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Abstract—In this paper, we present a methodology for extrinsic
calibration of a camera attached to a long-reach manipulator in
an unknown environment. The methodology comprises coarse
frame alignment and fine matching based on probabilistic point
set registration. The coarse frame alignment is based on the
known initial pose and assists in the fine matching step, which
is based on robust generalized point set registration that utilizes
position and orientation data. Comparison with other methods
utilizing only position data is provided. The first 6 DOF point
set is obtained using a SLAM algorithm running on a camera
attached near the tip of a manipulator, whereas the second point
set is obtained using a kinematic model and joint encoders.
Real-time experiments and a use case are presented. The results
demonstrate that the proposed methodology is suited for the ap-
plication, and that it can be useful in operations requiring precise
visual measurements obtained near the tip of the manipulator.

Index Terms—robot vision systems, simultaneous localization
and mapping, iterative methods

I. INTRODUCTION

Visual sensors, such as different types of cameras and laser
scanners, have seen some significant technological advances
in hardware and software in the past decades. These types
of sensors are able to provide large amounts of information
related to the surroundings, which, due to more affordable and
increasing processing power, have been widely adopted in nu-
merous applications, especially in the manufacturing industry
in controlled factory environments. However, visual sensors
are challenging to utilize in harsh working environments, as
the sensors often lack the robustness and reliability required
in, for example, mobile work machines that do not operate
in strictly controlled environments. Despite this problem, the
current direction in the heavy-duty mobile machine industry
is toward autonomous systems, where an affordable percep-
tion system is essential. This calls for new technologies for

perception systems that perform in a robust manner under
uncertainties arising from inconsistent working environments
and the characteristics of robotic manipulators used in mobile
machinery, such as structural flexibility and actuator backlash.

The extrinsic camera calibration problem arises when in-
formation measured in a camera’s coordinate system needs
to be expressed with respect to another sensor’s coordinate
system. For example, mounting a visual sensor on a robotic
manipulator and using the sensor data for control purposes
requires determining the sensor’s position and orientation
in relation to the manipulator’s coordinate system, typically
defined by its set kinematic model and joint encoders. This
is known as the eye-in-hand calibration problem. Finding
this extrinsic calibration has been examined in, for example,
[1] and [2], where three separate methods were presented.
However, each method relied on a visible reference object
or point, which is problematic to realize outside controlled
environments, such as factories employing stationary industrial
robots. Few studies exist for large-scale manipulators working
in unstructured or unknown environments, where predefined
objects for extrinsic calibration are not practical or available.

Point sets, or point clouds, are a common method of
processing and visualizing 3D vision data. These point sets
can be used for several applications, such as map build-
ing, searching for and tracking known objects, or extrinsic
camera calibration by utilizing point sets obtained from two
sources. In point set registration, the goal is to find the
correspondence between a measured point set and a reference
point set. The correspondence between the two point sets
is described by a transformation comprising rotation and
translation components. Many methods exist for point set
registration; the most well-known is the iterative closest point
(ICP) algorithm [3] and its numerous variants. In [4], an ICP-



based method for extrinsic calibration of an eye-in-hand 2D
LiDAR sensor in unstructured environments was presented. A
small-scale industrial robot was used in the experiments. Other
types of more sophisticated algorithms utilizing 3 degrees of
freedom (DOF) position data have also been proposed, such
as coherent point drift (CPD) [5] that adopts a probabilistic
approach using a Gaussian mixture model (GMM). However,
in robotic applications, pose data (3 DOF position and 3
DOF orientation) are readily available. Until recently, point
set registration methods utilized only 3 DOF position data,
which may not be optimal for robotic applications, as half of
the available data is not utilized in the registration process.
However, a robust generalized point set registration method
was proposed in [6], which builds on the CPD algorithm
by incorporating orientation data via the von Mises-Fisher
mixture model (FMM) [7]. The resulting hybrid mixture model
(HMM) comprises a GMM for position data and an FMM
for orientation data, which is perceived as useful in robotic
applications especially due to the availability of 6 DOF pose
data.

