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Abstract—Versatile Video Coding (VVC/H.266) is the latest 

video coding standard designed for a broad range of next-

generation media applications. This paper explores the design 

space of practical VVC encoding by profiling the Fraunhofer 

Versatile Video Encoder (VVenC). All experiments were 

conducted over five 2160p video sequences and their downsampled 

versions under the random access (RA) condition. The exploration 

was performed by analyzing the rate-distortion-complexity (RDC) 

of the VVC block structure and coding tools. First, VVenC was 

profiled to provide a breakdown of coding block distribution and 

coding tool utilization in it. Then, the usefulness of each VVC 

coding tool was analyzed for its individual impact on overall RDC 

performance. Finally, our findings were elevated to practical 

implementation guidelines: the highest coding gains come with the 

multi type tree (MTT) structure, adaptive loop filter (ALF), cross 

component linear model (CCLM), and bi-directional optical 

flow (BDOF) coding tools, whereas multi transform 

selection (MTS) and affine motion estimation are the primary 

candidates for complexity reduction. To the best of our knowledge, 

this is the first work to provide a comprehensive RDC analysis for 

practical VVC encoding. It can serve as a basis for practical VVC 

encoder implementation or optimization on various computing 

platforms. 

 

Index Terms—Coding tree unit (CTU) structure, design space 

exploration (DSE), rate-distortion-complexity (RDC), video 

coding, Versatile Video Coding (VVC). 

 

I. INTRODUCTION 

IDEO is ubiquitous in our everyday life and paves the way 

for digitalized social interaction. The powerful devices for 

rich media creation and consumption with always online 

philosophy have created a fertile ground for a plethora of media 

applications that fuel the exponential growth of video traffic. 

Cisco has estimated that 82% of all IP traffic is video in 

2022 [1].  

To deal with the ever-increasing video volume, Joint Video 

Experts Team (JVET), formed by MPEG and ITU-T, has 

published a series of video coding standards. Versatile Video 

Coding (VVC) [2] is the latest one of these standards. It was 

introduced as successor to the widespread High Efficiency 

Video Coding (HEVC) [3]. VVC is able to improve coding 

efficiency for the same objective visual quality by more than 

30% over HEVC [4] and the gap widens to 40% with subjective 

quality  [5]. However, this quality increase comes at a cost of 

over eight times encoding complexity under the random 

access (RA) condition [4] of the common test 

conditions (CTC) [6].  

The complexity and quality improvement of VVC primarily 

stems from its new quadtree + multi-type tree (QT+MTT) 

block partitioning scheme [7], [8]. In addition, there are many 

new coding tools in each coding stage. These stages are 

depicted in Fig. 1 and they include intra prediction (IP), motion 

estimation and compensation (ME/MC) a.k.a. inter prediction, 

forward/inverse transform and quantization (TR/Q), entropy 

coding (EC), and loop filtering (LF).  

In VVC, the frames are split into coding tree units (CTUs) of 

maximum size of 128×128 luma samples. CTUs are further 

partitioned into coding units (CUs) with the QT+MTT. QT 

divides a CU into four identical square CUs, whereas the MTT 

can either use binary tree (BT) or ternary tree (TT) splits, which 

can result in both rectangular and square CUs. Fig. 2(a) depicts 

all these partitioning and Fig. 2(b) exemplifies a CTU split with 

different types of QT+MTT partitions. Overall, the QT+MTT 

can divide the CTU in thousands of different possible ways that 

need to be checked with all the tools for optimal encoding, 

which causes the massive increase in complexity.  

The current technology advancements also lead the transition 

from stationary multimedia workstations to more resource-

constrained smartphones and other handheld consumer 

devices [9]. For them, efficient codec implementations are of 

utmost importance in order to tackle computational complexity 

of VVC with acceptable coding efficiency and power budget. 

Currently, there are two noteworthy open-source VVC 

encoders: the VVC test model (VTM) [10] and the Fraunhofer 

Versatile Video Encoder (VVenC) [11], [12]. VTM is the 

reference encoder, maintained by JVET. It implements all VVC 

coding tools, but it is poorly optimized and far from practical 

use. VVenC is optimized from VTM and designed for practical 

VVC encoding, but it is still unable to reach real-time speed. 

Table I compares the most prominent VVC complexity 

analyses [4], [8], [13]–[21] with our work. The comparison 

includes the profiled encoder(s), the conditions, as well as the 

characterization of complexity, rate distortion (RD), and 

QT+MTT analyses. In addition, it reports the main novelty 

aspects of each analysis.  

Garcia-Lucas et al. [13] and Laude et al. [14] only performed 

overall rate distortion complexity (RDC) analysis, i.e., they 

addressed RDC characteristics at encoder level only. Similarly, 

the comparison made by JVET [15] only included overall RDC 

analysis. Additionally, all coding tools were individually 
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evaluated on separate JVET documents during the VVC 

standardization process. However, these evaluations were 

performed with the VTM versions available at that time, 

making the results severely outdated particularly at least for the 

earliest introduced tools. Furthermore, the evaluation results 

were not collected into a single document.  

The other listed works included more in-depth analyses 

[4], [8], [16]–[19]. The main contribution of Cerveira et al. [16] 

was memory profiling results with the shares of memory 

accesses per each encoding stage. Pakdaman et al. [17] 

quantified the average shares of different encoding and 

decoding tool categories of VTM and HM. Siqueira et al. [18] 

evaluated the complexity of VTM with and without the single 

instruction multiple data (SIMD) optimizations. A more 

thorough complexity analysis was also performed to provide 

the relative execution times for each encoding stage of VTM in 

comparison with HM.  

Our previous study [4] addressed the RDC characteristics of 

VTM10.0 by using HM16.22 as an anchor. It was the first study 

that carried out the RD comparison between VTM and HM with 

three objective quality metrics: PSNR, SSIM [22], and 

VMAF [23]. The complexity shares of encoder and decoder 

stages were profiled at function level. 

Brandenburg et al. [8] evaluated several VTM encoding tools 

independently in terms of coding efficiency and complexity. 

This work also introduced the encoder that would become 

VVenC [11]. Bossen et al. [19] provided a complexity analysis 

of VTM for individual encoding tools and encoding stages but 

only at very high level. This study also reported the encoding 

time distribution of the VVenC encoder.  

Finally, Saldanha et al. [20] analyzed the encoding 

partitioning, but only in the all intra (AI) condition. Tissier et 

al. [21] also only addressed the AI condition when evaluating 

complexity reduction opportunities of the CTU partitioning, 

intra mode prediction, and multiple transforms (MTS) process.  

 
Fig. 1. Simplified block diagram of a VVC encoder. 

 
Fig. 2. CTU partitioning in VVC. (a) VVC split types. (b) Example. 

TABLE I 

CHARACTERIZATION OF THE EXISTING AND CURRENT VVC COMPLEXITY ANALYSES 

Work Encoder Condition 

Complexity analysis RD analysis 

QT+MTT analysis Main novelty 
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[13] VTM2.0 RA ×    ×   PSNR   RD comparison of HEVC, VVC and AV1. 

[14] VTM4.0 AI/RA ×    ×   PSNR   RD comparison of seven different encoders. 

[15] 
VTM2.0-

13.2* AI/LD/RA ×  ×  × ×  PSNR   Evaluation of the VVC standard. 

[16] VTM8.0 LD/RA ×   memory       Memory profiling of VTM. 

[17] VTM6.0 AI/LD 

RA 
× ×         Complexity breakdown of encoding categories. 

[18] VTM5.0 RA ×   SIMD ×   PSNR   Evaluation of SIMD in VTM. 

[4] VTM10.0* AI/LD/RA × ×   ×   
PSNR/ 

SSIM/ 

VMAF 

  
RDC using CTC + 8 UHD sequences and cycle 

accurate complexity analysis. 

[8] VTM7.0 RA ×  ×  × ×  PSNR RD and complexity. RDC analysis of tools and QT/BT/TT depth. 

[19] 
VTM10.0/ 

VVenC 0.3.1* AI/LD/RA ×   SIMD ×   PSNR   Evaluation of VVC decoding and VVenC. 

[20] VTM7.0 AI ×  ×      
Average usage of 

CU sizes. Analysis of CTU partitioning for the AI condition. 

[21] VTM3.0 AI ×  ×        Evaluation of complexity reduction opportunities for 

AI coding. 

Proposed VVenC 0.3.1* RA   × Res.** × × Res.** 
PSNR/ 

SSIM/ 

VMAF 

Average usage of 

CU sizes. Usage of 

tools for CU sizes. 

