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a b s t r a c t 

In this paper, we propose a novel subspace learning framework for one-class classification. The proposed 

framework presents the problem in the form of graph embedding. It includes the previously proposed 

subspace one-class techniques as its special cases and provides further insight on what these techniques 

actually optimize. The framework allows to incorporate other meaningful optimization goals via the graph 

preserving criterion and reveals a spectral solution and a spectral regression-based solution as alterna- 

tives to the previously used gradient-based technique. We combine the subspace learning framework 

iteratively with Support Vector Data Description applied in the subspace to formulate Graph-Embedded 

Subspace Support Vector Data Description. We experimentally analyzed the performance of newly pro- 

posed different variants. We demonstrate improved performance against the baselines and the recently 

proposed subspace learning methods for one-class classification. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1

s

T

t

a

u

d

a

a

t

d

s

a

b

a

m

d

t

m

g

p

F

a

q

t

d

a

s

d

a

p

h

t

[

o

c

p

L

g

L

h

0

. Introduction 

Dimensionality reduction has been an important and active re- 

earch area in the field of machine learning and data science. 

he aim is to enhance the performance of a specific applica- 

ion by transforming the data from its original feature space to 

 lower-dimensional subspace. Dimensionality reduction has been 

sed effectively as a tool in applications ranging from traditional 

ata analysis and classification to many modern applications such 

s video analytics, recommendation system design, and detecting 

nomalies in computer and social networks [1] . 

The three main application domains of dimensionality reduc- 

ion algorithms are feature matching, model interpretation, and 

ata representation [2] . In feature matching, the aim is to find the 

imilarity between two or more objects via a distance metric such 

s the Euclidean distance [3] . The model interpretation is enhanced 

y reducing the number of variables in the subspace by dimension- 

lity reduction methods [4] . In data representation applications, di- 

ensionality reduction methods are used to better represent the 

ata in a lower dimensional space for the task at hand [5] . 

The approaches used for dimensionality reduction can be ei- 

her supervised or unsupervised. In supervised learning, the al- 
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orithm relies mainly on the structure of data, and the map- 

ing function is inferred from a set of labeled training samples. 

or example, Fisher’s Linear Discriminant Analysis (LDA) is an ex- 

mple of a supervised method that exhibits good discrimination 

ualities. LDA maximizes the between-class scatter and minimizes 

he within-class scatter. In unsupervised learning, the algorithm 

oes not leverage the information of pre-existing labels. For ex- 

mple, Principal Component Analysis (PCA) is a well-known un- 

upervised method for dimensionality reduction. PCA extracts the 

ominant features of a high-dimensional data and represents it by 

 small number of orthogonal basis vectors, i.e., the principal com- 

onents. Numerous extensions and applications of PCA and LDA 

ave been proposed in the literature [6,7] , and it has been shown 

hat LDA can outperform PCA when the training data set is large 

8] . However, for large-scale datasets, the computation and mem- 

ry problems, particularly for the eigen-decomposition step of LDA, 

an be cumbersome. The spectral regression-based technique was 

roposed in [9] for speeding up the eigen-decomposition step of 

DA. The spectral regression-based technique consolidates spectral 

raph analysis and regression to provide an efficient solution to 

DA. 

In general, the supervised dimensionality reduction approaches 

ork better than unsupervised algorithms if sufficient data are 

vailable [2] . However, in real case scenarios, the labeled data may 

e scarce, noisy, or expensive to collect. In such situations, semi- 

upervised learning algorithms are preferred [10] . Semi-supervised 
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Fig. 1. In one-class classification, a data model is learned by using samples of a 

positive class only. During inference, the model is used to detect objects also from 

the negative class. 
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earning mitigates the necessity for labeled data by allowing a 

odel to leverage unlabeled data. Semi-supervised algorithms can 

xtend the learning strategies of either supervised or unsupervised 

earning algorithms. If the data are available from only one class 

uring the training, one-class classification algorithms are used to 

etermine the predictive model [11] . In one-class classification, the 

ecision function is inferred using training data from a single class 

nly [12] . The class used to obtain the data description is referred 

o as the positive class, while all other classes are referred to as 

he negative class. 

One-class classifiers have been extensively studied and im- 

roved for several technology-driven applications [13] . One-class 

lassification techniques are found suitable for a specific target 

lass detection in applications such as document classification [14] , 

isease diagnosis [15] , fraud detection [16] , rare species identifica- 

ion [17] , intrusion detection [18] , or novelty detection [19] . Fig. 1

epicts the basic idea of one-class classification. 

Most one-class classification techniques operate in the original 

eature space and suffer from the curse of dimensionality [20] . In 

his paper, we propose a general subspace learning framework for 

ne-class classification. We pose the subspace learning for one- 

lass classification as a graph embedding problem. We show that 

he previously proposed subspace one-class techniques can be re- 

ormulated through the proposed framework, while the framework 

rings more insight into their optimization process. The framework 

lso allows to integrate other data relations to the optimization 

rocess and highlights the similarities to other subspace learning 

echniques. The framework motivates a novel spectral solution as 

ell as a spectral regression-based solution as alternatives to the 

reviously used gradient-based approach. Finally we integrate the 

ubspace learning framework with the Support Vector Data De- 

cription (SVDD) applied in the subspace into an iterative Graph- 

mbedded Subspace Support Vector Data Description (GESSVDD) 

ethod. 

The rest of the paper is organized as follows. In Section 2 , we

eview the related work. In Section 3 , we formulate the proposed 

ramework, describe the full GESSVDD algorithm, and discuss the 

ew insights obtained from the framework. Details of the experi- 

ents and the results are provided in Section 4 . We finally deduce 

he conclusions in Section 5 . 

. Related work and background 

In this work, we focus on support vector (SV)-based one-class 

lassification methods, which form a decision boundary repre- 

ented by so-called support vectors by solving an optimization 

roblem. The support vectors are selected from the training data 

oints to define the boundary maximizing the considered crite- 

ion uniquely. One-class Support Vector Machine (OCSVM) [21] and 

VDD [22] are classic examples of SV-based one-class classification 

ethods. OCSVM constructs a hyperplane that separates the posi- 

ive class by maximizing the distance of the hyperplane from the 

rigin. In SVDD, a hypersphere with minimum volume is formed 
2 
round the positive class. Numerous extensions of OCSVM and 

VDD have been proposed in the literature [23,24] . Traditionally, 

he SV-based one-class classification models data in the initially 

iven feature space, but we have recently proposed one-class clas- 

ification algorithms operating in an optimized lower-dimensional 

ubspace [25,26] . 

.1. Support vector data description 

SVDD [22] finds a hyperspherical boundary around the pos- 

tive class data in the original feature space by minimizing the 

olume of the hypersphere. Let us denote the training samples 

o be encapsulated inside a closed boundary by a matrix X = 

 x 1 , x 2 , . . . , x N ] , x i ∈ R 

D , where N is total number of samples and

 is the dimensionality of data. The optimization problem of SVDD 

s formulated as follows: 

in F (R, a ) = R 

2 + C 

N ∑ 

i =1 

ξi 

s.t. ‖ x i − a ‖ 

2 
2 ≤ R 

2 + ξi , 

ξi ≥ 0 , ∀ i ∈ { 1 , . . . , N} , (1) 

here R is the radius and a ∈ R 

D is the center of the hypersphere.

he slack variables ξi , i = 1 , . . . , N are introduced to allow the pos-

ibility of data being outliers and the hyperparameter C > 0 con- 

rols the trade-off between the volume of the hypersphere and the 

mount of data outside the hypersphere. The Lagrangian of SVDD 

an be given as 

 = 

N ∑ 

i =1 

αi x T

 

i 
x i −

N ∑ 

i 

N ∑ 

j 

αi α j x T

 

i 
x j , (2) 

ubject to the constraint that 0 ≤ αi ≤ C [22] . Maximizing (2) gives 

 set of αi values corresponding to each data points. The data 

oints with 0 < αi < C are called support vectors and define the 

ata description. A test sample x ∗ is classified to the positive class 

f the distance of the test sample from the center of the hyper- 

phere is smaller than or equal to the radius: 

 x ∗ − a ‖ 2 ≤ R, (3) 

here R is the distance from the center of hypersphere to any 

ample with 0 < αi < C. 

.2. Subspace support vector data description 

SSVDD [26] optimizes a data mapping to a lower-dimensional 

ubspace along with data description in the subspace. The opti- 

ization function is as follows: 

in F (R, a ) = R 

2 + C 

N ∑ 

i =1 

ξi 

s.t. ‖ Qx i − a ‖ 

2 
2 ≤ R 

2 + ξi , 

ξi ≥ 0 , ∀ i ∈ { 1 , . . . , N} , (4) 

here Q ∈ R 

d×D is the projection matrix for mapping the data 

rom original D -dimensional feature space to an optimized lower 

 -dimensional space. In SSVDD, an iterative process is followed: at 

ach iteration, a set of αi values is obtained by solving SVDD in 

he subspace, and then an augmented Lagrangian is optimized to 

pdate the projection matrix. The augmented Lagrangian is given 

s follows: 

 = 

N ∑ 

i =1 

αi x T

 

i 
Q T

 Qx i −
N ∑ 

i =1 

N ∑ 

j=1 

αi x T

 

i 
Q T

 Qx j α j + βψ, (5) 
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here ψ is an optional regularization term expressing the class 

ariance in the lower d -dimensional space and β is the regulariza- 

ion parameter which controls the weight of ψ . The regularization 

erm ψ has the following form: 

 = Tr (QX λλᵀ 

X T

 Q T

 ) , (6) 

here Tr is the trace operator and different values of λ lead to 

ifferent variants of SSVDD. The projection matrix Q is updated by 

sing the gradient of (5) , i.e., 

 ← Q − η�L, (7) 

here η is the learning rate parameter. The projection matrix is 

rthogonalized after every update. 

