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Reporting is an important part of any automation system. It allows for retrieving information on 

production. Some reports are mandatory while some are for the company’s own benefit. Ordinarily 
reports are used to provide information of the company’s performance, or to explain any given 
trend that has occurred. Forming a report is a multi-phase process consisting of data collection 
from the field, decision-making algorithms, databases, communication, and finally the report for-
mulation. 

Main challenge of this study is to find a method for extracting just the specific process data 
needed for the reporting. Current approaches for collecting the reporting data are considered 
inefficient and time consuming. The study is motivated by the need to optimize and standardize 
the engineering process. The problem is approached by studying theory around the topic. Analy-
sis and design of the system is done based on the knowledge gained. The solution found is im-
plemented and demonstrated to prove its effectiveness. 

Previous implementations are considered and reflected on in the analysis phase. The system 
is modeled using Unified Modeling Language (UML) and designed using Collaborative Object 
Modeling and Design Method (COMET). Multiple solutions for the data collection are conceptual-
ized to find the best fit for the given problem. The benefits of implementing Edge computing as a 
part of the system are evaluated. As a result of the analysis and design chapter, Siemens’s TIA 
Portal’s new Cause Effect Matrix (CEM) programming language is chosen to be studied. Benefits 
of the CEM-based solution are evaluated to be its ease of implementation, universality, scalability, 
and modifiability. The solution developed is named as Centralized System-Wide Cause Effect 
Matrix (CSW-CEM) due to its nature. The whole algorithm for tracking the material flow in the 
system is packed into one centralized CEM. This CSW-CEM models the whole physical system 
consisting of tanks, valves, pumps, pipelines, and other instrumentation in the automation system. 
After defining the CSW-CEM itself, an instance of it is attached to each material source in the 
system. This allows for unambiguous reporting of every transfer in the system, regardless of it 
being automatic or manual. 

The findings of this thesis satisfied the requirements set for it. The solution proposal was suc-
cessfully demonstrated. The CSW-CEM was tested to be able to handle multiple different sce-
narios that may occur in a real system implementation. Interface to upper-level systems was done 
with data blocks, written by the PLC configured as an OPC UA server. Communication and the 
communication interface was demonstrated by reading the data blocks with an OPC UA client. 
Unplanned advantages were also found in the process of development. These included the pos-
sibility to use the CEM language for visualization and routing purposes as well. The original idea 
of using Edge computing for the report formulation was questioned. Future development of the 
solution should consider this. 
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TIIVISTELMÄ 
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Raportointi on tärkeä osa jokaista automaatiojärjestelmää. Sen avulla saadaan tuotannosta 
erinäistä tietoa. Jotkin raportit ovat säännöstellysti pakollisia, ja osa yrityksen omaksi hyödyksi 
tuotettuja. Tavallisesti raportit tarjoavat tietoa yrityksen suorituskyvystä, tai selittävät tapahtunutta 
kehitystä. Raportin muodostaminen on monivaiheinen prosessi, joka koostuu datan keräämisestä 
kentältä, päätöksentekoalgoritmeista, tietokannoista, kommunikoinnista, ja lopuksi itse raportin 
muodostamisesta. 

Tämän tutkimuksen keskiössä oli löytää metodi, jolla vain raportointia varten tarvittu data saa-
daan haravoitua kaiken muun datan joukosta. Nykyiset tavat raportointidatan keräämiseksi koet-
tiin tehottomiksi ja aikaa vieviksi. Tutkimuksen motivaationa oli tarve optimoida ja standardoida 
suunnitteluprosessia. Ongelmaa lähestyttiin tutkimalla teoriaa aihealueen ympärillä. Analyysi ja 
suunnittelu tehtiin tutkitun teorian pohjalta. Löydetty ratkaisu implementoitiin, sekä demonstroitiin 
sen tehokkuuden todistamiseksi. 

Analyysivaihe toteutettiin reflektoimalla aiempiin toteutuksiin. Järjestelmä mallinnettiin käyt-
täen Unified Modeling Language (UML) -mallinnusta. Suunnittelu tehtiin käyttäen Collaborative 
Object Modeling and Design Method (COMET) -metodia. Useita ratkaisuvaihtoehtoja raportointi-
datan keräämiseksi konseptoitiin parhaan ratkaisun löytämiseksi. Reunalaskennan hyötyjä osana 
järjestelmää arvioitiin. Analyysi ja suunnittelu -kappaleen lopputuloksena tutkittavaksi valittiin Sie-
mensin uusi Cause Effect Matrix (CEM) -ohjelmointikieli. CEM-pohjaisen ratkaisun hyödyiksi ar-
vioitiin sen helppo toteutettavuus, yleismaailmallisuus, skaalautuvuus ja muunneltavuus. Ratkai-
sulle annettiin sen toteutusta kuvaava nimi Centralized System-Wide Cause Effect Matrix (CSW-
CEM). Koko algoritmi materiaalivirran seuraamiseksi toteutettiin yhteen CEM-lohkoon. CSW-
CEM mallintaa koko fyysisen järjestelmän. Järjestelmä koostuu säiliöistä, venttiileistä, pumpuista, 
putkilinjoista, sekä muista instrumenteista. Järjestelmän mallinnus mahdollistaa yksiselitteisen 
siirtojen raportoinnin, riippumatta siitä onko siirto suoritettu automaattisesti vai manuaalisesti. 

Diplomityön tulokset täyttivät sille asetetut vaatimukset. Löydetty ratkaisuehdotelma demon-
stroitiin onnistuneesti. CSW-CEM todettiin testaamalla kykeneväksi mallintamaan myös erikoi-
sempia tosimaailmassa ilmaantuvia tilanteita. Rajapinta ylemmän tason järjestelmiin toteutettiin 
datalohkona, jota OPC UA serveriksi konfiguroitu PLC kirjoittaa. OPC UA client lukee tätä data-
olohkoa. Rajapinnan toimivuus ylempiin järjestelmiin testattiin. Suunnittelemattomina löydöksinä 
havaittiin, että CEM:n avulla on mahdollista toteuttaa myös visualisointia sekä reititystä. Alkupe-
räinen ajatus reunalaskennan hyödyntämisestä raporttien muodostamisessa kyseenalaistettiin. 
Tämä tulee huomioida ratkaisun jatkokehityksessä.  
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1. INTRODUCTION 

Increasingly complex factory automation systems create new challenges for engineering. 

More data is being generated than ever. This data is useless until it is used in a context. 

Collected data is consumed to supervise and control the factory systems. Data is also 

used to extract information about the course of a process. In manufacturing industry, 

traceability is one of the key principles to trace the finished product all the way back to 

the raw materials it consists of. Traceability is achieved by tracking the production chain 

in a preplanned way. Based on a concise tracking, manufacturing reports can be gener-

ated. 

An automation network consists of hundreds, even thousands of actuators and measur-

ing devices. They are all connected via different communication methods to a central 

processing unit (CPU), usually a programmable logic controller (PLC). Figure 1 shows 

the classic ISA-95 (IEC 62264) automation pyramid model used to present a generic 

automation system. The layers communicate using various communication channels. 

Supervisory control and data acquisition (SCADA) and human-machine interfaces (HMI) 

are used to operate the system. Manufacturing execution system (MES) and enterprise 

resource planning (ERP) systems handle the production by scheduling and allocating 

resources.  

 

Figure 1. Classic ISA-95 automation pyramid model, adapted from [1, p. 2] 
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System architectures different from ISA-95 are increasingly common. The layers pre-

sented in the Figure 1 have started to blend and any-to-any architectures are possible 

[2]. The classic hierarchical pyramid model is assumed to be replaced by a networked 

architectures like shown in Figure 2 [3]. 

 

Figure 2. Network structured automation architecture, adapted from [3] 

 

This revolution of architectures creates new possibilities for implementing automation 

systems. Edge computing has been one of the top technology trends in recent years. In 

2018 Gartner predicted that by 2025 75% of enterprise-generated data would be created 

and processed outside a traditional centralized data center or cloud [4]. In this thesis the 

Edge computing will be considered as a platform to perform data storage and handling. 

Processing the data on the Edge creates new possibilities and frees resources from the 

PLCs themselves. When data collection and handling is done in two separate units, the 

data can be structured much more freely. Edge computing allows for using high-level 

programming languages. 

In this thesis, Edge computing is evaluated as a possible interface between the PLCs 

and the MES. The client of this thesis has noted that the reporting data collection in its 

current form is taking significant engineering efforts and is very time consuming. A more 

standardized way of implementing such data collection method is studied, implemented, 

and demonstrated to a degree. This is done to improve the engineering process of such 

systems. 
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The research questions defined, and to study in this thesis are: 

- What approaches are available to collect format specific process data from a 

PLC? 

- What's the performance and scalable features of the selected data collection ap-

proach? 

- How to distribute the data gathering functions in the PLC, and still maintain the 

traceability 

- How the gathered data must be handled in the Edge, so that it can be used 

on/from the high-level systems? 

The thesis consists of 5 main chapters, first being this introduction chapter. Each main 

chapter consists of subchapters, delving deeper into the topics. Second chapter about 

theoretical background creates basis for understanding the latter chapters. Third chapter 

covers analysis and design of the data collection method developed. It also concerns the 

communication between the PLCs and the Edge. Fourth chapter covers the implemen-

tation of the data collection method designed. The Edge is not implemented within the 

framework of this thesis. The communication between the PLC and the Edge is however 

demoed. Fifth, the final chapter concludes the results, and evaluates the advantages 

achieved. Future development is also discussed in the final chapter.  
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2. THEORETICAL BACKGROUND 

This chapter introduces theoretical background for understanding the chapters 3 and 4. 

All topics are reviewed to the necessary extent. Firstly, the industrial revolution, Industry 

4.0 is studied. Technical manufacturing is covered superficially to better understand the 

environment of the problem. Programmable logic controllers are reviewed to understand 

the basic functionality. After that, OPC Unified Architecture is explained to understand 

the communication architecture. Traceability, Edge technology, and software develop-

ment patterns are also studied. Finally, a brief state-of-the-art review is made around the 

topics discussed in the earlier chapters. 

2.1 Industry 4.0 

Development in computer and manufacturing technology is reforming the automation 

field along with many others. Enterprises are facing new business challenges in today’s 

turbulent economy. The demand for higher quality and customized products, with faster 

delivery times, is driving manufacturing companies around the world towards the fourth 

industrial revolution, Industry 4.0 (I4.0) [5, p. vii]. Figure 3 shows the industrial revolutions 

on a timeline. [6, Ch. 1] 

 

Figure 3. Industrial revolutions on a timeline, adapted from [7], [8, p. 74] 
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The fundamental design principles of the I4.0 are decentralization, real-time support, 

modularity, interoperability, virtualization and service-orientation [9, p. 8], [6, Ch. 2.1].  

According to Zheng et al., I4.0 enabling technologies are the following [6, Ch. 2.1]: 

- cyber-physical systems (CPS) 

- Internet of Things (IoT) 

- big data and analytics 

- cloud technology 

- artificial intelligence (AI) 

- blockchain 

- simulation and modelling 

- visualization technology / augmented and virtual reality 

- automation and industrial robots 

- additive manufacturing. 

Considering the topic of this thesis, Zheng et al. point out couple interesting I4.0 technol-

ogy application areas, first being internal logistics. Handling and storage of goods that 

happens within the factory is called internal logistics. According to Zheng et al. “Internal 

logistics can benefit from IoT, artificial intelligence, simulation and modelling, visualiza-

tion technology, and automation and industrial robots”. IoT can be used for material iden-

tification and tracking. It also has uses in internal material handling. Artificial intelligence 

can be used for order picking management. With simulation and modelling technologies, 

it is possible to simulate the material flow in factories and warehouses. Visualization 

technology can be used to pick-by vision and for material allocation guidance. In the 

context of I4.0, automation and industrial robots allow for automation of internal trans-

portation, line feeding and material handling. [6, Ch. 4.4] 

Another area of application for I4.0 technologies that Zheng et al. point out is production 

scheduling and control. This field of application is the most studied among all the I4.0 

enabling technologies. According to the systematic literature review (SLR) by Zheng et 

al., all the I4.0 enabling technologies were studied on this area of application apart from 

blockchain. Cyber-physical systems allow for cyber-physical production system, sched-

uling, and control. IoT enables manufacturing resource virtualization, data collection from 

production processes and resources, and smart connected factory formalization. Big 

data and analytics can be used for automated resource allocation and scheduling. Cloud 

technology enables storage and computation capacities for smart connected factories. 
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Artificial intelligence has been studied for number of different applications, couple to 

mention being smart machining implementation and multi-agent applications for produc-

tion systems. With simulation and modelling, different aspects of the manufacturing pro-

cess can be virtualized, planned, and evaluated. Visualization can be used as added 

reality (AR), which may help with shop floor task performed by the operators. Automation 

and industrial robots allow for collaborative operations with humans and production pro-

cess automation. Lastly, additive manufacturing can be used for just-in-time (JIT) and 

advanced pull system management. [6, Ch. 4.5]  

A book by A. Nayyar and A. Kumar lists highlights of the I4.0 as presented in  

 

Figure 4. Industry 4.0 highlights, adapted from [8, p. 78] 

 

2.1.1 Current State 

Systematic literature review done in 2021 by Zheng et al. formulated a research focus 

heatmap presented in Figure 5. It shows how many articles out of those analyzed focus 

on a certain I4.0 technology in each specific manufacturing business process. This is a 

good indicator of how much each technology trend is actually being focused on currently. 
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Figure 5. Research focus heatmap of I4.0 enabling technology articles [6, Ch. 5.1] 

 

As can be seen from the Figure 5, among manufacturing business processes listed in 

the left, production scheduling and control is the most researched manufacturing busi-

ness process. Among the I4.0 enabling technologies IoT, cloud technology, big data and 

analytics, CPS, and AI are the most researched. 

Fortune Business Insight’s report studied by Globe Newswire in 2022 suggests that the 

global I4.0 market will grow from 2020’s market value of 101,69 billion to a value of USD 

337.10 billion by 2028. Compound annual growth rate (CAGR) is expected to be 16,4% 

between 2021 to 2028. This report suggests the growth drivers to be increasing adoption 

of robots and manufacturing to capture maximum share in the forthcoming years. [10] 

2.1.2 Prospects 

Vast costs and financial constraints rise challenges, especially for small and medium-

sized enterprises (SMEs) to acquire the new I4.0 technologies [7]. SMEs represent 99% 

of all businesses in the EU [11]. 

An article written by Schröder points out two obstacles for technological implementation 

of I4.0, which are lack of digital strategy alongside resource scarcity and lack of stand-

ards and poor data security [12]. A conference text by Zhou et al. lists I4.0 difficulties and 

challenges to be scientific, technological, economic, social and political [13]. 

An article by Erol et al. claims that I4.0 may not be completely comparable to the prior 

industrial revolutions. The first three industrial revolutions were triggered by the industry 

on the shop-floor due to increased demand from the market. The 4th revolution is trig-

gered and promoted by the government and several related initiatives, without a clear 

demand from the market-side. To happen, the I4.0 requires companies to act self-reliant.  
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This is likely to lead to distinct approaches of I4.0 implemented at faster pace than others, 

depending on the market pressure. [7] 

The article by S. Erol et al. suggests a three-stage model for transforming a company 

industry 4.0 ready. These stages are called envision, enable, and enact. The first stage 

called envision is about understanding the I4.0 concepts in general and tailoring them to 

the specific needs of the company. By understanding the I4.0, a company specific I4.0 

vision can be formed. This is done by stakeholders and business partners. Middle man-

agement is also actively involved. This stage is divided into an input oriented and output-

oriented phase. The second stage, enable, is about breaking down the long-term I4.0 

vision into a more concrete business model. Principal strategies are developed to allow 

for successful implementation. The output of this stage is a map of the overall strategy 

towards the envisaged I4.0 vision. The third stage called enact is where strategies are 

transformed into concrete projects. The output of this last stage is a project roadmap. [7] 

M. Mohamed studies challenges and benefits of I4.0 in his systematic literature review. 

It suggests that the I4.0 has many challenges and issues, as well as it has benefits. Many 

of the challenges concern the uncertainty of financial benefit, missing talent, and lack of 

courage from several perspectives. Benefits include things like increased productivity 

and quality, cost and waste reduction, and increase in revenue. [14, pp. 259–262] 

2.2 Technical Manufacturing 

Manufacturing is an industrial activity converting raw materials into finished materials or 

products. Manufactured item has added value [15, p. 196]. Various design and fabrica-

tion production methods and techniques are used to change the form of the raw materi-

als. Manufacturing can be viewed as a system with inputs, processes, and outputs. In-

puts of this system are the raw materials and outputs the finished materials or products. 

The concept of manufacturing system as an input/output-system (IO-system) is repre-

sented in the Figure 6. [15, p. 195] [16, p. 1] 

 

Figure 6. Manufacturing viewed as input/output system, adapted from [16, p. 2] 

 

Each industry domain has a certain process to complete production. On a broad level, 

technical processes can be classified into two types: process manufacturing and discrete 
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parts manufacturing. Process manufacturing is based on continuous or batch production. 

Discrete parts manufacturing handles easily identifiable individual products. [17] [18, pp. 

339–341] 

2.2.1 Process Industry 

Industrial processes, or process manufacturing is the creation of products that mix, and 

therefore cannot be converted back to the raw material. Industrial processes can subdi-

vide to continuous and batch processes. In continuous processes the product flow is 

continuous and lot sizes are commonly large. Batch based processes are discontinuous, 

for example a group of stirrer tanks. Raw materials are mainly liquid, solid, or gaseous. 

These materials are produced by biological, chemical, or physical processes.  

The production is done using formulas and recipes [18, p. 339]. A batch process logic 

structure is presented in Figure 7. This structure allows for automating a batch process. 

The Figure 7 illustrates how a recipe can be subdivided into a formula and a procedure. 

All the needed materials are listed in a formula. A procedure specifies the actions. Op-

erations are smaller parts of the whole procedure. Operations concern processing on 

each item of equipment. This could be anything like an operation for reducing brix value 

of a liquid. Operations are a list of phases, which are activated in a preconfigured order. 

