝑧 = 𝑙 − 𝑘 + 𝛿CFO. The orthogonality of subcarriers is maintained only if the 

CFO is zero or integer, i.e., if the frequency offset is an integer multiple of subcarrier 

spacing. Otherwise, the samples observed at the kth subcarrier contains intercarrier 

interference (ICI) from all other active subcarriers.   

Now, the known PU channel based spatial covariance matrix for subcarrier k can 

be evaluated as  

𝚺PU,k = ( ∑ ϕ(z)β(z)𝐡PU,l

NA−1

l=0

) ( ∑ ϕ(z)β(z)𝐡PU,l

NA−1

l=0

)

H

 

= ∑ ϕ(z)β(z)𝐡PU,l(ϕ(z)β(z)𝐡PU,l)
H

NA−1

l=0
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                    = ∑ β2(l − k + δCFO)𝚺PU,l
NA−1
l=0 ,                                             (4.4) 

where 𝜮PU,𝑙 is the spatial covariance matrix of subcarrier l in the absence of CFO. 

The cross-terms between different subcarriers are not included here, based on the 

common assumption that the subcarrier symbol sequences are uncorrelated.  

In the following, we aim to model the effect of CFO on the interference 

covariance matrix in the IRC context using basic parameters of the channel model. 

For this purpose, we first introduce a model for the correlation of the spatial 

channels of different subcarriers. We use the model commonly applied in Wiener 

filtering-based channel estimation [73] for the correlation between the channel 

coefficients of different subcarriers. It is based on assuming uniform power delay 

profile with maximum delay spread of 𝜏𝑚𝑎𝑥 . We also assume that the spatial channel 

of each subcarrier is uncorrelated. Then, the correlation between subcarriers k and l 

can be expressed as [73], 

                       R(k, l) = sinc ((k − l)τmaxfs/N)e−
j(k−l)τmax fs

N ).                 (4.5) 

It should be noted that in the case of flat-fading channel, different subcarriers 

have equal channel matrices and, consequently, equal spatial covariance matrices. In 

this case, CFO affects the channel covariance matrices only by an inconsequential 

real scaling factor. On the contrary, with highly frequency selective channels, the 

spatial covariance matrix of each subcarrier is distorted by the uncorrelated parts of 

the channel vectors of other subcarriers. Noting that 𝑅(𝑘, 𝑘) = 1, we can express 

the spatial covariance matrix of subcarrier k as 

  �̃�PU,k = β2(δCFO)𝚺PU,k + ∑ (1 − R(k, l))
2
β2(l − k + δCFO)𝚺PU,l

NA−1
l=0
l≠`k

.         (4.6) 

The actual spatial covariance matrix of each subcarrier is scaled by 𝛽2(𝛿CFO), 

while the distorting uncorrelated part of the covariance of subcarrier k is given by 

the latter term. We assume that the IRC process suppresses completely the PU 

interference power corresponding to the first term, but the uncorrelated part remains 

as interference to the target CR signal. Let 𝑆𝐼𝑅PU =
𝑃𝑇

𝑃PU 
 denote the ratio of the target 

CR power at the CR receiver, 𝑃𝑇, to the PU interference power before interference 

cancellation, 𝑃PU.  

Assuming that the subcarriers have equal power levels, the target signal’s SIR due 

to the CFO of the PU signal can be evaluated as: 
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                             SIRCFO(δCFO) =
SIRPU

∑ (1−R(k,l))
2

β2(l−k+δCFO)
NA−1

l=0
l≠`k

.                          (4.7)       

In the numerical results, we show the average of this expression overactive 

subcarriers. This calculation can be simplified by noting that subcarriers 𝑘 + 𝜅 and 

𝑘 − 𝜅 contribute equally to the interference and that considering all active 

subcarriers, there are 2(𝑁𝐴 − 𝜅) subcarriers at the distance of |𝑙 − 𝑘| = 𝜅. 

Figure 13 compares the theoretical SIR values based on Eq. (4.7) with simulated 

SIR values considering both sample covariance based and known channel -based 

IRC schemes with different values of CFO. Here the known channel reference case 

is based on perfect knowledge of the PU channel in the absence of CFO. The 

subcarrier modulation is 16QAM, and the other parameters are as mentioned in [P5]. 

Here both HT and VehA channels are considered for the PU signal. No channel 

noise is included in these simulations, so the interference is due to imperfect spatial 

covariance matrix estimation, CFO, and the limitations of sample covariance-based 

estimation in the corresponding case. The CFO-based SIR is shown also for the 

basic OFDM scheme. We can see that the CFO requirements are 3-10 times higher 

than in basic OFDM schemes, depending on the channel delay spread and 

covariance estimation scheme. We can see that with the VehA-type PU channel, 

there is a very good match between the theoretical model and the known channel-

based simulation results. With HT-type PU channel, the theoretical model is 

somewhat pessimistic. We can also see that the sample covariance-based estimation 

gives clearly better SIR than the theoretical model or the case of CFO-free channel 

knowledge-based covariance estimation. This is because the sample covariance-

based estimation can take into account the CFO-induced contribution to the 

covariance estimates of different subcarriers.  

Figure 14 shows the BER performance with 64QAM modulation and VehA 

channel for the CR link and CFO values of 𝛿CFO ∈ {0,  0.01,  0.005}, while the 

other parameters are the same as in the other numerical results. We can see that with 

CFO=0, the PU channel’s delay spread has a very minor effect on the performance. 

When relating these results with SIR performance of Figure 13, it should be noted  

that the interference covariance is estimated in the absence of channel noise, but in 

low SNR region of Figure 14, the covariance estimate is degraded due to noise. 

However, we can see that in the high SNR region, the performance of sample 

covariance -based scheme may exceed the performance of the known channel -based  
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Figure 13. CFO-based SIR in BS-CR with Vehicular-A and Hilly terrain channel models and SIRPU = -30 dB. 

covariance estimate. Generally, the hard requirements for CFO can be seen also in 

these results. However, reducing the CFO from 1 % to 0.5 % of subcarrier spacing 

improves the performance greatly. 

4.4 Effects of Receiver Nonlinearity and ADC Resolution 

It is also important to consider the effects of CR receiver’s nonidealities on the 

interference suppression capability of IRC. In [145], the effects of signal quantization 

and clipping in the analog-to-digital converter (ADC), as well as nonideality of 

automatic gain control (AGC) were evaluated by simulations. Here we focus on 

ADC quantization and the inevitable nonlinearities of the analog front-end. These 

can be expected to distort the spatial covariance estimate. Furthermore, in the IRC-

based BS-CR scenario, wide dynamic range is needed for the ADC because the PU 

interference is at much higher level than the target CR information signal. In this 

section, we study these effects experimentally. 
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Figure 14. BER performance with different CFO values for 64QAM subcarrier modulation, SIRPU = -30 dB, VehA 

channel for CR link, and VehA or HT channel for PU. 

4.4.1 Receiver Nonlinearity Effects 

 For the CR receiver, we use a simple polynomial model including the third-order 

amplitude nonlinearity only. This is the most significant part of practical RX front-

end nonlinearities and widely used in receiver front-end system design. Then the 

amplitude of observed signal can be expressed as 
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                                    |r̅| = |r| + c3 ∙ |r|3                                                      (4.8) 

while the phase is not affected. Here r is the ideal received signal. The nonlinearity 

has a significant effect on the high-powered PU interference, while its effect on the 

low-level target signal is minor. The main issue is then the distortion of the sample 

covariance estimates, or the channel knowledge based spatial covariance estimate. 

Concerning the sample covariance-based scheme, one may expect that the effect is 

reduced if the different antenna branches experience similar nonlinearity effects. 

Then the covariance estimates can be expected to match better with the actual spatial 

channel of the PU. Therefore, we consider two alternative schemes for the automatic 

gain control (AGC) of different receiver antenna branches:   

1. Per-antenna AGC:  The gain of each antenna branch is adjusted in such a way 

that the average powers are equal to 1.  

2. Joint AGC: The gains of antenna branches are equal, and the maximum power 

is 1.  

We use a baseband nonlinearity model corresponding to direct-conversion 

receiver architecture [102], which is widely used in current receivers. It should be 

noted that in superheterodyne receivers, i.e., when the nonlinearities appear at the 

RF carrier frequency or at intermediate frequency (IF), the third-order 

intermodulation products are filtered away from the signal, and better performance 

would be expected.  

Figure 15, shows the resulting BER performance for per-antenna AGC and joint 

AGC. The results are shown for 16QAM and 64QAM modulations with -30 dB PU 

SIR, while the other parameters are the same as earlier in this section. The results are 

shown for linear receiver and for 3rd-order nonlinearity coefficients of c3= {0.0023, 

0.00127}. The values correspond to signal to interference ratios of SIRNL= {45, 50 

dB}, correspondingly. We can see that with per-antenna AGC, the sample 

covariance -based scheme is somewhat worse than the known channel cases, while 

the effect of CR RX nonlinearity is rather similar in the two cases. Joint AGC has 

minor effect in the known channel case, while the performance of sample covariance 

approach is greatly improved, especially with stronger nonlinearity in the high SNR 

region. We can conclude that 50 dB SIR due to RX nonlinearity is acceptable even 

with 64QAM nodulation, causing about 0.8 dB performance loss at 1 % BER level 
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compared to linear receiver, when joint AGC is used. With 16QAM modulation, 

SIRNL= 45 dB gives about 0.5 dB loss compared to linear RX. These nonlinearity 

requirements are significantly tighter then in relaxed communication receiver design 

using superheterodyne architecture but should be doable in practice.  

It should be noted that reaching equal nonlinear behavior for different antenna 

branches is not easy in analog electronics. The used nonlinearity model is very 

simple, and further studies are needed with more practical modes, corresponding to 

the used architecture for the receiver front-end.  

4.4.2 ADC Effects 
 We consider only the ideal model of signal quantization in the ADC with given 

number of bits, ignoring various other imperfections practical ADCs. It is important 

to take into consideration the effect of high PAPR of the ADC. While the average 

signal powers are scaled to 1 (or lower in most branches of the joint AGC case), we 

assume the signal range [-4, 4) for both real and imaginary parts, i.e., two of the bits 

are used for the integer part. This corresponds to PAPR of 12 dB for purely real (or 

purely imaginary) signal. Saturating nonlinearity is used to limit possible peaks of the 

signal exceeding this range. Figure 16 shows the results with 12-bit quantization of I 

and Q signals, joint AGC with 16QAM and 64QAM modulations for linear RX and 

nonlinear RX with SIRNL= 50 dB.  

The quantization error is an uncorrelated random process, so we don’t expect 

differences due to quantization in the spatial covariance estimate due to different 

AGC models, and this was also verified by simulations. In the 64QAM case, the 

performance loss at 1 % BER level due to quantization is about 0.6 dB for linear 

receiver and 0.8 dB for nonlinear RX with SIRNL= 50 dB. In 16QAM case with the 

same nonlinearity and quantization, the loss is about 0.2 dB compared to linear 

receiver without quantization.   

In conclusion, the required ADC resolution is significantly higher than in 

traditional receivers where the channel filtering is done in analog domain. However, 

it should be noted that in advanced software-defined radio architectures, channel 

filtering in DSP domain is desired, which leads to great differences in power levels. 

between the wanted signal and adjacent channels and other spectral components 

entering the ADC. Then similar and even much harder requirements for the RX 

linearity and ADC resolution are encountered 
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(a)  

(b)  

Figure 15. IRC performance with SIRPU= -30 dB for 16QAM and 64 QAM with different levels of RX nonlinearity: 

linear RX and SIRNL= {45, 50 dB} corresponding to c3={0.0023, 0.00127}, respectively. (a) Per-antenna AGC. (b) 
Joint AGC. 
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Figure 16. IRC performance with joint AGC, and SIRPU= -30 dB for 16QAM and 64 QAM with 12-bit quantization 

for linear RX and nonlinear RX with SIRNL= 50 dB. 

4.5 Summary and Discussion 

The most critical one among the considered RF imperfections is the CFO between 

the PU signal and CR receiver. However, since the PU signal is received at a high-

power level, synchronizing the CR stations to the PU signal with the needed high 

accuracy should be achievable. Considering other cases, e.g., when both the PU and 

target CR signal have CFOs, the effect of the high-powered PU signal dominates 

and remains the most critical issue. The effects of PA nonlinearity in PU and CR 

transmitters were also tested, and found to less critical, as expected. The developed 

analytical model for the PU CFO effect could be a basis for analytical modeling BS-

CR scenarios with mobility, which was tested experimentally in our earlier work in 

publication IV. This is an important topic for future studies. Also, the nonlinearity 

of the CR receiver electronics may be critical due to the wide signal power range to 

be dealt with. Anyway, the receiver linearity requirements for BS-CR are similar or 

milder than those for advanced DSP-intensive software defined radio architectures.   
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5 MULTICARRIER MODULATION AND RESOURCE 
ALLOCATION IN COGNITIVE RADIOS 

In the previous chapters, CR receiver centric signal processing methods were studied 

targeting at efficient reuse of the black-space frequency spectrum.   In this chapter, 

the focus is on transmitter centric signal processing techniques directed at the so-

called whitespaces in the spectrum. First alternative multicarrier schemes are 

discussed as CR waveform candidates, with focus on spectrum localization aspects.  

In the subsequent parts of this chapter, the joint spectrum sensing and resource 

allocation algorithms under adjacent channel interference are studied. A recent study 

on this topic is [36], [37] where optimal ways to find the joint spectrum and 

transmission schedule are studied. The joint spectrum sensing function is briefly 

discussed, with focus on FFT or filter bank-based sensing, and later the spectrum 

utilization function implementing optimized resource allocation under power and 

interference constraints is studied and evaluated in a multicarrier WLAN scenario.  

5.1 Multicarrier Modulation Schemes for Cognitive Radio  

The core tasks of a CR include spectrum sensing and efficiently utilizing the 

spectrum with negligible impact to PUs. Choosing the most efficient data 

transmission technique for CRs from this perspective is a challenging task. The 

favorite scheme for such a system is OFDM and its variants, mainly due to simplicity 

and robustness. OFDM also works straightforwardly in multiuser scenarios. CP-

OFDM is the most prevalent and popular waveform among various OFDM variants. 

Its main limitation is that it does not provide proper spectrum localization, which 

limits its efficiency in dynamic use of the radio spectrum. The limitation is due to 

the high out of band (OOB) emission around the active frequency channels. This 

means that wide guard bands are needed, which reduces the efficiency of the 

spectrum use.  
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Several alternatives and enhancements have been suggested in the literature [22] 

[61],  [151] to CP-OFDM, ranging from time domain filtering [57], [88], [100], [101],  

[156] to time domain windowing which is referred to as weighted overlap add 

OFDM (WOLA-OFDM) [14], [105], [148], [154]. These methods are not without 

disadvantages of their own. Filtered OFDM (F-OFDM) suffers from inter symbol 

interference (ISI) and inter carrier interference (ICI) due to the filtering operation. 

The filtering operation reduces the orthogonality of subcarriers, leading to such 

issues. For effective windowing-based solution, there is a need for relatively long CP, 

leading to spectrum efficiency loss. Given these limitations, FBMC shows some 

promise and is widely considered for the CR applications, especially in the TVWS 

context [16], [15], [22]. 

FBMC waveforms are generated using very sharp filters applied at the subcarrier 

level to suppress the OOB emission that are relatively significant in the CP-OFDM 

waveforms. FBMC has traditionally been implemented using polyphase networks 

along with discrete Fourier transform (DFT) or with inverse discrete Fourier 

transform (IDFT) [23], [124], [137], FBMC also requires the use of offset quadrature 

amplitude modulation (OQAM) methods to ensure orthogonality between the 

subcarriers. The higher complexity and other overheads can be reduced by using fast 

convolution filter banks (FC-FB)[15], [16], [25], [101], [124]. Given these advantages 

of FBMC, especially the OOB suppression capability, closer inspection of the FBMC 

performance in the CR context is essential and considered in this chapter.  

5.2 Spectrum Sensing in Cognitive Radios  

To enable non-interfering transmission between the CR and the PU, proper 

spectrum sensing is essential. Spectrum sensing provides the CR with appropriate 

knowledge of the radio spectrum, indicating a white space for transmission that is 

interference free. Several spectrum sensing techniques have been used in the CR 

community. For example, [99] and [153] review many of the well-known spectrum 

sensing techniques. Of the myriad of sensing methods available, energy detector-

based spectrum sensing algorithms have been widely considered due to their low 

computational complexity and reasonable performance. The energy detector-based 

spectrum sensing performance is sensitive to noise uncertainty, since small error in 

the noise variance estimate is reflected as significant change in the sensing threshold, 
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which is critical at low PU power levels [142]. To overcome such disadvantages, 

advanced sensing techniques have been proposed in [20], [21], [48]- [51], [79], [99], 

[153], [155]. In the eigenvalue-based sensing method [51], [155], the noise variance 

is not needed for eigenvalue computations. The main limitation of this method is its 

relatively high complexity and its performance sensitivity to ACI [21], [50]. To 

overcome the effects of ACI, the cyclostationary based methods have been 

suggested [79], [122]. In these methods, the cyclostationary features of the PU signal 

are used to detect them. The modulated signal from the PU has specific spectral 

correlation compared to the noise which is wide sense stationary. The primary 

disadvantage of this method is that its computational complexity is high. Detailed 

treatment of the spectrum sensing methods can be found in [21], [36], [48]-[51], [77], 

[79], [98], [142], [153], [155] and the references therein.  

 

5.3 Signal Model and Setup  

In our study on the performance of the sensing and resource allocation process 

during CR transmission, the PU is primarily assumed to be 802.11g standard 

compliant CP-OFDM based system and the CR system is assumed to use 802.11g 

like FBMC signal model. Comparisons are extended to include also configurations 

with FBMC based PU [P1], [P2], [48]. Furthermore, both AFB and FFT based 

spectrum analysis are considered for spectrum sensing at subband level. The PU and 

CR systems operate in the same radio band, as illustrated in Figure 11. The 

transmitters of the PU and CR are denoted by PU-TX and CR-TX, and PU-RX and 

CR-RX denote the PU and CR receivers, respectively. The radio channels 𝐻0, 

𝐻1, 𝐻2  and 𝐻3 are considered as frequency-selective channels between the PU and 

CR stations. The CR system is assumed to operate in a spectrum gap which has on-

going primary transmission on either or both sides of the spectrum gap. Due to this, 

ACI is unavoidable between different PUs and CRs. The CR and the PU are assumed 

to use time division duplexing (TDD), in which case reciprocity of uplink and 

downlink channels can be assumed. Further, it is assumed that there is no cognitive 

control channel, so that the CRs have no means to exchange control information 

with each other before establishing the CR communication link. As shown in the 

Figure 17, there are two PU radio systems that operate in the ISM band and there is  
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Figure 17. CR spectrum sharing model. 

a CR radio system trying to utilize the spectrum gap between the PU channels[P2]. 

However, the CR needs to consider possible additional weak PU signals in the 

spectrum gap. Therefore, it must apply spectrum sensing. 

The two PU signals are considered to use 3rd and 8th WLAN channels. There is 

an 8 MHz nominal bandwidth or spectral gap between the two active PU channels. 

The signal models also include the spectral regrowth effects of a practical nonlinear 

PAs, which is modelled by the widely used Rapp PA model [119]. The PU spectra 

are illustrated in [P2] for different backoff levels. Using the complex, I/Q baseband 

model, the amplitude function at the output of the Rapp PA model is given as 

                                              gA =
κA

(1+[
κA

A0
]

2p
)

1
2p

,   (5.1) 

where A is the input amplitude, 𝜅 is small signal gain, 𝐴0 is the saturated amplitude, 

and 𝑝 is the amplitude smoothness factor of the transition from linear to saturated 

amplitude range. The AM-PM conversion part, i.e., the amplitude dependant phase 

distortion of the Rapp model is not included here. Three cases with respect to the 

PA non-linearity are considered in this study. No regrowth is the ideal reference case, 

while considering effects of the Rapp PA non-linearity with two different back-off 

values of 15 dB (modest case) and 5 dB (worst case), are illustrated in Figure 18. 

Parameters of the Rapp model have been chosen according to the practical model  
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Figure 18. Rapp power amplifier effects on the (a) OFDM  (b) FBMC PU spectra. 

for PU signals based on [134]. In our study, we use 𝜅 = 1, 𝑝 = 3 and 𝐴0 = 1 as the 

Rapp model parameters.  

The 802.11g based WLAN signal specifications allow the spectral regrowth in 

this scenario to be at the level of about -20 dB with respect to the passband, i.e., 

close to the worst-case model. We investigate how the CR system performance is 

affected by the improved spectral containment of the PU signal through enhanced 

multicarrier waveform and/or improved PA linearity. These effects for both sensing 

and utilization functions are addressed in the study.  

5.3.1 Signal Model for Cognitive Radio 

The enhanced CR waveform chosen here is FBMC along with OQAM as subcarrier 

modulation. OQAM is used for FBMC based CRs to achieve orthogonality of 

subcarriers. For FBMC/OQAM, a signal model with real valued symbol sequence 

at twice the QAM symbol rate is applied, instead of complex QAM symbols. The 

synthesis filter bank (SFB) for transmitter and the analysis filter bank (AFB) for 

receiver are designed with this idea in mind; details of this signal model are explained 
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in [P2]. In the system model shown in Figure 17, 𝐻0 is the channel from CR 

transmitter to a possible PU receiver within the CR transmission channel, while 𝐻1 

is the channel from the CR transmitter to the CR receiver. 𝐻2 and 𝐻3 are channels 

from the two adjacent-channel PU transmitters to the CR receiver. 𝐻1 is estimated 

using the usual channel estimation procedure of the CR system whereas the 

knowledge of 𝐻2 and 𝐻3 could be obtained through the channel reciprocity in TDD 

operation, which is assumed here for the PU system. 