This paper is a continuation of our previous research
[8], [9], in which new visual sensor system solutions were
investigated for long-reach robotic manipulators in unknown
environments, especially underground. In this paper, we focus
on the development of a robust, generalized methodology for
on-site extrinsic camera-to-kinematic model calibration in such
applications. Specifically, 1) an outline for optimal extrinsic
camera calibration for long-reach robotic manipulators in
unknown environments is presented, with 2) comparison to
other similar methods, and 3) real-time experiments with a
visual servo use case is discussed.

A two-step methodology is proposed, in which the first step
is coarse alignment of the camera frame (or coordinate system)
by utilizing a kinematic model of the manipulator and the
known initial pose. The second step is fine matching of pose
data sequences using robust generalized point set registration
[6], a method that benefits not only from position data but also
from orientation data and is robust against noise and outliers
that can be an encumbrance in visual measurements. For com-
parison, the fine matching step is also realized with the CPD
algorithm [5] and a least-squares-based estimation method [10]
that only utilize 3 DOF position data. It is assumed that the
intrinsic parameters of the camera are pre-calibrated. Real-
time experiments are presented using a laboratory-installed
hydraulic crane with 5 m reach. For fine matching, the pose
trajectory data are obtained using a camera located near the
tip of the manipulator, with a simultaneous localization and
mapping (SLAM) algorithm providing the pose estimates. A
kinematic model with joint encoders is used to obtain the
second set of pose trajectory data. After computing the optimal
extrinsic calibration matrix, we apply it to a use case of driving
the manipulator to a specific feature detected with the camera.
This type of operation is very common in mining and is
relatable to bolting, for example, in which supportive rods are
inserted into drill holes. In this paper, only a planar case was
examined, and ArUco markers [11] were used as the specific

features to detect.
The paper is organized as follows: In Section II, we describe

the methodology of 6 DOF pose trajectory registration; in
Section III, we present the experimental setup, which was
used in the real-time experiments; in Section IV, we present
the measurements and results; and finally, in Section V, we
conclude the paper.

II. METHODOLOGY

A. Coarse Frame Alignment

A coarse frame alignment between the camera frame and
the encoder-based tool center point (TCP) frame is required for
initialization. This alignment reduces the number of iterations
in the fine matching step, while also reducing the possibility
of the registration algorithm converging to local minima that
do not produce correct matching results.

The coarse frame alignment is performed based on the
known initial pose of the encoder-based TCP and applying
a rigid transformation to the camera frame to roughly align
the axes with the encoder-based frame axes. This step must
be carefully performed to avoid issues when employing Euler
angles.

B. Robust Generalized Point Set Registration

The fine matching of the 6 DOF point sets is based on
a probabilistic hybrid mixture model (HMM) [6], [12] that
utilizes position and orientation data. Specifically, a GMM is
used to model positional uncertainties, whereas an FMM is
used to model the orientation uncertainties. The optimal (rigid)
transformation between two point sets is solved iteratively
using the expectation-maximization (EM) algorithm [13]. The
notations used in the HMM formulation are as follows:

• M – Number of points in the encoder-based point set,
• N – Number of points in the SLAM-based point set,
• Y = [y1, ...,yM ] ∈ R3×M – encoder-based TCP position

vector set,
• Ŷ = [ŷ1, ..., ŷM ] ∈ R3×M – encoder-based TCP orien-

tation unit vector set,
• X = [x1, ...,xN ] ∈ R3×N – SLAM-based position vector

set,
• X̂ = [x̂1, ..., x̂N ] ∈ R3×N – SLAM-based orientation

unit vector set.

