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ABSTRACT

Human mitochondrial DNA (mtDNA) is a ∼16.5 kb circular molecule encoding
37 genes, including 13 protein subunits of the oxidative phosphorylation complexes
responsible for producing the majority of adenosine triphosphate that cells use for
chemical energy. The vast majority of the mitochondria-destined proteins, however,
are encoded by nuclear DNA, and in order to adapt to the ever-changing cellular mi-
lieu, these two genetic compartments maintain a bi-directional regulation, leading
to alterations in DNA methylation (DNAm) and gene expression. Genetic varia-
tion in the mtDNA is also capable of affecting DNAm and gene expression, but the
effects in natural populations are not completely known. As mitochondria lie at
an interface between the bioenergetic processes of the human body, they are potent
mediators of common metabolic disorders. The maternal inheritance of mtDNA
has also created a hypothesis that mtDNA variation may have sex-specific effects on
specific traits.

The aims of this study were to examine the associations of mtDNA single-nucleo-
tide polymorphisms (mtSNPs) with genome-wide peripheral blood transcriptome
and DNA methylation profiles and to investigate whether these associations show
sexual dimorphism or are affected by the onset of prediabetes, a condition preceding
type 2 diabetes mellitus. The mitochondrial genetic determinants of blood pressure
were also examined.

In study I, genome-wide peripheral blood transcript data and mtSNPs obtained
by next-generation sequencing from a population-based Young Finns Study (YFS)
cohort (n = 955) were used. In study II, a discovery association study on nuclear
DNAm was performed in the YFS population (n = 926), and replication was sought
in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study (n = 2,317). In
study III, mitochondrial genetic associations with blood pressure were studied in the
YFS (n = 1,150) and in the Finnish Cardiovascular Study (FINCAVAS; n = 3,112)
by a meta-analysis. In the LURIC and FINCAVAS populations, mtSNPs were ob-
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tained with microarrays. The sexual dimorphism was examined by applying the
analyses separately to males and females and testing for significant differences in the
effect size (I–III). The prediabetes-specific effects were investigated similarly by per-
forming the analyses separately to individuals with prediabetes and normoglycaemia
(I–II).

Study I identified 53 associations between mtSNPs and gene transcripts, corre-
sponding to 7 genes and 31 variants. Some associations were also replications of
previously reported results. Eight associations remained significant after conditional
analysis. In addition, five genes showed differential expression between haplogroups.
One association demonstrated prediabetes-specific effects, while no evidence for sex-
specific effects on gene expression was observed. In study II, numerous methylation
quantitative trait mtDNA loci were observed in the discovery phase. Of these, 19
variant-based and four haplogroup-based associations were replicated and reached
epigenome-wide significance when the results were combined in a meta-analysis.
Two differentially methylated sites associated with gene transcripts in the YFS. Dis-
covery analysis also showed that several associations had sex- or prediabetes-specific
effects, but none of them were replicated in the LURIC population. Study III did
not identify any variants associated with blood pressure levels nor any evidence of
sexual dimorphism.

These results both reveal new and replicate previously reported genetic associa-
tions with peripheral blood transcriptomics. For the first time on a cohort level, mi-
tochondrial genetic determinants of DNAm are presented. Some of the transcripts
and CpG sites may be linked to the biological processes taking place in mitochon-
dria, which suggests that the associations represent the mitochondrial–nuclear com-
munication in order to maintain cellular homeostasis. The variant associations with
transcriptomics and DNAm did not correspond to each other, which indicates that,
if there is a causal relationship between mtDNA variation and peripheral blood tran-
scriptomics, the regulatory mechanisms are not mediated by changes in DNAm. As
suggested by several previous studies, mtDNA variation does not seem to have a sig-
nificant role in the regulation of blood pressure. Finally, no convincing evidence was
found of sex- and prediabetes-specific effects of mtDNA variation.
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TIIVISTELMÄ

Ihmisen mitokondrio-DNA (mtDNA) on rengasmainen, n. 16 500 emäsparin mit-
tainen 37:ää eri geeniä koodaava molekyyli. Kolmetoista näistä geeneistä muodos-
taa osia oksidatiivisen fosforylaation entsyymikomplekseihin, joiden avulla soluil-
le tuotetaan kemiallista energiaa adenosiinitrifosfaatin muodossa. Suurin osa mito-
kondriossa vaikuttavista proteiineista on kuitenkin tuman DNA:n koodaamia. Jot-
ta solujen toiminta sopeutuu asianmukaisesti alati muuttuviin olosuhteisiin, näiden
kahden genomin välinen kahdensuuntainen vuorovaikutus saa aikaan muutoksia
DNA:n metylaatiossa ja geenien ilmentymisessä. Myös mtDNA:n geneettisellä muun-
telulla on osoitettu olevan oma vaikutuksensa näihin muutoksiin, mutta väestöta-
solla vaikutukset eivät kuitenkaan ole täysin tunnettuja. Mitokondrioiden keskei-
nen rooli elimistön aineenvaihdunnassa korostaa niiden mahdollista myötävaikutus-
ta metabolisten häiriöiden kehittymisessä. MtDNA:n maternaalinen periytyminen
on myös johtanut hypoteesiin, jonka mukaan mtDNA:n muuntelulla saattaa olla
sukupuolen mukaan määräytyviä vaikutuksia.

Tämän työn tavoitteena oli tarkastella mtDNA:n yhden emäksen polymorfis-
mien (mtSNP) assosiaatioita kokoverestä mitattuun genomin laajuiseen geenien il-
mentyiseen ja DNA:n metylaatioon. Lisäksi tavoitteena oli selvittää, vaikuttaako su-
kupuoli tai prediabetes, tyypin 2 diabeteksen esiaste, osaltaan näihin assosiaatioihin.
Lisäksi tutkittiin mtDNA:n muuntelun yhteyttä verenpaineeseen.

Osatyössä I käytettiin Lasten sepelvaltimotaudin riskitekijät (LASERI) -aineistosta
(n = 955) mitattua transkriptiodataa sekä rinnakkaissekvensoinnin avulla määritet-
tyjä mtDNA-variantteja. Osatyössä II mtSNP:iden ja DNA:n metylaatiotasojen väli-
siä assosiaatioita selvitettiin ensin LASERI-aineistossa (n = 926), minkä jälkeen löy-
döksiä pyrittiin toistamaan Ludwigshafen Risk and Cardiovascular Health (LURIC)
-kohortissa (n = 2317). Osatyössä III tutkittiin mtSNP:iden yhteyttä verenpainee-
seen LASERI- (n = 1150) ja Finnish Cardiovascular Study (FINCAVAS) -aineistoissa
(n = 3112) meta-analyysin keinoin. MtSNP:t määritettiin LURIC- ja FINCAVAS-
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aineistoissa DNA-mikrosiruja käyttämällä. Sukupuolen (I–III) ja prediabeteksen (I ja
II) vaikutusta tutkittiin analysoimalla erikseen miehet ja naiset sekä prediabeetikot
ja normoglykeemiset henkilöt ja vertailemalla assosiaatioiden efektikokoja ryhmien
välillä.

Osatyössä I havaitiin yhteensä 53 merkitsevää assosiaatiota mtSNP:iden ja trans-
kriptien välillä, koostuen seitsemästä eri geenistä ja 31 variantista. Eräät assosiaa-
tiot oli jo aiemmin havaittu muissa tutkimuksissa, ja tässä työssä ne kyettiin repli-
koimaan. Ehdollistamisanalyysin jälkeen kahdeksan löydöstä säilyi merkitsevänä.
Lisäksi viiden geenin ekpressiotasoissa oli eroja haploryhmien välillä. Prediabetes
vaikutti yhden mtSNP:n ja geenitranskriptin väliseen yhteyteen, mutta sukupuolel-
la ei ollut merkitsevää vaikutusta. Osatyössä II LASERI-aineistossa havaittiin aluk-
si lukuisia assosiaatiosignaaleja mtDNA-variaation ja metylaation välillä, joista 19
mtSNP- ja neljä haploryhmäsignaalia replikoitui LURIC-aineistossa ja säilyi lisäksi
meta-analyysissä merkitsevänä koko epigenomin tasolla. Kaksi tunnistetuista mety-
laatiokohdista oli yhteydessä geeniekspressioon LASERI-aineistossa. Samassa aineis-
tossa havaittiin myös useita assosiaatioita, joihin sukupuolella tai prediabeteksellä oli
merkitsevä vaikutus, mutta nämä tulokset eivät toistuneet LURIC-aineistossa. Osa-
työssä III ei havaitu viitteitä siitä, että mtDNA:n variaatiolla olisi merkitsevää yh-
teyttä verenpaineeseen tai että sukupuolikaan vaikuttaisi näihin assosiaatiosignaalei-
hin.

Tässä työssä sekä osoitetaan uusia että replikoidaan jo aiemmissa tutkimuksissa
julkaistuja mtDNA:n variaation ja geeniekspression välisiä assosiaatiosignaaleja, ja
DNA:n metylaation ja mtDNA-variaation välisiä yhteyksiä tutkitaan ensimmäistä
kertaa väestötason kohorteissa. Osa tunnistetuista geenitranskripteistä ja metylaatio-
kohdista voidaan yhdistää mitokondrioissa tapahtuviin prosesseihin, ja tulokset voi-
vatkin edustaa tuman ja mitokondrioiden välistä, solutason homeostaasin ylläpitä-
miseksi tapahtuvaa signalointia. Assosiaatiosignaalit geeniekspression ja metylaation
välillä eivät kuitenkaan vastanneet toisiaan. Tämä tarkoittaa, että mikäli mtDNA-
variaation ja geeniekspression välillä on kausaalinen yhteys, säätelymekanismit ei-
vät ole metylaatiovälitteisiä. Useat aiemmatkin tutkimukset ovat viitanneet siihen,
ettei mtDNA:n variaatiolla näytä olevan merkittävää vaikutusta verenpaineeseen.
Vakuuttavaa osoitusta sukupuolen tai prediabeteksen vaikutuksesta edellä mainit-
tuihin assosiaatiosignaaleihin ei havaittu.
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1 INTRODUCTION

Mitochondria – from the Greek mitos (thread-like) and khondros (grain or granule) –
are cellular organelles with a myriad of functions. To reiterate an often-used cliché,
they are ‘the powerhouses of the cell’, as they produce the majority of a cell’s adeno-
sine triphosphate (ATP) through oxidative phosphorylation (OXPHOS). (Schon et
al. 2012.) Beyond cellular energy production, mitochondria mediate several key cel-
lular functions, such as calcium signalling, the regulation of cellular metabolism
via haem and steroid synthesis, and programmed cell death. Many fundamental
metabolic pathways, such as the tricarboxylic acid (TCA) cycle and the fatty acidβ-
oxidation, take place in mitochondria. (Giacomello et al. 2020; Pfanner et al. 2019.)

Human mitochondrial DNA (mtDNA) is a maternally inherited, double-stranded
circular molecule containing 37 genes with high sequence variability. While there are
many examples of pathogenic mtDNA polymorphisms resulting in severe disease,
most variants are benign, only slightly pathogenic or even beneficial, resulting in
changes only at a cellular level. (Stewart and Chinnery 2021.)

Bidirectional communication exists between nuclear and mitochondrial genomes
in order to maintain optimal cellular function under different physiological and
pathological conditions (Mottis et al. 2019). MtDNA variants have been observed
to associate with nuclear gene expression in studies in vitro (Kenney et al. 2014b), in
common mouse models (Dunham-Snary et al. 2018), and in mitochondrial genome-
wide association studies (GWASs) (Kassam et al. 2016). The hypothesis that mtDNA
variation can modulate the nuclear DNA (nDNA) methylation profiles has been
strengthened by studies in vitro (Atilano et al. 2015; Kopinski et al. 2019) and a small
study of articular cartilage (Cortés-Pereira et al. 2019), but so far no evidence exist
from larger-scale GWASs.

The maternal inheritance of mtDNA has raised a hypothesis that mtDNA muta-
tions may accumulate within generations if they show male-specific effects. A study
of Drosophila melanogaster found evidence of sex-specific mitochondrial genetic con-
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trol of gene expression (Innocenti et al. 2011), but in humans, evidence is lacking
(Kassam et al. 2016).

Under specific physiological, environmental and other genetic circumstances,
mtDNA variants may modulate the susceptibility to common multifactorial dis-
eases. Definitive answers regarding the role of mtDNA variation in blood pressure
levels are lacking, as both positive and negative results have been published (Buford
et al. 2018; Saxena et al. 2006). MtDNA variants have been reported to contribute
to glycaemic traits, possibly via affecting the expression of nuclear genes regulating
cellular energetics (Hwang et al. 2011; Kraja et al. 2019).

This work aims to: a) examine the associations of mtDNA variants with genome-
wide peripheral blood transcriptome and DNA methylation profiles by mitochon-
drial GWASs; b) investigate whether these associations show sexual dimorphism or
are affected by the onset of prediabetes, a condition preceding type 2 diabetes melli-
tus (T2DM); and c) study the mitochondrial genetic determinants of blood pressure
and their sex-specific effects.
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2 REVIEW OF THE LITERATURE

2.1 Mitochondrial form and function

Mitochondria are surrounded by a double-membrane structure, consisting of inner
and outer mitochondrial membranes separated by an intermembrane space. The in-
ner membrane forms several folds (cristae), extending into the mitochondrial matrix
and increasing the surface area. The matrix contains the mitochondrial genome, ri-
bosomes, transfer ribonucleic acid (tRNA) and enzymes taking part in the reactions
of oxidative metabolism. The outer membrane has many protein-based pores, al-
lowing the passage of ions and molecules. (Friedman and Nunnari 2014.) Though
often depicted as discrete bean-like structures, as in Figure 2.1, in reality mitochon-
dria form a dynamic network in which they undergo continual cycles of fusion and
fission (Giacomello et al. 2020).

Mitochondrial DNA

Matrix

Inner membrane

Outer membrane

Intermembrane space

Ribosome

Cristae

Figure 2.1 Schematic structure of a mitochondrion. Derived from ‘Mitochondrion mini’ by Kelvin Ma,
(CC0 1.0), via Wikimedia Commons.
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The core process in OXPHOS is the electron transport chain (ETC) which con-
sists of four protein complexes (I–IV) integrated into the inner mitochondrial mem-
brane. The TCA cycle produces reduced nicotinamide adenine dinucleotide (NADH)
and reduced flavin adenine dinucleotide (FADH2), which donate electrons to the
ETC via OXPHOS complexes I and II, respectively. At complex I, the transfer of
electrons results in the pumping of protons (H+ ions) from the matrix into the in-
termembrane space. Complex II does not span the inner membrane, and no protons
are translocated by it. (Nolfi-Donegan et al. 2020; Zhao et al. 2019.) An overview of
the OXPHOS system in shown in Figure 2.2.
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Figure 2.2 Schematic diagram of the ETC and ATP synthases that comprise the OXPHOS system. The
TCA cycle supplies NADH and FADH2, each of which donate a pair of electrons to the ETC
via OXPHOS complexes I and II, respectively. The electrons are then donated to ubiquinone
(Q) and transferred to Cytochrome c (Cyt c) via complex III. Cytochrome c transports elec-
trons to complex IV, where molecular oxygen is reduced to water. The transfer of electrons
results in the pumping of protons (H+) into the intermembrane space, creating an electro-
chemical potential. The membrane potential is dissipated by the re-entry of protons back
to the matrix through the ATP synthase (complex V), which results in the production of ATP
from adenosine diphosphate (ADP) and inorganic phosphate (Pi). (Nolfi-Donegan et al. 2020;
Zhao et al. 2019.)