5.3.2 Definition of the Interference Problem 

The CR system is assumed to coexist with the primary transmission system in the 

same geographical region. The CR transmitter causes some interference (ACI) to the 

primary transmission system and, similarly, the secondary transmission between the 

two active PU spectra experiences some ACI due to the PUs. There are 𝑁𝑔𝑎𝑝 active 

subcarriers in the spectrum hole and the subcarrier spacing is 𝛥𝑓. Since the 

transmitter and receiver are assumed to be static or slowly moving, the effect of ICI 

between subcarriers can be ignored. The primary and secondary transmission 

systems occupy contiguous frequency slots. The interference that the CR produces 

to each of the primaries is required to be less than the maximum interference that 

can be tolerated by the primary, 𝐼𝑡ℎ .  The spectral distance 𝑑𝑃𝑈 of a PU is defined as 

the frequency separation from the DC subcarrier of the CR to the center frequency 

of the PU (positive for a PU above the upper edge of the gap, negative for a PU 

below the gap). The interference to the primary transmission due to the 𝑘𝑡ℎ CR 

subcarrier depends on the CR subcarrier powers 𝑃𝑘 and 𝑑𝑃𝑈 . Fixing the origin of 

the frequency axis at the DC subcarrier of the CR, the interference is given by  

𝐼𝑘(𝑃𝑘) = ∫ |𝐻0(𝑓)|2𝑃𝑘

𝑘𝛥𝑓+
𝐵

2

𝑘𝛥𝑓−
𝐵

2

𝛷 (𝑓 − 𝑘𝛥𝑓)𝛹(𝑓 − 𝑑𝑃𝑈)𝑑𝑓 = 𝑃𝑘𝛺𝑘.              (5.2) 

Here  𝐻0(𝑓) is the channel frequency response between the CR transmitter and a 

primary receiver. 𝛷(𝑓) represents the subcarrier power spectral density of the 

underlying multicarrier technique employed by the CR. 𝛹(𝑓) denotes the PU 

sensitivity mask characterizing the effects of the PU receiver filtering. 𝐵 denotes the 

CR subcarrier bandwidth which is considered significant for the interference 

estimation. Finally, 𝛺𝑘 represents the combined interference factor for the 𝑘𝑡ℎ CR 
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subcarrier. The SINR due to interference introduced by an adjacent channel primary 

signal to the 𝑘𝑡ℎ subcarrier at the receiving CR is given by the equation  

       SINRk =
Pk|H1,k|

2

σw
2 +∫ |H2(f)|2ΦCR(f−kΔf)ψPA(f−dPU)df

kΔf+
B
2

kΔf−
B
2

=
Pk

σw
2 +Jk

                        (5.3) 

where 𝐻2(𝑓) is the channel frequency response between the primary transmitter and 

CR receiver. 𝐻1,𝑘 is the channel gain between the CR transmitter and the CR receiver 

at the frequency of 𝑘𝑡ℎ subcarrier. This channel can be assumed to be flat fading at 

the subcarrier level. 𝛹𝑃𝐴(𝑓) is the power spectral density as seen at the output of 

the PU’s transmitter antenna. 𝛷𝐶𝑅(𝑓) is the CR receiver’s sensitivity mask 

characterizing the CR receiver subband filtering effects and  𝜎𝑤
2  is the variance of 

AWGN. As explained in [P2], we can assume that 𝛷𝐶𝑅(𝑓) = 𝛷(𝑓).  

5.3.3  Filter Bank Energy Detector Based Spectrum Sensing Algorithms  

The focus of this study is on subband-based energy detection using either FFT or 

AFB for spectrum analysis. The energy of the received signal is compared with a pre-

computed threshold value. The threshold is calculated according to both noise 

variance and desired false alarm probability while detecting spectral holes.  

FFT
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Time and Frequency
Filter

Decision
Device

Decision
Device

|.|2

|.|2 Time and Frequency
Filter
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Figure 19.Block diagram of energy detector with AFB and FFT based spectrum analysis. 

A block diagram of alternative FFT and AFB based spectrum sensing algorithms is 

shown in Figure 19. The subband sampling rate is equal to the ADC sampling rate 

divided by the number of FFT/AFB frequency bins. With a subband-wise spectrum 

sensing method [P2], the subband signals can be expressed as              
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                   𝑌(𝑚, 𝑘) = {
𝑊(𝑚, 𝑘)                            𝐻0

𝑆(𝑚, 𝑘) + 𝑊(𝑚, 𝑘)        𝐻1
                                           (5.4) 

where 𝑆(𝑚, 𝑘) is the transmitted WLAN or FBMC based PU signal as seen in sub- 

band k during the 𝑚𝑡ℎ symbol interval. When there are no PU signals (hypothesis 

ℋ0), the noise samples 𝑊(𝑚, 𝑘)  are modeled as AWGN with zero-mean and 

variance 𝜎𝑤
2 . When a PU signal is present (hypothesis ℋ1), the observed noisy 

WLAN or FBMC based PU signals can also be modeled as zero-mean Gaussian 

distribution with variance 𝜎𝑃𝑅,𝑘
2 + 𝜎𝑤

2 . 

The time frequency averaging of the signals yields the test statistics  

            �̃�(𝑚, 𝑘) =
1

𝐿𝑡𝐿𝑓
∑ ∑ |𝑌(𝑢, 𝑙)|2.𝑚

𝑢=𝑚−𝐿𝑡+1

𝑘+⌈
𝐿𝑓

2
⌉−1

𝑙=𝑘−⌊
𝐿𝑓

2
⌋

                                   (5.5) 

Here, 𝐿𝑡 and 𝐿𝑓 are the window lengths in time and frequency domain averaging, 

respectively. The value of �̃�(𝑚, 𝑘) is used in the decision device to determine the 

possible occupancy of the corresponding frequency band at the corresponding time 

interval. The window length in frequency direction is selected based on the expected 

minimum bandwidth of the PU signal and then the required time domain window 

length can be calculated from the target false alarm and missed detection 

probabilities. As 𝑌(𝑚, 𝑘) has Gaussian distribution, the probability density function 

of �̃�(𝑚, 𝑘) can be approximated as Gaussian distribution under both ℋ0 and ℋ1.  

Next, we consider using this spectrum sensing approach in the spectrum slot 

between two PU channels. With Gaussian approximation, the effects of the spectral 

leakage from the adjacent PU transmitters on the actual false alarm probability 

�̃�𝐹𝐴(𝑘) can be estimated as                                                                                      

                           �̃�𝐹𝐴(𝑘) = 𝑄 (
𝜆−(𝜎𝑤

2 +𝐼𝑎𝑑𝑗(𝑘)

√
1

𝐿𝑡𝐿𝑓
(𝜎𝑤

2 +𝐼𝑎𝑑𝑗(𝑘))
)                                            (5.6) 

where the leakage power from the adjacent PU transmitter to the sensing frequency 

band between frequencies 𝑓1and 𝑓2 is given by  

                           𝐼𝑎𝑑𝑗 (𝑘) = ∫ |𝐻2(𝑓)|2𝜓𝑃𝐴(𝑓)𝑑𝑓.
 𝑓2

 𝑓1
                                        (5.7) 
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𝐼𝑎𝑑𝑗(𝑘) is assumed to be of zero mean circular Gaussian model and 𝐻2(𝑓) is the 

channel frequency response between the PU transmitter and the CR receiver. If 

strong PU signals are present on both sides, the sum of their ACI contributions 

should be used for 𝐼𝑎𝑑𝑗(𝑘) in (5.7).  

The sensing threshold 𝜆 can be obtained as follows: 

            𝜆 = 𝑄−1 (�̃�𝐹𝐴(𝑘)) √
1

𝐿𝑡𝐿𝑓
(𝜎𝑤

2 + 𝐼𝑎𝑑𝑗(𝑘)) + (𝜎𝑤
2 + 𝐼𝑎𝑑𝑗(𝑘)) .            (5.8) 

Given this threshold, the detection probability 𝑃𝐷, is given by  

                   𝑃𝐷(𝑘) =  𝑄 (
𝜆−((𝜎𝑤

2 +𝐼𝑎𝑑𝑗(𝑘)+𝜎𝑃𝑈,𝑘
2 )

√
1

𝐿𝑡𝐿𝑓
((𝜎𝑤

2 +𝐼𝑎𝑑𝑗(𝑘))+𝜎𝑃𝑈,𝑘
2 )

).                                        (5.9) 

Due to the statistical nature of the spectrum sensing process and spectral leakage 

effects of PU, different number of empty subbands, 𝑁𝑔𝑎𝑝, are detected under 

different SNR conditions, which is taken into consideration in the resource 

allocation process. 

5.4 Spectrum Utilization and Resource Allocation 

Once the main problem of identifying a spectrum gap is solved by using the 

algorithms stated in the previous section, utilization of this spectrum efficiently 

becomes the area of focus. The sensing algorithm gives a number of available 

subbands along with the information about the non-active (white space) band edges. 

The Shannon capacity dictates that in case of multicarrier schemes, the maximum 

rate [18], [47], [60], [62], [87], [112] is given by  

                                𝑅𝐶𝑅 = ∑ Δ𝑓 · 𝑙𝑜𝑔2(1 +
𝑃𝑘

𝜎𝑘
2

𝑁𝑔𝑎𝑝

𝑘=1
)                                     (5.10) 

where the 𝜎𝑘
2 = 𝜎𝑤

2 + ∑ 𝐽𝑘,𝑖
𝑁𝑃𝑈
𝑖=1 .  𝐽𝑘,𝑖 is the effective interference power contributed 

by 𝑖𝑡ℎ primary at the 𝑘𝑡ℎ CR subcarrier.  𝑁𝑃𝑈  is the number of PU’s contributing to 

the interference at the receiving CR station. In our case study, 𝑁𝑃𝑈 = 2, i.e., there 

are PUs’ adjacent to the lower and upper edges of the white space. The model could  
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Figure 20. Spectrum utilization block diagram with AFB and FFT based spectrum sensing. 

be simplified by assuming that these PUs affect only the lower and upper half of the 

subcarriers, respectively. 𝑃𝑘 is the transmit power used by the CR for subcarrier k. It 

is assumed that the channel changes slowly so that the channel gains, and 

consequently 𝐽𝑘,𝑖 , will be approximately constant during each transmission frame. 

Further, there is no ICI in the CR reception, due to low mobility.  Figure 20 shows 

the main functions of the spectrum utilization part.   

As derived in [P2], the maximization of the capacity given in Eq. (5.10) can be 

formulated as an optimization problem:  

                       𝑅𝐶𝑅 = max{𝑃𝑘} ∑ Δ𝑓 · 𝑙𝑜𝑔2(1 +
𝑃𝑘

𝜎𝑘
2

𝑁𝑔𝑎𝑝

𝑘=1
)                                 (5.11) 

subject to ∑ 𝑃𝑘  ≤ 𝑃𝑇
𝑁𝑔𝑎𝑝

𝑘=1
, ∑ 𝑃𝑘Ω𝑘  ≤ 𝐼𝑡ℎ

𝑁𝑔𝑎𝑝

𝑘=1
 and 𝑃𝑘 ≥ 0, ∀𝑘 ∈ {1,2, … , 𝑁𝑔𝑎𝑝}, 

where 𝐼𝑡ℎ is the PU interference threshold. This is a convex optimization problem 

and the Lagrangian can be written as 

𝐺𝑠𝑛𝑟 =  ∑ Δ𝑓. 𝑙𝑜𝑔2(1 +
𝑃𝑘

𝜎𝑘
2

𝑁𝑔𝑎𝑝

𝑘=1
) − 𝜆0 ∑ (𝑃𝑘 − 𝑃𝑇) −

𝑁𝑔𝑎𝑝

𝑘=1
𝜆1(𝑃𝑘Ω𝑘 −

                                                               𝐼𝑡ℎ)+ 𝜆2(∑ (𝑃𝑘)
𝑁𝑔𝑎𝑝

𝑘=1
 .                               (5.12)                                                                             

Using the Karush-Kuhn-Tucker (KKT) conditions, which are derived in detail 

in [87], [134], the optimum solution can be written as  

                                     𝑃𝑘 =  [
1

𝜆0Ω𝑘+𝜆1
−

𝜎𝑘
2

|ℎ𝑘|
]

+

                                              (5.13) 

where [𝑦]+ = 𝑚𝑎𝑥( 0, 𝑦). The optimal solution has high computationally 

complexity, hence a lower complexity algorithm called the power interference (PI) 

algorithm which divides the problem into stages has been developed in [87]. First 
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the interference constraint is ignored, keeping only the total power constraint and 

this leads to the classical water filling solution 

                                     𝑃𝑘 =  [γ −
𝜎𝑘

2

|ℎ𝑘|
]

+

                                                        (5.14)       

where 𝛾 is the water filling level.  When the total power is ignored, the solution [P2] 

becomes  

                                      𝑃𝑘 =  [
1

𝜆0Ω𝑘
−

𝜎𝑘
2

|ℎ𝑘|
]

+

.                                                 (5.15)          

The value of 𝜆′
0 can be obtained by substituting Eq (5.15) into the constraint 

∑ 𝑃𝑘
′Ω𝑘

𝑁𝑔𝑎𝑝

𝑘=1
= 𝐼𝑡ℎ to get  

                                       𝜆0 =
|𝑁𝑔𝑎𝑝,𝑙|

𝐼
𝑡ℎ

𝑁𝑔𝑎𝑝
+(∑

Ω𝑘𝜎𝑘
2

|ℎ𝑘|
2𝑖 )

.                                                (5.16)      

The above solution is optimal only when the total power is greater than or equal to 

the power under the interference constraint, in which case 𝑃𝑘 takes nonnegative 

value for each k.  Mostly, in practice this condition is not true after completing these 

steps. This is the motivation for the PI algorithm, which iteratively discards 

subcarriers with lowest SINR until nonnegative values are obtained for each k. 

Detailed discussion and its comparison to various other algorithms for spectrum 

utilization are available in [P2], [P3], [48], [52] and the references therein.  

5.5 Results and Discussion  

In the considered scenario, the CR’s spectrum sensing function has identified a 

potential spectral gap between two relatively strong PUs, as illustrated in Figure 12. 

We consider the worst-case scenario, where the two adjacent PUs are at the same 

power level. Also, there is the possibility that there is another, relatively weak PU 

signal, using one of the WLAN channels 4…7, and fully or partly occupying the gap 

between channels 3 and 8. Thus, the CR needs to ensure the principal purpose of 

spectrum sensing which is to make sure that there is no other PUs active in the 

considered gap. It is assumed that there are no additional signals within the spectral 

gap, but the spectrum sensing makes anyway false alarms. Especially close to the 
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edges of the gap, the spectrum leakage from the adjacent PU’s raises the false alarm 

probability. This effect depends on the power level of the PUs, which is indicated 

below by the SNR of the PUs.  

In this case study, the spectrum sensing, and CR transmissions use a smaller 

subband spacing of 78.125 kHz, instead of the 312.5 kHz subcarrier spacing of 

WLANs, in order to reduce the effects of frequency selective channels. Targeting at 

-5 dB SNR in spectrum sensing, the false alarm probability of 10 % and detection 

probability of 90 %, the required sample complexity is around 250 complex samples. 

The time and frequency averaging lengths are chosen as 50 and 5, respectively. The 

spectral hole starts from the upper sidelobes of WLAN 1 signal (channel 3) and ends 

at the lower sidelobes of WLAN 2 (channel 8) spectrum. The available number of 

subbands, i.e., bandwidth of the spectrum hole, is obtained after subband based 

energy detection, using FFT or AFB for spectrum analysis.  The initial SINR 

estimation and spectrum allocation are done based on the sensing results. Then, the 

SINR estimates are updated during CR system operation to track the changing radio 

environment under frequency selective fading channel conditions.  It is assumed that 

the spectrum sensing is done in regular intervals during gaps in the CR transmission 

and this helps in detecting reappearing PU signals in the spectral gap. Different 

independent instances of the frequency selective channel models with 90 𝑛𝑠 delay 

spread and 16 taps [85] are used for the channels H0 – H3.  

The bandwidth of the detected spectral hole is shown in Figure 21 as a function 

of the average adjacent PU SNR at the CR RX. The spectral leakage due to PU’s PA 

nonlinearity is affecting significantly on the width of the detected hole. In this 

respect, three different cases, as explained in Section 5.3.1, ideal PA, modest PA 

nonlinearity with 15 dB back-off, and worst-case nonlinearity with 5 dB back-off are 

considered and plotted. The actual false alarm probabilities in the spectral gap as a 

function of the PU SNR can be found in [P2]  for different levels of spectral 

regrowth. A number of subbands, which are determined to be occupied with FFT 

or AFB based spectrum sensing, are empty in the spectrum utilization phase. The 

power of these occupied subchannels is reallocated to the other subbands that can 

be used by the CR. 

The power allocation is done by utilizing the PI algorithm, and the resulting 

capacity, in terms of bits/s/Hz, is shown in Figure22. It shows the capacity of a CR 

in a spectral gap between two Pus versus PUSNR when using PI algorithm for power 

allocation with ideal PA model and with RappPA model with 15dB backoff a the  
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Figure 21. Average bandwidth of the detected spectral hole using sample complexity of 250 under frequency selective channel 
model with (a) ideal PA model, (b) Rapp PA with 15 dB backoff as the modest case, (c) Rapp PA with 5 dB backoff as 

the worst case. 

modest case and with 5dB backoff as the worst case. Both FFT and AFB based 

sensing are included for OFDM and FBMC primaries.The PU interference threshold 

𝐼𝑡ℎ is selected to be 6 dB below the thermal noise level to get rid of significant 

performance loss in case the primary receiver is operating close to the sensitivity 

level. In these results, we can see that the capacity is greatly affected by the spectrum 

localization of the PU waveform and the nonlinearity of the PAs of the primaries. 

Regarding spectrum sensing, we can see significant benefit from AFB based 

spectrum analysis. 
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Figure 22. Capacity of a CR in a spectral gap between two PUs versus PU SNR when using PI algorithm for power 

allocation.    (a) Ideal PA model, (b) Rapp PA with 15 dB backoff as the modest case, (c) Rapp PA with 5 dB backoff as 
the worst case. Both FFT and AFB based sensing are included. 

5.6 Chapter Summary  
The central topic of this chapter is the combined spectrum sensing and utilization 

method, while assuming a practical frequency selective channel model and practical 

nonlinear PA model. We found through simulations that the CR system performance 

in terms of theoretical transmission capacity while using water-filling based 

subcarrier power allocation. The AFB and FFT based sensing methods were 

evaluated for determining a spectral hole with OFDM and FBMC based PU signal 

models. Then, the PI resource allocation method was applied with the available 

number of unoccupied subbands, which was determined by the spectrum sensing 

part. In terms of the sensing performance, especially AFB based sensing 

performance depends greatly on the level of spectral regrowth due to the PA 

nonlinearity of adjacent PUs. AFB had clear benefits due to much better spectral 

containment of the subbands, even with modest nonlinearity of the primary users’ 

PAs. The efficiency and computational complexity analysis of the considered sensing 
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methods are elaborately discussed in the references [49] - [53]. As a summary, while 

FFT in the receiver side of OFDM, or AFB in the receiver side of FBMC, can be 

used for the reception, it can also be used for the sensing purposes without extra 

hardware cost. In terms of the computational complexity of the proposed 

approaches, especially in the sensing stage, energy detector-based approaches using 

either FFT or AFB are the simplest and cost friendly sensing techniques compared 

to the advance eigenvalue-based approaches 

In [P1], a sub-optimal resource allocation process is used. The interference 

leakage from the CRs to PUs was ignored, but the results are rather similar to the 

ones shown above. This indicates that the interference leakage from CR to PUs was 

not necessarily affecting, critically the achievable data rate of the CR. Also smplified 

resource allocation schemes might be sufficient without significant loss in CR’s 

capacity. These aspects are worth to consider in further development of these 

methods. It is also worth to mention that [P1] also shows the effect of CRs’ SNR on 

data rate usingthe SNR values of 10 dB and 3 dB. 

One important benefit of FBMC as CR transmission technique was that it can 

utilize narrow spectral gaps in an effective and flexible way, even in the presence of 

strong primaries at the adjacent spectral slots. However, in case of adjacent PUs with 

poor spectrum localization or strong PA nonlinearity, there is an inevitable loss of 

capacity because the subcarriers close to the edges of PU spectra are determined to 

be occupied. According to the results of this study, the PI algorithm can be directly 

utilized with the developed highly enhanced and realistic CR system model, in 

comparison to earlier studies. Due to the above features, filter bank-based CR 

systems have a potential for higher capacity in comparison to the traditional OFDM 

based systems. 

It is true that many primary systems use waveforms with poor spectrum 

localization and relaxed out-of-band emission requirements. This was especially the 

case in systems operating in the ISM bands. While FBMC has excellent spectrum 

localization, it has found very limited use in existing communication systems. 

However, there are various approaches for improving the spectrum localization of 

the CP-OFDM waveform, as briefly discussed in Section 5.1. We can expect similar 

results, as shown in this chapter for FBMC, to be achived with enhanced OFDM 

schmes with relatively low complexity, such as WOLA-OFDM, filrered OFDM, and 

other spectrum-agile multicarrier waveforms [22], [124]. Actually, in [48] we have 

tested a similar spectrum sensing and resource allocation scheme using an enhanced 
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OFDM scheme based on edge windowing and cancellation carriers for improving 

the spectrum localization. 

While spectrum sensing has found limited use in existing wireless communication 

systems, it was found to be an interestig element in 5G furter development and 

beyond [22], [156]. In further studies of spectrum sensing and spectrum allocation, 

energy efficeincy is an important metric and artificial intelligence can be expected to 

have an important role.  
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6 CONCLUSIONS  

Wireless communication research has been one of the very active areas of research 

mainly due to the ever-increasing need for higher capacity and higher data rates. As 

a result of intense research and due to substantial contribution from many 

researchers, the field has grown leaps and bounds.  Main areas of focus have been 

to find more efficient methods for utilizing limited radio resources. For instance, 

OFDM methods have demonstrated increased spectral efficiency of data 

transmission especially in fading channels.  Consequently, OFDMA is the leading 

modulation scheme used in current technologies. Spatial multiplexing and diversity 

combining through multiple antennas have also been widely used to exploit 

multipath channels. 

In CRs, like in the latest wireless standards and technologies such as 5G-NR, 

apart from the modulation and coding improvements, interference handling plays a 

critical role. The idea of interference avoidance and interference management at 

higher layers was discussed and reviewed in the Chapter 2.  Such methods aim at 

taking proactive action in shaping transmissions in such a way that any interference 

to the primary transmission is avoided or made negligible. One of the focus areas of 

this thesis is the interference rejection. Interference rejection techniques can be 

traced back to military communications in which a transmission needs to be 

protected from an intentional or unintentional jammer. With rapid increase in 

wireless communication, applications of interference rejection have increased in the 

commercial applications as well. Interference rejection combining gains a central role 

in the BS-CR approaches. Diversity combining methods amongst many other 

interference cancellation techniques have been considered in this thesis as they make 

the receiver robust and improve signal quality for the target CR user. The earlier 

works that have been completed on the area of cognitive interference cancellation, 

for instance [128], have been mostly transmitter centric approaches where the BS-

CR is used as a repeater of the PU signal to guarantee that the CR does not cause 

interference to the nearby primaries.  
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Our work, explained in Chapter 3, primarily focuses on receiver centric methods like 

the IRC based BS-CR. For a concise summary of work done on the IRC based 

method, it is crucial to mention first that IRC-based BS-CR is a novel major 

contribution in the field. While IRC has been widely studied and adopted in practical 

systems, studying IRC with very strong interference and in the presence of practical 

RF imperfections are at the core of these studies. The effects of mobility, especially 

at high frequencies are of particular interest in this study. It can be seen from the 

performance analysis in Chapter 3 that there is a limited tolerance to mobility, 

especially with high carrier frequencies.  Channel estimation and its utilization play 

central roles in the enhanced IRC based solution. They are aimed at minimizing the 

PU interference while maximizing the CR throughput. To further enhance the 

understanding of radio environment and to improve the BS-CR performance, the 

use of sample covariance estimates with silent gaps in CR transmission was explored.  