The encoder-based points in Y are considered the GMM
centroids, and the respective unit orientation vectors in Ŷ are
considered the mean directions of the FMM. The SLAM-based
points in X are generated by the GMM, and the respective
orientation unit vectors in X̂ are generated by the FMM. The
goal is to find the optimal rigid transformation (rotation and
translation) between the two pose trajectory data sequences
(X, X̂) and (Y, Ŷ). The probability density function of the
HMM is expressed as follows:

p(xn, x̂n) =

M+1∑
m=1

P (m)p(xn, x̂n|m), (1)



where
p(xn, x̂n|m) =

κ

(2πσ2)
3
2 2π(eκ − e−κ)

eκ(Rŷm)Tx̂n− 1
2σ2
||xn−(Rym+t)||2 .

(2)

The variance parameter of the GMM is denoted by σ2 ∈ R,
the concentration parameter of the FMM is denoted by κ,
(xn, x̂n), (ym, ŷm) denote arbitrary data points in the point
sets, and R ∈ SO(3) and t ∈ R3 denote the rotation and
translation transformations applied to (Y, Ŷ), respectively.
The assumption is made that the position and orientation data
are independent.

To account for noise and outliers in the SLAM-based pose
data, an additional uniform distribution is added to the model:

p(xn, x̂n|M + 1) =
1

N
(3)

with equal membership probabilities P (m) = 1
M assumed for

the GMM components. The complete HMM is now as follows:

p(xn, x̂n) = w
1

N
+ (1− w)

M∑
m=1

1

M
p(xn, x̂n|m), (4)

where w ∈ [0, 1] denotes the weight of the uniform distribu-
tion. To find the optimal set of parameter estimates R, t, κ,
and σ2, the following negative log-likelihood function is to be
minimized:

E(R, t, κ, σ2) = −
N∑
n=1

log

M+1∑
m=1

P (m)p(xn, x̂n|m). (5)

The EM algorithm is used to obtain the parameter estimates in
an iterative manner. New parameters are found by minimizing
the complete negative log-likelihood function:

Q =

−
N∑
n=1

M+1∑
m=1

P old(m|xn, x̂n) log(Pnew(m)pnew(xn, x̂n|m)).

(6)

Then, the encoder-based TCP data (Y, Ŷ) are transformed by
applying R and t. Ignoring constants independent of R, t, κ,
and σ2, (6) is reformulated as follows:

Q(R, t, κ, σ2) =
N∑
n=1

M∑
m=1

pmn

(
1

2σ2
||xn − (Rym + t)||2 − κ((Rŷm)Tx̂n)

)
+

3

2
NP log σ2 +NP log(eκ − e−κ)−NP log κ,

(7)

where pmn = P old(m|xn, x̂n), NP =
∑N
n=1

∑M
m=1 pmn. The

Bayes theorem is used to compute the posterior probabilities
pmn as follows:

P old(m|xn, x̂n) =
P (m)p(xn, x̂n|m)

p(xn, x̂n)
. (8)

According to the EM algorithm, the parameters R, t, κ and
σ2 are updated in an iterative manner until convergence.

The optimal translation t∗ is obtained by minimizing (7)
with respect to t, whereas the optimal rotation matrix R∗ is
obtained by minimizing (7) with respect to R, respectively.
The resulting solutions are as follows:

R∗ = V diag([1, 1, det(VUT)]) UT (9)
t∗ = µx −R∗µy, (10)

where the mean positional vectors for each point set are
defined as follows:

µx =
1

NP
XPT1, µy =

1

NP
YP1, (11)

P ∈ RM×N has elements pmn in (8), and 1 is a vector of ones.
The singular value decomposition (SVD) of H = USVT is
used to obtain V and U, where H = H1 + H2, H ∈ R3×3

and
H1 = Y′PX′, H2 = ŶPX̂T. (12)

The matrices Y′ and X′ contain de-meaned positional data
y′m = ym − µy and x′n = xn − µx.

