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A B S T R A C T   

This study develops and validates an effective material model for cold-formed rectangular hollow sections. 
Advanced design methods utilize non-linear finite element analysis in design. An accurate calculation model, 
which is usually beam element-based, is crucial such that the design outcome is safe but economical. Unfortu
nately, cold-formed sections have non-linear residual stress distribution over the material thickness, that cannot 
be explicitly modelled in general-purpose beam elements. Additionally, corner regions of cold-formed sections 
have higher material strength compared to flat regions. This beneficial feature is usually disregarded by assuming 
the flat region properties for the entire cross-section. This study develops an effective material model that 
replicates a stress-strain curve that would be obtained if the tensile test was made for the entire cross-section 
instead of a separate tensile coupon. Consequently, the effects of residual stresses and corner strength en
hancements are included in the effective material model such that their consideration in beam element-based 
advanced design method is effortless. The effective material model is validated for the steel grade S700 
against numerical shell element buckling tests and excellent modelling accuracy is achieved.   

1. Introduction 

The utilization of Nonlinear Finite Element Analysis (NFEA) as a 
design tool is drawing more attention due to the fast development of 
computers and commercial FEM packages. In Eurocode 3 [1], [2], this 
type of Advanced Design Method (ADM) is termed GMNIA, which stands 
for Geometrically and Materially Nonlinear Imperfection Analysis. In 
Australian and New Zealand standard AS/NZS 4600:2018 [3] such a 
method is termed “Advanced Analysis” or “GMNAI”. 

Usually, beam elements are employed in ADM because of their 
computational efficiency. Unfortunately, using beam elements causes 
challenges for modelling the cross-sectional properties of cold-formed 
rectangular hollow sections (CFRHS). These challenges are due to ef
fects of cold-forming on the material properties of the cross-section. In 
many commercial finite element packages such as in Abaqus [4], the 
cross-section of a general-purpose beam element can comprise of one 
material. However, cold-forming causes strength enhancements, and 
especially corner regions of CFRHS have higher yield and ultimate 
strengths compared to the flat regions of the cross-section [5], [6]. 
Hence, multiple material models would be needed to utilize these 
strength enhancements in the capacity calculations. Cold forming 

induces also residual stresses, which vary nonlinearly through the 
thickness of the material [7]. Cross-sections of thin-walled hollow sec
tion beam elements usually have only one integration point in the 
thickness direction of the material. A single integration point is not 
capable of describing the varying residual stress distribution through the 
thickness. Because of these limitations in general-purpose beam ele
ments, the direct modelling of varying material properties and residual 
stresses is not possible, and approximation method is needed. 

An often-employed approach to account for geometrical and mate
rial imperfections (including residual stresses) is to use so-called 
“equivalent geometrical imperfections” (EGI), as presented, for 
example in Eurocode 3 [1]. By using EGI, all relevant imperfections can 
be modelled with a single out-of-straightness (bow) imperfection e1 
shown in Fig. 1. Magnitudes defined for EGI have been criticized to be 
both unsafe or overly conservative for inelastic analyses depending on 
the shape and material of the cross-section, and these magnitudes have 
been recently refined [8], [9]. 

The utilization of EGI is a simple and computationally efficient 
approximation method. However, it has one fundamental shortcoming 
that has been already identified in the literature: Results of Batterman 
and Johnston [10] and Bjorhovde [11] show that the separate effects of 
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residual stresses and initial out-of-straightness cannot be added to give a good 
approximation of the combined effect on the maximum column strength. In 
some cases, and for some slenderness ratios, the combined effect is less than 
the sum of the parts (intermediate slenderness ratios, low residual stresses). In 
other cases the combined effect is more than the sum of the parts (citation 
from Ziemian [12]). A structure can be sensitive or insensitive to 
geometrical imperfections, hence the effects of residual stresses in such 
structures will be over- or underestimated when employing EGI. 

An alternative approximation method, which considers the residual 
stresses by reducing the stiffness of the stress-strain curve of the mate
rial, has been presented in the literature [13], [14]. This stiffness 
reduction method yields an equally simple procedure as the use of EGI, 
but the shortcoming of EGI for imperfection insensitive structures is 
avoided by considering the effects of residual stresses in the material 
model. Although the stiffness reduction method has been already in use 
[15], the authors have not found any studies that validate the accuracy 
of the method. 

To consider the corner strength enhancement and the effects of re
sidual stresses in a beam element-based advanced analysis, this study 
presents an effective material model (EMM) for CFRHS structures, which 
is applied on steel grade S700. The EMM is a weighted average from the 
flat part and corner region materials, that also contains the effects of 
residual stresses according to the stiffness reduction method. The ac
curacy of the EMM is validated by comparing the global buckling ca
pacities of beam element-based EMM models to shell element models in 
which the residual stresses are explicitly modelled. Validation is made 
for isolated columns and beam-columns with various cross-section sizes, 
non-dimensional slenderness ratios, and boundary conditions. Addi
tionally, Monte Carlo-simulations [16] for the global buckling analysis 
are carried out for varying material, geometrical and residual stress 
properties to validate the applicability of EMM to reliability studies, 
which are a central component of determining the safety factors of 
ADMs [15]. Monte Carlo-simulations require accurate statistical distri
butions for the cross-sectional properties. Therefore, these distributions 
are considered in the same level of detail as in actual reliability analysis. 
As an outcome of this study, a convenient EMM approach is proposed 
that can be used for modelling of CFRHS in ADMs and reliability studies 
in future research. 

2. Residual stresses of cold-formed rectangular hollow sections 

Residual stresses can have a significant impact on the global buckling 
capacity of compressed steel members [12], thus their effects must be 
considered in ADM. In this study, residual stresses are treated as pre
sented in [7]. In the following, the assumed distributions of the relevant 
stress components are briefly provided, more details can be found in [7]. 

Of the various residual stress components, only the longitudinal and 
transversal bending components, σLB and σTB, respectively, are assumed 
to have a significant effect on the global buckling capacity, and the 
remaining components are neglected [6], [7], [17], [18]. The 

distributions of σLB and σTB along the cross-section perimeter and 
through the thickness are shown in Fig. 2. Fig. 3 presents the cross- 
sectional points CC (center of corner), NC (near corner) and MP (mid- 
plate) along the perimeter s for 1/4th of a cross-section. NC is the point 
at which the outer corner radius Ro and flat part intersect. Residual stress 
distribution and cross-sectional points are symmetrical with respect to 
axes 1–1 and 2–2 of Fig. 3. 

Residual stresses at the location s along the perimeter (see Fig. 3) are 
obtained by: 

σi(s) = χj(s) • σj (1) 

where i is L or T and j is LB or TB. σTB is constant along the perimeter s 
such that the residual stress distribution σTB,Flat in the flat region MP-NC 
is used also in the corner region CC-NC (see Fig. 2). σLB however, is 
divided into σLB,Flat (MP-NC) and σLB,Corner (NC-CC), thus distinguishing 
the variations in the magnitude of longitudinal residual stresses in the 
corner and in the flat region. Relative through-thickness residual stress 
distributions of Fig. 2 are obtained by the formulae: 
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(
fy
)
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y + 6.737 • 10− 4fy + 0.562
[
1
/

fy
]

(2)  
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where fy is the yield stress of the flat region of CFRHS in MPa. Out
comes of Eqs. (2)–(4) are residual stress magnitudes relative to the yield 
stress of the flat region of the member, [1/fy]. Hence, the actual residual 
stresses are obtained by multiplying the relative residual stresses by the 
flat region yield stress. 