Recently, Ellipsoidal Subspace Support Vector Data Description 

ESSVDD) was proposed in [25] . ESSVDD considers the covariance 

f the data in the subspace and the optimization problem is given 

s 

in R 

2 + C 

N ∑ 

i =1 

ξi 

s.t. ( Qx i − a ) T  E 

−1 ( Qx i − a ) ≤ R 

2 + ξi , 

ξi ≥ 0 , ∀ i ∈ { 1 , . . . , N} , (8) 

here 

 = QXX T

 Q T

 (9) 

s a covariance matrix of the data in d -dimensional subspace. The 

est of the ESSVDD solution follows the main principles of SSVDD 

xplained above, while including the covariance matrix yields are 

ore generalized solutions compared to SSVDD. 

.3. Graph embedding 

Let G = { X , A } be an undirected weighted graph, where the

ata points in X are the graph nodes and A ∈ R 

N×N is the graph

eight matrix that can measure different relations between the 

ata points. The Laplacian matrix L of the graph and the diagonal 

egree matrix D are defined as follows: 

 = D − A , [ D ] ii = 

∑ 

j 	 = i 
[ A ] i j , ∀ i ∈ { 1 , . . . , N} . (10) 

Graph embedding [27] was proposed as a general framework 

or encapsulating several subspace learning algorithms under the 

raph preserving criterion 

 

∗ = arg min 

Tr ( QX L p X T Q T )= m 

∑ 

i 	 = j ( Qx i − Qx j ) 
2 A i j 

= arg min 

Tr ( QX L p X T Q T )= m 

Tr ( QX LX T

 Q T

 ) , 

= arg min 

Tr ( QX LX T Q T ) 
Tr ( QX L p X T Q T ) 

, 

(11) 

here L and L p are the graph Laplacian matrices of the intrinsic 

nd penalty graphs that correspond to data relations to be pre- 

erved or penalized, respectively. With different formulations of L 

nd L p , (11) can represent different subspace learning algorithms. If 

here are no data-dependent penalty criteria to consider, the con- 

traint Tr ( QX L p X T

 Q T

 ) = m can be replaced with the orthogonality 

onstraint Tr (QQ T

 ) = m . 

The solution to the trace ratio optimization in (11) is typically 

pproximated by the corresponding ratio trace problem 

 

∗ = arg min Tr 
(
( QX L p X T

 Q T

 ) −1 QX LX T

 Q T

 

)
. (12) 

he solution to (12) can be obtained by solving the generalized 

igenvalue value problem 

 L X 

T q = λX L p X 

T q (13) 
3 
nd keeping the eigenvectors corresponding to the d smallest non- 

ero eigenvalues as the rows of Q . 

The total scatter, within-class, and between-classes matrices 

ommonly used in subspace learning can be expressed in the 

raph embedding framework as follows: 

 t = X 

(
I − 1 

N 

11 T

 

)
X T

 = XL t X T

 (14) 

 w 

= X 

(
I −

C ∑ 

c=1 

1 

N c 
1 c 1 T

 

c 

)
X T

 = XL w 

X T

 (15) 

 b = X 

( C ∑ 

c=1 

N c ( 
1 

N c 
1 c − 1 

N 

1 )( 
1 

N c 
1 c − 1 

N 

1 ) T  
)

X T

 = XL b X T

 (16) 

here I is an identity matrix, 1 is a vector of ones, N c is the total

umber of instances belonging to class c and 1 c represents a vector 

ith ones corresponding to instances which belongs to class c and 

eros elsewhere. For centered data S t reduces to S t = XX T

 . Using 

hese Laplacians, LDA can be expressed in the graph embedding 

ramework by setting L = L w 

and L p = L b in (11) . In a similar man-

er, PCA can be expressed in the graph embedding framework by 

etting L = 

1 
N L t , and replacing the constraint Tr ( QX L p X T

 Q T

 ) = m

ith the orthogonality constraint Tr (QQ T

 ) = m . Since PCA seeks 

he projection directions with maximal variances, the criterion is 

aximized in the case of PCA. 

Graph-Embedded Support Vector Data Description [23] was 

roposed to solve the following optimization problem 

in R 

2 + C 

N ∑ 

i =1 

ξi 

s.t. (x i − a ) T  S −1 
x (x i − a ) ≤ R 

2 + ξi , 

ξi ≥ 0 , ∀ i ∈ { 1 , . . . , N} , (17) 

here S x = XL x X T

 and L x is the graph Laplacian of any graph ex-

ressing geometric data relationship. 

.4. Spectral regression 

Spectral regression [28] is an alternative way to solve the gen- 

ralized eigen-decomposition in (13) . If X T

 q = t , and t and λ are

n eigenvector and eigenvalue solving the eigenproblem 

t = λL p t , (18) 

 is the eigenvector of (13) with the same eigenvalue, because 

LX T

 q = XLt = λXL p t = λXL p X T

 q . In order to find Q , first the tar-

et vectors t can be obtained from (18) and then vectors q satis- 

ying X T

 q = t found. An exact solution may not exists but it can

e estimated using regularized least squares also known as ridge 

egression [29] : 

 = arg min 

(
‖ X T

 q − t ‖ 

2 + η‖ q ‖ 

2 
)

= (XX T

 + εI ) −1 Xt , (19) 

here ε is a tiny constant. The above technique combines the 

pectral analysis and the regression, hence the approach is named 

s spectral regression. The main benefit of spectral regression ap- 

roach is that most graph Laplacian are sparse and, thus, the ap- 

roach bypasses the need of computing the eigen-decomposition 

f dense matrices. The least squares problem can be solved effi- 

iently and, in some cases [9] it is also possible to compute the 
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Fig. 2. Depiction of data projection to a lower d -dimensional space optimized for 

one-class classification with corresponding αi values. 
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arget vectors t directly without using eigen-decomposition at all, 

hich makes the process much faster. 

. Graph embedded subspace support vector data description 

In subspace one-class classification, the aim is to determine a 

rojection matrix Q ∈ R 

d×D for mapping data X ∈ R 

D ×N from the 

 -dimensional original feature space to a lower d -dimensional sub- 

pace optimized for one-class classification. In this work, we as- 

ume that the data has been centered by setting X ← X − μ, where

represents the mean of the training data. The mapped data in 

he subspace is represented by 

 i = Qx i , i = 1 , . . . , N. (20) 

fter the transformation, the data is encapsulated inside a closed 

oundary to obtain an optimized data description in the subspace. 

n order to obtain a generalized solution, we consider the following 

ptimization criterion: 

in R 

2 + C 

N ∑ 

i =1 

ξi 

s.t. ( Qx i − a ) T  S −1 
Q ( Qx i − a ) ≤ R 

2 + ξi , 

ξi ≥ 0 , ∀ i ∈ { 1 , . . . , N} , (21) 

here the matrix S Q encodes geometric data relationships in the 

ubspace as 

 Q = QXL x X T

 Q T

 = QS x Q T

 , (22) 

here L x is a graph Laplacian. It can take different forms depend- 

ng on the graph type used. By defining a new vector u = S 
− 1 

2 
Q 

a ,

21) can be written as 

in R 

2 + C 

N ∑ 

i =1 

ξi 

s.t. ‖ S 
− 1 

2 

Q 
Qx i − u ‖ 

2 
2 ≤ R 

2 + ξi , 

ξi ≥ 0 , ∀ i ∈ { 1 , . . . , N} . (23) 

his shows that we can consider S 
− 1 

2 
Q 

Q as a new projection ma- 

rix to a subspace, where SVDD is to be applied. We denote the 

apped input vectors as z i = S 
− 1 

2 
Q 

Qx i . 