RDC analysis of tools and overall analysis of tool 

usage and CTU structure as a function of 

resolution and coding characteristics of sequence. 
* Using standardized version of the encoder. **Resolution. 
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Some other works reported complexity analyses for 

consumer electronics [24], [25], but only for HEVC. Pescador 

et al. [24] analyzed the complexity of a digital signal 

processor (DSP)-based implementation of the HEVC HM9.0 

decoder. Engelhardt et al. [25] described a complete FPGA 

implementation of a HEVC decoder that can also be used as a 

starting point for an ASIC implementation. 

This work takes a step forward from the prior art and 

performs a comprehensive design space exploration (DSE) that 

investigates two yet unexplored aspects: 1) the usage of 

individual VVC tools and their effect on CTU structure; and 

2) the effect of resolution on the RD performance at level of 

coding tools. Only Saldanha et al. [20] has considered the CTU 

structure, but merely in the AI condition. Since the QT+MTT 

has the highest effect on the RDC, it is important to understand 

how the encoded content affects the CTU structure and used 

tools to reduce the complexity of the encoder. Our DSE 

investigates the composition of the CTU structure in the more 

commonly used RA condition and the usage of tools with each 

CU size.  

None of the previous analyses consider the effect of 

resolution on the encoding efficiency. Although VVC is 

primarily designed for higher resolutions, supporting lower 

resolutions is still relevant in bandwidth-restricted 

environments, where VVC can be used to improve the Quality 

of Experience (QoE) [26], [27]. Therefore, the test set for our 

DSE is composed of five 4K sequences and their spatially 

downsampled versions. 

In practice, the DSE is performed by encoding the sequences 

in the RA condition. First, the analysis focuses on the CTU 

structure imposed by the new QT+MTT partitioning. Secondly, 

the usage of VVC tools is investigated per different coding unit 

(CU) sizes. Finally, we provide a RDC analysis of these tools. 

To the best of our knowledge, this study is the first to use a 

practical VVC encoder to 1) analyze the RDC of VVC tools as 

a function of resolution and content; as well as 2) analyze the 

CTU structure and tool usage. 

Although our analysis is performed on a software encoder, 

the obtained results can serve as a starting point for 

implementing and optimizing a hardware VVC encoder as well 

because they tend to share many RDC characteristics. 

Respectively, our earlier HEVC complexity study [28] was 

used as a basis for the implementation of several hardware 

blocks [29]–[31]. Furthermore, there is a direct link between 

computational complexity and energy consumption in video 

coding [32]. With HEVC, it was shown that the energy 

requirement of the encoding process can be reduced by 80% for 

minimal visual quality loss [33]. Together, these solidify the 

usability and usefulness of the proposed analysis for hardware 

VVC encoder implementations to support its further 

development on consumer electronic devices. 

The rest of this paper is organized as follows. Section II 

describes the setup for our experiments. Sections III, IV, and V, 

present the analysis of CTU structure, tool usage per CU size, 

and rate-distortion-complexity, respectively. Section VI gives 

implementation guidelines for practical VVC encoders. Finally, 

Section VII concludes this paper. 

II. EXPERIMENTAL SETUP 

All our experiments were performed with uvgVenctester [34] 

that is an open-source test automation framework designed for 

performance and conformance testing of video encoders. 

A. Test Sequences 

Table II summarizes the selected five test sequences taken 

from the CTC [6] and UVG [35] datasets. They were selected 

based on their diverse spatial and temporal encoding 

complexities [35] as illustrated in Fig. 3. SunBath, Bosphorus, 

Tango, and DaylightRoad2 represent the complexity extremes 

and ShakeNDry the mid-point. Since both ShakeNDry and 

Bosphorus have a native frame rate of 120 frame per 

second (fps), they were temporally downsampled to 60 fps for 

fair comparison.  

To evaluate the impact of resolution on the overall 

complexity, the sequences were also spatially downsampled 

from the original 2160p resolution to 1440p, 1080p, 720p, 

480p, and 240p formats by using the bilinear interpolation filter 

in FFmpeg [36]. Table III tabulates the scaled resolutions. The 

original aspect ratio is maintained in downsampling (Tango has 

a 16:8.125 ratio and the others a 16:9 ratio).  

B. Encoder Configuration and Coding Condition 

The VVenC encoder [11], version 0.3.1, was chosen because 

it was the latest version at the beginning of our experiments. 

The VVenC software was developed from VTM and optimized 

for performance with SIMD, better search algorithms, and 

multithreading [12]. It implements nearly all VVC tools, except 

  
Fig. 3. Complexity scores of the selected sequences. 

TABLE III 

SCALED RESOLUTIONS 

Resolution Height 16:9 Width 16:8.125 Width 

2160p 2160 3840 4096 

1440p 1440 2560 2728 

1080p 1080 1920 2048 

  720p   720 1280 1368 

  480p   480   832   912 

  240p   240   416   456 

 

 

TABLE II 

TEST SEQUENCES 

Dataset Original 

resolution Sequence Frame 

count 
Frame-

rate 
Bit 

depth 
CTC 

[6] 
3840×2160 DaylightRoad2 300 60 fps 10 
4096×2160 Tango 294 60 fps 10 

UVG 

[35] 3840×2160 
Bosphorus 300 60 fps 10 
ShakeNDry 150 60 fps 10 

SunBath 600 50 fps 10 
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the BiPred with CU-level weight during (BCW). VVenC is able 

to reach the same objective quality as VTM, but with a 

magnitude smaller encoding time. Thus, our analysis can be 

generalized to the whole standard. 

The experiments were performed under the commonly used 

RA condition [6], where frames can be coded in an arbitrary 

order. In the case of VVenC, the frames are separated into 

groups of 32 and then formed into a pyramid, where the higher-

level frames are encoded with better quality for better overall 

coding efficiency. 

C. Evaluated VVC Coding Tools 

Table IV tabulates the VVC coding tools included in our 

analysis. For each tool, the table reports its encoding stage, 

acronym or abbreviation, a short description, and whether it is 

included in the CU usage study in Section VI or RDC study in 

Section VII. The CTU structure study in Section V is carried 

out with all tools enabled. Please refer to VVC algorithm 

description [37] and specification [38] by JVET for further 
information about the tools.  

Primarily, our analysis focuses on the tools newly introduced 

to VVC. However, the prediction types (UniPred, BiPred, and 

IntraPred) are included as they are a fundamental part of the 

encoding pipeline. In addition, TSRC is analyzed as it is 

TABLE IV 

TOOLS, THEIR ABBREVIATIONS, DESCRIPTIONS AND STUDY INCLUSIONS 

Encoding Stages Tool 
Acronym or 

abbreviation 
Short description 

CU 

usage1 
RDC2 

 Inter prediction 

Uni-prediction UniPred 
UniPred uses one reference frame among past and future ones to 

predict a block. 
×  

Bi-prediction BiPred 
BiPred uses one or two reference frames among past and future ones 

to predict a block by blending to predictions. 
×  

Geometric partitioning mode GPM GPM allows to split the CU into two parts with an angled line. × × 

Affine motion  AM 
AM allows predicting a CU with 4-parameter or 6-parameter affine 

transformation for non-translational motion. 
× × 

Merge with motion vector 

difference 
MMVD MMVD is a hybrid of merge and explicit signaling modes. × × 

Symmetric motion vector 

difference 
SMVD 

SMVD is used in the bidirectional prediction to save bits when the 

nearest references in both of the reference lists are used and the 

MVDs are point symmetric between the two references. 