3. Material model for high-strength steel 

Ramberg-Osgood model [19] is typically used to describe the 
rounded stress-strain curve of high-strength steels (HSS) [20]. This study 
adopts a two-stage model presented by Gardner and Yun [21]. The 
stress-strain relationship of the model is obtained by: 

ε(f ) =

⎧
⎪⎪⎪⎪⎪⎨
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f
E
+ 0.002

(
f
fy

)n

, for f ≤ fy

f − fy

E0.2
+

(

εu − ε0.2 −
fu − fy

E0.2

)(
f − fy

fu − fy

)m

+ ε0.2, for fy < f ≤ fu

(5) 

where the first strain hardening exponent n, tangent modulus at the 
yield strength E0.2, the minimum strain εu at ultimate tensile strength fu, 
and the second strain hardening exponent m can be obtained by: 

n =
ln4

ln
(
fy
/

σ0.05
) (6)  

E0.2 =
E

1 + 0.002n E
fy

(7)  

εu,lower bound = ε0.2 +
fu − fy

E0.2
(8)  

εu = max
(
εu,lower bound, εu acc. to Table 1 (flat) or Table 3 (corner)

)
(9)  

m = 1+ 3.3
fy

fu
(10) 

where fy is the yield stress (0.2% proof stress for HSS) and σ0.05 is the 
0.05% proof stress. Model parameters for the flat region material are 

Fig. 1. Shapes of geometrical imperfections e1, e2 and e3.  
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shown in Table 1, and the obtained stress-strain curve is plotted in Fig. 4. 
Except for the elastic modulus E, these parameters are determined based 
on the dataset obtained from the manufacturer of CFRHS (DSet). DSet 
included measurements from flat parts of grade S700 CFRHS members 
governing a wide range of width-to-thickness ratios. The σ0.05 was 
determined based on 144 measured stress-strain curves and fy, fu and εu 
on 271 recorded tensile coupon test readings. It should be noted that the 
mean stress values fy, fu and σ0.05 presented in Table 1 are the mean mill 
test values multiplied by a factor of 0.9965 [20]: Strain rates in the 
tensile tests may be higher than in the actual loading situation leading to 
higher measured stresses, hence it is recommended to reduce the 
measured mill test readings in reliability studies [16], [22]. However, in 
the case of HSS and testing based on stress rate (method B in [23]), the 
reduction factor is minor [20]. This condition corresponds to measure
ments of DSet and is applied in this study. It should also be noted that εu 

is determined according to the measured value but the lower bound in 
Eq. (8) ensures appropriate strain values in the two-stage material 
model. The modulus of elasticity E cannot be properly determined from 
the usual uniaxial tensile test [23], [22], hence its parameters are based 
on a draft of prEN 1993-1-1 [24]. 

The enhanced corner material is assumed to extend by the distance 2 
t from NC into the flat region (t is the wall thickness of the cross-section) 
[25–29], as shown in Fig. 3. Based on two unpublished and 10 published 
measurements taken from S700 CFRHS [6], [30], [31], the corner 
strength enhancement factors Cfy and Cfu are calculated according to the 
equations in Table 2. Additionally, the εu of the corner material is 
assumed to be 1.7% on average [6], and 2.5% at maximum in Monte 
Carlo-simulations. Table 3 summarizes the selected corner material 
parameters. 

It should be noted that the two-stage material model is valid up to the 
stress fu and strain εu. For the flat material, it is assumed in this study that 
a constant yield plateau remains up to the strain 5%, after which the 
stress decreases linearly to the level of 3/4 of fu at strain 10%, see Fig. 4. 

Fig. 2. Residual stress distribution for CFRHS [7].  

Fig. 3. 1/4th of a cross-section and location of points MP, NC, and CC.  

Table 1 
Material parameters for the flat region of the grade S700 steel.  

Property Description Distribution Mean COV [%] Ref. 

fy Yield strength Normal 746.5 MPa 2.76 DSet 
fu Ultimate strength Normal 839.5 MPa 2.47 DSet 
σ0.05 0.05% proof stress Normal 641.9 MPa 5.47 DSet 
εu Strain at fu Normal 0.037 25.18 DSet 
E Elastic modulus Normal 210 GPa 3.00 [24] 
ν Poisson’s ratio Deterministic 0.3 – [1]  

Fig. 4. The stress-strain curves of the flat and corner materials.  

Table 2 
Corner strength enhancement factors.  

Property Description Distribution Mean COV 
[%] 

Cfy Corner strength enhancement 
factor for fy and σ0.05 

Student’s t 1.21 6.74 

Cfu Corner strength enhancement 
factor for fu 

Full correlation 
with Cfy 

Cfu = 0.35•Cfy +

0.74  
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The stress decrease in the material model accounts for the necking 
phenomenon, which is not explicitly modelled at the element level. For 
the corner material, a constant yield plateau having the length of 0.1% 
strain is assumed after εu, and subsequently, the linear stress decrease to 
3/5 of fu is assumed at strain 10%. These limits were determined 
conservatively based on the stress-strain curves of the flat region (DSet) 
and corner region ([6]). However, global buckling usually occurs at 
strains below εu, thus these limits are of secondary importance. 

4. Effects of residual stresses and elastic modulus on the stress- 
strain curve 

In the literature, two approaches for treating residual stresses of 
CFRHS in computational models have been employed: Some authors 
incorporate the longitudinal bending residual stress σLB into the calcu
lation models [32–34], whereas others assume that the effects of the σLB 
are inherently incorporated in the measured stress-strain curve of the 
material [35], [29], [28]. The latter is based on the idea that the σLB is 
approximately reintroduced to the tensile coupon when fastening it to 
the friction grips of a tensile testing machine [36]. 

At least two possible sources of error may be present when assuming 
that the effects of σLB are already incorporated into the measured stress- 
strain curve: (1) If plastic deformation occurs in straightening the tensile 
coupon for the grips of the testing machine, the original residual stress 
distribution will not be reintroduced [35]; (2) if residual stresses 
decrease the elastic modulus, but instead of the actual measured elastic 
modulus, some general value, e.g., E = 210 GPa, is used in the analysis. 
The effects of residual stresses and elastic modulus on the stress-strain 
curve are illustrated as follows:  

1. Fig. 5 presents the average stress-strain curve of DSet (data from 
manufacturer), denoted “Measured”. The curve is modelled accord
ing to the two-stage Ramberg-Osgood model presented in Section 3 

(Eq. (5)), having the elastic modulus as the measured mean E ≈ 200 
GPa and the remaining parameters as the mean values of Table 1.  

2. The 0.2% proof stress fy can be determined from the intersection of 
the stress-strain curve and a line positioned at strain 0.002 shown as 
point P0 in Fig. 5. The slope of the line, ≈200 GPa, is determined by 
linear regression from measured data points between ≈10% and 
≈40% of the fy [23]. Similarly, the stress σ0.05 at point P1 can be 
determined.  

3. The modulus of elasticity obtained from the uniaxial tensile test is 
not accurate, because many sources of error exist in the measurement 
situation, such as misalignment of the test piece [23], [22]. There
fore, usually, e.g., E = 210 GPa is assumed for carbon steels [1]. By 
assuming E = 210 GPa instead of E = 200 GPa, the Measured curve is 
converted to the curve denoted “Selected”, see Fig. 5. Consequently, 
Selected has ΔE higher stress at P2 than Measured. If residual stresses 
have decreased the elastic modulus of the measured stress-strain 
curve and it is supposed that residual stresses are already included 
in the curve, the assumption that E = 210 GPa may be uncon
servative with respect to initial stiffness and stress magnitudes (see 
P1 vs. P2 in Fig. 5).  