The constraints in (23) can be incorporated into a correspond- 

ng dual objective function by using Lagrange multipliers: 

L = R 

2 + C 

N ∑ 

i =1 

ξi −
N ∑ 

i =1 

αi 

(
R 

2 + ξi −

S 
− 1 

2 

Q 
Qx i ) T

 S 
− 1 

2 

Q 
Qx i + 2 u T

 S 
− 1 

2 

Q 
Qx i − u T

 u 

)
−

N ∑ 

i =1 

γi ξi , (24) 

here αi ≥ 0 and γi ≥ 0 are the Lagrange multipliers. The La- 

rangian (24) should be minimized with respect to R , u , and ξi 

nd maximized with respect to Lagrange multipliers αi and γi . By 

etting partial derivative to zero, we get 

∂L 

∂R 

= 0 ⇒ 

N ∑ 

i =1 

αi = 1 , (25) 

∂L 

∂u 

= 0 ⇒ u = 

N ∑ 

i =1 

αi S 
− 1 

2 

Q 
Qx i , (26) 

∂L 

∂ξ
= 0 ⇒ C − αi − ξi = 0 . (27) 
i 

4 
y substituting (25) - (27) into (24) , we get 

 = 

N ∑ 

i =1 

αi x T

 

i 
Q T

 S −1 
Q Qx i −

N ∑ 

i =1 

N ∑ 

j=1 

αi x T

 

i 
Q T

 S −1 
Q Qx j α j 

= 

N ∑ 

i =1 

αi z T
 

i 
z i −

N ∑ 

i =1 

N ∑ 

j=1 

αi α j z T
 

i 
z j . (28) 

aximizing (28) corresponds to solving SVDD in the new subspace 

nd will give us αi values for all instances, which will define their 

osition in the data description. The samples in the subspace cor- 

esponding to values 0 < αi < C will lie on the boundary, while 

hose outside the boundary will correspond to values αi = C. For 

he samples inside the closed boundary, the corresponding values 

f αi will be equal to zero: 

 z i − u ‖ 2 < R → αi = 0 , γi = 0 , (29) 

 z i − u ‖ 2 = R → 0 < αi < C, γi = 0 , (30) 

 z i − u ‖ 2 > R → αi = C, γi > 0 . (31) 

Fig. 2 depicts the idea of projecting data into an optimized sub- 

pace along with the positions of instances according to α val- 

es. The negative class samples are not considered in the process; 

ence, it is not guaranteed that they will be outside the obtained 

losed boundary. 



F. Sohrab, A. Iosifidis, M. Gabbouj et al. Pattern Recognition 133 (2023) 108999 

L

w

z

m

L

S

w

L

t  

a

t

i

t

f

L

t

d

fi

V

3

m

(

e

a

S

o

1

d

n

t

G

i

b

3

e

t

l

t

f

K

w

x

K

T

d

K

Algorithm 1: GESSVDD optimization . 

Input : X , // Input data 

L x // Selected Laplacian 

η, // Learning rate parameter 

d, // Dimensionality of subspace 

C, // Regularization parameter in SVDD 

min or max // Either minimize or maximize the 

criterion 

Output : Q // Projection matrix 

R , // Radius of hypersphere 

α // Defines the data description 

Initialize Q via PCA; // Select d-vectors corresponding to d 

largest eigenvalues. 

Compute S x = XL x X T

 ; 

for iter = 1 : max _ iter do 

Calculate S in v = S −1 
Q 

= (QS x Q T

 ) −1 ; 

Project data to subspace z i = S 
− 1 

2 
Q 

Qx i = (S in v ) 
1 
2 Qx i ; 

Calculate α values by 

maximizing L = 

∑ N 
i =1 αi z T

 

i 
z i −

∑ N 
i =1 

∑ N 
j=1 αi α j z T

 

i 
z j ; 

Compute L α = A − ααᵀ ; 

if gradient-based update 

Call Sub-algorithm 1 to obtain Q ; 

elseif spectral update 

Call Sub-algorithm 2 to obtain Q ; 

elseif spectral regression-based update : 

Call Sub-algorithm 3 to obtain Q ; 

endif 

Orthogonalize Q using QR decomposition; 

end 

Project data to subspace z i = S 
− 1 

2 
Q 

Qx i ; 

Calculate α values by 

maximizing L = 

∑ N 
i =1 αi z T

 

i 
z i −

∑ N 
i =1 

∑ N 
j=1 αi α j z T

 

i 
z j ; 

Compute center of data description in the subspace as 

u = 

∑ N 
i =1 αi S 

− 1 
2 

Q 
Qx i ; 

Identify any support vector s having 0 < αs < C; 

Compute radius R = 

√ 

(S 
− 1 

2 
Q 

Qs ) T S 
− 1 

2 
Q 

Qs − 2(S 
− 1 

2 
Q 

Qs ) T u + u T

 u ; 

w

n

F

�

N

t

m

3

m

z

T

t

a

t

‖

The Lagrangian in (28) can be written in a trace form as 

 = Tr (S −1 
Q 

QX A X T

 Q T

 ) − Tr (S −1 
Q 

QX ααᵀ X T

 Q T

 ) 

= Tr (( QX L x X T

 Q T

 ) −1 QX (A − ααᵀ ) X T

 Q T

 ) , 
(32) 

here the matrix A ∈ R 

N×N contains αi values in its diagonal and 

eros elsewhere, α is a vector of αi values. Now by defining the 

atrices 

 α = A − ααᵀ (33) 

 α = XL αX T

 , (34) 

e can simplify (32) to 

 = Tr 
(
(QS x Q T

 ) −1 QS αQ T

 

)
. (35) 

We note that (35) is in a ratio trace form that resembles the 

race ratio in (11) . As mentioned, the trace ratio in (11) is typically

pproximated by the corresponding ratio trace to be able to solve 

he optimization using eigen-decomposition. We also note that L α
s a graph Laplacian (see Section 3.2 ). Thus, we have presented 

he subspace learning for SVDD in the general graph embedding 

ramework for subspace learning with its own fixed intrinsic graph 

 α . Different graphs L x create different variants and can be selected 

o enforce different constraints for the data. We will get back to 

ifferent insights offered by the new framework in Section 3.2 , but 

rst we will introduce the full Graph-Embedded Subspace Support 

ector Data Description (GESSVDD) algorithm. 

.1. GESSVDD Algorithm 

We can directly see from (35) that it can be mini- 

ized/maximized by solving the generalized eigenproblem in 

13) and keeping the eigenvectors corresponding to the small- 

st/largest non-zero eigenvalues as projection vectors. We can 

lso formulate a spectral regression-based solution as explained in 

ection 2.4 . While earlier subspace SVDD variants [25,26,30] have 

nly used gradient-based solution, we now have three alternatives: 

) gradient-based, 2) spectral, and 3) spectral regression-based up- 

ates. Furthermore, we can pick any desired graph as L x and we 

ote that it can be meaningful to also maximize (27) (see fur- 

her discussion in Section 3.2 ). With this we can give the main 

ESSVDD algorithm in Algorithm 1 and the three update options 

n Sub-algorithms 1–3. The gradient of (32) used in the gradient- 

ased update can be obtained using identity 126 in [31] . 

.1.1. Non-linear data description 

To obtain a non-linear mapping with the proposed method, we 

mploy a non-linear projection trick (NPT) [32] . NPT is equivalent 

o applying the well-known kernel trick, while allows using the 

inear variant of the method. In NPT, the data X is mapped from 

he original D -dimensional space to � in F -dimensional space as 

ollows: The kernel matrix is obtained as 

 i j = exp 

(
−‖ x i − x j ‖ 

2 
2 

2 σ 2 

)
, (36) 

here σ is a hyperparameter scaling the distance between x i and 

 j . The kernel matrix is centered as 

ˆ 
 = 

(
I − 1 

N 

11 T

 

)
K 

(
I − 1 

N 

11 T

 

)
, (37) 

he centered kernel matrix ˆ K is decomposed by using eigen- 

ecomposition: 

ˆ 
 = U�U T

 , (38) 
5 
here � contains the non-negative eigenvalues of ˆ K in its diago- 

al and the columns of U contain the corresponding eigenvectors. 

inally, the data representation � is obtained as 

= �
1 
2 U T

 . (39) 

ow we consider the obtained data transformation � as the input 

o the linear algorithm, which is equivalent to applying the kernel 

ethod on X . 

.1.2. Test phase 

During testing, a test instance x ∗ is first mapped to an opti- 

ized d -dimensional space as 

 ∗ = S 
− 1 

2 

Q 
Qx ∗. (40) 

he distance of the test instance to the center of the data descrip- 

ion in the subspace is calculated. The test instance is classified 

s a positive instance if the distance is equal to or smaller than 

he radius: 

 z ∗ − u ‖ 

2 
2 ≤ R 

2 , (41) 
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here u is obtained by solving (26) , and R 2 is calculated as 

 

2 = (S 
− 1 

2 

Q 
Qs ) T  S 

− 1 
2 

Q 
Qs − 2(S 

− 1 
2 

Q 
Qs ) T  u + u T

 u , (42) 

nd s is any support vector with 0 < αs < C. Otherwise, the test 

nstance is classified as a negative instance. 

In the non-linear approach, we first find the kernel vector 

 ∗ = �ᵀ φ(x ∗) . (43) 

he kernel vector is centered as 

ˆ 
 ∗ = (I − 1 

N 

11 T

 )[ k ∗ − 1 

N 

K1 ] . (44) 

inally, the NPT representation of the test instance is obtained as 

∗ = (�T 
) + ˆ k ∗, (45) 

here (. ) + is a pseudo-inverse. Now φ∗ is classified similar to the 

inear case, which is equivalent to applying a kernel method on x ∗. 

.1.3. Different variants 

While any suitable graph can be used as L x , we list here some

easonable choices, which are also used in our experiments. In 

he first option, GESSVDD-0, we have no data-dependent con- 

traint, but S x in (35) is replaced by an identity matrix I , which

orresponds to the orthogonality constraint. In the second option 

ESSVDD-I, we use L x = I . The third option GESSVDD-PCA uses the 

CA graph: S x = 

1 
N S t . 

While we only have samples from the positive class, it may 

nclude several clusters. To consider this option, we cluster the 

ositive training samples using k-means and then define options 

ESSVDD-Sw and GESSVDD-Sb with S x = S w 

and S x = S b , respec- 

ively. Here, S w 

and S b are solved as in (15) and (16) , but c now

efers to a cluster, not a class. 