The variance parameter of the GMM is updated by mini-
mizing (7) with respect to σ2:

σ2 =

∑N
n=1

∑M
m=1 pmn(||xn − (Rym + t)||2)

3NP
. (13)

The concentration parameter (κ) of the FMM is updated using
two parts [7]. The first part r1 results from orientation error
and is computed as follows:

r1 =
1

Np

N∑
n=1

M∑
m=1

pmn(Rŷm)Tx̂n. (14)

The second part r2 is caused by positional error and is
computed as follows:

r2 =

∑N
n=1

∑M
m=1 pmnx

′
n

T
Ry′m∑N

n=1

∑M
m=1 pmn||Ry′m|| ||x′n||

. (15)

Then, κ is updated with κ = r(3 − r2)/(1 − r2), where r =
vr1 + (1− v)r2, in which v = 0.5.

After successful convergence, the optimal calibration matrix
for fine matching is written as follows:

Tfm =

[
R∗ t∗

0 0 0 1

]
. (16)

During iteration, the algorithm was stopped if one of the
following conditions was met: σ2 < 10−6, |σ2

i+1−σ2
i | < 10−6,

or 100 iterations were reached. The maximum concentration
parameter was also set as κmax = 100 to avoid computational
issues.

The initial iteration parameters were set as follows: R =
I ∈ R3×3, t = 0, σ2

0 =
∑N
n+1

∑M
m+1||xn − ym||2/(3MN),

and κ = 1.
Finally, the extrinsic camera-to-kinematic model calibration

matrix is formulated as follows:

T = T−1fmTcfaTslam, (17)
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Fig. 1. The experimental setup showing the manipulator, the ZED attached
to the claw, a test wall, and 12 ArUco markers placed in the workspace. The
base frame of the manipulator is also (roughly) shown.

where Tcfa ∈ R4×4 denotes the coarse frame alignment
homogeneous transformation matrix, and Tslam ∈ R4×4

denotes a single SLAM pose expressed with a homogeneous
transformation matrix.

C. Orientation Magnitude Correction

As the FMM employs orientation unit vectors, the computed
transformation matrix (16) cannot directly produce trans-
formed orientations with true magnitudes. This is resolved by
using the encoder measured magnitudes as references. The
mathematical expression is as follows:

θslamcorr =

{
θslam − |θslamf − θencf |, if θslamf > θencf

θslam + |θslamf − θencf |, else
,

(18)
where θ represents a current Euler angle, and θf denotes the
final value of the respective variable in a calibration data
sequence.

III. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1. The main
components and systems as follows:

• HIAB033 hydraulic crane with an additional 3 DOF
wrist, and each joint was equipped with an incremental
encoder,

• ZED stereo camera running a SLAM algorithm,
• A dSPACE real-time control platform,
• A test wall comprising decorative stones to simulate a

mine and provide visual features,
• Markers attached to the wall acting as specific features.

A dSPACE DS1005 PPC controller board served as the real-
time control system, and a 2 ms sampling period was used in
the experiments.

TABLE I
DH PARAMETERS OF HIAB033 WITH A 3 DOF WRIST

Joint αi ai θi di
Rotation π/2 a1 θ1 d1

Lift 0 a2 θ2 0
Tilt π/2 a3 θ3 + π/2 d3

Wrist 1 π/2 0 θ4 d4
Wrist 2 −π/2 0 θ5 0
Wrist 3 0 0 θ6 d6

A. HIAB033 Hydraulic Crane With 3 DOF Wrist

A forward kinematic representation of the manipulator is
formulated using the Denavit-Hartenberg (DH) parameters,
which are presented in Table I in symbolic form. The rigid
transform from the base frame to the TCP frame, Tenc, is
formulated as follows:

Tenc = Tj1Tj2Tj3Tj4Tj5Tj6, (19)

where joint specific transforms Tji, i ∈ {1, ..., 6} are com-
puted with

Ti =


cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1

 (20)

while applying the respective DH parameters for each joint.
Additionally, s = sin and c = cos.