4. In NFEA, a numerical tensile test can be performed without 
misalignment and other sources of errors, which allows solving the 
contribution of residual stresses in the elastic modulus. Therefore, a 
standard tensile test coupon having thickness of 5 mm, width of 20 
mm and length of 71.5 mm [23] was modelled by solid elements and 
tensioned utilizing NFEA. The coupon had a material model ac
cording to Selected of Fig. 5. Additionally, 70% of the longitudinal 
bending residual stress of the flat region (Eq.(2)), i.e. σLB =

0.7•0.64•746.5 MPa = 332 MPa, was introduced for 10 layers of 
solid elements in the through-thickness direction according to the 
model of Fig. 2. Magnitude of 70% represents the average amount of 
σLB that is not included in the measured stress-strain curve (see 
Section 5). As a result of this NFEA “tensile test”, the curve denoted 
“Selected + 70%” in Fig. 5 is obtained.  

5. The elastic modulus determined by linear regression (as in Item 2) of 
the curve Selected + 70% is ≈200 GPa and σ0.05 is at P3. This curve 
contains no measurement uncertainties of the real world, hence it is 
evident that the σLB has reduced E by 10 GPa (E = 210 GPa in Selected 
in NFEA) and σ0.05 by ΔRS (from P1 to P3).  

6. By imagining the above situation at P0 when determining fy, it is 
obvious that the obtained stress-strain curves are more closely 
bundled together, and no such large stress differences exist. There
fore, residual stresses affect especially the elastic modulus and σ0.05, 
and not much of fy. 

The actual magnitudes of ΔE and ΔRS depend on the residual stress 
level, measurement errors of the elastic modulus and the shape of the 
stress-strain curve in general (rounded as for HSS or bilinear as for 
normal strength steel). In this study, residual stresses are incorporated 
into NFEA in conjunction with the mean E = 210 GPa. Consequently, the 
increase ΔE, but additionally the decrease ΔRS by σLB will be considered. 

5. Magnitude of σLB in the measured stress-strain curve 

Even if the stress-strain curve with the measured elastic modulus was 
used in the ADM instead of E = 210 GPa, the outcome can be unsafe if 
the σLB has not been reintroduced to the tensile coupon. To evaluate to 
which extent the effects of σLB have been incorporated into the measured 
stress-strain curves, NFEA tensile tests presented in Item 4 of Section 4 
were carried out for the following material models:  

1. Curve Selected in Fig. 5 is also presented in Fig. 6. By carrying out the 
NFEA tensile test with the material model Selected and incorporating 
100% of σLB according to the residual stress model, the curve 
“Selected + 100%” is obtained. This curve can be regarded as an 
upper bound for the effects of σLB because it contains the possible 

Table 3 
Material parameters for the corner and near corner regions of 
the grade S700 steel.  

Property Value 

fy Cfy • fy of the flat region 
fu Cfu • fu of the flat region 
σ0.05 Cfy • σ0.05 of the flat region 
εu 1.7% 
E E of the flat region 
ν ν of the flat region  

Fig. 5. The effects of E and σLB on the stress-strain curve (Measured: E =
measured ≈ 200 GPa; Selected: E = 210 GPa; Selected+70%: E ≈ 200 GPa due 
to σLB). 
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effects of σLB in the used material model, and additionally, the full 
residual stress pattern of σLB is incorporated.  

2. The residual stress model [7] is presumably conservative: The in-situ 
residual stress measurements obtained by the sectioning method 
correspond to linearly varying stress distribution through the thick
ness. When the nonlinear through-thickness distribution is assumed 
as for σLB in Fig. 2, the measured linearly varying stresses can be 
multiplied by 9/13 ≈ 70% to convert the linear distribution to 
nonlinear [17]. This is justified since the sectioned coupon is not free 
from stresses, thus the measured surface stresses of the released 
coupon do not represent the actual residual stresses. The residual 
stress model [7] is heavily based on the measurements obtained by 
the sectioning method, but the reduction of 9/13 has not been 
considered in the model due to uncertainty because of limited 
research data. 

Consider now an imaginary material model “Bilinear”, which is 
fully elastic up to fy, and which has slight strain hardening such that 
the material model coincides with the other material models at strain 
0.008. By carrying out the NFEA tensile test with the material model 
Bilinear and incorporating 70% of σLB, a curve “Bilinear + 70%” is 
obtained. This curve can be regarded as a lower bound for the cu
mulative effects of σLB and rounded stress-strain curve because the 
material model is very unconservative in terms of stiffness for HSS 
and contains absolutely no effects of residual stresses. It is worth 
noting that Bilinear + 70% has the measured elastic modulus of 209 
GPa obtained by linear regression, i.e., almost the same as in the base 
material model Bilinear, 210 GPa. Therefore, the issues concerning 
the selection of elastic modulus (Fig. 5) are especially relevant for 
HSS which has a rounded stress-strain curve, and the impact on 
normal strength steels may be small depending on the shape of the 
stress-strain curve.  

3. The curve “Selected + 70%” of Fig. 5 is presented also in Fig. 6. This 
curve is a somewhat average curve for lower and upper bound curves 
Bilinear + 70% and Selected + 100%. Therefore, in this study, it is 
assumed that 30% of the effects of σLB have been already incorpo
rated into the material model and 70% of the σLB will be incorporated 
explicitly into calculation models. 

6. Effective material model 

The effective material model (EMM) provides a material model 
applicable to beam elements that emulates the stress-strain curve that 
would be obtained if the tensile test was carried out for the full cross- 
section of a CFRHS member. The stress-strain curve based on a tensile 
test on full cross-sections includes inherently the combined effects of 
residual stresses and strength enhancements of the corner material. In 
practice, the EMM can be generated by modelling the entire cross- 

section with shell or solid elements including residual stresses and by 
applying a tension load to the cross-section in NFEA. 

In Monte Carlo-simulations, thousands of EMMs are needed for 
various cross-section sizes, material parameters, and residual stress 
magnitudes. To effectively generate these EMMs, a Matlab [37] script 
was programmed. The script performs nonlinear finite element analysis 
with two solid elements: Fig. 7 presents two isoparametric three- 
dimensional hexahedral elements, having 8 nodes and three degrees of 
freedom (DOF) per node for each element. The global X-axis of the figure 
is in the direction of the longitudinal axis of the member and Z-axis in 
the thickness direction of the material. Boundary conditions of nodes 
N1-N12 are presented in Table 4. Nodes of each side, e.g., nodes of faces 
1 and 2, are coupled with multipoint constraints (MPC) such that all 
nodes translate within the current plane XY, XZ or YZ. MPCs ensure that 
the finite material element, which is described by these 2 solids, behaves 
like a real material element in a cross-section that is surrounded by the 
rest of the cross-section material. NFEA tensile test can be performed by 
applying a force F to the nodes of face 1 and formulating the “measured” 
stress-strain curve from the recorded total applied forces and X-dis
placements of face 1. 

Two solids are not capable of describing the entire material thickness 
of a CFRHS, because bending residual stresses are varying according to 
Fig. 2 such that at least 5 equally thick layers (solids) through the 
thickness would be needed. However, using only two solid elements is 
selected in this study to facilitate the implementation. EMMs over the 
entire cross-section thickness can be generated with these two solid el
ements by combining the results of multiple analyses: 

1. Divide the cross-section into 11 separate layers between the inte
gration points I1-I11 as shown in Fig. 8. Integration points I1 and I11 
are positioned at the surfaces of the material to make the integration 
scheme match Simpson’s rule used in shell elements. Note that lo
cations of the integration points I1-I11 are identical between Figs. 8 
and 2, but layer division differs: in Fig. 2, the through-thickness di
rection was divided into 10 layers (instead of 11), which corresponds 
to the division for 10 solid elements as used in Item 4 of Section 4. 