× × 

Decoder-side motion vector 

refinement 
DMVR 

DMVR is used to improve the accuracy of the MVs of the merge 

mode of bidirectional prediction. 
 × 

Bi-directional optical flow BDOF 
BDOF is used to refine the bidirectional prediction signal of CU at 

the 4×4 subblock level.  
 × 

Inter/Intra pred. Combined Intra/Inter prediction CIIP 
CIIP combines an inter prediction signal with an intra prediction 

signal. 
× × 

Intra prediction 

Intra prediction IntraPred 
IntraPred includes 67 intra prediction modes: 65 angular, a planar, 

and a DC mode. 
×  

Cross-component linear model CCLM 
CCLM uses luma samples to predict chroma samples of the same CU 

in order to decrease cross-component redundancy. 
 × 

Matrix-based intra-picture 

prediction 
MIP 

MIP uses three steps to generate the prediction: averaging of 

reference lines, matrix vector multiplication, and interpolation. 
×  

Multiple reference lines MRL 
MRL allows intra prediction to use the second and fourth left and top 

lines of reference samples in addition to the traditional first line.  
×  

Intra sub-partitions ISP 
ISP allows luma TBs of intra predicted CUs to be split into two or 

four subblocks, depending on the size of the CU. 
×  

Forward/inverse 

transform and 

quantization  

 

Transform skip residual coding TSRC 
TSRC adapts the CABAC entropy coding of the special transform 

skip residual block to screen-content-specific characteristics.  
× × 

Multiple transform selection MTS 
MTS allows usage of the DST-VII and the DCT-VIII in addition to 

the default DCT-II. 
× × 

Non-separable secondary 

transform 
LFNST 

LFNST is an extra non-separable transform for the lowest 

frequencies.  
× × 

Subblock transform SBT 

SBT split the CU into two residual subblocks in vertical or horizontal 

direction in relation 2:2, 3:1, or 1:3. The smaller subblock forms a 

TU and the larger subblock is zeroed out. 

 × 

Joint coding of chroma residuals JCCR 
JCCR is used to reduce the redundancy of two similar chroma 

components’ residual signals. 
× × 

Dependent quantization DQ 
DQ takes an advantage of the information of previous TUs to pack 

the transform coefficients more densely. 
 × 

Loop filtering 

Adaptive loop filter ALF 
ALF uses Wiener-based adaptive filter to minimize the mean squared 

error between the original and reconstructed samples. 
 × 

Luma mapping with chroma 

scaling  
LMCS 

LMCS is based on two steps: 1) in-loop mapping of the luma 

component and 2) luma-dependent chroma residual scaling. 
 × 

1 Tools included in the CU usage study in Section VI. 
2 Tools included in the RDC study in Section VII. 
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complimentary to MTS and LFNST. The tools included in the 

CU usage study are those that are enabled for each CU 

individually, e.g., DMVR and BDOF are omitted since they are 

applied always if the CU fulfils conditions for said tool. The 

tools of the RDC study are limited to those that are specific to 

the RA condition, except CCLM that is also analyzed due to it 

high impact on the coding efficiency in the RA condition [8]. 

D. Quality Metrics 

The coding efficiencies of the encoding tools were compared 

using the well-known Bjøntegaard delta bitrate (BD-rate) 

evaluation method [39], [40] that computes average bitrate 

differences for the same quality. In our analysis, VVenC with all 

tools enabled was used as an anchor for the BD-rate calculations, 

so positive values imply coding loss. In practice, the average 

difference between the RD curves were interpolated per sequence 

with piecewise cubic interpolation through RD points of four 

base quantization parameter (QP) values: 22, 27, 32, and 37, as 

defined in the VVC CTC [6]. Altogether, BD-rate was computed 

with three objective image quality metrics: 1) PSNR, 

2) SSIM [22], and 3) VMAF [23]. 

E. Complexity Profiling Setup 

Our complexity profiling was performed on a 22-core 

general-purpose processor. For reliable results, the number of 

background programs was minimized.  

Ideally, the complexities of individual coding tools could be 

extracted from encoding runs with all tools enabled. However, 

this is impossible in practice since some of the VVenC tools are 

interleaved. Therefore, the complexities are measured by 

performing the encoding runs with a single tool disabled at a 

time. This approach also allows us to extract the respective BD-
rate values. Because our analysis required over two thousand 

runs, each run was limited to the first intra period, i.e., only the 

first 64 frames of each sequence were encoded. 

TABLE V 

BREAKDOWN OF CU SIZES WITH DIFFERENT RESOLUTIONS IN VVENC ENCODER [11] 

Seq. Res. 

128 × 128 128 × 64 64 × 64 64 × 32 64 × 16 64 × 8 64 × 4 32 × 32 32 × 16 32 × 8 32 × 4 16 × 16 16 × 8 16 × 4 8 × 8 8 × 4 4 × 4 

2N × 2N 
2N × N 

2N × 2N 
2N × N 2N × N/2 2N × N/4 2N × N/8 

2N × 2N 
2N × N 2N × N/2 2N × N/4 

2N × 2N 
2N × N 2N × N/2 

2N × 2N 
2N × N 

2N × 2N 
N × 2N N × 2N N/2 × 2N N/4 × 2N N/8 × 2N N × 2N N/2 × 2N N/4 × 2N N × 2N N/2 × 2N N × 2N 

B
o

sp
h

o
ru

s 
[3

5
] 

2160p 6.1% 1.4% 7.6% 11.9% 11.4% 4.8% 1.0%   8.6% 17.5%   9.4% 1.3%   7.8%   7.9%   1.4%   1.5%   0.3% 0.0% 

1440p 5.6% 1.1% 5.0%   7.9%   7.3% 5.2% 1.7%   7.0% 14.9% 11.3% 2.7%   8.5% 13.4%   3.5%   3.7%   1.1% 0.1% 

1080p 4.7% 1.0% 3.6%   6.3%   7.3% 6.6% 2.0%   5.9% 11.8% 10.7% 3.7%   8.0% 15.0%   5.4%   5.2%   2.5% 0.3% 

720p 3.7% 0.7% 5.5%   3.3%   6.2% 3.9% 2.1%   5.5%   9.0%   9.7% 5.1%   6.8% 15.6%   8.3%   7.4%   6.1% 1.2% 

480p 2.8% 0.5% 5.8%   5.1%   3.1% 3.2% 2.1%   4.6%   6.7%   9.0% 7.3%   5.7% 14.0% 10.6%   7.9%   9.3% 2.4% 

240p 1.9% 0.5% 4.1%   7.4%   6.1% 2.4% 2.2%   4.5%   6.4%   8.2% 8.9%   4.2% 11.5% 11.2%   7.2% 10.3% 2.9% 

Average 4.2% 0.9% 5.3%   7.0%   6.9% 4.4% 1.8%   6.0% 11.0%   9.7% 4.8%   6.8% 12.9%   6.7%   5.5%   5.0% 1.1% 

D
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h

tR
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a
d

2
 [

6
] 2160p 2.2% 1.8% 5.3%   6.9%   6.1% 3.1% 1.0%   5.7% 11.1%   8.8% 3.3%   7.5% 16.1%   7.6%   6.9%   5.7% 0.9% 

1440p 1.8% 1.5% 4.6%   6.6%   4.9% 2.8% 0.9%   5.9% 10.3%   8.7% 3.2%   7.4% 15.7%   7.9%   7.6%   8.3% 1.9% 

1080p 1.0% 1.0% 3.5%   5.8%   5.4% 3.6% 0.7%   5.6%   9.7%   8.4% 3.1%   7.2% 15.8%   8.6%   8.4%   9.9% 2.2% 

720p 0.5% 0.6% 3.5%   3.8%   4.8% 2.1% 0.5%   5.3%   9.0%   8.1% 3.2%   7.3% 16.0%   9.8%   9.5% 13.0% 2.9% 

480p 0.3% 0.3% 2.5%   4.4%   3.1% 1.9% 0.4%   4.8%   8.3%   7.4% 2.9%   7.2% 16.2% 10.4% 10.7% 15.7% 3.5% 

240p 0.1% 0.1% 1.5%   2.9%   3.9% 1.6% 0.3%   3.8%  7.7%   6.8% 2.7%   6.8% 15.3% 11.0% 11.8% 19.5% 4.4% 

Average 1.0% 0.9% 3.5%   5.1%   4.7% 2.5% 0.6%   5.2%   9.4%   8.0% 3.1%   7.2% 15.9%   9.2%   9.1% 12.0% 2.6% 

S
h

a
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e
N

D
ry

 [
3

5
] 2160p 1.8% 0.8% 7.3% 10.5%   7.3% 1.9% 0.2% 13.3% 23.2%   8.3% 0.7% 11.6%   9.1%   1.5%   2.0%   0.6% 0.0% 

1440p 1.6% 0.4% 4.1%   6.2%   4.3% 1.9% 0.4% 10.4% 20.0% 11.1% 1.9% 12.8% 15.7%   3.9%   4.2%   1.0% 0.1% 

1080p 1.3% 0.3% 2.6%   4.0%   3.6% 2.3% 0.4%   7.8% 15.5% 10.8% 3.0% 11.8% 20.4%   7.1%   6.9%   2.3% 0.1% 