We also exploit the local geometric information by employing 

-Nearest Neighbor (kNN) and setting 

 x = S kNN = X 

(
D kNN − A kNN 

)
X T

 = XL kNN X T

 , (46) 

here [ A ] i j = 1 , if x i ∈ N j or x j ∈ N i and 0, otherwise. N i denotes

he nearest neighbors of x i . This gives our last option denoted as 

ESSVDD-kNN. 

Each of these options using different S x can be solved using one 

f the update choices: gradient-based (GR), spectral ( S), or spectral 

egression-based (SR). Furthermore, in each case it is possible to 

ither minimize or maximize the criterion in (35) . To refer all these 

ariants, we denote them as GESSVDD-0-GR-min, GESSVDD-0-GR- 

ax, GESSVDD-0- S-min and so on. 

.2. Framework analysis 

Now we will get back to our main result, the general subspace 

earning framework for SVDD expressed as follows (repeated from 

32) ): 

r (( QX L x X T

 Q T

 ) −1 QX (A − ααᵀ ) X T

 Q T

 ) , (47) 

here L x can be used to enforce local/global data relations relevant 

or the task. Let us consider a graph with a weight matrix [ A α] i j =
i α j ∀ i 	 = j and [ A α] ii = 0 . With the constraint 

∑ N 
i =1 αi = 1 (25) ,

e get [ D α] ii = 

∑ 

j 	 = i [ A α] i j = 

∑ N 
j=1 α j αi − α2 

i 
= αi − α2 

i 
and L α = 

 α − A α = diag ( α) − ααᵀ = A − ααᵀ . This shows that A − ααᵀ is a

raph Laplacian of a graph that connects the samples i and j with 

 weight αi α j . As αi values are zero for any samples inside the hy- 

ersphere, the resulting graph has only connections between the 

upport vectors and outliers. 

We also see that the graph of L α has a strong similarity with 

he PCA graph. PCA maximizes the variance of the samples to their 
6 
enter μ = 

1 
N 

∑ N 
i =1 x i , i.e., 

 pca = 

1 

N 

∑ N 
i =1 (x i − μ)(x i − μ) T  

= 

1 

N 

∑ N 
i =1 (x i x T

 

i 
− 2 x i μ

ᵀ + μμᵀ ) 

= 

1 

N 

∑ N 
i =1 (x i x T

 

i 
) − 2 μμᵀ + μμᵀ = 

1 

N 

∑ N 
i =1 (x i x T

 

i 
) − μμᵀ 

= 

1 

N 

XX T

 − 1 

N 

2 
X11 T

 X T

 = 

1 

N 

X (I − 1 

N 

11 T

 ) X T

 

= XL pca X T

 , 

(48) 

here L pca = D pca − A pca and [ A pca ] i j = 1 /N 

2 ∀ i 	 = j and [ A pca ] ii =
 . With an analogous derivation using the constraint 

∑ N 
i =1 αi = 

 , we see that L α represents the weighted variance of the sup- 

ort vectors and outliers to the center of SVDD defined as a = 

 N 
i =1 αi x i : 

 α = 

N ∑ 

i =1 

(x i − a )(x i − a ) T  αi 

= 

N ∑ 

i =1 

(αi x i x T

 

i 
− 2 αi x i a T

 + αi aa T  ) 

= 

N ∑ 

i =1 

(αi x i x T

 

i 
) − 2 aa T  + aa T  = 

N ∑ 

i =1 

(αi x i x T

 

i 
) − aa T  

= X diag ( α) X T

 − X ααᵀ X T

 = X (A − ααᵀ ) X T

 

= XL αX T

 . 

(49) 

he main idea of PCA and SVDD along with graphs L pca and L α are

llustrated in Fig. 3 . 

By approximating the ratio trace in (47) with the corresponding 

race ratio, we obtain a general subspace learning graph embed- 

ing framework with the graph preserving criterion 

 

∗ = arg min 

Tr ( QX L x X T Q T )= m 

∑ 

i 	 = j 
( Qx i − Qx j ) 

2 αi α j 

= arg min 

Tr ( QX L αX T Q T ) 
Tr ( QX L x X T Q T ) 

. 
(50) 

he criteria minimized in the previously proposed SSVDD 

26,30] and ESSVDD [25] are special cases of the proposed 

ramework and correspond to variants GESSVDD-0-GR-min and 

ESSVDD-I-GR-min. We conclude that SSVDD minimizes the 

eighted variance of the support vectors and outliers, while having 

n orthogonality constraint. ESSVDD also minimizes the weighted 

ariance of the support vectors and outliers, while simultaneously 

aximizing the total scatter of the centered inputs. 

Previously, SSVDD and ESSVDD used the gradient-based update 

f the projection vector. It should be noted that while the gradient- 

ased approach moves only a single step toward the optimum of 

28) , the spectral and spectral regression-based updates proposed 

n Section 3.1 directly jump to the optimum. This may help the 

verall iterative GESSVDD process converge faster, but it may also 

ntroduce some instability, because the objectives of the iteration 

teps may be contradictory. 

To summarize, the new framework in (47) places subspace 

earning for SVDD in the general graph embedding framework 

ith a fixed data-dependent SVDD graph L α , which resembles PCA 

n the support vectors and outliers, and an additional constraint 

raph L x , which allows to incorporate other meaningful data re- 

ationships to the subspace learning step. When the overall ob- 

ective function in (47) is minimized, L α represents data relation- 

hips to be minimized and L x represents data relationships to be 

aximized. In the earlier works, the overall objective function has 

een minimized via gradient-descent. However, the new frame- 

ork hints that it can also make sense to reverse the objective and 

aximize instead of minimizing. Also this approach has been pre- 

iously followed in the literature in [33] , where kernel PCA was 

uccessfully applied for novelty detection. 
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Fig. 3. A) PCA considers the (unweighted) variance of all the points from the center μ. B) SVDD considers weighted variance of support vectors and outliers from the SVDD 

center a . C) PCA graph is fully-connected with equal weights. D) SVDD graph is sparse (only the support vectors and outliers are connected) and has varying weights. 
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Intuitively, the original minimization of L α focuses on dimen- 

ions where the target class samples are the most similar, which 

ndeed may help to discriminate the class from (unseen) other 

lasses. On the other hand, from the similarity to PCA, we un- 

erstand that these dimensions may be the dimensions that are 

ot providing useful information in general (the corresponding PCA 

ould discard them). Therefore, it is necessary to combine the cri- 

erion on L α with another criterion so that the combination can 

elp to preserve the overall variance and minimize intra-class sim- 

larity simultaneously. In general, it may not be clear which cri- 

erion to minimize and which to maximize, but when considering 

he intra-cluster based graphs L w 

and L b , an intuitive assumption is 

hat within-cluster scatter L w 

should be minimized (i.e., (47) maxi- 

ized), while the between-cluster scatter L b is more reasonable to 

e maximized (i.e., (47) minimized). 

.3. Complexity analysis 

The proposed GESSVDD comprises three solutions: 1) gradient- 

ased, 2) spectral, and 3) spectral regression-based updates. We 

rst carry out the complexity analysis of the main algorithm (1) , 

hich contains the shared steps for all the updates, and then pro- 

eed to the steps different in each solution update. The following 

teps contribute to the overall complexity of the Algorithm 1 : 

1. Initializing of the projection matrix Q via PCA comprises two 

steps, i.e., computing the covariance matrix and then the eigen- 

value decomposition. The complexity of these steps is O 

(
ND ×

min (N, D ) 
)

and O 

(
D 

3 
)
, respectively. 
7 
2. Computing S x = XL x X T

 for a given L x has the complexity of 

O(DN 

2 + ND 

2 ) . 

3. Computing S Q = QS x Q T

 has the complexity of O(d D 

2 + d 2 D ) .

Since, D > d, the complexity becomes O(dD 

2 ) . 

4. Computing S in v and the square-root of the matrix S Q have the 

complexity of O(N 

3 ) . 

5. SVDD has the complexity of O 

(
N 

3 
)

for N data points [34] . 

6. The complexity of QR decomposition is O(dD 

2 ) [35] . 

Dropping relatively lower computational costs and adding the 

est, the complexity becomes O 

(
N 

3 + D 

3 
)
. The total number of 

amples is assumed to be always greater than the dimensional- 

ty; hence the complexity becomes O 

(
N 

3 
)
. The complexity of each 

ub- algorithm 2 , 3 , and 4 is O 

(
N 

3 
)
. We provide the details of

Sub-algorithm 1: Gradient-based update. 

Input : Q , X , S x , S in v L α , η, min/max //Input from Algorithm 1 

Output : Q //Return output to Algorithm 1 

Compute S α = XL αX T

 ; 

Compute �L = 2 S in v QS α − 2 S in v QS αQ T

 S in v QS T x ; 

if minimization 

Update Q ← Q − η�L ; 

elseif maximization 

Update Q ← Q + η�L ; 
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Sub-algorithm 2: Spectral update. 

