
Obtaining a ROS-Based Face Recognition and Object

Detection: Hardware and Software Issues

Petri Oksa
1*

, Tero Salminen
1

and Tarmo Lipping
1

1 Tampere University, Computing Sciences, Pohjoisranta 11, FI-28100 Pori, FINLAND

petri.oksa@tuni.fi

Abstract. This paper presents solutions for methodological issues that can oc-

cur when obtaining face recognition and object detection for ROS-based (Robot

Operating System) open-source platform. Ubuntu 18.04, ROS Melodic and

Google TensorFlow 1.14 are used in programming the software environment.

TurtleBot2 (Kobuki) mobile robot with an additional on-board sensors are used

to conduct the experiments. Entire system configurations and specific hardware

modifications that were proved mandatory to make out the system functionality,

are also clarified. Coding (e.g., Python) and sensors installations are detailed

both in on-board and remote laptop computers. In experiments, TensorFlow

face recognition and object detection are examined by using TurtleBot2 robot.

Results show how objects and faces were detected when the robot is navigating

in the previously 2D mapped indoor environment.

Keywords: ROS, Ubuntu, Object detection, Face recognition, 3D sensor, Li-

DAR.

1 Introduction

ROS is versatile software framework that can also be util ized in many other applica-

tions than in conventional robotic solutions. As a noteworthy example, mobile robot

equipped with machine learning software platform can bring added value and purpos-

es of use when connected along with environment mapping and autonomous naviga-

tion. In recent novel software frameworks, object detection and face recognition are

possible to build on an open-source platform.

Google TensorFlow offers free software libraries mainly supported for machine

learning application. Today, TensorFlow offers a new opportunity for researchers and

developers to utilize it in many ROS-based solutions [1], [2], [3], [4], [5]. In [6] au-

thor presents an extensive ROS toolbox for object detection, tracking and face/action

recognition with 2D and 3D support enabling the robot to understand the environ-

ment. At its simplest way to adapt this, only web camera and ROS computer is need -

ed.

AutoRobo project (Autonomous Robot Ecosystem) consists of an open -source

cloud-computing platform, software frameworks and a physical multi-robot environ-

ment for the automation or assisting of preprogrammed work processes. Among oth -

ers, healthcare and hospice operations retain processes which can be assisted by mo -

bile robots. The service architecture model developed in Tampere University, Pori,

consists of a novel mobile cloud robotic platform in the support of patient work. Case

study presented in this article is implemented in the system environment illustrated in

Fig 1.

Compatibility of software

repository packages to a

certain system architecture,

ROS topic subscribing,

Ubuntu-TensorFlow pack-

ages and ROS distribution

may cause issues. Guide-

lines and instructions are

available in several Q&A

forums and public source

repositories for instance in

Github/developer pages.

Nevertheless, they can pro-

pose incompatible for the

users ROS distribution and

versions of package depend-

encies [7]. To overcome

such difficulties that can emerge system environment represented in Figure 1, guide-

lines for coding, required software package installations and robot hardware set -up

are given. The aim of this research was to find solutions for issues that can arise of

open-source object-/face recognition and sensors software installation for ROS robot

platform and also find solutions to overcome them.

The rest of the paper is organized as follows. Section 2 provides TurtleBot2 Mon -

tado package installation and remarks. Section 3 describes Ubuntu sensors installa -

tion for Real Sense and A2 LiDAR. In Section 4 TensorFlow package installation

guidelines are given. Section 5 presents experiments considering the whole system

functionality. Finally, results and conclusions are discussed in the last Section 6.

2 TurtleBot2 Package Installation and Remarks

TurtleBot2 Debian installation option is not supported for ROS Melodic on Ubuntu

18.04 distribution. Therefore, only way to install the TurtleBot2 package is to down -

load a package and build it from source code. For previous ROS distributions, like

Kinetic, Turtlebot2 package can be installed via Debian packages. In our system env i-

ronment, ROS Melodic distribution is formerly installed, so a Turtlebot2 package

installation follows the source code compiling. The complete ROS Melodic install a-

tion instructions can be found on ROS.org web page at

http://wiki.ros.org/melodic/Installation/Ubuntu.