B. Visual Measurements

A Stereolabs ZED stereo camera was used in the experi-
ments. It was installed near the tip of the manipulator, and the
ROS node provided by the manufacturer was used to publish
720p images.

For SLAM, the open-source version of ORB-SLAM2 Stereo
[14] was utilized. The algorithm ran in real time and the pose
data were transmitted to the dSPACE controller board via UDP.
A 2.5×4 m textured wall served as the main feature extraction
area for the SLAM algorithm, because the main focus of this
research is underground applications.

For detecting specific markers on the wall, the OpenCV
ArUco detection library was used. Twelve ArUco markers
were placed around the workspace of the manipulator, as in
Fig. 1.

C. Robot Control

Quintic polynomial path planning [15] was used to generate
trajectories, and a P-controller with a first-order time delay
(PT1 control) was used on the actuator level. The controller’s
transfer function is described as follows:

G(s) =
KP

τs+ 1
. (21)

The time delay term (τ ) enables larger proportional gain (KP )
values, which reduces static positioning errors when driving
to a specific point.

Furthermore, the manipulator was constrained so that only
the first three joints (rotation, lift, and tilt) were used for
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Fig. 2. A simplified diagram of the experimental setup: The camera algorithms
were processed on a dedicated Linux PC running ROS and the desired camera
measurements were sent to the dSPACE real-time control PC via UDP. The
camera-to-kinematic model calibration was processed outside the 2 ms control
loop. The resulting extrinsic calibration matrix, computed using the two point
sets, was then updated in the main control system.

motion, whereas the wrist joints moved only to keep the
orientation of the wrist constant.

A simplified diagram of the experimental setup is shown in
Fig. 2, in which the orange blocks are related to the overall
system, whereas the yellow blocks are related to the use case
regarding the ArUco markers.

IV. MEASUREMENTS AND RESULTS

First, a calibration measurement was conducted, in which
the manipulator was arbitrarily moved around the workspace to
obtain pose data sequences using SLAM and encoder measure-
ments. The recorded data were used to compute the optimal
calibration matrix by first applying coarse alignment transform
to the SLAM-based pose data by using (17). Then, the coarse
frame aligned pose data were used for fine matching, i.e.,
point set registration with the encoder-based pose data by
using the robust generalized point set registration algorithm
(4)–(16). The three point sets (encoder-based, SLAM-based
with coarse frame alignment, and SLAM-based after fine
matching) are shown in Fig. 3. The black points represent
the encoder-based TCP position data, whereas the red point
sets represent the SLAM-based position data before and after
fine matching. The individual pose variables are presented in
Fig. 4, where the black lines denote the encoder-based pose
variables, and the red lines represent the calibrated SLAM-
based pose variables. As illustrated, the algorithm was able to
accurately match the pose trajectories resulting from arbitrary
motions. Two additional separate calibrations were performed,
using the same coarse frame alignment transform, for which
the results are shown in Fig. 5 and Fig. 6. The number of
iterations required for the fine matching varied between 20
and 25.

After each calibration, the manipulator was driven to 12 dif-
ferent ArUco markers that were placed around the workspace.
Monocular detection was employed by using the left lens of
ZED, and the middle of the image was treated as the TCP
that was to be driven to a marker center. An example image
of the left camera view is shown in Fig. 7. The metric distance

between the camera center and a marker center was computed
based on the known marker size from the image. Then, the
point distance was calibrated with the camera-to-kinematic
model calibration. Only the rotation part of (16) was required
to transform the camera reference to the kinematic frame,
meaning this use case does not suffer from the larger position
errors in the calibration. The Euclidean distance errors for
each marker, for each of the three calibrations, are documented
in Table II. The errors were measured from the images. The
average positioning error in each measurement was less than
1.0 cm, which is acceptable for this type of application. Only
planar results are presented, as the ZED camera was not able
to provide reliable depth measurements.