Input : X , S x , L α , min/max //Input from Algorithm 1 

Output : Q //Return output to Algorithm 1 

Compute S α = XL αX T

 ; 

Solve generalized eigenvalue problem S αq = υS x q ; 

if minimization 

Select the eigenvectors corresponding to d smallest positive 

eigenvalues as rows of Q ; 

elseif maximization 

Select the eigenvectors corresponding to d largest eigenvalues 

as rows of Q ; 

Sub-algorithm 3: Spectral regression-based update. 

Input : X , L , L α , min/max //Input from Algorithm 1 

Output : Q //Return output to Algorithm 1 

Solve generalized eigenvalue problem: L αt = υL x t ; 

if minimization then 

Select the eigenvectors corresponding to d smallest positive 

eigenvalues as columns of T ; 

elseif maximization then 

Select the eigenvectors corresponding to d largest eigenvalues 

to as columns of T ; 

Obtain Q = T T X T

 (XX T

 + ηI ) −1 ; 
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omplexity analysis of Sub-algorithms 1, 2, and 3 in Sections 1.1. 

omplexity analysis of gradient-based update, 1.2. Complexity analy- 

is of spectral-based update , and 1.3. Complexity analysis of spectral 

egression-based update respectively in the supplementary material. 

dding the complexity of each Sub-algorithm to the main algo- 

ithm, the overall complexity remains at O(N 

3 ) , which is the same 

s for the original SVDD [34] . Moreover, in the non-linear case, 

he steps involved in NPT have the complexity of O(N 

3 ) ; thus, the

omplexity in terms of the big O notation still stays as O(N 

3 ) . 

. Experiments 

.1. Datasets and experimental setup 

To evaluate the proposed method’s performance, we used nine 

ifferent datasets. The datasets used in the experiments are Seeds, 

ualitative bankruptcy, Somerville happiness, Liver, Iris, Iono- 

phere, Sonar, Heart (from UCI 1 machine learning repository) and 

NIST [36] with original dimensionality D of 7, 6, 6, 6, 4, 34, 

0, 13, and 784 respectively. MNIST has 10 classes, Seeds and Iris 

atasets are ternary, while the rest of the datasets are binary. 

In Seeds dataset, the classes are named as Kama (S-K), Rosa (S- 

), and Canadian (S-C) with 70 samples from each class. In Quali- 

ative bankruptcy, the class labels are bankruptcy (QB-B) and non- 

ankruptcy (QB-N) with 107 and 143 samples, respectively. The 

omerville happiness dataset contains 77 samples from the happy 

SH-H) category and 66 from the unhappy (SH-U) category. Liver 

ontain 145 samples from Disorder Present (DP) category and 200 

amples from Disorder Absent (DA) category. Iris dataset contains 

0 samples from each category of Setosa (I-S), Versicolor (S-VC), 

nd Virginica (S-V). The Ionosphere dataset contains samples cate- 

orized as Bad (I-B) and Good (I-G). It contains 126 and 225 sam- 

les from bad and good categories, respectively. Sonar dataset has 
1 http://archive.ics.uci.edu/ml 

r

8 
ock (S-R) and Mines (S-M) as its two classes with 97 samples 

rom Rock and 111 samples from Mines category. Heart dataset 

ontain 139 samples from disease present and 164 samples from 

isease absent categories, respectively. 

MNIST dataset contains 5923, 6742, 5958, 6131, 5842, 5421, 

918, 6265, 5851, 5949 samples in the training set for classes 0–9, 

espectively. In the test set, it contains 980, 1135, 1032, 1010, 982, 

92, 958, 1028, 974, and 1009 from corresponding classes (0–9). 

n our experiments, we select 10 % of the data from MNIST while 

eeping the representation of each class in train and test set simi- 

ar to the original train and test split in the dataset. 

We manually created a corrupted version of the heart dataset 

o report the impact of noise. We added the noise in the man- 

er described in [37] . The corrupted data were created by adding 

seudo-random values drawn from the standard normal distribu- 

ion to the features. We bound the range of added noise for the 

orresponding attribute to the maximum and minimum value of 

ach feature of the target class in the training set. 

We converted these datasets into one-class classification 

atasets by considering a single class at a time as the positive class 

nd the rest as the negative class. For MNIST, the train and test sets 

re given, so we used the original train and test splits for the ex- 

eriments. We divided the rest of the datasets into train and test 

ets by considering 70 % of data as training data and the remaining 

0 % as test data. We selected the 70-30 splits randomly by keeping 

he representation of each class similar to the original dataset. We 

erformed the 70-30 % selection five times; hence we repeated the 

xperiment 5 times for a single scenario where each class is con- 

idered a positive class. Note that at this point, both the training 

nd test sets contained samples from both positive and negative 

lasses. We did not use the negative samples in the training set 

n optimizing the models but only to select the hyperparameters 

y using five-fold cross-validation within the training set. To this 

nd, four of the folds (only positive items) at a time were used for 

ptimizing the model, and the fifth fold (both positive and nega- 

ive items) was used to evaluate the performance. Finally, we used 

he best-performing hyperparameter values to optimize the model 

ith the entire training set (only positive items) and reported the 

erformance over the test set. We used a similar setup for all the 

ompeting methods. During the five-fold cross-validation over the 

raining set, we found the best hyperparameters from the following 

alues: C ∈ { 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 } , σ ∈ { 10 −1 , 10 0 , 10 1 , 10 2 , 10 3 } ,
 ∈ { 1 , 2 , 3 , 4 , 5 , 10 , 20 } , η ∈ { 10 −1 , 10 0 , 10 1 , 10 2 , 10 3 } . The number

f iterations for all the iterative methods was set to 5. 

As our evaluation metrics, we report Geometric Mean Gmean , 

rue Positive Rate ( T P R ), True Negative Rate ( T NR ), False Posi-

ive Rate ( F P R ), and False Negative Rate ( F NR ), where T P R = 

T P 
P ,

 NR = 

T N 
N , F P R = 

F P 
N , and F NR = 

F N 
P . T P , T N, F P , F N, P , N denote

rue positives, true negatives, false positives, false negatives, and 

umber of positive samples, and number of negative samples, re- 

pectively. We use Gmean as the main performance metric as it 

akes into account both T P R and T NR . We also report the standard

eviations over the five data splittings. 

For the proposed method, we consider all the variants in- 

roduced in Section 3.1.3 : GESSVDD-0, GESSVDD-I, GESSVDD-PCA, 

ESSVDD-Sw, GESSVDD-Sb, and GESSVDD-kNN. For each, we con- 

ider all the alternative solutions (GR-gradient-based, S-spectral, 

R-spectral regression-based). The criterion in (35) is maximized 

nd minimized in a separate set of experiments respectively for 

ach variant and alternative solution. In order to construct the 

aplacians L w 

and L b , the number of clusters C was fixed to 5. 

oreover, the numbers of neighbours for defining L kNN was also 

xed to 5. 

We also carried out sensitivity analysis for the model for the 

ange of hyperparameters. We followed the approach mentioned 

http://archive.ics.uci.edu/ml
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Fig. 4. Sensitivity Analysis for non-linear GESSVDD-kNN-SR-max trained over MNIST dataset with target class 0. 
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2 https://github.com/fahadsohrab/gessvdd 
n [30] for sensitivity analysis. In order to analyze the sensitivity 

f the model for the corresponding hyperparameter, we fix other 

yperparameters to their optimal values found over the training 

et and record the performance with all the hyperparameter values 

onsidered in the given range. 

To evaluate whether the observed differences between different 

ethods are statistically significant, we follow the recommenda- 

ions of [38] . We perform Wilcoxon Sign-Ranks test over the av- 

rage results for the nine datasets to evaluate the pair-wise dif- 

erences between the methods. The test ranks the differences be- 

ween each pair of classifiers ignoring the signs and uses the ranks 

o determine value T as described, e.g., in [38] . Finally, the T value

s compared to a critical value which depends on the number of 

atasets. In our experiments, we used 9 datasets, which means 

hat the null hypothesis can be rejected at 0.05 significance level if 

 ≤ 5 . 

.2. Experimental results and discussion 

We report the results of the best performing linear and non- 

inear variants among the proposed variants compared against the 

reviously proposed SSVDD [26] and ESSVDD [25] , and the com- 

eting methods GESVM [23] , GESVDD [23] , OCSVM [21] , SVDD 

22] , and ESVDD for all datasets in Table 1 . In each experiment,

 single class is used as a target class and the rest of the data

s outliers. The average performance over each dataset is reported 

n the average (Av.) column. We report the average test results of 

ifferent variants of the proposed framework over the five split- 

ings of the Seeds, Qualitative bankruptcy, Somerville happiness, 

ris, Ionosphere, and Sonar datasets in Table 2 for the non-linear 

ata description, while the results over MNIST, Liver, and Heart 

atasets are reported in Section S2 of the supplementary material 

long with the results of all variants in the proposed framework in 

ase of linear data description. We also provide T P R , T NR , F P R , and

 NR results in S3 of the supplementary material. The correspond- 

ng standard deviations of Gmean over five splits are provided in 
9 
ection S4 and Section S5 for linear and non-linear cases, respec- 

ively, in the supplementary material. Implementations of the pro- 

osed framework are available online in GitHub 2 . 