From these complexes I and II, the electrons are transferred to ubiquinone, which
serves as an electron carrier to further move the electrons to OXPHOS complex III.
Ubiquinone is reduced to ubiquinol, which is then oxidized by complex III, causing
the electrons to continue their journey to cytochrome c and protons to be moved
to the intermembrane space. OXPHOS complex IV then oxidizes cytochrome c
and transfers the electrons to oxygen, which is reduced to water in aerobic cellular
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respiration. Again, protons are pumped from the matrix, with half of them being
used to form water and the other half transferred to the intermembrane space. (Nolfi-
Donegan et al. 2020; Zhao et al. 2019.)

The generation of one water molecule is accompanied by the pumping of four,
four and two protons from the matrix to the intermembrane space through com-
plexes I, III and IV, respectively. The protons generate an electrochemical gradi-
ent known as the mitochondrial membrane potential. This gradient powers ATP
synthase, also known as OXPHOS complex V, through the proton flow down the
gradient back to the matrix. This results in the synthesis of ATP from adenosine
diphosphate and inorganic phosphate. (Nolfi-Donegan et al. 2020; Zhao et al. 2019.)
The electrochemical potential also drives other mitochondrial functions, such as the
calcium ion uptake via mitochondrial Ca2+ uniporter (Rizzuto et al. 2012), and it
can also be uncoupled to generate heat (Ricquier and Bouillaud 2000).

2.2 Mitochondrial DNA (mtDNA)

Mitochondria are believed to have originated from the engulfment of an α-protobac-
terium by a primordial eukaryotic cell around two billion years ago (Gray et al. 1999;
Margulis 1970). During evolution, they have acquired the aforementioned additional
functions in the cell, and most of the genetic material of the α-protobacterium has
been lost or transferred to the nuclear genome, giving rise to nDNA sequences of
mitochondrial origin (NuMTs). The mitochondrion is the only organelle in mam-
malian cells harbouring its genome outside of the nucleus. (Ricchetti et al. 2004;
Zhang and Hewitt 1996.) What remains in human mitochondria is a double-stranded,
circular mtDNA molecule consisting of 16,569 base pairs. The two strands are differ-
entiated into heavy (H), guanine-rich and light (L), cytosine-rich strands. (Anderson
et al. 1981; Andrews et al. 1999.)

MtDNA contains 37 genes encoding 13 protein subunits of the OXPHOS com-
plexes I, III, IV and V. Complex II is encoded entirely by nDNA. The RNA com-
ponents of the mitochondrial gene expression machinery, 22 tRNAs and two ribo-
somal RNAs (rRNAs), are also encoded by mtDNA (Figure 2.3). Seven of the 13
protein subunits contribute to the OXPHOS complex I (ND1–6 and ND4L), one
to complex III (CYB), three to complex IV (CO1–3), and two to complex V (ATP6
and ATP8). However, nDNA encodes the majority of the protein subunits, as well
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as the proteins required for the ETC assembly. The control region contains control
elements for mtDNA transcription and replication and is considered the most vari-
able region of mtDNA, with three polymorphism-concentrated hypervariable (HV)
regions. (Chinnery and Hudson 2013.) The proteome of human mitochondria is es-
timated at ∼1,500 proteins, indicating that the majority of mitochondrial proteins
are encoded by nDNA (Pfanner et al. 2019).
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Figure 2.3 The human mitochondrial genome. It includes 37 genes, 28 on the heavy (H) strand and 9
on the light (L) strand. The genes encode 13 polypeptide components of the four OXPHOS
complexes, 22 tRNAs (two-letter code) and two rRNAs (RNR1 and RNR2). The ‘MT-’ prefix
is omitted from each gene name for clarity. The non-coding control region (CR) is consid-
ered the most variable region of mtDNA, with three polymorphism-concentrated hypervari-
able (HV) regions. Derived from ‘Map of the human mitochondrial genome’ by Emmanuel
Douzery, (CC BY-SA 4.0), via Wikimedia Commons.
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MtDNA has unique characteristics distinguishing it from nDNA; the genes lack
introns and have no or only a few non-coding bases between them. The control
region is the only significant non-coding area. (Andrews et al. 1999.) MtDNA is
present in multiple copies per cell: the number varies between 100 and 10,000 copies,
depending upon cell and tissue type and cellular energy demand (Chinnery and Hud-
son 2013). The relative quantity of mtDNA compared to nDNA, the mitochondrial
copy number, declines with age and is associated with general health among the el-
derly (Mengel-From et al. 2014). A reduced mtDNA copy number has also been
associated with an increased risk of cardiovascular disease (Ashar et al. 2017), car-
diometabolic disease traits (Liu et al. 2021) and neurodegenerative disease (Yang et
al. 2021).

MtDNA is replicated continuously and randomly, independent of the cell cycle
(relaxed replication) (Birky 1994). A major difference is that while nDNA follows
the laws of Mendelian biparental inheritance, mtDNA is inherited from the mother
(Giles et al. 1980; Hutchison et al. 1974). Paternal transmission of mtDNA has also
been reported (Luo et al. 2018; Schwartz and Vissing 2002), but this theory has been
challenged and considered to be a technical artefact resulting from NuMTs (Lutz-
Bonengel and Parson 2019; Pagnamenta et al. 2021; Rius et al. 2019).

MtDNA was the first significant part of the human genome to be sequenced,
and, later, this nucleotide sequence of one individual of European descent was des-
ignated as the Cambridge Reference Sequence (Anderson et al. 1981). A corrected
version was published two decades later (Andrews et al. 1999), and since then, the
revised Cambridge Reference Sequence (rCRS) has been used as the standard refer-
ence sequence to annotate mtDNA in molecular anthropology, forensic science and
medical genetics (Bandelt et al. 2014). The use of an European reference sequence
has resulted in practical problems in some applications, and, therefore, a new ref-
erence sequence, the Reconstructed Sapiens Reference Sequence (RSRS), has been
proposed (Behar et al. 2012). The RSRS maintains the same position numbering as
rCRS but represents the ancestral genome of ‘Mitochondrial Eve’. A third reference
sequence that is used by, for example, some genotyping microarrays is an African
Yoruba sequence with a length of 16,571 base pairs.
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2.2.1 Variation of mtDNA

The mutation rate of mtDNA is much higher than that of nDNA, approximately
10–100 times faster than nDNA sequences with comparable function, depending
on the mtDNA region (Brown et al. 1979; Neckelmann et al. 1987; Pesole et al.
1999). This is believed to result from the proximity of mtDNA to the reactive oxy-
gen species (ROS) generated during ETC and from the less effective repair machin-
ery than that of nDNA (Chinnery and Hudson 2013; Stewart and Chinnery 2015).
Another hypothesis is that the investment of additional energy to mutation repair
would impair an individual’s ability to transmit genetic information to the next gen-
eration (Wallace 2007).

Mitochondrial single-nucleotide polymorphisms (mtSNPs) are most often transi-
tions (A>G, G>A, T>C, or C>T), whereas transversions (A>C, G>T, C>G etc.)
are about 15 times less frequent (Tamura and Nei 1993). When a point mutation
occurs in one of the many mtDNA molecules of the cell, a mixture of wild-type
and mutated mtDNA molecules is created, a state known as heteroplasmy. That is,
in contrast to nDNA genetic alterations that are dichotomous, mtDNA mutations
have both quantitative and quantized characteristics. When a cell with heteroplas-
mic mtDNA then divides, the two types of mtDNA can be distributed unequally be-
tween the daughter cells, a phenomenon known as vegetative segregation. Mutations
that have occurred within approximately three human generations are usually het-
eroplasmic, and within those generations, the genetic drift drives the heteroplasmic
mtDNA towards a pure mutant or back to a wild-type mtDNA population, a state
known as homoplasmy. (Stewart and Chinnery 2015; Wallace 2007.) This rapid seg-
regation of new mtDNA mutations to homoplasmy has been explained by relaxed
replication and vegetative segregation, together with the ‘mitochondrial bottleneck’
hypothesis whereby the offspring receives only a small subsample of the maternal
mtDNA (Cree et al. 2008; Hauswirth and Laipis 1982; Stewart and Chinnery 2021).

The high mutation rate combined with maternal inheritance could lead to an
accumulation of pathogenic mtDNA mutations, ultimately resulting in mutational
meltdown, a hypothesis known as Muller’s ratchet (Muller 1964). However, the ‘mi-
tochondrial bottleneck’, together with strong purifying selection, eliminates most
pathogenic mutations from the female germ line. Purifying selection is considered
a mode of natural selection by which alleles with reduced fitness or viability are lost
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in a population. (Buford et al. 2018; Stewart et al. 2008.)
While point mutations may be passed down the maternal lineage, deletions are,

for reasons not completely known, rarely inherited, and insertions are not thought
to be pathogenic (Chinnery et al. 2004; Wei and Chinnery 2020). It is thought that
most mtDNA deletions are induced by replication errors (Krishnan et al. 2008). The
clinical severity of a deletion-induced disease correlates with the level and tissue dis-
tribution of the deletion, and mitochondrial dysfunction results from the loss of key
OXPHOS genes (Chinnery and Hudson 2013).

Approximately one-fourth to one-third of variants within gene-encoding regions
appear to be functionally important (Wallace 2010). For a pathogenic variant, the
heteroplasmy level must exceed a critical biochemical threshold before a defect in mi-
tochondrial function can be detected using established laboratory techniques. The
biochemical threshold varies from mutation to mutation and from tissue to tissue,
but is typically 60%–80%. However, it has been suggested that mtDNA mutations
can have biological effects already at much lower heteroplasmy levels. (Stewart and
Chinnery 2015; Stewart and Chinnery 2021.) As next-generation sequencing meth-
ods have been improved, low levels of heteroplasmy (0.2%–2%) have been identi-
fied in virtually all healthy individuals and the heteroplasmy level increases during
life, potentially contributing to common late-onset diseases (Payne et al. 2013). A
study of∼13,000 whole-genome sequences revealed that almost half of them showed
mtDNA heteroplasmy levels of greater than 1% (Wei et al. 2019). Higher hetero-
plasmy levels, above 10%, have been considered moderately rare in healthy indi-
viduals (Stewart and Chinnery 2021), even though a recent Genome Aggregation
Database study observed that 1/250 individuals carry a pathogenic mtDNA variant
with heteroplasmy of above 10% (Laricchia et al. 2022). The highest relative number
of heteroplasmic variants have been detected in tissues with high metabolic activity,
such as muscle and liver, and in lower numbers in blood and bone, for example.
(Naue et al. 2015). From an evolutionary perspective, low-level heteroplasmy could
provide a pool of potential beneficial variants to secure the best mitochondrial res-
piratory machinery for the offspring (Suomalainen 2019).

Pathogenic mtDNA variants fall within a continuous range, from those which
are causal to monogenic disease to common mtDNA polymorphisms affecting the
risk of developing noncommunicable complex human disorders (Figure 2.4). Rare
and inherited pathogenic variants are usually heteroplasmic and located in protein-
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coding and tRNA genes. Diseases caused by these mutations typically affect multiple
organ systems, such as mitochondrial encephalomyopathy, lactic acidosis and stroke-
like episodes syndrome. (Chinnery et al. 2012; Stewart and Chinnery 2015.) Some
homoplasmic variants cause disease only together with certain environmental or ge-
netic factors. An example of a such disease is Leber’s hereditary optic neuropathy
(LHON), resulting in optic nerve degeneration. Mainly males carrying the predis-
posing mutations are at an increased risk of developing the disease. Smoking and
heavy alcohol intake are major risk factors for LHON, even though both LHON
patients and asymptomatic mutation carriers use these substances in higher amounts,
when compared to the general population. (Kirkman et al. 2009; Rabenstein et al.
2021.)

Low-level
heteroplasmies

Heteroplasmy level

Population allele frequency

Environmental, lifestyle and other genetic factors

Genetic effect size

Homoplasmic
polymorphisms

Pathogenic
mutations

Figure 2.4 MtDNA variation and its frequency in human disease. Low-level heteroplasmy is extremely
common, and the level increases during life. Intermediate-level heteroplasmy is rare in
healthy individuals and may cause severe disorders affecting multiple organ systems. Com-
mon homoplasmic polymorphisms are usually neutral but may contribute to the risk of de-
veloping noncommunicable diseases. Figure adapted and modified from Wei and Chinnery
2020.

It is estimated that∼1 in 5,000 individuals have manifested disease resulting from
pathogenic mtDNA mutations (Gorman et al. 2015). Approximately half of the
confirmed pathogenic mutations in mtDNA are located within tRNA- and rRNA-
encoding regions, despite the fact that these regions cover only about 5% of mtDNA
(Lott et al. 2013). Pathogenic mutations in tRNA and rRNA genes are thought
to decrease mitochondrial protein synthesis and destabilize tRNA’s secondary or
tertiary structures, whereas mutations in the protein-encoding genes affect specific
OXPHOS complexes (Greaves et al. 2012).
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2.2.2 Common variants and mitochondrial haplogroups

As humans have migrated and populated the globe, maternal inheritance and the
high mutation rate of mtDNA have led to a broad range of stable population-specific,
geographically isolated polymorphisms, creating phylogenetically related haplotypes.
In general, approximately 5% of the mtDNA variants are present with an population
allele frequency greater than 5%. Each new stable mutation has created a new branch
to a complex maternal family tree reaching back to one woman, the ‘mitochondrial
Eve’, who is postulated to have lived ∼200,000 years ago in Africa. Haplotype com-
parisons of humans of diverge origins have helped in shedding light on human pre-
history and population movements. (Cann et al. 1987; Ingman et al. 2000; Stewart
and Chinnery 2021; Wallace et al. 1999.)

The most common haplotypes define related groups of mtDNA, known as mi-
tochondrial haplogroups. Population-based mtDNA sequencing studies have been
defining new haplogroups to this day, and the current global mtDNA phylogenetic
tree includes nearly 5,500 sub-haplogroups (van Oven and Kayser 2009). The geo-
graphic origin of major mitochondrial haplogroups is shown in Figure 2.5. The vast
majority of European mtDNA falls into ten major haplogroups: H, I, J, K, M, T, U,
V, W, and X (Torroni et al. 1996).
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Figure 2.5 Geographic origin and distribution of mitochondrial haplogroups, based on Lott et al. 2013.
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European haplogroups are also prevalent in the Finnish population, in which the
most common haplogroups are H and U. These two haplogroups cover approxi-
mately 65% of the common mtDNA variation in Finland. Haplogroup H has been
shown to have the highest frequency in all Finnish geographic subpopulations, ex-
cept among the Sámi and those with Finnish Karelian geographic ancestry. In these
populations, haplogroup U is the most frequent. In Southwest Finland, the fre-
quency of haplogroups I, W and X is five times higher than in other subpopulations.
(Hedman et al. 2007; Ingman and Gyllensten 2007.)

The haplogroup-defining variants are neutral or near-neutral from the standpoint
of natural selection and have come prevalent during genetic drift (Wallace et al. 1999).
However, mitochondrial haplogroups have been suggested to alter the risk of sev-
eral noncommunicable diseases (Friedrich et al. 2021), including Parkinson’s disease
(Hudson et al. 2013), Alzheimer’s disease (Santoro et al. 2010), and ischaemic stroke
(Chinnery et al. 2010), for example. Among patients admitted to intensive care, hap-
logroup H has been associated with an increased chance of survival after severe sepsis
(Baudouin et al. 2005). Taking into account that the haplogroup did not affect the
risk of admission to intensive care, it could be reasoned that different haplogroups
are associated with different levels of ‘fitness’ under external stressors (Stewart and
Chinnery 2021).

It has also been suggested that the excess nonsynonymous variants have helped the
Arctic populations to adapt to colder climates by allowing mitochondria to generate
more heat at the expense of ATP production (Ruiz-Pesini et al. 2004), but this theory
has not been generally accepted (Kivisild et al. 2005; Saxena et al. 2006). Instead, the
surplus of nonsynonymous variants has been explained by the fact that, from an
evolutionary viewpoint, the Arctic populations are younger and the variants have
not yet been removed by the purifying selection (Stewart and Chinnery 2021).