2. Perform a total of 5 NFEA tensile tests j = 1…5 pairwise for inte
gration points I1/I11, I2/I10, I3/I9, I4/I8, and I5/I7, such that one 
solid element represents the behavior of one integration point of the 
shell element, as shown in Fig. 8. The residual stress states of the first 
integration points in pairs are incorporated into the solid element at 
the bottom (element 1) and the second ones to solid at the top 
(element 2). Apply the same magnitude of residual stresses to every 
internal integration point of the solid despite the location of the 
point. Because of symmetry, the magnitudes of residual stresses in 
pairs are identical but opposite signs. This causes bending moments 

Fig. 6. The magnitude of σLB in the measured stress-strain curve.  

Fig. 7. Nonlinear solid element analysis in Matlab script.  
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about X- (σTB) and Y-axes (σLB). The applied MPC restraints force the 
faces to displace in planes such that the residual stress state, i.e. in
ternal moments, will not be released and cause curvature (analogous 
to the curved tensile coupon in the cutting method).  

3. Perform one NFEA tensile test j = 6 for integration point I6, having 
no residual stresses in elements 1 and 2.  

4. Combine these 6 separate NFEA tensile tests to a single stress-strain 
curve by calculating the corresponding total through-thickness stress 
σTot,i at strain increment i by: 

σTot,i =
∑6

j=1
wj • σij (11) 

where σij is the corresponding stress of analysis j, and wj is the weight 
factor of the analysis. Weight factors wj are the relative influence areas of 
points I1-I11 in the thickness direction, see Fig. 8. Therefore, w1 (I1/I11) 
= w6 (I6) = 1/10, and for the remaining analyses j = 2…5, wj = 1/5. If 
strain increments i do not coincide between the analyses j in σij (due to 
force-controlled analysis), linear interpolation can be used in deter
mining the stress values σij at identical strain increments before sum
mation in Eq. (11). 

Because flat and corner regions have different residual stress mag
nitudes (Fig. 2) and flat region comprises both the flat and extended 
corner material, the entire cross-section must be divided into three 
separate areas AMP, ANC and ACC shown in Fig. 3. AMP has residual stress 
and material models both according to the flat region. ANC has residual 
stresses according to the flat region and material model according to the 
corner region, whereas ACC has residual stress and material models both 
according to the corner region. 

Eq. (11) provides the stress-strain curve over the thickness of the 
material, but not over the entire cross-section. Therefore, the procedure 
presented above must be carried out for all areas AMP, ANC and ACC. 
Then, the total stress-strain curve over the thickness and around the 
cross-section, i.e., the EMM, is obtained by combining these three stress- 
strain curves similarly as in Eq. (11). In this case, j = 1…3 (AMP, ANC, 
ACC), weights wj are the relative portions of areas AMP, ANC, and ACC to 
the total cross-sectional area, and σij are the stresses from the stress- 
strain curves of AMP, ANC, and ACC over the entire material thickness. 

Fig. 9 illustrates the EMM procedure for the S700 square section 
120x120x8 (height H = 120 mm, width W = 120 mm, and thickness t =
8 mm). The base material for the flat region, “Flat material”, is plotted in 
the figure. The curve “MP” follows below Flat material, which accounts 
for the effects of σLB and σTB according to Eqs. (2) and (4) and represents 
the stress-strain curve over the entire thickness, i.e., the outcome of Eq. 
(11), for the region AMP. Similarly, the figure presents the base material 
for the corner region (“Corner material”) and reduced stress-strain 
curves for the regions ANC (“NC”) and ACC (“CC”). By combining the 
curves MP, NC and CC using the relative weights of areas AMP, ANC and 
ACC, the curve “EMM” is obtained. Eventually, this curve reaches the 
mean of Flat and Corner material curves, which is expected because both 
the flat and corner materials constitute about half of the cross-section. 
Fig. 9 presents also the EMM obtained by using the Abaqus shell 
element model, where the stress-strain curve is generated by modelling 
the entire cross-section with shells and tensioning it. The shell element 
model provides a stress-strain curve that is nearly identical with EMM 
(within the used figure resolution). Consequently, it can be deduced that 
the procedure for constructing the EMM is valid. 

7. Finite element modelling for buckling analysis 

In this study, the EMM is validated on a series of buckling analyses of 
compression members. The analyses are performed by the Abaqus 
software [4] for shell and beam element models. Shell models represent 
“accurate” results, i.e., they are considered as numerical experiments, 
against which the beam models are compared. In shell models, residual 
stresses are directly incorporated into the NFEA as initial stresses over 
the cross-section. For the beam element models, the effects of residual 
stresses and strength enhancements of corners are incorporated by EMM 
instead of initial stresses and separate material regions. Consequently, 
the accuracy of the EMM is validated by comparing the results between 
the shell and beam element models. 

Table 4 
Boundary conditions of the Matlab script.  

DOF N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 

UX 0 – N2 0 0 N2 N2 0 0 N2 N2 0 
UY – N1 0 0 N1 N1 0 0 N1 N1 0 0 
UZ 0 0 0 0 – – – – – N9 N9 N9  

Fig. 8. Solid elements of Matlab script representing the integration points I1- 
I11 of the shell element. 

Fig. 9. EMM of the square section 120x120x8 S700. Note that the EMM and 
Abaqus Shell models are virtually identical, making the continuous solid line for 
EMM appear dotted. 
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7.1. Shell element models 

The element type of S4R with Simpson’s integration having 11 
integration points through the material thickness is used in shell element 
models. The geometry of the arc of the corner region has been modelled 
with four straight faces, i.e., modelling the geometry from NC to CC 
(Fig. 3) by using one additional point along the arc, at 1/4 of the total arc 
length. The outer surface corner radius Ro is 2 t, 2.5 t or 3 t in the cases of 
t ≤ 6, 6 < t ≤ 10 and 10 < t mm, respectively. 

The used global coordinate system in all buckling analyses in the 
shell and beam element models follows the right-hand rule and is pre
sented in Figs. 10 and 12. This system differs from the local residual 
stress coordinate system used in the Matlab script of Fig. 7, having Z-axis 
in the direction of the member length. Boundary conditions were 
modelled by coupling the nodes of the cross-section at the top and 
bottom ends to boundary nodes using Abaqus “Beam” type MPCs, see 
Fig. 10. Boundary nodes are located at the distance of 10 mm above and 
below the member ends and this Z-distance has been considered in the 
member length L. Horizontal location in X- and Y-directions is modelled 
according to the load eccentricity of the studied case. Actual boundary 
conditions, i.e., translational and rotational restrictions, are applied to 
top and bottom boundary nodes. Geometrical imperfections, i.e., local 
imperfection e3, and global sinusoidal half-and full waves e1 and e2 were 
obtained as the lowest applicable modes from the eigenvalue buckling 
analysis, see Fig. 1. The average mesh size of the models was W/12 and 
H/12 to the width (X) and height direction (Y). In the longitudinal Z-axis 
direction, mesh size was 4 times the minimum of the mesh sizes in the X 
or Y direction. 

The material was modelled according to von Mises yield surface and 
associated plastic flow with isotropic hardening. The stress-strain curve 
was determined according to Section 3. It should be noted that the 
measured engineering stresses and strains presented in Table 1 were not 
converted to true stresses and strains in the shell model because of the 
comparison of the results between shell and beam models. This has a 
slightly conservative effect on the capacity and is considered to account 
for somewhat limited knowledge about the strain rate effect presented in 
Section 3. Residual stresses were modelled as initial stresses, and cor
responding equivalent plastic strains by the Abaqus Fortran subroutines 
SIGINI and HARDINI. Initial stresses were incorporated directly into the 
integration points of the shell element according to the model in Fig. 2. 