Actions are performed so that the objectives of each phase are accomplished. [19, pp. 

3, 212–213] 

 

Figure 7. Batch process logic structure, adapted from [19, p. 212] 
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Input/output system concept can be extended so that the manufacturing system is di-

vided into smaller subsystems. This allows to represent production process in more de-

tail. Figure 8 represents an example of representing a continuous-flow production system 

as an I/O-system. The example concerns manufacturing of metal sheeting. 

 

Figure 8. Continuous-flow industrial process, adapted from [16, p. 3] 

 

A major aspect of process industry is safety and uninterruptedness. Many processes use 

toxic, explosive, and flammable materials that pose a serious risk. The level of automa-

tion in process manufacturing is high. Most of the production processes run autono-

mously and human operators’ main task is supervisory control. Operators are in charge 

to keep the process withing the specified boundaries so that the process flows uninter-

rupted and does not drift to a dangerous state. In a case of a shutdown, the process 

needs to be placed in a safe state. A complete batch can be lost if the normal progression 

of it is suspended. [19, p. 242], [18, pp. 339–341] 

In a process manufacturing system, batches can be produced in parallel. This means 

that while doing an operation on batch B, the batch A can be executing the subsequent 

process operation at the same time. Figure 9 illustrates the parallel execution of product 

batches. 

 

Figure 9. Parallel production of batches, adapted from [19, p. 219] 
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In industrial processes it is common to transition from one product to another on the fly. 

This means that the process is not stopped and this way the production downtime is 

minimized. At some point, when the process must be stopped, the process equipment is 

cleaned and appropriately prepared. [19, p. 219] 

 

2.2.2 Discrete Industry 

In discrete manufacturing discrete parts are processed and assembled to produce the 

final product [16, p. 1]. These processes handle piece goods with mechanical processes. 

Discrete processing plants are less complex than process plants. Particular operations 

are performed by specialized machines. Usually discrete processing plants are small- to 

medium-scale. [18, pp. 341–342]  

Major aspects in discrete manufacturing are throughput and speed. Several machines 

can work in parallel to maximize these aspects in crucial production steps. Possible ma-

chine stoppages are compensated with buffers. [18, p. 341] 

2.3 Programmable Logic Controller 

The original concept of the programmable logic controller (PLC) was developed in the 

United States of America around 1968 by the engineers at General Motors. The micro-

processor-based PLC concept substituted the earlier hard-wired circuitry. Basic concept 

of a PLC is presented in Figure 10. [20, pp. 12–13] 

 

Figure 10. The concept of programmable logic controller, adapted from [20, p. 13] 
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Typically, a PLC consists of processor unit, memory, power supply unit, input/output in-

terfaces, communication interface, and the programming device. Figure 11 illustrates the 

basic PLC functional components. The processor unit or central processing unit (CPU) 

carries out control actions based on the program stored in its memory. The memory also 

stores the inputs and output data. The processor receives information from external de-

vices through the input interface and communicates actions to external devices through 

the output interface. The power supply unit converts the mains power to a usable voltage 

for the PLC components, such as the processor and input/output interface modules. The 

programming device can be used to enter a program into the memory of the processor. 

The programming can be done using handheld programming device, a desktop console, 

or with a PC. The communication interface allows for receiving and transmitting data to 

communication networks and other PLCs. [21, pp. 4–14] 

 

Figure 11. Basic functional PLC components, adapted from [21, p. 4] 

 

The complete life cycle of PLCs is covered by IEC 61131 standard. The standard defines 

everything from the basic concepts to the details in programming. The standard is divided 

into several parts, each covering a certain topic. [22, Ch. 1.5.1] 

2.3.1 Memory Areas 

Data in an automation system can be located in a device consuming it, or it can be com-

municated to an external memory device. PLC’s cycle times can typically be as fast as 

one millisecond [23, p. 13]. This means that the data used in a program execution must 

be highly available.  

In a PLC, data is located in different memory areas. For example, a STEP 7 (Siemens 

TIA Portal) project loaded to a PLC from a programming device will be stored in memory 
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areas of load memory, retentive memory, work memory, and additional memory areas. 

The memory areas used by different PLC manufacturers are more or less the same. 

Load memory stores the online project data on a SIMATIC memory card. The other 

memory areas are located on the CPU itself. Retentive memory serves as a data backup 

memory during a power failure. Work memory stores the executable part of the user 

program. Executable code is processed in runtime. Additional memory areas store data 

like process image inputs and process image outputs. Total size of each memory area 

is determined by the CPU used. Siemens’s CPU’s store the load memory on an external 

memory card, which’s size is determined by the needs on a case-by-case basis. [24, pp. 

11–17] 

2.3.2 Programs 

The IEC 61131-3 defines the following programming languages: 

- Ladder diagram (LAD) 

- Instruction list (IL) 

- Sequential function chart (SFC) 

- Structured text (ST) 

- Function block diagram (FBD). 

Instruction list and structured text languages are textual coding languages. The other 

three are graphical. The IEC 61131-3 standard also includes a library that contains pre-

programmed functions and function blocks. [22, Ch. 1.5] 

Different PLCs have their own programming software, which is provided by the PLC’s 

manufacturer. In addition to the IEC 61131-3 programming languages, different vendors 

may provide their own programming languages. For example, Siemens introduces a new 

programming language in TIA Portal V17: Cause Effect Matrix (CEM). CEM is a clear 

matrix structured programming language which allows for straight forward, simple, and 

efficient programming. The matrix structure allows for easy detection of errors. CEM is 

supported in S7-1200 as of firmware V4.2 and in S7-1500 as of firmware V2.6 [25]. [26] 

IEC 61131-3 also defines elementary data types, and a keyword for each data type. 

These elementary data types are shown in Table 1. Column N shows the number of bits 

in each data element. 
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Table 1. Elementary data types in IEC 61131-3 [27, p. 30] 

No. Keyword Data type N 

1 BOOL Boolean 1 

2 SINT Short integer 8 

3 INT Integer 16 

4 DINT Double integer 32 

5 LINT Long integer 64 

6 USINT Unsigned short integer 8 

7 UINT Usigned integer 16 

8 UDINT Unsigned double integer 32 

9 ULINT Unsigned long integer 64 

10 REAL Real numbers 32 

11 LREAL Long reals 64 

12 TIME Duration --b 

13 DATE Date (only) --b 

14 TIME_OF_DAY or TOD Time of day (only) --b 

15 DATE_AND_TIME or DT Date and time of Day --b 

16 STRING Variable-length single-byte character string 8 

17 BYTE Bit string of length 8 8 

18 WORD Bit string of length 16 16 

19 DWORD Bit string of length 32 32 

20 LWORD Bit string of length 64 64 

21 WSTRING Variable-length double-byte character string 16 

 

PLC program execution is based on PLC scan cycles. This is a process of sequentially 

reading inputs, executing the program stored in the memory, performing diagnostics and 

communication tasks, and updating the outputs. After completing these four phases, the 

entire cycle begins again. The time taken for each scan cycle is called scan time. The 

duration of a single scan typically varies from 1 ms to 100 ms. The scan time is depend-

ent on the time required to solving the control program, as well as the time needed to 

read and update the I/O. [28, pp. 28–29] 
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2.3.3 Communication 

PLC’s can communicate both horizontally and vertically. Horizontal communication in-

cludes devices such input/output-modules and remote PLC’s. Vertical communication 

occurs between field devices and higher-level devices such as the SCADA and MES 

systems. Communication is achieved by using PLC’s various communication interfaces. 

[22, pp. 71–72] 

Several standard communication blocks are defined in the IEC 61131-5 standard to allow 

the PLCs to exchange information and control signals. These blocks are [22, Ch. 4.4.2]: 

- CONNECT, that establishes a channel between calling PLC and a remote PLC. 

- STATUS and USTATUS, that allows to request and receive status information of 

a remote PLCs.  

- READ, USEND and URCV. READ allowing to read remote PLCs variables. 

USEND is used to transmit data to a particular URCV block in the remote PLC. 

- WRITE, SEND and RCV. WRITE allows to write one or more values to one or 

more variables within a remote PLC. SEND is used to request a remote PLC to 

send data to the PLCs RCV block. 

- NOTIFY and ALARM, that are used to report an alarm message, and alarm mes-

sage acknowledgement that the alarm has been received. 

- REMOTE_VAR is used to obtain a specific address of a named variable. 

Different PLC’s have their own set of supported communication methods / protocols. 

Supported protocols for each manufacturer are listed in Table 2. OPC UA has been 

adopted as the standard for Industry 4.0 and is supported by all major manufacturers. 

Main reasons said being the OPC UA’s safety, openness and scalability, and its decen-

tralization. [29] 
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Table 2. Different PLC manufacturers IE communication support [30, p. 17] 

Manufacturer Communication support 

Omron EtherCat 

 Ethernet/IP 

  FINS 

  OPC UA 

Siemens OPC UA 

  Profinet 

Mitsubishi CC-Link 

  Ethernet/IP 

  OPC UA 

Schneider Ethernet/IP 

  Modbus TCP 

  OPC UA 

Beckhoff CC-Link 

  DeviceNet 

  EtherCat 

  Ethernet/IP 

  Modbus TCP 

  OPC UA 

  SERCOS III 

Phoenix Contact Ethernet/IP 

  Modbus TCP 

  OPC UA 

  Profinet 

Rockwell ControlNet 

  DeviceNet 

  Ethernet/IP 

  OPC UA 

 

The network can be configured in different topologies. Three basic forms of topology are 

recognized: a star, a bus, and a ring. These are shown in the Figure 12. Other commonly 

known topologies are formed out of these three basic ones. They are a fully connected 

topology, a tree topology, a dual ring topology, a mesh topology, and a hybrid topology. 

[21, p. 70] 
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Figure 12. Basic network topologies, adapted from [21, p. 70] 

 

When communicating with shared resources, the network traffic must be controlled to 

avoid confusion and mixing up the signals. To ensure that no more than one terminal 

talks at a time, methods, i.e., protocols are adopted. Two commonly used methods are 

token passing and slot passing. In a bus network, a method called carrier sense multiple 

access (CSMA) is used. CSMA works so that a system wishing to transmit listens to see 

if any messages are being transmitted. If the network is free, a station can take control 

of the network and transmit its message. It is possible that two stations end up perceiving 

the network to be clear simultaneously and therefore start sending messages simultane-

ously. This results in a collision. A carrier sense multiple access with collision detection 

(CSMA/CD) allows to detect the collision. When detecting a collision, stations cease 

transmitting and wait a random time before attempting to transmit again. [21, p. 71] 

2.4 OPC Unified Architecture 

The OPC Unified Architecture (UA) is a platform independent, service-oriented architec-

ture, which replaced its predecessor, OPC Classic, in 2008. OPC UA is functionally 

equivalent with its predecessor, OPC Classic, yet more capable. OPC UA is developed 

by the OPC Foundation. OPC UA’s platform independency means that it can be used on 

a wide range of different hardware platforms and operating systems. OPC UA offers 

encryption, authentication, and auditing. It is also extensible, so adding new features is 

possible without affecting existing applications. OPC UA’s information modeling frame-

work has a complete object-oriented capability. [31] 

Figure 13 presents the concept of OPC UA as a foundation to concretize it. As presented 

in the Figure 13, the fundamental components can be divided to transport mechanisms 

and data modeling. Mechanisms that allow for optimized transport are defined in the 

transport. Different use cases are concerned. Two ways of the transport are possible: 
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Web Services or TCP protocol. Web Services are firewall friendly, while the TCP protocol 

is optimized and high performance. The data modeling defines how information models 

can be exposed with OPC UA. The Services act as an interface between the client and 

server. Data between them is exchanged by the OPC UA’s transport mechanisms. In 

OPC UA, a client can access any piece of data without the need to understand the whole 

complexity behind it. [32, p. 16] [33] 

 

Figure 13. The foundation of OPC UA, adapted from [33] 

 

To achieve the scalability and support for a wide range of application domains, the OPC 

UA standard provides a multi-layered architecture, represented in the Figure 14. The 

architecture is built on the following infrastructure [34]: 

 Discovery. Clients can find OPC UA Servers and their capabilities, such as 

their supported protocols and security policies.  

 Transport. Protocol mappings are defined in transport. They allow establishing 

a connection and exchanging well-formed messages between OPC UA Appli-

cations. 

 Information Access. Defines how the Information Models can be accessed in 

an Address Space. Comprises also the Services needed to do this. 

 Security and Robustness. This is integrated into Transport and Information 

Access.  
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OPC UA information models are layered on top of this infrastructure. Common real-time 

and historical data variables and alarms are specified in the base information models of 

the OPC UA. Lower layer models are inherited and further specialized to form the indus-

try standard models. [34] 

 

Figure 14. Unified Architecture Framework, adapted from [34] 

 

2.4.1 Specifications 

The OPC UA specification is built of multiple parts, which combined form International 

Electrotechnical Commission’s (IEC) standard IEC 62541. Figure 15 shows an overview 

of all specification parts split into the core specification parts defining the base for the 

OPC UA, and access type specification parts, which mainly specify the OPC UA infor-

mation models. [32, p. 11] 

 

Figure 15. OPC UA specification, adapted from [32, p. 12] 
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Brief explanations for each part are [32, pp. 12–13], [35]: 

 Part 1 gives a high-level introduction to the OPC UA.  

 Part 2 describes how the security is obtained in the OPC UA. 

 Part 3 describes the concepts of an address space, node, and views. It covers 

how these building blocks allow OPC UA Client to consume from OPC UA Server.  

 Part 4 represents the interfaces and the interactions that servers and clients must 

use to interact. Method of implementation is not described in the Services, only 

the exchange of information between different UA applications. 

 Part 5 provides a detailed description of how the information model is defined. It 

includes rules for nodes and references, standard object types, variable types, 

methods, event types, and standard datatypes. It also covers information model-

ing rules and state-machine and file transfer descriptions. 

 Part 6 describes the OPC UA server-client data and information transferring. In 

this part, the UA Services are mapped to messages, mechanisms providing se-

curity to the messages, and the methods for transporting in the actual wire. Figure 

16 below shows the architecture of OPC UA. 

 

Figure 16. Communication architecture of the OPC UA, adapted from [32, p. 12] 

 

 Part 7 defines OPC UA features and categories of behaviors that OPC UA Serv-

ers and clients can implement. 

 Part 8 defines how automation related data is to be presented in a form of infor-

mation model. 
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 Part 9 specifies how state machines and events are linked to process alarms and 

condition monitoring. 

 Part 10 defines how programs are executed in the base state machine. 

 Part 11 specifies how historical data is accessed via Services. Data and event 

history configuration is also concerned in this part. 

 Part 12 defines how to find servers in the network and how a client can get the 

necessary information to be able to establish a connection to a certain server. 

 Part 13 specifies the aggregates used to compute aggregated values from raw 

data samples. The aggregates are used for historical access as well as the mon-

itoring of current values. 

Over the years, the specification has got many more parts added to it. At the moment of 

writing, a total of 25 parts have been listed in OPC Foundation’s specification page [35]. 

2.4.2 Software Layers 

OPC UA is based on client-server communication. In this pattern, the server exposes its 

information to other applications, and the client consumes information from other appli-

cations. OPC UA information modeling is always done on the server-side. OPC UA Client 

has access to modify information models on OPC UA Server. However, in OPC UA it is 

possible that an application is configured both server and client. This allows for device 

to device communication, allowing to use the OPC UA as configuring interface. [32, pp. 

13–14, 20] 

An OPC UA application typically composes of three software layers. This is shown in 

Figure 17. Either C/C++, .NET, or JAVA can be used to implement the software stack in 

whole. There is no limitations on using other languages, but only these are currently used 

for implementing the OPC Foundation UA Stack deliverables. [32, p. 14] 
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Figure 17. OPC UA software layers, adapted from [32, p. 14] 

 

Functionality of an OPC UA application is included in the application itself. Software De-

velopment Kit (SDK) along with the UA Stack is used in order to map OPC UA applica-

tion’s functionality to the OPC UA. Common OPC UA functionality considering the appli-

cation layer is implemented with client or server SDK. Transport mappings of the OPC 

UA are implemented in the UA Stack. UA Services can be invoked across the network 

and its boundaries using the UA Stack. The stack consists of three layers. These layers 

are presented in Figure 18. Profiles are defined for each layer. These layers are message 

serialization, security, and transport, presented in Figure 18. [32, p. 14]  

 

Figure 18. Three layers the UA Stack consists of, adapted from [33] 
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Serialization of the service parameters is defined in the message serialization layer. This 

is done in two formats: binary and XML. The way to secure the messages is specified in 

the message security layer. Two approaches can be used to achieve security in OPC 

UA. These are the standards of the Web Service security and the UA’s binary version of 

them. The used network protocol is defined in the message transport layer. Possible 

network protocols are UA TCP, HTTP and SOAP for Web Services. [32, p. 14] 

2.4.3 Nodes and References 

OPC UA base models are formed out of nodes and references. References are defined 

between the nodes, and they describe how the nodes are related. Node’s purpose de-

fines which NodeClass is to be used. The most NodeClasses are Object, Variable, and 

Method [32, p. 30]. All the NodeClasses are represented in the appendix A. Nodes are 

described using attributes. Attributes of a Node differ between NodeClasses but are not 

extendable as they are defined by the OPC UA specification [32, p. 24]. Figure 19 shows 

an example of how the nodes and references may relate. [32, p. 22] 

 

Figure 19. Nodes and References between nodes, adapted from [32, p. 22] 

 

A reference may only be exposed in one direction. It is possible that a nonexistent Node, 

or a Node in a totally different UA sever is pointed to by a reference. Therefore the ref-

erences are browsed only in one direction by the clients. According to W. Mahnke a 

reference can be thought to be “a pointer living in a Node and pointing to another Node 
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by storing the NodeId of the other Node.” References that are stored in order do exist 

but they are not by default. [32, pp. 23–24] 

While a different set of attributes is linked to each NodeClass, there is a set of attributes 

common to all nodes. The most important attribute is the NodeId, which uniquely identi-

fies each node in the server. NodeIds are returned by the server when the address space 

is brosed or queried. Clients performing Service calls use the NodeIds to address target 

nodes. Nodes commonly also have a BrowseName, which is used to identify the Node 

when using the OPC UA server. DisplayName attribute contains a name for the node to 

be used to display in a user interface. Description attribute can be optionally used for 

localized textual description of the Node. WriteMask attribute is used for defining the UA 

client writable attributes of a node. UserWriteMask attribute can be used to specify the 

Node attributes a user connected to a server can modify. [32, p. 23] 

NodeClasses and their Attributes are the basis for the UA’s meta model. The meta model 

is called Address Space Model. Address Space Model is the base of every OPC UA 

server. Concepts of Address Space model are used in the OPC UA Information Model. 