2.3 Gene expression and epigenetics

2.3.1 DNA transcription

Gene expression is a fundamental process by which the genetic information in the
DNA is used for the synthesis of functional products like proteins and RNAs. The
first step of gene expression is transcription, during which a specific DNA segment is
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copied into an RNA. The term transcriptome refers to the set of all RNA molecules
from protein-coding messenger RNA (mRNA) to non-coding RNA. The second ma-
jor step is translation, when the genetic code in mRNA is decoded in a ribosome to
produce a specific polypeptide. Later, the polypeptide folds into a biologically func-
tional protein. (Liu et al. 2016b.)

An altered gene expression profile can be considered to reflect changes in protein
levels and biological processes in the human body. Analysis of transcript data helps
to gain a deeper understanding of normal cell function and how changes in gene
expression reflect or contribute to disease. However, many studies have concluded
that there is poor correlation between mRNA and protein concentrations, indicating
that transcript levels by themselves may not be sufficient to predict protein levels
in many scenarios and to thus explain genotype-phenotype relationships (Liu et al.
2016b; Maier et al. 2009).

2.3.2 DNA methylation

Epigenetics refers to mechanisms affecting gene function which cannot be explained
by changes in DNA sequence and which can be inherited by cell division. Epige-
netic changes are mediated via modification of the chromatin structure, which varies
between the condensed and transcriptionally repressed, and decondensed and tran-
scriptionally active state. The main epigenetic mechanisms of DNA methylation
(DNAm), include histone post-translational modification, small interfering RNAs
and histone variants. (Margueron and Reinberg 2010.)

DNAm involves the conversion of the cytosine base in DNA into 5-methylcytosine
(5mC) by the addition of a methyl group (-CH3). In mammals, methylation mainly
occurs in the regions where a cytosine nucleotide is followed by a guanine nucleotide
in a linear sequence in the 5’ to 3’ direction, while separated by a phosphate group.
These CpG sites are often clustered in high-frequency genomic regions known as
CpG islands. The ‘p’ stands for the phosphodiester bond that joins the two nu-
cleotides. (Matilainen et al. 2017.)

DNAm is mainly catalysed by three distinct DNA methyltransferases: DNMT1,
DNMT3A, and DNMT3B. The first maintains the methylation patterns upon DNA
replication, while DNMT3A and DNMT3B are mainly responsible for de novo methy-
lation. The source of methyl groups used by DNMTs is S-adenosyl methionine
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(SAM). It is generated through the coupling of the folate and methionine cycles in
the cytosol, which in turn are sustained by the one-carbon cycle in mitochondria.
The methionine cycle is also dependent on cellular ATP, indicating that mitochon-
drial function can regulate DNAm. DNA demethylation is carried out by three
TET methylcytosine dioxygenases: TET1–3. These enzymes are catalysed and in-
hibited by metabolites produced in the TCA cycle. (Greenberg and Bourc’his 2019;
Matilainen et al. 2017.)

The basic role of DNAm is to restrict DNA accessibility by wrapping the DNA
within the chromatin structure. When the regulatory sequences of a gene, such as
promoters or enhancers, are methylated, gene expression is repressed. Regardless of
tissue and species, a quasi-linear inverse relationship between DNAm of the first in-
tron and gene expression has been shown (Anastasiadi et al. 2018). It has also been
demonstrated that active demethylation of several gene regulatory sequences is essen-
tial to proper gene expression (Orlanski et al. 2016). Hence, DNAm does not turn
genes off but can prevent gene activation. Methylation states can also be regarded
as a long-term memory of previous gene expression decisions that were mediated by
transcriptional factors which might no longer be present in the cell (Dor and Cedar
2018).

Whether mtDNA itself is methylated has been under debate, and the possible
functional roles remain unknown. DNMTs and TETs have been spotted in the mito-
chondria, but their role inside the organelle is unclear, and the presence of DNMTs
is tissue-specific. Measurements of 5mC levels have suggested that this epigenetic
modification occurs inside the mitochondria but at levels too low to be considered
significant. Methodological studies have concluded that these methylation signals
may only represent technical artefacts. Other studies claim that mtDNA is methy-
lated differently to nDNA. (Lopes 2020; Stewart and Chinnery 2021.)

2.4 Mitochondrial control of gene expression and DNA

methylation

As the majority of the mitochondria-destined proteins are encoded by nDNA, proper
communication between the mitochondrial and nuclear genome is vital in order to
maintain normal cellular function under different physiological and environmental
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conditions. Classically, two distinct signalling pathways that link the mitochondria
and nucleus have been identified: 1) anterograde signals from the nucleus to mito-
chondria through the activation of nuclear transcription and cytoplasmic mRNA
translation, and 2) retrograde signals from the mitochondria to the nucleus for re-
sponding to metabolic conditions prevailing in the mitochondria and, finally, regu-
lating mitochondrial functionality and metabolism. Retrograde signals are also con-
sidered a cellular adaptation to dysfunctional mitochondria, resulting from muta-
tions in either mtDNA or nDNA-encoded mitochondrial genes. (Guha and Avad-
hani 2013; Matilainen et al. 2017; Quirós et al. 2016.)

Classically, retrograde signals have been considered a means for adapting to mito-
chondrial stress. Mitochondrial impairment has been shown to induce changes in
the nuclear methylome, some of which could be reversed by the reintroduction of
wild-type mitochondria to the cells (Smiraglia et al. 2008). However, recent studies
have suggested that mitochondrial–nuclear communication is also a continuous pro-
cess that is not governed exclusively by acute stress-inducing events (Fetterman and
Ballinger 2019; Kopinski et al. 2019).

2.4.1 Mechanisms of mitochondrial–nuclear communication

Mitochondria generate a broad range of cell-specific retrograde signals through which
they alter the expression of nDNA-encoded genes involved in metabolic reprogram-
ming and stress response (English et al. 2020). An overview of the central signalling
methods is shown in Figure 2.6.

Energetic response

Since mitochondria are the main site for ATP generation, ATP levels are sensitive
signals relaying metabolic cues to the nucleus. Reduced ATP synthesis stimulates the
adenosine monophosphate-activated protein kinase (AMPK) pathway that stimu-
lates peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α),
leading to a transcriptional adaptation to energy deficiency, and to anterograde sig-
nals that increase mitochondrial energy metabolism and biogenesis. ATP is also an
allosteric inhibitor of pyruvate and isocitrate dehydrogenases acting in the TCA cy-
cle, from which the metabolites mediate signals to the nucleus. (Garcia-Roves et al.
2008; Martínez-Reyes and Chandel 2020; Mottis et al. 2019.)
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Figure 2.6 A simplified overview of mitochondrial–nuclear communication. Increased activation of nu-
clear transcription factors may result from a decrease in ATP levels, elevated ROS levels,
or from the release of Ca2+ from the mitochondrial matrix. Mutations in mtDNA may con-
tribute to these signalling pathways via defects in OXPHOS that affect ATP and ROS levels
and cause the loss of the mitochondrial membrane potential (∆Ψm). Mitochondrial-derived
peptide MOTS-c translocates to the nucleus to regulate nuclear gene expression in response
to metabolic stress. Metabolites produced in the TCA cycle affect gene expression via chro-
matin modifications and DNAm. Nuclear acetyl-CoA fuels histone acetyltransferases (HATs).
α-Ketoglutarate (α-KG) serves as a cofactor for histone and DNA demethylases (JMJDs and
TETs), whereas succinate, fumarate and 2-hydroxyglutarate (2-HG) inhibit the histone and
DNA demethylases. Mitochondrial Ca2+ regulates TCA dehydrogenase activity, which pro-
vides a link between mtDNA mutations, TCA cycle metabolites and nuclear gene expression.
Mitochondrial one-carbon (One-C) cycle, coupled with the cytosolic folate and methionine
(Met) cycles generates SAM which is the source of methyl groups used by histone and DNA
methytransferases (HMTs and DNMTs). The synthesis of SAM also depends on ATP, also
indicating that mitochondrial function can regulate histone and DNA methylation. (English
et al. 2020; Martínez-Reyes and Chandel 2020; Matilainen et al. 2017; Mottis et al. 2019;
Quirós et al. 2016.)
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Ca2+-dependent signalling

Driven by the electrochemical gradient across the inner membrane, Ca2+ accumu-
lates into the mitochondrial matrix, and mitochondria play a fundamental role in
regulating the levels of intracellular Ca2+ (Rizzuto et al. 2012). Mitochondrial stress,
such as mutations in mtDNA or the disruption of OXPHOS complexes, triggers
the loss of the membrane potential, which leads to the release of Ca2+ into the cy-
toplasm. Elevated levels of free intracellular Ca2+, in turn, activate the calcineurin
phosphatase, which activates nuclear factor kB (NF-kB) and nuclear factor of acti-
vated T cells (NFATC). The activation of these transcription factors results not only
in cellular adaptation to a higher Ca2+ level but also in responses affecting insulin
signalling, glucose metabolism and cell proliferation. The release of Ca2+ may also
activate the AMPK pathway. (Guha and Avadhani 2013; Quirós et al. 2016.) Mi-
tochondrial matrix Ca2+ also regulates the activity of TCA cycle dehydrogenases
(English et al. 2020). The causal relationship between calcium signalling and mito-
chondrial dysfunction has been validated in a study in which the chelation of cytoso-
lic calcium abolished the downstream signalling, leading to a decrease in ATP levels
(Luo et al. 1997).

Metabolites

Recent findings have suggested that metabolic reprogramming is the main mecha-
nism linking mtDNA variation with changes in the nuclear transcriptome and epi-
genome (Fetterman and Ballinger 2019; Kopinski et al. 2019). Much of the metabo-
lites that mediate epigenetic modifications are intermediates from the TCA cycle.
They serve as cofactors and substrates to enzymes that contribute to epigenetic mod-
ifications of DNA or histones. The relative amounts of different metabolites reflect
nutrient availability, metabolic demand, cellular redox state and mitochondrial func-
tion. Specifically, acetyl-coenzyme A (acetyl-CoA) and α-ketoglutarate (α-KG) have
been recognized as key metabolites for mediating epigenetic modifications. The
TCA cycle and ETC are tightly coupled, since the complexes I and II replenish
NAD+ and FAD, respectively, that are required for the TCA cycle to keep func-
tioning (Hertzog Santos 2021; Martínez-Reyes and Chandel 2020.)

Acetyl-CoA, which is produced from various sources in multiple compartments,
enters the TCA cycle to produce citrate. Citrate can continue in the TCA cycle, or
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it can travel outside the mitochondria, both into the cytosol and the nucleus, where
it is converted back into acetyl-CoA. The latter pathway takes place especially under
conditions of carbohydrate or glucose excess. Nuclear acetyl-CoA is an essential reg-
ulator of lipid and sterol synthesis and histone acetylation, which modulate nuclear
gene expression profiles. (English et al. 2020; Martínez-Reyes and Chandel 2020.)
α-KG is generated in the TCA cycle from isocitrate by isocitrate dehydrogenase

1. α-KG diffuses into the nucleus, where it serves as cofactor for histone and DNA
demethylases (Jumonji C domain-containing protein [JMJD] families and TETs, re-
spectively). An α-KG-derived metabolite, 2-hydroxyglutarate (2-HG), along with
other TCA cycle intermediates, succinate and fumarate, can also modify the epige-
netic landscape by inhibiting the TET and JMJD enzymes. (Campbell and Wellen
2018; Martínez-Reyes and Chandel 2020; Mottis et al. 2019.) For example, a high
intracellular α-KG to succinate ratio maintains the pluripotency of embryonic cells
(Carey et al. 2015).

Reactive oxygen species

Under normal conditions, 0.2%–2% of the electrons in the ETC leak out from the
process and react with oxygen to produce ROS. While ROS produced during ETC
are usually associated with their damage-promoting effects at their higher concentra-
tions, they have distinct signalling roles under physiological levels. Modest increases
in ROS levels activate transcription factors such as nuclear factor erythroid 2-related
factor 2 (NFE2L2), which increase the expression of antioxidant response elements.
ROS may also induce the expression of genes involved in OXPHOS by activating the
c-Jun N-terminal kinase (JNK) pathway or promote the uncoupling of the mitochon-
drial membrane potential via the AMPK pathway. (Quirós et al. 2016; Shadel and
Horvath 2015.) Mitochondrial ROS also mediate other key signals to control, for ex-
ample, immunity, hypoxic responses, beneficial exercise-related outcomes and other
signals that promote health and longevity (Mottis et al. 2019; Ristow and Schmeisser
2014; Ristow et al. 2009). In cancer cells, ROS have been shown to promote the
transcriptional activation of the NF-kB (Formentini et al. 2012).

36



Mitochondria-derived peptides

The aforementioned molecules and their co-mediators are all secondary metabolites,
transient molecules or nucleous-encoded proteins. Over the past decades, new reg-
ulatory proteins encoded as short open reading frames in the mtDNA have been
identified and there is emerging evidence that these mitochondria-derived peptides
(MDPs) have diverse biological roles in cell metabolism (Kim et al. 2017; Miller et al.
2020). Humanin was the first identified MDP and is encoded by the 16S ribosomal
RNA gene (MT-RNR2). It exhibits protective effects in several cell types in response
to cellular stress through regulating various signalling mechanisms, such as the JNK
pathway. (Hazafa et al. 2021.)

MOTS-c (mitochondrial open reading frame of the 12S rRNA-c) is the first mito-
chondria-encoded MDP targeted at the nucleus to directly regulate nuclear gene ex-
pression (Kim et al. 2018). MOTS-c expression is age-dependent, it is induced by
physical exercise in circulation and skeletal muscle, and MOTS-c treatment can even
increase physical capacity and health in mice (Reynolds et al. 2021). In individuals
with T2DM, the circulating MOTS-c levels are decreased as compared to healthy
controls (Ramanjaneya et al. 2019). Thus, MOTS-c could be considered a peptide
hormone by which mitochondria generate a signal to shift energy demands and ex-
penditure (Zarse and Ristow 2015).

2.4.2 Role of mtDNA variants

The mechanisms through which mtDNA haplogroups and variants modify disease
susceptibility are not completely understood, partly due to the heterogeneous nu-
clear genomic backgrounds of different individuals. Transmitochondrial cytoplas-
mic hybrid (cybrid) models have allowed more detailed investigations of the molec-
ular and biological functional consequences resulting from mtDNA variation. These
in vitro cybrid cell lines are created by fusing mitochondria-free cells with mitochon-
dria-rich platelets from different individuals so that the resultant cells have identical
nuclei but varying mtDNA. For example, compared to haplogroup H cybrids, hap-
logroup L cybrids have shown lower expression levels of complement pathway and
innate immunity genes and increased levels of inflammation-related signalling genes,
all of which are critical in human diseases (Kenney et al. 2014b).
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The most common pathogenic heteroplasmic mtDNA variant is the m.3243A>G
mutation in the MT-TL1 gene (Stewart and Chinnery 2021). Analysis of m.3243A>G
cybrids with varying heteroplasmy levels revealed that changes in heteroplasmy im-
pact mitochondrial function. More importantly, metabolomic and histone modifi-
cation analyses provided evidence that changing levels of m.3243A>G heteroplasmy
affect histone modification via mitochondrial metabolites, thus changing the nuclear
epigenome and transcriptome. (Kopinski et al. 2019.)

Another platform for testing the contributions of mtDNA variation while ac-
counting for nDNA heterogeneity is achieved by the use of mitochondrial–nuclear
exchange (MNX) mice. In these mouse models, nDNA from one mouse strain is
combined with mtDNA from a different mouse strain. (Fetterman et al. 2013.) In
MNX mice, the mtDNA background altered the nuclear expression in adipose tis-
sue in response to a high-fat diet, irrespective of the nuclear background. The altered
transcriptional response was associated with genes containing binding sites for tran-
scription factors that are known to be ROS-sensitive. This implies that mtDNA vari-
ants may modulate ROS levels through the ETC complexes in response to metabolic
stress and thereby activate signalling pathways. (Dunham-Snary et al. 2018.) An-
other study using MNX mice has also shown that mtDNA variation affects DNAm
and gene expression in brain tissue (Vivian et al. 2017).