The pilot transmission and interpolation of covariance estimates between silent gaps 

was found to greatly enhance the IRC process. To answer the second research 

question of Section 1.2, we can state that he developed enhanced interference 

cancellation algorithms using multiple antennas enables BS-CR operation under 

strong interference from the PU. We considered scenarios where the PU signal 

power at the CR receiver is up to 30 dB higher that the target CR signal. Covariance 

interpolation between silent gaps improves greatly the robustness with time-varying 

channels. Good link performance can be reached with up to 20 km/h mobility at 

the 700 MHz carrier frequency considered for  terrestrial TV spectrum reuse. This 

indicates that the proposed BS-CR scheme could be feasible at below 6 GHz 

frequencies with pedestrian mobilities, assuming typical channel delay spread and 

subcarrier spacing values for systems operating in those frequency bands.  

 Further studies on PU channel estimation-based BS-CR are worthwhile 

considering that the results shown in Chapter 3 are with perfect PU channel 

knowledge and are usually somewhat better than the performance with sample 

covariance estimation. We can expect it to have similar performance in practice. PU 

channel estimation could help in better handling of mobility issues. However, it 

needs more information about the PU signal structure (considering, e.g., different 

modes and variants of DVB, and their complicated pilot structures), which could 

make things complicated, e.g., requiring CR’s to decode PUs control information. 
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On the other hand, the spatial covariance estimation-based scheme was found to be 

more robust against certain RF imperfections then the PU channel estimation-based 

approach. All these ideas need further study that is not in the scope of this thesis. In 

addition, to ensure that the nearby PU receivers are not affected by the interference 

from the BS-CR, further studies are needed, especially on cooperative spectrum 

sensing amongst the CRs.  The CR devices should reliably estimate the PU power 

levels in their respective region of operation and cooperate to ensure that the 

interference on the PU is minimized. 

 

The third research question was addressed in Chapter 4, where the impact of RF 

imperfections on the BS-CR performance were studied. One of the central issues is 

the CFO between the PU signal and CR receiver. This is essential for proper 

synchronization between the PU signals and the CR receivers.  In the presence of 

CFO in both PU and CR signals at the CR receiver, the interference due to CFO is 

dominated by the high-power PU signal and this is the most critical issue concerning 

RF imperfections.  The CFO requirements depend on the delay spread of the PU 

channel, and they are usually significantly (2-4 times) tighter than in traditional 

OFDM networks. However, due to the high-powered nature of the PU transmission, 

synchronization with the needed high accuracy is considered achievable. The 

analytical model developed for the PU CFO effect could also be a basis for analytical 

modeling of such BS-CR scenarios with mobility. The effects of PA nonlinearity in 

PU and CR transmitters were also examined and found to less critical, as expected.  

The issue of nonlinearity of CR receiver electronics was also analyzed by 

simulations.  As expected, the requirements for the receiver front-end linearity and 

ADC resolution were found to be harder than in traditional receivers. However, CRs 

are usually expected to utilize software defined radio (SDR) type receiver 

architectures with high flexibility and capability to support high dynamic range. This 

means ability to receive weak signals in the presence of strong adjacent channels, 

which are suppressed by digital signal processing after the ADC. Based on the results 

of Section 4, such SDR receivers can be expected to support the receiver nonlinearity 

requirements for IRC based BS-CR. 

Finally, we moved to the transmitter related topic of spectrum utilization and 

resource allocation under power and interference constraints. The study focused on 

resource allocation aiming to effectively control the interference leakage to PUs 

operating in adjacent channels, while considering the spectrum localization and 
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limitations of spectrum sensing of different waveforms, CP-OFDM and FBMC. 

Regarding the first research question, it was demonstrated that the spectrally well-

localized waveform, FBMC, together with optimized resource allocation strategies, 

provide clear benefits in effective spectrum utilization by CRs under interference 

leakage between adjacent PU and CR channels. However, the most efficient 

utilization of spectrum gaps is reached when both PUs and CRs use waveforms with 

good spectrum localization, which is not the case, e.g., in the frequency bands of 

legacy OFDM systems. 

Various applications of the study done in this work could be used in the TVWS 

and TV black-space cases. The BS-CR scheme could also be applied in underlay 

device-to-device communication in the cellular networks [92]. Also fixed wireless 

access could also be an interesting area in which IRC based BS-CR could be trialed 

to check such systems’ performance. 
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 ABSTRACT 

OFDM based 802.11g Wireless Local Area Networks 
(WLAN) operate  in  the  2.4  GHz ISM band.  Various  other  
wireless systems use the same band which causes 
interference and leads to significant performance 
degradation. Hence, Cognitive Radio’s (CR) could better 
determine free spectrum and coordinate the spectrum usage 
in this band. Apart from this, to reduce the interference due 
to spectral leakage, Filter Bank Multicarrier (FBMC) type 
of system is considered as an alternative to FFT based 
systems. In this study, FFT and filter bank based spectrum 
sensing methods are compared by applying them for 
detecting spectral holes between WLAN and FBMC 
channels, considering also the spectral leakage effects 
appearing practical WLANs. Also the performance of 
alternative multicarrier techniques regarding the efficiency 
of spectrum utilization is studied. 

Index Terms— CR, FFT, filter bank, spectrum 
sensing, spectrum utilization, loading algorithms 
 

1. INTRODUCTION 

Some of the challenges to reliable communication are 
increasing traffic rates, limited spectrum availability, and 
interferences between different systems/users [1]. For 
example, the 2.4 GHz ISM band is globally available and 
hence used by various wireless systems. To reduce 
interference and better utilize the spectrum, Cognitive 
Radio (CR) and advanced signal processing techniques 
have recently been studied extensively [2, 3, 4, 5].  

CR relies on spectrum sensing to identify a spectrum 
hole. Once the spectrum information is obtained, a CR 
must establish and maintain a non-interfered reliable 
communication. Due to varying channel conditions, 
repeated monitoring and cooperation with other users is 
required for reliable spectrum sensing approaches [6].  

 Cyclic prefix based CP-OFDM techniques are simple 
and robust and many advances have been made in terms of 
signal processing functions on the receiver side. However, 
also alternative multicarrier techniques have been studied 
increasingly in the literature. Especially, FBMC techniques 

have been realized to have various potential benefits in the 
CR context. In  case  of  FBMC,  the  analysis  filter  bank  
(AFB) on the receiver side can be applied also for spectrum 
analysis purposes [7], [8], [9], [10], [11].  

In this study, wideband multichannel spectrum sensing 
techniques are considered. By averaging the output samples 
of a filter bank based spectrum analyzer simultaneously for 
multiple center frequencies and bandwidths, multiple 
spectral gaps can be tested and identified rapidly in an 
efficient and flexible way. 

After the spectrum is sensed, efficient spectrum 
utilization is important in maximizing the cognitive radio’s 
throughput. Spectrum utilization can be improved using 
proper loading algorithms [12, 13]. When the Channel 
State Information (CSI) is known, the transmit power or the 
data rate can be adapted according to the CSI. The 
adaptation algorithms, the so-called loading algorithms use 
commonly the water-filling principle. Water-filling solution 
can be thought of as the curve of inverted channel signal to 
noise ratio being filled with energy to a constant line. There 
are two different loading algorithms, rate adaptive and 
margin adaptive [14]. The loading algorithms commonly 
assume that the channel is quasi-static. Hence, the 
allocation of bits and energy can be done once at the 
beginning of the transmission and can be maintained until 
a new set of CSI is available.  

In this paper, the rate adaptive algorithm is used for 
maximizing the data rate of a CR operating in a spectral 
hole. The power of the secondary transmission is 
determined so as not to interfere with the primary. Hence 
the rate adaptive algorithm is better suited for this study. To 
maximize the total data rate of the CR, there is a need to 
maximize the achievable rate for each subband, constraint 
on the total energy that is allowed for the CR transmission 
symbols [14].  

In  Section  2,  OFDM  based  WLAN  and  FBMC  signal  
models are given and FFT and AFB based spectrum 
sensing is reviewed, considering the spectrum analysis 
aspects related to the multicarrier techniques. Section 3 
develops an efficient spectrum utilization model. Section 4 
gives simulation results for the considered radio scene, and 



finally, some concluding remarks are given about the 
performance of these methods. 

2. SIGNAL MODELS AND AFB & FFT BASED 

SPECTRUM SENSING ALGORITHMS 

2.1. OFDM and FBMC Signal Models 

Even though CP-OFDM is the most well known 
multicarrier technology, OFDM/OQAM based FBMC 
signal model can be used to overcome the spectral leakage 
problems. The ideas are readily applicable to all FBMC 
models which are based on uniform highly selective filter 
banks [9].  The  IFFT  and  FFT,  or  more  generally,  the  
synthesis filter bank (SFB) and analysis filter bank (AFB) 
are used as the core parts in multicarrier systems on the 
transmitter and receiver sides, respectively.  

In our numerical studies, we consider a scenario with 
two active 802.11g based WLANs or two FBMC signals 
with similar parameters, as shown in figure 1. The two 
channels are assumed to have the same power level, 
normalized to 0 dB. In this case WLAN1 and WLAN2 
signals and FBMC1 and FBMC2 use channels 3 and 8, 
respectively, out of the entire 11 different channels.  The 
channels don't overlap and there is 8 MHz spectrum hole 
available in this scenario. Due to the transmitter power 
amplifier (PA) non-linearity, spectral regrowth gets 
introduced raising the spectral density in the nearby 
frequencies. Considering the worst case situation allowed 
by the 802.11g specifications, the power spectrum density 
in the gap between the two channels can be at about -20 
dBr (20 dB below the passband level) [4]. The specific 
FBMC design, described in [7], has at least 50 dB stop 
band attenuation. However, depending on the linearity of 
the PA, some spectrum leakage would be present also in the 
FBMC case.  

 
Figure 1.  Two WLAN and FBMC signals using 3rd and 8th WLAN 

channels in 2.4 GHz ISM band. 

2.2. FFT and AFB based Spectrum Sensing 

Block diagram of alternative FFT and AFB based spectrum 
sensing algorithms are shown in Figure 2. 

 

Figure 2.  Block diagram of energy detector with AFB and FFT based 
spectrum analysis 

 In the following analysis, it is assumed that the 
subband sampling rate is equal to the ADC sampling rate 
divided by the number of FFT/AFB frequency bins. 
According to the subband-wise spectrum sensing idea, the 
subband signals can be formulated as [3]: 
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where ( , )S m k  is the transmitted primary user (PU) signal 
as seen in subband k of the thm  FFT or AFB output block, 
and ( , )W m k is the corresponding channel noise sample 
when the signal is absent. 0H  and 1H  express the absent 
hypothesis and present hypothesis of a PU, respectively. 
When there is only AWGN noise present, it is modeled as a 
zero-mean Gaussian random variable with variance 2

w , i.e., 
2( , ) (0, )wW m k N . The WLAN or FBMC signals can 

also be modeled as a zero-mean Gaussian variable 
2( , ) (0, )kS m k N  where, 2

k is the variance (power) at 
subband k . 

In energy detection based spectrum sensing, the 
absolute square of the FFT or AFB output 

2( , )Y m k  is 
compared with a threshold value to decide between 0H  and 

1H . The threshold is calculated according to the noise 
variance, which is here assumed to be known, e.g., based 
on previous measurements and target false alarm 
probability. Instead of using a single sample for the 
decision, time and frequency averaging method is applied 
in order to obtain more reliable decision statistic [3]. For 
this case, the decision statistics at different frequencies can 
be obtained as [7] 
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and fL  and tL  are the filter  lengths in frequency and 
time, respectively. The output of ( , )Y m k  is received by 
threshold function to determine the possible occupancy of 
the corresponding frequency band at the corresponding 
time interval. To simplify notations, the sensing time index 
m  is  dropped in later expressions.  

As ( , )Y m k has Gaussian distribution, the probability 
distribution functions (PDF) of the time filter outputs 



KY can be approximated as Gaussian distributions under 
0H and 1H [3]. The threshold value  can be obtained 

according to the target false alarm probability and noise 
variance. False alarm probability FAP  and detection 
probability DP  can be expressed as follows 

 
2 2

1 2 2 2

( )Pr( | ) ( )
( ) /

n k
D K

n k t f

P Y H Q
L L

 (3) 

 
2

0 4
Pr( | ) ( )

/
n

FA K

n t f

P Y H Q
L L

 (4) 

3.  SPECTRUM UTILIZATION 
The block diagram of spectrum utilization process is shown 
in figure 3. Loading algorithms maximize the spectrum 
utilization by a CR. Especially, rate adaptive loading 
algorithm are better suited as they offer better control of the 
interference from a CR to the PU receivers. Rate adaptive 
loading algorithm maximizes the number of bits per symbol 
subjected to a fixed energy constraint [14]. In the following, 
1/T  is the symbol rate, nb  is the number of bits in 
subcarrier n , and ne is the nth subcarrier energy. Then the 
total number of bits in the available set of N  parallel 
subcarrier symbols is  n

n
b b . The overall data rate is 

/R b T  and the total energy of the N parallel subcarrier 
symbols is constraint to 

1


N
nn

n
e Ne  where nNe is the 

total energy allowed in the system under consideration.  
The largest data rate is achieved by maximizing the sum 
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where 2 2/( )n n ng H  is  the  subband  SNR  per  unit  
energy from the transmitter, 2

nH is the channel gain of the 
nth sub band and  is the gap formulation as given in [14]. 

2
n Is the noise and interference variance in subband n , 
i.e., it contains both the channel white noise and spectrum 
leakage from the WLAN channels.  
 The optimum loading can be formulated as: 

 

2
1

1

1 *1max log
2

:





        







n

N
n n

e n

N

x n
n

e g
b

subject Ne e
 (6) 

The solution to this optimization problem leads to the water 
filling constant K  given below [14] . 

 

  

Spectrum Utilization Algorithm 

The rate maximization algorithm [14] used in this work is 
given below 

1. Sort the sub-channels based on their gains 
1 2 3 Ng g g g     

2. Find the largest i for which 
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3. Eliminate the negative energies 0ne  and set 
0ne   and 0nb  for those subcarriers. Set 

* , N N i where i is the number of subcarriers 
with negative energies, / 0  i ie K g . The 
water- filling constant is also recalculated for the 
new *

N . 
4. Compute the water-filling energies / n ne K g  

where *1, 2 ,n N  
5. Calculate the data rate for unsorted sub-channels 

as 
*

2log (1 )/ 2 1, 2, ,n n nb e g n N      
To implement this algorithm, the channel estimate, in 

the form of subband gains nH  is  needed,  as  well  as  
estimates of the noise + interference powers 2

n of the sub 
bands. The latter one is estimated using subcarrier wise 
FFT or AFB based energy metric, i.e., using (2) with 

1fL . 
One central issue in our discussion is the effect of the 

spectrum leakage in OFDM and FBMC systems on the 
throughput of the CR utilizing the spectral hole. Due to the 
good  spectral  containment  of  the  sub  bands  in  FBMC,  we  
expect the spectrum leakage to be less critical in the FBMC 
case.  

 
Figure 3.  Block diagram of spectrum  utilization with water filling after 

spectrum analysis 

4. SIMULATION RESULTS 

Here we consider using the gap between the two channels 
of figure 1 for secondary transmissions by a CR system. We 
can notice that the case where the two primary signals are 
at equal power levels is the worst-case situation for the CR. 
This is because otherwise the spectrum leakage effects 
would be less critical on the side of the weaker WLAN 
channel. The WLANs and WLAN-like FBMC systems use 
the main parameters of 802.11g. However, it is assumed 
that the spectrum sensing and CR transmissions use smaller 



subchannel bandwidth of  81.5 kHz. For spectrum sensing, 
the time and frequency fíltering lengths are chosen as 50 
and 5, respectively, in order to be able to detect other 
narrowband systems, like Bluetooth [5]. Regarding the 
level of spectral regrowth, we consider three cases: no 
regrowth, modest regrowth at the level of -30 dBr, and 
worst-case regrowth at -20 dBr. 

Figures 4 shows the number of  subbands determined to 
be empty, both for OFDM and FBMC based primaries and 
with different levels of spectral regrowth. The target false 
alarm probability is chosen as PFA=0.1. The ITU-R 
Vehicular A channel model  is used. As we can see,  with 
no or modest spactral regrowth, an FBMC primary would 
allow a clearly higher number of subchannels to be used by 
the CR system compared to OFDM-based WLAN. Also 
AFB finds higher number of empty subbands compared to 
FFT, in reliable way. With the worst-case regrowth allowed 
by 802.11g, the differences dissappear.   

 

Figure 4.  Number of empty subbands in the spectral hole between WLANs 
and FBMCs with target 0.1FAP   , time record length of 50 , sensing 
bandwidth of 5 subbands for (a) no spectrum regrowth, (b) modest-case 

spectrum regrowth, and (c) worst-case spectrum regrowth 

The actual false alarm probabilities versus  the active 
primary systems’ SNR, as seen by the CR receiver, can be 
seen in figure 5.  This is actually the probability that a 
group of 5 subchannels in the center of the gap would be 
detected to be occupied due to spectral leakage.  

 
 

Figure 5.   Actual false alarm probability with target 0.1FAP   with (a)no 
spectrum regrowth, (b) modest-case spectrum regrowth, and (c)worst-case 

spectrum regrowth  

Finally, the achievable data rate in the spectrum gap 
between two active primary channels, as determined by the 
rate adaptive algorithm, are shown in figures 6. Perfect 
channel estimation is assumed and the subband-wise SINR 
(signal to interference plus noise ratio) estimates are 
obtained using time filtering length of 50 samples. It can be 
seen that under the high SNR case, the number of subbands 
that can be used by the CR reduces in the OFDM case due 
to the spectral leakage. An FBMC primary with AFB based 
spectrum sensing at the CR would maximize the CR system 
performance, while AFB based sensing in the traditional 
WLAN case shows significant benefit with low or modest 
spectral regrowth. With the worst case spectral regrowth, 
the  benefits  of  FBMC  and  AFB  disappear.  It  can  also  be  
seen that with the used parameters, the spectrum sensing 
algorithm and the rate adaptive bit loading algorithm 
(which can be applied after the spectrum has first been 
detected to be available) end up in using about the same 
number of sub bands.  
 



 

Figure 6.  Available data rate as a function of signal  to noise ratio with 10 
dB and 3 dB CR with  (a) no spectrum regrowth, (b) modest-case spectrum 

regrowth, and (c) worst-case spectrum regrowth.  

5. CONCLUSION 

We have analyzed the performance of energy detection 
based spectrum sensing techniques using either FFT or 
filter bank based spectrum analysis methods for both 
WLAN and FBMC signal models and utilizing spectral 
holes with water filling algorithms. As a spectrum sensing 
method, AFB has clear benefits due to much better spectral 
containment of the sub channels. One significant benefit of 
FBMC as a transmission technique in CR systems is that it 
can utilize narrow spectral gaps in an effective and flexible 
way. On the other hand, FBMC multicarrier eliminates the 
extra complexity due to AFB design because of its 
transmitter and receiver characteristics. As a conclusion, 
use of FBMC model, instead of OFDM based WLAN model 
provides better performance in terms of the spectral leakage 
problem.  

In the future work, to complete the picture, we will 
consider the effects of the spectrum leakage from the CR 
transmissions to primary WLAN receivers. These effects 
should also be taken into consideration in the CR subcarrier 
allocation, based on known or assumed channel selectivity 
of the WLAN receiver.   
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Abstract

Multicarrier waveforms have been commonly recognized as strong candidates for cognitive radio. In this paper, we
study the dynamics of spectrum sensing and spectrum allocation functions in cognitive radio context using very
practical signal models for the primary users (PUs), including the effects of power amplifier nonlinearities. We start
by sensing the spectrum with energy detection-based wideband multichannel spectrum sensing algorithm and
continue by investigating optimal resource allocation methods. Along the way, we examine the effects of spectral
regrowth due to the inevitable power amplifier nonlinearities of the PU transmitters. The signal model includes
frequency selective block-fading channel models for both secondary and primary transmissions. Filter bank-based
wideband spectrum sensing techniques are applied for detecting spectral holes and filter bank-based multicarrier
(FBMC) modulation is selected for transmission as an alternative multicarrier waveform to avoid the disadvantage of
limited spectral containment of orthogonal frequency-division multiplexing (OFDM)-based multicarrier systems. The
optimization technique used for the resource allocation approach considered in this study utilizes the information
obtained through spectrum sensing and knowledge of spectrum leakage effects of the underlying waveforms,
including a practical power amplifier model for the PU transmitter. This study utilizes a computationally efficient
algorithm to maximize the SU link capacity with power and interference constraints. It is seen that the SU transmission
capacity depends critically on the spectral containment of the PU waveform, and these effects are quantified in a case
study using an 802.11-g WLAN scenario.

Keywords: CR; OFDM; FBMC; Filter bank; Spectrum sensing; Energy detector; Spectrum utilization; Loading algorithms;
Multicarrier

1 Introduction

One of the major challenges in cognitive radio (CR) op-

eration is to utilize the available whitespace with min-

imal interference to the primary or prioritized secondary

transmission systems [1]. Several spectrum sensing tech-

niques have been proposed, e.g., in [2-5] to facilitate CR

operation. Especially, energy detector-based spectrum

sensing algorithms have been widely considered due to

low computational complexity. On the other hand, the

fading channel capacity has already been studied from

an information theoretic perspective, e.g., in [6,7] in

terms of resource allocation. Recently, the secondary

user (SU) capacity has been widely studied. The SU

channel capacity for additive white Gaussian noise

(AWGN) channels under different power constraint is

studied in [8]. The effect of various types of fading chan-

nels on the CR capacity has been studied in [9] under

optimal power allocation strategy for the CR and sub-

jected to an interference power constraint at the co-

existing primary. Further, [10] discusses the effects of

peak power and average interference power constraints

on the outage capacity. In [11], the ergodic capacity, the

delay-limited capacity, and the outage capacity of the CR

in block-fading channels under spectrum sharing are

discussed.

In this paper, we investigate two important features of

the cognitive radio. We begin with the spectrum sensing

function and later study the spectrum utilization
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function implementing optimized resource allocation

under power and interference constraints. Instead of

elaborate spectrum sensing techniques, such as cyclosta-

tionary and eigenvalue-based methods [2,3], energy

detector-based spectrum sensing is utilized. This is moti-

vated by subband-based energy detector's capability to

implement the needed spectrum analysis functions for

identifying the available spectral slots and for estimating

the signal-to-interference-plus-noise (SINR) ratios at

subcarrier level for resource allocation purposes.

For a CR system, multicarrier modulation techniques

are generally better suited as they are spectrally more ef-

ficient than single carrier systems and have the flexibility

to allocate resources to the available spectral gaps and

among different users to maximize system throughput.