720p 1.0% 0.1% 2.1%   1.6%   2.3% 0.6% 0.2%   6.2% 11.1%   8.3% 3.5% 10.8% 21.8% 11.8% 10.9%   7.0% 0.7% 

480p 0.8% 0.1% 2.1%   2.0%   0.9% 0.4% 0.1%   4.9%   8.1%   6.3% 3.0%   9.9% 20.5% 13.6% 12.6% 13.6% 1.0% 

240p 0.4% 0.1% 2.4%   2.8%   2.2% 0.3% 0.0%   4.0%   6.9%   5.0% 2.5%   8.5% 20.7% 14.3% 14.3%  3.9% 1.6% 

Average 1.1% 0.3% 3.4%   4.5%   3.4% 1.2% 0.2%   7.7% 14.1%   8.3% 2.4% 10.9% 18.0%   8.7%   8.5%   6.4% 0.6% 

S
u

n
B

a
th

 [
3

5
] 

2160p 1.4% 1.6% 7.8% 13.2%   8.1% 1.8% 0.2% 14.0% 21.9%   7.5% 0.7% 10.5%   7.9%   1.3%   1.7%   0.5% 0.0% 

1440p 0.6% 0.7% 3.9%   8.1%   5.5% 1.7% 0.3% 11.3% 21.3%   9.6% 1.3% 13.2% 13.8%   3.0%   4.1%   1.6% 0.2% 

1080p 0.3% 0.3% 2.4%   5.1%   4.3% 2.0% 0.3%   8.6% 18.5% 10.1% 1.6% 13.8% 17.7%   4.6%   6.5%   3.4% 0.5% 

720p 0.1% 0.1% 1.3%   2.4%   2.5% 0.9% 0.2%   6.0% 14.0%   8.8% 2.0% 13.1% 21.4%   7.4% 10.4%   8.0% 1.5% 

480p 0.0% 0.0% 0.6%   1.2%   1.1% 0.5% 0.1%   4.0%   9.2%   6.9% 2.0% 10.8% 22.0%   9.7% 13.9% 14.6% 3.2% 

240p 0% 0.0% 0.1%   0.4%   0.5% 0.2% 0.0%   1.9%   4.9%   3.9% 1.5%   7.7% 18.7% 11.4% 16.9% 25.8% 6.1% 

Average 0.4% 0.5% 2.7%   5.1%   3.7% 1.2% 0.2%   7.6% 14.9%   7.8% 1.5% 11.5% 16.9%   6.3%   8.9%   9.0% 1.9% 

T
a

n
g

o
 [

6
] 

2160p 3.4% 2.2% 8.9% 11.4%   8.5% 2.7% 0.5% 11.4% 19.0%   8.3% 0.9%   9.9%   9.1%   1.5%   1.9%   0.6% 0.0% 

1440p 2.1% 1.4% 6.3%   8.6%   5.6% 2.9% 0.4% 10.0% 17.0%   9.8% 1.4% 11.2% 14.4%   3.0%   4.1%   1.5% 0.2% 

1080p 1.2% 0.9% 4.8%   6.2%   5.4% 3.1% 0.4%   8.9% 15.0%   9.8% 1.8% 11.4% 17.3%   4.5%   6.1%   3.0% 0.4% 

720p 0.5% 0.4% 4.0%   3.3%   4.4% 1.9% 0.2%   7.6% 12.4%   8.8% 1.9% 11.2% 19.6%   6.6%   9.2%   6.7% 1.3% 

480p 0.2% 0.2% 2.4%   2.8%   2.3% 1.1% 0.1%   6.4%   9.9%   7.8% 1.9% 10.2% 20.2%   8.4% 12.1% 11.4% 2.5% 

240p 0.0% 0.0% 1.1%   1.4%   1.7% 1.0% 0.0%   3.7%   6.5%   6.0% 1.4%   8.4% 19.3%   9.8% 15.1% 19.3% 5.2% 

Average 1.3% 0.8% 4.6%   5.6%   4.7% 2.1% 0.3%   8.0% 13.3%   8.4% 1.5% 10.4% 16.6%   5.6%   8.1%   7.1% 1.6% 

A
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q

u
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n
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2160p 3.0% 1.6% 7.4% 10.8%   8.3% 2.9% 0.6% 10.6% 18.5%   8.5% 1.4%   9.5% 10.0%   2.7%   2.8%   1.5% 0.2% 

1440p 2.4% 1.0% 4.8%   7.5%   5.5% 2.9% 0.7%   8.9% 16.7% 10.1% 2.1% 10.6% 14.6%   4.3%   4.8%   2.7% 0.5% 

1080p 1.7% 0.7% 3.4%   5.5%   5.2% 3.5% 0.7%   7.3% 14.1%   9.9% 2.6% 10.4% 17.2%   6.1%   6.6%   4.2% 0.7% 

720p 1.2% 0.4% 3.3%   2.9%   4.0% 1.9% 0.6%   6.1% 11.1%   8.8% 3.1%   9.8% 18.9%   8.8%   9.5%   8.2% 1.5% 

480p 0.8% 0.2% 2.7%   3.1%   2.1% 1.4% 0.6%   4.9%   8.4%   7.5% 3.4%   8.8% 18.6% 10.5% 11.5% 12.9% 2.5% 

240p 0.5% 0.1% 1.8%   3.0%   2.9% 1.1% 0.5%   3.6%   6.5%   6.0% 3.4%   7.1% 17.1% 11.6% 13.1% 17.8% 4.0% 

Overall 

average 
1.6% 0.7% 3.9%   5.4%   4.7% 2.3% 0.6%   6.9% 12.5%   8.4% 2.7%   9.4% 16.1%   7.3%   8.0%   7.9% 1.6% 
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III. ANALYSIS OF VVC CTU STRUCTURE 

The largest difference between HEVC and VVC is the MTT 

that introduce the recursive BT/TT in addition to the recursive 

QT partitioning included in HEVC. The QT+MTT partitioning 

scheme combined with the larger CTUs increases the number 

of different CU sizes from four to seventeen. The MTT 

partitioning is the main source of the increased complexity in 

VVC, i.e., predicting it perfectly would decrease the total 

encoding complexity by 97% in the AI condition [21]. It is 

therefore crucial to analyze the output QT+MTT partitioning of 
the CTU structure. 

Table V tabulates the share of different sized CUs per 

resolution for each sequence and the overall averages. For each 

non-square CU, the shares of wide and tall CUs are combined 

into one, i.e., 2N×N includes the shares of both 2N×N and 

N×2N CUs. The results are averaged over the four QP values. 

Fig. 4 (a)–(c) depict the average shares of each CU size for 

intra and inter predicted CUs as a function of resolution, 

sequence, and QP value, respectively. 

First off, Fig. 4 (a)–(c) show that CUs are predominantly 

encoded in inter. Moreover, intra CUs are on average smaller 

than inter CUs. Fig. 4 (a) confirms that video with higher 

resolutions use more large CUs. Indeed, high resolution leads 

to larger homogenous areas in spatial and temporal domain. In 

general, the resolution does not significantly affect the number 

of non-square CUs, but their average size increases with 

resolution. On average, 32×16 is the most used CU size with 

the largest three resolutions, 16×8 with the next two, and 8×4 

with the smallest. Considering the decrease in resolution, the 

most popular CU size covers roughly the same area in a frame 

It is interesting to note that in most cases both 2N×N and 

2N×N/2 are used more than their 2N×2N counterparts, 

specifically with larger resolutions. This clearly confirms the 

powerfulness of MTT in VVC, as otherwise the 2N×N CUs 

would require a QT split and coding the same information twice 

or 2N×N/2 would require two recursive QT splits and coding 

duplicate info for four CUs.  

Resolution affects how the encoder reaches the final CTU 

structure, e.g., on average, about 20% and 25% of the 16×8 CUs 

are selected after three QT splits and a single MTT split with 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Share of different sized inter and intra CUs of VVenC encoder [11]. (a) Per resolution. (b) Per sequence. (c) Per QP value. 
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the 480p and 720p resolutions, whereas for 2160p it is less than 

10%. Based on this, the QT+MTT traversal algorithms should 

consider the resolution of the sequence. Overall, resolution does 

not have a huge impact on whether intra or inter is used. The 

main difference is the CU size which is used roughly equally by 

smaller and larger resolutions. Since inter CUs are larger this 

happens at 32×8 and for intra at 32×4 and 16×8. 