Studies examining the associations between mtDNA variants and nuclear or mi-
tochondrial gene expression on a population level are scarce. Haplogroup-specific
mtDNA-encoded gene expression patterns have been demonstrated in a study in-
cluding∼450 individuals with varying ethnic backgrounds (Cohen et al. 2016). The
different expression patterns are thought to result from co-expressed nDNA-encoded
mitochondrial RNA-binding proteins and differences in the RNA stability of the
mature transcripts (Rorbach and Minczuk 2012).

In a family-based GWAS including∼850 Australian individuals of mainly Anglo-
Celtic origin, the associations of 78 common mtDNA variants with ∼47,000 gene
expression probes in peripheral blood were examined. The study identified 15 signif-
icant associations, corresponding to five unique genes on the nuclear and mitochon-
drial genomes, three of which were nDNA-encoded. Some of the significant results
were also replicated in an independent European cohort. The biological relevance
of the associations remained unclear, and they do not necessarily imply a causal re-
lation. However, the associations may equally represent the nuclear transcriptional
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response to altered cellular homeostasis. (Kassam et al. 2016.) On a population level,
there are no published association studies examining the role of mitochondrial hap-
logroups in nuclear gene expression.

As previously discussed, many of the mtDNA-induced transcriptome-affecting
changes take place via DNAm, and there are several studies suggesting that mtDNA
variants have a distinct role in DNAm. A study on murine embryonic stem cells
has demonstrated that mtDNA haplotypes influence differential patterns in nuclear
gene expression (Lee et al. 2017). Haplogroup J has been consistently associated with
higher methylation levels in human retinal cell cybrids and articular cartilage when
compared to haplogroup H (Atilano et al. 2015; Cortés-Pereira et al. 2019). Analysis
of human peripheral blood has shown that the global DNAm levels in haplogroup
J carriers are also higher when compared to subjects carrying haplogroups H, U, X
and T (Bellizzi et al. 2012).

Cells harbouring haplogroup J have shown lower levels of ATP compared to
other major haplogroups (Bellizzi et al. 2012; Fernández-Moreno et al. 2017). This
could be explained by the fact that many variants clustered in haplogroup J fall
within OXPHOS complexes I and III, which results in a decrease in oxygen con-
sumption and a partial uncoupling of OXPHOS (Arning et al. 2010; Marcuello et
al. 2009). In turn, ATP levels have been thought to affect MAT1A gene transcription.
The methionine adenosyltransferase encoded by this gene catalyses the generation of
SAM which is the source of the methyl groups used by DNMTs. (Bellizzi et al. 2012.)

Low levels of ROS have correlated with high DNAm in haplogroup J cybrids,
whereas high levels of ROS have correlated with high methylation levels in mtDNA-
depleted cells (Bellizzi et al. 2012). This suggests that ROS is not a predictor of
DNAm, although it should be noted that the depletion of mtDNA is a highly ar-
tificial state.

In addition, GWASs have identified numerous DNAm quantitative trait loci (QTL)
in the nuclear genome (Huan et al. 2019; Lemire et al. 2015; Min et al. 2021), and
variation in the mtDNA copy number has also been associated with DNAm levels
(Wang et al. 2022). However, these studies have not investigated the role of mtDNA
variants and cohort-level mitochondrial GWASs of DNAm are lacking.
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2.4.3 Sexual dimorphism

Since mtDNA is maternally inherited, it is not, in theory, subjected to natural selec-
tion in males. This hypothesis of a sex-specific selective sieve, colloquially known as
the ‘mother’s curse’, suggests that variants that are male-harming but neutral or bene-
ficial for females may accumulate in the mitochondrial genome (Dowling and Adrian
2019; Frank and Hurst 1996; Gemmell et al. 2004). Classic examples of such variants
are those affecting male fertility via sperm motility and morphology (Holyoake et al.
2001; Ruiz-Pesini et al. 2000), although the evidence for maternally driven selection
acting in male fertility is equivocal (Mossman et al. 2012; Pereira et al. 2007). An-
other example suggested to support the mother’s curse hypothesis is LHON, a mi-
tochondrial disease that has a male-biased prevalence: men represent approximately
80% of cases, and 10% of women and 50% of men carrying the predisposing variant
develop visual failure (Man et al. 2003; Milot et al. 2017). However, a mitochondrial
genetic background cannot fully explain the sex bias in the disease (Chinnery and
Schon 2003).

There is some evidence in Drosophila melanogaster that mtDNA variants have
sex-specific effects on nuclear gene expression; the mitochondrial genetic effects were
strong in males but weak in magnitude and negligible in number in females (Inno-
centi et al. 2011). Notably, the male-biased transcriptional hotspots were located
in the testes and accessory glands. Another Drosophila study did not find any sig-
nificant mtDNA effects targeting male-limited tissues (Mossman et al. 2016). In the
same study, however, mtDNA variants exerted major effects in the nuclear transcrip-
tome in females, whereas in males, the effects of mtDNA variation were consider-
ably smaller. In fruit flies, mtDNA haplotypes also have male-biased effects on the
metabolic rate measured by the production of carbon dioxide (Nagarajan-Radha et
al. 2020).

The hypothesis of sexual dimorphic gene expression resulting from mtDNA vari-
ation has also been tested in humans. In the same mitochondrial GWAS mentioned
earlier, association analyses were performed separately for males and females, and the
differences in the effect sizes for mitochondrial genotypes were examined. There was
no evidence of sex-specific effects. (Kassam et al. 2016.) It is possible, however, that
the sexually dimorphic effects are mediated by other mtDNA variants not included
in that study.
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Sex-specific differences in DNAm patterns have been identified in peripheral blood
and replicated in independent cohorts. The sex-associated methylation also has func-
tional effects, a small number of differentially expressed genes were associated with
CpGs sites showing sex-specific heterogeneity. (Singmann et al. 2015; van Dongen
et al. 2016.) It is also possible that sex differences may mediate sex discordance in
phenotypic traits (Khramtsova et al. 2019). The maternal inheritance of mtDNA
could also contribute to the sexual asymmetry in DNAm, but there are no studies
testing this hypothesis.

2.5 Cardiometabolic risk factors and mtDNA variants

The aetiology of cardiometabolic disorders, such as cardiovascular disease and T2DM,
is represented by a cluster of interrelated risk factors, mainly elevated blood pres-
sure (BP), fasting plasma glucose (FPG), dyslipidaemia and abdominal obesity. Car-
diometabolic disorders are generally polygenic and multifactorial traits, involving
the interaction of genetic, environmental and lifestyle factors. Because mitochon-
dria lie at an interface between the bioenergetic processes of the human body, they
are potent mediators of common metabolic disorders.

2.5.1 Diabetes-related changes in gene expression and DNA

methylation

Prediabetes is defined by glycaemic variables that are higher than normal, but lower
than T2DM thresholds. It is a major risk factor for developing T2DM; each year,
5%–10% of individuals with prediabetes will progress to T2DM, with the same pro-
portion converting back to normoglycaemia. The prevalence of prediabetes is in-
creasing worldwide, and it is estimated that 587 million individuals will have pre-
diabetes by 2045. Individuals with prediabetes may already have end-organ damage
that is traditionally thought to be a complication of T2DM, such as nephropathy,
neuropathy, retinopathy and macrovascular disease. (Hostalek 2019; Tabák et al.
2012.)

The aetiology of T2DM has a strong genetic component, but studies have pro-
vided conflicting answers regarding the role of mtDNA variation in prediabetes and
T2DM. In European populations, mtDNA variants are unlikely to play a major role
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in the risk of developing the disorders (Achilli et al. 2011; Chinnery et al. 2005;
Chinnery et al. 2007; Saxena et al. 2006). In Korean and Japanese populations, hap-
logroup N9a was associated with a decreased risk of T2DM, while haplogroups D5
and F were associated with an increased risk of T2DM (Fuku et al. 2007). However,
the reported protective effect of N9a has been challenged (Takasaki 2009), and the
same haplogroup has also been linked with an increased risk of T2DM (Fang et al.
2018). A recent multi-centre study identified one common variant in the hypervari-
able region associated with FPG levels (Kraja et al. 2019).

Even though mtDNA variation does not seem to affect the susceptibility to T2DM
in the European population, it may still have functional consequences strong enough
to occur on a molecular level. This hypothesis is backed up by a study which ex-
amined mitochondrial cybrids harbouring haplogroups N9a, D5 and F and which
found that the gene expression patterns of the cybrid cells correlated with the sus-
ceptibility to develop T2DM (Hwang et al. 2011).

Epigenome-wide DNAm changes have been associated with T2DM (Juvinao-
Quintero et al. 2021; Kriebel et al. 2016; Walaszczyk et al. 2018), and there is also
evidence that epigenetic changes are likely to be an early process that may already oc-
cur during the prediabetic stage (Matsha et al. 2016). The cross-talk between mtDNA
and DNAm in the setting of T2DM or prediabetes, however, is not known. It should
also be noted that the epigenome can both affect the disease and be affected by it, of-
ten making the direction of causation obscure (Michels et al. 2013).

2.5.2 Hypertension-associated variants

In the industrialised countries, the risk of becoming hypertensive (BP > 140/90
mmHg) during a lifetime exceeds 90% (Messerli et al. 2007). Worldwide, hyperten-
sion is estimated to cause over 9 million premature deaths per year (Lim et al. 2012).
Genetic variance has been estimated to account for 19%–56% of systolic blood pres-
sure (SBP) variation, 37%–52% of diastolic blood pressure (DBP) variation and up
to 82% of mean arterial pressure (MAP) variation (Hottenga et al. 2006; Steves et al.
2012). Most of the hypertension-associated genetic variants have been identified in
the nuclear genome (e.g. Ehret et al. 2011; Liu et al. 2016a; Tragante et al. 2014), and
few studies have specifically focused on the mitochondrial genome.

Mutations in mtDNA are thought to increase BP via increased ROS production
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(Ding et al. 2013). This hypothesis is strengthened by a study in which the down-
regulation of the mtDNA-encoded cytochrome-b (mt-CytB) gene was observed in
hypertensive rats. This gene seems to contribute directly to mitochondrial ROS
production. An injection of microRNA-21 counteracted the mt-CytB downregu-
lation and lowered the BP. (Li et al. 2016.) Another proposed mechanism is the
dysregulated Ca2+ uptake into the endothelial mitochondria (Chen et al. 2016). Mi-
tochondrial Ca2+ modulates the generation of ROS and nitric oxide, which have an
effect on vascular and sympathetic tone (Brandes 2014).

A mutational hotspot for pathogenic mtDNA variants associated with hyperten-
sion is located in the tRNA coding regions (Ding et al. 2013). However, the majority
of associations have been identified in case reports examining Han Chinese families
(Chen et al. 2012; Teng et al. 2012; Wang et al. 2011), implying that these variants
are rare on a population level.

Some evidence of the role of mtDNA variants has also been gleaned from well-
established cohorts. In the Framingham Heart Study, the analysis of over 7,200 par-
ticipants of European descent identified that a rare (allele frequency 0.6%) nonsyn-
onymous variant m.5913G>A in the MT-CO1 gene was associated with higher SBP
(Liu et al. 2012). In a two-cohort meta-analysis of older North American individuals,
in which the variants were sequenced, two (m.3197T>C and m.15924A>G) and five
(m.93A>G, m.12705C>T, m.16172T>C, m.16183A>C, and m.16189T>C) vari-
ants associated with variation in SBP and MAP in white and black participants, re-
spectively. In addition, a rare variant analysis testing the aggregate effects of variants
within a specified region identified significant pooled effects across all tRNA regions.
(Buford et al. 2018.) These associations have not been replicated in other studies.

Negative results from population-level analyses have also been published. Sixty-
four tagging mtDNA variants that efficiently capture all common European varia-
tion (except the hypervariable region) did not associate with BP in a study consisting
of over 2,000 individuals (Saxena et al. 2006). A smaller sequencing study with∼360
participants utilized the predicted pathogenicity of the protein coding variants but
did not find a significant role for mtDNA variation in association with BP levels
(Venter et al. 2017). A lexical tree analysis of over 2,800 hypertensive individuals
and 5,600 controls with phylogenetically related mtDNA variants in a European
population did not identify significant relationships with hypertension (Hudson et
al. 2014).
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3 AIMS OF THE STUDY

The aim of this study was to investigate the mitochondrial genetic determinants of
peripheral blood gene expression, DNA methylation and blood pressure.

The specific aims were to:

1. examine the associations of mtDNA variants with genome-wide transcrip-
tome and epigenome-wide DNAm profiles in peripheral blood by means of
a GWAS (studies I and II).

2. study whether the aforementioned associations are affected by the onset of
prediabetes (I and II).

3. study the role of mtDNA variants in BP variation by means of a GWAS (III).

4. examine whether the associations with the transcriptome, DNAm or BP show
sexual dimorphism (I–III).
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4 MATERIALS AND METHODS

4.1 Study cohorts

4.1.1 The Young Finns Study (I–III)

The Young Finns Study (YFS) is a Finnish longitudinal population study on the
evolution of cardiovascular risk factors from childhood to adulthood (Raitakari et
al. 2008). The study began in 1980, when 3,596 children and adolescents in six age co-
horts (3–18 years) randomly chosen from the national register across the five univer-
sity hospital catchment areas participated in the baseline studies. During the follow-
ups in 2007 and 2011, 2,204 and 2,060 individuals, respectively, participated in the
examinations. The blood samples for mtDNA sequencing were drawn in 2007, and
other data used in this study were obtained in 2011.

4.1.2 The Ludwigshafen Risk and Cardiovascular Health study (II)

The Ludwigshafen Risk and Cardiovascular Health (LURIC) study consists of 3,316
patients of German ancestry referred for coronary angiography at a tertiary care
centre in Southwestern Germany between June 1997 and May 2001 (Winkelmann
et al. 2001). The clinical indications for angiography were chest pain or non-invasive
tests consistent with myocardial ischaemia. Patients with any acute illness other than
acute coronary syndrome, any predominant non-cardiac disease and/or a history of
malignancy within the past five years were excluded from the study.
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4.1.3 The Finnish Cardiovascular Study (III)

The Finnish Cardiovascular Study (FINCAVAS) participant pool consists of patients
who underwent an exercise stress test using a bicycle ergometer at Tampere Univer-
sity Hospital between October 2001 and the end of 2008 and who were willing to
participate (Nieminen et al. 2006). A total of 4,068 participants completed a techni-
cally successful exercise test. The main indications for the exercise test were a sus-
picion of coronary heart disease (frequency 46%), the evaluation of work capacity
(26%), testing for vulnerability to arrhythmia during exercise (25%), and assessing
the adequacy of coronary heart disease treatment (13%); some patients had more
than one indication.

4.1.4 Ethical considerations (I–III)

All participants in the study cohorts gave their written informed consent, and the
studies were conducted in accordance with the Declaration of Helsinki. The YFS
was approved by the ethical committee of the Hospital District of Southwest Fin-
land and by local ethical committees, and the study protocol of each study phase
corresponded with the proposal by the World Health Organization. The LURIC
study was approved by the ethics committee of the State Chamber of Physicians of
Rhineland-Palatinate. The FINCAVAS protocol was approved by the Ethical Com-
mittee of the Pirkanmaa Hospital District.