The first thing is to build the TurtleBot2 workspace. In terminal, the following

command directs to a catkin workspace directory

$ cd catkin_ws/src

Fig. 1. AutoRobo System Overview

http://wiki.ros.org/melodic/Installation/Ubuntu

After this, the software package should be downloaded from

https://github.com/gaunthan/Turtlebot2-On-Melodic. The following command (inside

the root of catkin workspace) builds up the running environment for Turtlebot2 [8].
$ curl -sLf https://raw.githubusercontent.com/gaunthan/Turtlebot2-

On-Melodic/master/install_all.sh | bash

After downloading the package, the 'src' folder should be renamed to 'turtlebot' as

depicted below.

The following command (inside the root of catkin workspace) builds up the run -

ning environment for Turtlebot2.
$ catkin_make

In case of the following error, the joystick package should therefore be installed.

The next two command lines install the missing joystick package
$ sudo apt install ros-melodic-joy

$ catkin_make

By connecting a Turtlebot2 to the on-board computer and running the launch file

below brings up the robot
$ roslaunch turtlebot_bringup minimal.launch

The following error might occur during the installation, but it does not cause any

disadvantages and can be ignored in this phase. The robot should be now fully co n-

trollable and ready to go.

If TurtleBot2 is equipped with e.g. Microsoft Xbox Kinect sensor, .bashrc must

then configured. The following line should be added on it:
$ export TURTLEBOT_3D_SENSOR=Kinect

3 Sensors Installation and Issues

This section presents the robot on-board sensors installation used in the experiments.

Sensors installation procedure is quite straightforward but can be complicated in case

of the older ROS-compatible robot types such as TurtleBot2 (Kobuki).

3.1 Real Sense D435

In our robotic platform, Real Sense sensor is dedicated for object detection and face

recognition and Kinect for the indoor environment mapping and navigation. We start

with ROS driver installation. Note that in addition to sensor driver installation, libre-

alsense is also needed.

At first, the system must be updated by typing sudo apt-get update in a termi-

nal. Then, software package have to download by running the following command in

terminal
$ sudo apt-get install ros-melodic-realsense2-camera

When the download is completed, libraries and keys must be installed by running

the next four command lines
$ sudo apt-key adv --keyserver keys.gnupg.net --recv-key

F6E65AC044F831AC80A06380C8B3A55A6F3EFCDE || sudo apt-key adv --

keyserver hkp://keyserver.ubuntu.com:80 --recv-key

F6E65AC044F831AC80A06380C8B3A55A6F3EFCDE

$ sudo add-apt-repository "deb http://realsense-hw-

public.s3.amazonaws.com/Debian/apt-repo bionic main" -u

$ sudo apt-get install librealsense2-dkms

$ sudo apt-get install librealsense2-utils

When the installation is completed and debugged without any errors, computer

should reboot by running sudo reboot in terminal to make all changes effective. Now

the Real Sense sensor should be ready. To test it, the following launch file starts the

sensor
$ roslaunch realsense2_camera rs_camera.launch

Camera stream coming from the sensor can be selected by opening it in own rqt

window. We use the next command line operation to open it
$ rosrun rqt_image_view rqt_image_view

When choosing the image_raw from the drop-down menu, a camera image should

come into view as showed in Fig. 2.

3.2 A2 LiDAR

An additional sensor to accurate TurtleBot2

SLAM (Simultaneous Localization and

Mapping) gmapping in the experiments is

A2 LiDAR [9]. LiDAR improves the envi-

ronment mapping by scanning the envi-

ronment 360 degrees besides the other sen-

sors. It is placed on top of a TurtleBot2; see

Figure 5 for sensors fittings.