Since Bosphorus has the smallest temporal and spatial 

complexity, it is expected to have the greatest number of large 

CUs. Indeed, Bosphorus has the highest share of all CUs with 

the larger dimension being 128 or 64. Conversely, 

DaylightRoad2 has the largest complexity thus it uses the most 

of smallest CUs. Because of the low spatial and high temporal 

coding complexity, SunBath uses the most intra CUs which by 

default reduces the usage of the largest CUs. 8×4 for 

DaylightRoad2 and SunBath is the only case, where intra is 

used more than inter for a single CU size. 

Like the resolution, increasing QP values increases the usage 

of larger CUs. Indeed, with higher QP values, each bit costs 

relatively more in the RD optimization. Overall, the impact of 

the QP value on the share of CU size mirrors that of the 

resolution. However, there are two major differences. First, QP 

value has a slightly higher effect on the QT+MTT depth. 

Secondly, unlike resolution, QP value has little effect on the 

QT+MTT traversal. 

IV. VVC TOOL USAGE PER CU 

Table VI tabulates the average usage of tools for each CU 

size. The results are averaged across all sequences, resolutions, 
and QP values. The cells with dash (-) indicate that the tool is 

forbidden for the specific CU size by the standard. Most of the 

tools follow a trend where the tool is selected more as the size 

of the CU increases or decreases. Additionally, MMVD, CIIP, 

JCCR, and the intra tools are also heavily based on the 

squareness of the CU. Fig. 5 (a)–(c) depict the average share of 

each tool as a function of resolution, sequence, and QP value, 

respectively. Any value under 1.5% is numbered in the figures.  

BiPred, UniPred, and IntraPred share a relationship where 

UniPred and IntraPred are preferred with smaller CUs whereas 

BiPred with larger CUs. Since in the RA condition, the encoded 

frame is temporally between the reference frames, any regular 

movement is overwhelmingly better predicted with BiPred, i.e., 

any regular movement is mostly covered with a large CU using 

BiPred. On the other hand, when there is irregular movement, 

BiPred is unlikely to produce good results and smaller UniPred 

or intra predicted CUs are used. Increasing QP value reduces 

the amount of BiPred, because higher QP value reduces the 

quality of the reference. Thus, it is harder to find a blend 

between the two references that would offset the cost of coding 

two motion vectors. Enlarging the resolution increases the 

usage of BiPred because there are more details that can be 

preserved with BiPred.  

Whereas most tools behave similarly between the different 

sequences, UniPred behaves differently between sequences, as 

depicted in Fig. 6. For DaylightRoad2, ShakeNDry, and Tango 

the encoder prefers non-square and smaller CUs, Bosphorus 

uses the least medium sized CUs, and SunBath uses UniPred 

fairly uniformly across all CU sizes. The behaviour of 

DaylightRoad2, ShakeNDry, and Tango is as expected based on 

their coding complexities and the overall usage of UniPred. For 

Bosphorus, majority of the larger UniPred CUs are located at 

the left edge of the sequence, which is panned out of view, thus 

part of the future prediction would be missing. On the other 

hand, the smaller inter CUs are located near the shore, edges of 

the boat, and the bridge, which have a lot of detail. On SunBath, 

the UniPred CUs are fairly evenly distributed across the frame, 

with the exception that the largest CUs cover the bright area in 

the top right corner of the sequence. The large number of 

UniPred CUs is most likely because of the large difference in 

brightness between the branches moving on the foreground and 

the background. Additionally, the movement is quite large and 

erratic, which makes finding good BiPred difficult.  

The following tools are used more with less square and 

smaller CU size: 1) GPM, 2) MMVD, 3) CIIP, and 4) ISP. 

They are all used in scenarios where the HEVC inherited tools 

struggle to achieve a good quality. Such areas are likely to be 

irregularly shaped, e.g., edges of objects, thus the optimal CTU 

structure includes non-square CUs in those areas. 1) GPM is 

used more with smaller resolutions which indicates MTT splits 

are able to produce similar encoding efficiency with higher 

TABLE VI 

PERCENTAGE OF USED CODING TOOLS PER CU SIZE IN VVENC ENCODER [11] 

 Inter prediction Inter/intra Intra prediction Transform and residual 

CU UniPred BiPred GPM AM MMVD SMVD CIIP IntraPred MIP MRL ISP TSRC MTS LFNST JCCR 

128×128 14.34% 85.66% - 22.30%   3.28% 2.21% - - - - - - - - 0.04% 

128×64 19.52% 80.48% - 20.24%   9.37% 5.68% - - - - - - - - 0.19% 

64×64 17.97% 69.73% 1.93% 16.54%   7.04% 3.64% 3.84%   14.22%   5.79% 0.07% 0.48% - -   2.13% 1.97% 

64×32 22.67% 63.55% 3.42% 16.17%   9.48% 4.41% 3.48%   13.84%   4.77% 0.11% 0.81% - -   3.44% 1.44% 

64×16 25.87% 60.43% 2.90% 16.23%   8.89% 2.61% 2.78%   13.58%   2.61% 0.18% 1.83% - -   3.39% 1.18% 

64×8 25.56% 62.12% - 13.26%   9.51% 2.77% 3.66%   15.98%   2.18% 0.34% 2.09% - -   2.81% 1.45% 

64×4 32.27% 54.92% - - 12.52% 3.05% 7.25%   20.06% - 0.70% 2.23% - -   2.65% 1.30% 

32×32 23.74% 46.04% 3.34% 11.99%   8.06% 2.81% 2.95%   29.83% 14.36% 0.25% 0.75% 0.22% 14.16%   5.79% 2.79% 

32×16 27.00% 39.13% 4.87% 10.98%   8.92% 2.44% 3.15%   32.14% 11.75% 0.47% 1.75% 0.26% 12.81%   6.83% 2.02% 

32×8 29.51% 40.86% 4.87%   8.80%   8.55% 1.75% 2.76%   27.52%   4.31% 0.68% 3.05% 0.42%   9.99%   4.46% 1.25% 

32×4 34.90% 36.37% - - 11.06% 1.97% 5.50%   34.23%   3.85% 1.36% 4.64% 1.09%   9.50%   4.09% 1.00% 

16×16 28.05% 31.21% 4.64%   9.58%   8.18% 1.45% 3.11%   39.20% 13.49% 0.72% 1.35% 0.38% 13.38% 10.35% 1.84% 

16×8 29.21% 29.20% 6.19%   6.55%   8.82% 1.47% 3.03%   38.44%   9.08% 1.13% 2.45% 0.87% 14.63%   6.89% 1.31% 

16×4 35.92% 27.51% - - 11.49% 1.50% 6.26%   42.83%   4.94% 1.46% 5.32% 1.81% 12.82%   5.52% 0.71% 

8×8 32.17% 20.44% 6.01%   5.89%   9.97% 1.18% 3.14%   44.52%   8.08% 1.41% 2.17% 1.63% 16.68%   7.26% 1.06% 

8×4 40.07% - - - 12.13% - -   59.93% 10.56% 2.02% 9.50% 2.79% 18.95% 11.27% 0.19% 

4×4 - - - - - - - 100.00% 12.73% 2.89% - 3.46% 28.03% 20.84% 0.03% 
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resolutions. Conversely, QP value does not affect the usage of 

GPM, indicating that reference quality does not affect the usage 

by much. The usage of GPM is directly linked to the number of 

defined edges in a sequence, which Bosphorus has the most: the 

boat, coastline, and the bridge in the background. On the other 

hand, SunBath has the least defined edges, since the large 

contrast difference softness the edges of the leaves enough that 

GPM is not able to work properly. 2) MMVD is used more with 

smaller resolutions, which correlates with the fact that it is used 

more with smaller CUs. MMVD is mostly used in scenarios 

where slight deviation to the merge candidate movement vector 

greatly improves the prediction quality, e.g., slightly irregular 

movement. Such detail is more likely preserved with lower QP 

value. On Bosphorus, it is mostly used on the water and on 

SunBath across the frame with slight bias to the branches. 

3) CIIP is used slightly more with higher resolutions as there 

are more fine details to preserve. However, QP value does not 

affect its usage, again, indicating the reference quality does not 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. Usage of coding tools of VVenC encoder [11]. (a) Per resolution. (b) Per sequence. (c) Per QP value. 

 
Fig. 6. Usage of UniPred for each sequence and CU size of VVenC encoder [11]. 
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affect the usability of the tool. ShakeNDry uses the most of CIIP 

due to the watersplashes, implying the tool is best used at 

chaotic areas that still have some uniformity in the texture. 