There are various ways of improving the spectral con-

tainment of multicarrier waveforms, including methods

to suppress the strong side lobes of the orthogonal

frequency-division multiplexing (OFDM) spectrum [12-14].

Filter bank multicarrier (FBMC) is another multicarrier

modulation scheme which has significantly reduced

spectrum leakage compared to the cyclic prefix-based

OFDM systems [15]. Also, the analysis filter bank (AFB)

module of an FBMC receiver can be easily used for

spectrum analysis purposes [15-22].

This paper includes a brief summary of our earlier

studies concerning simple energy detection-based wide-

band multichannel spectrum sensing techniques for

identifying the spectrum holes, considering the 2.4-GHz

ISM band as a case study. We apply an AFB-based

energy detector, which averages the subband sample en-

ergies. By this way, multiple center frequencies, band-

widths, and multiple spectral gaps can be identified

rapidly, efficiently, and flexibly for potential use by the

CR. A similar fast Fourier transform (FFT)-based scheme

is considered as a reference.

At the resource allocation stage, the transmit power of

the subcarriers must be adjusted according to the chan-

nel state information (CSI) and the location of subcar-

riers with respect to the primary user's (PU) spectrum.

In [23], an optimal and two sub-optimal power loading

algorithms are developed. These algorithms use La-

grange formulation which maximizes the downlink cap-

acity of the CR keeping the interference to the primary

transmission below a threshold, without considering the

total power constraint. In [23,24], the spectral hole and

the signal-to-noise (SNR) are fixed to simplify the model.

In [25], a low-complexity suboptimal algorithm is pro-

posed. The algorithm gives maximum power to each

subcarrier based on the results from conventional water

filling and then modifies these values by applying power

reduction algorithm in such a way that the interference

constraint is satisfied. In [23,25], the used signal models

are closer to the ideal signal model, e.g., assuming fixed

spectral hole bandwidth, instead of a realistic system

model. In reality, the spectral hole bandwidth varies with

the SNR. A proper system model should include also a

practical power amplifier model. Our study focuses on

the missing aspects of these studies.

The optimal solution which maximizes the CR link

capacity under both transmission power and interference

constraints requires high computational complexity, and

it is unsuitable for the practical applications. Low com-

plexity algorithms are proposed in [25,26]. However, in

these methods, the interfered subcarriers are deactivated

without considering optimized power and bit loading

based on each subcarrier's SINR. Such optimization can

be carried out using the power interference (PI) algo-

rithm [27,28]. The resource allocation method utilizes

the results of spectrum sensing in an efficient way, so

there is interdependence between the spectrum sensing

and spectrum allocation functions, which has not been

addressed in earlier work. We study this interdepend-

ence, focusing on its effects on efficient utilization of the

sensed spectrum.

The main contributions of this study are listed as

follows:

� We have generalized the study for realistic signal

models which can be applied to any multicarrier CR

system.

Until now, simplistic CP-OFDM signal models have

been used as the PU and CR signal models for

spectrum allocation algorithms [23-26,29-32]. Except

for [27,28], CP-OFDM has also been used for the CR.

The primary knowledge we assume about the PU

waveform is its transmitted power spectral density

(PSD) and the receiver selectivity mask; otherwise,

there are no limitations regarding the PU signal

model. In our case study, we select the PU waveform

either as CP-OFDM following the 802.11-g standard

or an FBMC waveform with similar parameterization.

Furthermore, a nonlinear transmitter power amplifier

model (the so-called Rapp model [33]) is used for the

PU system in order to obtain a realistic model for the

PU spectrum. To the best of our knowledge, this

aspect has not been considered in earlier work. In this

way, we are able to quantify the effects of the PU

spectral characteristics on the SU capacity. It is seen

that the nonlinear power amplifier-induced spectral

leakage (regrowth) effect, which is present in any

radio communication system, has a significant impact

on the SU capacity. As for the SU waveform, we have

chosen the FBMC scheme for the case study because

it has the sharpest spectrum, reaching the maximum

spectral containment among the alternatives.

However, generic multicarrier model is included in

the overall system model, and the analysis and
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optimization methods are readily applicable for any

multicarrier waveform for the CR.

Furthermore, previous studies on CR resource

allocation in [23-25,27-32] consider only flat fading

channel models. However, the performance of

spectrum sensing and resource allocation is affected

significantly when frequency-selective fading channel

is assumed. In our study, all the links within/between

PU and SU systems associated with spectrum

estimation and spectrum utilization are modeled as

frequency selective block fading channels.

� Combined spectrum sensing and resource allocation

algorithms for cognitive radios.

There has been no previous work addressing the

combined spectrum sensing and resource allocation

algorithm in the literature. Especially, different types

of spectrum sensing algorithms have been applied

without considering any particular spectrum

utilization techniques to make efficient use of the

available spectral holes [1-5]. Similarly, resource

allocation algorithms have only been applied without

any spectrum sensing information so far

[27-32,34,35]. Constant number of available

subbands has been considered in the spectral hole.

However, the variation of the PUs' power level

affects the actual number of available subbands, and

this depends critically on the spectral characteristics

of the PUs. Hence, spectrum sensing plays a crucial

and enabling role for spectrum utilization process.

The sensing function identifies the frequency band

which is considered for allocation, but it is also

needed for detecting possible other PU's starting to

operate in the spectral gap during the SU operation.

For this purpose, we assume that there are gaps in

the CR transmission. In our study, efficient

spectrum utilization methods are investigated and

applied for maximizing the cognitive radio's

throughput based on robust spectrum sensing

results. It turns out that the PI algorithm is

applicable in our scenario, with all the mentioned

generalizations of the system model. The main

contribution of this study is evaluating the SU

performance with the combination of energy

detection-based wideband sensing algorithm and the

PI algorithm for spectrum utilization in a realistic

cognitive radio scenario.

The rest of this paper is organized as follows. In

Section 2, the signal models for the CR and the primary

transmission system, along with the mutual interference

model between the CR and primary are explained. The

problem definition for this study is given in the same

section. In Section 3, FFT- and AFB-based wideband

spectrum sensing is reviewed considering the spectrum

analysis aspects related to the multicarrier techniques.

Section 4 develops the algorithms for spectrum alloca-

tion. Section 5 gives the numeric and graphic results ob-

tained through simulations. Finally, some concluding

remarks are given about the performance of these

methods, along with discussion of possible further stud-

ies in this area.

2 Signal models and problem definition

As shown in Figure 1, the CR system works in the same

band of frequencies with PU networks. Hence, there will

be some interference between different PUs and CRs.

The PU and CR systems are assumed to use the time-

division multiplexing/duplexing (TDMA/TDD) princi-

ples, i.e., each system is using a fixed frequency slot for

communications between all the stations. While the CR

system has the capability to operate in other parts of the

ISM band, we focus on the situation where the CR

Figure 1 System model for spectrum sharing in CR.
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system has identified a spectrum opportunity in the

mentioned frequency slot and is initiating communica-

tions in it. The primary purpose of the spectrum sensing

function is to detect possible other transmissions or

reappearing PUs in the spectrum gap. It is also assumed

that the stations of the CR systems have means to ex-

change control information with each other, e.g., using a

cognitive control channel [36].

2.1 Signal model for PU

In this study, we focus on a specific spectrum use sce-

nario with two active primary radio systems which are

operating in the 2.4-GHz ISM band, using either as

802.11 g-based WLAN waveforms or 802.11 g-like

FBMC signals. The WLAN and FBMC spectra consid-

ered here use third and eighth channels as illustrated in

Figure 2. The signals do not overlap each other, and an

8-MHz spectral hole is available between the two PU

spectra. Both active signals are assumed to have the

same power level, normalized to 0 dB in our scenario.

This means that the spectrum leakage effects on both

edges of the white space are equally critical for the CR

system performance.

The Rapp power amplifier (PA) nonlinearity model

[33] is considered as seen in Figure 2. Using the complex

I/Q baseband model, the amplitude function at the PA

output is given as follows:

gA ¼
κA

1þ κA=A0½ �2p
� �1=2p

ð1Þ

where A is the input amplitude, κ is the small signal gain,

A0 is the saturated amplitude, and p is the amplitude

smoothness factor of the transition from linear to satu-

rated amplitude range. Three cases with respect to the PA

nonlinearity are considered in this study. No regrowth is

the ideal case, and the Rapp PA nonlinearity with two dif-

ferent back-off values of 15 dB (modest case) and 5 dB

(worst case) is illustrated in Figure 2. Parameters of the

Rapp model have been chosen according to the practical

model for PU signals based on [37]. In our study, we use

κ = 1, p = 3, and A0 = 1 as Rapp model simulation

parameters.

The 802.11-g-based WLAN signal specifications allow

the spectral regrowth in this scenario to be at the level

of about −20 dB, i.e., close to the worst case model. We

investigate how the CR system performance is affected

by improved spectral containment of the PU signal

through enhanced multicarrier waveform and/or im-

proved power amplifier linearity. These effects for both

sensing and utilization functions will be addressed in the

study.

2.2 Signal model for cognitive radio

In this work, the CR waveform is chosen as FBMC due

to its high spectral containment. Offset quadrature amp-

litude modulation (OQAM) is used for FBMC-based

CRs to achieve orthogonality of subcarriers, as discussed

in [18,19,38]. In Figure 1, the channels h0 and h1 are the

channels from a cognitive transmitter to a primary re-

ceiver and a cognitive receiver, respectively. Channels h2
and h3 are from two different primary transmitters to

the cognitive radio receiver. The channel estimate for h1
is made available by usual channel estimation procedure

of the CR system. The knowledge about channel h0 can

be obtained through the channel reciprocity in TDD
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operation. Here, the channel amplitude response is suffi-

cient and the phase response is irrelevant. The ampli-

tude responses of channels h2 and h3 are first obtained

through the spectrum sensing function of the CR device

and later on, during secondary transmission, through the

SINR estimation function of the CR device. The effects

of primary spectral dynamics at the edges of the white

space play an important role both in spectrum sensing

and in spectrum allocation. This dependency is captured

by the analytical models and revealed by the simulations

to be presented later.

For FBMC/OQAM, a signal model with real valued

symbol sequence at twice the QAM symbol rate is ap-

plied, instead of complex symbols. The synthesis filter

bank (SFB) for transmitter and AFB for receiver is de-

signed with this idea in mind. The FBMC-based trans-

mitted signal can be expressed mathematically as

s nð Þ ¼
X

k

X

l∈Z

ak;lg n−lτ0ð Þej2π k=Nð Þnejϕk;l ð2Þ

where {k} is the set of active subbands, l is the symbol

index belonging to the set of integers, g is the pulse

shape (prototype filter impulse response), and ϕk,l is a

phase term. The real symbol values, obtained alternat-

ingly as real and imaginary parts of complex QAM sym-

bols, are denoted as ak,l and τ0, respectively, is the

corresponding half-symbol duration. Both the real and

imaginary parts of the QAM sequence have zero mean

and equal variances σ2r ¼ σ2
I ¼ σ2

s =2 . The PSD of the

FBMC based CR waveform can be written as

ϕFBMC fð Þ ¼
σ2
r

τ0

X

k

G f −
k

N

� ��

�

�

�

�

�

�

�

2

ð3Þ

where G is the frequency response of the prototype fil-

ter with impulse response g(n) with n = 0, 1 …, L − 1.

Here, L = KN is the prototype filter length and K is

the overlapping factor (length of each polyphase com-

ponent) while N is the number of subbands. The

prototype coefficients have even symmetry around the

(KN/2)th coefficient, and the first coefficient is zero

[13]. In our study, the prototype filter of the FBMC-

based CR is designed according to the PHYDYAS

model [38], with K = 4. Then its frequency response

can then be expressed as

G fð Þj j ¼ g L=2½ � þ 2
X

L=2−1

r¼1

g L=2−r½ � cos 2πfrð Þ ð4Þ

Also, the nonlinear PA model can be straightforwardly

included in the CR signal model and the interference

models developed below. However, in the numerical

studies of this paper, we consider an ideal FBMC wave-

form for the CR as the focus is on the SU capacity and

its dependency on the PU waveform characteristics.

Generally, good spectral containment is regarded as one

of the key requirements for the CR transmitter. Detailed

evaluation of the performance-complexity tradeoffs for

the CR implementation, including the PA linearity re-

quirements, is a rather complicated issue and is left as a

topic for future studies.

2.3 Definition of the interference problem

According to the above scenario, the CR system coexists

with the primary transmission system in the same geo-

graphical location. The CR transmitter causes some

interference to the primary transmission system, and

similarly, the secondary transmission between two active

PU spectra is exposed to some interference due to the

PUs. The secondary transmission system uses multicar-

rier transmission technique. There are Ngap subcarriers

in the sensed spectrum hole and the subcarrier spacing

is Δf. Since the transmitter and receiver are assumed to

be static or slowly moving, the effect of inter-carrier

interference (ICI) between subcarriers can be ignored.

The primary and secondary transmission systems occupy

contiguous frequency slots. The interference that the CR

produces to each of the primaries is required to be is

less than the maximum interference that can be toler-

ated by the primary, Ith. The spectral distance dPU of a

PU is defined as the frequency separation from the DC

subcarrier of the CR to the center frequency of the PU

(positive for a PU above the upper edge of the gap, nega-

tive for a PU below the gap). The interference to the pri-

mary transmission due to the kth CR subcarrier depends

on the CR subcarrier powers Pk and dPU [20]. Fixing the

origin of the frequency axis at the DC subcarrier of the

CR, the interference is given by the equation

Ik Pkð Þ ¼

Z kΔf þB=2

kΔf −B=2

H0 fð Þj j2PkΦ f −kΔfð ÞΨ f −dPUð Þdf ¼ PkΩk

ð5Þ

Here, H0(f ) is the channel frequency response be-

tween the CR transmitter and a primary receiver. Φ(f )

represents the subcarrier power spectral density of the

underlying multicarrier technique employed by the CR.

Ψ(f ) denotes the PU sensitivity mask characterizing

the effects of the PU receiver filtering. B denotes the

CR subcarrier bandwidth which is considered signifi-

cant for the interference estimation. Finally, Ωk repre-

sents the combined interference factor for the kth CR

subcarrier.
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The signal-to-interference-plus-noise ratio due to inter-

ference introduced by primary signal to the kth subcarrier

at the receiving CR is given by

SINRk ¼
Pk H1;k

�

�

�

�

2

σ2
w þ

Z kΔf þB=2

kΔf −B=2

H2 fð Þj j2Φ f −kΔfð ÞψPA f −dPUð Þdf

¼
Pk

σ2
w þ Jk

ð6Þ

where H2(f ) is the channel frequency response between

the primary transmitter and CR receiver. H1,k is the

channel gain between the CR transmitter and the CR re-

ceiver at the frequency of kth subcarrier. This channel

can be assumed to be flat-fading at the subcarrier level.

ΨPA(f ) is the power spectral density as seen at the output

of the PU's transmitter antenna. This depends on the PU

transmission power and its subcarrier spectrum, as well

as on the spectral regrowth due to the PU power ampli-

fier. Φ(f ) is the CR receiver sensitivity mask characteriz-

ing the CR receiver subband filtering effects. σ2w is the

variance of the additive white Gaussian noise.

The power amplifier effects of the secondary transmis-

sion are not considered in our numerical study as they

play no role in the spectrum sensing part and the effect

of PA-related spectrum leakage on the interference to the

PUs is expected to be relatively small. For this reason, the

same Φ(f ) function can be used in (5) for the CR sub-

carrier spectrum and in (6) for the CR receiver sensitivity

mask. However, the developed generic signal model allows

to include also the CR transmitter PA effects by using dif-

ferent CR-related spectral functions in (5) and (6).

The interference models of (5) and (6) assume certain

knowledge about PU characteristics and the channels

between PUs and CRs. Regarding the interference from

an active PU transmitter to a CR receiver in (6), the joint

effect of transmitter power spectrum and the transmis-

sion channel can be estimated by the receiving CR sta-

tion by utilizing the spectrum sensing function. This

information can be communicated through the control

channel to the transmitting CR station for optimizing

the spectrum utilization. Regarding the channel from the

CR transmitter to PU receiver, the knowledge would be

available in a TDMA/TDD-based PU system (like a

WLAN) based on channel reciprocity, if the PU trans-

mission power is known. Of course, for a PU station

which is in idle mode over long periods, such informa-

tion is not available.

3 Filter bank energy detector-based spectrum

sensing algorithms
Energy detector, which is also known as radiometer, is

the most common method of spectrum sensing due to

its low computational and implementation complexity

[2-5]. Furthermore, it is more generic compared to most

of the other methods as it does not need any informa-

tion about the PU waveform. Subband-based energy de-

tection, using FFT or AFB for spectrum analysis, is in

the focus of this study. Basically, the energy of the re-

ceived signal is compared with a threshold value which

is calculated according to noise variance and desired

false alarm probability in detecting spectral holes.

A block diagram of alternative FFT- and AFB-based

spectrum sensing algorithms is shown in Figure 3. The

subband sampling rate is equal to the ADC sampling

rate divided by the number of FFT/AFB frequency bins.

With subband-wise spectrum sensing method, the sub-

band signals can be expressed as [3]

Y m; kð Þ ¼
W m; kð Þ H0

S m; kð ÞHk þW m; kð Þ H1

� �

ð7Þ

where S(m, k) is the transmitted WLAN or FBMC based

PU signals as seen in subband k during the mth symbol

interval with zero mean and variance σ2PU . When there

are no PU signals (hypothesis H0), the noise samples W

(m, k) are modeled as AWGN with zero-mean and vari-

ance σ2
w . When a PU signal is present (hypothesis H1),

the WLAN- and FBMC-based PU signals can also be

modeled as zero-mean Gaussian distribution with variance

σ2PU;k þ σ2w.

Time and frequency averaging techniques can be ap-

plied to obtain more reliable decision statistic [3]. The

decision statistics at different frequencies can be ob-

tained with this idea as follows in [39]:

~T m; kð Þ ¼
1

LtLf

Xkþ⌈Lf =2⌉−1

l¼k−⌊Lf =2⌋

Xm

u¼m−Ltþ1
Y u; lð Þj j

2

ð8Þ

In this formula, Lf and Lt are the window lengths in

frequency and time domain averaging, respectively. The

output of ~T m; kð Þ is passed to a decision device to deter-

mine the possible occupancy of the corresponding fre-

quency band at the corresponding time interval. The

window length in frequency direction is selected based

on the expected minimum bandwidth of the PU signal

or spectrum hole, and then the required time domain

window length can be calculated from the target false

FFT

AFB

Time and Frequency

Filter

Decision

Device

Decision

Device

| . | 2

| . | 2 Time and Frequency

Filter

WLAN

FBMC

Figure 3 Block diagram of energy detector with AFB- and

FFT-based spectrum analysis.
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alarm and missed detection probabilities. The basic ap-

proach would be to calculate (8) for a nonoverlapping

set of windows. However, using a sliding window in fre-

quency and/or time direction can also be done with rela-

tively small addition to complexity. Time-domain sliding

window helps to detect rapidly re-appearing PU [4,5]

whereas sliding window in the frequency direction helps

to locate spectrum gaps with unknown center frequen-

cies. Due to the Gaussian distribution of Y(m, k), the

probability distribution function (PDF) of ~T m; kð Þ be-

comes approximately Gaussian under H0 and H1. [3].

Using Gaussian approximation, it is straightforward to

model the effect of PU transmitter's spectral leakage on

the actual false alarm probability ~PFA as

~PFA kð Þ ¼ Q
λ− σ2w þ Iadj kð Þ

� �

ffiffiffiffiffiffiffi

1
LtLf

q

σ2
w þ Iadj kð Þ

� �

0

B

@

1

C

A
ð9Þ

Here,

Iadj kð Þ ¼

Z f 2

f 1

H2 fð Þj j2ψPA fð Þdf ð10Þ

is the leakage power from the adjacent PU transmitter to

the sensing frequency band between frequencies f1 and

f2. H2(f ) is the channel frequency response from a

primary transmitter the CR receiver. In (9), λ is the deci-

sion threshold value which is calculated using a well-

known analytical model from the noise variance estimate

and target false alarm probability PFA.

The detection probability PD and threshold value λ

can also be expressed as follows:

PD kð Þ ¼ Q
λ− σ2w þ Iadj kð Þ

� �

þ σ2PU;k


 �

ffiffiffiffiffiffiffi

1
LtLf

q

σ2w þ Iadj kð Þ
� �

þ σ2
PU;k


 �

0

B

@

1

C

A
ð11Þ

λ ¼ Q−1 PFA kð Þð Þ

ffiffiffiffiffiffiffiffiffi

1

LtLf

s

σ2w þ Iadj kð Þ
� �

þ σ2w þ Iadj kð Þ
� �

ð12Þ

In principle, if there is a reliable estimate of the PU

transmission power and reliable knowledge about its

spectrum shape, then the above analysis could be used

for improving the spectrum sensing at the frequencies

affected by the spectrum leakage. However, this would

be very challenging in practice due to the unpredictabil-

ity of the PA characteristics, and the above model is used

only for the purpose of performance analysis.

For different PU SNR values, different number of empty

subbands, Ngap, will be detected due to the PU spectral

leakage effects and statistical nature of the spectrum sens-

ing process. The expression (9) can be used for evaluating

the false alarm probability for different sensing band-

widths in different parts of the spectrum gap.

The spectrum sensing function identifies groups of Lf
subbands which are deemed to be available for second-

ary transmissions. In the following stage, the spectrum

utilization function is employed to perform power and

bit allocation to those subcarriers.

4 Spectrum utilization

After nonactive spectrum has been identified, spectrum

utilization becomes an important consideration, when

considering the overall efficiency of the CR system. The

number of available nonactive subbands is the output of

the sensing algorithm, along with information about the

nonactive band edges.

In the multicarrier case, the rate at which transmission

can take place is given by Shannon's capacity

RCR ¼
X

Ngap

k¼1

Δf log2 1þ
Pk

σ2k

� �

ð13Þ

σ2k ¼ σ2w þ
X

NPU

i¼1

Jk;i ð14Þ

where Jk,i is the effective interference power contributed

by ith primary to the kth CR subcarrier as given by (6).

NPU is the number of PU's contributing to the interfer-

ence at the receiving CR station. In our case study, NPU =

2, i.e., there is one PU adjacent to the lower and upper

edges of the white space. The model could be simplified

by assuming that these PUs affect only the lower and

upper half of the subcarriers, respectively. Pk is the trans-

mit power used by the CR for subcarrier k. It is assumed

that the channel changes slowly so that the channel gains,

and consequently Jk,i, will be approximately the same dur-

ing each transmission frame. Further, there is no ICI in

the CR reception due to low mobility. The main objective

here is to maximize the capacity as given in (13).