Information Model can be used in several servers. Information model is used to form the 

base of the actual server data. Address Space Model, Information Model, and Data are 

presented in appendix B. [32, pp. 81–82]  

2.4.4 Services 

Services are methods that are used by an OPC UA client to access the data of the Infor-

mation Model provided by an OPC UA server. The definition of the Services is abstract. 

This allows for developing an OPC UA application without the need to use any specific 

transport protocol or developing environment. Different Services and Service sets are 

provided for different use cases. Server finding, information finding, and data and event 

subscribing patterns are included in the methods of the Services. Different Services exist 

to serve different purposes. [32, pp. 125, 189] 

Request and response pattern is used by the Service definition. Same headers are con-

tained in each Service. Also, the parameters are common. As network communication 

can be interrupted at any time, Service calls have timeouts to detect this type of failures. 

The timeouts are defined and handled by a client. For error handling the Services have 

two types of error information. These are StatusCode and DiagnosticInformation. The 

StatusCode is a 32-bit long unsigned integer. It is divided into two 16-bit long sections. 

The first 16-bits are used to represent errors and conditions. The remaining 16-bits are 

flags. The DiagnosticInformation carries information, which is additional for the Status-

Code. [32, pp. 126–128] 
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There are three different types of information that a client can subscribe from an OPC 

UA server. All three of these Monitored Items may be contained in a single Subscription. 

These types are data changes for Variable values, Events by EventNotifier, and aggre-

gated Values calculated in client-defined intervals. Subscriptions and Monitored Items 

need Services to create necessary context. Data transfer is possible via the Services, 

but most of them are used for other purposes. Figure 20 shows the communication con-

text in Services. Data change and event subscription is handled on the three top layers 

of this communication context. To achieve the wanted behavior, certain Monitored Item 

settings must be applied. [32, p. 158] 

 

 

Figure 20. Communication context, adapted from [32, p. 129] 

 

A Publish Service can be used by the client. This is used to trigger the server to send 

notification messages. In this pattern, a list of publish requests is sent by the client. The 

responses are sent by the server when the notification messages are available. There-

fore, an immediate response is not to be expected by a client. The delivery of notification 

messages is illustrated in the Figure 21. This figure shows the sequence of actions after 

UA client sends a Publish Request to the UA Server. Each Publish Request is put on 

Publish Queue and handled when the notification is ready to be sent. After this, a re-

sponse is sent back to the client. 
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Figure 21. Delivery of notification messages, adapted from [32, p. 161] 

 

2.4.5 Technology Mapping 

OPC UA defines the concepts and services abstractly. This means that they need to be 

mapped to concrete technologies. Future technologies can be added by adding addi-

tional mappings when needed. Mappings are required on the following three layers: 

Transport Layer, the Security Layer, and for the Encoding Layer. Reference defines two 

available technologies for each stack’s layer. These are UA Binary and XML for the En-

coding Layer, WS-SecureConversation and UA-SecureConversation for the Security 

Layer, and UA TCP and SOAP/HTTP for the Transport Layer. These layers are illus-

trated in  Figure 22. A set of standard OPC UA deliverables are provided by the OPC 

Foundation. The defined mappings are implemented in these deliverables. 
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Figure 22. OPC UA stack’s layer mappings, adapted from [32, p. 192] 

 

2.4.6 System Architecture 

An OPC UA system can have different architectural patterns for dealing with the com-

munication. However, they are all fundamentally based on the client-server pattern. The 

OPC Unified Architecture book suggests four different architectural patterns, which are 

client-server, chained server, server-to-server, and aggregating servers. [32, pp. 265–

269] 

Aggregating servers pattern shown in Figure 23 is interesting from this thesis’s point of 

view, as the possible solution, presented in chapter 2.6, might be able to utilize this ar-

chitectural pattern. In the Figure 23, the Edge computer would be the Server 1 in the 

middle, receiving data from the PLC’s, and responding to requests from other parts of 

the automation system. 
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Figure 23. Aggregating server pattern, adapted from [32, p. 268] 

 

2.4.7 Discovery 

When the environments that the OPC UA is used in get large enough, multiple UA serv-

ers may be present. All these OPC servers may also have different configurations. The 

client needs two things to communicate with a UA server: where it is in the network and 

how to establish a connection with it. To perform the abstract discovery, OPC UA spec-

ifies multiple different ways. The simplest solution to discovery is called Simple Discov-

ery. In this approach the UA server address is already known, and the client sends only 

a GetEndpoints request. After receiving the request, the server responds with a descrip-

tion of the Session Endpoints available. An appropriate Session Endpoint is selected by 

the client. After this it can establish a connection to it by sending an OpenSecureChannel 

request. The Simple Discovery pattern is illustrated in the Figure 24. [32, pp. 273–275] 
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Figure 24. Simple discovery, adapted from [32, p. 275] 

 

Other approaches are also available. These are used in more complex systems where 

the addresses are not known. These approaches are called as Normal Discovery and 

Hierarchical Discovery. [32, p. 276] 

2.5 Traceability 

From a business standpoint traceability means that the business operator can show 

where a certain raw material or other product batch came from, and where the shipment 

has been delivered. The European Union regulation 178/2002 defines traceability as “the 

ability to trace and follow a food, feed, food-producing animal or substance intended to 

be, or expected to be incorporated into a food or feed, through all stages of production, 

processing and distribution” [36, p. 13]. Usually, the traceability throughout the whole 

Food Supply Chain (FSC) is achieved with a one-up, one-down approach. When this is 

done, the product can be traced upwards and tracked downwards at any time [37]. As a 

follow-up, the producer can isolate the source and extent of any possible safety or quality 

problems. In Finland the traceability is regulated by the regulation (EY) N:o 178/2002 of 

the European Parliament and of the Council. [38], [39], [40, p. 5] 

Traceability can be divided to external, internal, and customer traceability. Internal and 

external traceability is illustrated in the Figure 25, presenting a conceptual framework of 

food traceability system. External traceability means that the business operator knows 

the supplier of the feed, raw material, or product used in the production. Internal tracea-

bility means that during the production process, in each step of it, the business operator 
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can trace all the raw materials and products used in it. Customer traceability concerns 

about the ability to know and document the delivery of the products to the next party in 

the distribution chain. One of the key requirements for achieving traceability is adequate 

and appropriate labeling. [39] 

 

Figure 25. Conceptual framework of food traceability system, adapted form [41, p. 180] 

 

Three basic characteristics for a traceability system can be identified [41, p. 173]: 

1. Identification of units/batches of all ingredients and products. 

2. Information on when and where they are moved and transformed 

3. A system linking this data. 

Besides providing important safety and quality information about the origin of the goods, 

traceability also allows to improve supply management and to differentiate and market 

foods with different quality attributes. Although increasing the cost of the system, it is 

claimed that the benefits of the traceability translate into larger net revenues and return 

on investment. [40, p. 4], [42, p. vi] 



31 
 

According to M. Meuwissen et al. three different types of traceability systems can be 

distinguished. These are represented in the Figure 26. In the system “A”, each link in the 

FSC gets the relevant information from the previous link. With this type of system only a 

small amount of data must be communicated. The system “B” works in a way where 

each link receives the relevant data from all the former links. High speeds of tracking and 

tracing (T&T) can be achieved with this approach. The third and the final system type 

“C” works so that each link of the supply chain provides the relevant data to a separate 

organization. This organization handles and combines all the information for the entire 

FSC. [43, pp. 169–170] 

 

Figure 26. Three different traceability system types, adapted from [43, p. 170] 

 

2.5.1 Reporting 

Reporting is done to retrieve information on production. Reporting in manufacturing can 

be divided into functional and formal reports. Functional reports include informational 

and analytic reports. Formal reports include statutory and voluntary reports. [44] 

Informational reports are reports about known figures. These may include inventory re-

ports, production reports, wage and salary reports etcetera. Informational report’s main 

purpose is to provide a snapshot of how the company is performing at any given point in 

time. Analytical reports are reports with a purpose to explain any given trend that has 

occurred. They can also suggest a course of action. Analytical reports need information 

on the process to perform the analysis on it. The report may combine information from a 
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informational reports or any other reports. Statutory reports are dictated by a higher au-

thority. These are required to show that a company meets the rules set. The production 

of these reports is also regulated. Examples of statutory reports are accident reports and 

company’s annual reports. Voluntary reports or non-statutory reports are used for ad-

ministrative clarity or for decision making. As the name suggests, these reports are used 

only for the company’s own benefit and not required by any means. [44] 

2.5.2 Batch Production 

In process manufacturing, a batch ID is assigned to each product batch. Commonly the 

batch ID is numeric, but it could also be a string of characters. The plant usually rules 

how the batch ID is to be formulated. These rules could be based on calendar date, 

equipment tags, etc. The batch ID is used to track the quality information and for material 

tracking. For quality purposes, any item of data that has effect on the product quality 

must be retrained. For material tracking purposes the amounts of each material used are 

needed. Also the lot identifier is an essential information and needs to be captured. [19, 

p. 214] 

The amount and the identifier for the material to be transferred needs to be supplied to 

the logic executing the material transfer. According to Smith [19], the options for the 

material identifier are: 

- chemical name of the material 

- common name of the material 

- product code for the material. 

The ease of operator readability and the explicit of the material to be charged should be 

considered when choosing the material identifier type. The identifiers may also apply to 

intermediates within the process. [19, p. 215] 

Manufacturing a batch requires to “open” a product batch. This makes the product batch 

known to the process controls. By assigning a unique identifier for each batch, operations 

and phases can be associated to it. The product batch is closed at the time when all the 

operations have completed, or at a time later. [19, p. 303] 

At least three ways of manufacturing a batch of product exist [19, pp. 303–304]: 

- automatic 

- semiautomatic 

- manual. 
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When operating in the automatic mode, a product batch can be opened using [19, pp. 

304–305]: 

- corporate manufacturing resource planning (MRP) system 

- production scheduler 

- process operators. 

The data captured in a batch facility includes the following [19, p. 311]: 

- data values 

- operator actions 

- events. 

Batch ID assigned to each product batch defines that batch of product. The batch ID 

allows for retrieving of data for the specific product batch. According to C. Smith, there 

are two approaches for implementing batch ID based data retrieving [19, pp. 311–312]: 

- Collect and then extract. Data values, operator actions, events, and so on, are 

captured on a continuous basis in continuous facilities. Sorting is needed to re-

trieve the data for a specific product batch. This sorting proceeds as follows: 

o Batch units and time intervals of operations performed for this product 

batch are extracted based on the batch ID. 

o Designate the key variables of interest for each batch unit. 

o For each batch unit, retrieve the key data values, events, and operator 

actions performed during the time intervals of each operation. 

- Extract and then collect. Generate data files for each product batch. These data 

files should contain all available information for that product batch, including the 

key variables for each batch unit, the data values, the operator actions, and the 

events. The key variables can be identified as a part of the batch unit configura-

tion. Data collection specification can also be provided for each product recipe. 
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2.5.3 Traceable units 

Global Solutions One (GS1) is a company responsible for the global administration of 

barcodes and related products. Definitions for traceable units were applied in 2007 by 

the GS1. These are a batch, a trade unit (TU) and a logistic unit (LU). These definitions 

are to be used as vocabulary to discuss traceability. A batch is a quantity, or products 

made in the same manufacturing run. Trade units are sent from a company to the next 

company in the supply chain. The GS1 has defined a trade unit as “any item upon which 

there is a need to retrieve predefined information and that may be priced, ordered, or 

invoiced at any point in the supply chain”. A logistic unit is any item of any composition, 

that has been established for transportation and/or storage and needs to be managed 

through the supply chain. 

2.5.4 Information Modelling Basics 

The basic idea of creating a traceability system is that an information trail is following the 

product’s physical trail throughout the process. This means, that the information needs 

to get into the system in the same order that the process actually happens [45, p. 159]. 

The order information can be collected by simply structuring the data, or by linking a time 

stamp of each process production event. Traceability is said to be practical when the 

captured data is formatted in a usable form. To achieve practical traceability, the infor-

mation processing must at least [45, pp. 164–166]: 

- Allow editing of the transactions, even after they are completed. 

- Only allow transactions that are physically possible. 

An unambiguous, uninterrupted way to physically track a product, and/or its constituent 

components through the supply chain can be achieved by distinguishing nodes. Nodes 

in this context are any points in the chain where the product is processed or handled in 

some way. These nodes are inter-linked. A basic concept of ID collection is illustrated in 

the Figure 27. It is necessary that the all the products concerned are identified. Product 

information must also be linked to the products, so that the information can be retrieved. 

[46, p. 15] [47] 
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Figure 27. ID collection to realize traceability in a factory, adapted from [47] 

 

According to a book by M. Thakur and K. Donnelly, a total of three categories of infor-

mation needs to be captured by each entity. These categories are product information, 

process information, and quality information. [48] 

I. Smith and A. Furness define a list of structural features common in traceability sys-

tems. These features can be distinguished despite the supply chain items, industry affil-

iation and functions supported [46, p. 17]: 

- Item identification, which needs to be implemented unambiguously. Also needs 

to be linkable to physical process. 

- Item-attendant and/or item-associated information considering all transforms 

and transactions that a traceable unit faces. This information affects traceability. 

- Process-based information considering the process itself. This is linked to all 

the items processed in the supply chain. 

- Communication for accessing and exchanging of information. 

Figure 28 illustrates what features are needed to be captured in a single supply chain 

node. As can be seen from the Figure 28, the structure is presented as both vertical and 

transverse.  
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Figure 28. Inter-linking in the supply chain, adapted from [46, p. 17] 

 

These ‘one-step’ links, presented in Figure 28 are used to provide linkage of data. Data 

that has linkage can be used to achieve traceability. A traceability system is called mini-

malistic when only a little or no information is passed along with the item travelling 

through the process. The main function of data carriers related to an item is to provide 

item identification. Identification allows the data to be linked to the data stored in data 

bases, and further to access the data needed. It is possible that an item has an attendant 

data file that allows specific information to accompany the item. [46, p. 18] 

2.5.5 FoodPrint Method 

I. Smith and A. Furness present a method called FoodPrint to create goal-oriented T&T 

systems. Following steps are in the core of the FoodPrint method [46, p. 72]: 

- strategic traceability analysis 

- traceability system analysis 

- traceability bottleneck analysis 

- traceability systems design. 

Considering the subject of this thesis, only the last of these four is examined in more 

detail. The book by I. Smith and A. Furness introduces its own process modelling tech-

nique dedicated on T&T. The modelling language concepts are presented in Attachment 

C. The represented modelling technique allows to model a food supply chain. This is 

done by registering and measuring the key aspects of processes. To reproduce a tracing 
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activity, these relations are essential. The book by I. Smith and A. Furness introduces 

five steps for creating a T&T process model. These steps are [46, pp. 73–75]: 

1. Define the scope of the model. 

2. Identify the processes within the scope. 

3. Capture the products. 

4. Capture the registrations. 

5. Capture the decisions. 

Only registrations are known in the information space. In a T&T system, the trail of a 

product is simply a set of registered idents. The actual process may have multiple phys-

ical processes between two registrations points. A concept of relation type is introduced 

to describe the relation of products in the physical process between two registration 

points. Figure 29 illustrates the concept of relation types. This figure shows how one 

relation type is used to represent three physical processes in the information space. To 

keep the T&T model simple, process objects are not represented in the T&T model. Still, 

registrations and information descriptions need to be connected via relationships [46, pp. 

75–77] 

 

Figure 29. The concept of relation types used to represent the physical processes in the in-
formation space, adapted from [46, p. 77] 

 

The FoodPrint method introduces four groups of relation types. These groups are pre-

sented in more detail in the Appendix D. These groups of relation types are [46, pp. 77–

78]: 

- grouping of idents, which are reversible relations 

- transformations of idents, which are irreversible 

- processing 

- binding. 
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Products in a production process can be discrete, diffusive continuous, or anything in 

between. Discrete products travel through the production chain as clear units. They can-

can be counted individually. Diffusive continuous products travel through the production 

chain as a continuous stream. They mix completely if poured into one tank.[46, pp. 78–

80] 

Ident resolution, also known as the smallest traceable unit (STUNT), determines the min-

imum amount of product that can be involved in a recall. Usually, a product has a unique 

identifier or a batch code. In some cases, it may not carry a code at all. Smaller the 

magnitude of the physical products carrying the same identification, better the ident res-

olution. Common ident resolutions are illustrated in Figure 30. [46, p. 82] 

 

 

Figure 30. Ident resolution in three cases, adapted from [46, p. 82] 

 

2.6 Edge Technology 

As shown in Figure 31, the Edge technology can be seen as a constitution of The Edge, 

Edge computing, and the Core. According to B. Gill and D. Smith “the Edge is the phys-

ical location of things and people connecting the networked digital world”. Edge compu-

ting is a part of a distributed computing topology. In this topology, information processing 

is done close to its source or destination. [49, pp. 4–5] 
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Figure 31. Relations of Edge, Edge Computing and Core, adapted from [49] 

 

Edge technology has been promised to offer benefits to many domains, such as content 

delivery networks, I4.0, smart cities, and transportation. Potential to use different tech-

nologies to realize Edge has led to multiple Edge computing visions proposed and driven. 

These visions are Multi-access Edge Computing (MEC), Fog computing, and cloudlets. 

MEC’s idea is to bring technology resources closer to the end user. MEC is strongly 

connected to telecommunication and 5G. Fog computing, also called Edge computing, 

is processing as much raw data as possible in computing units co-located with data gath-

ering devices. This helps to reduce the amount of data needed to transfer to the cloud. 