4.2 Identification of mtDNA variants

4.2.1 Next-generation sequencing (I–III)

In the YFS, mtDNA variants were determined by next-generation sequencing (NGS).
Genomic DNA concentrations were measured from peripheral blood samples (n=
1,807), and mtDNA was amplified from the genomic DNA and further processed
into Illumina sequencing-compatible libraries. The sequencing process has been de-
scribed in detail in original publication III. As a result, 1,658 samples were available
for further analysis.
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Study I

NGS data were processed and variants were called at the Institute for Molecular Med-
icine Finland (FIMM) using an in-house-developed bioinformatics pipeline (Sulonen
et al. 2011). The following quality control (QC) filters were applied after variant
calling: sample missingness > 0.10, variant missingness > 0.05, and variant allele
frequency (VAF) < 0.01. Heteroplasmic genotypes were set to missing.

Studies II and III

NGS data were first aligned with the rCRS (Andrews et al. 1999) by using BWA-
MEM v. 0.7.17 (Li and Durbin 2009) and SAMtools v. 1.8 (Li et al. 2009). Variants
were called with Mutserve v. 1.2.1, a stand-alone version of the web tool mtDNA-
server (Weissensteiner et al. 2016a), with the default thresholds for mapping, base
and alignment quality scores.

The minimum heteroplasmy level was set to 5% – we defined sites with a hetero-
plasmy level below this threshold as homoplasmic wild-type alleles and sites with a
heteroplasmy level above 95% as homoplasmic variants. Genotypes for heteroplas-
mic variants overlapping with any NuMTs (Dayama et al. 2014) were set to missing.
The heteroplasmy rate was low at most sites: for 99% of the sites, the number of
heteroplasmic samples was three or fewer. Mutserve identified variants in 1,365 dif-
ferent nucleotide positions from 1,657 samples. The average sequencing coverages
per sample and per mtSNP were 497 and 525, respectively.

4.2.2 Genotyping arrays (II and III)

In the LURIC study, genomic DNA was extracted from peripheral blood and the
mtSNPs were genotyped using the Illumina HumanExome-12 v1.2 BeadChip (n =
1,981) and the Illumina 200k MetaboChip (n= 3,150) microarrays. Samples with a
call rate of < 0.95, sex mismatch and cryptic relatedness (bπ> 0.2) were removed us-
ing PLINK v.1.90b6.21. Variants with an allele frequency of< 0.005 or a call rate of
< 0.95 were also excluded. Heterozygous genotypes, possibly due to mitochondrial
heteroplasmy, were coded as missing.

In the FINCAVAS, genomic DNA was extracted from peripheral blood leuko-
cytes, and the Illumina Cardio-MetaboChip and HumanCoreExome-12 v1.1 arrays
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were applied for genotyping the mtSNPs from 2,824 and 1,032 samples, respectively.
Samples with call rate of < 0.95, excess heterozygosity, cryptic relatedness (bπ> 0.2)
and sex mismatch, as well as genetic outliers based on multi-dimensional scaling
plots, were removed. Variants with a call rate of < 0.95 or an allele frequency of
< 0.01 were removed. Heterozygous genotypes were coded as missing.

4.2.3 Haplogroup classification (I and II)

Mitochondrial haplogroups were determined using HaploGrep 2 (Weissensteiner et
al. 2016b) with Phylotree builds 16 (van Oven and Kayser 2009) and 17 (van Oven
2015) in studies I and II, respectively. In the YFS, samples with a haplogroup quality
score of ≥ 0.90 were included. Since some LURIC study participants were geno-
typed with both Illumina microarrays, haplogroups were included based on two cri-
teria: 1) a quality score of≥ 0.90 in at least one genotyping batch, or 2) a quality score
of≥ 0.80 and the same major haplogroup assigned in both arrays. Haplogroups with
a frequency of<1% were excluded, leaving nine major haplogroups for further anal-
yses.

4.3 Genome-wide transcriptome analysis (I and II)

RNA isolation was performed from peripheral blood samples, and the transcript lev-
els were analysed with an Illumina HumanHT-12 v4 Expression BeadChip contain-
ing 47,231 expression and 770 control probes. The transcripts detected (detection
p-value < 0.01) in less than 5% of samples and samples with less than 6,000 signifi-
cantly detected expression probes (detection p-value< 0.01) were rejected. The tran-
scriptome data was processed in R using a non-parametric background correction,
followed by quantile normalization with control and expression probes, a log2 trans-
formation, zero-centering, and a rank-based inverse normal transformation. Based
on RPS4Y1–2 and XIST mRNA levels on the Y and X chromosomes, respectively,
samples with mismatch between the recorded and predicted sex were excluded. After
QC, expression data were available for 19,637 transcription probes and 1,650 sam-
ples.
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4.4 Epigenome-wide DNA methylation analysis (II)

Genomic DNA was extracted from peripheral blood samples by using standard-
ized methods. DNAm levels were quantified using the Illumina Infinium Methy-
lationEPIC BeadChip that covers over 850,000 methylation sites across the nDNA.

In the YFS, data were processed using the minfi Bioconductor package in R (Fortin
et al. 2017). After QC, 769,683 autosomal and 17,334 X-chromosomal CpGs from
1,529 samples remained for further analyses. In the LURIC study, QC was per-
formed using the CPACOR pipeline (Lehne et al. 2015), resulting in 795,619 autoso-
mal and 18,138 X-chromosomal CpGs from 2,423 samples to be included for further
examination. The QC procedures for both cohorts have been described in detail in
original publication II.

Beta values (ranging between 0 [no methylation] and 1 [full methylation]) were
calculated according to the equationβ=M/(M+U+100), where M and U denote
the methylated and the unmethylated signal, respectively.

4.5 Definition of clinical phenotypes

4.5.1 Prediabetes (I and II)

Venous blood samples were drawn after an overnight fast. FPG and glycated haemo-
globin (HbA1c) were determined using standard laboratory techniques. The classifi-
cation of prediabetes was based on the criteria of the American Diabetes Association
(American Diabetes Association 2014). Individuals with prediabetes were defined as
having an FPG level of 5.6–6.9 mmol/l, a two-hour plasma glucose level of 7.8–11.0
mmol/l during a 75-g oral glucose tolerance test (OGTT), or an HbA1c level of
39–47 mmol/mol without a diagnosis of T2DM. Participants diagnosed with type 1
diabetes mellitus were also excluded. OGTTs were performed only for the LURIC
participants.
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4.5.2 Smoking (II)

In the YFS, the smoking history was self-reported and assigned to six categories based
on smoking frequency (active smoker or at least once a day, once a week or more
often but not daily, less often than once a week, attempts to quit, has quit, and has
never smoked).

In the LURIC study, participants were categorized into five groups: heavy smok-
ers (defined as smoking≥ 20 cigarettes per day), light smokers, former smokers that
quit smoking less than 10 years ago, former smokers that quit smoking more than 10
years ago and never-smokers. Smoking status was additionally verified by measuring
the serum cotinine concentration, and we used a cut-off value of 15 µg/l (Benowitz
et al. 2020) to reclassify self-reported non- or ex-smokers as active smokers.

4.5.3 Blood pressure (III)

In the YFS, BP was determined as the average of three measurements taken at two-
minute intervals in a sitting position from the right brachial artery with a random
zero sphygmomanometer. The FINCAVAS participants lay in the supine position
for 10 minutes, after which BP was measured once by an experienced nurse using a
brachial cuff. In both cohorts, the Korotkoff method was used.

The observed BP levels were adjusted for antihypertensive medication usage. The
medications were self-reported by the study participants, the duration of treatment
was not known, and adherence was not assessed. Adjusted SBP was calculated by
increasing the recorded measure by 8, 14 and 20 mmHg for 1, 2 and ≥ 3 medication
classes taken, respectively. DBP measurements were adjusted similarly by increasing
the recorded measure by 4, 10 or 16 mmHg. (Cui et al. 2003.) Adjusted MAP was
calculated from the adjusted SBP and DBP values as MAP=DBP+ 1

3×(SBP−DBP).
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4.6 Statistical methods

4.6.1 Association analyses on the genome-wide transcriptome (I)

Transcriptome, mtDNA and clinical data were available for 955 YFS participants,
and 199 mtSNPs with a VAF of ≥ 0.01 were analysed under the R environment.
The expression levels of 19,637 probes were modelled as a linear function of the
presence (coded as 1) or absence (coded as 0) of the variant allele. The model was
adjusted with age, sex, body mass index (BMI), the first 11 principal components
(PCs) derived from the transcriptome data, and the first two PCs derived from the
mtDNA data. Significance was defined as p< 1.28× 10−8 (0.05/199/19,637).

PC analysis is a method by which a set of variables is transformed into a smaller set
of PCs while preserving as much of the variation contained in the original variables
as possible. The use of mtDNA PCs as covariates has been demonstrated to be a
robust method to adjust for population stratification in mitochondrial association
studies. In addition, the use of mitochondrial PCs effectively removes false-positive
associations but does not cause a loss of power in detecting true associations. (Biffi
et al. 2010; Miller et al. 2019.) Logistic PC analysis was performed on homoplasmic
genotypes passing QC and with a VAF of ≥ 0.01 using the logisticPCA package
(Landgraf and Lee 2020). The number of mitochondrial PCs for the single variant
analyses was selected so that the median χ 2-based genomic inflation factor (λG) was
as close to one as possible.

The concept behind λG is that, with the exception of a small number of SNPs
being truly associated with a trait, the majority of the association test statistics will
follow the normal distribution under the null hypothesis. However, population het-
erogeneity, cryptic relatedness and genotyping errors may cause inflation of the test
statistics and increase the number of false-positive findings. This possible inflation
may be detected and controlled by calculating the λG. (Yang et al. 2011.) In GWASs,
values of λG < 1.05 are generally considered in the regime of minimal inflation (Price
et al. 2010).

For all mtSNPs associating with a probe, pairwise linkage disequilibrium (LD)
was quantified as squared Pearson correlation r 2. In order to identify the indepen-
dent signals, variants with r 2 > 0.30 were subjected to pairwise conditional analysis
by using the same linear model as in the full analysis but additionally conditioning
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for one significant variant at a time. We applied a variant-specific Bonferroni correc-
tion (i.e. correction for the number of pairwise analyses made for each variant) to
account for multiple testing.

Analysis of covariance was used to flag genes for those showing differential ex-
pression between haplogroups in 934 individuals. MtDNA PCs were excluded from
the covariates, since they were strongly correlated with the haplogroups. All genes
with a p< 2.55×10−6 (0.05/19,637)were compared using Tukey’s honest significant
difference test to confirm the between-haplogroup differences. A Tukey-adjusted p-
value of < 0.05 was considered significant.

Sex-specific effects of variants on gene expression were tested by applying the
same linear model as described above to males and females separately. Differences
in effect sizes were compared by random-effect meta-analysis by using the MetaDE
package (Wang et al. 2012). Heterogeneity was examined by Cochran’s Q test with
the corresponding p-value. A significant p-value suggests that there is a difference in
the effect sizes between the sexes. The number of variants tested was 156, because for
some variants, the allele frequency was< 0.01 in either males or females. Significance
was then defined as p< 1.63× 10−8 (0.05/156/19,637).

The effect of prediabetes was studied similarly by applying the linear model sep-
arately to individuals with prediabetes and normoglycaemic controls. The number
of variants included was now 127, resulting in a significance in random-effect meta-
analysis defined as p< 2.00× 10−8 (0.05/127/19,637).

All significant probes from the above-mentioned analyses were tested for cross-
hybridization with sequences other than the target transcript, using algorithm blastn
from BLAST (Altschul et al. 1990), with an emphasis on probes that have sequence
similarities with the mtDNA. Probes were considered to show strong evidence of
cross-hybridization with the mtDNA if the probes’ sequences had 90% identity over
the aligned region, at least 40 of 50 matching bps, and no gaps.

4.6.2 Association analyses on DNA methylation (II)

Discovery phase

Methylation, mtDNA and clinical data were available for 926 YFS participants, and
241 variants had a VAF of ≥ 0.01. In order to reduce the computational effort,
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we selected a set of 115 tagging variants that capture each of the 241 variants with
r 2 ≥ 0.8, by using Tagger (de Bakker et al. 2005) and HaploView (Barrett et al. 2005).
DNAmβ values were modelled as a linear function of the presence or absence of the
variant allele in R. The model was adjusted for age, sex, BMI, smoking status, white
blood cell type proportions, the first five PCs of DNAm array control probes, and
the first six mtDNA PCs. The fraction of white blood cells (CD8T, CD4T, NK
cells, B cells, monocytes, and granulocytes) was estimated through the reference-
based Houseman method using the minfi package (Houseman et al. 2012). CpG loci
were considered differentially methylated if they reached a Bonferroni-corrected p-
value of 7.8×10−10 (9×10−8/115), based on the number of independent tests in the
MethylationEPIC array (Mansell et al. 2019) and the number of tagging mtSNPs.

A similar linear model was applied to flag CpG sites for those showing differ-
ential methylation levels between the nine major haplogroups in 863 individuals.
We selected the most common haplogroup, H, to be the reference to which other
haplogroups were compared. MtDNA PCs were removed from the covariates. Sig-
nificance was defined as p< 1.0× 10−8 (9× 10−8/9).

Sex-specific effects were studied by applying the linear model to males and fe-
males separately, and by calculating the gender-heterogeneity p-value from fixed-
effect meta-analysis in the GWAMA software (Mägi et al. 2010; Mägi and Morris
2010). We required a minimum variant allele count of 10 in both sexes, which re-
sulted in 63 tagging variants to be included. Significance was defined as p< 1.4×10−9

(9× 10−8/63).
The effect of prediabetes was examined similarly by applying the model to indi-

viduals with prediabetes and normoglycaemic controls. Forty-seven tagging variants
were studied, resulting in a significance threshold of 1.9× 10−9 (9× 10−8/47).

In epigenome-wide association studies (EWASs), the outcome of interest is gen-
erally associated with many small genetic effects. This results in λG overestimating
the true inflation, as it is dependent on the number of significant associations (Yang
et al. 2011). Another prominent feature especially in EWASs is confounding, which
may subject test statistics to bias that is not taken into account when using λG (van
Iterson et al. 2017; Wang et al. 2017). Therefore, the effect estimates, their standard
errors and the corresponding p-values were corrected for bias and inflation using the
R package bacon. The inflation function of the same package was applied to esti-
mate the Bayesian inflation factor λB for each of the analyses. In EWASs, inflation
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has shown to be minimal when λB < 1.14. (van Iterson et al. 2017.)

Replication and meta-analysis

Replication was sought in the LURIC study by applying the same linear models
as in the discovery phase for 1,456 and 2,290 samples from the HumanExome-12
and 200k MetaboChip arrays, respectively. Most of the genotyped individuals (n=
1,429) were present in both arrays, and the total number of individuals was 2,317.
Associations were considered fully replicated if the replication p-value fell below
a Bonferroni-corrected p-value of 0.05/n, with n being the number of significant
associations in the discovery study covered in the replication sample. For nominal
replication, the p-value threshold was set at 0.05. Consistent effect directions across
both cohorts were also required.

Of the variants genotyped with the two microarrays, HumanExome-12 and 200k
MetaboChip, 53 and 42 mtSNPs with a VAF of≥ 0.005, respectively, were included.
The two arrays were analysed separately, including the twelve overlapping mtSNPs
present in both arrays, thus providing the opportunity of validation in the case of
significant results. If a tagging mtSNP from the discovery sample was not genotyped
in the replication sample, an mtSNP for replication was searched from the tagged
mtSNPs. If several tagged mtSNPs were genotyped, linear regression was performed
on all tagged variants and the sentinel mtSNP with the smallest association p-value
was used.

The observed replication rates were benchmarked for general mtSNP and hap-
logroup analyses by calculating the expected degree of replication. First, we used
a false-discovery rate inverse quantile transformation to correct the effect sizes for
the winner’s curse, an ascertainment bias where the true genetic effect of a variant
is smaller than its estimate within a discovery cohort due to chance noise (Okbay
et al. 2016). We also took into account the lower number of mtSNPs available in the
replication cohort. Second, we calculated the expected number of associations meet-
ing the Bonferroni-corrected replication threshold by using the method described in
Okbay et al. 2016.