The block diagram of spectrum utilization is shown in

Figure 4. As seen in this block diagram, knowledge

which comes from sensing part is passed to spectrum

utilization part to obtain better capacity.
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AFB- and FFT-based spectrum analysis schemes.
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The optimization problem can be formulated as fol-

lows [27]:

RCR ¼ max
Pkf g

X

Ngap

k¼1

Δf log2 1þ
Pk

σ2k

� �

ð15Þ

Subject to

X

Ngap

k¼1

Pk ≤ PT ð16Þ

X

Ngap

k¼1

PkΩk ≤ I th ð17Þ

Pk ≥ 0; ∀k ∈ 1; 2;…;Ngap

� 

ð18Þ

This is a convex optimization problem, and the La-

grangian can be written as

Gsnr ¼
X

Ngap

k¼1

Δf log2 1þ
Pk

σ2k

� �

−λ0
X

Ngap

k¼1

Pk−PTð Þ−λ1 PkΩk−I thð Þ þ λ2
X

Ngap

k¼1

Pk

ð19Þ

The Karush-Kuhn-Tucker (KKT) conditions [27] can

be written as

Pk ≥ 0; ∀k ∈ 1; 2; ::::;Ngap

� 

; ð20Þ

λj ≥ 0; ∀j ∈ 0; 1; 2f g ð21Þ

X

Ngap

k¼1

Pk−PTð Þ ≥ 0 ð22Þ

λ1 PkΩk−I thð Þ ≥ 0 ð23Þ

λ2
X

Ngap

k¼1

Pk ≥ 0 ð24Þ

The optimal solution to the problem above as given in

[27] is as follows:

Pk ¼
1

λ0Ωk þ λ1
−

σ2k
hkj j

� �þ

ð25Þ

where [y]+ =max(0, y). The optimal solution has high

computationally complexity; hence, a lower complexity

algorithm called the PI algorithm which divides the

problem into stages has been developed [27]. First, the

interference constraint is ignored, keeping only the total

power constraint and this leads to the classical water fill-

ing solution

Pk
0

¼ γ−
σ2
k

hkj j

� �þ

ð26Þ

where γ is the water filling level. When the total power

is ignored the solution [27] becomes

Pk
0

¼
1

λ
0

0Ωk

−
σ2k
hkj j

� �þ

ð27Þ

The value of λ'0 can be obtained by substituting (27)

into the constraint
X

Ngap

k¼1

Pk
0

Ωk ¼ I th to get

λ
0

0 ¼
Ngap;l

�

�

�

�

I
Ngap

th þ ð
X

i

Ωkσ
2
k= hkj j2Þ

ð28Þ

The above solution is optimal only when the total

power is greater than or equal to the power under the

interference constraint. Mostly, in practice, this condi-

tion is not true and this is the motivation for the PI al-

gorithm. Detailed discussion and its comparison to

various other algorithms for spectrum utilization are

available in [27].

In this study, the PI algorithm is found to be directly

applicable in case of the developed greatly enhanced sys-

tem model for the secondary usage scenario. PI algo-

rithm has four stages: maximum power determination,

power constraint, power budget distribution, and power

level re-adjustment [27].

5 Simulation results

In our test scenario, the CR's spectrum sensing function

has identified a potential spectral gap between two rela-

tively strong PUs, as illustrated in Figure 2. We should

also consider the possibility that there is another, rela-

tively weak PU signal, using one of the WLAN channels

4…7, and fully or partly occupying the gap between

channels 3 and 8. Thus, one purpose of spectrum sens-

ing is to secure that there are no other PUs active in the

considered gap. We assume that there are no additional

signals within the spectral gap, but the spectrum sensing

makes anyway false alarms. Especially close to the edges

of the gap, the spectrum leakage from the PUs raises the

false alarm probability. This effect depends on the power

level (SNR) of the PUs. In our case study, the spectrum

sensing and CR transmissions use a smaller subband

spacing of 81.5 kHz, instead of the 325-kHz subcarrier

spacing of WLANs, in order to reduce the effects of fre-

quency selective channels. Targeting at −5 dB SNR in

spectrum sensing, false alarm probability of 0.1, and de-

tection probability of 90%, the required sample complex-

ity is around 250 complex samples. The time and

frequency averaging lengths are chosen as 50 and 5, re-

spectively. The spectral hole starts from the side lobes of

WLAN 1 signal and ends at the side lobes of WLAN 2

spectrum. The available number of subbands/bandwidth
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of the spectrum is obtained after subband-based energy

detection, using FFT or AFB for spectrum analysis.

Then, the initial SINR estimation and spectrum allocation

is done based on the sensing results. Later on, the SINR

estimates are updated during SU system operation to track

the changing radio environment under frequency-selective

fading channel conditions. It is assumed that the spectrum

sensing is done in regular intervals during gaps in the CR

transmission and this helps in detecting reappearing PU

signals in the spectral gap.

It should be noticed that in the considered scenario,

there is no way for the CR system to determine the use-

ful received power level at the PU receiver. Therefore,

we choose the interference threshold to be 6 dB below

the thermal noise level, in order not to introduce signifi-

cant performance loss in case the primary receiver is op-

erating close to the sensitivity level (i.e., minimum

received power level expected to be detectable). To de-

termine the threshold value, we assume a simplified sce-

nario, where the path losses of channels h0 and h1 are

normalized to 1, i.e., the average power gains of channels

h0 and h1, denoted as G0 and G1, are equal to one. Fur-

ther, we assume that the average SNR of the CR receiver

is 10 dB. Then, the interference threshold is −16 dB in

reference to the total CR transmission power PT, or Ith =

PT/40. More generally, relaxing the normalization of h0
and h1, this can be expressed as Ith =G1PT/(40G0).

The bandwidth of the detected spectral hole is shown

in Figure 5 as a function of the average PU SNR at the

CR RX. The spectral leakage due to primary users' PA

nonlinearity is affecting significantly on the width of the

detected hole. In this respect, we consider three different

cases, as explained in Subsection 2.1: ideal PA, modest

PA nonlinearity with 15 dB back-off, and worst case

nonlinearity with 5 dB back-off. All PU and CR channels

h0, h1, h2, and h3 use frequency-selective channel models

with 90 ns delay spread and 16 taps [40]. We consider

the combinations of two PU waveforms, CP-OFDM- and

FBMC-based WLANs, as well as two spectrum sensing

techniques, based on FFT or AFB. The CR waveform is

always FBMC.

From Figure 5, it can be easily seen that AFB-based

spectrum sensing is able to detect the unoccupied

spectrum close to strong primary users much better

than FFT-based sensing. FBMC-based transmission re-

sults in much better spectral containment, which can be

effectively utilized by AFB-based sensing. However, even

with relatively modest power amplifier nonlinearity, this

benefit of FBMC waveform is compromised.

In Figure 6, the actual false alarm probability within

the spectral hole is shown as a function of the active

PU's SNR for different levels of spectral regrowth. The

results indicate the probability of the 5 subband groups

to be detected to be occupied.

The efficiency of the utilization of the 8-MHz white

space by SU in between two active PUs is shown in

Figure 7 versus the PU SNR. In this figure, perfect CSI is

considered for the CR channel, both for CR channel h1
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equalization and in the PI algorithm for resource alloca-

tion. Perfect knowledge of the amplitude response of

channel h0 is also assumed, while channels h2 and h3 are

known from spectrum sensing results. The subband-

wise noise + interference estimates are obtained using

time filtering length of 50. According to FFT- or AFB-

based spectrum sensing results, a number of subbands

are left empty in the spectrum utilization phase. The

power of these occupied subchannels is reallocated to

the other subbands that can be used by the CR. The
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sensing and OFDM/FBMC-based PU waveforms.
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power allocation is done utilizing the PI algorithm, and

the resulting capacity, in terms of bits/s/Hz, is shown in

Figure 7. The limitations of FFT-based spectrum sensing

can again be clearly seen from the results, whereas AFB-

based sensing is able to identify gaps between relatively

strong PU signals. Regarding the transmission waveform,

FBMC has clear benefit due to better spectral contain-

ment, if the effects of power amplifier nonlinearities can

be kept at a modest level. As expected, the capacity is

proportional to the available bandwidth in the gap, i.e.,

there is a clear connection between the results of

Figures 5 and 6. The resource allocation algorithm (i)

optimizes the performance with frequency selective

channels in the presence of spectral leakage from the

strong PUs and (ii) secures that the interference leakage

from the CR transmission to the primaries is at an ac-

ceptable level.

6 Conclusions
We have studied the effects of combined spectrum sens-

ing and spectrum utilization for FBMC-based cognitive

radios with realistic signal model under frequency-

selective fading channel conditions. Firstly, the perform-

ance of energy detection-based spectrum sensing

technique was analyzed using both the FFT and filter

bank-based spectrum analysis methods for both WLAN

and FBMC signal models. Then, the utilization of dy-

namically identified spectral holes with spectrum alloca-

tion algorithms, subject to power and interference

constraints, was investigated. Through this study, the ef-

fect of PU waveform's spectral containment on the CR

transmission capacity was revealed. Here, we considered

the choice between OFDM and FBMC primaries, to-

gether with the effect of spectral regrowth due to power

amplifier nonlinearity.

In terms of the spectrum sensing performance, AFB

has clear benefits due to much better spectral contain-

ment of the subbands. One important benefit of FBMC

as a transmission technique in CR systems is that it can

utilize narrow spectral gaps in an effective and flexible

way, even in the presence of strong primaries at the adja-

cent spectral slots. This is due to the excellent spectral

containment properties of the FBMC system. Additionally,

an FBMC receiver can use the AFB for high-performance

spectrum sensing with no additional complexity.

The utilization of the sensed spectrum can be opti-

mized by using proper spectrum allocation algorithms.

The PI algorithm has relatively low complexity, and it

improves the capacity of the CR system as compared to

the simple water filling-based spectrum allocation. One

of the main observations of this work was that the PI al-

gorithm can be directly utilized with the developed

highly enhanced and realistic CR system model. The sys-

tem model accommodates frequency-selective channel

models for all the associated transmission links between

PUs and SUs, as well as arbitrary transmitted power

spectra and receiver frequency responses. Because of the

above features, a FBMC-based CR system achieves

higher capacity in comparison with traditional WLAN-

based system. This increase in capacity can be attributed

to the efficient use of the available spectrum and very

small interference introduced to the primary transmis-

sions at adjacent frequencies.

One of the important aims of this study was to under-

stand the interdependence of the spectrum sensing and

the spectrum utilization parts. It can be seen that in-

creased false alarm probability has a direct effect on the

available spectrum, and hence, it heavily influences the

spectrum utilization. The PU power amplifier nonlinearity

influences the sensed secondary spectrum introducing

false alarms, hence lowering the CR system's spectrum

utilization. It was demonstrated that, with heavy power

amplifier nonlinearity, the FBMC-based primary is no

better than the OFDM primary in what comes to the

available capacity for secondary usage in the nearby

frequencies.

In the numerical studies of this paper, we considered

an ideal FBMC waveform for the CR, without consider-

ing the PA nonlinearity effects, since the focus is on the

SU capacity and it dependency on the PU signal character-

istics. Generally, good spectral containment is regarded as

one of the key requirements for the CR transmitter. Also,

the nonlinear PA model can be straightforwardly included

in the developed interference models. Detailed evaluation

of the performance-complexity tradeoffs for the CR imple-

mentation, including the PA linearity requirements, is a

rather complicated issue and is left as a topic for future

studies.
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Abstract. This paper focuses on multi-antenna interference rejection combing
(IRC) based black-space cognitive radio (BS-CR) operation. The idea of BS-CR
is to transmit secondary user (SU) signal in the same frequency band with the
primary user (PU) such that SU’s power spectral density is clearly below that of
the PU, and no significant interference is inflicted on the PU receivers. We de-
velop a novel blind IRC technique which allows such operation mode for effective
reuse of the PU spectrum for relatively short-distance CR communication. We
assume that both the PU system and the BS-CR use orthogonal frequency division
multiplexing (OFDM) waveforms with common frame structure. In this case the
PU interference on the BS-CR signal is strictly flat-fading at subcarrier level.
Sample covariance matrix based IRC adaptation is applied during silent gaps in
CR operation. During CR transmission, the target signal detection and channel
estimation utilize multiple outputs from the IRC process obtained with linearly
independent steering vectors. The performance of the proposed IRC scheme is
tested considering terrestrial digital TV broadcasting (DVB-T) as the primary
service. The resulting interference suppression capability is evaluated with dif-
ferent PU interference power levels, silent gap durations, and CR device mobil-
ities.

Keywords: black-space cognitive radio, underlay cr, interference rejection
combining, irc, receiver diversity, ofdm, dvb-t

1 Introduction

Cognitive radios (CRs) are designed to operate in radio environments with a high level
of interference and, at the same time, produce negligible interference to the primary
users (PUs) [1]-[3]. CRs have been widely studied in recent years, with main focus on
opportunistic white-space operation, i.e., dynamically identifying unused spectral
resources for CR operation. Also underlay CR operation has received some attention.
Here the idea is to transmit in wide frequency band with low power-spectral density,
typically using spread-spectrum techniques [4]. Black space CR (BS-CR), where a CR
deliberately transmits simultaneously along the primary signal in the same time-
frequency resources without causing objectionable interference has received limited
attention [5]-[8]. In general, BS-CR can operate without need for spectrum sensing and
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requires only limited spectral resources. BS-CR can make very effective reuse of
spectrum over short distances.

One of the major requirements for CR operation is to minimize the interference to
the primary transmission system. In BS-CR this is reached by setting the CR
transmission power at a small-enough level. The most important factor that enables
such a radio system is that stronger interference is easier to deal with as compared to
weaker interference [9], if proper interference cancellation techniques are utilized.
Previous studies from information theory provide theoretically achievable bounds for
such cognitive radios [10].

The use of multiple antennas allows for spatio-temporal signal processing, which
improves the detection capability of the receiver under fading multipath channel and
interference. Various methods of interference cancellation can be found in [11], [12]-
[16] and the references therein. For a detector to be optimum under interference, it has
to be a multi-user detector [11].

Interference rejection combining (IRC) receivers do not need detailed information
about the interfering signals, such as modulation order and radio channel propagation
characteristics. Therefore, IRC receivers are simple compared to optimum detectors,
making them desirable for CR scenarios.

IRC techniques are widely applied for mitigating co-channel interference, e.g.,
cellular mobile radio systems like LTE-A [17]. The use of multiple antennas in CRs
has been studied earlier, e.g., in [16]. Our initial study on this topic in highly simplified
scenario with suboptimal algorithms was in [18], but to the best of our knowledge, IRC
has not been applied to BS-CR (or underlay CR) elsewhere. The novel elements of the
scheme proposed in this paper include the following:
· The spatial channel of the interfering PU signal does not need to be explicitly

estimated, while an initial IRC solution is found by calculating the sample
covariance matrix during a silent gap in CR transmission.

· The channel of the target CR transmission is estimated for the maximum number
of linearly independent signals from which the PU interference has been
suppressed.

· The IRC weights are obtained from the channel estimates and initial IRC
solution through maximum ratio combining (MRC) of the linearly independent
signal set.

In this paper we consider BS-CR operation in the terrestrial TV frequency band,
utilizing a channel with an on-going relatively strong TV transmission. The PU is
assumed to be active continuously. If the TV channel becomes inactive, this can be
easily detected by each of the CR stations in the reception mode. Then the CR system
may, for example, continue operation as a spectrum sensing based CR system. In our
case study, we focus on the basic scenario of IRC based multi-antenna CR receiver with
co-channel interference generated by a single PU transmitter. The performance of such
a system under different interference levels, timing offsets, and modulation orders is
studied. Also, the effect of silent period length and CR device mobility on the
performance is evaluated. The rest of the paper is organized as follows: In Section 2,
the BS-SC scenario and proposed IRC scheme are explained. The system model and
IRC solution are formulated in Section 3.  Section 4 presents the simulation setup and
performance evaluation results. Finally, concluding remarks are presented Section 5.
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2 IRC-Based Black-Space Cognitive Radio Scenario

In our basic scenario, illustrated in Fig. 1, we consider a CR receiver using multiple
antennas to receive data from a single-antenna cognitive transmitter. The CR operates
within the frequency band of the PU, and the PU power spectral density (PSD) is very
high in comparison to that of the CR. The primary transmission is assumed to be always
present when the CR system is operating. The primary transmitter generates a lot of
interference to the CR transmission, which operates closer to the noise floor of the pri-
mary receiver, and due to this, the primary communication link is protected. We con-
sider frequency reuse over relatively small distances, such as an indoor CR system. The
multi-antenna configuration studied here is that of single-input multiple output (SIMO).
Other configurations, involving also transmit diversity in the CR link are also possible,
but they are left as a topic for future studies.

Here the PU is a cyclic prefix orthogonal frequency division multiplexing (CP-
OFDM) based DVB-T system [19]. The CR system is also an OFDM based multicarrier
system using the same subcarrier spacing and CP length as the primary system. Thus,
it has the same overall symbol duration. The CR system is assumed to be synchronized
to the primary system in frequency and in quasi-synchronous manner also in time. The
CP length is assumed to be sufficient to absorb the channel delay spread together with
the residual offsets between the two systems observed at the CR receiver. Conse-
quently, the subcarrier-level flat-fading circular convolution model for spatio-temporal
channel effects applies to the target CR signal and to the PU interference signal as well.
Then the IRC process can be applied individually for each subcarrier. Since the CR
receiver observes the PU signal at very high SINR level, synchronization task is not
particularly difficult and low-complexity algorithms can be utilized. Considering short-
range CR scenarios, the delay spread of the CR channel has a minor effect on the overall
channel delay spread to be handled in the time alignment of the two systems. Basically,
if all CR stations are synchronized to the PU, they are also synchronized with each
other.

Both the primary and the CR systems use QAM subcarrier modulation, but usually
with different modulation orders. The received CR signal consists of contributions from
both the desired CR communication signal and the primary transmission signal, the
latter one constituting a strong interference. Our proposed scheme includes two phases
in the CR system operation:

1. During the first phase, the CR transmission is stopped (silent gap) and the IRC
process is adapted blindly to minimize the energy of combined signal during the
silent period. This is done individually for each subcarrier. Since the target
channel is not available during this stage, IRC solutions are found for the
maximum number of linearly independent (virtual) steering vectors. During the
CR reception phase, the corresponding IRC output signals are used for channel
estimation and data detection. They are referred to as partial IRC signals.

2. During the second phase, the CR system is operating. The CR channel
coefficients are estimated for each partial IRC signal using training symbols
(containing reference symbols in all subcarriers). For data symbols, the partial
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IRC signals are combined using maximum ratio combining (MRC) based on the
estimated channel coefficients.

This two-phase process is straightforward to implement and it is able to track the
channel fading with relatively low mobility. In future work, it is worth to consider ad-
aptation of the IRC process without silent gaps after the first one required for the initial
solution. This would help to reduce the related overhead in throughput.

No explicit channel estimation of the PU channel is required in this approach. The
CR channel is estimated from the partial IRC signals, from which the PU interference
has been effectively suppressed.

Fig. 1. Blackspace CR system model.

3 IRC for Black-Space Cognitive Radio

Following the quasi-synchronous OFDM system model explained in the previous sec-
tion, the detection process at the CR receiver can be formulated at OFDM subcarrier
symbol level as a flat-fading process. For the 1 N´ SIMO antenna configuration of the
CR transmission link and L interfering signals, the received signal can be expressed as

T T I, I,1
L

l llx x
=

= + +år h h η .                                        (1)

Here 1
T

N
h

´Î£ is the channel gain vector for the target CR transmission, 1
I,

N
l

´Îh £

is the spatial channel from the lth interferer to the CR receiver, Tx  and I,lx  are the

corresponding transmitted subcarrier symbols, and 1Nη ´Î£  is spatially white additive
white Gaussian noise (AWGN). Naturally, during silent gaps of CR operation, the first
term of (1) is missing. For detection, the signals from different antennas are weighted
and combined using a linear combiner. This can be expressed as the inner product

H  ,y = w r                                                     (2)
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where 1N
w

´Î£  is the combiner weight vector, and H stands for Hermitian (complex-
conjugate transpose). Finding the optimum weight vector is an optimization problem.
Generally, the linear minimum mean-squared error (LMMSE) solution minimizes the
mean-squared error in the target signal Tx ,

2H
TJ E x w r

é ù
= -ê ú

ê úë û
 . (3)

In interference rejection combining (IRC) we assume knowledge of the covariance ma-
trix of the interferences. If the channels from the interferers to the CR receiver antenna
array are known, the noise plus interference covariance matrix can be expressed as

H
NI I, I, N1

L
l l ll P P

=
= +åΣ h h I .                                               (4)

Here I,lP  is the power of interferer l, NP  is the noise power, and I  is the identity
matrix of size N. Then the well-known LMMSE solution [20] is

( ) 11 H 1
NI T T NI T T1/ Pw Σ h h Σ h

-- -= +
 ,                                              (5)

where TP  is the target CR signal power.
Estimating the interferer channel vector would increase the complexity of the CR

receiver, even in the single interferer case of our basic scenario. In case of multiple
interferers, e.g., from other BS-CR systems operating nearby, this would be quite chal-
lenging. Therefore, we use the sample covariance matrix of the received signal,

H
NI 1 ( ) ( )M

m m m
=

=åΣ r r (6)

during the silent gap of the CR transmission as the estimate of NIΣ . Here m is the
OFDM symbol index and M is the length of the estimation period (i.e., silent gap length)
in OFDM symbols.

In the proposed scheme it is not possible to estimate the CR channel before the in-
terference cancellation stage. Therefore, during CR operation phase 1, we carry out the
IRC adaptation process for N orthogonal virtual steering vectors, resulting in N weight
vectors V,1 V,2 V,, , , Nw w wK . We use the unit vectors [ ]TV,1 1,0,0, ,0=h K ,

[ ] [ ]T T
V,2 V,0,1,0, ,0 , , 0,0,0, ,1N= =h hK K K  as the virtual steering vectors for sim-

plicity. Furthermore, instead of the scaling of (5), the weight vectors are scaled to have
unit Euclidean norm,

1 1
V, NI V, NI V,n n n

- -=w Σ h Σ h .                                               (7)

This results in unit noise variance for the corresponding weighted output signals
H
V, , 1,2, ,n ny n N= =w r K , which is essential for the following maximum ratio com-

bining (MRC) stage. The outputs ny  are different observations of the target signal, for
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which the interference cancellation has been applied. When the number of receiver an-
tennas is higher than the number of interference sources, there is diversity in these ob-
servations, and diversity combining can be used for enhancing the performance. Among
the linear combination methods, MRC maximizes the signal to interference-plus-noise
ratio of the combined signal.