From the experimental results comparing different variants of 

ESSVDD, we observe that in both linear and non-linear meth- 

ds, the gradient-based solution performs better than the spec- 

ral and spectral regression-based solutions in the majority of the 

ases. The spectral approaches are typically more unstable over it- 

rations as discussed in Section 3.2 . When comparing the mini- 

ization/maximization, we see that our claim that L w 

should be 

sed with maximization and L b with minimization seems to be 

alid in most cases. Overall, minimization typically leads to bet- 

er results. Moreover, the performance of kNN graph is better than 

hat of other variants for both min and max cases and for both 

inear and non-linear methods. 

Overall in linear methods, it is noted that employing the kNN 

raph for encoding geometric information in the subspace yields 

etter results also compared to the competing methods in the ma- 

ority of the cases. Linear GESSVDD-kNN-GR-min variant performs 

est over 5 and second-best over 2 out of 9 datasets. For non- 

inear methods, the different variants of GESSVDD have a more 

arying performance suggesting that finding a suitable graph for 

he task at hand may be more important. For comparisons, we re- 

ort the results of a single variant GESSVDD-kNN-SR-max in the 

on-linear section of Table 1 . It performs best over the Qualitative 

ankruptcy and second-best over Seeds and Ionosphere datasets. 

or MNIST, we see that some other methods outperform the pro- 

osed variants by a clear margin. As the maximum dimensional- 

ty allowed for our proposed methods in our experiments is 20, 

hereas the original dimensionality of MNIST data is 784, we can 

onclude that the reduction in dimensionality is likely too dramatic 

or preserving the significant information. 

https://github.com/fahadsohrab/gessvdd
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Table 1 

Gmean results for linear and non-linear data description over different datasets, selected variants from the proposed framework vs. other one-class classification methods. 

Dataset Seeds Qualitative bankruptcy Somerville happiness Liver 

Target class S-K S-R S-C Av. QB-B QB-N Av. SH-H SH-U Av. DP DA Av. 

Linear 

GESSVDD-kNN-GR-min 0.83 0.94 0.95 0.91 0.80 0.46 0.63 0.44 0.44 0.44 0.45 0.38 0.42 

GESSVDD-I-GR-min (ESSVDD) 0.87 0.92 0.90 0.90 0.90 0.12 0.51 0.51 0.39 0.45 0.35 0.38 0.37 

GESSVDD-0-GR-min (SSVDD) 0.85 0.93 0.95 0.91 0.90 0.17 0.53 0.49 0.43 0.46 0.32 0.34 0.33 

ESVDD 0.79 0.87 0.87 0.84 0.96 0.19 0.58 0.42 0.41 0.41 0.35 0.40 0.38 

SVDD 0.85 0.92 0.94 0.90 0.94 0.00 0.47 0.41 0.36 0.39 0.50 0.39 0.45 

OCSVM 0.48 0.69 0.45 0.54 0.37 0.41 0.39 0.45 0.53 0.49 0.40 0.36 0.38 

Non-Linear 

GESSVDD-kNN-SR-max 0.86 0.92 0.96 0.91 0.81 0.71 0.76 0.47 0.47 0.47 0.41 0.42 0.41 

GESSVDD-I-GR-min (ESSVDD) 0.83 0.91 0.90 0.88 0.92 0.28 0.60 0.59 0.39 0.49 0.40 0.49 0.45 

GESSVDD-0-GR-min (SSVDD) 0.87 0.94 0.94 0.92 0.94 0.46 0.70 0.47 0.35 0.41 0.37 0.39 0.38 

ESVDD 0.81 0.88 0.87 0.85 0.00 0.00 0.00 0.00 0.31 0.16 0.43 0.54 0.49 

SVDD 0.85 0.91 0.95 0.90 0.33 0.28 0.31 0.40 0.32 0.36 0.49 0.40 0.45 

OCSVM 0.47 0.60 0.45 0.51 0.36 0.58 0.47 0.47 0.49 0.48 0.27 0.08 0.17 

GESVDD-PCA 0.85 0.93 0.93 0.90 0.94 0.28 0.61 0.50 0.48 0.49 0.51 0.49 0.50 

GESVDD-Sw 0.82 0.93 0.93 0.89 0.94 0.28 0.61 0.49 0.50 0.49 0.51 0.52 0.51 

GESVDD-kNN 0.84 0.92 0.94 0.90 0.84 0.31 0.57 0.50 0.45 0.47 0.51 0.52 0.52 

GESVM-PCA 0.85 0.90 0.93 0.89 0.95 0.26 0.60 0.52 0.48 0.50 0.50 0.55 0.52 

GESVM-Sw 0.85 0.90 0.91 0.89 0.93 0.20 0.57 0.55 0.41 0.48 0.50 0.51 0.51 

GESVM-kNN 0.84 0.90 0.90 0.88 0.92 0.20 0.56 0.55 0.51 0.53 0.51 0.55 0.53 

Dataset Iris Ionosphere Sonar Heart 

Target class I-S I-VC S-V Av. I-B I-G Av. S-R S-M Av. DP DA Av. 

Linear 

GESSVDD-kNN-GR-min 0.97 0.89 0.91 0.92 0.42 0.92 0.67 0.54 0.57 0.56 0.54 0.61 0.58 

GESSVDD-I-GR-min (ESSVDD) 0.93 0.82 0.89 0.88 0.36 0.90 0.63 0.52 0.58 0.55 0.53 0.69 0.61 

GESSVDD-0-GR-min (SSVDD) 0.96 0.91 0.90 0.92 0.12 0.78 0.45 0.51 0.55 0.53 0.59 0.62 0.61 

ESVDD 0.89 0.85 0.86 0.87 0.33 0.88 0.61 0.00 0.03 0.02 0.56 0.62 0.59 

SVDD 0.92 0.90 0.89 0.91 0.02 0.86 0.44 0.52 0.56 0.54 0.46 0.35 0.41 

OCSVM 0.58 0.50 0.46 0.51 0.49 0.51 0.50 0.48 0.45 0.46 0.57 0.63 0.60 

Non-Linear 

GESSVDD-kNN-SR-max 0.94 0.87 0.83 0.88 0.67 0.86 0.76 0.52 0.47 0.49 0.42 0.43 0.42 