Finally, we performed a fixed-effect inverse-variance-weighted meta-analysis of
the replicated associations by combining the effect estimates and standard errors
from the discovery and replication cohorts with the GWAMA software. An associa-
tion was considered significant if the meta-analysis p-value fell below the significance
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threshold used in the corresponding discovery analysis.

Expression quantitative trait methylation analysis

To gain insight into whether the identified methylation QTL were connected to bi-
ological processes, we examined the associations between peripheral blood genome-
wide transcriptomics and the differentially methylated CpG sites in 1,364 YFS par-
ticipants. CpGs were regressed against cell count proportions and the first 30 PCs of
the array control probes. Similarly, the 19,637 transcription probes were regressed
against the first 20 PCs derived from the expression data. For each CpG site, ex-
pression probes within a 2 Mb window (± 1 Mb) were included. Linear regression
was applied between the residuals from the CpG regression (explanatory variable)
and the expression probe residuals (dependent variable). The model was additionally
adjusted for age, sex and BMI. The p-value for statistical significance was defined as
0.05, divided by the number of combinations between CpGs and genes.

4.6.3 Association analyses on blood pressure (III)

Genotype and phenotype data were available for 1,150 YFS participants. In FIN-
CAVAS, both the genotype and phenotype data were available for 2,193 and 923
samples from the Cardio-MetaboChip and HumanCoreExome arrays, respectively.
The total number of FINCAVAS individuals was 3,112 since four samples were geno-
typed with both arrays. For these four samples, the genotypes for the 34 overlapping
variants present in both arrays were set as missing in the Cardio-MetaboChip array.

A rescaled inverse normal transformation was applied to the BP levels. This
makes the distributions normal and controls the type I error, restores the original
scale of measurement, deals with phenotypic outliers, and thus enhances the power
of meta-analysis (Auer et al. 2016; Tang and Lin 2015). SBP, DBP and MAP were
modelled as a linear function of the presence or absence of the variant allele with
age, sex, BMI and a cohort-specific number of mtDNA PCs as covariates under the
R environment.

A random-effect meta-analysis implemented in GWAMA was used to combine
the linear regression results from both cohorts, including 87 variants with a VAF of
≥ 0.01. Using Matrix Spectral Decomposition and the eigenvalues of a variant corre-
lation matrix (Li and Ji 2005; Nyholt 2004), we determined that 45 of the 87 variants
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represented an estimate of the number of independent genetic effects for mtDNA.
This resulted in a Bonferroni-corrected significance level of 0.001 (i.e. 0.05/45). We
did not account for the testing of three BP traits, since they were correlated (Pear-
son’s r was 0.78–0.96 in the YFS and 0.67–0.92 in the FINCAVAS).

Sex-specific effects were tested by applying the linear model to males and females
from each cohort separately, combining the results and calculating the gender-hetero-
geneity p-value in GWAMA. Sixty-six variants with a VAF of ≥ 0.01 were analysed,
33 of which represented an estimate of the number of independent genetic effects. To
account for the two sexes tested, the significance level was defined as p< 7.6× 10−4

(0.05/33/2).

Association test of rare mtDNA variants

Standard methods for testing common variant associations are underpowered for
detecting associations with rare (VAF< 0.01) variants (Li and Leal 2008). We applied
a sequence kernel association test (SKAT) that collapses and tests the collective effects
of variants within a specified genetic region without assuming similar directionality
or effect size for each variant (Wu et al. 2011). The variants were clustered into seven
regions: the four OXPHOS complexes, all rRNAs combined, all tRNAs combined,
and the non-coding control region.

We employed SKAT meta-analysis implemented in the seqMeta R package with
two VAF cut-off values, ≤ 0.01 (T1) and ≤ 0.05 (T5), with the default beta weights
and with age, sex, BMI and cohort-specific number of mtDNA PCs as covariates.
Bonferroni-corrected statistical significance was defined as 0.05/7= 0.007.

The pathogenicity of the nonsynonymous variants was predicted with MutPred
(Mort et al. 2010; Pereira et al. 2011) and MitoTIP pathogenicity scores (Sonney et al.
2017). An additional SKAT meta-analysis was leveraged, similarly to what has been
described above but including only variants with a MutPred score, > 0.5 (i.e., po-
tentially or high-confidence harmful) or a MitoTIP classification ‘possibly’ or ‘likely
pathogenic’. Currently, no tools exist for annotating pathogenicity for variants in
the rRNA regions.
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5 RESULTS

5.1 Associations of mtDNA variants with the genome-wide

transcriptome (I)

The characteristics of the study population used in study I are shown in Table 5.1.

Table 5.1 Characteristics of the study population in study I. Values are mean (SD) or n (%) for continuous
and categorical variables, respectively.

All Men Women Prediabetes Controls

No. of subjects 955 407 548 249 584

Age, years 42.1 (5.0) 42.1 (4.6) 42.1 (5.0) 42.8 (5.1) 41.6 (5.0)

Women 548 (57.3) - - 106 (42.6) 382 (65.4)

Body mass index, kg/m2 26.7 (5.0) 27.5 (4.6) 26.1 (5.2) 28.6 (5.4) 25.5 (4.2)

In all, 3,907,763 probe-mtSNP associations were tested using linear regression.
The genomic inflation factor was 1.00, indicating no inflation of the results. As
shown in Table 5.2, a total of 53 expression probe-mtSNP pairs were significant after
Bonferroni correction, corresponding to 5 nuclear and 2 mitochondrial genes and 31
mtSNPs. These seven genes included signal peptidase complex subunit 2 pseudogene
4 (SPCS2P4), ring finger protein 113A (RNF113A), signal peptidase complex subunit
2 (SPCS2), mitochondrially encoded cytochrome c oxidase II (MT-CO2), cardiolipin
synthase 1 (CRLS1), solute carrier family 25 member 15 (SLC25A14) and mitochon-
drially encoded 16S RNA-like 1 (MT-RNR2L1).

Five associations survived all conditional analyses, taking into account the LD
between variants. The two mtSNPs that associated with MT-CO2 were in very weak
LD, and only one mtSNP associated with MT-RNR2L1; these associations were not
subjected to conditional analysis and were considered independent. For SLC25A14
and CRLS1, none of the associations remained independent.
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Table 5.2 The 53 significant mtSNP associations with gene transcripts. An asterisk (*) marks the associ-
ations that were replicated from the results by Kassam et al. (2016). The ‘MT-’ prefix is omitted
from each mitochondrial gene name in the Locus column. Modified from study I.

mtSNP Locus VAF Transcript Chr Beta SE p-value
m.9055G>A ATP6 0.04 SPCS2P4 1 −1.11 0.08 1.8×10−39

m.3480A>G ND1 0.04 SPCS2P4 1 −1.09 0.09 4.8×10−32 *
m.10550A>G ND4L 0.04 SPCS2P4 1 −1.08 0.09 9.5×10−32 *
m.14167C>T ND6 0.04 SPCS2P4 1 −1.08 0.09 9.5×10−32

m.16224T>C HV region 1 0.05 SPCS2P4 1 −0.95 0.08 1.8×10−30

m.11299T>C ND4 0.04 SPCS2P4 1 −1.03 0.09 5.9×10−29

m.1189T>C RNR1 0.03 SPCS2P4 1 −1.04 0.09 1.2×10−27 *
m.9055G>A ATP6 0.04 RNF113A X −1.23 0.13 2.5×10−21

m.9698T>C CO3 0.05 SPCS2P4 1 −0.74 0.08 1.0×10−19 *
m.14167C>T ND6 0.04 RNF113A X −1.25 0.14 1.9×10−18

m.10550A>G ND4L 0.04 RNF113A X −1.24 0.14 2.0×10−18

m.3480A>G ND1 0.04 RNF113A X −1.24 0.14 2.7×10−18

m.9093A>G ATP6 0.02 SPCS2P4 1 −1.03 0.12 4.7×10−18

m.11299T>C ND4 0.04 RNF113A X −1.2 0.14 1.2×10−17

m.1189T>C RNR1 0.03 RNF113A X −1.23 0.14 4.4×10−17

m.9903T>C CO3 0.02 SPCS2P4 1 −1.06 0.12 7.2×10−17

m.14798T>C CYB 0.10 SPCS2P4 1 −0.60 0.07 9.7×10−16

m.1811A>G RNR2 0.08 SPCS2P4 1 −0.50 0.07 4.9×10−14

m.16224T>C HV region 1 0.05 RNF113A X −0.96 0.13 8.6×10−14

m.9055G>A ATP6 0.04 SPCS2 11 −0.93 0.12 9.6×10−14

m.8869A>G ATP6 0.02 CRLS1 20 −0.75 0.10 5.3×10−13

m.4639T>C ND2 0.02 CRLS1 20 −0.75 0.10 8.5×10−13

m.11377G>A ND4 0.03 SPCS2P4 1 −0.76 0.11 2.2×10−12

m.9698T>C CO3 0.05 RNF113A X −0.87 0.12 2.6×10−12

m.5263C>T ND2 0.02 CRLS1 20 −0.75 0.11 5.3×10−12

m.9093A>G ATP6 0.02 RNF113A X −1.23 0.18 7.4×10−12

m.8269G>A CO2 0.01 MT-CO2 MT −1.62 0.24 2.1×10−11 *
m.11251A>G ND4 0.12 SPCS2P4 1 1.04 0.15 2.6×10−11

m.15452C>A CYB 0.12 SPCS2P4 1 1.03 0.15 5.6×10−11

m.9903T>C CO3 0.02 RNF113A X −1.24 0.19 2.0×10−10

m.3505A>G ND1 0.05 SLC25A14 X 0.77 0.12 3.3×10−10

m.1243T>C RNR1 0.05 SLC25A14 X 0.76 0.12 4.5×10−10

m.14798T>C CYB 0.10 RNF113A X −0.72 0.11 4.8×10−10

m.3480A>G ND1 0.04 SPCS2 11 −0.85 0.14 4.8×10−10 *
m.10550A>G ND4L 0.04 SPCS2 11 −0.85 0.14 5.0×10−10 *
m.16256C>T HV region 1 0.07 MT-RNR2L1 MT 0.39 0.06 5.3×10−10

m.14167C>T ND6 0.04 SPCS2 11 −0.85 0.14 5.4×10−10

m.16224T>C HV region 1 0.05 SPCS2 11 −0.76 0.12 9.7×10−10

m.11947A>G ND4 0.05 SLC25A14 X 0.75 0.12 1.0×10−9

m.8994G>A ATP6 0.05 SLC25A14 X 0.74 0.12 1.1×10−9

m.4216T>C ND1 0.12 RNF113A X 1.32 0.22 1.4×10−9

m.5046G>A ND2 0.05 SLC25A14 X 0.74 0.12 1.8×10−9

m.10398A>G ND3 0.14 SPCS2P4 1 −0.40 0.07 1.8×10−9

m.15884G>C CYB 0.05 SLC25A14 X 0.74 0.12 2.3×10−9

m.1811A>G RNR2 0.08 RNF113A X −0.60 0.10 3.4×10−9

m.15452C>A CYB 0.12 RNF113A X 1.39 0.24 5.2×10−9

m.16162A>G HV region 1 0.06 MT-CO2 MT −0.66 0.11 5.5×10−9

m.11299T>C ND4 0.04 SPCS2 11 −0.79 0.13 7.4×10−9

m.11251A>G ND4 0.12 RNF113A X 1.36 0.23 7.8×10−9

m.12414T>C ND5 0.05 SLC25A14 X 0.69 0.12 8.0×10−9

m.1189T>C RNR1 0.03 SPCS2 11 −0.82 0.14 8.3×10−9

m.5460G>A ND2 0.05 SLC25A14 X 0.65 0.11 9.9×10−9

m.11377G>A ND4 0.03 RNF113A X −0.93 0.16 1.2×10−8

Abbreviations: VAF, variant allele frequency; Chr, chromosome; SE, standard error; HV, hypervariable. The
beta-coefficient represents the proportion of one SD change in normalized gene expression intensity (mean = 0)
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The five independent associations are shown in Table 5.3, and Figure 5.1 illus-
trates the expression intensities for the top four transcripts relative to the alleles of
the top independent locus.

Table 5.3 Independent mtSNP-probe association signals from the pairwise conditional analysis. Adapted
from study I.

mtSNP Transcript Betacond SEcond pcond pBonf

m.9055G>A SPCS2P4 − 0.97 – − 1.36 0.09–0.20 1.8×10−11 – 4.4×10−29 4.2×10−3

m.11251A>G SPCS2P4 0.97 0.30 1.4 ×10−3 5.0×10−2

m.15452C>A SPCS2P4 1.13 0.24 4.3 ×10−6 5.0×10−2

m.9055G>A RNF113A − 1.18 – − 1.36 0.14–0.32 1.4×10−4 – 2.8×10−14 4.2×10−3

m.9055G>A SPCS2 − 0.90 – − 1.39 0.21–0.31 3.7×10−5 – 1.4×10−6 8.3×10−3

Abbreviations and definitions: Betacond, effect size range from pairwise conditional analysis; SEcond,
standard error range from conditional analysis; pcond, p-value range from conditional analysis; pBonf,
mtSNP-specific Bonferroni-corrected p-value accounts for the number of pairwise analyses run for each
mtSNP and is defined as the limit of significance.
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Figure 5.1 Combined box plot and violin plot of the normalized expression intensities for the top four
genes relative to the alleles of the top associated independent mtSNP. Adapted from study I.

The haplogroup frequencies of the study population are shown in Table 5 in orig-
inal publication I. Nearly 70% of the participants belonged to haplogroups H and U.
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Five probes showed differential expression between haplogroups (λG = 1.04). Three
of the transcripts, SPCS2P4, RNF113A and SLC25A14, were also associated with
individual mtSNPs, but the other two transcripts, solute carrier family 2 member 8
(SLC2A8) and mitochondrially encoded NADH dehydrogenase 5 (MT-ND5), were
not identified in the probe-mtSNP analysis. The significant associations identified by
Tukey’s post hoc test are shown in Table 5.4. Figure 5.2 illustrates the transcript lev-
els of the top two genes, SPCS2P4 and RNF113A, which were significantly lower in
haplogroup K than in all other eight major haplogroups. This haplogroup is defined
by the same variants (m.9055G>A, m.3408A>G and m.10550A>G, for example)
that constitute the vast majority of the associations with the transcripts SPCS2P4
and RNF113A in the mtSNP-based analysis.

Table 5.4 Significant and independent mitochondrial genome-wide associations with gene transcripts.
Adapted from study I.

Transcript Haplogroup comparison Difference in means [95% CI] Tukey-adjusted p-value
SPCS2P4 K-H −1.27 [−1.80, −0.73] 1.3×10−11

K-U −1.23 [−1.78, −0.68] 2.4×10−10

K-J −1.30 [−1.93, −0.67] 8.6×10−9

K-W −1.35 [−2.04, −0.66] 6.1×10−8

K-V −1.17 [−1.82, −0.52] 9.9×10−7

K-T −1.10 [−1.78, −0.43] 1.6×10−5

K-I −1.47 [−2.38, −0.55] 2.7×10−5

K-X −1.28 [−2.14, −0.43] 1.1×10−4

RNF113A K-H −1.44 [−1.97, −0.91] <2.6×10−14

K-U −1.53 [−2.07, −0.99] <2.6×10−14

K-J −1.52 [−2.14, −0.90] 2.5×10−12

K-T −1.44 [−2.10, −0.77] 1.1×10−9

K-W −1.42 [−2.10, −0.74] 4.7×10−9

K-X −1.48 [−2.32, −0.65] 1.7×10−6

K-I −1.57 [−2.47, −0.67] 2.8×10−6

K-V −1.03 [−1.67, −0.39] 2.2×10−5

K-U −0.50 [−0.94, −0.06] 1.2×10−2

SLC25A14 W-J 0.81 [0.21, 1.41] 1.0×10−3

W-H 0.55 [0.06, 1.05] 1.6×10−2

K-J 0.69 [0.05, 1.33] 2.5×10−2

W-X 0.86 [0.02, 1.69] 3.8×10−2

SLC2A8 U-J −0.46 [−0.88, −0.04] 2.1×10−2

U-H −0.25 [−0.50, 0.00] 4.3×10−2

MT-ND5 J-V 0.84 [0.30, 1.41] 7.1×10−5

J-U 0.59 [0.16, 1.05] 5.8×10−4

J-H 0.50 [0.10, 1.33] 3.2×10−3

J-W 0.69 [0.09, 1.29] 1.1×10−2

Abbreviations: CI, confidence internal. One unit of difference in means represents the proportion of one
SD change in normalized gene expression intensity.
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Figure 5.2 Combined box plot and violin plot of the normalized expression intensities of SPCS2P4 and
RNF113A across the nine major haplogroups. Adapted from study I.