During the second CR operation phase, data symbols are transmitted, along with
training symbols at regular intervals. For each training symbol (containing reference
symbols in all active subcarriers), the N channel coefficients V,1 V,2 V,

ˆ ˆ ˆ, , , Nh h hK  are
first estimated for each of the effective channels corresponding to the N observations
as H

V, V,
ˆ /n nh p= ×w r , where p   is the transmitted pilot symbol value. Then the data

symbol estimate is obtained by maximum ratio combining the N samples obtained by
applying the virtual steering vectors,

HH
MRC V,1 V,2 V,

ˆ
Nd é ù= × ×ë ûw w w w rL  , (8)

where the MRC weights are given by
2T

MRC V,1 V,2 V, V,1
ˆ ˆ ˆ ˆ[ ] N

N kkh h h h
=

= åw K  . (9)

The effective weight vector becomes

CR V,1 V,2 V, MRC

2
V, V, V,1 1

ˆ ˆ

N

N N
n n kn kh h

= =

é ù= ×ë û

=å å

w w w w w

w

L
. (10)

We can see that for data symbol detection with stationary channels, we just need to
calculate and use this weight vector, instead of applying the MRC weights on the sam-
ples obtained by the weight vectors V,nw .

This model indicates various options for dealing with channel fading. Generally, the
PU channel should not vary significantly between the silent periods. The most critical
scenario in this respect is a moving CR receiver, which causes also the PU channel to
be time varying. Due to the strong PU interference, the interference cancellation process
is sensitive to the resulting errors in the channel covariance estimate. For slowly-fading
CR channels, it is enough to calculate the effective weights for each training symbol
and use the same weights until the next training symbol. With higher mobility, the ef-
fective weights can be interpolated between consecutive training symbols. The effect
of mobility is investigated through simulations in the following section.

4 Performance Evaluation

The simulations are carried out for the system setup explained in Section 2. The carrier
frequencies of CR and PU are the same and it is here set to 700 MHz, which is close to
the upper edge of the terrestrial TV frequency band. The modulation order used by CR
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varies between 4QAM, 16QAM, and 64QAM. The pilot symbols are binary and have
the same power level as the data symbols. The primary transmitter signal follows the
DVB-T model with 16QAM modulation, 8 MHz bandwidth, and CP length of 1/8 times
the useful symbol duration, i.e., 28 ms. The IFFT/FFT length is 2048 for both systems.
The DVB-T and CR systems use 1705 and 1200 active subcarriers, respectively. ITU-
R Vehicular A channel model (about 2.5 ms delay spread) is used for the CR system
and Hilly Terrain channel model (about 18 ms delay spread) for PU transmission. The
CR receiver is assumed to have four antennas, and uncorrelated 1x4 SIMO configura-
tions are used for both the primary signal and the CR signal.

The  number of spatial channel realizations simulated in these experiments is 500.
The ratio of CR and PU signal power levels at the CR receiver (referred to as the signal
to interference ratio, SIR) is varied. The lengths of the OFDM symbol frame and silent
gap for interference covariance matrix estimation are also varied (expressed in terms of
CP-OFDM symbol durations). The training symbol spacing is 8 OFDM symbols, and
the frame length is selected in such a way that training symbols appear as the first and
last symbol of each frame, along with other positions. Channel estimation uses linear
interpolation between the training symbols.

Fig. 2 shows a basic bit error-rate (BER) vs. SNR simulation result with 4QAM
(QPSK) and 64QAM modulations and SIR values of -10, -20, and -30 dB. Also the
interference-free baseline case (SIR=100 dB) is included. The CR block length is 41
OFDM symbols (6 training symbols and 35 data symbols), and the interference
covariance estimation is based on a silent gap of 32 OFDM symbols. In this case, the
interference covariance estimate is very good, and IRC performs very well.  The effect
of the interference power is relatively small: reducing the SIR from -10 dB to -30 dB,
the performace loss at 1 % BER level is about 0.6 dB for QPSK and about 1.7 dB for
64QAM. When comparing the BS-CR performance with the interference-free case, the
loss is about 3.5 dB for both QPSK and 64QAM at 1 % BER level and -30 dB SIR.

Next we consider the performance with slowly-fading channels. It was found also
experimentally that the case where the CR transmitter is moving but CR receiver is
stationary is much easier to handle, because the interference covariance matrix is
stationary as long as the PU and CR receiver are stationary. Therefore, we focus on the
case where the CR receiver is moving, while the CR transmitter is stationary, and both
the target CR channel and the interference are fading with the same mobility, 3 km/h.
Figs. 3 and 4 show both the effect of the silent gap length and the OFDM frame length
on the performance.  We can notice that by placing the silent gap in the middle of the
frame and  using the interference covariance estimate for detecting both the preceding
and following OFDM symbols, the CR frame length could be doubled without
performance loss. However, this is not assumed in Figs. 3 and 4, because it would
require extensive data buffering on the receiver side. In this simulation set-up, the best
length for the silent gap is about 32 OFDM symbols. Generally, while acceptable CR
link performance can still be achieved, significant performance loss is observed with
respect to the stationary case. Also the feasible CR frame length is rather limited,
leading to relatively high overhead due to the silent gaps. The performace loss with 3
km/h mobility is about 4.7 dB and 10 dB with the the frame lengths of 17 and 41 OFDM
symbols, respectively, compared to the stationary case.
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Fig. 2. Performance QPSK and 64QAM  systems with stationary channel, silent gap duration of 32
symbols, and OFDM frame length of 41 symbols.

Fig. 3. Performance of a 16QAM  system with 3 km/h mobility, 700 MHz carrier frequency, OFDM frame
length of 17 symbols,  with various gaps and SIR= -30 dB.
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Fig. 4. Performance for a 16QAM  system with 3 km/h mobility, 700 MHz carrier frequency, silent gap of
32 symbols, and SIR= -30 dB.

5 Conclusion

The performance of cognitive transmission links in the presence of strong interferences
in the black-space CR scenario was investigated. The interference rejection capability
of IRC using multiple receive antennas for various modulation orders was studied. It
was found that the IRC performs very well in the basic SIMO-type BS-CR scenario
when stationary channel model is applicable, e.g., in fixed wireless broadband
scenarios. However, the scheme is rather sensitive to the fading of the PU channel. Due
to the strong interference level, the interference cancellation process is affected by
relatively small errors in the covariance matrix estimate. For covariance estimation, the
silent gap length should be in the order of 32 OFDM symbols, and the CR OFDM frame
length should be of the same order or less, even with 3 km/h mobility. This leads to
high overhead due to the silent gaps.

In future work, it is worth to consider adaptation of the IRC process without silent
gaps after the first one required for the initial solution. This would help to reduce the
related overhead in throughput. One possible approach is to do this in a decision-di-
rected manner: first estimating the covariance matrix in the presence of the target signal
and then cancelling its effect based on detected symbols and estimated target channel.

In the basic TV black-space scenario, there is only one strong TV signal present in
the channel, in agreement with our assumption about the primary interference sources.
DVB-T system allows also single-frequency network (SFN) operation and the use of
repeaters to improve local coverage. In both cases, the primary transmissions can be
seen as a single transmission, with a spatial channel that depends on the specific
transmission scenario, and the proposed scheme is still applicable.
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The scheme can also be extended to scenarios where multiple CR systems are
operating in the same region. If all CR systems are time-synchronized to the PU and
they are at a relatively small distance from each other, they are also synchronized with
each other, and could be handled by the IRC process as an additional interference source
following the model of Eq. (1). In future studies, also the effect of antenna correlation
will be taken into consideration. The complexity reduction of the IRC receiver with
larger number of antennas is also an interesting topic for further studies.
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1 Introduction

Cognitive radios (CRs) are intended to operate in radio environments with a high level 

of interference and, simultaneously, produce negligible interference to the primary users 

(PUs) [1–3]. CR studies in the past have been focusing on opportunistic white-space sce-

narios where the unused spectrum is dynamically identified and used. Also underlay CR 

operation has received some attention. Here the idea is to transmit in wide frequency 

band with low power-spectral density, typically using spread-spectrum techniques [4]. 

Black-space CR (BS-CR), where a CR deliberately transmits simultaneously along the 

Abstract 

In this paper, we investigate multi-antenna interference rejection combing (IRC)-based 

black-space cognitive radio (BS-CR) operation in time-varying channels. The idea of 

BS-CR is to transmit secondary user (SU) signal in the same frequency band with the 

primary user (PU) such that SU’s power spectral density is clearly below that of the PU, 

and no significant interference is inflicted on the PU receivers. We explore the effects 

of interpolation and mobility on the novel blind IRC technique which allows such 

operation mode for effective reuse of the PU spectrum for relatively short-distance CR 

communication. We assume that both the PU system and the BS-CR use orthogonal 

frequency division multiplexing (OFDM) waveforms with common numerology. In this 

case, the PU interference on the BS-CR signal is strictly flat-fading at subcarrier level. 

Sample covariance matrix-based IRC adaptation is applied during silent gaps in CR 

operation. We evaluate the effect of the gap length on the link performance, using 

known PU channel-based interference covariance estimation as reference. We also pro-

pose an interpolation-based scheme for tracking the spatial covariance in time-varying 

channels, demonstrating significantly improved robustness compared to the earlier 

scheme. The performance of the proposed IRC scheme is tested considering terrestrial 

digital TV broadcasting (DVB-T) as the primary service. Also joint PU and co-channel 

CR interference cancellation is included in the study. The resulting interference sup-

pression capability is evaluated with different PU interference power levels, silent gap 

durations, data block lengths, and CR device mobilities.

Keywords: Black-space cognitive radio, Underlay CR, IRC, Interference rejection 

combining, Multi-antenna system, Receiver diversity, Mobility, OFDM, DVB-T

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

RESEARCH

Srinivasan et al. J Wireless Com Network        (2020) 2020:238  

https://doi.org/10.1186/s13638‑020‑01840‑z

*Correspondence:   

sudharsan.srinivasan@tuni.fi 

Electrical Engineering, 

Faculty of Information 

and Communication 

Sciences, Tampere University, 

Tampere, Finland

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-020-01840-z&domain=pdf


Page 2 of 18Srinivasan et al. J Wireless Com Network        (2020) 2020:238 

primary signal in the same time–frequency resources without causing objectionable 

interference, has received limited attention [5–8]. An underlay CR is ignorant about the 

existence of PUs in its frequency band. Commonly, it uses very low power spectral den-

sity and wide bandwidth, such that it does not cause interference to the PU transmission 

under any conditions [4]. BS-CR adapts its waveform and signal parameters depending 

on the ongoing PU transmissions and uses advanced signal processing techniques on 

the receiver side to facilitate low signal-to-interference ratio (SIR) at the receiver. BS-CR 

systems effectively reuse the spectrum for communication over short distances. It can 

operate with limited spectrum resources and can be used without any additional spec-

trum sensing.

As discussed in our previous papers [9, 10], one of the major requirements for CR 

operation is to minimize the interference to the primary transmission system. In BS-CR, 

this is reached by setting the CR transmission power at a small-enough level. The most 

important factor that enables such a radio system is that stronger interference is easier 

to deal with as compared to weaker interference [11], if proper interference cancellation 

techniques are utilized. Previous studies from information theory provide theoretically 

achievable bounds for such cognitive radios [12]. Multi-antenna systems allow for spati-

otemporal signal processing, which do not only improve the detection capability of the 

receiver but also improve performance in fading multipath channels with interference. 

Various methods of interference cancellation can be found in [13, 14-18] and the ref-

erences therein. All other detection algorithms except the multi-user detector perform 

sub-optimally [13].

The interference rejection combining (IRC) receivers have the significant advantage 

in comparison with the other receivers in multi-user scenarios that they do not need 

detailed information about the interfering signals, such as modulation order and radio 

channel propagation characteristics. For CR scenarios, IRC receivers in general are sim-

ple and desirable compared to optimum detectors. IRC techniques are widely applied 

for mitigating co-channel interference, e.g., in cellular mobile radio systems like LTE-A 

[19]. The use of multiple antennas in CRs has been studied earlier, e.g., in [18]. Our ini-

tial study on this topic in highly simplified scenario with suboptimal algorithms was in 

[20], but to the best of our knowledge, IRC has not been applied to BS-CR (or underlay 

CR) elsewhere. In this current study, we develop the ideas that we presented in [9] under 

more practical situations and study the performance of our algorithms in more details. 

Notably, the scheme studied in [9] was found to be very sensitive to mobility, because 

its performance is critically affected by errors in spatial covariance estimation. In this 

work, we extent our previous studies on the effects of mobility and propose a scheme to 

improve the quality of the covariance estimation with time-varying channels using inter-

polation between sample covariance-based estimates.

In this paper, we consider BS-CR operation in the terrestrial TV frequency band, uti-

lizing a channel with an ongoing relatively strong TV transmission. The PU is assumed 

to be active continuously. If the TV channel becomes inactive, this can be easily detected 

by each of the CR stations in the reception mode. Then the CR system may, for exam-

ple, continue operation as a spectrum sensing-based CR system. In our case study, we 

focus on a scenario with multi-antenna CR receiver having IRC capability to mitigate 

co-channel interference generated by a single PU transmitter and multiple independent 
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(uncoordinated) CR systems. Generally, interference covariance matrix estimation is a 

key element of IRC schemes. For this purpose, we propose to use sample covariance cal-

culated from the received signal during silent periods (gaps) in the target CR transmis-

sion. More specifically, the contributions of this paper are listed below:

• This paper extends and refines our earlier studies in papers [9, 10] on IRC schemes 

operating under severe interference conditions, with applications in BS-CR.

• Under such conditions, the direct estimation of the target CR channel is not possible. 

After estimating the interference covariance matrix during silent gaps in the target 

CR transmission, our scheme extracts from the received signal a set of signals which 

span the interference-free subspace in spatial domain. The weight vector for the tar-

get CR signal is based on pilot-based target channel estimation in this subspace.

• In BS-CR scenarios, the target CR link performance is very sensitive to the quality of 

the interference covariance estimate. Therefore, we propose to use linear interpola-

tion of the interference covariance matrix to track the channel variations between 

consecutive interference covariance estimates, i.e., consecutive silent gaps.

• Our case study focuses on a TV whitespace (TVWS) scenario. We consider a multi-

antenna CR receiver having IRC capability to mitigate co-channel interference 

generated by a single PU transmitter and multiple independent (uncoordinated) 

CR systems. The performance of such a system under different interference levels, 

mobilities, silent gap lengths, frame structures, and modulation orders is studied, and 

the improved robustness obtained through covariance interpolation is highlighted

The rest of the paper is organized as follows: In Sect. 2, the BS-SC scenario and pro-

posed IRC scheme are first explained. Then also the connections between the signal-to-

interference ratios (SIRs) at the PU and CR receivers are analyzed based on the channel 

losses of the target and interference links. The system model and IRC process are for-

mulated in Sect. 3. Section 4 presents the simulation setup and performance evaluation 

results. Finally, concluding remarks are presented in Sect. 5.

2  IRC‑based black‑space cognitive radio scenario—scenario and methods

In our basic scenario, illustrated in Fig.  1, we consider a CR receiver using multiple 

antennas to receive data from a single-antenna cognitive transmitter. The details of the 

receiver signal processing indicated in the figure are explained in Sect. 3. The CR oper-

ates within the frequency band of the PU, and the PU power spectral density (PSD) is 

very high in comparison with that of the CR. The primary transmission is assumed to 

be always present when the CR system is operating. The primary transmitter generates a 

lot of interference to the CR transmission, which operates closer to the noise floor of the 

primary receiver, and due to this, the primary communication link is protected. We con-

sider frequency reuse over relatively small distances, such as an indoor CR system. The 

multi-antenna configuration studied here is that of single-input multiple output (SIMO). 

Other configurations, involving also transmit diversity in the CR link, are also possible, 

but they are left as a topic for future studies.

Here the PU is a cyclic prefix orthogonal frequency division multiplexing (CP-

OFDM)-based DVB-T system [21]. The CR system is also an OFDM-based multi-carrier 
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system using the same subcarrier spacing and CP length as the primary system. Thus, it 

has the same overall symbol duration. The CR receiver is assumed to be synchronized 

to the primary system in frequency and in quasi-synchronous manner also in time. The 

CP length is assumed to be sufficient to absorb the channel delay spread together with 

the residual timing offsets between the two systems observed at the CR receiver. Con-

sequently, the subcarrier-level flat-fading circular convolution model for spatiotempo-

ral channel effects applies to the target CR signal and to the PU interference signal as 

well. Then the IRC process can be applied individually for each subcarrier. Since the 

CR receiver observes the PU signal at very high SINR level, synchronization task is not 

particularly difficult and low-complexity algorithms can be utilized. Considering short-

range CR scenarios, the delay spread of the CR channel has a minor effect on the overall 

channel delay spread to be handled in the time alignment of the two systems. The same 

applies to the possible significant co-channel CR interferers, which are assumed to be at 

relatively short distance from the target CR system.

Basically, if all target and interfering CR stations are synchronized to their respective 

observed PU signals, they are also synchronized with each other in the quasi-synchro-

nous manner, such that all multi-path components of all signals are within the CP length.

In addition to these, we assume that the secondary user experiences slow (e.g., pedes-

trian) mobility effects, due to either the mobility of devices or people moving around 

them. The effects of mobility on the CR system performance are evaluated in this study.

Both the primary and the CR systems use QAM subcarrier modulation, but usually 

with different modulation orders. The frame structures and pilot patterns of the PU 

and CR are independent. The received CR signal consists of contributions from the 

desired CR communication signal, co-channel CR interferers, and the primary trans-

mission signal, the latter one constituting the dominating interference. Our proposed 

scheme includes two phases in the CR system operation as described in our previous 

work [9]. The spatial characteristics of the PU interference are modeled using multi-

antenna sample covariance matrix, which is estimated during silent gaps in the target 

Fig. 1 Black-space CR system model with silent gap interpolation. The receiver signal processing-related 

equation numbers are indicated
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CR transmission, independently for each active subcarrier. No explicit channel estima-

tion of the PU channel is required. The CR channel is estimated from the partial IRC 

signals, from which the PU and other CR interferences have been effectively suppressed.

2.1  Methods

In this work, we study how channel fading with mobility affects the performance in the 

scenario described above. We consider adaptation of the IRC process using interpolation 

of the sample covariance matrices between the silent gaps. This is expected to improve 

the performance, allowing to increase the data block length between silent gaps, thus 

reducing the related overhead in throughput. The main elements of the scheme, covari-

ance estimation and interpolation, IRC process, channel estimation [22], and MRC-

based detection are formulated mathematically. Numerical performance results are 

obtained through Monte Carlo simulations based on a developed Matlab script, using a 

semi-analytical model based on PU channel knowledge as reference.

2.2  SIR analysis

Key parameters in BS-CR operation are the SIRs at the CR receiver and PU receiver. In 

the basic scenario with PU interference only, the SIRs can be expressed in dB units as 

follows:

where PCR and PPU are the transmission powers of CR and PU, respectively, in dBm 

units, while the other parameters are transmission losses in dB units of relevant trans-

mission links. The first part of the subscript indicates the transmitter, and second part 

the receiver of the corresponding link. From these equations, it is easy to derive the max-

imum SIR of the CR receiver in terms of the minimum SIR of a PU receiver, SIRPU,min:

The maximum SIR of the CR link depends on the differences of the channel losses from 

CR TX to both receivers and from PU TX to both receivers. For example, if the losses of 

the main links (CR-CR and PU–PU) are equal to the losses of the corresponding inter-

fering links (CR-PU and PU-CR), then the CR RX would be able to operate with the SIR 

of −SIRPU,min . If the main link losses are lower than those of the interference links, the 

SIRCR,max would be higher. The critical cases are:

1 If the losses of the main links (CR-CR and PU–PU) are much higher than the losses 

of the corresponding interfering links (CR-PU and PU-CR), then SIR of the CR 

receiver may be limited by the minimum acceptable PU SIR to a highly negative 

value. Then the SIR of the CR receiver may be limited to a highly negative value by 

the maximum transmit power of the CR device, which could be much lower than 

that of the PU transmitter.

2 If the PU transmitter is very close to the (short-range) CR system, then

(1)SIRCR = (PCR − LCR−CR) − (PPU − LPU−CR)

(2)SIRPU = (PPU − LPU−PU) − (PCR − LCR−PU),

(3)SIRCR,max = (LCR−PU − LCR−CR) + (LPU−CR − LPU−PU) − SIRPU,min.
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Then the SIR of the CR receiver may be limited to a highly negative value by the 

maximum transmit power of the CR device, which could be much lower than that of 

the PU transmitter.

In both cases, the performance of the IRC scheme would be limited by the RF imper-

fections (e.g., receiver nonlinearity effects) in practice. The latter limitation appears espe-

cially in the TVWS application, but in rather limited geographical regions. Considering 

the first kind of limitation in the worst-case scenario, one should consider the hidden node 

margin (typically around 25–30 dB in the TVWS case [23] for the loss difference from PU 

(LPU−PU − LPU−CR) , which would lead to very low SIR for the CR TX, unless the loss from 

the CR to the PU RX can be guaranteed to be much lower than that of the CR link. On 

the other hand, in short-range CR communication, especially if PU receivers use directive 

(possibly roof-top) antennas, the mentioned case where the SIR of CR RX is no less than 

−SIRPU,min should be possible.

Generally, the CR TX should have knowledge of the link losses in order to maximize its 

transmission power while not causing excessive interference to the PU link. This paper 

focuses on the physical layer capabilities of IRC-based BS-CR, and detailed procedures 

for controlling the CR operation remain as a topic for future studies. One possible way to 

enhance BS-CR operation would be cooperative spectrum sensing of CR devices to reliably 

estimate the PU power level in the CR operation region.

3  IRC for black‑space cognitive radio

Based on the OFDM model mentioned above, subcarrier-wise detection is considered with 

flat-fading channel coefficients to get rid of the challenge of frequency selectivity in the IRC 

process.

In the SIMO configuration, the CR is assumed to have N  receiver antennas and L differ-

ent interference sources are assumed. Based on this model, the signal received by the CR 

can be formulated for each active subcarrier as follows:

Here xT is a transmitted subcarrier symbol and hT = [hT,1, hT,2, . . . , hT,N ]
T is the target 

channel vector with N  receiver antennas in the CR, xI ,l is the lth interfering signal, and 

hI,l =

[

hI,l,1, hI,l,2, . . . , hI,l,N
]T

 is the channel vector for the lth interferer. The channel vec-

tors consist of the complex channel gains from the corresponding transmit antenna to 

nth antenna of the CR receiver. Finally, η is the additive white Gaussian noise (AWGN) 

vector. In this generic system model, it is assumed that the PU is the dominant interferer, 

and the other interference sources are other CR systems introducing co-channel inter-

ference at relatively low power level.

(4)SIRCR,max = PCR,max − LCR−CR − (PPU − LPU−CR ).