Finally, 4) ISP is used least of these four tools. As for GPM, it 

is used more with higher resolutions and not affected by QP 

value. In general, it is used similarly to GPM where the CU is 

split into two or four separate areas. On DaylightRoad2, most 

of ISP is used on the buildings on the edges, the area between 

the onboard car, and the road. 

AM is used most with large CUs, particularly on 

DaylightRoad2, which features scaling in particularly at the 

edges of the frame as the camera moves forward. AM is mostly 

used on Bosphorus at the bottom of the frame where the wave 

movement towards the camera is most pronounced, and on 

Tango on the non-translational movement of the dancers. Even 

though ShakeNDry and SunBath neither have obvious non-

translational movement, AM is still used in those sequences 

indicating that AM could be sometimes beneficial for 

predicting translational movement. AM is used relatively more 

with lower resolutions for two reasons: the AM CUs are on 

average smaller compared with the average size of the CUs and 

it can be used on larger areas as shown in Fig. 7.  

There are only couple of note-worthy points about SMVD: 

1) lower QP value increases its usage more than what would be 

implied by the increase in general usage of BiPred, and 

2) ShakeNDry uses the least SMVD because it has the least 

regular movement.  

Overall, MRL is not used much, especially with larger CUs. 

The usage correlates to some extent with AM, except when 

resolution is considered, and it is used in same areas as AM in 

DaylightRoad2.  

In general, JCCR is used little, though it is used more with 

higher resolution, lower QP value, and square CUs. TSRC is 

mostly intended for screen content coding; thus, the selected 

dataset is not optimal for evaluating TSRC, but it will still 

indicate how good it is for general encoding. TSRC is used most 

with smaller resolutions and CUs. Considering that only 0.22% 

of 32×32 CUs use TSRC, it is understandable that the TSRC is 

limited to 32×32 CUs. MTS is more used with smaller CUs 

indicating that it is used more in scenarios that are difficult to 

predict. As for TSRC, it is used more with smaller QP value, 

i.e., increasing quantization reduces the importance of the 

transform type. ShakeNDry uses the most MTS because of the 

water splashes and higher resolutions use more MTS because 

there is more detail to preserve. Considering that 14.16% of 

32×32 CUs still use MTS, it might have been beneficial for the 

standard to include MTS for the 64×N CUs and maybe allow 

limiting the maximum size of the used transforms at the 

sequence level. In fact, they were originally included but 

removed quite early due to complexity concerns. However, 

since the complexity was increased a lot after that, it would have 

been worth it to revisit the 64×64 transforms. 

LFNST is used more with higher resolution and QP value. 

Sequence wise, it is used most in SunBath that has the highest 

temporal coding complexity [35]. However, it is used the 

second most in Tango, indicating that the usability of LFNST is 

not related to temporal or spatial coding complexity. 

Disabling a tool affect the size of the encoded CUs. In most 

cases the effect is fairly small and predictable, e.g., disabling a 

BiPred tool slightly reduces the number of BiPred CUs. 

However, with DQ the effect is most significant. Fig. 8 depicts 

the relative change in CU usage for different resolutions when 

DQ is disabled. There is a clear trend that disabling DQ reduces 

the average size of CUs, so any algorithm predicting the CTU 

structure should take into account whether DQ is enabled or not. 

   
(a) (b) (c) 

Fig. 7. First frame of DaylightRoad2 and associated heatmap of affine CUs. (a) 2160p raw frame. (b) 240p heatmap. (c) 2160p heatmap. 

 
Fig. 8. Change in the CU usage breakdown when dependent quantization is disabled in VVenC encoder [11. 
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V. RDC ANALYSIS OF VVC TOOLS 

Table VII tabulates the average BD-rates and encoding 

speeds when each of the tools is disabled at a time. In addition, 

Table VII summarizes the overall average results across QP 

values, resolutions, and sequences. Positive BD-rate indicates 

how much the BD-rate worsens when the tool is disabled. Speed 

over one indicates the encoder speeds up when the tool is 

disabled. In most cases, disabling tool reduces the complexity 

and degrades BD-rate. However, disabling TSRC increases the 

complexity but also slightly improves the BD-rate in most 

cases, whereas disabling LMCS reduces complexity and 

improves quality. 

On average, most tools reduce their complexity overhead as 

the resolution increases. These findings are in line with our 

previous study [4]; deeper QT+MTT search and relatively 

larger initialization overheads increase the complexity at low 

resolutions. The major exceptions are AM, CIIP, LFNST, 

LMCS, MMVD, and SMVD. On DaylightRoad2 and Tango, 

AM complexity reduces as resolution grows but on the other 

sequences complexity increases. These sequences do not 

improve with AM indicating that the encoder has to perform a 

TABLE VII 

RATE-DISTORTION-COMPLEXITY OF INDIVIDUAL CODING TOOLS OVER RESOLUTIONS AND SEQUENCES IN VVENC ENCODER [11] 

    GPM AM MMVD SMVD DMVR BDOF CIIP CCLM TSRC MTS LFNST SBT JCCR DQ ALF LMCS 
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PSNR 0.4% 1.9% 0.6% 0.2% 1.0% 0.6% 0.3% 2.1% 0.0% 0.7% 0.8% 0.4% 0.1% 2.2% 4.1% 0.0% 

SSIM 0.5% 1.9% 0.7% 0.2% 1.0% 0.6% 0.3% 3.9% 0.0% 0.7% 0.9% 0.3% 0.3% 2.2% 7.7% -0.5% 

VMAF 0.3% 1.8% 0.5% 0.2% 0.9% 0.8% 0.4% 0.5% 0.0% 0.5% 0.7% 0.4% 0.1% 1.8% 4.4% 0.3% 

 Speed 1.04× 1.19× 1.07× 1.04× 1.05× 1.07× 1.00× 1.05× 0.95× 1.14× 1.06× 1.08× 1.05× 1.08× 1.07× 1.16× 
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PSNR 0.6% 2.2% 0.5% 0.2% 1.1% 0.7% 0.2% 2.1% -0.1% 0.8% 0.6% 0.5% 0.1% 2.3% 3.6% -0.6% 

SSIM 0.7% 2.2% 0.6% 0.2% 1.2% 0.8% 0.2% 4.1% -0.2% 0.8% 0.7% 0.3% 0.3% 2.2% 6.1% -0.1% 

VMAF 0.6% 2.2% 0.5% 0.2% 1.2% 1.0% 0.3% 0.6% -0.1% 0.7% 0.7% 0.5% 0.2% 1.9% 4.4% -1.1% 

 Speed 1.06× 1.20× 1.08× 1.05× 1.08× 1.10× 1.01× 1.08× 0.94× 1.17× 1.05× 1.08× 1.05× 1.11× 1.10× 1.11× 
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PSNR 0.8% 2.2% 0.4% 0.2% 1.2% 0.8% 0.2% 2.2% -0.1% 1.0% 0.5% 0.6% 0.2% 2.3% 3.5% -0.7% 

SSIM 0.9% 2.1% 0.5% 0.3% 1.4% 0.9% 0.2% 4.5% -0.1% 0.8% 0.7% 0.3% 0.3% 2.3% 5.4% -0.3% 

VMAF 0.9% 2.1% 0.4% 0.3% 1.4% 1.3% 0.2% 0.7% 0.1% 0.6% 0.7% 0.5% 0.2% 1.9% 4.1% -0.6% 

 Speed 1.06× 1.20× 1.08× 1.04× 1.08× 1.11× 1.00× 1.09× 0.94× 1.17× 1.05× 1.09× 1.05× 1.14× 1.12× 1.15× 

7
2

0
p

 

B
D

-r
at

e
 

PSNR 0.8% 2.0% 0.3% 0.2% 1.2% 1.0% 0.1% 2.0% -0.1% 0.8% 0.4% 0.5% 0.1% 2.3% 3.1% -0.8% 

SSIM 1.1% 2.0% 0.4% 0.1% 1.5% 1.1% 0.1% 4.6% -0.1% 0.7% 0.6% 0.1% 0.4% 2.2% 4.3% -0.4% 

VMAF 1.0% 1.8% 0.3% 0.2% 1.6% 1.8% 0.3% 0.7% 0.0% 0.4% 0.6% 0.3% 0.0% 2.0% 3.6% -1.1% 

 Speed 1.06× 1.19× 1.06× 1.03× 1.11× 1.12× 1.01× 1.10× 0.93× 1.21× 1.04× 1.10× 1.06× 1.21× 1.15× 1.15× 
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PSNR 0.9% 2.0% 0.4% 0.2% 1.3% 1.1% 0.1% 2.1% -0.1% 0.8% 0.5% 0.5% 0.2% 2.3% 2.7% -0.9% 