Residual stresses were applied to the calculation models in a pre
liminary static analysis step using Newton’s method. In some analyses, 
an additional subsequent static analysis step using Newton’s method 
was applied to incorporate the possible initial forces into the model. The 
actual buckling analysis was performed by the arc-length method. 
Displacement-controlled compressing load in Z-direction was used in 
every buckling case except in sway columns, in which the force control 
was used. 

Shell models must give realistic results because they are treated as 
numerical experiments. Therefore, shell models were validated against 
30 experimental buckling tests carried out by Ma et al. [28] and Somodi 
and Kövesdi [33]. The experiments consist of a variety of cold-formed 

rectangular and square sections of grade S700 steel members, consid
ering both centrically compressed columns and beam-columns. Residual 
stresses have been incorporated into the validation models according to 
Eqs. (2)–(4) by considering 70% of the σLB (Section 5) and 100% of σTB. 
Close correspondence is obtained between experimental tests and shell 
models as shown in Fig. 11. The ratio of the experimental test capacities 
divided by the shell model capacities has a mean of 1.016 and the co
efficient of variation (COV) of 0.05. These statistics have been adopted 
for modelling uncertainty in Monte Carlo-simulations presented in 
Section 9. 

7.2. Beam element models 

Abaqus beam element B31 is used in beam models. The cross-section 
is modelled using Abaqus “ARBITRARY” definition, which enables the 
modelling of rounded corners. Stress-strain curve of the material is the 
EMM, hence residual stresses have not been incorporated explicitly. The 
mesh size (element length) varied from 80 to 250 mm depending on the 
case, and local imperfection e3 (see Fig. 1) has been neglected. The other 
features in beam models are identical to shell models presented in Sec
tion 7.1. 

8. Parametric studies 

Parametric studies are carried out to illustrate the shortcoming of the 
EGI approach and to provide an overall view of the capabilities of the 
EMM. Fig. 12 presents three isolated columns, IC1-IC3, which are used 
throughout the parametric studies and Monte Carlo-simulations to 
investigate columns under various support and loading conditions. Iso
lated column IC1 is a pinned column. The force Nd compresses the col
umn while the uniform bending moment Md (given as percentage of the 
design bending resistance according to Eurocode 3) acts along the length 
of the member. IC2 has all translational and rotational DOFs zero, i.e. 
fixed support, at the bottom end A. At the top end B, X- and Y- 

Fig. 10. MPCs at the top end of the member.  

Fig. 11. Global buckling capacities in the shell model validation.  

Fig. 12. Boundary conditions and applied loads of isolated columns IC1-IC3.  
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translations are restrained. In IC2, the moment Md causes varying 
bending moment along the length of the member. IC3 is a sway column 
having a fixed support at bottom end A. Additionally, IC3 has a hori
zontal force Fh that represents the equivalent horizontal force of the 
geometrical sway imperfection and possible wind load. In planar 2D 
studies, rotational DOF about X-axis and translational DOF in Y-direc
tion have been additionally restrained in boundary nodes such that 
buckling occurs in the XZ-plane. 

Material parameters are according to the mean values of Tables 1 and 
3 and residual stresses according to Eqs. (2)–(4) considering 70% of σLB. 
The EGI approach can not consider multiple material models in a beam 
cross-section. Therefore, in the parametric study of Section 8.1, the 
entire cross-section is exceptionally modelled by the material model and 
residual stresses of the flat region. In all other analyses, including Monte 
Carlo-simulations of Section 9, the separate material and residual stress 
properties have been considered for the corner, near corner, and flat 
regions, as discussed in Sections 2–6. 

8.1. Shortcomings of equivalent geometrical imperfections 

To emphasize the need for the new EMM method, shortcomings of 
the EGI (see Section 1) are illustrated by comparing the column buckling 
capacities of the shell model (MShell) to beam models with EMM (MEMM) 
and EGI (MEGI). Consider a planar CFRHS column of size 140x140x8, 
which is pinned (IC1) and the point moment Md = 0. MShell and MEMM 
have a single geometrical bow imperfection e1 = L/1000. The magnitude 
L/1000 is widely adopted to nominal models in ADMs, and it covers, to 
some extent, both the effects of geometrical imperfections and load ec
centricities [38]. The bow imperfection e1 for MEGI has been determined 
similarly as in [9], i.e., by trial and error, such that columns with lengths 
of L = 4 m have identical capacities between MShell and MEGI. This EGI 
magnitude was found to be e1 = L/400. It is worth highlighting that the 
only difference between MEMM and MEGI is that, whereas MEMM has the 
EMM and bow e1 = L/1000, MEGI has the same material model with 
MShell and bow e1 = L/400. 

Fig. 13 presents load-displacement curves for the prescribed models 
with varying buckling lengths L = 1, 2, 3, 4, 5, 6, 7, and 8 m (non- 
dimensional slenderness of EN 1993-1-1, λ≈0.4–2.9 [1]). MEGI follows 
MShell well in the case of L = 4 m because the bow magnitude L/400 was 
determined based on that specific column. However, if the slenderness 
decreases, e.g., L = 1 m, MEGI is too stiff and underestimates the 
maximum capacity by about 4.1%. In the case of higher slenderness (e. 
g., L = 8 m), MEGI behaves too flexibly. Stiffness of structural members 
must be realistically modelled such that forces will be correctly redis
tributed in the nonlinear analysis. MEMM fulfils this property, providing a 
close agreement with MShell in the stiffness and maximum capacity. 

The differences between MShell and MEGI become even more evident 
when considering varying cross-section sizes and boundary conditions: 
For a column IC1 with Md = 0, rectangular cross-section 160x80x8 with 
λ≈0.7 (L = 2 m), MEGI with the bow e1 = L/400 underestimates the 
buckling capacity by 6.4% in the major axis buckling direction. If the 
same column buckles in the minor axis direction with a slenderness of 
λ≈2.1 (L = 3.45 m) having a constant initial bending moment Md = 5% 
of the design bending resistance, MEGI overestimates the buckling ca
pacity by 4.2%. If Md is increased to 20% and 40%, MEGI overestimates 
the capacity by 7.9% and 9.8%, respectively. For the same columns, 
MEMM has a maximum underestimation of 1.1% and an overestimation 
of 0.6%. 

Additional challenges are faced in the case of sway column (IC3) that 
is rigidly fixed to the foundation and resist horizontal loads. Sway col
umn probably collapses due to the plastic hinge near the foundation, 
thus the bow imperfection e1 has a minor influence on the capacity. 
However, residual stresses affect the formation of the plastic hinge, and 
hence the second-order effects in a column. Therefore, sway columns 
would need a separate shape and magnitude of EGI which further 
complicates the design task. In EMM approach, the effects of residual 
stresses are automatically considered also in the plastic hinge near 
foundation. 

The results above illustrate how the sensitivity of the structure to 
geometrical imperfections determines whether the effects of residual 
stresses are over- or underestimated in the EGI approach. This inaccu
racy drives the need for a more accurate approximation method because 
the inaccuracy must be considered in the safety factors thus affecting the 
efficiency of the ADM. 

8.2. Pinned columns 

Table 5 presents the parametric studies of pinned columns. Case P1 
considers 6 planar (2D) analyses for a square cross-section 250x250x10, 
having a fixed length L = 6.1 m for every analysis such that the non- 
dimensional slenderness λ=1.2. The bending moment Md is varied be
tween 0% and 40% of the bending resistance of the cross-section as 
determined by EN 1993-1-1. The maximum capacities obtained by MShell 
and MEMM are compared in terms of MEMM/MShell. The table presents the 
mean, COV, and the minimum (Min) and the maximum (Max) differ
ences in percentages. In case P1, the mean is 98%, hence MEMM yields 
2% lower capacity than MShell on average. The small COV (0.18%) in
dicates that the bending moment does not affect the approximation 
accuracy of the EMM significantly. Fig. 14 presents the load- 
displacement curves of case P1, and close correspondence between 
MEMM and MShell is obtained also in stiffness. It should be noted that in 
the following figures, the initial bending moment Md causes initial Z- 
displacements, hence displacements in the following figures do not start 
from the origin if Md is present. 