(4)r = hTxT +

L∑

l=1

hI,lxI,l + η.
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3.1  Covariance matrix estimation

As it is illustrated in Fig. 1, the interference minimizing IRC weights are obtained during 

a silent period in the target CR transmission, while the co-channel interference sources 

are active. Due to that, Eq. (4) can be modified during silent gaps of CR operation as

Here it is assumed that only interferences and noise are present during the silent period 

in the signal r̂ observed by the CR. Linear combiner is used for the signals from different 

antennas with a weight process in detection as follows:

where y is the detected signal, w is the weight vector with N  elements, and superscript H 

denotes the Hermitian (complex-conjugate transpose).

Determining the optimum weight values is an optimization problem which can be 

solved with the linear minimum mean-squared error (LMMSE) criterion [21, 22] that 

aims to minimize the mean-squared error with respect to the target signal xT ,

When knowledge of the covariance matrix is available, IRC can be applied. Two cases 

are considered below: (i) calculating interference covariance from known channel coef-

ficients and (ii) sample covariance-based approaches.

3.2  Perfect channel information case

The deterministic known channel case (with perfect channel information) is consid-

ered as the theoretical bound in this study. Assuming that the channel vectors form 

the interferers are perfectly known, the noise plus interference covariance matrix can 

be calculated for each subcarrier as

where Pl is the variance of interferer l at the transmitter, PN is the noise variance that can 

be obtained from the SNR, and I is the identity matrix of size NxN. Assuming that also 

the channel vector for the target signal is known and the target and interfering signals 

are Gaussian and statistically independent from each other, the conventional LMMSE 

solution for the weight vector is [15]

where PT is the target CR transmitters signal power and unit noise variance is assumed.

(5)r̂ =

L∑

l=1

hI,lxI ,l + η.

(6)y = w
H
r,

(7)J = E

[

∣

∣

∣
xT − w

H
r

∣

∣

∣

2
]

.

(8)�NI =

L∑

l=1

PlhI,lh
H
I,l + PNI,

(9)w = �
−1

NI
hT

(

h
H
T�

−1

NI
hT +

1

PT

)

−1
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In the BS-CR scenario with a single dominant interferer, the estimation of the PU 

channel is relatively straightforward if the CR knows PUs pilot structure. However, in 

the case of multiple interferers, the channel vectors of all interferers should be esti-

mated, which becomes quite challenging. Furthermore, the target channel cannot be 

estimated before the interference cancellation. Therefore, the perfect channel infor-

mation case serves mainly as an ideal reference in performance comparisons, as will 

be seen in Sect. 4.

3.3  Sample covariance‑based case without PU channel information

The IRC process starts from interference covariance matrix estimation during silent 

gaps in the receiver. It is difficult to have the perfect channel state information on the 

CR receiver side. Alternatively, the joint interference and noise covariance matrix can 

be estimated for each subcarrier by the sample covariance matrix of the corresponding 

received subcarrier signal (after CP removal and FFT) in the absence of the target trans-

mission, i.e., during the silent gaps as.

Here m is the OFDM symbol index and M is the observation length in subcarrier sam-

ples, which is chosen equal to the length of the silent gap.

3.4  Linear interpolation for interference covariance tracking with mobility

Regarding the mobility aspects, there are significant differences in the effects of PU 

transmitter mobility, CR transmitter mobility, and CR receiver mobility. If the PU trans-

mitter is stationery and CR receiver is stationary, the mobility of CR transmitter is easier 

to handle, because the dominating PU interference is stationary, and the variations in the 

noise and interference covariance matrix are only due to the co-channel CR interferes. 

However, even in this case, radio environment of the CR receiver may vary due to move-

ment of people or vehicles nearby. Therefore, some tolerance to mobility is required also 

in such scenarios, at least with pedestrian mobilities. The mobility of PU transmitter or 

CR receiver makes the dominant interference time-varying, and in the BS-CR scenario, 

the CR link performance is very sensitive to quality of the PU interference covariance 

matrix estimate. Therefore, it is important to investigate these mobility effects and con-

sider enhanced schemes for tracking the interference covariance with mobility.

While considering the sample covariance-based approach, increased observation 

(silent gap) length gives better PU interference covariance estimate in the stationary 

case or with low mobility. However, the channel variations during the silent gap affect 

critically the quality of the PU interference covariance matrix. Therefore, the optimum 

length of the silent gap (i.e., observation length) depends on the mobility, i.e., Doppler 

spread. Then we apply linear interpolation for the covariance matrix elements when cal-

culating the weight vectors for the data symbols between two consecutive silent gaps.

There are two key parameters in this process, the silent gap length and the data block 

length between two consecutive gaps. Increasing the gap length improves the perfor-

mance with low mobility but degrades the performance with higher mobility and 

(10)�NI =

1

M

M∑

m=1

r(m)r(m)H .
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increases the overhead in throughput. Increasing the data block length increases the 

throughput but degrades the performance with mobility. These tradeoffs are investigated 

through simulations in Sect. 4 of this paper.

3.5  IRC process

As indicated in the model shown in Fig. 1, the CR channel cannot be estimated before 

the step of the interference cancellation, and the optimal steering vector for IRC can-

not be directly calculated. Here we develop an IRC scheme which utilizes N orthogonal 

virtual steering vectors in the receiver’s internal channel estimation process, which is 

based on pilot symbol structures typically used in OFDM systems. Actually, N-L vectors 

would be enough since IRC consumes L degrees of freedom. But this way the model is 

more straightforward and the IRC process is generic and robust since there is no need to 

estimate the number of interferers. Without loss of generality and for simplified compu-

tations, the following unit vectors are applied as the virtual steering vectors,

Basically, the weight vectors obtained when applying the virtual steering vectors for w in 

Eq. (9) span the interference-free subspace in spatial domain. Assuming that the inter-

ference covariance is correctly estimated, using any linear combination h of these vec-

tors instead of hT in (9) provides interference cancellation and maximizes signal power 

for the spatial CR channel h. The following process finds the combination of the virtual 

steering vectors for the actual target signal by first estimating the spatial channel vectors 

corresponding to the different virtual steering vectors. The obtained weight vectors are 

as follows:

It should be noted that the denominator of Eq. (9) is a complex scaling coefficient, which 

will be included in the MRC weights.

3.6  Target channel estimation with linear interpolation and MRC combining

In the second stage, data symbols of the CR link are transmitted together with the train-

ing/pilot symbols. While receiving pilot symbols, the weighted output signals corre-

sponding to each virtual steering vector are calculated as

The IRC process cancels the interference from all of the weighted output signals, yn cor-

responding to different virtual steering vectors. For each subcarrier, the N channel coef-

ficients for each of the weighted output signals can be estimated using the pilot symbols 

as follows:

(11)

hV,1 = [1, 0, 0, 0, . . . , 0]
T

hV,2 = [0, 1, 0, 0, . . . , 0]
T

. . .

hV,N = [0, 0, 0, 0, . . . , 1]
T .

(12)wV,n = �
−1

NI hV,n.

(13)yn = w
H
V,nr, n = 1, 2, . . . ,N .
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where p is the transmitted pilot symbol value.

3.7  Linear interpolation for channel estimation

In the traditional pilot-based channel estimation process, it is required to use efficient 

interpolation techniques, such as Wiener interpolation, based on the channel information 

at pilot sub-carrier symbols. For simplicity and to avoid excessive received signal buffering 

over high number of OFDM symbols, we apply linear interpolation. The performance of 

linear interpolation technique is better than the piecewise-constant interpolation methods 

[24, 25]. In the simulation studies of Sect. 4, a basic training symbol scheme is assumed 

where training symbols contain pilots in all active subcarriers, and the interpolation is done 

in time domain only, between two consecutive pilots in each subcarrier.

The MRC weights for a data symbol are then calculated as

where gV,n, n = 1, . . . ,N  , denote the corresponding interpolated channel estimates. 

Generally, the interpolated channel estimates are different for each subcarrier in each 

OFDM symbol. For simplicity, the subcarrier and OFDM symbol indexes are not 

included in the notation above. Then the interpolated channel estimates are given as

where m is the OFDM symbol index, k is the subcarrier index, S is the pilot spacing, 

Sp =
m

S
· S S is the preceding training symbol index,Sf =

m

S
· S is the following training 

symbol index, and ⌊. ⌋ and ⌈. ⌉ stand for the floor and ceiling operations, respectively.

3.8  Combining for detection

In the final stage, while receiving data symbols, the equalized data symbols are calculated 

by maximum ratio combining the N samples obtained by applying the virtual steering vec-

tors. The effective weight vectors for CR can be obtained as,

where g =

[

gV,1, gV,2, . . . , gV,N ,

]T
. It is enough to calculate and use this weight vector 

wCR , instead of separately applying the MRC weights on the samples obtained by the 

weight vectors [wV,n] . The equalized data symbols are then calculated as follows:

(15)ĝV,n =
yn

p
=

w
H
V,n · r

p
, n = 1, 2, . . . ,N ,

(16)wMRC =
[gV,1, gV,2, . . . , gV,N ]T

√

∑N
n=1

∣

∣gV,n
∣

∣

2
,

(17)g
(k ,m)
V,n =

(

m − Sp
)

· ĝ
(k ,Sp)
V,n + (Sf − m) · ĝ

(k ,Sf)
V,n

(18)

wCR = [wV,1,wV,2, . . . ,wV,N ]wMCR

=

N
∑

n=1

(

wV,ngV,n
)

/

√

√

√

√

N
∑

n=1

∣

∣gV,n
∣

∣

2

=

N
∑

n=1

(

�
−1
NI hV,ngV,n

)

/

√

√

√

√

N
∑

n=1

∣

∣gV,n
∣

∣

2

= �
−1
NI g/g,
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In Eq. (19), g appears as the spatial channel estimate for the target CR transmitter. Over-

all, this is the zero-forcing IRC solution which maximizes the received signal power over 

normalized steering vectors.

4  Results and discussion

The simulations are carried out for the system setup explained in Sect.  2. The carrier 

frequencies of CR and PU are the same, and it is here set to 700 MHz, which is close to 

the upper edge of the terrestrial TV frequency band. The modulation order used by CR 

varies between 4QAM, 16QAM, and 64QAM. The pilot symbols are binary and have 

the same power level as the data symbols. The primary transmitter signal follows the 

DVB-T model with 16QAM modulation, 8 MHz bandwidth, and CP length of 1/8 times 

the useful symbol duration, i.e., 28 μs. The IFFT/FFT length is 2048 for both systems. 

The DVB-T and CR systems use 1705 and 1200 active subcarriers, respectively. PUs 

frame structure and pilots follow the DVB-T standard. Data in all signals are generated 

randomly. ITU-R Vehicular A channel model (about 2.5  μs delay spread) is used for the 

CR system. For short-range/indoor CR communication, Ricean-fading channel model 

would be more relevant, but the Rayleigh-fading Vehicular A model is used as worst-

case model. We have also tested basic scenarios with the Ricean-fading SUI-1 model 

(0.9    μs delay spread) for the CR, showing slight improvements in performance. Hilly 

Terrain channel model (about 18  μs delay spread) is used for PU transmission. The CR 

receiver is assumed to have four antennas, and uncorrelated 1 × 4 SIMO configurations 

are used for both the primary signal and the CR signals.

The number of spatial channel realizations simulated in these experiments is 300–

1000. The ratio of CR and PU signal power levels at the CR receiver (referred to as the 

signal-to-interference ratio, SIR) is varied. In the case of co-channel CR interference, the 

average power levels of interfering and target CRs are the same at the target receiver 

and the channels are independent instances of the Vehicular A model with random tim-

ing offsets, while all multi-path delays remain with the CP. The lengths of the OFDM 

symbol frame and silent gap for interference covariance matrix estimation are also var-

ied (expressed in terms of CP-OFDM symbol durations). A very basic training symbol 

scheme is assumed for the CR: training symbols contain pilots in all active subcarriers 

and the spacing of training symbols is 8 OFDM symbols. Frame length is selected in 

such a way that training symbols appear as the first and last symbol of each frame, along 

with other positions. Channel estimation uses linear interpolation between the training 

symbols. We have tested the BS-CR link performance with SIR values of {− 10, − 20, − 

30} dB using silent gap durations of {8, 16, 32} OFDM symbols (known channel case also 

with 128 symbols), and data block lengths of {17, 25, 33, 41} OFDM symbols.

4.1  The effect of silent gap length

This subsection analyzes the BER performance of the proposed sample covariance-based 

IRC process using Eqs. (10), (12), (18), and (19), considering the known channel-based 

process as an ideal reference. As it was explained in Sect.  3, the known channel case 

assumes perfect knowledge of the interference channel and it provides a theoretical 

(19)d̂ = w
H
CRr.
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performance bound for practical IRC schemes. It uses the LMMSE solution (8) with 

known channel-based covariance estimate (9). Otherwise, the receiver process is the 

same as in the sample covariance-based scheme, thus providing a theoretically achiev-

able bound for the practical sample covariance-based approach. Below, the known chan-

nel model is applied with PU interference only, assuming no cochannel CR interferers.

Figure 2 shows the BER performance considering both the known channel and sam-

ple covariance-based approaches in stationary case (no mobility). Here, the silent gap 

durations are 8, 16, 32, and 128 OFDM symbols and the data block length is 17. With 

zero-mobility, link performance is independent of the data block length and short block 

is used here mainly to reduce simulation time. It can be observed that the sample covar-

iance-based simulation results converge to the corresponding known channel results 

with increasing gap length, since the covariance estimate is improved with increasing 

sequence length. This demonstrates that the known channel-based bound is theoreti-

cally achievable.

In Fig. 3, the BER performance of known channel and sample covariance approaches 

is shown considering SIR values of {− 10, − 20, − 30} dB. Similar to Fig. 2, the data block 

length is 17 and the gap duration is selected as 16 OFDM symbols. Zero-mobility case is 

considered also here. As seen in Fig. 3, the CR link performance of both known channel 

and sample covariance schemes is rather independent of the SIR.

A detailed comparison between the required SNR values of the known channel and 

sample covariance-based approaches for BER = 0.01 is provided in Table 1. As seen in 

the table, the required SNR values of known channel and sample covariance-based algo-

rithms match adequately under the gap length of 128 OFDM symbols. Additionally, the 

numerical results clearly show that the differences in required SNR values are almost 

independent of the SIR while considering the SIR values of {− 10, − 20, − 30} dB. The 

SNR loss due to limited gap length is about 0.3  dB, 1  dB, 1.9  dB, and 4.4  dB for gap 

lengths of 128, 32, 16, and 8, respectively.

Fig. 2 Performance of QPSK BS-CR systems with known channel-based and sample covariance-based 

approaches for SIR = − 30 dB considering block fading channel (no-mobility) with silent gap lengths of 8, 16, 

32 and 128 symbols, and OFDM frame length of 17 symbols
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4.2  Performance analysis of proposed scheme with mobility

This subsection reports the performance analysis of the proposed algorithms consid-

ering also the effects of mobility and different system parameters. It is noted that only 

sample covariance-based approach is considered in the following results. The results 

presented above still serve as ideal reference when evaluating the effects of mobility in 

different configurations. First we evaluate the performance with slow mobilities with and 

without pilot interpolation, still assuming that the interference is due to the PU only.

Figure 4 shows the impact of covariance matrix interpolation on the BS-CR link per-

formance. Here the data block length and gap duration are fixed to 17 and 16 OFDM 

symbols, respectively. This choice provides performance that is no more than 1 dB from 

the configuration reaching 1% or 10% BER with lowest SNR, among the tested configura-

tions with even higher overhead. We can see that covariance interpolation provides sig-

nificant improvement of robustness in time-varying channels. Focusing on the 1 – 10% 

BER region, the performance with interpolation at 10 km/h mobility clearly exceeds the 

performance at 3 km/h without interpolation. However, for the 64QM case with -30 dB 

SIR, this is true only for BER of 10% or higher, due to the high error floor at very low 

Fig. 3 Performance of QPSK BS-CR systems with known channel and sample covariance-based approaches 

for SIR values of {− 10, − 20, − 30} dB considering block fading channel (no-mobility) with silent gap length 

of 16 OFDM symbols and OFDM frame length of 17 symbols

Table 1 Required SNR values of known channel and sample covariance‑based approaches 

for the BER = 0.01 in QPSK BS‑CR systems for SIR values of {− 0, − 20, − 30} dB considering 

block fading channel (no‑mobility) with silent gap lengths of 8, 16, 32 and 128 symbols, 

and OFDM frame length of 17 symbols.

Req. SNR 
for BER = 0.01

SIR = − 30 dB SIR= − 20 dB SIR = − 10 dB

Known Chn. 
(dB)

Sample Cov. 
(dB)

Known Chn. 
(dB)

Sample Cov. 
(dB)

Known Chn. 
(dB)

Sample 
Cov. (dB)

Gap = 8 7.9 12.3 7.9 12.3 7.9 12.2

Gap = 16 7.9 9.8 7.9 9.8 7.9 9.7

Gap = 32 7.9 8.9 7. 9 8.9 7.9 8.8

Gap = 128 8.0 8.3 8.0 8.3 8.0 8.2
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SIR and high mobility. We can also see that with stationary channel, the performance 

is practically independent of the SIR. (Compared with [9], the performance is slightly 

improved by fine-tuning the used algorithms.)

In Fig. 5, the effect of silent gap duration is tested with 16 QAM modulation, SIR of 

− 20 dB, and data block length of 17. The overhead in data rate is about 58% and 44% 

for gap lengths of 16 and 8, respectively. The shorter gap length results in about 1.5 dB 

performance loss in the 1–10% range in stationary case and about 1.8–3.5 dB loss with 

10 km/h mobility, compared to the gap length of 16. With 20 km/h mobility, the corre-

sponding loss is about 2.2 dB at 10% BER, but longer gap leads to higher error floor, and 

the performance with shorter gap becomes better for BER below 3%.

Finally, we evaluate the link performance in the presence of co-channel CR interfer-

ence, in addition to PU interference. While still assuming four antennas in the target CR 

receiver and − 20 dB SIR for the PU signal, also two interfering CR signals are included 

a

b

Fig. 4 Performance of QPSK and 64QAM BS-CR systems for SIR {− 10, − 30} dB with or without covariance 

matrix interpolation. a 0 and 3 km/h CR receiver mobilities. b 0 and 10 km/h CR receiver mobilities. Silent gap 

length of 16 symbols, and OFDM frame length of 17 symbols
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in the model. All CR signals are at the same average power level and their channels are 

independent instances of the Vehicular A channel model. The results are shown in Fig. 6, 

indicating that the impact of co-channel CRs on the target link performance is very 

minor.

5  Conclusion

The performance of black-space CR transmission links in the presence of strong inter-

ferences and mobility was investigated using spatial covariance interpolation between 

silent gaps. The interference rejection capability of IRC using multiple receive antennas 

Fig. 5 Performance of QPSK and 16QAM BS-CR systems for SIR = − 20 dB with covariance matrix 

interpolation for CR receiver mobilities of 0, 10 km/h, and 20 km/h. Silent gap length of 8 or 16 symbols and 

OFDM frame length of 17 symbols

Fig. 6 Link performance in the presence of PU and two CR co-channel interferers using gap lengths of 8 and 

16, mobilities of 0 and 3 km/h, 16QAM modulation in target CR link, SIR of − 20 dB for PU, and equal power 

levels of all CR signals
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for various modulation orders under varying mobility and channel setups was studied. 

It was found that the IRC performs very well in the basic SIMO-type BS-CR scenario 

when stationary channel model is applicable, e.g., in fixed wireless broadband scenarios. 

However, the scheme is rather sensitive to the fading of the PU channel, e.g., due to peo-

ple moving close to the CR receiver. Due to the strong interference level, the interfer-

ence cancellation process is affected by relatively small errors in the covariance matrix 

estimate. For covariance estimation, the silent gap length in the order of 16—32 OFDM 

symbols provides the best performance with stationary channels, but even with 3 km/h 

mobility, the performance degrades greatly when considering SIR levels below -10 dB. 

The data block length should be of the same order or less, which leads to high over-

head due to the silent gaps. Covariance interpolation was shown to greatly improve 

the robustness with time-varying channels, such that good link performance can be 

obtained with up to 20 km/h mobility at 700 MHz carrier frequency. This indicates that 

the proposed BS-CR scheme could be feasible at below 6 GHz frequencies with pedes-

trian mobilities. However, there is a significant tradeoff between link performance and 

overhead in data rate due to the silent gaps.

In the basic TV black-space scenario, there is only one strong TV signal present in 

the channel, in agreement with our assumption about the primary interference sources. 

DVB-T system allows also single-frequency network (SFN) operation and the use of 

repeaters to improve local coverage. In both cases, the primary transmissions can be 

seen as a single transmission, with a spatial channel that depends on the specific trans-

mission scenario, and the proposed scheme is still applicable.

One important issue in the proposed scheme is its sensitivity to the nonlinearities of 

the CR receiver’s analog front-end. Wide linear range is required in order to prevent 

nonlinear distortion from the high-power PU signal from degrading the CR link perfor-

mance. This is a common issue with opportunistic CR operating in white spaces close to 

high-power PU channels and also with digital signal processing (DSP) intensive receiver 

architectures. An interesting technology in this context is advanced DSP algorithms 

for compensating the nonlinear effects of the receiver’s analog front end [26]. On the 

other hand, sample covariance-based IRC may exhibit some capability to reject also the 

nonlinear distortion due to the strong PU signal. This remains as an important topic for 

future studies.

The scheme was also extended to scenarios where multiple CR systems are operating 

in the same region. If all CR systems are time-synchronized to the PU and they are at a 

relatively small distance from each other, they are also synchronized with each other, 

and can be handled by the IRC process as additional interference sources following the 

model of Eq. (3).

In future work, it is important to optimize the silent gap and data block lengths along 

with the modulation order to maximize throughput with given PU interference level and 

mobility. Lower-order modulations are more robust to errors in covariance estimation, 

allowing significantly lower gap and training overhead than higher order modulation. 

Complexity reduction of the covariance interpolation and IRC process is also an impor-

tant topic for further studies. It is also worth to consider adaptation of the IRC process 

without silent gaps after the first one required for the initial solution. This would help 

to reduce the related overhead in throughput. One possible approach is to do this in a 
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decision-directed manner: first estimating the covariance matrix in the presence of the 

target signal and then cancelling its effect based on detected symbols and estimated tar-

get channel. In future studies, also the effect of antenna correlation will be taken into 

consideration.
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Abstract - In this paper, we investigate the effects of RF 
transceiver’s imperfections on the multi-antenna interference 
rejection combing (IRC) based black-space cognitive radio (BS-
CR) operation. In particular, we explore the effects of power 
amplifier (PA) nonlinearities and carrier frequency offset (CFO) 
on the blind IRC technique. The BS-CR operation mode supports 
effective reuse of the primary user (PU) spectrum, especially for 
relatively short-distance CR communication. We assume that both 
the PU system and the BS-CR use orthogonal frequency division 
multiplexing (OFDM) waveforms with common numerology. In 
this case the PU interference on the BS-CR signal is strictly flat-
fading at subcarrier level, and it can be suppressed using 
subcarrier-wise IRC processing. Spatial sample covariance 
matrix-based IRC adaptation is applied during silent gaps in CR 
operation. We propose an analytical framework for modeling CFO 
effects, together with experimental study of CFO and PA 
nonlinearity effects.  The performance of the IRC scheme is tested 
considering terrestrial digital TV broadcasting (DVB-T) as the 
primary service. The validity of the offered expressions for CFO 
effects are justified through comparisons with respective results 
from computer simulations. The effect of CFO between the 
primary and secondary systems is found to be critical for BS-CR 
operation, while the effect of CR transmitter’s nonlinearity is no 
worse than in basic OFDM schemes, and the PU transmitter’s 
nonlinearity has minor effect on BS-CR operation. 