The nucleous-encoded transcripts identified to be associated with mtSNPs or
haplogroups were SPCS2P4, RNF113A, SPCS2, CRLS1, SLC25A14, and SLC2A8.
None of the corresponding genes showed cross-hybridization with sequences on the
mitochondrial genome.

5.2 Associations of mtDNA variants with DNA methylation

(II)

The characteristics of the study populations used in study II are shown in Table 1
in original publication II. The LURIC study participants were, on average, older
than the YFS participants, with a higher percentage of men and individuals with
prediabetes. The proportion of current smokers was similar in both cohorts, but
the percentage of never-smokers was higher in the YFS.

A total of 88,513,545 CpG–mtSNP pairs were tested in the discovery phase, re-
sulting in 5,562 significant associations that constituted of 89 mtSNPs and 4,618 CpG
sites scattered all around the nuclear genome. The Bayesian inflation factor was 1.00,
suggesting minimal inflation. Of the 5,562 associations, 685 were available for repli-
cation, resulting in a significance level of p< 7.3× 10−5 (0.05/685). None of the as-
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sociations passed this threshold, even though 228 associations were expected to reach
this p-value. Twenty-one associations were nominally replicated with p< 0.05. The
fixed-effect meta-analysis that combined the nominally replicated results yielded 19
associations with epigenome-wide significance (7.8×10−10), shown in Figure 5.3 and
in Table 5.5. The significant CpG–mtSNP pairs did not correspond to the transcript-
mtSNP pairs that were identified in study I.

m.15758A>G vs. cg24932760

m.15758A>G vs. cg24563703

m.15758A>G vs. cg21256656

m.15758A>G vs. cg17215154

m.15758A>G vs. cg12938273

m.15758A>G vs. cg09308244

m.15758A>G vs. cg04580897

m.15758A>G vs. cg02892650

m.15758A>G vs. cg02655365

m.15758A>G vs. cg01744527

m.15758A>G vs. cg01493522

m.15758A>G vs. cg00293517

m.14872C>T vs. cg08283289

m.14872C>T vs. cg06781910

m.14872C>T vs. cg01965533

m.4216T>C vs. cg21207593

m.4216T>C vs. cg21182781

m.4216T>C vs. cg15934776

m.4216T>C vs. cg15097846

−0.06 −0.03 0.00 0.03

Beta coefficient along with the 95% confidence interval

study

YFS

LURIC

Meta−analysis

Figure 5.3 Forest plot showing the 19 nominally replicated mtSNP effects on DNAm that also reached
epigenome-wide significance in the meta-analysis. Adapted from study II.
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The haplogroup-based discovery analysis identified 142 significant associations
with minimal inflation (λB = 0.99). In the LURIC study, 120 associations were
available for replication, none of which were fully replicated with p < 4.2× 10−4

(0.05/120). Fifteen associations were expected to reach this level. Six associations
were nominally replicated, four of which remained significant in the meta-analysis
(Table 5.6 and Figure 5.4). Similarly to the mtSNP-based analysis, the haplogroup
associations did not correspond to the haplogroup–transcript associations that were
identified in study I.

Table 5.6 Four nominally replicated CpG–haplogroup associations that reached epigenome-wide signif-
icance in the meta-analysis. Modified from study II.

YFS LURIC Combined

Haplo-
group

CpG
Ref.
gene

Beta
(SE)

p-value
Beta
(SE)

p-value
Beta
(SE)

p-value

W cg25821304 RNF135 0.005
(0.001)

6.1×10−10 0.006
(0.001)

8.2×10−4 0.005
(0.001)

2.2×10−12

I cg20934571 CARKD −0.021
(0.003)

1.3×10−9 −0.018
(0.006)

1.0×10−3 −0.020
(0.003)

5.9×10−12

I cg11350158 LRP1B −0.012
(0.002)

1.7×10−9 −0.005
(0.002)

3.3×10−2 −0.009
(0.001)

2.6×10−9

I cg25020969 MAD1L1 −0.034
(0.006)

9.8×10−9 −0.014
(0.006)

1.3×10−2 −0.024
(0.004)

9.3×10−9

cg25821304 vs. W

cg25020969 vs. I

cg20934571 vs. I

cg11350158 vs. I

−0.04 −0.03 −0.02 −0.01 0.00 0.01

Beta coefficient along with the 95% confidence interval

study

YFS

LURIC

Meta−analysis

Figure 5.4 Forest plot showing the four nominally replicated haplogroup effects on DNAm that also
reached epigenome-wide significance in the meta-analysis. In all associations, haplogroup H
was used as the reference haplogroup. Adapted from study II.

Finally, we searched for gene transcripts regulated by the candidate CpGs identi-
fied after the replication stage. We considered genes±1 Mb from each CpG site and
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tested 890 CpG–transcript combinations for differential expression. Two associa-
tions were significant after correction for multiple testing: inverse associations were
observed for cg25020969 (which showed lower methylation levels in haplogroup I)
and probes ILMN_1681674 and ILMN_2358069, both at the MAD1L1 gene (effect
estimate −4.63 and −3.68, SE 1.05 and 0.91, p-value 1.2×10−5 and 5.9×10−5, respec-
tively).

5.3 Prediabetes-specific effects (I and II)

In study I, the meta-analysis showed a difference in the effect sizes between sub-
jects with prediabetes and controls for one transcript. A heterogeneity p-value of
8.9× 10−9 (λG = 0.99) corresponded to the association between the transcript lev-
els of 2'-5'-oligoadenylate synthase like (OASL) and m.16294C>T. For this mtSNP,
individuals with prediabetes had an effect estimate of –0.74 (SE 0.12) and a corre-
sponding p-value of 9.7× 10−6 (λG = 0.99), while the control group had an effect
estimate of 0.43 (SE 0.12) and a p-value of 4.2× 10−4 (λG = 1.00). In other words,
individuals with prediabetes and the allele T had lower transcript levels of OASL
compared to the reference allele C, while participants with the T allele but no pre-
diabetes had higher transcript levels compared to the reference allele, as can be seen
in Figure 5.5.
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Figure 5.5 Combined boxplot and violin plot of the normalized expression intensities of OASL across the
individuals with and without prediabetes relative to mtSNP m.16294C>T. Adapted from study
I.

In study II, prediabetes-specific analysis discovered 483 mtSNP–CpG pairs that
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showed significant differences in effect sizes between the phenotypes. We were able
to attempt replication for 113 associations in the LURIC study, none of which were
replicated with a heterogeneity p-value of < 0.05.

5.4 Mitochondrial GWAS on blood pressure (III)

The characteristics of the study populations used in study III are shown in Table
1 in original publication III. The participants in the FINCAVAS were, on average,
older, had higher BMI and BP levels and displayed clearly more antihypertensive
medication usage (31%, 24% and 16% for 1, 2 and ≥ 3 medication classes taken,
respectively) than YFS participants (7%, 3% and 0.3%, respectively).

The associations of 87 common mtSNPs with SBP, DBP and MAP were evaluated
using random-effect meta-analysis in these two cohorts. When both sexes were anal-
ysed together, no statistically significant associations were observed after correction
for multiple testing. Eight associations were nominally significant, with p < 0.05,
and are shown in Table 5.7.

Table 5.7 The eight nominally significant associations with BP. Adapted from study III.

mtSNP Locus VAF Trait Beta SE p-value n

m.1243C>T MT-RNR1 0.02 SBP −4.2 1.8 0.019 4,219

m.15257A>G MT-CYB 0.01 MAP 4.9 2.2 0.025 2,071

m.11674T>C MT-ND4 0.03 SBP −4.3 1.9 0.026 3,342

m.4024G>A MT-ND1 0.02 DBP 4.2 2.0 0.033 2,040

m.5004C>T MT-ND2 0.02 DBP 4.2 2.0 0.036 2,035

m.4336C>T tRNA 0.01 MAP −4.1 2.0 0.037 3,310

m.9055G>A MT-ATP6 0.05 DBP 2.6 1.3 0.042 3,334

m.4336C>T tRNA 0.01 DBP −3.5 1.8 0.043 3,310

Finally, we conducted SKAT meta-analyses on all rare (T1 test) and low-frequency
(T5 test) variants. We also employed SKAT taking into account the predicted pathogenic-
ity of the variants. None of the analyses yielded significant associations with the BP
traits over the tested mtDNA regions.
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5.5 Sex-specific effects (I–III)

In study I, the meta-analysis did not show significant heterogeneity in the mtSNP–
transcript effect sizes between the sexes. In the discovery stage in study II, sex analy-
sis discovered 664 mtSNP–CpG pairs that showed significant differences in the effect
sizes between males and females. Replication was attempted for 135 associations in
the LURIC study, none of which were replicated with a heterogeneity p-value of
< 0.05. Finally, in study III, applying the BP association analysis to males and fe-
males separately and calculating the gender-heterogeneity p-value did not identify
significant mtSNP–BP associations showing sexual dimorphism.
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6 DISCUSSION

6.1 Transcriptomic changes associated with mtDNA

variation (I)

The mitochondrial GWAS on gene expression replicated seven associations that have
been previously reported (Kassam et al. 2016) and identified 46 novel mtSNP–probe
associations. The mtDNA sequence used by Kassam et al. is based on the Yoruban
sequence, and the mtDNA position values need to be converted to match the rCRS:
the corresponding rCRS position is obtained by decreasing the Yoruban position
by one for Yoruban base pair range 3109–16190, and by two for Yoruban range
318–3108 (Lott et al. 2013). For example, variants m.3481A>G and m.1191T>C in
the Yoruban sequence correspond to rCRS variants m.3480A>G and m.1189T>C,
respectively.

Most of the associations were located in the protein-encoding genes and few in the
HV region and rRNA-encoding genes. No associations were identified for mtSNPs
in the tRNA-encoding genes. The replicated associations correspond to both nucle-
arly and mitochondrially encoded genes (SPCS2P4, SPCS2 and MT-CO2) and strength-
en the hypothesis that mitochondria have a genetic control of the expression of sev-
eral genes. SPCS2P4 is a pseudogene, the protein product of SPCS2 is involved in the
mitotic cell cycle pathway, and MT-CO2 encodes a subunit of OXPHOS complex
IV. Even though the biological relevance of these associations remains unclear and
they do not necessarily result from causal relationships, they may equally represent
retrograde signals that induce changes in nuclear gene expression in order to regulate
mitochondrial functionality.

A potential candidate target for retrograde signalling is SLC25A14, encoding mi-
tochondrial uncoupling protein 5, which was associated with several mtSNPs be-
fore conditional analysis and with haplogroup W. There is evidence that mitochon-
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drial uncoupling protein 5 overexpression can modify the mitochondrial membrane
potential, maintain OXPHOS and decrease the mitochondrial production of ROS
(Kim-Han et al. 2001; Kwok et al. 2010). Taken together, it could be suggested that
variants defining haplogroup W result in minor changes in OXPHOS that are com-
pensated with retrograde signals.

The main finding in the haplogroup-based analysis was that haplogroup K car-
riers have significantly lower transcript levels of SPCS2P4 and RNF113A compared
to K non-carriers. This is not surprising, since most of the top mtSNPs associated
with these expression probes are the defining variants for haplogroup K (van Oven
2015). Haplogroup K has been associated with an increased risk of breast cancer (Bai
et al. 2007), although this association is controversial (Salas et al. 2014). Moreover,
an increased RNF113A plasma protein level has been suggested as an early detection
biomarker for triple-negative breast cancer (Li et al. 2012). In our study, however,
haplogroup K was associated with lower transcript levels of RNF113A. Even though
the mRNA levels may not be sufficient for predicting the protein levels, our find-
ing suggests that, if this biomarker were adopted for clinical use, it might not be
applicable to haplogroup K carriers.

6.2 DNA methylation changes associated with mtDNA

variation (II)

In the discovery stage of the general mtSNP-based analysis, we observed numer-
ous significant candidates for methylation QTL mtSNPs. Twenty-one associations
achieved nominal replication, 19 of which remained epigenome-wide-significant when
the discovery and replication results were combined by a fixed-effect meta-analysis.
Haplogroup-based analysis pinpointed six nominally replicated associations, four of
which remained significant after meta-analysis.

By reaching borderline significance in the replication analysis and epigenome-
wide significance in the meta-analysis, the most promising association corresponded
to haplogroup W and cg25821304 mapping to the gene RNF135. The protein coded
by RNF135 is involved in the innate immunity against RNA virus infections (Oshi-
umi et al. 2009), and mtDNA can activate specific innate immunity responses (Ken-
ney et al. 2014a; West and Shadel 2017). The current finding might be regarded as

72



additional evidence that mtDNA variation could have immunomodulatory features,
even though the CpG site did not associate with mRNA transcripts.

We did not observe differential methylation at CpG sites mapping to the genes
that showed mtSNP- or haplogroup-specific transcriptome profiles in study I or in
the work by Kassam et al. 2016. In addition, the haplogroup-K-defining variants,
that constituted the majority of the transcription QTL mtSNPs in study I, were
not significantly associated with DNAm levels at any stage in study II. This implies
that, if there is a causal relationship between the haplogroup-K-defining variants and
peripheral blood transcriptomics, the transcriptional changes are not mediated by
the methylation of CpG sites.

An interesting association was observed between mtSNP m.14872C>T, a syn-
onymous mutation in the MT-CYB gene, and cg01965533, which maps to dihydrolipo-
amide S-succinyltransferase (DLST ). The protein product of MT-CYB is a subunit
of OXPHOS complex III (Vázquez-Acevedo et al. 1993), and DLST encodes a sub-
unit of the α-KG dehydrogenase complex which catalyses the conversion of α-KG
to succinyl-CoA (Tretter and Adam-Vizi 2005). In regulatory T cells, the loss of
complex III increases DNAm and leads to an accumulation of the metabolites 2-HG
and succinate that inhibit the TET demethylases (Weinberg et al. 2019). Therefore,
the slight increase in the methylation of cg01965533 could compromise the increase
in the α-KG-derived metabolites by repressing the expression of DLST and thus the
conversion of α-KG.

Variant m.4216T>C, a nonsynonymous mutation in the MT-ND1 gene, was asso-
ciated with lower methylation levels at four CpG sites. Two of those CpGs map to a
gene that encodes a protein targeted in the mitochondria: IARS2 and LIG3. The for-
mer encodes an isoleucyl-tRNA synthetase that catalyses the amino acid attachment
into a cognate mt-tRNA (Vona et al. 2018). One isoform of the protein encoded by
LIG3 is the only DNA ligase in mitochondria, and it is involved in mtDNA repli-
cation and repair (Lakshmipathy and Campbell 1999). The overexpression of LIG3
in mitochondria also protects cells against oxidative stress (Akbari et al. 2014). Vari-
ant m.4216T>C, together with the three variants tagged by it, define haplogroup JT
(van Oven and Kayser 2009). The polymorphism affects the assembly or stability
of OXPHOS complex I (Hinttala et al. 2010), a major site for mitochondrial ROS
production (Nissanka and Moraes 2018). Sub-haplogroup J has showed lower ROS
production compared to haplogroup H (Bellizzi et al. 2012; Kenney et al. 2013).
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Taken together, altered methylation at cg21207593 mapping to LIG3 could result
from lower ROS levels associated with m.4216T>C.