Cloudlets are small scale localized data centers. [50] 

IoT nor deployment at the Edge does not require Edge computing. An IoT device can 

stream its data directly to a central cloud data center. Or if a sensor is only connected to 

a local computing device, it is not at the edge of anything. [49, p. 5]  

As shown in Figure 32, a considerable part of all Edge computing initiatives lies in the 

manufacturing industry. 
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Figure 32. Edge computing initiatives distribution by industry, in 2019 [51, p. 119] 

 

Edge, cloud, and fog computing are all closely associated, but not the same thing. The 

main difference is a matter of the resource’s location. Edge computing is a decentralized, 

low latency architecture at the source of the data. It has some processing and networking 

limitations. Cloud computing provides a high-processing and computing power at one of 

several distributed global locations. The downside of the cloud is high latencies due to 

the long distances to the cloud facilities. Between these two, fog computing nodes can 

be implemented to face the issues of the Edge and the cloud. The difference between 

the Edge and the fog computing is distinct, and the terms are sometimes used inter-

changeably. [52, pp. 7–11] 

2.6.1 Edge Computing 

Edge computing, or edge computing architecture, is processing client data at the periph-

ery of the network. The floods of data today are enormous. Edge computing provides a 

solution to processing them by moving a portion of storage and computing resources 

closer to the source of the data itself. This way the processing and analysis of the raw 

data can be performed close to the origin of the data, rather than in a central data center. 

This can help with problems like bandwidth limitations, latency issues and network dis-

ruptions. [52, pp. 2–3] 
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M. Rouse lists bandwidth, latency, and congestion as the main three principles of net-

work limitations. A network can carry only a finite amount of data. This amount is called 

as bandwidth of the network. The bandwidth can be increased but the costs involved 

might be enormous. Messages in the transmission medium travel at a finite speed. Mul-

tiple variants affect the speed of the transmission. The time that it takes for a message 

to travel between the sender and the receiver is called latency. Physical distances, net-

work congestion and network outages can have a negative effect on latency. Conges-

tions happens when a huge number of devices try to a network at the same time, and 

the network is overwhelmed. Congestion forces the devices to retransmission the data. 

This is highly time-consuming. The Edge can help with all these three network limitations 

by offering exclusive local bandwidth for the data-generating devices. This makes the 

latency and congestion virtually nonexistent. The Edge can perform Edge analytics or 

pre-processing to the data to send only data that has value. This way non-essential data 

does not congest the network. [52, pp. 12–13] 

Other benefits an Edge application can offer can be listed as [53]: 

- Availability of high-level languages and possibility to use artificial intelligence. 

- Possibility to store local data, log, and archive in object-oriented and relational 

databases. 

- Conversion of legacy protocols to I4.0 protocols such as OPC UA allows for data 

exchange with MES/IT systems. 

- Enables the use of IoT applications. 

- Data visualization by means of web server. 

- Possibility to act in a closed-loop environment based on the analysis of local data. 

Generally, an Edge computing architecture consists of three layers: an edge device layer 

(EDL), an edge server layer (ESL), and a cloud server layer (CSL). This general archi-

tecture is presented in Figure 33. Field task conducting devices deployed to the EDL are 

called edge devices. On the ESL, core computing functions are handled by edge servers. 

Typically, ESL consists of multiple hierarchical sublayers of edge servers. Popular state-

of-the-art edge servers include NVIDIA Jetson Nano, Raspberry Pi, Marvell OCTEON 

10, DPU, and Mac Mini. Cloud servers and data centers are hosted on the CSL. Of-

floaded tasks from the EDL and ESL are handled on the CSL. [54, pp. 1–2] 
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Figure 33. Edge computing’s general architecture, adapted from [54, p. 1] 

 

2.6.2 Edge Security 

This subchapter briefly explains Edge security. It points out the biggest factors concern-

ing the security by looking at reviews and articles recently written around the topic. The 

Edge security is too big of a topic to be explained in more depth in this subchapter. 

Security is a major concern for any automation system connected to public networks. 

Cyber-attack to an industrial automation system can cause big damage, being physical 

or financial. Cloud based, remote supported, and IoT solutions necessitate automation 

systems to be connected to public networks. This makes the automation systems prone 

to new vulnerabilities. Edge computing adds yet another breaking point into the system. 

An Edge implementation can either add or impair the systems security. Edge computing 

adds four real world attack surfaces to the systems. These are its weak computational 

power, attack unawareness, OS and protocol heterogeneities, and coarse-grained ac-

cess control. However, Edge computing allows for implementing and ensuring data se-

curity by encrypting the communication and by using other safety mechanisms. This is 

especially beneficial when using IoT devices which’s security remains very limited. [55, 

p. 1609], [56, p. 116], [57, p. 52], [52, p. 18] 

Edge computing devices do not usually have a high degree of protection. According to a 

survey on Edge computing security by B. H. Husain and S. Askar, four aspects of security 

issues in Edge computing can be addressed: access control, attack mitigation, privacy 

protection, and anatomy recognition. [57, p. 55] 

An article by Y. Xiao et al. lists the major state-of-the-art security threats and attacks 

faced by Edge computing to be DDoS attacks, side-channel attacks, malware injection 

attacks, and authentication and authorization attacks. The article also provides current 
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defense solutions for each of the security threats and attacks listed. This article also 

suggests that the root causes in Edge computing security issues are the following: pro-

tocol-level design falls, implementation-level flaws, code-level vulnerabilities, data corre-

lations, and lacking fine-grained access controls. The article also presents the status quo 

and grand challenges in securing an Edge computing system. These are listed as lacking 

consideration of security-by-design, non migratability of security frameworks, fragmented 

and coarse-grained access control, and isolated and passive defense mechanisms. [55, 

pp. 1611–1626] 

A book about secure Edge computing written by M. Ahmed and P. Haskell-Dowland 

suggests couple of different perspectives of Edge security architectures. These are 

Edge-centric architecture, device-centric architecture, user-centric architecture, privacy-

centric architecture, and access control-centric architecture. The book explains the con-

cepts of distributed virtual firewalls (DFWs) and distributed intrusion detection systems 

(IDSs) as a part of Edge security. [58, Ch. 2.5.2-2.5.3] 

Edge computing and its security is a multidimensional function. As stated by X. Jin et al. 

“the configuration and functionality of the Edge network, the communication protocols 

used, and the cloud components must be well-understood and thoroughly examined”. 

The needed level of security needs to be addressed on a case-by-case basis. [54] 

2.7 Software development patterns 

In software development, multiple development patterns are available. Top-down devel-

opment starts from a fixed set of requirements, which are then implemented and tested. 

Bottom-up development pattern is performed by starting with a small prototype, and then 

incrementally adding new functionality to it with each iteration. The traditional software 

developing model is called the waterfall model. It assumes that the product’s functionality 

can be fully specified at the outset. The development is then carried out in a sequence 

that consists of requirements analysis, design, coding, testing, and delivery. Only in very 

simple and relatively rare cases the requirements of a software product can be under-

stood at the outset. [59, p. 8] 

Alternatives for the traditional waterfall model have emerged to solve this underlying 

problem. For example, spiral development, which starts from a simple subset of require-

ments, which are implemented, and tested, and then reviewed with the end users. The 

steps are repeated, and new functionalities are added on each iteration until the resulting 

software satisfies the end users’ needs. If the spiraling process occurs relatively frequent, 

the resulting process is called agile. This frequency is weeks rather than months. If the 
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frequency of repetitions is even shorter, counted in days, the process is called extreme 

programming. [59, pp. 8–9] 

A Collaborative Object Modeling and Design Method (COMET) is a Unified Modeling 

Language-based (UML) software modelling and architectural design method. H. Gomaa 

describes the COMET design method as “an iterative use case driven and object-ori-

ented method, that addresses the requirements, analysis, and design modelling phases 

of the software development lifecycle”. As in UML, actors and uses cases are used. With 

the help of these, the system’s functional requirements can be defined. Use cases pre-

sent a sequence of actions between the actors in it. The level of detail in a use case is 

determined by the design phase which it describes. Requirements model defines the 

functional requirements in terms of actors and use cases. Interactions between the ob-

jects participating in each use case are described in an Analysis model. The design 

model helps to develop the software architecture, addressing issues of distribution, con-

currency, and information hiding. [60, p. 6] 

Abstraction is a key principle in computer science. It means generalizing an idea to a 

level in which it can be reused in other similar problem-solving settings. This minimizes 

the need to reinvent from scratch every time. The advantages of using prewritten com-

ponents can be listed as [59, p. 10]: 

- saves development time 

- ensures more reliable software 

- allows developers to concentrate on the application itself rather than a compo-

nent. 

To develop a software component that can be reused in different PLC software projects, 

abstraction needs to be considered. The software components developed must be uni-

versally useable independent of the project in hand. 

State of the art review written by V. Vyatkin in 2013 compares different software design 

approaches in Table 3 below. In the table, the letter P stands for “primary concern”, and 

C for “contributes to”. This table may help to decide the software design approach for a 

software engineering task. 
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Table 3. Software design approaches compared by their target characteristics.[61] 

 Lifecycle characteristics Operation perfor-

mance 

Dependa-

bility 

Design 

effort 

Scalabil-

ity 

Interopera-

bility 

Flexibil-

ity 

Distribu-

tion 

Model-based engineering P   C   C 

Formal models C      P 

Multi-agent architectures C P  C P C  

Service-oriented architecture C C P C P C  

Component-based design  C C C P   

Design patterns and generative 

programming 

P C     C 

 

2.7.1 UML and Software Design Concepts 

The UML notation supports the following diagrams, which are used by the COMET 

method [60, pp. 14–15]: 

- Use case diagram 

- Class diagram 

- Communication diagram 

- Sequence diagram 

- State Machine diagram 

- Composite structure diagram 

- Deployment diagram. 

Figure 34 shows the notation for a use case diagram used in UML. An actor initiates a 

use case. After the initiation, interactions are performed in a sequence. In an IT world, 

these interactions are usually messages sent between the actor and the system. A stick 

figure is used to represent an actor, and a box for the system. Use cases are presented 

as an ellipse inside the box. Actors are connected to use cases in which they participate 

by communication associations. Include and extend relationships are used among use 

cases. Include is a relationship that is used to represent a shared use case. This is help-

ful when a use case is common for multiple use cases. [60, pp. 15, 82–88]  
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Figure 34.  UML notation used in use case diagrams, adapted from [60, p. 15] 

 

Boxes are used to depict classes and objects, as shown in Figure 35. Classes and ob-

jects are used in various UML diagrams, such as class diagram. Class is a type, which 

can have attributes and operations. An instance of a class is called as an object. To 

distinct an object from a class, an object name is shown underlined. In Figure 35, all 

three objects shown could be the same object, only the notation is different. [60, pp. 15–

16] 

 
Figure 35. UML notation for objects and classes, adapted from [60, p. 16] 

 

Associations are relationships between two of more classes. Associations are static (i.e., 

permanent) and structural. A binary association is an association between two classes. 

Association is shown as a line connecting class boxes. Multiplicity (shown in the Figure 

36 top right corner) is indicated with a marking on each end of an association line. This 

marking tells the number of other class instances that a class has a relation with. Aggre-

gation and composition hierarchies are called whole/part relationships. These relation-

ships differ in their strength. The composition relationship is stronger relationship than 

the aggregation relationship. Composition relationships are used to depict parts, mean-

ing that the objects have an identical life span. They are created, they live, and they die 
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together. Aggregation instances are different as they can be added and removed without 

affecting the others. A generalization/specialization hierarchy is an inheritance relation-

ship. [60, pp. 16–17, 101] 

 

 

Figure 36. Relationship notation used in UML class diagrams, adapted from [60, p. 17] 

 

Sequence diagram is an interaction diagram depicting messages sent between objects. 

Sequence diagrams show the interactions arranged in a time sequence. Interactions are 

represented horizontally. Time is represented on the vertical dimension. Object execu-

tion can be illustrated with a lifeline. Each message is represented as an arrow between 

the source and the destination of the message. A simple example sequence diagram is 

shown in Figure 37.  

 

Figure 37. An example of a sequence diagram, adapted from [60, p. 19] 
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Activity diagrams are widely used in workflow modeling. They depict the flow of control 

and sequencing among activities. An activity diagram consists of activity nodes, decision 

nodes, arcs joining sequential activity nodes, and loops. An activity node depicts any 

activity to be performed. Decision nodes are used to depict a situation where an activity 

has multiple outcomes, and therefore several consequences. Decision nodes can branch 

off the main sequence. Figure 38 illustrates the composition of an activity diagram. 

 

Figure 38. Example of an activity diagram, adapted from [60, p. 91] 

 

Information hiding means hiding object’s internal complexity by only considering its in-

terface. Inheritance as a concept means sharing some common properties. This means 

that the code can be reused between classes. Properties from the parent class are in-

herited to the child class. Inheritance is especially useful when objects have some com-

mon properties. Superclass and base class are designations to a parent class, and sub-

class and derived class for a child class. When a class is adapted to form a child class, 

it is referred to as specialization. Specialization means that child class adapts parent 

class’s variables and operations by adding new or by redefining the already existing 

ones. Hierarchies consisting of inherited classes are referred to as generalization/spe-

cialization hierarchies. [60, pp. 48–52] 
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Objects can be divided into active/concurrent and passive objects. Concurrent object can 

execute independently, whereas a passive object needs to be invoked by another object. 

Three commonly arising problems to consider when concurrent objects cooperate are 

[60, pp. 53–54]: 

1. The mutual exclusion problem, which occurs when a resource is needed exclu-

sively by multiple concurrent objects. 

2. The synchronization problem, meaning a situation where operations of two con-

current objects need to be synchronized. 

3. The producer/consumer problem, meaning a situation where two concurrent ob-

jects end up in a situation where one needs to pass data to other. A term inter-

process communication (IPC) is used for describing this type of concurrent object 

communication. 

The term component is generally used for a self-contained, well-defined software mod-

ule. Component can be used in different applications than for which it was originally de-

signed for. Fully specified component defines the operations it provides and the opera-

tions it requires. [60, p. 58] 

2.7.2 COMET Software Life Cycle Model 

The COMET method ties in the following three phases: requirements, analysis, and de-

sign modeling. These phases are shown in Figure 39. COMET’s lifecycle model is use 

case-based and highly iterative. [60, p. 61] 

 

Figure 39. COMET software life cycle model, adapted from [60, p. 62] 
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The COMET software life cycle model shown in Figure 39 consists of multiple phases. 

In the first phase called requirements modeling, the functional requirements of the sys-

tem are described. This is done in terms of actors and use cases. A throwaway prototype 

can be developed to better understand the requirements. In the analysis modeling phase, 

static models of the system are first developed. Structural relationships among problem 

domain classes are defined. After developing the static models, dynamic model is devel-

oped. The dynamic model realizes the use cases from the requirements model. This 

shows which objects interact with which ones in which use cases. Communication dia-

grams or sequence diagrams are used to depict the interactions. Statecharts are used 

to define state-dependent dynamic models. Software architecture of the system is de-

signed in the design modeling phase. Analysis model is mapped to an operational envi-

ronment. In the incremental software construction phase subsets of the system are con-

structed incrementally, until the whole system is built. This phase includes the detailed 

design, coding, and unit testing of the classes in each subset. Next the integration testing 

of each software increment is performed in the incremental software integration phase. 

Interfaces between use case objects are tested in a form of white box testing. This is 

done with each software increment until all are judged satisfactory. If not, it may be nec-

essary to roll back to any of the previous modeling phases. Finally, the system is tested 

against its functional requirements in the system testing phase. Systems testing is black 

box testing, where black boxes are used to perform functional test cases. [60, p. 64] 

2.8 State of the art 

This chapter briefly explains the contents of different articles and papers published 

around the topics discussed in this thesis and technologies surrounding the future of the 

field. The articles and papers are from different fields of science to cover a wide spectrum 

of topics. This is an overview of the topics in the field rather than a deep study. Topics 

discussed are Food Informatics, visual perception enabled industrial intelligence, soft-

ware in industrial automation, and industry 4.0 from two different viewpoints. Articles 

reviewed are shown in Table 4. 
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Table 4. Topics reviewed and their focus technologies and services. 