GESSVDD-I-GR-min (ESSVDD) 0.94 0.88 0.89 0.90 0.64 0.89 0.77 0.54 0.55 0.54 0.38 0.37 0.37 

GESSVDD-0-GR-min (SSVDD) 0.94 0.92 0.90 0.92 0.40 0.89 0.65 0.48 0.47 0.47 0.53 0.49 0.51 

ESVDD 0.68 0.84 0.83 0.78 0.37 0.88 0.63 0.55 0.52 0.53 0.34 0.27 0.31 

SVDD 0.92 0.92 0.88 0.90 0.21 0.85 0.53 0.53 0.59 0.56 0.53 0.55 0.54 

OCSVM 0.56 0.26 0.55 0.46 0.52 0.47 0.49 0.47 0.55 0.51 0.20 0.23 0.21 

GESVDD-PCA 0.83 0.92 0.89 0.88 0.38 0.88 0.63 0.55 0.60 0.57 0.68 0.74 0.71 

GESVDD-Sw 0.89 0.87 0.90 0.89 0.36 0.90 0.63 0.53 0.54 0.54 0.68 0.73 0.70 

GESVDD-kNN 0.83 0.91 0.89 0.88 0.34 0.89 0.62 0.54 0.60 0.57 0.70 0.72 0.71 

GESVM-PCA 0.90 0.90 0.90 0.90 0.38 0.91 0.64 0.52 0.61 0.57 0.66 0.71 0.68 

GESVM-Sw 0.89 0.93 0.88 0.90 0.45 0.90 0.67 0.54 0.59 0.57 0.67 0.70 0.68 

GESVM-kNN 0.89 0.89 0.89 0.89 0.41 0.88 0.65 0.54 0.58 0.56 0.67 0.72 0.70 

Dataset MNIST Wilcoxon test 

Target class 0 1 2 3 4 5 6 7 8 9 Av. T 

Linear 

GESSVDD-kNN-GR-min 0.40 0.84 0.33 0.47 0.60 0.38 0.69 0.53 0.51 0.58 0.53 - 

GESSVDD-I-GR-min (ESSVDD) 0.38 0.83 0.31 0.46 0.47 0.34 0.62 0.65 0.40 0.50 0.50 6.5 

GESSVDD-0-GR-min (SSVDD) 0.41 0.81 0.29 0.39 0.45 0.31 0.57 0.52 0.40 0.44 0.46 9.0 

ESVDD 0.00 0.81 0.00 0.00 0.00 0.00 0.06 0.22 0.00 0.16 0.13 1.0 

SVDD 0.47 0.55 0.51 0.50 0.51 0.52 0.45 0.57 0.49 0.51 0.51 5.0 

OCSVM 0.57 0.92 0.47 0.52 0.64 0.41 0.73 0.74 0.53 0.63 0.62 8.0 

Non-Linear 

GESSVDD-kNN-SR-max 0.38 0.53 0.16 0.34 0.49 0.46 0.48 0.43 0.31 0.50 0.41 - 

GESSVDD-I-GR-min (ESSVDD) 0.36 0.34 0.18 0.09 0.19 0.52 0.46 0.43 0.36 0.21 0.31 17.5 

GESSVDD-0-GR-min (SSVDD) 0.60 0.34 0.48 0.39 0.43 0.49 0.43 0.35 0.44 0.17 0.41 15.5 

ESVDD 0.54 0.19 0.34 0.14 0.39 0.52 0.42 0.32 0.17 0.36 0.34 5.0 

SVDD 0.15 0.05 0.63 0.14 0.12 0.17 0.11 0.13 0.13 0.13 0.18 15.0 

OCSVM 0.59 0.69 0.56 0.46 0.61 0.64 0.66 0.56 0.53 0.66 0.60 6.0 

GESVDD-PCA 0.92 0.96 0.75 0.74 0.84 0.73 0.86 0.86 0.73 0.85 0.82 -15.5 

GESVDD-Sw 0.92 0.96 0.75 0.74 0.84 0.72 0.00 0.85 0.71 0.85 0.74 -15.5 

GESVDD-kNN 0.91 0.96 0.75 0.74 0.84 0.72 0.86 0.86 0.73 0.85 0.82 -17.5 

GESVM-PCA 0.90 0.95 0.75 0.74 0.87 0.71 0.89 0.86 0.76 0.86 0.83 -14.5 

GESVM-Sw 0.90 0.95 0.75 0.74 0.85 0.66 0.87 0.84 0.75 0.85 0.82 -14.5 

GESVM-kNN 0.90 0.95 0.74 0.76 0.87 0.71 0.89 0.85 0.73 0.85 0.82 -14.0 

10 
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Table 2 

Gmean results for non-linear data description in the proposed framework. 

Dataset Seeds Qualitative bankruptcy Somerville happiness 

Target class S-K S-R S-C Av. QB-B QB-N Av. SH-H SH-U Av. 

GESSVDD-Sb- S-max 0.75 0.91 0.88 0.85 0.58 0.47 0.52 0.37 0.33 0.35 

GESSVDD-Sb-GR-max 0.83 0.72 0.89 0.81 0.82 0.36 0.59 0.41 0.40 0.41 

GESSVDD-Sb-SR-max 0.77 0.81 0.93 0.83 0.56 0.29 0.43 0.44 0.30 0.37 

GESSVDD-Sb- S-min 0.79 0.90 0.84 0.84 0.61 0.42 0.52 0.43 0.39 0.41 

GESSVDD-Sb-GR-min 0.83 0.61 0.91 0.78 0.80 0.50 0.65 0.50 0.42 0.46 

GESSVDD-Sb-SR-min 0.72 0.86 0.92 0.83 0.56 0.47 0.52 0.45 0.30 0.37 

GESSVDD-Sw- S-max 0.85 0.89 0.92 0.89 0.84 0.25 0.55 0.53 0.37 0.45 

GESSVDD-Sw-GR-max 0.88 0.86 0.91 0.88 0.81 0.12 0.46 0.47 0.43 0.45 

GESSVDD-Sw-SR-max 0.82 0.89 0.89 0.87 0.85 0.53 0.69 0.51 0.36 0.44 

GESSVDD-Sw- S-min 0.78 0.89 0.92 0.86 0.86 0.33 0.60 0.55 0.50 0.52 

GESSVDD-Sw-GR-min 0.89 0.94 0.92 0.92 0.77 0.03 0.40 0.49 0.42 0.45 

GESSVDD-Sw-SR-min 0.81 0.87 0.91 0.87 0.93 0.71 0.82 0.55 0.44 0.49 

GESSVDD-kNN- S-max 0.87 0.90 0.90 0.89 0.73 0.62 0.68 0.51 0.34 0.42 

GESSVDD-kNN-GR-max 0.82 0.91 0.89 0.87 0.88 0.28 0.58 0.55 0.41 0.48 

GESSVDD-kNN-SR-max 0.86 0.92 0.96 0.91 0.81 0.71 0.76 0.47 0.47 0.47 

GESSVDD-kNN- S-min 0.87 0.88 0.94 0.89 0.80 0.78 0.79 0.49 0.43 0.46 

GESSVDD-kNN-GR-min 0.84 0.94 0.91 0.90 0.85 0.38 0.61 0.60 0.39 0.49 

GESSVDD-kNN-SR-min 0.87 0.89 0.94 0.90 0.76 0.75 0.76 0.46 0.38 0.42 

GESSVDD-PCA- S-max 0.83 0.91 0.94 0.89 0.60 0.67 0.63 0.51 0.46 0.48 

GESSVDD-PCA-GR-max 0.78 0.90 0.90 0.86 0.90 0.14 0.52 0.56 0.37 0.46 

GESSVDD-PCA-SR-max 0.83 0.74 0.94 0.84 0.90 0.40 0.65 0.48 0.46 0.47 

GESSVDD-PCA- S-min 0.85 0.94 0.94 0.91 0.85 0.48 0.67 0.55 0.38 0.47 

GESSVDD-PCA-GR-min 0.86 0.86 0.94 0.89 0.93 0.17 0.55 0.53 0.40 0.46 

GESSVDD-PCA-SR-min 0.84 0.90 0.94 0.89 0.93 0.61 0.77 0.51 0.42 0.47 

GESSVDD-I- S-max 0.85 0.93 0.76 0.84 0.83 0.39 0.61 0.43 0.37 0.40 

GESSVDD-I-GR-max 0.83 0.91 0.91 0.88 0.91 0.13 0.52 0.52 0.41 0.47 

GESSVDD-I-SR-max 0.85 0.93 0.94 0.91 0.86 0.54 0.70 0.49 0.44 0.46 

GESSVDD-I- S-min 0.85 0.94 0.93 0.91 0.85 0.42 0.64 0.47 0.42 0.44 

GESSVDD-I-GR-min (ESSVDD) 0.83 0.91 0.90 0.88 0.92 0.28 0.60 0.59 0.39 0.49 

GESSVDD-I-SR-min 0.85 0.95 0.93 0.91 0.84 0.49 0.67 0.54 0.38 0.46 

GESSVDD-0- S-max 0.85 0.92 0.93 0.90 0.70 0.44 0.57 0.39 0.44 0.41 

GESSVDD-0-GR-max 0.85 0.93 0.94 0.90 0.93 0.47 0.70 0.37 0.46 0.42 

GESSVDD-0- S-min 0.86 0.91 0.92 0.89 0.70 0.47 0.59 0.38 0.38 0.38 

GESSVDD-0-GR-min (SSVDD) 0.87 0.94 0.94 0.92 0.94 0.46 0.70 0.47 0.35 0.41 

Dataset Iris Ionosphere Sonar 

Target class I-S S-VC S-V Av. I-B I-G Av. S-R S-M Av. 