Cases P1-P6 explore 2D square sections with varying width-to- 
thickness ratios, non-dimensional slenderness and bending moments. 
The accuracy of EMM is good throughout the entire range of parameters. 
Cases P2 and P3 indicate that a huge bending moment, which is 50% in 
case P3, decreases the mean by only about 1% when compared to the 
small bending moment (5%) of case P2. It was also observed that the 
EMM yields slightly more conservative results in the intermediate 
slenderness level (λ = 1–1.4) than in low or high slenderness. 

Cases P7-P14 study 2D rectangular sections with varying width-to- 
height ratios. Cases with major axis bending (cases P7, P9, P11, P13) 
yield the lowest mean values, i.e. the highest conservativeness of the 
EMM approach. The conservativeness increases probably because corner 
and near-corner regions, which have more beneficial material models 
and residual stress levels compared to the flat region, have longer lever 
arms to the center of gravity in the major axis direction. MShell accounts 
for these lever arms providing additional stiffness to the cross-section, 
whereas MEMM has a smaller lever arm because of the averaged 

Fig. 13. Load-displacement curves of Shell, EMM and EGI models for case IC1 
with cross-section 140x140x8. 
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material model for the entire cross-section. On the other hand, MEMM can 
also have a longer lever arm than MShell in minor axis bending (cases P8, 
P10, P12, P14), such that EMM provides even higher capacities than 
MShell as shown in the Max values. Fortunately, these overestimated 
capacities are rather minor, and the mean values are close to 100%. 
Fig. 15 presents load-displacement curves for case P7, which has the 
lowest mean of the pinned cases, 95.1%. When the same cross-section 
with the same slenderness buckles in the minor axis direction (case 
P8), the load-displacement curves shown in Fig. 16 are obtained. Despite 
the slight capacity differences, the EMM approach results in acceptable 
level of accuracy also for rectangular sections. 

Cases P15-P16 consider 3D columns in double-axis buckling. In these 
models, the bow imperfection L/1000 is in the intermediate axis direc
tion, i.e. along the diagonal between X- and Y-axes. Case P15 considers 
no bending moment, whereas case P16 has 2.5% Md in the minor axis 
and 25% Md in the major axis direction. In these cases, the EMM is in 
very good agreement with the shell model. This is expected because only 
2 of the 4 corners have long lever arms and the other 2 corners locate 

(square) or almost locate (rectangular) in the axis that passes through 
the center of the gravity, thus averaging out the lever arm effect. 

8.3. Pinned-fixed and sway columns 

Table 6 presents the results of pinned-fixed columns. Cases P17-P20 
yield similar results as in the case of pinned columns. A comparison of 
pinned cases P13 and P14 to cases P19 and P20 indicate that IC2 
boundary conditions almost double the COV (0.36%–0.60% to 1.17%– 
1.29%). However, COV is still relatively low and the EMM approach is 
sufficiently accurate for practical purposes. 

Table 7 presents the results for sway columns. In these cases, the 
vertical force Fh is expressed in terms of percentages of the compressive 
force Nd. Therefore, Fh is not constant, and it is increasing during the 
analysis with Nd. In cases P21-P23, Fh has the basic value of the sway 
imperfection, 0.5%, i.e. 1/200, according to Eurocode 3. In cases P24- 
P25, Fh is in the negative X-axis direction and equals Nd. Results of 
sway columns are similar to results of pinned and pinned-fixed columns. 

Table 5 
Results of the parametric study for pinned columns (IC1).  

Case Cross-sect. Buckling 
Axis 

L [m] and Md [%] λ Capacity MEMM / MShell [%] 

Fixed Variable Mean COV Min Max 

P1 250x250x10 – L: 6.1 Md: 0.0, 2.5, 5.0, 10.0, 20.0, 40.0 1.2 98.0 0.18 97.7 98.2 
P2 150x150x10 – Md: 5.0 L: 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 0.3… 2.7 98.4 0.67 97.2 99.3 
P3 150x150x10 – Md: 50.0 L: 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 0.3… 2.7 97.4 0.40 96.8 97.8 
P4 150x150x5 – Md: 5.0 L: 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 0.3… 2.6 99.2 1.03 98.3 101.7 
P5 100x100x8 – Md: 0.0 L: 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0 0.5… 3.1 98.8 1.12 97.2 100.6 
P6 60x60x3 – Md: 0.0 L: 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.20, 3.6, 4.0 0.3… 3.3 99.0 0.76 97.9 100.2 
P7 250x100x10 Major L: 5.3 Md: 0.0, 2.5, 5.0, 10.0, 20.0, 40.0 1.2 95.1 1.27 92.6 96.1 
P8 250x100x10 Minor L: 2.6 Md: 0.0, 2.5, 5.0, 10.0, 20.0, 40.0 1.2 99.8 1.14 98.9 102.2 
P9 250x100x10 Major Md: 10.0 L: 2.0, 4.0, 6.0, 8.0, 10.0, 12.0 0.5… 2.7 96.0 0.63 95.6 97.4 
P10 250x100x10 Minor Md: 10.0 L: 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 0.5… 2.8 100.1 0.90 98.6 101.1 
P11 200x100x10 Major L: 4.3 Md: 0.0, 2.5, 5.0, 10.0, 20.0, 40.0 1.2 95.3 0.92 93.5 96.0 
P12 200x100x10 Minor L: 2.5 Md: 0.0, 2.5, 5.0, 10.0, 20.0, 40.0 1.2 99.2 1.10 97.9 101.2 
P13 150x100x8 Major Md: 10.0 L: 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 0.7… 2.8 97.3 0.36 96.8 97.7 
P14 150x100x8 Minor Md: 10.0 L: 1.4, 2.0, 2.6, 3.2, 3.8, 4.4, 5.0 0.7… 2.4 99.2 0.60 98.3 99.9 

P15 200x200x10 Double Md: 0.0 
L: 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 

8.5, 9.0, 9.5, 10.0, 10.5 11.0, 11.5, 12.0 0.5… 3.0 98.6 0.42 98.0 99.4 

P16 100x50x4 Double Md,min: 2.5 
Md,maj: 25.0 

L: 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 0.3… 2.2 99.4 0.28 98.8 99.8  

Fig. 14. Load-displacement curves of the case P1, Pinned 250x250x10.  Fig. 15. Load-displacement curves of the case P7, Pinned major 
axis 250x100x10. 
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8.4. Cross-section class 4 structures and pure bending 

Beam elements are not capable of accounting for local stability issues 
within the cross-section. Therefore, sections are classified into cross- 
section classes (CL) which have varying requirements: CL2 sections 
cannot form plastic hinges, CL3 sections cannot achieve plastic bending 
resistance, and the effective cross-section must be considered with CL4 
sections [1]. Load-displacement curves of minor axis buckling were 
shown in Fig. 16 for cross-section 250x100x10 (case P8), in which the 
250 mm wide side belongs to CL2 in uniform compression. The figure 
shows how the capacities of MShell suddenly drop near the end of the 
curves, whereas MEMM does not recognize this behavior. This kind of 
local stability issue can be considered in beam element-based ADM by 
using strain limits based on the continuous strength method [39], [40]. 
However, using strain limits requires that the beam model accurately 

replicates the behavior of the real structure such that monitored strains 
in the analysis are correct. Table 8 presents results for the rectangular 
section 400x200x10 which has CL4 webs in uniform compression. Cases 
P26 and P27 do not consider low slenderness values (0.8 ≤ λ) and CL4 
webs are not entirely in compression (they are subject to bending), 
hence the accuracy of the EMM is rather good. For minor axis buckling 
(case P28), however, CL4 webs are entirely compressed, and a wider 
range of slenderness is covered. Consequently, MEMM yields about 4% 
higher capacities on average and about 21% higher capacity at 
maximum. Load-displacement curves of this case are shown in Fig. 17. 
The figure shows how the capacity of MShell suddenly drops in the case of 
shorter columns L = 2, 4 and 6 m. Naturally, MEMM does not recognize 
this local phenomenon, but it follows excellently MShell up to failure. 
This indicates that the EMM approach is suitable for every cross-section 
class, if proper strain limits to account for local buckling are developed, 
for example, by the continuous strength method. 