Articles Focus area Focus  

technologies 

Topics discussed 

[62] Food  

Informatics 

IoT, Artificial intelligence, 
Machine learning, big data,  

Smart agriculture, Precision 
agriculture, Internet of 
Food, Smart health, Food 
computing 

[63] Visual perception IoT, Network technologies, 
Artificial intelligence 

Image and video classifica-
tion, forgery detection, 3-D 
reconstruction, multisource 
information fusion 

[61] Software engineering (in in-
dustrial automation) 

APIs Software design patterns 

[64] Industry 4.0 Cyber physical systems, 
IoT, cloud technologies, 
ICT, machine learning, 
wireless sensor networks  

Industrial integration, Enter-
prise architecture, Infor-
mation handling, I4.0 chal-
lenges, standardization, se-
curity 

[65] Data management in Indus-
try 4.0 

Big data analytics, machine 
learning, deep learning, se-
mantic modeling 

Data management, net-
worked industrial environ-
ments, cloud as part of 
manufacturing systems, 
wireless industrial technolo-
gies, scheduling, data ena-
bling technologies, data 
centric services 

 

A recent state-of-the-art review paper from 2021 written by C. Krupitzer and A. Stein 

discusses Food Informatics as an information model defined by the different perspectives 

and concepts of food production process. Scientific concepts forming Food Informatics 

are listed in this review as precision agriculture, smart agriculture, industry 4.0, industrial 

IoT, Internet of Food, Food Computing, smart health, food supply/logistics, and food 

safety/authentication. These scientific concepts forming Food Informatics are mapped to 

the food supply chain in Figure 40. [62, pp. 2–8] 
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Figure 40. Scientific Food Informatics concepts mapped to the food supply chain, adapted 
from [62, p. 8] 

 

According to this review by C. Krupitzer and A. Stein, “the term “Food Informatics” has 

not yet converged to a consensus, but still all definitions focus on food related data col-

lection and use”. This paper suggest the following definition for Food Informatics: “Food 

Informatics is the collection, preparation, analysis and smart use of data from agriculture, 

the food supply chain, food processing, retail, and smart (consumer) health for 

knowledge extraction to conduct an intelligent analysis and reveal optimizations to be 

applied to food production, food consumption, for food security, and the end of life of 

food products.” [62, pp. 8–9] 

This review by C. Krupitzer and A. Stein also explains and describes how Food Informat-

ics can contribute to use cases about autonomous robotics in precision agriculture, 

AI/ML-supported smart agriculture, IoT and Blockchain-supported food supply, items-

focused data collection in food production, an adaptive, flexible food production, predic-

tive maintenance in food production, and demand-driven food production. According to 

this review, the production and consumption of food highly benefits from these state-of-

the-art I4.0 technologies. The paper proposes to extend Food Informatics from data-

driven perspective to a generic ICT-fueled perspective. It suggests to use the IoT and 

AI/ML technologies to optimize the various aspects and processes around food produc-

tion, consumption and security. [62, p. 14] 
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A state-of-the-art review by J. Yang et al. discusses visual perception enabled industry 

intelligence. The review states that in the I4.0 era visual perception technology is des-

tined to become the leading technology. This survey is performed from a macro perspec-

tive and is an overall introduction of visual perception. J. Yang et al. list typical application 

fields of visual perception to be military, aerospace, food, transportation, ocean, agricul-

ture, infrastructure and medical. The paper reviews and analyzes several major applica-

tion fields. It introduces development prospects but also addresses challenges and con-

cerns around the technology. [63] 

A review paper written by V. Vyatkin states that numerous evidence shows that software 

in industrial automation systems is growingly complex and important. The ratio of soft-

ware development in the costs of machinery has doubled in one decade from 20% to 

40%. The paper by V. Vyatkin discusses and compares software engineering in automa-

tion. Different software design approaches are also compared, these were already are 

presented in the Table 3 in the chapter 2.7. [61] 

A state-of-the-art review by L.D. Xu et al. discusses the advances in industry I4.0 and 

concepts around it. It lists four technical challenges for the advance of I4.0. These are 

incompatible existing ICT infrastructures, insufficient scalability of networks, handling 

and analyzing big data, and technical challenges arising from IoT technology. The paper 

by L.D. Xu et al. states that standardization is one of the key elements to reach the 

potential of I4.0. Standardization at this point is off a good start, according to the paper. 

Standards such as the Reference Architecture Model for Industry 4.0 (RAMI 4.0) and 

The Industrial Internet Reference Architecture (IIRA) are aiming to provide the standard-

ization needed. IoT’s standardization is considered challenging, but highly important. [64] 

State-of-the-art review from 2019 about data management in industry 4.0 written by T. 

P. Raptis et al. states that the I4.0 community thinks that the full I4.0 vision will become 

state-of-the-art in decades rather than years. The review maps I4.0 data enabling tech-

nologies and data centric services to the traditional automation pyramid as shown in 

Figure 41. The article states that all the technologies and data centric services shown in 

the Figure 41 are going to participate and enable the I4.0 revolution. [65] 
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Figure 41. I4.0 data enabling technologies and data centric services mapped to traditional 
automation pyramid, adapted from [65, p. 2] 

 

The review by T. P. Raptis et al. studies data handling as a system consisting of the 

different technologies mentioned. The review focuses on four data properties, which are 

data volume, data variety, data traffic and data criticality. Different use cases are studied 

and categorized based on their data efficiency necessities. Use cases studied in the 

review necessitating high data efficiency are oil / gas, automotive, marine vessels, asset 

tracking and customized assembly. Other use cases studied are crane scheduling, re-

frigerated warehouses, healthcare monitoring and production control. The review states 

that the architectural trends can be classified in two categories. These categories are 

concentrated, or distributed computing focused on localized data, and a mix of central-

ized and distributed computing dealing mostly with ubiquitous data presence. Data man-

agement enablers are also discussed and evaluated quite deeply in the paper. The out-

come of the paper is that networked control systems (NCS) provide deterministic ser-

vices for the assembly line and industrial robots, and IIoT and wireless sensor and actu-

ator networks (WSAN) provide best effort for the entire automation pyramid. The paper 

notes that a convergence should occur between the two scientific fields. [65] 



55 
 

3. ANALYSIS AND DESIGN  

In the theoretical background chapter, we built a base for understanding the problem. In 

this chapter a solution for collecting the reporting data from the PLC is first chosen, and 

then further developed. The approach subchapter focuses on choosing the right solution, 

and the methodology chapter on how the wanted functionalities are achieved. 

The reasoning behind choosing a certain communication protocol for communicating 

with the Edge is justified. Implementing the Edge and requirements relating it are con-

sidered. The communication between the Edge and the PLC is considered and modeled 

on a basic level. 

3.1 Approach 

To design the software, the COMET design method is applied. The method was studied 

and explained in brief in the chapter 2.7.2. The main idea in the method is that it is split 

into requirements, analysis, and design modelling phases. In this chapter, the PLC to 

Edge communication is also concerned. The focus of this chapter is on the PLCs internal 

decision-making algorithm. 

3.1.1 Previous Implementations 

The current methods for collecting the needed data for reports is inefficient. It requires 

significant engineering efforts and is very time consuming. To make the engineering pro-

cess of such reporting systems more efficient, new method needs to be developed. 

The focus on this thesis is on collecting data about the transfer of materials. Key compo-

nents of such transfer reports are: 

- source of the material 

- destination of the material 

- amount transferred 

- start time of the transfer 

- end time of the transfer 

- batch number of the transferred material 

- key temperatures. 
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On current implementations, such reporting has been made with two main methods:  

- Dedicated function blocks, collecting data present in the FB’s inputs. Data is col-

lected on a rising clock edge of a trigger signal. This means that the data must 

be present when the signal is triggered. 

- Triggering the data directly from a sequence running.  

The main problems with these approaches above are the limited scalability, the depend-

ency of a specific time moment, and the fact that the processes are not always run-on 

automatic mode. 

To solve these issues, a more scalable, independent of time, and separately functional 

data collection method is to be developed. 

The biggest problem with reporting transfers in such processes is that the source and 

the destination are not fixed. It is possible that one source tank is transferred into multiple 

destination tanks. It is also possible that multiple source tanks are transferred into one 

destination tank and the batches are mixed. 

3.1.2 Requirements Modeling 

To form a report, we need to be able to collect the data needed, as well as communicate 

it to the systems above in the automation network hierarchy. The data collection must be 

standardized in a way that is efficient and scalable. Highly generalized use cases for the 

system are shown in the Figure 42 and explained in the section below the figure. 
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Figure 42. Use cases for the system. 

 

Store generated Data to the Edge Use Case 

Use case name: Store generated data to the Edge 

Summary: PLC communicates data to the Edge. 

Dependency: Input data available from the input device actuators. 

Actor: PLC 

Main sequence:  

1. PLC collects data from field devices. 

2. PLC generates usable information out of the collected data. 

3. PLC stores the data into a buffer short term prior to sending it to the Edge. 

4. PLC communicates the generated data to the Edge and clears its buffer. 
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Alternative sequences: 

Step 4: Send failed due to any error in communication. Error handling must be designed 

to avoid data loss. 

Postcondition: Data successfully transferred and saved to the Edge 

Security requirement: PLC to Edge communication needs to be secured. 

Performance requirement: Transfer is not time sensitive, as a small buffer will be built 

in the PLC. However, the data needs to be sent in faster phase than the buffer fills. 

 

Generate Report from the Edge Use Case 

Use case name: Generate report 

Summary: Worker requests the Edge for a report and Edge returns it. 

Dependency: PLC has stored data to the Edge. 

Precondition: Worker has selected the report to be generated. 

Actor: Worker 

Main sequence:  

1. Worker inputs information on which report to return 

2. The Edge returns the data that corresponds to the query from the user 

Security requirement: PLC to Edge communication needs to be secured. 

 

The “Generate Report from the Edge” use case needs to be further considered when the 

Edge software is developed. At this point it is not clear if the reports will be formed at the 

Edge or if the Edge returns only the data for the requester. In the latter case, another 

application would be responsible for generating the report. 

Activity diagrams for each of the use cases are designed. These helps better understand 

the sequence of collecting the data and sending it to the Edge. Activity diagram for the 

“Store generated data to the Edge” use case is presented in the Figure 43. One thing to 

consider is the error handling. It is important, especially in food and chemical industries, 

that no data about the process is lost to maintain the traceability. 
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Figure 43. Activity diagram depicting the process of PLC collecting input data and sending it 
to the Edge.  

 

Activity diagram for the use case “Generate Report from the Edge” is simple and hides 

the internal complexity of creating the report. It is presented in the Figure 44. The deci-

sion on which data to return remains as the responsibility of the Edge developer. 
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Figure 44. Activity diagram depicting the report request from the Edge. 

 

3.1.3 Analysis Modeling 

This phase consists of static and dynamic modeling of the system. Static structural view 

of the problem is studied with the static modeling. Static in this context means that the 

model does not concern time, it is not time dependent.  Modeling is done with UML class 

diagram notation. Figure 45 shows the system components as a class diagram. The 

class on the top depicts all higher-level systems that are not considered in this thesis. 

Upwards communication is not considered higher than at the Edge level. 
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Figure 45. System components presented as a class diagram. 

 

The system components can be further divided into super- and subclasses by using UML 

specialization. This is presented in the Figure 46. Note that the attributes and operations 

of these classes are simplified to include just the ones we need to supervise within the 

framework of this thesis.  

 

Figure 46. Sensors and actuators divided into subclasses using specialization relationships. 
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The dynamic modeling is done as a sequence diagram. Sequence diagram for the com-

munication between the PLC’s and the Edge is represented in the Figure 47. First, on 

startup, the communication between the Edge and The PLCs are established. After that 

the Edge queries the PLC for new messages to be read. This reading process is exe-

cuted as long as it is not interrupted. The session ends by the Edge requesting secure 

channel closure and the PLC closing the socket. 

a 

Figure 47. Sequence diagram of communication between the Edge and a PLC. 

 

For communication, OPC UA was chosen to be used. ARC Advisory Group report states 

that “OPC technology has become a de facto global standard for moving data from in-

dustrial controls to visualization and database applications” [66, p. 6]. From the options 

available, shown in Table 2 in chapter 2.3.3, OPC UA can be seen to be supported by 

all the major PLC manufacturers. Siemens states that “Siemens relies on OPC UA as 

the number-one open interface from the control level to higher-level SCADA, MES, and 

ERP systems all the way to the cloud”. OPC UA is platform-neutral and enables commu-

nication with third-party applications. Other benefits of the OPC UA are scalability and 

its security mechanisms. [67] 
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3.2 Methodology 

Transfer recognition algorithm development is started based on the demonstration envi-

ronment shown in Figure 48. The origin of the material pouring into either destination 

tank 3 or 4 needs to be known. After figuring out this simple case, we can further develop 

the solution. 

 

Figure 48. Simple tank layout example. 

 

As learned in the chapter 2.5 about traceability, we need to identify each link in the sys-

tem through which the material goes through. This is the only way to maintain traceability. 

With this information it is possible to tell where exactly the material originates from. Prob-

lem with liquidous material is that it cannot be registered with any tags, and therefore the 

supervision needs to be continuous. 

3.2.1 Problem-solving Companies 

This chapter concentrates on finding the best solution for the problem of supervising the 

PLC’s input data. Different concepts are evaluated and compared. The main requirement 

for the solution is that it must be able to recognize when transfers are starting and ending. 

This will allow for message triggering at the correct points in time. As suggested by the 

chapter 2.5.4 about information modeling in traceability, every point in the systems where 

the material is manipulated in any way needs to be distinguished as a node. By intercon-

necting the nodes, a level of traceability is achieved.  
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Based on the requirements, multiple solutions were conceptualized on paper. Five dif-

ferent approaches were found as follows: 

- Solution 1a: Form global datablocks containing arrays of sources, batch num-

bers, and destinations. This method allows to easily list the content of each tank 

and keep track of the transfers. However, it does not consider if the transfer took 

place. 

- Solution 2a: Form dedicated “transfers” data block for each tank, containing var-

iables as follows:  

o a boolean value for indicating the occupancy of the tank 

o an integer value for the chosen destination  

o a string value for the batch number that the tank contains.  

When transferring, source number is compared to the destination number. This 

method provides information only about the source and destination tanks, and 

nothing in between. It falls short on the same issues as the solution 1a. 

- Solution 3a: Create arrays of batch numbers and manipulate them according to 

Appendix D. Follow the flow of the process to manipulate the arrays by joining, 

splitting, producing, and changing the modality. This is not a complete solution 

by itself and should be combined with some other solution, like the solution 2a. 

- Solution 4a: Create a “transfer” function block, which takes valve feedbacks as 

input to decide if a transfer is being made. Flow meter accumulation counters, 

pumps and other equipment could be linked to these function blocks also. This 

method is exhaustive, as every route from each tank must be specified one-by-

one.  

- Solution 5a: Using the Siemens’s new CEM programming language, create a 

matrix model depicting physical dependency between each actuator. This ap-

proach describes the real environment better than the other possible solutions 

but needs to be further investigated. 
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As stated in the previous section, solution 3a is not a complete solution by itself. To 

complete the solution, solutions 1a and 3a, and 2a, 3a and 4a should be combined. With 

this, we get a total of three new possible solutions: 

- Solution 1b: Global datablocks, containing arrays of sources, batch numbers, and 

destinations, which are manipulated according to the Appendix D.  

- Solution 2b: Special function blocks that handle transfers by supervising actuator 

states. The manipulation of tank contents is made according to Appendix D. 

- Solution 3b: Siemens’s CEM programming language is used to depict the real 

physical dependency between the actuators. Decision making is based on the 

CEM’s outputs. 

To decide the best fit for the problem for the further development, a decision matrix is 

used for comparing the possible solutions. Key criteria are represented on rows, different 

solutions on each column. Each solution is given 0-2 points on each criterion. 0 meaning 

that the criterion is not met at all, 1 for somewhat meeting the criterion, and 2 for meeting 

the criterion well. Every solution was experimented with in the TIA Portal programming 

environment prior to scoring them. The scores are shown on the decision matrix pre-

sented as the Table 5. 

Table 5. Decision matrix to compare the three possible solutions, 1b, 2b, and 3b. 

 Solution 1b Solution 2b Solution 3b 

Ease of implementation 1 0 1 

Universality 1 2 2 

Scalability 1 1 2 

Distribution 1 2 1 

Modifiability 1 1 2 

∑ 5 6 8 
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Based on the decision matrix on Table 5, the best fit to meet the project criteria is the 

solution 3b. It was evaluated the best or at least as good as the other options in ease of 

implementation, universality, scalability, and modifiability. The score for distribution was 

also evaluated great but did not score perfect as the solution is quite centralized in na-

ture, while the instances of it are still distributed. The solution 3b will be further developed 

to find out if it provides the functionality needed and meets both the functional and the 

non-functional requirements of the project. 

3.2.2 Conceptualizing the code 

As represented in Figure 49, the material may originate from either tank 1 or tank 2, and 

if we are not considering the position of each valve, we cannot know for sure where the 

material originates from. To know exactly where the material originates from, we need to 

supervise the position of every valve in the system individually. We cannot assume that 

only some valves are significant to the result, we need to consider them all. As the sys-

tem gets complex, it is not efficient to add every condition separately, as it is really re-

source consuming. The Siemens’s new CEM programming language may offer the so-

lution to depict the system in a simple and effective way. It allows to link the system 

components in an easy-to-understand matter. The matrix-based programming language 

is intuitive and can be used to model the whole system. Once implemented, the code will 

be easily modifiable. The block can be developed as project’s library object, so modifi-

cations to it are centralized, which makes the upkeep easy. 

 

 
Figure 49. Routes from tanks 1 and 2 to tanks 3 and 4 active. 
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To depict the whole system, the CEM should consist of all the actuators involved in the 

transfers. The matrix may be defined factory wide. The setup of the matrix takes some 

time, but once it is implemented, it is easy to maintain and modify. To use the same 

factory-wide matrix for the whole system, every source will use its own instance of the 

CEM library object. Beyond this point, we will refer to this object as Centralized System-

Wide Cause Effect Matrix, which is abbreviated as CSW-CEM. The main purpose of the 

CSW-CEM is to supervise the system unambiguously. Based on that, message trigger-

ing will be possible. 

By modeling the whole system, the CSW-CEM we will be able recognize events where 

any given actuator or tank is receiving material. A new problem occurs as with this ap-

proach we are not able to tell where the material is coming from. To differentiate between 

sources, we need to link the CSW-CEM to the sources. To allow for choosing which 

source the CSW-CEM represents, an input interface for each tank is defined on the 

CSW-CEM block. Through this interface we will sign a “true”-value for the source to be 

supervised. This way we can distribute the same block as an instance to all sources and 

do not need to worry about upkeeping many different function blocks. This means that 

whenever the physical system is modified, only minor changes need to be made from 

the engineering point of view. 

By knowing exactly where the material is coming from, batch numbers can be linked to 

each transfer. Flow counters can be triggered with any of our CSW-CEMs. As well as 

linking the batch number to the transfers, it can also be linked to any other event. We 

can easily start counting transfer times even when the actuators are operated in manual 

mode, as this approach only considers the state of each actuator. 

3.2.3 Edge implementation considerations 

A trend insight report published by Gartner points out five different categories of benefits, 

or imperatives of the edge. By considering these, the benefits of the edge computing for 

a given application can be determined. The five imperatives are [49, p. 7]: 

1. data volume / bandwidth considerations 

2. a need for limited autonomy or disconnected operation 

3. privacy and security concerns 

4. a requirement for local interactivity 

5. the effect that latency may have on an application. 
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The benefits of using edge in this specific implementation were evaluated based on the 

five attributes pointed out by Gartner. The results of the evaluation are shown in Figure 

50. Like in the Gartner’s report, scoring was done on a scale from 0 to 40. Data volume 

/ bandwidth needs were considered mediocre at most. The reporting data communicated 

from the PLC’s is well structured and sent only occasionally. The need for limited auton-

omy or disconnected operation does exist. However, adding additional node to the com-

munication network does not necessarily improve the network quality. If the communica-

tion between the PLC and Edge can be built reliable, and does operate even under power 

failures, it might add a benefit. Privacy and security concerns are always a necessary 

part of an automation system. If the Edge can add to the existing security, it does add a 

benefit. A requirement for local interactivity does not add a benefit, as the reporting data 

generated is not interactive. The effect that latency may have on this application is insig-

nificant. The application does not benefit from being real time. 