Slamtec A2 drivers are available at

http://wiki.ros.org/rplidar and

https://github.com/roboticslab-fr/rplidar-turtlebot2. In terminal, command cd

~/catkin_ws/src opens the directory into catkin workspace. The following com-

mand downloads the package
$ git clone https://github.com/roboticslab-fr/rplidar-

turtlebot2.git

After the download is completed, following commands builds the package
$ cd ~/catkin_ws

Fig. 2. Camera stream from Real

Sense

$ catkin_make

For ensuring complete build, update is recommended
$ cd src/rplidar-turtlebot2

$ git pull

$ catkin_make

Next, USB settings should be changed
$ cd src/rplidar-turtlebot2/rplidar_ros/scripts

$ chmod +x create_udev_rules.sh

$./create_udev_rules.sh

After USB configurations, the setup.bash source is run by command source

devel/setup.bash. Now the sensor should be ready. To test it, the following launch

file starts the sensor
$ roslaunch rplidar_ros view_rplidar.launch

The resulted ROS visualization (rviz) view should look something like shown in

Fig. 3. If the roslaunch do not work properly, USB unplug/plug-in helps to wake up

the sensor.

4 TensorFlow Package

Installation

We install TensorFlow version 1.14 being com-

patible to our laptop software/hardware architec-

ture and Ubuntu distribution. GPU (Graphics

Processing Unit) requirements must also take into

account. TensorFlow uses CUDA (Compute Uni-

fied Device Architecture) which means that

NVIDIA GPUs are supported. In case of GPU incompatibility, TensorFlow can be

used with CPU (Central Processing Unit) support only as used in our installation

method.

Preliminaries prior to TensorFlow package installation are that both ROS Melodic

and camera (Real Sense) are successfully installed. Note that TensorFlow should be

installed before the ROS/TensorFlow recognition package installation.

ROS/TensorFlow package is downloadable at

https://github.com/cagbal/ros_people_object_detection_tensorlow. Then, system re-

quirements should be checked via TensorFlow (Ubuntu) webpage:

https://www.tensorflow.org/install/pip.

At first, we start with pip (Python Package Installer) and python-dev installations
$ sudo apt update

$ sudo apt install python-dev python-pip

Then, TensorFlow and TensorFlow hub installation
$ pip install tensorflow==1.14

$ pip install tensorflow-hub==0.7.0

After installations above, it is recommended to debug the code by running it in Py-

thon shell
$ python

$ import tensorflow as tf

$ import tensorflow_hub as hub

If any error messages do not show up in shell, installation had gone successfully.

As we aim to use ROS and TurtleBot2 robot for object detection and face recognition,

Fig. 3. A2 LiDAR view in rviz

TensorFlow API (Application Programming Interface) for ROS is needed. To obtain

that, we use repository available at

https://github.com/cagbal/ros_people_object_detection_tensorflow. This repository

uses a number of open-source projects to work properly:

• [Tensorflow]

• [Tensorflow-Object Detection API]

• [Tensorflow Hub]

• [ROS]

• [Numpy]

• [face_recognition] https://github.com/ageitgey/face_recognition

• [dlib]

• [cob_perception_common] https://github.com/ipa-

rmb/cob_perception_common.git

• [protobuf]

For Tracker part:

• scikit-learn

• scikit-image

• FilterPy

Firstly, it is important to notice, that the repository [cob_perception_common]

compatibility depends on ROS distribution. For ROS Melodic, it is ipa320 as showed

in the following repository cloning. Next, TensorFlow should be installed on the sys-

tem by running the following commands one by one in terminal.
$ cd catkin_ws/src
$ git clone --recursive

https://github.com/cagbal/ros_people_object_detection_tensorflow.g

it

$ git clone https://github.com/ipa320/cob_perception_common.git

$ cd ros_people_object_detection_tensorflow/src

$ protoc object_detection/protos/*.proto --python_out=.
$ cd ~/catkin_ws

$ rosdep install --from-path src/ -y -i

$ catkin_make

$ pip install face_recognition

ROS TensorFlow API package is now successfully downloaded and installed. The

next phase is to change directories so that they match to destination system directory

structure. Python files (.py) in directory path

~/catkin_ws/src/ros_people_object_detection_tensorflow/src should be

changed as follows

action_recognition.py [replace ”passthrough” to “bgr8” and save]