To compare the HMM-based 6 DOF point set registration
method with methods utilizing only 3 DOF position data, of-
fline data analysis was conducted for the three measurements.
Namely, the very similar CPD algorithm [5] employing a
GMM and a simple pairwise least-squares-based estimation
algorithm [10] were chosen for comparison purposes. The
coarse frame alignment and the orientation magnitude cor-
rection steps were performed identically in each case, with
only the fine matching step changing. Furthermore, to test
the robustness of the three algorithms, Gaussian noise was
injected to the X-axis position with varying signal-to-noise
ratios (SNR). The SNRs tested were 10, 20, and 30 dB. The
effect of added noise to the signal is illustrated in Fig. 8.
The root mean square errors (RMSE) for 3 DOF position
and 3 DOF orientation in each measured case are presented
in Tables III-V. As shown, despite the arbitrary motions
in each measurement, the resulting errors are very similar.
The position errors are on the centimeter range, whereas the
orientation errors are less than 2◦. The errors follow from
kinematic inaccuracies, for example, due to flexibility, which
makes perfect pose trajectory matching practically impossible.
The bending of the manipulator is witnessed especially in
the X-axis orientations estimated with the SLAM algorithm.
Visual measurements are also susceptible to outliers and errors,
however, they performed well in the experiments.

As seen from Tables III-V, minimal differences can be
found between the fine matching algorithms. When Gaussian
noise is added to the X-axis position signal, however, the
utilization of orientation data in the HMM appears to slightly
improve the matching result compared to the CPD, which only
incorporates position data via a GMM. We also experimented
by adding similar noise to the other signals, including orienta-
tions, which showed uniform results with the presented case.
However, to obtain the best result, the weight of the uniform
distribution in (4) should be tuned. Same values were used for
both the HMM-based method and the CPD. In the cases where
noise was added, the least-squares-based algorithm provided
the least accurate results. It is worth noting the least-squares-
based method required pairwise point sets, whereas the HMM-
based method and the CPD are able to process point sets that
do not match in length.



Fig. 3. For computing the calibration matrix, the manipulator was moved
arbitrarily around the workspace, while the pose trajectories were recorded
for point set registration. The black points represent the encoder-based point
set. The right side red points represent the coarse frame aligned SLAM-based
point set, whereas the left side red points represent the same SLAM-based
point set after fine matching using the HMM.

Fig. 4. The first calibration data sequence pose variables: The black lines
denote the encoder-based pose variables, whereas the red lines denote the
calibrated SLAM-based pose variables.

V. DISCUSSION AND CONCLUSION

In this paper, a methodology for camera-to-kinematic model
calibration was proposed, with camera-aided operations for
long-reach manipulators in unknown environments as moti-
vation. The goal of this method is to be able to perform
fast extrinsic camera calibration easily on the worksite, with
arbitrary manipulator motions and in unknown environments.
The methodology comprised coarse frame alignment based on
the known initial pose of the manipulator and fine matching
based on the robust generalized point set registration that
benefits not only from position data but also from orientation
data, which is perceived as optimal for robotic applications

Fig. 5. The second calibration data sequence pose variables: The black lines
denote the encoder-based pose variables, whereas the red lines denote the
calibrated SLAM-based pose variables.

Fig. 6. The third calibration data sequence pose variables: The black lines
denote the encoder-based pose variables, whereas the red lines denote the
calibrated SLAM-based pose variables.

that have complete pose data. Comparison with two other
methods utilizing only position data was conducted in offline
data analysis, with the results suggesting that utilizing both the
orientation and position data is most efficient. As the FMM
resolves orientation using unit vectors, a simple solution for
correcting the transformed orientation magnitudes using the
joint sensors present in the system was shown.

Real time experiments were conducted using a hydraulic



Fig. 7. The left image shows the initial pose of the camera, whereas the right
image shows a control result of driving the TCP (image center) to a specific
marker.

Fig. 8. Gaussian noise added to the X-axis position signal. The black line
denotes the raw signal, the green line denotes SNR 10 dB, the red line denotes
SNR 20 dB, and the blue line denotes SNR 30 dB.