 

Figure 50. Benefits of using Edge in this implementation evaluated based on five attributes 
published by Gartner. 

 

As can be seen from the Figure 50, this use case does score low on all five of the attrib-

utes. As stated by the Gartner, the designer may want to reconsider why the edge is 

being considered. When considering the actual implementation of this reporting system, 
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the question if the Edge can add any significant benefits compared to other approaches 

should be critically considered. 

An article by C. Longbottom [68] describes one possible way to implement edge compu-

ting in five steps. These five steps are: 

1. Decide the amount of intelligence in your edge connected devices. 

2. Decide how to group the edge connected devices. 

3. Define the preferable outcomes. 

4. Use a hub-and-spoke approach. 

5. Employ advanced data analytics and reporting. 

A guide by M. Rouse suggests that the first element for implementing Edge computing 

is the creation of a meaningful business and technical Edge strategy. The Edge strategy 

considers the need for Edge computing. It should answer questions about why and what 

problems are wanted to be solved. The Edge strategy can be started with simple discus-

sion of what the Edge means, where it exists for the business, and how it can benefit the 

organization. The Edge strategy should align with existing business plans and technol-

ogy roadmaps. As moving closer to implementation, hardware (HW) and software (SW) 

options need to be evaluated carefully. Edge computing space includes many vendors. 

As an example, the guide mentions Adlink Technology, Cisco, Amazon, Dell EMC and 

HPE. For each product offering, evaluation based on cost, performance, features, in-

teroperability, and support must be made. Edge computing deployments vary in scope 

and scale, and no two are the same. This makes the Edge strategy and planning critical 

for success.  Also, Edge maintenance needs to be considered carefully. This includes 

security, connectivity, management, and physical maintenance. [52, pp. 20–23] 

A guide by M. Rouse lists following key considerations that can affect the adoption of 

Edge computing: 

 Limited capability. The Edge deployments scope and purpose must be clearly 

defined as the resources and services available come in a wide variety. Each 

Edge computing deployment serves a specific purpose. 

 Connectivity. Even with Edge computing some minimum level of connectivity is 

required to accommodate poor or erratic connectivity. It is critical to have a plan 

for the possible situation where connection is lost. 
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 Security. Proper device management is vital when working with IoT, as IoT de-

vices especially are known to be insecure. Security in the computing and storage 

resources must also be considered.  

 Data lifecycles. Most of the data generated by devices is non-critical, and there-

fore not necessary to keep long term. The decision on what data to keep and 

what to discard needs to be addressed. 

3.3 Abstract 

In this chapter the earlier approaches were evaluated. Based on the evaluation, different 

solutions were mapped. The solutions were then compared based on the following crite-

ria:  

- ease of implementation 

- universality 

- scalability 

- distribution 

- modifiability. 

Based on this comparison, a solution based on the Siemens’s Cause Effect Matrix (CEM) 

was chosen to be developed further. Advantages of the CEM based solution over the 

two other problem-solving companies were evaluated to be the ease of implementation, 

scalability, and modifiability. The solution found was named as Centralized System-Wide 

Cause Effect Matrix (CSW-CEM). 

The CSW-CEM based solution was conceptualized and evaluated as feasible. Benefits 

of this solution were justified. By modeling the physical system with the CSW-CEM, state 

of the system can be trivially observed. Based on this observation / supervision, transfers 

are assured to be catch, even when transferring manually. 

UML graphs were drawn to depict the communication between different systems parts. 

This was done superficially to avoid redundant work, as the final system structure was 

not yet decided. Overall picture of the systems framework was outlined. 

Utility of Edge computing was evaluated. Based on the evaluation, the Edge computing 

was stated to bring in quite minimal benefits. Data amounts communicated to the Edge 

are not that big, and do not need great processing power. However, the benefits of the 

Edge need to be reconsidered. There can be other benefits beyond the ones evaluated. 
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4. IMPLEMENTATION 

In this chapter the implementation is discussed. The implementation phase was iterative. 

New functionalities were coded and tested, and after successful implementation new 

functionalities were again implemented. This spiraling was done until all the thesis re-

quired functionalities were satisfied. 

To test the functionalities a simulation environment was built in the TIA Portal environ-

ment. The simulation environment was built based on the system previously reviewed in 

this thesis, shown in the Figure 48. It consists of two source tanks, two destination tanks, 

intersecting lines between them, and valves and pumps controlling the material flow. The 

simulation environment is shown in Figure 51. To verify the functionality of the CSW-

CEM, tank levels were simulated based on the actual CSW-CEM implanted.  

 

Figure 51. Simulation environment built in the TIA Portal environment. 

 

4.1 Code 

The chain of reporting starts from the PLC. The way that the data is collected and for-

matted is a crucial and big part of the latter data processing in the Edge. The require-

ments listed for this thesis were mainly around the collection of data in the PLC. This 

coding subchapter includes information about the data collecting method developed. It 

also considers how the data is to be communicated from the PLCs to the Edge. 
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Note that this implementation is STEP 7 (TIA Portal) specific, but PCS 7 has similar 

programming functionalities and allows for an implementation equivalent to the one pre-

sented here.  

4.1.1 Implementing the CSW-CEM 

The centralized system wide cause effect matrix is defined so that every actuator wanted 

to be supervised is defined on the rows, and the results of each actuator being active on 

the columns. The CSW-CEM template made is represented in the Figure 52. In this tem-

plate, a total of 50 valves and 50 motors are already defined. This makes the CSW-CEM 

fast to implement in a real project environment. In a real project environment, it must be 

considered if the CEM’s should be subdivided, or the allocation of causes should be 

modified. Note that in the Figure 52, causes 1 and 2 contain the “SRC1_selected” and 

“SRC2_selected” as inputs. These are inputs specific for implying that these valves are 

supervised. The allocation for supervision is done through the block interface by defining 

the designated input as true. 
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Figure 52. Code template made for the CSW-CEM. 

 

In the CSW-CEM, the causes are defined as AND-operations, so that they only become 

active if the valve has material in its physical input and the valve is open. A special case 

is if the valve is a tank bottom valve. In this case, it is required that the valve is defined 

as a source by defining the value of the variable as true in the block interface. 

In the matrix intersections, relationships between causes and effects are defined. A N-

type relationship indicates that if a cause is active, the effects that it has relationships 

with are active. Other possible relationships are the set (S), and the reset (R). In the case 

of CSW-CEM, only N-type relationships are needed, as we always want to inspect the 

real time status of the physical actuators. 

Defining relationships between causes and effects is presented in Figure 53. In this ex-

ample case the row 1 indicates that if the valve 1 is open, then the valve 3 will have a 
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route to it open. On the third column, it is defined that if valve 3 is open, and its input-

side is active (material coming to the valve), the valves 5 and 6 also active, indicating 

material is present in the valves input-side. This configuration would depict a physical 

system that corresponds to one shown in Figure 54. 

 

Figure 53. Physical connections defined programmatically in the CSW-CEM. 

 

In the Figure 54, image a) is representing a situation where all valves are closed and 

corresponds to the Figure 53. Images b) and c) correspond to situations shown in Figure 

55. In the Figure 55, in image b), Cause 1 is active, indicating that the valve 1 is a valve 

to be supervised and it is open. This causes the effect 3 to be active, indicating that there 

is material on the input-side of the valve 3. In Figure 55, in image c), Causes 1 and 3 are 

active, which causes the Effects 3, 5 and 6 to be active. This means that the valves 1 

and 3 are open, and the valves 5 and 6 have material in their input-sides. 

 

Figure 54. Physical system corresponding to the configuration shown in the Figure 53. 
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Figure 55. CSW-CEM supervised. In image a) valve 1 is open, and in image b) valves 1 and 
3 are open. 

 

The source tank bottom valves are the key to supervise the transfers. Each source tank 

needs an instance of the CSW-CEM. All tank bottom valves are defined to take an input 

to indicate if this specific valve/source tank is to be supervised. The input takes a boolean 

argument and needs no other effort. A CSW-CEM defined to supervise “SRC1” is shown 

in Figure 56. 

 

Figure 56. Source 1 defined as a source tank through CSW-CEM interface. 

 

Once configured, the CSW-CEM will supervise the routes to the destinations, or what-

ever are defined as its outputs. This allows for easy triggering of report messages based 

on the real time events, independent of any other program parts. The CSW-CEM is only 

needed to be configured once, and once configured it is highly modifiable and easy to 

maintain. 
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4.1.2 Memory usage of a CSW-CEM program 

Siemens does not provide any formulas to calculate the memory usage of the CEM pro-

gramming language. To estimate the memory usage, empty CEMs were coded and com-

piled. The structure of the CEMs analyzed was identical to what is used in the CSW-

CEM implementation. Different Cause to Effect ratios were tested to find out how the 

memory usage grows as the CEM gets larger. Test cases are shown in Table 6 below. 

N is the number of Causes (rows), and M is the number of Effects (columns) in the matrix. 

Memory usage added, in bytes per added node are calculated as shown below: 

𝐵𝑝𝑒𝑟𝐴𝑑𝑑𝑒𝑑𝑁𝑜𝑑𝑒 =
𝐵𝑚𝑒𝑚𝑜𝑟𝑦𝑈𝑠𝑎𝑔𝑒,𝑁𝑥𝑀−𝐵𝑚𝑒𝑚𝑜𝑟𝑦𝑈𝑠𝑎𝑔𝑒,1𝑥1

𝐴−1
,     (1) 

Where BmemoryUsage,NxM denotes the known memory usage of the studied matrix, 

BmemoryUsage,1x1 means the memory usage of a 1x1 sized CEM, and A means the number 

of rows or columns, depending on which are to be considered. The added memory usage 

per added node is shown in the columns four and five of the Table 6. Calculated memory 

usage figures are rounded up to the next even integer. 

 

Table 6. Memory usage in CSW-CEM in different configurations. 

N M Load memory 
Usage [Bytes] 

Work memory  
Usage [Bytes] 

Load memory 
usage change 
[Bytes] 
(per added node) 

Work memory 
usage change  
[Bytes] 
(per added node) 

1 1 8961 1328 - - 

1 2 9707 1495 746 167 

1 3 10337 1620 688 146 

1 4 10991 1745 677 139 

1 5 11621 1882 665 139 

1 10 14826 2507 651 131 

N M 
  

  

1 1 8964 1328 - - 

2 1 9571 1427 607 99 

3 1 10170 1526 603 99 

4 1 10762 1625 600 99 

5 1 11335 1724 593 99 

10 1 14341 2227 598 100 

 

By comparing each row on the Table 6, the added memory requirement can be noted 

not to be linear. The test cases included as many outputs as the maximum of rows or 

columns in the matrix. A simple approximation of added memory per added node can be 

calculated as follows: 
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𝐵𝑚𝑒𝑚𝑜𝑟𝑦𝑈𝑠𝑎𝑔𝑒,𝑝𝑒𝑟𝑁𝑜𝑑𝑒 =
∑ 𝐵𝑎𝑑𝑑𝑒𝑑,𝑒𝑎𝑐ℎ𝐶𝑎𝑠𝑒

∑ 𝑁𝑎𝑑𝑑𝑒𝑑𝑁𝑜𝑑𝑒𝑠,𝑒𝑎𝑐ℎ𝐶𝑎𝑠𝑒
,      (2) 

Where Badded,eachCase denotes the added memory usage of each test case is bytes, and 

NaddedNodes,eachCase means the number of nodes added in each test case.  

With the formula 2, approximations were calculated. Approximation calculated suggests 

an added load memory requirement of 598 bytes per added Cause, and 663 bytes per 

added Effect. Added load memory is approximated to be 100 bytes per added Cause, 

and 136 bytes per added Effect. Only data from the matrix sizes of 1x3 / 3x1 and above 

was used to calculate the approximation. 

To validate this approximation, a validation set was chosen. This validation set is shown 

in Table 7. The approximations are calculated with the equations below, based on the 

approximations made. 

𝐵𝑎𝑝𝑝𝑟𝑜𝑥,𝑙𝑜𝑎𝑑𝑀𝑒𝑚𝑜𝑟𝑦 = 𝐵1𝑥1,𝑙𝑜𝑎𝑑𝑀𝑒𝑚𝑅𝑒𝑞 + 𝑁 ∗ 598 B + 𝑀 ∗ 663 B   (3) 

𝐵𝑎𝑝𝑝𝑟𝑜𝑥,𝑤𝑜𝑟𝑘𝑀𝑒𝑚𝑜𝑟𝑦 = 𝐵1𝑥1,𝑤𝑜𝑟𝑘𝑀𝑒𝑚𝑅𝑒𝑞 + 𝑁 ∗ 100 B + 𝑀 ∗ 136 B,   (4) 

Where B1x1,loadMemReq denotes load memory usage of the basic 1x1 CSW-CEM, N is the 

number of Causes in the matrix, M is the number of Effects in the matrix, and B1x1,work-

MemReq means the work memory usage of the basic 1x1 CSW-CEM. 

Table 7. CEM memory usage approximations validation 

N M Compiled load 
memory usage 
[Bytes] 

Compiled work 
memory usage 
[Bytes] 

Approximated 
load memory 
usage [Bytes] 

Approximated 
work memory 
usage [Bytes] 

1 1 8958 1328 - - 

2 2 10273 1594 10219 1564 

3 3 11450 1818 11480 1800 

4 4 12636 2042 12741 2036 

5 5 13859 2278 14002 2272 

10 10 19922 3442 20307 3452 

 

The Table 7 shows that the approximations made are close to the real compiled memory 

sizes. Relative errors calculated for data shown in Table 7 are shown in the Table 8 

below. Relative errors are shown in percentage and are rounded up to three decimal 

places. The Table 8 suggests that the approximations made are great. The load memory 

approximation has a slight trend upwards, while the work memory approximation is quite 

stable. This approximation is sufficient for the evaluation of memory needs caused by 

the CSW-CEM implementation. 



78 
 

Table 8. Relative errors of approximations in the Table 7. 

N M Loadmem. 
(compiled) 

Loadmem. 
(approx.) 

Relative  
Error (%) 

Workmem. 
(compiled) 

Workmem. 
(approx.) 

Relative  
Error (%) 

2 2 10273 10219 (-) 0,526 1594 1564 (-) 1,883 

3 3 11450 11480 (+) 0,263 1818 1800 (-) 0,991 

4 4 12636 12741 (+) 0,831 2042 2036 (-) 0,294 

5 5 13859 14002 (+) 1,032 2278 2272 (-) 0,264 

10 10 19922 20307 (+) 1,896 3442 3452 (+) 0,291 

 

The total of memory capacity needed includes also the memory used by the defined 

relationships. However, these relationships cause only a minor addition to the memory 

needs. A total of 100 N-type relationships was tested to cause a total of 794 bytes of 

load memory load and 28 bytes of work memory load. A good approximation is that every 

row and column combination adds a maximum of three new relationships. This adds 24 

bytes of load memory consumption and 1 byte of work memory consumption per each 

row and column combination. 

Based on the study above, a good approximation of the needed load memory is: 

𝐿𝑜𝑎𝑑 𝑚𝑒𝑚𝑜𝑟𝑦 𝑛𝑒𝑒𝑑 = 8958 B + 1,5 ∗ 𝑁 ∗ (598 B + 663 B + 24 B)  

= 8958 B + 1,5 ∗ 𝑁 ∗ 1285 B  

≈ 𝑁 ∗ 1928 B + 8958 B,         (5) 

where N is the number of valves in the system. The factor 1,5 in front of the N is for the 

fact that all valves are not simple on-off valves, but some other types of valves like 3- or 

4-way valves. 

The study suggests following formula for calculating the work memory need: 

𝑊𝑜𝑟𝑘 𝑚𝑒𝑚𝑜𝑟𝑦 𝑛𝑒𝑒𝑑 = 1328 B +  1,5 ∗ 𝑁 ∗ (100 B + 136 B + 1 B)  

= 1328 B +  1,5 ∗ 𝑁 ∗ (237 B)  

≈ 𝑁 ∗ 356 B + 1328 B,         (6) 

where N is the number of valves in the system. As in the equation 5, this equation also 

factors in the fact that all the valves in the system are not on-off valves. If a significant 

amount of other equipment is also supervised and included in the CSW-CEM, it should 

be factored in the variable N in both memory usage calculations. 

Comparing the memory usage of a CSW-CEM based solution to the other solutions dis-

cussed, a memory usage of up to five times can be observed. However, the total memory 
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usage is still just a small portion of the whole program and does not affect the overall 

memory needs significantly. Still, this is a factor that needs to be addressed.  

4.1.3 Special cases 

If the CSW-CEM is to be implemented in a large scale, the CEM programming languages 

size limitations may be exceeded. Siemens does not provide any information if such size 

limitations exist in TIA Portal. If such case emerges, the centralized system wide CEM 

needs to be divided into multiple submatrices. Dividing into the submatrices is done by 

designing how the actuators are to be divided among the submatrices, and then inter-

connecting the submatrices according to the physical connections, as normally. Inter-

connecting is preferably done internally in each CEM block by reading the other CEM 

submatrices data block.  

Figure 57 illustrates a situation where the CSW-CEM consists of multiple submatrices. 

Each submatrix is a predefined set of actuators. The valve layout in the Figure 57 corre-

sponds to the interconnections shown below it. In a case where the CSW-CEM consists 

of submatrices, it is advisable to gather all submatrices in a single function block so that 

they formulate a concise input and output interface. 

 

Figure 57. CSW-CEM composed of several submatrices. 

 

It is possible that material is transferred in both directions in a same pipeline. To support 

the supervision of such parts of the system with the CSW-CEM, a method of implemen-

tation was developed. Figure 58 illustrates such system. The figure shows that first the 
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material flows from tank 5 to the right, and then from the tank 6 to the left. The pipeline 

between valves V2 and V3 needs to support the supervision in both directions. 