Same filename change should be done to

cob_people_object_detection_tensorflow.py, face_recognizer.py and

projection.py. Then .yaml files in directory path

https://github.com/ipa-
https://github.com/ipa-

~/catkin_ws/src/ros_people_object_detection_tensorflow/launch should

be changed as follows

action_recognition_params.yaml [change ”camera_topic” to ”Real Sense”

and save]

Same camera_topic change should also be done to

cob_face_recognizer_params.yaml, projection_params.yaml and

cob_people_object_detection_tensorflow_params.yaml. In the latter .yaml

file, rgb should be used and set the depth_image to topics as follows.

5 Experiments

In this section the entire system is experi-

mented and analysed. All the experiments in

this article were done on a Lenovo Thinkpad

Carbon X1 laptop detailed in Table 1. Both

on-board and remote computers are similar

laptop computers.

Table 1. On-board computer used in experiments.

Memory Processor Graphics OS Architec-

ture

Hard

Disk

Ubuntu

Distribution

15,2 GiB Intel® CoreTM i5-

835OU CPU @

1.70GHz × 8

Intel® UHD

Graphics 620

(KBL GT2)

64-bit 503,0 GB Ubuntu

18.04.5 LTS

5.1 Face Recognition

When applying face recognition, only face images in “people” folder are recognized.

Thus, this folder should include all the face images that are going to be recognized.

All the images should be in .png format and file named according the person as

showed in Fig. 4.

Fig. 4. Face recognition database

Adding new images into this folder database is simple. To make recognition as ac-

curate as possible, white background of the image gives the best results for the recog-

nition. In this way, framing outline between the faces and background are more accu -

rate reducing the delays in recognition.

5.2 Testing the System

In order to test the system functionality, the following preliminaries should be done.

In the first, we bring up Real Sense sensor by running the following launch file
$ roslaunch realsense2_camera rs_camera.launch

By opening the second terminal, we set up the recognition. There are options to

start all at once or separately in their own terminals for object detection and face

recognition. To launch everything, run the following launch file in terminal
$ roslaunch cob_people_object_detection_tensorflow alltogether.launch

Launching only object detection
$ roslaunch cob_people_object_detection_tensorflow

cob_people_object_detection_tensorflow.launch

Launching only face recognizer
$ roslaunch cob_people_object_detection_tensorflow

cob_face_recognizer.launch

By opening rqt_image_view it is possible to visually monitor and follow all recog-

nition operations
$ rosrun rqt_image_view rqt_image_view

After running the rqt_image_view command, a new window opens showing video

stream from a Real Sense camera.

When choosing “/object_detection/detections_image” instead of

“/camera/color/image_raw” from the left upper corner menu bar, all recognitions

should appear in the view as shown below.

6 Results and Discussion

The aim of this research was to find solu-

tions for issues that can arise of TensorFlow

open-source object-/face recognition and

sensors software installation for ROS robot

platform. To prove these issues, experi-

ments conducted with TurtleBot2 robot was

carried out. Practical and detailed solutions

for each installation issue were given step

Fig. 6 Recognition

by step. These instructions are kept hands-on type answering for the most crucial

case-driven issues when setting up ROS and TensorFlow communication. Available

source codes and software packages are utilized, such as several ROS packages from

Github public repository, reducing the complexity of further programming.