Keywords Black-space cognitive radio, underlay CR, IRC, 

interference rejection combining, MRC, multi-antenna system, 

receiver diversity, PA nonlinearity, CFO, OFDM,  DVB-T. 

I. INTRODUCTION  

Spectrum reuse has become an essential part of today’s 
wireless communication systems.  Cognitive radios (CRs) are 
becoming a prominent means by which the spectrum reuse is 
implemented [1]-[3]. To operate in radio environments with a 
high level of interference and, simultaneously, produce 
negligible interference to the primary users (PUs), CR 
transmitters (TXs) have to have good power amplifiers (PA) 
that have good power efficiency and high linearity [4].  
Indeed, the power efficiency and linearity requirements are 
conflicting.   There is also the need to use the spectrum as 
efficiently as possible and, therefore, spectrally efficient 
modulation techniques such as orthogonal frequency division 
multiplexing (OFDM) are commonly used. OFDM systems 
are very sensitive to the nonlinear distortions introduced by 
the analogue parts. To avoid significant degradation of the 
signal quality, the requirements of the analogue radio 
frequency (RF) components, such as PA are becoming stricter 
[4, 5].  

In this paper we study interference rejection combing 
(IRC) based multi-antenna receiver diversity schemes with 
co-channel interference rejection capability. Our focus is on 
the black-space cognitive radio (BS-CR) application, where 
the power level of the CR signal is much below the PU power 
level at the CR receiver, and IRC is used for co-channel 
interference suppression.  

 Linear minimum mean square error (MMSE) based multi-
antenna interference cancellation of co-channel interferes was 
studied in [6].  The equivalence of such MMSE schemes and 

interference rejection combing (IRC) was described in [7].  
The use of multiple adaptive antennas in the context of 
interference cancelation for systems based on OFDM was 
discussed in [8]. The effects of MMSE based IRC receiver 
imperfections in cellular radio systems were studied in [9]. 

It is important to study the effects of different kinds of RF 
imperfections also in the design of transceivers for CRs 
[4],[5],[10] and [11].  This is particularly important for black-
space cognitive radio (BS-CR) operation as some of the RF 
imperfections may become critical due to the wide signal 
dynamic range in the receiver [12]-[15]. In BS-CR, the RF 
nonidealities may affect in two different ways: (i) Directly 
degrading the CR link performance and/or (ii) harming the 
IRC process leading to reduced PU interference suppression 
capability, e.g., by distorting the spatial covariance estimate. 
In this paper, we investigate the effects of transmitter 
nonlinearities and carrier frequency offset (CFO) in IRC based 
BS-CR systems. 

In the following, we introduce first the IRC-based BS-CR 
system model in Section II. In Section III, the used nonlinear 
PA model is first introduced and then simulation results for 
the effects PU TX nonlinearity and target CR TX nonlinearity 
are presented. In Section IV, we analyze the CFO effect and 
develop a novel analytical model for the post-combining 
signal-to-interference ratio (SIR) at the CR receiver and 
validate the model through comparisons with simulation 
results. Here the post-combining SIR is the ratio of the target 
CR signal power at CR receiver to the residual PU interference 
power due to the CFO, and it is a function of the CFO in 
relation to the subcarrier  spacing, maximum delay spread of 
the PU channel, and the ratio of the PU and target CR powers 
at the CR receiver. Finally, concluding remarks are presented 
in Section V. 

II. IRC-BASED BLACKSPACE COGNITIVE RADIO 

The scenario considered in this study is illustrated in Fig. 
1. In this scenario, we consider a CR receiver using multiple 
antennas to receive data from a single-antenna cognitive 
transmitter. The CR operates within the frequency band of the 
PU, and the PU power spectral density (PSD) is very high in 
comparison to that of the CR. The PU transmitter generates a 
lot of interference to the CR transmission, which operates 
closer to the noise floor of the primary receiver, and due to 
this, the PU communication link is protected. We consider 
frequency reuse over relatively small distances, such as an 
indoor CR system. The multi-antenna configuration studied 
here is that of single-input multiple output (SIMO). Other 
configurations, involving also transmit diversity in the CR link 
are also possible, but they are left as a topic for future studies.  

In the case presented in the study, the PU is a DVB-T 
system that uses CP-OFDM [13]-[15]. The CR system is also 
an OFDM based multicarrier system using the same subcarrier 
spacing and CP length as the primary system. Thus, it has the 
same overall symbol duration. The CR system is assumed to 
be synchronized to the primary system in frequency and in 
quasi-synchronous manner also in time. The CP length is 
assumed to be sufficient to absorb the channel delay spread 



together with the residual offsets between the two systems 
observed at the CR receiver. Consequently, the subcarrier-
level flat-fading circular convolution model for spatio-
temporal channel effects applies for the target CR signal, and 
for the PU interference signal as well. Then the IRC process 
can be applied individually for each subcarrier. Since the CR 
receiver observes the PU signal at a very high SINR level, the 
synchronization task is not particularly difficult and low-
complexity algorithms can be utilized. Considering short-
range CR scenarios, the delay spread of the CR channel has a 
minor effect on the overall channel delay spread to be handled 
in the time alignment of the two systems. Basically, if all CR 
stations are synchronized to the PU, they are also 
synchronized with each other in quasi synchronous manner. 
In our earlier paper, we have investigated the effects of 
mobility on the BS-CR system performance [15]. Here we 
assume stationary operation for simplicity.  

 

 

 

 

 

 

 

 

Fig. 1: BS-CR system model with silent gap for interference covariance 
estimation. 

Both the primary and the CR systems use QAM subcarrier 
modulation, but usually with different modulation orders. The 
received CR signal consists of contributions from both the 
desired CR communication signal and the primary 
transmission signal, the latter one constituting a strong 
interference. Our BS-CR scheme includes two phases in the 
CR system operation, silent gaps and actual data transmission, 
as described in our previous work [15]. The spatial 
characteristics of the PU interference are modeled using 
multiantenna sample covariance matrix, which is estimated 
during silent gaps in the CR transmission, independently for 
each active subcarrier [13]. No explicit channel estimation of 
the PU channel is required. The CR channel is estimated from 
the partial IRC signals, from which the PU interference has 
been effectively suppressed. Based on the OFDM model 
mentioned above, subcarrier-wise detection is considered with 
flat-fading channel coefficients to get rid of the challenge of 
frequency selectivity in the IRC process.  

In the SIMO configuration, the CR is assumed to have 
 receiver antennas and  <  different interference sources 
are assumed. Based on this model, the signal received by the 
CR can be formulated for each active subcarrier (for simplicity 
of notation, the subcarrier index is not shown) as follows:  

                =  + ∑ ,,

 + .                          (1) 

Here   is a transmitted subcarrier symbol and  T =

ℎ,, ℎ,, … , ℎ,


 is the target channel vector with  

receiver antennas in the CR, ,is the lth interfering signal, 

and I,l = ℎI,l,, ℎI,l,, … , ℎI,l,

is the channel vector for the 

lth interferer. The channel vectors consist of the complex 

channel gains from the corresponding transmit antenna to nth 

antenna of the CR receiver. Finally,  is the additive white 

Gaussian noise (AWGN) vector. In this generic system model, 

it is assumed that the PU is the dominant interferer, and the 

other interference sources are other CR systems introducing 

co-channel interference at relatively low power level. The 

interference minimizing IRC weights are obtained during the 

silent period. Due to that, Eq. (1) is modified during silent gaps 

of CR operation as  

                          = ∑ ,,

 + .                                (2) 

Linear combiner is used for the signals from different CR 
receiver antennas with a weight process in detection as 
follows:  

                                =  ,                                     (3) 

where  is the detected signal,   is the weight vector with 

 elements, and superscript H  denotes the Hermitian 

(complex-conjugate transpose). 

In this paper, we assume, for simplicity, that the PU is the 
only interference source. Then, if the PU channel vector is 
perfectly known, the noise plus interference covariance 
matrix can be calculated for each subcarrier as 

                                 NI = 
 + ,                                         (4) 

where P is the transmitted signal power in the subcarrier, 
  is the subcarrier noise power, and   is NxN identity 
matrix. The sample covariance based estimate is  

                           NI = 


 ∑ ()()

 .                          (5) 

Here  is the OFDM symbol index and  is the observation 
length in subcarrier samples, which is chosen equal to the 
length of  the silent gap. In the following, our focus is on the 
sample covariance approach, but also results with known 
channel approach are included as a reference corresponding 
to ideal interference covariance estimation.   

Using IRC, interference-free signals can be obtained for a 
transmissiom with target channel vector (known as steering 

vector) Sh  by using a linear weight vector w as follows: 

                                      = NI
.                                          (6) 

Our approach is to calculate first such weight vectors for N 
orthogonal steering vectors during silent gaps and then use 
these weight vectors to obtain N variants of the following 
received CR signal block from which the PU interference is 
removed. Then the target CR channel is estimated for each of 
these signals, which are finally combined using maximum 
ratio combining (MRC). Details and results of these 
approaches can be found in our previous work [15]. 

III. NONLINEAR PA EFFECTS IN BS-CR 

A. Transmitter power amplifier models 

The non-linearity of transmitter PAs causes significant 
effects on the performance with respect to spectrum 
characteristics, multiuser interference on the desired signal, 
and transmit power, depending on the used modulation 
scheme [16, 17]. Especially, the non-linearity brings about 
spectral regrowth causing adjacent channel interference and 
in-band performance degradation. The latter one is in the 
main focus of our study. Generally, the error vector 
magnitude (EVM) metric quantifies the in-band distortion 
causing performance loss in bit error rate (BER).  



Various PA modeling approaches are available in the 
literature [16, 17]. While advanced PA models involving 
memory effects are able to model nonlinear PAs in a more 
reliable way, especially in wideband transmission, basic 
memoryless models are still widely used, e.g., in the 3GPP 
standardization related studies. For 5G New Radio studies at 
below 6 GHz frequency bands, a Rapp-type model is proposed 
for the base-station TX (downlink) and a polynomial model 
for the PAs of user devices (uplink) in [18]. Both of these 
gives AM/AM and AM/PM conversion characteristics, 
modeling how the PA output amplitude and phase, 
respectively, depend on the input amplitude.   

Here we use the uplink model, which is an empirical 
polynomial model based on measurement of a real PA [18]. 
The PA output y(t) is computed from input amplitude x(t), 
given in dBm units, using the formula 

       () =    +  ()  + () + ⋯ + ∙().    (7)                                                                       

The coefficients for AM/AM and AM/PM conversion, 

organized as [   … ] are as follows:  

      

am [ 7.9726e-12  1.2771e-9   8.2526e-8

            2.6615e-6   3.9727e-5   2.7715e-5  -7.1100e-3

          -7.9183e-2    8.2921e-1   27.3535] 

p =

       (8)  

      

pm  =[ 9.8591e-11  1.3544e-8   7.2970e-7

            1.8757e-5    1.9730e-4  -7.5352e-4  -3.6477e-2  

           -2.7752e-1  -1.6672e-2  79.1553] .

 p

   (9) 

The AM/PM model gives the input amplitude dependent 
phase rotation in degrees.   

B. PA nonlinearity effects 

We test the effects of PU and CR transmitter nonlinearities 
through simulations. For simplicity, it is assumed that there 
are no other interference sources. First the spectral regrowth 
due to nonlinearities is demonstrated in Figs. 2 and 3 for PU 
TX and CR TX, respectively, for linear PA and the mentioned 
5G uplink PA model. For the nonlinear model, we use two 
different back-off values of 9 dB (modest case) and 5 dB 
(worst case).  

 Here and in all later simulations, we assume the OFDM 
IFFT/FFT size of 2048 and the subcarrier spacing of 4.4643 
kHz, corresponding to the 2k mode of DVB-T. The CP length 
is 1/8 times the main OFDM symbol duration, and the PU 
signal has all the elements of DVB-T transmission. For the CR 
signal we use the same main parameters and 1200 active 
subcarriers in the center of the DVB-T spectrum consisting of 
1705 active subcarriers. We use the silent gap length of 24 
OFDM symbols, and data block length of 65 OFDM symbols 
between silent gaps. We consider both sample covariance and 
known channel based IRC schemes. In the sample covariance 
based case, the covariance matrix is estimated from the 
received signal during silent gaps of length 24 in the target CR 
transmission. The reference case is based on perfect 
knowledge of the PU-CR channel. The CR channel is 
estimated using training symbols. All simulations use 1x4 
SIMO antenna configuration. 

Next, we consider the BER performance of the CR link 
with PA nonlinearity. The CR TX nonlinearity should not 
affect the interference covariance estimation, so we expect 
that it affects the  BS-CR  link  performance  in the same  way  
as  in  basic OFDM transmission with the same  numerology. 

 

Fig. 2. Effects of PA model on PU interference signal considering ideal, 
modest and worst cases. 

 

 

Fig. 3. Effects of PA model on CR signal considering ideal, modest and worst 

cases.  

Regarding the PU TX nonlinearity, we notice that basic PA 
nonlinearity models do not harm the cyclic convolution model 
of CP-OFDM, i.e., the end part of the main OFDM symbol is 
affected in the same way as its copy, the cyclic prefix. Then 
the interference covariance should not be affected by PU TX 
nonlinearity, and we don’t expect significant effects in the link 
performance. However, if the PA exhibits strong memory 
effects, the cyclic convolution model might be distorted, and 
this effect is worth investigating in future studies. 

Monte Carlo simulation results are provided for the CR 
link performance with PA nonlinearity, assuming the CR/PU 

power ratio of PU 30SIR = − dB and 64QAM subcarrier 

modulation. We use a modest input back-off value of 9 dB for 
the CR TX, and a low back-off value of 5 dB for the PU TX. 
The latter choice, as well the use of 5G-UL PA model for the 
PU TX is for demonstrating the robustness of BS-CR 
operation towards the PU TX nonlinearity. For these results, 
we use the Hilly terrain (HT) channel model having about 18 

µs maximum delay spread for the PU signal and the ITU-R 

Vehicular A (VehA) model with about 2.5 µs maximum delay 
spread for the CR signal.  



 

 Fig. 4 shows the sample covariance based BS-CR link’s 
BER performance with linear and nonlinear PA models in 
comparison to a basic interference-free link using MRC based 
receiver diversity. We can see that the used modest 
nonlinearity affects in a similar way in BS-CR and basic 
OFDM systems with the same numerology and same antenna 
configuration. With used parameters, sample covariance 
based BS-CR has about 3.5 dB SNR loss due to PU 
interference at 1 % BER level.  

Fig. 5 shows the BER performance with linear/nonlinear 
PA in PU or CR TX, considering both sample covariance and 
known channel based schemes. We can see that even the very 
hard nonlinearity tested for PU TX has very minor effect on 
the CR link performance. It is also interesting to notice that, at 
1 % BER level, the proposed sample covariance based method 
has about 1.2 dB SNR loss in comparison to the known 
channel based reference method. 

 

IV. ANALYSIS OF CFO EFFECTS IN BS-CR 

In the following analysis, we assume that the CR receiver 

is synchronized to the target CR signal while there is a 

frequency offset between the PU and CR carrier frequencies. 

We ignore the possible inconsequential initial carrier phase 

offset in the receiver. For convenience of notation, without 

loss of generality, we also assume that the active subcarriers 

are indexed from 0 to NA-1. Then the PU interference part of 

the received digital baseband multi-antenna signal can be 

expressed in the presence of CFO as:  

() = () ∗ ()
CFO

                    (10) 

where n is the time index, CFO is the CFO normalized to the 

subcarrier spacing, () is the vector of channel impulse 
responses from PU to the CR receiver antennas, () is the 
PU signal, and ∗ denotes cyclic convolution. Then, after the 
receiver’s FFT process, the corresponding PU interference 
contributions to the kth subcarrier samples of different antenna 
branches can be expressed as [19] 
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where , is the PU channel vector for subcarrier l, dPU,l  is 

the PU data symbol in subcarrier l, and 
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with 
CFO

z l k δ= − + . The orthogonality of subcarriers is 

maintained only if the CFO is zero or integer, i.e., if the 

frequency offset is an integer multiple of subcarrier spacing. 

Otherwise, the sample observed at the kth subcarrier contains 

intercarrier interference (ICI) from all other active 

subcarriers.   

 

Fig. 4. BER performance of sample covariance based BS-CR with  64QAM 

modulation and
PU

30SIR = − dB vs. basic transmission link with MRC 

based receiver diversity. 5G-UL PA model is used for the target link, linear 
PA in PU TX.  

 

Fig. 5: BER performance of BS-CR with 64QAM subcarrier modulation, 

PU
30SIR = − dB, and linear or nonlinear 5G-UL PA model for PU or CR 

transmitter.   

 

Now the known PU channel based spatial covariance 

matrix for subcarrier k can be evaluated as  
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where PU, is the spatial covariance matrix of subcarrier l in 

the absence of CFO. The cross-terms between different 

subcarriers are not included here, based on the common 

assumption that the subcarrier symbol sequences are 

uncorrelated.  
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In the following, we aim to model the effect of CFO on 

the interference covariance matrix in the IRC context using 

basic parameters of the channel model. For this purpose, we 

first introduce a model for the correlation of the spatial 

channels of different subcarriers. We use the model 

commonly applied in Wiener filtering based channel 

estimation [20] for the correlation between the channel 

coefficients of different subcarriers. It is based on assuming 

uniform power delay profile with maximum delay spread of 

 . We also assume that the spatial channel of each 

subcarrier is uncorrelated. Then the correlation between 

subcarriers k and l can be expressed as [20] 

          ( ) max( ) /

max( , ) sinc ( ) / sj k l f N
R k l k l f N e

s
ττ − −= − .      (14)  

It should be noted that in case of flat-fading channel, 

different subcarriers have equal channel matrices and, 

consequently, equal spatial covariance matrices. In this case, 

CFO affects the channel covariance matrices on by an 

inconsequential real scaling factor. On the contrary, with 

highly frequency selective channels, the spatial covariance 

matrix of each subcarrier is distorted by the uncorrelated parts 

of the channel vectors of other subcarriers. Noting that 

( , ) 1,R k k =  we can express the spatial covariance matrix of 

subcarrier k as  

  ( )
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The actual spatial covariance matrix of each subcarrier is 

scaled by 
2

CFO( )β δ , while the distorting uncorrelated part of 

the covariance of subcarrier k is given by the latter term. We 

assume that the IRC process suppresses completely the PU 

interference power corresponding to the first term, but the 

uncorrelated part remains as interference to the target CR 

signal. Let PU T PU/SIR P P= denote the ratio of the target CR 

power at the CR receiver, TP , to the PU interference power 

before interference cancellation, PUP . Assuming that the 

subcarriers have equal power levels, the target signal’s post-

combining SIR due to the CFO of the PU signal can be 

evaluated as: 
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.     (16)            

In the numerical results, we show the average of this 

expression over active subcarriers. This calculation can be 

simplified by noting that subcarriers  +   and  −  

contribute equally to the interference and that, considering all 

active subcarriers, there are 2( − )  subcarriers at the 

distance of | − | = . 

Fig. 6 compares the theoretical SIR values based on Eq. (16) 

with simulated SIR values considering both sample 

covariance based and known channel -based IRC schemes 

with different values of CFO. Here the known channel 

reference case is based on perfect knowledge of the PU 

channel in the absence of CFO. The subcarrier modulation is 

16QAM, and the other parameters are as mentioned in 

Section III-B.  

 

Fig. 6. Theoretical and experimental CFO-based SIR in BS-CR with 
Vehicular-A and Hilly terrain channel models and SIRPU = -30 dB.  

 

Here both HT and VehA channels are considered for the PU 

signal. No channel noise is included in these simulations, so 

the interference is due to imperfect spatial covariance matrix 

estimation due to CFO and due to limitations of sample 

covariance based estimation in the corresponding case. The 

CFO-based SIR is shown also for the basic OFDM scheme 

[19]. 

We can see that the CFO requirements are 3-10 times 

tighter than in basic OFDM schemes, depending on the 

channel delay spread and covariance estimation scheme. We 

can see that with the VehA-type PU channel, there is a very 

good match between the theoretical model and the known 

channel based simulation results. With HT-type PU channel, 

the theoretical model is somewhat pessimistic. We can also 

see that the sample covariance based estimation gives clearly 

better SIR than the theoretical model or the case of CFO-free 

channel knowledge based covariance estimation. This is 

because the sample covariance based estimation is able to 

take into account the CFO-induced contribution to the 

covariance estimates of different subcarriers.  

Fig. 7 shows the BER performance with 64QAM 

modulation, VehA channel for the CR link, and CFO values 

of { }CFO 0, 0.01, 0.005δ ∈ , while the other parameters are the 

same as in the other numerical results. We can see that with 

CFO=0, the PU channel’s delay spread has a very minor 

effect on the performance. When relating these results with 

SIR performance of Fig. 6, it should be noted for Fig. 6, the 

interference covariance is estimated in the absence of channel 

noise, and in low SNR region of Fig. 7, the covariance 

estimate is degraded due to noise. However, we can see that 

in the high SNR region, the performance of sample 

covariance -based scheme may exceed the performance of the 

known channel -based covariance estimate. Generally, the 

hard requirements for CFO can be seen also in these results. 



 

Fig. 7. BER performance with different CFO values {0, 0.005, 0.01},  

64QAM subcarrier modulation, SIRPU = -30 dB, VehA channel for CR link, 
and VehA or HT channel for PU. 

 

V. CONCLUDING REMARKS 

Clearly, the most critical one among the considered RF 

imperfections is the CFO between the PU signal and CR 

receiver. However, since the PU signal is received at a high 

power level, synchronizing the CR stations to the PU signal 

with the needed high accuracy should be achievable. 

Considering other cases, e.g., when both the PU signal and 

target CR signal have CFOs, the effect of the high-powered 

PU signal dominates and still remains the most critical issue. 

The effects of PA nonlinearity in PU and CR transmitters 

were also tested, and found to less critical, as expected. The 

developed analytical model for the PU CFO effect could be a 

basis for analytical modeling BS-CR scenarios with mobility, 

which was tested experimentally in our earlier work in [15]. 

This is an important topic for future studies. Also, the 

nonlinearity of the CR receiver electronics may be critical 

due to the wide signal power range to be dealt with. This 

remains as another important topic for future work. 
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