 

Figure 58. Example of a case where a line is used to transfer material in both directions. 

 

Code developed for the situation described in the previous paragraph is shown in Figure 

59. To correctly model the situation, a variable for both directions is needed. In this ex-

ample, the information is stored in variables named “V2_to_V3” and “V3_to_V2”. As 

shown in Figure 59, valve V2 is configured so that it activates “V0001_in” or “V2_to_V3” 

output according to from which direction the material is coming. Lines like this make the 

CSW-CEM configuration slightly more challenging. However, the implementation has al-

ready been proven to work even outside the framework of this thesis. 
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Figure 59. Configuring a line with flow in both directions in CEM. 

 

Another special case occurs when a pipeline is structured such that a valve has two 

inputs but only one output. Figure 60 illustrates this. The valve V9 represents this special 

case. CEM needs to be coded to consider the two possible sources and the position of 

the valve. 



82 
 

 

Figure 60. Valve with two inputs and one output. 

 

For the case described in the previous paragraph, CEM code developed is presented in 

Figure 61. The Figure 62 shows that a valve with two inputs and one output needs to be 

configured with two output variables to describe where the material is coming from. In 

this case the variables are named as “V0009_rest” and “V0009_ctrl” to represent the 

resting position and the controlled position of the valve. Note that always true bits are 

used in this example to indicate that the valves V7 and V8 are tank bottom valves. In a 

real system block interface inputs are always to be used to make the CSW-CEM univer-

sal for all uses. 
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Figure 61. Configuring two inputs and one output in CEM. 

 

In addition to the special cases presented here, other cases not covered in this thesis 

may arise. All special cases considered are feasible and require little to no extra effort 

from the engineering point of view. 
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4.1.4 Triggering messages based on the CSW-CEM 

With a clear and precise supervision of the state of the actuators, it is possible to make 

decisions based on them. Configured CSW-CEM allows for message triggering. All ac-

tions on the system can be captured independent of the program run. 

To demonstrate the effectiveness of the CSW-CEM as a message triggering tool, a func-

tion block for message triggering was created. This function block captures the start and 

end times to a certain tank. The created function block is shown in Figure 62. This func-

tion block can easily be modified to include more information about the transfer. For 

example, the amounts transferred can be captured by adding flow meter counters in the 

implementation.  

 

 

Figure 62. A function block that captures start and end times of a transfer. 

 

To save the data in an easy-to-handle way, two plc data types were created. The first 

data type is a structure that stores all information about a single tank. By saving all data 
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to a single data type, it can be easily accessed. The other data type defined is for the 

reporting purposes. To store the data, data blocks populated with these data types were 

created. A data block that stores the first data type has information about every tank in 

the facility. The reporting data block is either centralized for all data to be reported, or it 

can be subdivided into specialized categories. 

4.1.5 Data transfer to the Edge 

To transfer the data to the Edge a reporting data block was created. It is responsible for 

storing the data to be transferred in well-known data structures. This data structure is 

extensible to meet the requirements of each implementation. A data structure to demo 

the communication to the Edge is presented in Figure 63. 

 

Figure 63. Reporting data structure for demoing the communication to the Edge. 

 

Outputs of each data collection function block are connected to the “ReportingData” data 

block. This data block is then supervised by the Edge configured as an OPC UA client. 

The communication was demonstrated so that the client reads and writes specific nodes 

by accessing them with their known id’s. The communication can also be configured with 

a publish-subscribe pattern. The method of communication is to be decided when the 

Edge implementation is planned. 

In the demonstration environment the function block generating the reporting data tracks 

the status of the data internally. The “READ_READY” bit shown in the Figure 63 is false 

until all data in the structure is ready to be read. Once “READ_READY” is true and the 

Edge has captured the data, it responds by writing the “CLEAR_DATA” bit as true. This 

clears the data structure. 

It is assumed that the Edge is capable of reading and clearing the tags before they are 

overwritten. If problems arise, a buffer inside the PLC is to be used. The Edge itself is 

specified to be able to store a year worth of reporting data. This must be considered 

when making the requirements specification for the Edge. 

 



86 
 

4.1.6 Other advantages 

Apart from the main purpose of the CSW-CEM, the reporting, it offers opportunities for 

other uses as well. One benefit being the ability to use its outputs for visualization pur-

poses in the SCADA. Operator control and monitoring systems like SIMATIC WinCC 

Runtime represent real systems, where material is transported between tanks with pipes 

connecting them. The CSW-CEM gives a clear output indicating if material is on the input 

side of a any given actuator. This makes it possible to color the pipes according to this 

information. The theory of using the CSW-CEM for that purpose was demonstrated, and 

the results are shown in Figure 64.   

 

Figure 64. CSW-CEM used for Runtime visualization. 

 

After a discussion with the client of this thesis, we noted that the results of this thesis 

may also be used for other purposes as well. With some more development, the CEM 

concept may be used for route control and supervision. The results and advantages 

achieved are not limited to the frames set for this thesis.  

4.2 Concrete 

To verify functioning of the code the transferring of material was simulated in the simu-

lation environment built earlier in this thesis. The CSW-CEM was configured to supervise 

the system. The information generated by the CSW-CEM was used to capture the start 

and end times of a transfer from the tank 1 to the tank 3. The block built for generating 

the time stamps is shown in Figure 65. 
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Figure 65. Time stamper function block demoed. 

 

The outputs of the function block in the Figure 65 show that a transfer has finished, 

indicated by the output “Ready” being true. The source of the transfer was S1, and it 

contained batch number 00001 at the time of the transfer. The start and the end times 

are outputted in two formats: date-and-time and as a string. The output values are stored 

in a data block called “ReportingData”, acting as an interface between the PLC and the 

Edge. 

Siemens’s PLCSIM was used to run the simulation environment. The PLCSIM’s user 

interface is shown in Figure 66. PLCSIM’s virtual ethernet adapter allowed to test the 

client-server communication. 
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Figure 66. PLCSIM configured for demoing the PLC to Edge communication. 

 

Before testing the client-server communication, PLC’s communication settings had to be 

configured. This included giving the PLC an IP address and setting up the OPC UA 

server. For the OPC UA server to work, a license is needed. After configuring, the PLC’s 

software and hardware was compiled and downloaded. 

A simple OPC UA .NET client provided by Siemens was used to test the OPC UA com-

munication. This simulated the Edge, which is not implemented at this stage. The .NET 

client used is shown in Figure 67. The Edge’s software itself will be implemented in the 

future and is not within the scope of this thesis. 



89 
 

 

Figure 67. Connecting to the PLC using simple OPC UA client. 

 

It is important to format all the necessary data in structures that are easy to handle by 

the Edge. Well-structured data can then be reformulated into reports. Figure 68 and Fig-

ure 69 show how the data can be accessed by an OPC UA client. One possible approach 

for implementing the Edge is that it subscribes to all the “READ_READY” bits and reads 

the data whenever they are set as true. This is usually more efficient and more recom-

mended method than polling. 

In Figure 69 the data in the date-and-time format is presented as integers separated by 

semicolons. These decimal numbers need to be converted to hexadecimal numbers to 

get the correct results. At the time of designing the Edge, it is to be decided if the data is 

easier to handle as a DT value or as a String. 
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Figure 68. Reporting data nodes browsed with the OPC UA client. 

 

Figure 69. Inspecting whole data structures with the OPC UA client. 
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Figure 70 shows how the client can read and write single tag values. In the demo the 

client was used to write the “CLEAR_DATA” bit as true. The clearing of the data structure 

is then carried out by the PLC. Figure 71 shows the results of writing the “CLEAR_DATA” 

bit as true. 

 

Figure 70. Calling read and write from the OPC UA client. 
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Figure 71. Reporting data structure cleared by writing the “CLEAR_DATA” bit. 

 

This simple demo was a proof of concept. It verified that the methods used to collect the 

data from the PLC are working. The CSW-CEM implementation was verified as success-

ful. CSW-CEM was proofed to be an accurate description of the real physical behavior 

of the system. 
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5. RESULTS 

A solution to the problem given was found. This solution was named as Centralized Sys-

tem-wide Cause Effect Matrix (CSW-CEM). The solution was chosen by comparing it to 

other solutions conceptualized. Many of the solutions conceptualized were based on 

earlier implementations. The solution chosen to be developed is based on the Siemens’s 

new Cause Effect Matrix (CEM) programming language, which was evaluated to bring in 

value in terms of universality, scalability, and modifiability. The solutions conceptualized 

were evaluated on a scale from 0 to 2. The results are shown as a radar plot in Figure 

72. CSW-CEM based solution’s evaluation is shown in color green, the solutions 1b and 

2b are explained in more detail in the Chapter 3.2.2. As can be seen from the Figure 72, 

the CSW-CEM based solution was evaluated to be the most effective, or as good as the 

other two solutions in almost all criteria. This evaluation was a preliminary estimate, done 

based on different experiments done with all the solutions proposed. 

 

Figure 72. Solutions compared in terms of the key attributes. 

 

CSW-CEM based solution was implemented to test its capabilities. Siemens did not pro-

vide any formula to calculate CEM program’s memory needs, so it was studied. Memory 

usage of such program was approximated to be 𝑁 ∗ 1928 B + 8958 B of load memory, 
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and 𝑁 ∗ 356 B + 1328 B of work memory, where N is the number of valves in the auto-

mation system to be supervised. The resulting memory needs were evaluated as feasi-

ble. These are within the size of any other program blocks 

While providing benefits to the implementation phase, the CSW-CEM based program 

needs more memory resources than the other solution proposed. The program size of a 

CSW-CEM was evaluated to be up to five times greater than the other solutions dis-

cussed. This is a factor to consider but does not affect the overall memory usage of a 

program significantly. 

Speed of implementation was evaluated to be a major benefit of the CSW-CEM. A me-

dium sized automation system consisting of about 400 valves is estimated to be imple-

mented in about two weeks. Earlier implementations have taken weeks as well. The ma-

jor difference is in the modifiability of the code. CSW-CEM offers a centralized way to 

manage the model. Modifications to the physical system and system configuration only 

effect one function block, the CSW-CEM, whilst the previous implementations need sig-

nificant engineering efforts. 

All the topics discussed in paragraphs above are evaluated on a scale from zero to two. 

These are considered the most significant in real project environments. Zero meaning 

not compatible with the criterion, and two meaning that the criterion is met. The factors 

are weighted based on their significance in a project environment. It needs to be con-

cerned that the weights given are empirical. The results of this evaluation are presented 

in Table 9. 

Table 9. CSW-CEM implementation compared to earlier implementations discussed in 
chapter 3.1.1. 

 Weight 
[%] 

Previous implemen-
tations 

Score 
(0-2) 

CSW-CEM based 
implementation 

Score 
(0-2) 

Speed of imple-
mentation 

0,4 Weeks 1 Weeks 1 

Modifiability 0,4 Bad 0 Good 2 

Memory usage 0,2 Small 2 High 0 

 

Based on the weights given, the CSW-CEM scores 1,2 on this scale from 0 to 2. The 

previous implementations discussed score 0,8 on this scale. The factors considered sug-

gest that the CSW-CEM based solution offers the benefits discussed compared to the 

previous implementations.  

Benefits of the Edge were evaluated in the chapter 3.2.3. Rescaled results are shown in 

Table 10. The results of this evaluation suggested that the Edge adds very little benefit 

to this type of implementation. The added benefit needs to be critically considered when 
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planning the Edge implementation. This part of the implementation may be better to be 

implemented with the previous methods. The added benefit may not exceed the added 

complexity. 

Table 10. Benefits of the Edge implementation evaluated on a scale from 0 to 10. 

 Score (0-10) 

Data/Bandwidth 3,75 

Limited Autonomy 3,75 

Privacy/Security 5 

Local Interactivity 1,25 

Latency/Determinism 1,25 

 

The results of this evaluation are shown as a radar plot in Figure 73. As can be seen 

from the Figure 73, the benefits cover only a small portion of the plot. This suggests that 

the implementation needs to be reconsidered. 

 

 

Figure 73. Edge implementation benefits visualized. 

 

This study suggests that the CSW-CEM based solution is the best fit for the challenges 

addressed in this thesis. The study also suggests that the Edge implementation needs 

to be reconsidered, as it adds only minor benefits on the criteria observed. 
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6. CONCLUSIONS 

The main goal of this thesis was achieved. Data gathering on the PLC level was suc-

cessfully implemented and demonstrated. The communication between the PLC and the 

Edge was simulated successfully.  

The results are evaluated based on the non-functional quality attributes listed by H. 

Gomaa in his book “Software Modeling and Design”. The research questions defined for 

this thesis were the following: 

- What approaches are available to collect format specific process data from a 

PLC? 

- What's the performance and scalable features of the selected data collection ap-

proach? 

- How to distribute the data gathering functions in the PLC, and still maintain the 

traceability? 

- How the gathered data must be handled in the Edge, so that it can be used 

on/from the high-level systems? 

These research questions are discussed down below based on the knowledge gained in 

the study. 

 

What approaches are available to collect format specific process data from a PLC? 

A variety of different approaches were discussed in this thesis. The data can be collected 

and formatted in many ways. The system that consumes the data collected defines the 

format that the data should be in. The data collection and formatting itself on a PLC level 

is always done with functions and function blocks. Finding the correct function is ambig-

uous and requires engineering expertise. In this thesis the best fit for the problem was 

found by conceptualizing a series of problem-solving companies and comparing them to 

find the best fit for the problem. However, it can be stated that the formatting is always 

done in the PLC, otherwise the data is considered raw. 
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What's the performance and scalable features of the selected data collection ap-

proach? 

The performance can be discussed on two different levels: the performance considering 

the engineering phase of the approach, and the performance of the data collection ap-

proach itself. With this standardized approach the engineering can be carried out much 

quicker and more effectively. Accurate measures about the added benefit can be estab-

lished when the solution found is used in a real project environment.  

The performance of the collection approach itself was found good. The CSW-CEM de-

veloped performed great under all test cases. If needed, the program size can be af-

fected by dividing the CSW-CEM into smaller submatrices. 

The scalable features of the collection approach implemented are excellent. The ap-

proach using the CSW-CEM outperforms other approaches considered. The CSW-CEM 

can be scaled in a very high degree. Once configured, it can be distributed as instances 

system wide. Maintenance is easy due to the information being stored in one single li-

brary object. 

 

How to distribute the data gathering functions in the PLC, and still maintain the 

traceability? 

All transfers and materials in the system need to be identifiable. This is done with batch 

numbering. A key to maintaining the traceability is that the batch number is always kept 

intact in every phase of the process. A method for doing this needs to be implemented. 

In this thesis the batch number is linked to each transfer by supervising the state of the 

whole system. Actuators in the system are considered as nodes. This was found to be 

the most effective, yet still distributed way of achieving unambiguous traceability.  

 

How the gathered data must be handled in the Edge, so that it can be used on/from 

the high-level systems? 

The Edges functionality is always application dependent. In the context of this thesis, the 

Edge has been found to have two optional methods for handling the gathered data. Either 

the Edge generates reports by joining the gathered data, or simply stores the data to 

communicate it to the MES and/or other higher-level systems. Edges greatest benefit is 

its capability to do computing very close to the origin of the data, and therefore it should 

be used in this way to add value to the chain of computing.  
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In large complex systems, the Edge acts as a central data depot, where all the PLCs in 

the system communicate report related information. The Edge needs to be highly avail-

able and handle system failures in a controlled manner. Uninterruptible power supply 

(UPS) system for the Edge should be considered. 

The data must be stored in an easy to access data structures, so that it can be called 

from systems above. This database needs to be accessible through simple queries. De-

signing and implementing the Edge application is a possible future thesis work. 

6.1 Advantages Achieved 

The requirements set were met. The method developed is scalable, independent of time, 

and separately functional. The function itself is a single block, which can be distributed 

as instances over the system. The developed function block is responsible for the data 

triggering, while other blocks developed around it are responsible for structuring the mes-

sages. This makes the reporting system very easy to maintain. Changes to the system 

affect only this single block. Also, unambiguous traceability was achieved with the devel-

oped solution. 

Engineering process of such systems was stated to become much more efficient due to 

the standardized method of implementation. This leads to faster implementation times, 

and that way generates cost savings. Cost savings along with saved resources are a 

huge benefit in any kind of project environment. Once the Edge is implemented, benefits 

compared to earlier implementations can be reliably measured. Much is dependent about 

the success of its development. 

The final implementation is also evaluated based on the non-functional quality attributes. 

The non-functional quality attributes are listed by H. Gomaa, and are the following [60, 

p. 59]: 

- Maintainability. The capability of to change the software after deployment. 

- Modifiability. The capability to modify the software during and after the initial de-

velopment. 

- Testability. Capability to test the software. 

- Traceability. How products of each phase can be tracked back to products of 

previous phases. 

- Scalability. Capability to grow the system after its initial deployment. 

- Reusability. Capability to be reused. 
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- Performance. How well the systems meet the performance goals it was set. 

- Security. Resistance to security threats. 

- Availability. How well the system will handle a system failure. 

The non-functional quality attributes of the results of this thesis are evaluated in Table 

11 below. 

Table 11. Evaluation of the CSW-CEM’s non-functional quality attributes 

Quality attribute Evaluation 

Maintainability High, due to making the CSW-CEM as a library object. 

Modifiability High, changes are easy to make. Adding / removing actuators 

from the CSW-CEM takes only minor engineering effort. 

Testability Good, PLC programming environments allow for program su-

pervision. Configuration easy to verify. 

Traceability Not applicable. TIA Portal does not support version control. 

Scalability High, CSW-CEM can be extended beyond the block limitations 

by diving into submatrices. 

Reusability Good, every physical system is different, and therefor always 

requires some engineering effort. Once CSW-CEM configured, 

can be used system-wide. 

Performance Good, further inspection on the performance aspect is although 

needed. In the tests the CSW-CEM seems to perform excellent. 

Security Good, OPC UA offers its standard security methods for the con-

nection and communication between PLCs and the Edge. Addi-

tional security may be added. 