At its whole, the entire system is proved functional even though getting all hard-

ware working seamlessly with ROS platform remain quite complex. Fig. 5 shows the

TurtleBot2 physical structure after sensors are fitted on the robot. Kinect sensor is

located on the middle shelf; Real Sense and LiDAR are on the top shelf.

In the following Fig. 6 left hand side upper

corner is the window of object detection, right

hand side upper corner shows face recognition

window and on the lower right-hand side is

video stream from Kinect. The indoor envi-

ronment shown in figure is previously mapped

by using TurtleBot2’s gmapping algorithm.

Fig. 7 shows the CPU load when bringup

minimal.launch, rviz_launchers

view_navigation.launch, teleop key-

board_teleop.launch, rs_camera.launch

and tensorflow alltogether.launch are

all launched together.

Percentages 205 % and

189 % in Figure 7 are both

TensorFlow programs

causing high CPU load. To

solve the aforementioned

problem, main solutions

would be:

• To extend computa-

tion capacity of on-board

computer (especially

RAM disk space)

• To make sure that all images are in applicable image format

• Same outlines and white background color in all images located in people folder

The motivation for using TensorFlow with ROS is the need for object detections

and face recognition implemented in ROS-based moving robot. Primary goal is an

open-source robotic platform for all users that have an interest to develop the pro-

posed system platform further. In the near future, we continue by combining both

Kinect and A2 LiDAR topics into a one rviz window producing a better gmapping

outcome. While still experimental, the entire system environment is fully functional,

as demonstrated by the previous experiments.

Fig. 5. Robot Platform

Fig. 7 CPU load

References

1. Kouzehgar, M., Tamilselvam, Y. K., Heredia, M. V., Elara, M. R.: Self-reconfigurable fa-

çade-cleaning robot equipped with deep-learning-based crack detection based on convolu-

tional neural networks. Automation in Construction, 108 (2019)

2. Tongloy, T., Chuwongin, S., Jaksukam, K., Chousangsuntorn, C., Boonsang, S.: Asyn-

chro-nous deep reinforcement learning for the mobile robot navigation with supervised

auxiliary tasks. In IEEE 2017 2nd International Conference on Robotics and Automation

Engineering (ICRAE), pp. 68-72 (December 2017)

3. Millan-Romera, J. A., Perez-Leon, H., Castillejo-Calle, A., Maza, I., Ollero, A.: ROS-

MAGNA, a ROS-based framework for the definition and management of multi-UAS co-

op-erative missions. In IEEE 2019 International Conference on Unmanned Aircraft Sys-

tems (ICUAS), pp. 1477-1486 (June 2019)

4. Reddy, P. P.: Driverless Car: Software Modelling and Design Using Python and Tensor-

flow, No. 1446, EasyChair (2019)

5. Gaifullin, R., Ivanou, M., Gazizov, R.: Natural Human-Robot Interaction Toolkit. In Inter-

national Conference on Human Interaction and Emerging Technologies. Springer, Cham.,

pp. 196-200 (August 2019)

6. ROS People Object Detection & Action Recognition Tensorflow,

https://github.com/cagbal/ros_people_object_detection_tensorflow, last accessed

2020/10/30

7. Cervera, E., Del Pobil, A. P.: Roslab: sharing ros code interactively with docker and ju-

pyterlab. IEEE Robotics & Automation Magazine, 26(3), 64-69 (2019)

8. Make Your TurtleBot2 run on ROS Melodic (Ubuntu 18.04),

https://github.com/gaunthan/Turtlebot2-On-Melodic, last accessed 2020/10/30

9. Akhmetzyanov, A., Yagfarov, R., Gafurov, S., Ostanin, M., Klimchik, A.: Exploration of

Underinvestigated Indoor Environment Based on Mobile Robot and Mixed Reality. In In-

ternational Conference on Human Interaction and Emerging Technologies. Springer,

Cham., pp. 317-322 (August 2019)