SSIM 1.3% 2.0% 0.4% 0.2% 1.6% 1.3% 0.0% 5.1% -0.1% 0.7% 0.7% 0.1% 0.6% 2.1% 3.2% -0.3% 

VMAF 1.1% 1.8% 0.5% 0.2% 1.3% 2.4% -0.1% 0.7% 0.2% 0.7% 0.7% 0.5% 0.2% 2.1% 3.5% -1.0% 

 Speed 1.06× 1.19× 1.07× 1.04× 1.13× 1.15× 1.01× 1.14× 0.93× 1.26× 1.05× 1.10× 1.08× 1.27× 1.19× 1.19× 
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PSNR 0.9% 1.9% 0.4% 0.1% 1.4% 1.4% 0.1% 2.1% -0.2% 0.8% 0.3% 0.7% 0.2% 2.2% 1.8% -0.8% 

SSIM 1.2% 1.9% 0.4% 0.1% 2.0% 1.5% 0.1% 6.0% -0.3% 0.6% 0.4% 0.3% 0.3% 2.1% 1.8% -0.4% 

VMAF 1.3% 1.7% 0.4% 0.2% 1.6% 2.6% -0.1% 0.4% -0.1% 0.5% 0.0% 0.6% 0.6% 1.6% 3.5% -1.3% 

 Speed 1.07× 1.18× 1.07× 1.04× 1.18× 1.20× 1.01× 1.18× 0.92× 1.32× 1.07× 1.16× 1.09× 1.36× 1.26× 1.21× 
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PSNR 0.3% 0.5% 0.4% 0.1% 0.8% 0.6% 0.1% 3.6% -0.1% 0.9% 0.2% 0.4% 0.3% 2.8% 1.9% 0.1% 

SSIM 0.3% 0.3% 0.6% 0.1% 0.9% 0.8% 0.1% 7.5% 0.0% 0.9% 0.2% 0.1% 0.5% 2.8% 2.6% 1.3% 

VMAF 0.9% 0.0% 0.5% 0.2% 0.9% 2.5% 0.1% 1.2% 0.3% 0.6% 0.6% 0.6% 0.5% 2.7% 5.1% -1.2% 

 Speed 1.06× 1.14× 1.07× 1.02× 1.12× 1.14× 1.01× 1.10× 0.92× 1.22× 1.05× 1.07× 1.01× 1.20× 1.17× 1.14× 
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PSNR 0.7% 7.0% 0.6% 0.2% 2.8% 2.0% 0.1% 0.6% -0.2% 0.6% 0.6% 0.6% 0.3% 1.6% 4.2% -0.2% 

SSIM 0.6% 7.2% 0.6% 0.1% 3.2% 2.1% 0.1% 1.4% -0.3% 0.4% 0.7% 0.3% 0.8% 1.5% 6.4% -0.3% 

VMAF 0.6% 7.2% 0.8% 0.3% 3.4% 2.9% 0.0% 0.0% 0.0% 0.6% 0.6% 0.4% 0.4% 1.5% 6.0% -0.3% 

 Speed 1.06× 1.27× 1.06× 1.03× 1.11× 1.12× 1.00× 1.11× 0.94× 1.23× 1.05× 1.13× 1.13× 1.26× 1.15× 1.17× 
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PSNR 0.5% 0.0% 0.0% 0.1% 0.1% 0.0% 0.2% 2.4% -0.1% 1.0% 0.3% 0.7% 0.2% 3.8% 2.6% -2.3% 

SSIM 0.6% 0.0% 0.0% 0.1% 0.1% 0.0% 0.1% 5.7% -0.1% 0.8% 0.5% 0.4% 0.3% 4.0% 4.6% -2.8% 

VMAF 0.5% -0.2% -0.3% -0.1% -0.2% 0.1% 0.2% 0.8% -0.1% 0.6% 0.1% 0.3% -0.1% 2.4% 1.9% -0.7% 

 Speed 1.04× 1.11× 1.07× 1.03× 1.07× 1.10× 1.00× 1.09× 0.91× 1.19× 1.04× 1.09× 1.01× 1.16× 1.12× 1.22× 

S
u

n
B

a
th

 

[3
5

] 

B
D

-r
at

e
 

PSNR 0.7% 0.6% 0.6% 0.3% 0.3% 0.3% 0.3% 1.0% -0.1% 0.8% 0.5% 0.5% 0.0% 1.6% 5.0% -0.2% 

SSIM 1.1% 0.6% 0.7% 0.4% 0.5% 0.4% 0.2% 3.0% -0.1% 0.6% 0.6% 0.4% -0.1% 1.3% 8.0% 0.1% 

VMAF 0.9% 0.8% 0.7% 0.4% 0.5% 0.6% 0.3% 0.2% 0.0% 0.7% 0.5% 0.6% 0.2% 1.5% 3.1% -0.5% 

 Speed 1.09× 1.17× 1.09× 1.07× 1.13× 1.15× 1.03× 1.13× 0.97× 1.21× 1.07× 1.11× 1.02× 1.17× 1.16× 1.14× 

T
a

n
g

o
 [

6
] 

B
D

-r
at

e
 

PSNR 1.5% 2.0% 0.6% 0.2% 2.2% 1.7% 0.2% 2.8% -0.2% 0.8% 1.0% 0.4% 0.1% 1.5% 1.9% -0.5% 

SSIM 2.1% 2.0% 0.7% 0.2% 2.6% 1.8% 0.2% 5.8% -0.1% 0.8% 1.2% 0.0% 0.3% 1.4% 2.1% 0.1% 

VMAF 1.5% 1.7% 0.5% 0.2% 2.2% 2.1% 0.1% 0.8% 0.0% 0.5% 1.1% 0.4% 0.1% 1.4% 3.6% -1.4% 

 Speed 1.05× 1.26× 1.07× 1.05× 1.09× 1.12× 1.00× 1.10× 0.93× 1.21× 1.05× 1.10× 1.14× 1.19× 1.15× 1.13× 
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PSNR 0.7% 2.0% 0.4% 0.2% 1.2% 0.9% 0.2% 2.1% -0.1% 0.8% 0.5% 0.5% 0.2% 2.3% 3.1% -0.6% 

SSIM 0.9% 2.0% 0.5% 0.2% 1.5% 1.0% 0.2% 4.7% -0.1% 0.7% 0.7% 0.2% 0.4% 2.2% 4.8% -0.3% 

VMAF 0.9% 1.9% 0.4% 0.2% 1.3% 1.6% 0.2% 0.6% 0.0% 0.6% 0.6% 0.5% 0.2% 1.9% 3.9% -0.8% 

 Speed 1.06× 1.19× 1.07× 1.04× 1.10× 1.12× 1.01× 1.10× 0.93× 1.21× 1.05× 1.10× 1.06× 1.19× 1.15× 1.16× 
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full AM search. The overall complexity of CIIP is too small to 

draw conclusions. LFNST has the smallest complexity at 720p 

indicating that the increased usage at higher resolutions causes 

significant overhead. Relative complexity of LMCS decreases 

as resolutions increase, except when increasing the resolution 

from 1440p to 2160p, overall, the complexity varies a lot 

between sequences and resolutions so predicting the complexity 

of LMCS is difficult. Neither MMVD nor SMVD complexities 

are affected by resolution in a meaningful way. 

The tools can be separated into three categories depending on 

the effect of the resolution on the PSNR BD-rate: 1) bigger 

improvement with larger resolutions: ALF, AM, CIIP, LFNST, 

LMCS, MMVD, SMVD, and TR-skip; 2) independent of 

resolution: DQ, CCLM, MTS, and JCCR; and 3) smaller 

improvement with larger resolution: BDOF, DMVR, GPM, and 

SBT. The categories 1) and 2) are predictable, as our previous 

study [4] showed that reducing the resolution reduces BD-rate 

gain on average. However, category 3) is unexpected. BDOF 

and DMVR are limited to BiPred, and since it is used more with 

smaller resolutions, BDOF and DMVR can improve the quality 

more. GPM is also used more with smaller resolutions. SBT is 

also limited to inter predicted CUs, so it is used relatively more 

with smaller resolutions. Since the common factor with all of 

the category 3) tools is that they are used more with smaller 

resolutions, one would expect that TSRC, which is also used 

more with smaller resolutions, would belong to category 3). 