In addition to buckling phenomena, the EMM approach must also be 
suitable for beams that resist pure bending moments. Fig. 18 presents 
the moment-displacement curves for various cross-sections in planar 
analysis. These cases are IC1 columns, in which Md is increased while Nd 
= 0. MEMM follows well MShell, i.e. the EMM approach is applicable for 
the pure bending situation also. It should be noted that CFRHS are not 
prone to lateral-torsional buckling, hence that phenomenon has not 
been examined. 

9. Accuracy of EMM in Monte Carlo-simulations 

Practical utilization of ADMs requires safety factors which can be 
developed by the reliability studies. Monte Carlo-simulations are 
commonly used in these studies in conjunction with NFEA [15], [16]. 
Monte Carlo-technique may need thousands of nonlinear analyses such 
that beam elements are preferred. The parametric study of Section 8 did 
not consider varying material properties, residual stress magnitudes and 
bow imperfections, whereas in reliability studies, these parameters are 

Fig. 16. Load-displacement curves of the case P8, Pinned minor 
axis 250x100x10. 

Table 6 
Results of the parametric study for pinned-fixed columns (IC2).  

Case Cross-sect. Buckling 
Axis 

L [m] and Md [%] λ Capacity MEMM / MShell [%] 

Fixed Variable Mean COV Min Max 

P17 140x140x8 – Md: 5.0 L: 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 
8.0, 8.5, 9.0, 9.5, 10.0 

0.3… 2.5 98.3 0.43 97.6 99.0 

P18 140x140x8 – L: 4.0 Md: 0.0, 2.5, 5.0, 10.0, 20.0, 40.0 1.0 97.7 0.18 97.5 97.9 
P19 150x100x8 Major Md: 10.0 L: 2.0, 3.5, 5.0, 6.5, 8.0, 9.5, 11.0 0.5… 2.7 97.8 1.29 95.5 99.4 
P20 150x100x8 Minor Md: 10.0 L: 1.5, 3.0, 4.5, 6.0, 7.5, 9.0 0.5… 3.1 99.4 1.17 98.1 101.1  

Table 7 
Results of the parametric study for sway columns (IC3).  

Case Cross-sect. Buckling 
Axis 

Fh 

[%] 
L [m], and Md [%] λ Capacity MEMM / MShell [%] 

Fixed Variable Mean COV Min Max 

P21 80x80x4 – 0.5 Md: 0.0 L: 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5 0.6… 3.1 98.7 0.62 97.7 99.6 
P22 200x100x10 Major 0.5 Md: 0.0 L: 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 0.3… 2.8 97.3 1.02 95.6 98.7 
P23 200x100x10 Minor 0.5 Md: 0.0 L: 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 0.5… 4.8 100.3 1.48 98.2 102.2 
P24 200x100x10 Major − 100.0 Md: 2.5 L: 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 0.3… 2.8 96.4 0.39 95.7 97.2 
P25 200x100x10 Minor − 100.0 Md: 2.5 L: 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 0.5… 4.8 100.8 1.27 98.3 102.1  

Table 8 
Results of the parametric study for pinned columns (IC1), CL 4.  

Case Cross-sect. Buckling 
Axis 

L [m] and Md [%] λ Capacity MEMM / MShell [%] 

Fixed Variable Mean COV Min Max 

P26 400x200x10 Major Md: 0.0 L: 7.0, 10.0, 13.0, 16.0, 19.0 0.9… 2.5 98.3 0.70 97.4 99.3 
P27 400x200x10 Major Md: 30.0 L: 6.0, 9.0, 12.0, 15.0, 18.0 0.8… 2.4 96.5 0.19 96.3 96.9 
P28 400x200x10 Minor Md: 0.0 L: 2.0, 4.0, 6.0, 8.0, 10.0, 12.0 0.5… 2.7 103.9 7.57 99.1 121.3  
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random variables. Therefore, with a similar comparison as in the para
metric study, the accuracy of the EMM is determined in this Section for 
reliability applications by carrying out Monte Carlo-simulations. 

The EMM does not affect loads, hence only the random variables 
contributing to the resistance are considered in simulations. Statistical 
properties for the flat and corner materials were given in Tables 1–3. Cfy 
has been truncated based on measured lower and upper bound values, 
into the interval [1.06, 1.34], to prevent unrealistically high Cfy factors. 
The remaining random variables are shown in Table 9. Properties of 
width, height and local imperfection were determined based on 150 

measurements and thickness based on 271 measurements obtained from 
the manufacturer. The maximum out-of-plumb, i.e. the combined effect 
of e1 and e2, was determined based on 127 measurements conducted for 
over 500 mm long specimens in studies [41], [42], [28]. The actual 
magnitudes of e1 and e2 were determined based on a ratio that the 
contribution of e2 is about 30% of e1 [41], [15]. 

The authors have not found any measurements for load eccentricity. 
The draft prEN 1993-1-1 [24] suggests assuming the mean values as 
nominal values, and standard deviations taken as half of the interval 
between the nominal and the lower bound values of the applicable 
tolerance interval in EN 1090–2 [43] in the case of unspecified variables. 
Therefore, load eccentricities at the top and bottom have been assumed 
uncorrelated with the means of 0 and standard deviations of 2.5 mm. 
Additionally, load eccentricity is truncated to the allowed tolerance 
interval [− 5 mm, +5 mm]. 

Statistical properties of residual stresses are based on [7], and the 
sampled values of σLB,Flat and σLB,Corner have been multiplied by 0.7 ac
cording to Section 5. This procedure also reduces the scatter of these 
components. However, this is justified since COV of σ0.05 is almost twice 
the COV of fy (see Table 1), hence the reduced scatter has probably been 
included in the variation of σ0.05. Correlations were found between some 
of the variables and their correlation coefficients are presented in Ta
bles 10 and 11. Latin hypercube sampling is employed in simulations, 
and according to preliminary tests, 250 samples were sufficient per each 
simulation to obtain realistic estimate for statistical distribution of the 
resistance. 

Tables 12 and 13 present altogether 14 Monte-Carlo simulations, R1- 
R14, that were carried out in this study. The simulations cover a wide 
range of non-dimensional slenderness from 0.4 to 2.8, various cross- 
section sizes, and a wide range of width-to-thickness ratios of the 
cross-section from 10 to 25. Simulations R1-R10 are for pinned columns 
(IC1) without end moment Md, whereas simulations R11-R14 are special 
cases of R1, R6 and R7 such as double-axis buckling or pinned-fixed 
column. 