TABLE II
EUCLIDEAN DISTANCE ERRORS BETWEEN THE IMAGE CENTER AND

MARKER CENTERS

Meas. 1 [m] Meas. 2 Meas. 3
ArUco#1 0.0085 0.0073 0.0082
ArUco#2 0.0075 0.0066 0.0095
ArUco#3 0.0047 0.0077 0.0031
ArUco#4 0.0052 0.0079 0.0072
ArUco#5 0.0063 0.0097 0.0095
ArUco#6 0.0077 0.0100 0.0083
ArUco#7 0.0103 0.0127 0.0096
ArUco#8 0.0108 0.0100 0.0110
ArUco#9 0.0104 0.0088 0.0104

ArUco#10 0.0105 0.0114 0.0102
ArUco#11 0.0114 0.0104 0.0112
ArUco#12 0.0065 0.0092 0.0083

Avg. 0.0083 0.0093 0.0089

TABLE III
ROOT MEAN SQUARE ERRORS FOR 3 DOF POSITION AND 3 DOF

ORIENTATION IN THE FIRST MEASUREMENT

Fig. 4 data HMM CPD Least-Squares
Raw signals [m] 0.0331 0.0331 0.0332

Raw signals [deg] 1.1864 1.1864 1.1849
SNR 10 dB [m] 0.0337 0.0339 0.0340

SNR 10 dB [deg] 1.1894 1.1998 1.1867
SNR 20 dB [m] 0.0272 0.0273 0.0274

SNR 20 dB [deg] 1.1876 1.1882 1.1844
SNR 30 dB [m] 0.0259 0.0259 0.0260

SNR 30 dB [deg] 1.1858 1.1863 1.1848

manipulator with three moving joints. The results showed
that the proposed methodology was able to match the pose

TABLE IV
ROOT MEAN SQUARE ERRORS FOR 3 DOF POSITION AND 3 DOF

ORIENTATION IN THE SECOND MEASUREMENT

Fig. 5 data HMM CPD Least-Squares
Raw signals [m] 0.0375 0.0375 0.0393

Raw signals [deg] 1.5895 1.5895 1.5926
SNR 10 dB [m] 0.0335 0.0351 0.0335

SNR 10 dB [deg] 1.5896 1.5896 1.5931
SNR 20 dB [m] 0.0286 0.0287 0.0289

SNR 20 dB [deg] 1.5925 1.5925 1.5932
SNR 30 dB [m] 0.0292 0.0292 0.0302

SNR 30 dB [deg] 1.5897 1.5897 1.5924

TABLE V
ROOT MEAN SQUARE ERRORS FOR 3 DOF POSITION AND 3 DOF

ORIENTATION IN THE THIRD MEASUREMENT

Fig. 6 data HMM CPD Least-Squares
Raw signals [m] 0.0287 0.0287 0.0296

Raw signals [deg] 0.9665 0.9665 0.9679
SNR 10 dB [m] 0.0239 0.0240 0.0248

SNR 10 dB [deg] 0.9663 0.9665 0.9678
SNR 20 dB [m] 0.0258 0.0259 0.0267

SNR 20 dB [deg] 0.9677 0.9680 0.9680
SNR 30 dB [m] 0.0239 0.0240 0.0248

SNR 30 dB [deg] 0.9663 0.9665 0.9678

variables sufficiently in each measured case. Inaccuracies in
the matching result were caused by, for example, the rigidity
assumption in the kinematic formulation. Furthermore, in the
use case, the results were promising for visually assisted
operations in applications involving long-reach manipulators
with uncertainties, as an acceptable average positioning error
was achieved. Some challenges include reliance on the perfor-
mance of the SLAM algorithm in the sense that the variables
may drift during the calibration sequence, for example. An-
other challenge is that if the camera and the kinematic TCP
are on different rotation axes, the two point sets cannot be
matched with good accuracy due to the camera’s offset.
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