However, since TSRC is an alternative to MTS and MTS is less 

used with smaller resolutions there are more chances to benefit 

from TSRC.  

AM and DMVR have the greatest relative variance in all BD-

rates between the sequences, excluding LMCS; DaylightRoad2 

benefits the most of AM, Tango the second most, and rest of the 

sequences very little or not at all. Although all sequences use 

AM roughly the same amount, the benefit greatly varies 

between the sequences, but not the complexity. This indicates 

that light analysis could be performed to detect whether the 

sequence contains non-translational movement before the 

actual AM search is performed. Both DaylightRoad2 and Tango 

benefit greatly from DMVR, but ShakeNDry hardly benefits at 

all, or decreases the quality in the case of VMAF BD-rate. Since 

DMVR is not signaled individually for each CU, the encoder 

could perform a careful pre-analysis of the sequence whether to 

turn it on. BDOF is similar, although the variance is slightly 

lower, so the same considerations should be applied to it. 

Finally, JCCR has much higher complexity on DaylightRoad2 

and Tango, especially on lower resolutions, even though it is 

not widely used and provides low BD-rate improvement. Thus, 

JCCR should probably be disabled when encoding sequences 

with smaller resolutions. 

ShakeNDry has the largest average encoding time, thus it has 

the smallest complexity overhead for almost all tools. Indeed, 

the relative overhead of each tool is smaller, except for LMCS 

and JCCR. The difference of average encoding time between 

the rest of the sequences is small. Therefore, even though 

Bosphorus has the smallest average encoding time, it has largest 

overhead only with ALF. AM, JCCR, and DQ have the largest 

variance in complexity between sequences. DQ has the lowest 

complexity overhead on ShakeNDry, and highest on 

DaylightRoad2, contrarily to the MTS usage of the sequences. 

Since ShakeNDry and Bosphorus have the best BD-rate 

improvement with DQ, it is most beneficial with sequences 

with chaotic content that have high frequencies in the 

transform. 

Fig. 9 depicts the average RDC performance of each tool in 

term of encoding speed and PSNR, SSIM, and VMAF BD-rates 

in blue, red, and green, respectively. Overall, CCLM, when not 

measured with VMAF, ALF, and DQ offer the highest 

improvement in BD-rate. However, ALF and DQ are also 

among the tools with highest complexities. LFNST, GPM, and 

DMVR are also able to provide relatively good RDC tradeoff. 

On the other hand, LMCS and MTS have the worst RDC 

tradeoff, thus their usage should be considered on a case-by-

case basis. 

In general, the PSNR, SSIM, and VMAF BD-rates are 

consistent, with the major exception of CCLM that improves 

the BD-rates by 2.1%, 4.7%, and 0.7%, respectively. 

Additionally, ALF improves SSIM, particularly with large 

resolutions, and VMAF BD-rates more than PSNR. 

Considering VVC overall improves the subjective quality more 

than objective [5] [41], one would expect that the VMAF BD-

rate would be noticeably better than PSNR BD-rate, especially 

for the newly introduced tools. However, BDOF and ALF are 

the only tools that have noticeably better VMAF BD-rate. This 

indicates that there is still room for improving the RD 

performance to include more perceptual features. Additionally, 

ShakeNDry has on average the worst VMAF BD-rate, 

indicating that some of the tools may not be able to perform 

optimal rate-distortion optimization for perceptual quality 

because of the chaotic water droplets. 

Overall, considering the poor performance of LMCS, the 

parameter selection algorithm does not seem to be universally 

optimal and the characteristic of the different sequences in this 

Fig. 9. RDC performance of the tools of VVenC encoder [11]. 
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study can act as a starting point for any further investigation to 

LMCS.  

VI. IMPLEMENTATION GUIDELINES 

Our analysis is intended to give guidelines on 

implementation priority and optimization potential of coding 

tools in a practical VVC encoder. The analysis outcome 

together with the fact that MTT provides the largest coding 

gain [8] indicate that MTT is a pivotal part of the encoder. MTT 

also affects nearly all other tools, so it is better to be 

implemented as soon as possible. 

MTT also has the largest impact on the encoding complexity, 

and there are three viable approaches to mitigate it: 1) reduce 

the maximum search depth; 2) use temporal and spatial content 

features and already coded CTUs to predict the most likely 

MTT structures and only test them; and 3) limit the tools used 

for different CU sizes. The first approach is straightforward, but 

it only results in a suboptimal implementation. The other two 

approaches are more laborious, but also more profitable.  

The RDC analysis in Section V can be used as a starting point 

for the second approach. Both resolution and QP value affect 

the average size of CUs linearly, so it is recommended to take 

them into account. Video content also has a large effect on the 

CTU structure, both locally and globally. The temporal and 

spatial coding complexity are global, e.g., Bosphorus has the 

lowest complexity that comes up with largest average CU sizes. 

On the other hand, the fact that small resolution versions of 

Bosphorus use the most 64×4 CUs is caused by the local 

features, i.e., the waves moving towards the camera form a 

single narrow continuous area. Therefore, the coding 

complexity can be used to predict the average size of the CUs, 

but other methods such as machine learning needs to be used to 

predict the local features that determine the CTU structure.  

Similarly, the analysis in Section VI can be used as a starting 

point for the third approach. For example, our results showed 

that GPM, MMVD, CIIP, and ISP are used more with non-

square CUs so they can be disabled for square CUs for a lesser 

RD penalty. Resolution and QP value affect the usage of most 

of the tools only slightly, so it is difficult to predict the tool 

usage based on these features.  

The RDC performance is one of the key factors in choosing 

the tools for an encoder. As shown in Fig. 9, CCLM, ALF, and 

GPM offer the best RDC tradeoff and are thereby among the 

first tools to be implemented. On the other hand, the 

universality of the tool also affects the priority, e.g., AM is used 

fairly equally between all sequences, but it only provides 

excellent RDC tradeoff with DaylightRoad2. Therefore, AM 

should be enhanced with an algorithm that is able to identify 

non-translational movement. Conversely, LMCS, SBT, and 

MTS have the worst RDC tradeoffs so their implementations 

should be left last. Furthermore, the complexity of MTS should 

be reduced since only about 15% of CUs use it. For example, 

heuristically performing the MTS search for only 30% of the 

most potential CUs should bring the RDC tradeoff in line with 

other tools. In addition, the implementation effort should be 

considered when choosing a tool to be implemented, but it is 

left out of the scope of our analysis. 

For optimization, the obvious choices are AM and DQ since 

they provide a good RD performance but with relatively high 

complexity. In general, there are more optimization 

opportunities for tools that perform non-normative operations, 

e.g., the optimization of BDOF is limited to the prediction 

generation, whereas both the prediction generation and the 

search can be optimized in AM. Amdahl’s law is also an 

important factor when choosing which tools to optimize, e.g., 

optimizing CIIP first is hardly beneficial as it only accounts for 

1% of the total encoding time. 

As with HEVC, the energy consumption of VVC is higher 

than that of its predecessors. Corrêa et al. [33] were able to 

reduce the energy requirement of HEVC by 80% for minimal 

visual loss. Because VVC has significantly more tools and 

possible CTU structures, its energy saving potential is 

significantly higher. Therefore, the analysis presented in this 

paper is a pivotal starting point for implementing energy 

efficient software and hardware VVC encoders. First hardware 

VVC encoders are unlikely to include all available tools, so our 

analysis can be used to determine the implementation priority. 

VII. CONCLUSION 

This paper performed design space exploration for a practical 

VVenC encoder by focusing on its novel QT+MTT coding 

scheme and related coding tools in the VVC RA coding 

condition. In practice, the DSE was carried out by analyzing the 

distribution of coding blocks, coding tool usage per block size, 

and the RDC characteristics of each tool as a function of 

versatile test set.  

Our main conclusions are:  

1) The implementation and optimization of a VVC encoder 

should be started from the MTT; 

2) The complexity of the MTT can be reduced by predicting 

the block structure and used coding tools from the 

sequence features;  

3) CCLM, ALF, and GPM are among the first coding tools to 

be implemented; 

4) AM should be accompanied with an algorithm that detects 

non-translational movement; and 

5) Coding tools that implement search functionality, e.g., AM 

and ALF are the most potential candidates for 

optimization. 

The analysis in this paper can be used as a starting point for any 

work aiming to implement or reduce the complexity of VVC 

software and hardware encoders.  
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