Availability Good, although this aspect needs further consideration. If the 

system fails, the CSW-CEM based reporting will recover by it-

self, but some data may be lost. This is not an option, and all 

values should be stored in case of a power loss or system fail-

ure. 
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It needs to be considered that the solution provided in this thesis is applicable specifically 

in Siemens TIA Portal. Siemens PCS7 also provides some similar matrix functionalities 

but they are not covered in this thesis. Other manufacturers PLC programming environ-

ments were not considered. 

6.2 Further Development 

The simulation environment was built to demonstrate material transfer reporting. The 

concept of generating other reporting information was touched upon. This is a work that 

could not fit into the frames of this thesis, and therefore needs to be designed and im-

plemented in the future. Quantities that can be captured with the CSW-CEM developed 

include e.g., temperature, level information, and flow. 

When considering the Edge specifications, the required memory is to be considered. At 

the time of writing this thesis, the customer of this thesis stated that the Edge should be 

able to store at least a year worth of reporting data. Security is also a major aspect to 

consider. A major benefit of the Edge computing is the fact that it enables the use of IoT 

devices. 

Another aspect for further development is the other advantages discussed in the chapter 

4.1.6. The concepts of visualization and route control are already proven working on 

some extent. They need more development but are feasible and may offer real benefits 

when implemented correctly.  

The implementation of the CSW-CEM to a real large-scale project is yet to happen. The 

concept was demonstrated and proved working. The memory requirements were dis-

cussed, and they seemed reasonable in every way. 



101 
 

REFERENCES 

[1] M. Åkerman, “Implementing Shop Floor IT for Industry 4.0,” 2018. 

[2] “Factory Floor Integration in Industry 4.0,” Crosser. 

https://www.crosser.io/blog/posts/factory-floor-integration-in-industry-4-0-comple-

menting-the-isa-95-automation-pyramid/ (accessed Aug. 12, 2022). 

[3] “Beyond the Pyramid: Using ISA95 for Industry 4.0 and Smart Manufacturing,” 

isa.org. https://www.isa.org/intech-home/2021/october-2021/features/beyond-the-

pyramid-using-isa95-for-industry-4-0-an (accessed Aug. 12, 2022). 

[4] “What Edge Computing Means For Infrastructure And Operations Leaders,” Gartner. 

https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-in-

frastructure-and-operations-leaders (accessed Aug. 12, 2022). 

[5] V. Modrak, H. Zsifkovits, and D. T. Matt, Industry 4.0 for Smes: Challenges, Oppor-

tunities and Requirements. Palgrave Macmillan, 2020. 

[6] T. Zheng, M. Ardolino, A. Bacchetti, and M. Perona, “The applications of Industry 

4.0 technologies in manufacturing context: a systematic literature review.” 

http://www.tandfonline.com/doi/epub/10.1080/00207543.2020.1824085?needAc-

cess=true (accessed Mar. 30, 2022). 

[7] S. Erol, A. Schumacher, and W. Sihn, Strategic guidance towards Industry 4.0 – a 

three-stage process model. 2016. 

[8] A. Nayyar and A. Kumar, A Roadmap to Industry 4. 0: Smart Production, Sharp 

Business and Sustainable Development. Cham, SWITZERLAND: Springer Interna-

tional Publishing AG, 2019. Accessed: Apr. 02, 2022. [Online]. Available: 

http://ebookcentral.proquest.com/lib/tampere/detail.action?docID=5986767 

[9] N. Mohamed, J. Al-Jaroodi, and S. Lazarova-Molnar, “Leveraging the Capabilities 

of Industry 4.0 for Improving Energy Efficiency in Smart Factories,” IEEE Access, 

vol. 7, pp. 18008–18020, 2019, doi: 10.1109/ACCESS.2019.2897045. 

[10] F. B. Insights, “Research 2022, Industry 4.0 Market Size Is Projected to Reach 

USD 337.10 Billion in 2028 while exhibiting a CAGR of 16.4%,” GlobeNewswire 

News Room, Mar. 29, 2022. https://www.globenewswire.com/en/news-re-

lease/2022/03/29/2411940/0/en/Research-2022-Industry-4-0-Market-Size-Is-Pro-

jected-to-Reach-USD-337-10-Billion-in-2028-while-exhibiting-a-CAGR-of-16-

4.html (accessed Aug. 13, 2022). 

[11] “SME definition.” https://ec.europa.eu/growth/smes/sme-definition_fi (accessed 

Apr. 02, 2022). 

[12] C. Schröder, “The challenges of industry 4.0 for small and medium-sized enter-

prises,” p. 28. 

[13] K. Zhou, T. Liu, and L. Zhou, “Industry 4.0: Towards future industrial opportuni-

ties and challenges,” in 2015 12th International Conference on Fuzzy Systems and 

Knowledge Discovery (FSKD), Aug. 2015, pp. 2147–2152. doi: 

10.1109/FSKD.2015.7382284. 

[14] M. Mohamed, “Challenges and Benefits of Industry 4.0: an overview,” Int. J. Sup-

ply Oper. Manag., vol. 5, pp. 256–265, Jul. 2018, doi: 10.22034/2018.3.7. 

[15] U. K. Singh and M. Dwivedi, Manufacturing Process. Daryaganj, INDIA: New 

Age International Ltd, 2009. Accessed: Mar. 14, 2022. [Online]. Available: 

http://ebookcentral.proquest.com/lib/tampere/detail.action?docID=442128 

[16] E. W. Kamen, Introduction to industrial controls and manufacturing. San Diego: 

Academic Press, 1999. 



102 
 

[17] S. Mukherjee, SAP MII  Functional and Technical Concepts in Manufacturing In-

dustries, 1st ed. 2017. Berkeley, CA: Apress, 2017. doi: 10.1007/978-1-4842-2814-

2. 

[18] R. Müller and L. Oehm, “Process industries versus discrete processing: how sys-

tem characteristics affect operator tasks,” Cogn. Technol. Work, vol. 21, no. 2, pp. 

337–356, May 2019, doi: http://dx.doi.org/10.1007/s10111-018-0511-1. 

[19] C. L. Smith, Control of Batch Processes. Somerset, UNITED STATES: John 

Wiley & Sons, Incorporated, 2014. Accessed: Mar. 11, 2022. [Online]. Available: 

http://ebookcentral.proquest.com/lib/tampere/detail.action?docID=1687770 

[20] G. Greeff, Practical E-manufacturing and supply chain management, 1st edition. 

Amsterdam ; Newnes, 2004. 

[21] W. Bolton, Programmable Logic Controllers, 4th ed., 4th ed. Jordan Hill, 

UNITED KINGDOM: Elsevier Science & Technology, 2006. Accessed: Mar. 27, 

2022. [Online]. Available: http://ebookcentral.proquest.com/lib/tampere/detail.ac-

tion?docID=269812 

[22] W. Bolton, Programmable Logic Controllers, 6th ed., 6th ed. Amsterdam, [Neth-

erlands: Newnes, 2015. 

[23] “Cycle and response times,” p. 31. 

[24] “SIMATIC S7-1500, ET 200SP, ET 200pro, SIMATIC Drive Controller - Struc-

ture and Use of the CPU Memory.” Siemens, Nov. 2019. 

[25] “Totally Integrated Automation - Information system: CEM programming lan-

guage (S7-1200, S7-1500).” Siemens. 

[26] D. Fa, “TIA Portal V17 - Highlights,” 2021, p. 43. 

[27] “International standard IEC 61131-3, Programming languages.” International 

Electrotechnical Commission. 

[28] C. Kunal, D. Palash, and R. Indranil, “Industrial Applications of Programmable 

Logic Controllers and Scada.” https://web-p-ebscohost-com.lib-

proxy.tuni.fi/ehost/ebookviewer/ebook/ZTAwMHh3d19fMTQxMjQ5NF9fQU41?si

d=34ef38f0-fad6-4834-b75f-24d8ff709f20@redis&vid=2&format=EB&rid=1 (ac-

cessed Mar. 27, 2022). 

[29] “The OPC UA Standard in Industrial Automation,” Apr. 26, 2022. 

https://www.esa-automation.com/en/the-opc-ua-standard-in-industrial-automation/ 

(accessed Sep. 18, 2022). 

[30] H. Korkeamäki, “Simulointi automaatiosovelluksen testauksessa,” p. 62. 

[31] “Unified Architecture,” OPC Foundation. https://opcfoundation.org/about/opc-

technologies/opc-ua/ (accessed Feb. 02, 2022). 

[32] W. Mahnke, “OPC Unified Architecture.” Springer Berlin Heidelberg, Berlin, Hei-

delberg, 2009. doi: 10.1007/978-3-540-68899-0. 

[33] “Introduction to OPC UA,” Unified Automation. https://documentation.unified-au-

tomation.com/uasdkhp/1.2.0/html/_l2_opc_ua_software_layers.html (accessed Feb. 

06, 2022). 

[34] “UA Capabilities,” OPC Foundation. http://wiki.opcfoundation.org/index.php?ti-

tle=UA_Capabilities (accessed Feb. 01, 2022). 

[35] “OPC Unified Architecture Specification,” OPC Foundation. https://opcfounda-

tion.org/products/view/opc-factory-server/ (accessed Feb. 03, 2022). 

[36] “Regulation (EC) No. 178/2002 of the European Parliament and of the Council 

laying down the general principles and requirements of food law, establishing the 

European Food Safety Authority and laying down procedures in matters of food 

safety | InforMEA.” https://www.informea.org/en/legislation/regulation-ec-no-



103 
 

1782002-european-parliament-and-council-laying-down-general-principles (ac-

cessed Feb. 27, 2022). 

[37] “Blockchain-based food supply chain traceability: a case study in the dairy sector.” 

http://www.tandfonline.com/doi/epub/10.1080/00207543.2020.1789238?needAc-

cess=true (accessed Feb. 27, 2022). 

[38] “Jäljitettävyys,” Ruokavirasto. https://www.ruokavirasto.fi/yritykset/elintarvike-

ala/elintarvikealan-yhteiset-vaatimukset/omavalvonta/jaljitettavyys/ (accessed Feb. 

15, 2022). 

[39] “Laki jäljitettävyydestä,” Hyvää suomesta. https://www.hyvaasuomesta.fi/suoma-

lainen-ruoka/jaljitettavyys-elintarvikeketjussa/laki-jaljitettavyydesta (accessed Feb. 

15, 2022). 

[40] E. Golan, B. Krissoff, F. Kuchler, L. Calvin, K. Nelson, and G. Price, “Traceability 

in the U.S. Food Supply: Economic Theory and Industry Studies,” p. 56. 

[41] M. M. Aung and Y. S. Chang, “Traceability in a food supply chain: Safety and 

quality perspectives,” Food Control, vol. 39, pp. 172–184, 2014, doi: 10.1016/j.food-

cont.2013.11.007. 

[42] J. G. Brennan, A. S. Grandison, and J. G. Brennan, Food Processing Handbook. 

Weinheim, GERMANY: John Wiley & Sons, Incorporated, 2011. Accessed: Jan. 18, 

2022. [Online]. Available: http://ebookcentral.proquest.com/lib/tampere/detail.ac-

tion?docID=693851 

[43] M. P. M. Meuwissen, A. G. J. Velthuis, H. Hogeveen, and R. B. M. Huirne, “Trace-

ability and Certification in Meat Supply Chains,” p. 15. 

[44] “Types of Business Reports for a Manufacturing Firm,” Small Business - 

Chron.com. https://smallbusiness.chron.com/types-business-reports-manufacturing-

firm-40499.html (accessed Aug. 14, 2022). 

[45] J. McEntire and A. W. Kennedy, Eds., Food Traceability: From Binders to Block-

chain. Cham: Springer International Publishing, 2019. doi: 10.1007/978-3-030-

10902-8. 

[46] I. Smith and A. Furness, Improving Traceability in Food Processing and Distri-

bution. Cambridge, UNITED KINGDOM: Elsevier Science & Technology, 2006. 

Accessed: Feb. 16, 2022. [Online]. Available: http://ebookcen-

tral.proquest.com/lib/tampere/detail.action?docID=1666692 

[47] S. Kobori and A. Noda, “Case study on traceability application of PLC unit with 

embedded script engine,” in 2005 IEEE Conference on Emerging Technologies and 

Factory Automation, Sep. 2005, vol. 2, p. 4 pp. – 10. doi: 

10.1109/ETFA.2005.1612656. 

[48] M. Thakur and K. A.-M. Donnelly, “Modeling traceability information in soybean 

value chains,” J. Food Eng., vol. 99, no. 1, pp. 98–105, 2010, doi: 

10.1016/j.jfoodeng.2010.02.004. 

[49] B. Gill and D. Smith, “The Edge Completes the Cloud: A Gartner Trend Insight 

Report,” p. 26. 

[50] M. Torngren, H. Thompson, E. Herzog, R. Inam, J. Gross, and G. Dan, “Industrial 

Edge-based Cyber-Physical Systems - Application Needs and Concerns for Realiza-

tion,” Piscataway, 2021, pp. 409–415. doi: 10.1145/3453142.3493507. 

[51] T. Ramahandry, Edge Computing. Montpellier, France: Institut de l’Audiovisuel 

et de Telecommunications en Europe (IDATE), 2020, pp. 118–119. Accessed: Apr. 

27, 2022. [Online]. Available: http://www.proquest.com/docview/2447007579/cita-

tion/D3E0C53E21854235PQ/1 



104 
 

[52] M. Rouse, “What is Edge Computing? Everything You Need to Know.” Tech-

Target, ResearchDataCenter. [Online]. Available: https://www.tech-

target.com/searchdatacenter/pro/What-is-Edge-Computing-Everything-You-Need-

to-Know?vgnextfmt=confirmation 

[53] “Industrial Edge – Edge Computing für Industrie 4.0,” Siemens Deutschland. 

https://new.siemens.com/de/de/produkte/automatisierung/themenfelder/industrial-

edge.html (accessed Aug. 15, 2022). 

[54] X. Jin, C. Katsis, F. Sang, J. Sun, A. Kundu, and R. Kompella, “Edge Security: 

Challenges and Issues.” arXiv, Jun. 14, 2022. Accessed: Sep. 12, 2022. [Online]. 

Available: http://arxiv.org/abs/2206.07164 

[55] Y. Xiao, Y. Jia, C. Liu, X. Cheng, J. Yu, and W. Lv, “Edge Computing Security: 

State of the Art and Challenges,” Proc. IEEE, vol. 107, no. 8, pp. 1608–1631, Aug. 

2019, doi: 10.1109/JPROC.2019.2918437. 

[56] M. Caprolu, R. Di Pietro, F. Lombardi, and S. Raponi, “Edge Computing Perspec-

tives: Architectures, Technologies, and Open Security Issues,” in 2019 IEEE Inter-

national Conference on Edge Computing (EDGE), Jul. 2019, pp. 116–123. doi: 

10.1109/EDGE.2019.00035. 

[57] Husain, Baydaa Hassan and Askar, Shavan, “Survey on Edge Computing Secu-

rity,” Feb. 2021, doi: 10.5281/ZENODO.4496939. 

[58] Secure Edge Computing. Accessed: Sep. 11, 2022. [Online]. Available: 

https://learning.oreilly.com/library/view/secure-edge-computing/9781000427325/ 

[59] A. Tucker, Software development: an open source approach, 1st edition. Boca Ra-

ton, FL: CRC Press, an imprint of Taylor and Francis, 2011. doi: 10.1201/b11730. 

[60] H. Gomaa, Software Modeling and Design: UML, Use Cases, Patterns, and Soft-

ware Architectures. New York: Cambridge University Press, 2011. doi: 

10.1017/CBO9780511779183. 

[61] V. Vyatkin, “Software Engineering in Industrial Automation: State-of-the-Art Re-

view,” IEEE Trans. Ind. Inform., vol. 9, no. 3, pp. 1234–1249, 2013, doi: 

10.1109/TII.2013.2258165. 

[62] C. Krupitzer and A. Stein, “Food Informatics—Review of the Current State-of-

the-Art, Revised Definition, and Classification into the Research Landscape,” Foods, 

vol. 10, no. 11, p. 2889, Nov. 2021, doi: 10.3390/foods10112889. 

[63] J. Yang, C. Wang, B. Jiang, H. Song, and Q. Meng, “Visual Perception Enabled 

Industry Intelligence: State of the Art, Challenges and Prospects,” IEEE Trans. Ind. 

Inform., vol. 17, no. 3, pp. 2204–2219, Mar. 2021, doi: 10.1109/TII.2020.2998818. 

[64] L. D. Xu, E. L. Xu, and L. Li, “Industry 4.0: state of the art and future trends,” Int. 

J. Prod. Res., vol. 56, no. 8, pp. 2941–2962, Apr. 2018, doi: 

10.1080/00207543.2018.1444806. 

[65] T. P. Raptis, A. Passarella, and M. Conti, “Data Management in Industry 4.0: State 

of the Art and Open Challenges,” IEEE Access, vol. 7, pp. 97052–97093, 2019, doi: 

10.1109/ACCESS.2019.2929296. 

[66] C. Resnick and D. Clayton, “OPC Technology Well-positioned for Further,” p. 6. 

[67] “OPC UA | Industrial Communication | Siemens Global.” https://new.sie-

mens.com/global/en/products/automation/industrial-communication/opc-ua.html 

(accessed Sep. 17, 2022). 

[68] “How to implement edge computing in 5 steps,” IoT Agenda. https://www.tech-

target.com/iotagenda/tip/How-to-implement-edge-computing-in-5-steps (accessed 

May 03, 2022). 

 



105 
 

APPENDIX A: NODECLASSES OF OPC UA 

 

Figure 74. NodeClasses defined in OPC UA [32, p. 333]. 
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APPENDIX B: OPC UA ADDRESS SPACE 
MODEL, INFORMATION MODEL, AND DATA 

 
Figure 75. OPC UA Address Space Model, Information Model, and Data,  

adapted from [32, p. 82] 
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APPENDIX C: FOOD SUPPLY CHAIN MODELLING 
CONCEPT BY SMITH AND FURNESS 

 
Figure 76. Concepts introduced by Smith and Furness to create a process model, adapted 

from [46, p. 73] 
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APPENDIX D: FOODPRINT TRACKING AND 
TRACING RELATION TYPES 

 
Figure 77. Tracking and tracing relation types used in FoodPrint method, adapted from [46, 

p. 78] 