Obtained capacities MEMM and MShell are compared in Tables 12 and 
13. High accuracy is achieved by the EMM even though material and 
geometrical properties vary between analyses. On average, the capacity 
of MEMM is about 98% of MShell, and the COV of the difference only about 
1%. Tables 12 and 13 present also the percentage difference for the 
sample standard deviations sEMM and sShell. These relative differences are 
remarkably higher than differences in capacity because the same abso
lute error causes a significantly higher relative difference to a small 
standard deviation than to the total capacity. Sample standard de
viations differ by up to 13%, which is still a fairly accurate representa
tion for reliability studies. It is also worth noting that the particular 
element formulations of beam and shell elements cause unavoidable 
differences in results. Therefore, the error is not entirely due to the 
EMM. Based on the above, the EMM approach is valid also for Monte 
Carlo-simulations in reliability studies. 

Fig. 17. Load-displacement curves of the case P28, Pinned minor axis 
400x200x10, CL4. 

Fig. 18. Load-displacement curves in the case of pure bending.  

Table 9 
Random variables for member resistance.  

Property Description Distribution Parameters Ref. 

W Width Normal μ = 1.00, σ = 3.17e-3 [1/W] DSet 
H Height Normal μ = 1.00, σ = 3.17e-3 [1/H] DSet 
t Thickness GEV μ = 0.9824, σ = 1.24e-2,  

ξ = 4.60e-2 [1/t] 
DSet 

e1 1. bow imperfection Normal μ = 0.0, σ = 2.163e-4 [1/L] [28, 41, 42, 15] 
e2 2. bow imperfection Normal μ = 0.0, σ = 6.489e-5 [1/L] [28, 41, 42, 15] 
e3 Local imperfection Normal μ = 3.56e-4, σ = 2.20e-3 [max(1/W;1/H)] DSet 
etop Load eccentricity at top Normal μ = 0.0, σ = 2.5 [mm] [24, 43] 
ebot Load eccentricity at bottom Normal μ = 0.0, σ = 2.5 [mm] [24, 43] 

σLB,Flat Longit. res.str. in flat Normal μ = Eq. (2), σ = 0.206 [1/fy] [7] 
σLB,Corner Longit. res.str. in corner Normal μ = Eq. (3), σ = 0.196 [1/fy] [7] 
σTB,Flat Trans. r. s. in flat and corner Normal μ = Eq. (4), σ = 0.155 [1/fy] [7] 

θR Modelling uncertainty in resistance Normal μ = 1.016, σ = 0.0508 [15]  
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10. Conclusions 

The effective material model (EMM) proposed in this study replicates 
the stress-strain curve that would be obtained by conducting the tensile 
test for the entire cold-formed cross-section. Consequently, the effects of 
residual stresses and corner strength enhancements are included in the 
EMM such that their consideration in advanced design method is 
effortless. 

The accuracy of the EMM was validated by comparing the buckling 
capacities of beam element-based EMM models with shell element 
models in which the residual stresses and corner strength enhancements 
were explicitly modelled. Validation was carried out by performing over 
3700 numerical buckling tests for a wide range of various cross-section 
sizes, boundary conditions, and material and geometrical properties. 
Excellent accuracy was achieved by the EMM approach (excluding very 
slender cross-sections (CL4) where local buckling governs the load- 
bearing capacity): On average, EMM capacities were about 98% of the 
shell model capacity, the minimum difference being 93% and a 
maximum of 105%. On average, the coefficient of variation for the ca
pacity differences was under 1%, hence the minimum and maximum 
differences occurred only in some rare analyses. Additionally, Monte 
Carlo-simulations were carried out to ensure the applicability of the 
EMM for reliability studies. The accuracy was deemed sufficient also in 

these applications, standard deviations differing under 2% on average 
and 13% at maximum. 

Beam elements are not capable of modelling local buckling that can 
occur in slender sections. This was illustrated in the paper by utilizing 
EMM approach for a member with cold-formed hollow section 
400x200x10 (susceptible to local buckling). In this case, the EMM 
approach did not detect local buckling and consequently overestimated 
the capacity. However, the load-displacement curves of the EMM 
approach traced accurately the curves obtained by shell element models 
up to the local buckling failure. Therefore, the EMM approach seems 
applicable also for very slender sections if the allowed strain limits ac
counting for local buckling have been determined for these sections, e.g. 
by the continuous strength method. 

Through the EMM approach, the material model becomes cross- 
section specific in addition to steel grade. To be used in a practical 
design software, the nominal EMM should be generated for each avail
able cross-section and steel grade. This work has to be done only once, 
and consequently design by the EMM approach is as effortless as with 
other advanced design methods that use nonlinear material models. 
Ideally, the EMMs are implemented in the design software in advance 
such that they are readily available for practitioners using advanced 
analysis. 

Considerable uncertainty exists in corner strength enhancement 
factors, which were based on only 12 measured values. Therefore, more 
experimental research is needed in measuring the material properties 
around the cross-section perimeter. Although tensile tests for entire 
cross-sections are more laborious than coupon tests, the real EMMs 
could be accurately formulated based on measurements of the entire 
section. Consequently, in addition to harmful residual stresses, the 
beneficial effects of strain hardened cold-formed material could be 
utilized. 

In this study, the EMM was validated for cold-formed rectangular 
hollow sections made of steel grade S700. The approach is applicable for 
other steel grades, and perhaps for other types of steel sections also. 
Hence, additional validation studies for various applications are needed 
to reveal the full potential of the EMM. 

Table 11 
Correlation coefficients for residual stress components [7].   

σLB,Flat σLB,Corner σTB,Flat 

σLB,Flat 1.0 0.80 0.76 
σLB,Corner symm. 1.0 0.69 
σTB,Flat symm. symm. 1.0  

Table 12 
Monte Carlo simulations and the accuracy of the EMM for pinned columns.  

Case Cross-section Buckling Axis λ Capacity MEMM / MShell [%] sEMM/sShell [%] 

Mean COV Min Max 

R1 70x70x4 – 1.1 98.1 0.58 95.3 100.2 97.7 
R2 50x50x3 – 2.4 99.6 1.55 94.4 104.2 109.1 
R3 120x120x5 – 0.7 99.2 0.83 98.0 104.9 99.3 
R4 100x100x8 – 0.4 98.7 0.55 96.1 103.8 100.1 
R5 40x40x3 – 0.9 97.9 0.46 96.7 100.4 97.4 
R6 250x100x10 Major 1.0 96.7 1.16 93.4 100.6 91.3 
R7 180x180x10 – 1.3 98.1 1.20 94.9 103.9 103.4 
R8 80x40x4 Major 1.6 97.4 1.38 93.7 101.8 103.0 
R9 250x250x10 – 2.0 99.7 1.92 95.6 105.2 112.8 
R10 160x160x8 – 2.8 100.5 1.83 94.7 105.3 110.6 
Average 98.6 1.15 95.3 103.0 102.5  

Table 13 
Monte Carlo simulations and the accuracy of the EMM for special cases.  

Case Cross-sect. Description Capacity MEMM / MShell [%] sEMM / sShell [%] 

Mean COV Min Max 

R11 180x180x10 Double axis buckling for case R7 (IC1) 98.2 0.84 95.5 103.9 100.7 
R12 250x100x10 Minor axis buckling for the profile of the case R6 maintaining the same slenderness (IC1) 99.2 0.95 96.1 103.9 100.7 
R13 70x70x4 Buckling for case R1 with end moment Md = 10% (IC1) 97.9 0.64 95.4 100.3 97.6 
R14 180x180x10 Pinned-Fixed for case R7 (IC2) 98.2 0.47 96.1 100.4 97.3 
Average 98.4 0.73 95.8 102.1 99.1  

Table 10 
Correlation coefficients for material parameters [DSet].   

fy fu σ0.05 

fy 1.0 0.70 0.70 
fu symm. 1.0 0.0 

σ0.05 symm. symm. 1.0  
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