GESSVDD-Sb- S-max 0.94 0.88 0.77 0.86 0.57 0.63 0.60 0.42 0.38 0.40 

GESSVDD-Sb-GR-max 0.95 0.83 0.90 0.89 0.42 0.87 0.64 0.50 0.40 0.45 

GESSVDD-Sb-SR-max 0.80 0.85 0.85 0.83 0.53 0.42 0.47 0.40 0.39 0.40 

GESSVDD-Sb- S-min 0.93 0.90 0.87 0.90 0.46 0.52 0.49 0.42 0.47 0.45 

GESSVDD-Sb-GR-min 0.95 0.86 0.90 0.90 0.30 0.87 0.59 0.50 0.49 0.50 

GESSVDD-Sb-SR-min 0.82 0.82 0.74 0.79 0.51 0.42 0.46 0.40 0.34 0.37 

GESSVDD-Sw- S-max 0.85 0.91 0.84 0.87 0.49 0.86 0.67 0.54 0.38 0.46 

GESSVDD-Sw-GR-max 0.94 0.90 0.89 0.91 0.48 0.89 0.68 0.52 0.46 0.49 

GESSVDD-Sw-SR-max 0.97 0.86 0.85 0.89 0.35 0.87 0.61 0.37 0.50 0.44 

GESSVDD-Sw- S-min 0.74 0.89 0.85 0.83 0.46 0.86 0.66 0.51 0.50 0.51 

GESSVDD-Sw-GR-min 0.95 0.86 0.83 0.88 0.61 0.87 0.74 0.50 0.44 0.47 

GESSVDD-Sw-SR-min 0.97 0.86 0.86 0.89 0.32 0.87 0.59 0.37 0.41 0.39 

GESSVDD-kNN- S-max 0.94 0.88 0.83 0.88 0.67 0.87 0.77 0.51 0.48 0.50 

GESSVDD-kNN-GR-max 0.94 0.92 0.88 0.91 0.65 0.90 0.78 0.54 0.49 0.51 

GESSVDD-kNN-SR-max 0.94 0.87 0.83 0.88 0.67 0.86 0.76 0.52 0.47 0.49 

GESSVDD-kNN- S-min 0.94 0.88 0.83 0.89 0.38 0.87 0.62 0.58 0.43 0.50 

GESSVDD-kNN-GR-min 0.92 0.88 0.91 0.90 0.59 0.92 0.75 0.54 0.59 0.57 

GESSVDD-kNN-SR-min 0.94 0.87 0.82 0.88 0.49 0.86 0.67 0.54 0.56 0.55 

GESSVDD-PCA- S-max 0.94 0.95 0.87 0.92 0.37 0.87 0.62 0.42 0.36 0.39 

GESSVDD-PCA-GR-max 0.92 0.87 0.85 0.88 0.57 0.89 0.73 0.54 0.43 0.48 

GESSVDD-PCA-SR-max 0.94 0.92 0.88 0.91 0.34 0.84 0.59 0.29 0.52 0.41 

GESSVDD-PCA- S-min 0.94 0.92 0.80 0.89 0.37 0.87 0.62 0.50 0.51 0.50 

GESSVDD-PCA-GR-min 0.92 0.73 0.85 0.83 0.59 0.91 0.75 0.53 0.53 0.53 

GESSVDD-PCA-SR-min 0.94 0.92 0.83 0.90 0.30 0.87 0.58 0.56 0.49 0.53 

GESSVDD-I- S-max 0.98 0.92 0.84 0.92 0.25 0.88 0.56 0.48 0.36 0.42 

GESSVDD-I-GR-max 0.95 0.86 0.88 0.90 0.63 0.88 0.76 0.56 0.54 0.55 

GESSVDD-I-SR-max 0.98 0.93 0.84 0.92 0.24 0.88 0.56 0.49 0.51 0.50 

GESSVDD-I- S-min 0.95 0.93 0.84 0.91 0.22 0.88 0.55 0.50 0.52 0.51 

GESSVDD-I-GR-min (ESSVDD) 0.94 0.88 0.89 0.90 0.64 0.89 0.77 0.54 0.55 0.54 

GESSVDD-I-SR-min 0.95 0.93 0.85 0.91 0.29 0.88 0.58 0.53 0.54 0.53 

GESSVDD-0- S-max 0.94 0.91 0.90 0.91 0.61 0.63 0.62 0.47 0.58 0.52 

GESSVDD-0-GR-max 0.96 0.91 0.88 0.92 0.44 0.82 0.63 0.49 0.54 0.51 

GESSVDD-0- S-min 0.95 0.88 0.90 0.91 0.41 0.73 0.57 0.51 0.40 0.45 

GESSVDD-0-GR-min (SSVDD) 0.94 0.92 0.90 0.92 0.40 0.89 0.65 0.48 0.47 0.47 
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Table 3 

Gmean results for linear and non-linear data description over manually created corrupted versions of heart dataset, selected variants from the proposed framework vs. 

other one-class classification methods. 

Dataset 

Heart Clean train set Corrupted test 

set 

Heart Corrupted train set Clean test 

set 

Heart Corrupted train set Corrupted test 

set 

Target class DP DA Av. DP DA Av. DP DA Av. 

Linear 

GESSVDD-Sb-GR-max 0.17 0.22 0.20 0.24 0.36 0.30 0.36 0.30 0.33 

GESSVDD-kNN-GR-min 0.09 0.00 0.04 0.32 0.08 0.20 0.35 0.44 0.39 

GESSVDD-I-GR-min 

(ESSVDD) 

0.00 0.00 0.00 0.00 0.00 0.00 0.35 0.39 0.37 

GESSVDD-0-GR-min 

(SSVDD) 

0.00 0.17 0.09 0.00 0.00 0.00 0.36 0.40 0.38 

ESVDD 0.00 0.00 0.00 0.00 0.00 0.00 0.43 0.49 0.46 

SVDD 0.38 0.41 0.39 0.42 0.27 0.35 0.48 0.51 0.49 

OCSVM 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.41 0.38 

Non-Linear 

GESSVDD-Sb-GR-max 0.35 0.23 0.29 0.33 0.31 0.32 0.27 0.45 0.36 

GESSVDD-kNN-SR-max 0.04 0.03 0.03 0.00 0.00 0.00 0.47 0.40 0.44 

GESSVDD-I-GR-min 

(ESSVDD) 

0.37 0.15 0.26 0.00 0.11 0.06 0.38 0.46 0.42 

GESSVDD-0-GR-min 

(SSVDD) 

0.12 0.24 0.18 0.00 0.09 0.04 0.37 0.47 0.42 

ESVDD 0.00 0.00 0.00 0.00 0.03 0.02 0.49 0.52 0.51 

SVDD 0.07 0.15 0.11 0.22 0.07 0.15 0.47 0.45 0.46 

OCSVM 0.00 0.00 0.00 0.00 0.07 0.03 0.50 0.49 0.50 

GESVDD-PCA 0.00 0.00 0.00 0.00 0.00 0.00 0.51 0.53 0.52 

GESVDD-Sw 0.00 0.00 0.00 0.00 0.00 0.00 0.53 0.52 0.52 

GESVDD-kNN 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.52 0.50 

GESVM-PCA 0.00 0.00 0.00 0.00 0.00 0.00 0.49 0.49 0.49 

GESVM-Sw 0.00 0.00 0.00 0.00 0.05 0.03 0.50 0.48 0.49 

GESVM-kNN 0.00 0.00 0.00 0.00 0.03 0.02 0.49 0.50 0.49 
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We applied Wilcoxon Sign-Ranks separately for linear and 

on-linear methods. We compared all other linear methods 

n Table 1 against our proposed GESSVDD-kNN-GR-min vari- 

nt and all other non-linear methods Table 1 against our pro- 

osed GESSVDD-kNN-SR-max variant. We give the T -values in 

able 1 and bold the values if they show that the difference be- 

ween the methods is statistically significant at 0.05 significance 

evel. Negative values indicate that the other method was perform- 

ng better than our proposed variant GESSVDD-kNN-GR-min or 

ESSVDD-kNN-SR-max. We see that GESSVDD-kNN-GR-min out- 

erforms ESVDD and SVDD in a statistically significant manner for 

inear data description and GESSVDD-kNN-SR-max outperforms ES- 

DD in a statistically significant manner for non-linear data de- 

cription. All other differences are statistically insignificant. How- 

ver, it should be noted that for individual datasets the differences 

n both ways can be still significant due to different reasons, such 

s our proposed variant failing with MNIST due to the drastic di- 

ensionality reduction, and it cannot be concluded that the selec- 

ion of the method is insignificant. 

In evaluating the effect of added noise on the features of the 

eart dataset, it can be noticed that GESSVDD-Sb-GR-max performs 

econd-best in the linear case when only the train or test set is 

orrupted. In the non-linear case of adding noise to either train 

r test set, GESSVDD-Sb-GR-max performs best on average. While 

he competing methods perform better than the proposed meth- 

ds when both train and test datasets are corrupted, the compet- 

ng methods underperform severely if the only train or test set is 

orrupted. There is not a single case where the proposed method 

ould severely underperform. We report the performance of the 

elected variants of our method along with the competing methods 

n Table 3 . We provide the Gmean results for all proposed variants 

ver the Heart dataset and its manually created corrupted versions 

n Section S2 and T P R , T NR F P R , and F NR results in Section S3 of

he supplementary material. 

We carried out a sensitivity analysis of different hyperparam- 

ters. Fig. 4 shows the sensitivity plot for non-linear GESSVDD- 
r

12 
NN-SR-max trained over MNIST dataset with target class 0. For all 

ther variants, we provide the plots of sensitivity analysis in Sec- 

ion S6 of the supplementary material. We observe that the per- 

ormance of GESSVDD-kNN-SR-max is not sensitive to the hyper- 

arameter η. In the case of increasing the value of hyperparame- 

er d, a sudden drop and then a steady rise in the performance is 

bserved over the range of values. We also notice the poor perfor- 

ance of the model at higher values of hyperparameter C; more- 

ver, a varying performance is noticed at different values for hy- 

erparameter σ . 

. Conclusion 

In this paper, we formulated subspace learning for one-class 

lassification in the graph embedding framework and discussed 

he novel insights obtained from this formulation. In particular, we 

howed that subspace learning for SVDD applies a weighted PCA 

ver the support vectors and outliers to define the projection ma- 

rix and we discussed how this information can be combined with 

ther data relationships in the optimization process via an adapt- 

ble graph. We also formulated a novel Graph-Embedded Subspace 

upport Vector Data Description with gradient-based, spectral, and 

pectral regression-based solutions and different adaptable graphs. 

e reported the experimental results over nine different datasets 

y considering each class of a dataset as a target class at a time. 

he results showed that the proposed framework with the kNN 

raph as the adaptable graph had the best overall performance, 

hile the gradient-based solution was more stable than the spec- 

ral and spectral regression-based solutions. 

While the proposed framework showed promising results over 

ifferent datasets and can be applied on different domain applica- 

ions, there are some limitations that can be taken into account in 

he future. The methods exploit only a single Laplacian L x to en- 

orce local/global data relations relevant to the task. This can be 

nhanced by exploiting multiple graphs by combining the geomet- 

ic data relationships using a weight parameter. 
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In the future, we plan to extend the proposed methods in the 

ramework by investigating other kernel types in the non-linear 

ase. The proposed framework can also be extended to multi- 

odal one-class classification, where data is projected from mul- 

iple modalities to a joint subspace. 
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