However, in the meta-analysis combining the replicated results, the CpGs that
were associated with mtSNPs were not the same as those that were associated with
the haplogroups, and the mtSNPs (and the tagged polymorphisms) are not the defin-
ing variants for haplogroups W and I pinpointed in the haplogroup-based analysis
(van Oven and Kayser 2009). This could imply that the haplogroup effect is driven by
small individual effects by many mtSNPs. Haplogroup JT, defined by m.4216T>C
and three other mtSNPs, further divides into haplogroups J and T that have both
shared and unique defining variants that were not associated with CpGs. We per-
formed association analyses separately for haplogroups J and T but not for JT, which
could explain why the four CpGs were not identified in the haplogroup-based anal-
ysis.

Even though we used a relatively liberal replication threshold, the observed repli-
cation rates were significantly lower than predicted. The lack of replication was
not explained by the winner’s curse. The poor replication rates may be explained
by study-specific heterogeneity; the YFS is a population-based study, whereas the
LURIC participant pool mainly consists of older patients referred to coronary an-
giography. DNAm variation has been associated with age numerous times (Horvath
2013; Zhang et al. 2020), and other confounding factors, such as socioeconomic sta-
tus (Fiorito et al. 2019) and lipid composition (Gomez-Alonso et al. 2021), may also
have had an independent effect on the results. In fact, inconsistency or study-specific
heterogeneity of genetic association results can be observed whether the associations
are true or not (Ioannidis 2007). The studies may also have been underpowered to
detect small genetic effects.

Two differentially methylated CpG sites were associated with peripheral blood
transcripts. These associations, both corresponding to cg25020969, were not surpris-
ing, as the target of this CpG site and the two associated transcripts were related to
the same gene, MAD1L1. It should be noted, however, that rather than being a strict
dynamic mechanism for regulating gene expression, DNAm changes can also serve
as a long-term memory of previous gene expression decisions that were mediated by
transcriptional factors that might no longer be present in the cell (Dor and Cedar
2018).

74



6.3 Prediabetes-specific effects (I and II)

The association between transcript OASL and mtSNP m.16294C>T showed predia-
betes-specific effects. In a small study of Bangladeshi individuals, this variant demon-
strated a protective role against T2DM (Saha et al. 2021). Among the European pop-
ulation, on the other hand, the variant has been associated with obesity (Ebner et al.
2015) and coronary artery disease (Mueller et al. 2011). The variant is located in the
control region and is possibly involved in accelerating mtDNA synthesis to satisfy
developmental, physiological or ageing-related demands (Fish et al. 2004). Function-
ally, OASL encodes an interferon response protein, and its high expression levels in
visceral adipose tissue, together with other three interferon signature genes, have
been found to be positively correlated with adipose tissue and systemic insulin re-
sistance (Ghosh et al. 2016). Regarding T2DM, the same gene was dysregulated in
pancreatic tissue at the mRNA level when compared to healthy control individu-
als (Pedersen et al. 2021). The OASL gene has shown effects on C-reactive protein,
γ -glutamyl transferase and LDL cholesterol, all of which are related to cardiovascu-
lar diseases, which are prevalent in individuals with T2DM (Middelberg et al. 2011).
Based on this, it could be hypothesized that m.16294C>T has a minor role in the
development of T2DM-related cardiovascular disease. However, the identified asso-
ciation should be replicated in other populations and explored in functional genomic
studies to gain support for this hypothesis.

Variant m.16294C>T was also analysed in study II, and in the discovery phase it
showed prediabetes-specific associations for seven CpGs, none of which mapping to
OASL. These seven associations were not replicated in the LURIC study. In general,
replication analysis demonstrated no evidence of prediabetes-specific mitochondrial
genetic control of DNAm. As individuals with prediabetes may oscillate between
normo- and dysglycaemia (Tabák et al. 2012), there is, however, a possibility that the
cumulative glycaemic burden is not high enough in order to yield detectable changes
at a methylomic or transcriptomic level.

6.4 Role of mtDNA variation in blood pressure (III)

The mitochondrial GWAS on BP did not identify any significant associations after
correction for multiple testing, also failing to replicate the results where mtSNPs
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m.3197T>C and m.15924A>G were associated with higher SBP and MAP, respec-
tively, in white North American individuals (Buford et al. 2018). The pooled ef-
fects on SBP across all tRNA regions, also reported by Buford et al., were also not
replicated, not even when the predicted pathogenicity of the variants within protein-
encoding and the tRNA regions was accounted for. However, the participants in the
aforementioned study were significantly older than the Finns in our cohorts, and the
possible regulative role may be activated only in later life. Another variant that has
been associated with BP is m.5913G>A that was identified in the Framingham Heart
Study (Liu et al. 2012). This mtSNP was rare in the YFS population (VAF < 0.01)
and not included in the two genotyping arrays used in the FINCAVAS, thus prevent-
ing the attempt at replication.

Our inability to replicate the findings from well-defined cohorts underlines the
need of larger multi-centre consortium studies. For example, the CHARGEmtDNA+
working group analysed the associations of common and rare mtDNA variants with
seven metabolic traits (not including BP) in∼170,000 individuals (Kraja et al. 2019).
However, the role of mtDNA variation in BP seems to be small compared to nDNA
polymorphisms, and we should also be ready to accept the null hypothesis already
implied by several preceding studies (Hudson et al. 2014; Saxena et al. 2006; Ven-
ter et al. 2017). Another hypothesis to be tested is that, instead of being causal to
BP variation, mtSNPs could impact the complications of hypertension, similarly to
T2DM (Achilli et al. 2011).

6.5 No evidence of sexually dimorphic associations (I–III)

Similarly to the findings of Kassam et al. (2016), we did not find evidence of sex-
specific mitochondrial genetic effects on gene expression. These results are in con-
trast with the strong, mostly male-biased mitochondrial genetic control of nuclear
gene expression observed in Drosophila melanogaster (Innocenti et al. 2011). Since
the nDNA backgrounds can modify the sensitivity of the transcriptome to mtDNA
variation in Drosophila (Mossman et al. 2016), it is possible that the nDNA back-
grounds in the YFS population are also less sensitive to mtDNA variation.

We were also unable to identify convincing sex-specific mitochondrial genetic ef-
fects on DNAm, partly due to the relatively low number of associations for which
replication could even be attempted. Furthermore, blood pressure levels were not
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affected by male- or female-specific genetic effects. Taken together, there is little evi-
dence in humans of the sex-specific mitochondrial effects observed in other species,
especially in Drosophila (Nagarajan-Radha et al. 2020). Still, the existence of ‘mother’s
curse’ mtDNA mutations in humans may be a broad phenomenon, but their dele-
terious effects have been counter-adapted by nuclear compensatory modifier mu-
tations (Beekman et al. 2014), or the nuclear counter-adaptations are not effective
enough to be detected within a population (Dowling and Adrian 2019).

Peripheral blood DNAm and genome-wide transcript levels and BP may not have
been the optimal traits for trying to reveal the sex-specific effects. If a trait is virtually
identical in both sexes, there is little basis for mtDNA variation to affect males and fe-
males differently. Therefore, the most potential traits for identifying the ‘mother’s
curse’ effects are those that are sexually highly dimorphic but analogs in function
and consequences. Examples of such traits are those related to reproductive suc-
cess. (Dowling and Adrian 2019.) However, as sex-specific autosomal methylation
and transcription patterns have been demonstrated in peripheral blood in humans
(Jansen et al. 2014; Singmann et al. 2015), we would have expected to observe some
evidence of mitochondrial sex-specific genetic effects.

6.6 Strengths and limitations

A strength of all three studies was the use of large, well-characterised cohorts. A
major strength was also the use of NGS in identifying the mtDNA variants in the
YFS. Compared to microarray genotyping, this allowed us to study a dense set of mt-
SNPs and improved the quality of haplogroup assignment. In studies II and III, the
LURIC and FINCAVAS participants were genotyped using microarrays, and fully
comparable mtDNA sequencing datasets were not available for these two cohorts,
limiting the number of mtSNPs to be included in the replication and meta-analyses.
This was the main weakness in these two studies. This was especially pronounced
in study II, in which we were able to attempt replication only for 15%–30% of the
mtSNP-based associations from the discovery phase.

A strength of study I was that we were able to compare our associations from the
general mtSNP-based analysis with the previously described results by Kassam et al.
2016. However, we did not attempt replication for the prediabetes-specific effects,
and the possibility of false-positive associations should be acknowledged. Another
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limitation is that no OGTTs were performed and the definition of prediabetes was
based only on FPG and HbA1c levels; this also applies to the YFS participants in
study II.

In study II, genotyping a part of the LURIC cohort with two different microar-
rays increased the quality of haplogroup assignment. The discovery analyses were
adjusted for bias and inflation using a state-of-the-art method specifically developed
for EWASs. The measurement of serum cotinine levels permitted us to verify the
self-reported smoking status in the LURIC study, whereas in the YFS the status was
only self-reported. The use of tagging mtSNPs may have resulted in false-positive
or false-negative replications, and software specifically designed for QTL analyses of
large datasets, such as Matrix eQTL (Shabalin 2012), would have enabled to analyse
all mtSNPs within a reasonable time.

A strength of study III was the use of a large range of BP variation in the two
cohorts, and the method we used to adjust for antihypertensive treatment effects has
proven to work across a wire variety of clinical scenarios (Cui et al. 2003; Tobin et al.
2005). The majority of the rare mtSNPs were identified only in the YFS population,
which decreased the power of the SKAT meta-analysis.

In the FINCAVAS in study III, mtDNA variants were determined from periph-
eral blood leukocytes, whereas peripheral whole blood was used as the source of
mtDNA in the YFS. In addition to leukocytes, peripheral blood also contains ery-
throcytes and platelets. The former lack both nuclei and mitochondria, while the
latter are also devoid of nuclei but are equipped with mitochondria (Melchinger et al.
2019). This could induce bias in mtDNA copy number studies (Hurtado-Roca et al.
2016), but the possible effect in mtSNP association studies remains unclear. Most (>
90%) homoplasmic variants that have been identified from whole blood have also
been present in lymphoblastoid cell lines derived from B-lymphocytes (Liu et al.
2022), and different white blood cell types display similar mtSNP profiles (Zhang
et al. 2016). Taken together, this could suggest that using both peripheral blood and
leukocyte-derived mtDNA data did not result in significantly different mtSNP pro-
files. Platelet mtDNA methylation may, however, contribute to the development
of cardiovascular diseases through the modulation of platelet activity (Baccarelli and
Byun 2015).

Furthermore, the participants in the YFS, LURIC and FINCAVAS studies are
almost entirely white people of European descent, and the results are not directly
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generalizable to other ethnic groups with different genetic and environmental back-
grounds.

All mtDNA samples were derived from blood. As metabolic profiles vary be-
tween different tissues, our results may not be generalizable to other tissue types.
The possible effect of tissue-specific mtSNP profiles remains unclear. Especially
tissue-specific heteroplasmy is common (Naue et al. 2015; Samuels et al. 2013), but
in a small study of 35 patients, the homoplasmic mtDNA variants obtained from
blood and muscle were nearly identical (Taylor et al. 2003). In addition, the blood
transcriptome (Melé et al. 2015) and DNA methylome (Lowe et al. 2015) display
distinctive profiles compared with other somatic tissues, which further limits the
generalizability of our results to other tissues types.

This study did not address the role of heteroplasmic variants. Blood mtDNA typ-
ically exhibits less heteroplasmy than tissues with higher metabolic activity (Naue
et al. 2015). In the YFS population, a heteroplasmy level between 0.05 and 0.95
in at least 1% of the samples was observed only for one mtSNP, m.16192C>T, in
the hypervariable region. This is in line with previous findings (Stewart and Chin-
nery 2021), as the YFS participants are healthy middle-aged individuals. However,
as reviewed in section 2.2.1, low-level heteroplasmy is also common in healthy in-
dividuals. With a sequencing coverage of ∼500x, which was achieved in the YFS
population, the 0.05 heteroplasmy detection level is quite reliable, but for lower lev-
els, a deeper sequencing (>1000x) would have been required (González et al. 2020;
Weissensteiner et al. 2021). This left us unable to study the effects of low-level het-
eroplasmies. Finally, all three studies examined only the nucleotide substitutions,
whereas deletions and insertions were not identified.

6.7 Future perspectives

It is quite possible that the identified associations are examples of mtDNA variation
affecting DNAm and gene expression to maintain the homeostasis of normal cellular
function. Functional genomic studies, possibly utilizing mtDNA cybrids in which
the nDNA is held constant, would allow further exploration of this hypothesis and
pinpoint the molecular underpinnings behind the associations. Causal interference
methods, such as Mendelian randomization, could also be used to interrogate the
causal effects of the mtDNA markers. On the other hand, due to the dual genomic
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origin of mitochondrial proteins and the constant interaction between mitochondria
and the nucleus, future studies should also address the nuclear genetic background
to gain a greater understanding of the genetics behind mitochondrial–nuclear com-
munication. In addition, the analysis of different tissues, such as skeletal muscle or
liver, could provide further molecular-level and clinical implications.

Future research would also benefit from using NGS in identifying the variants, by
allowing a broader range of mtSNPs to confirm the candidate associations identified
in the YFS population. Furthermore, association studies utilizing data sets from
several different cohorts would improve the power to detect novel associations and
the generalizability of the results. Another basis for future research could be achieved
by introducing more homogeneous study groups with less confounding effects.

A twenty-four hour ambulatory BP monitoring would allow the investigation of
the nocturnal BP and the circadian BP variability. One mitochondrial GWAS has
utilised ambulatory BP levels (Venter et al. 2017), but the mitochondrial genetics
behind the night-time BP drop remain to be examined.

Finally, we did not study the effect of T2DM on mtDNA associations, since the
number of individuals with the disease was low among the YFS participants. It might
be useful to repeat the current study in a cohort with a higher prevalence of T2DM,
and especially in a population harbouring haplogroup N9a, which has the strongest
evidence of susceptibility to T2DM (Fang et al. 2018).
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7 CONCLUSIONS

The present study demonstrated that mtDNA variants and haplogroups associate
with peripheral blood transcriptomics and DNA methylation. Some of the associ-
ated transcripts and CpG sites may be linked back to the biological processes taking
place in mitochondria, which suggests that the associations may represent the ret-
rograde response in order to maintain cellular homeostasis. However, the majority
of the identified CpG sites did not associate with mRNA transcript levels, and the
functional relevance of these associations remains unclear. Future studies should ver-
ify the causal role of mtDNA variation and also explore the molecular mechanisms
behind these reported associations.

We did not observe similar variant associations with transcriptomics and methy-
lation. This indicates that, if there is a causal relationship between mtDNA variation
and peripheral blood transcriptomics, the regulatory mechanisms are not mediated
by changes in DNAm. Mitochondria affect DNAm mainly via TCA cycle metabo-
lites, whereas nuclear gene expression may also be regulated by mitochondria-derived
peptides, Ca2+ released from the mitochondrial matrix, or other mitochondrial meta-
bolites, such as ATP and ROS.

This study did not provide proper reassurance for the hypothesis that maternal
mitochondrial inheritance leads to sex-specific mitochondrial genetic effects. How-
ever, the peripheral blood traits tested for the ‘mother’s curse’ in our natural popula-
tions may not have been the most appropriate. We found one mtSNP–transcript pair
showing prediabetes-specific dimorphism with plausible functional relevance based
on previous studies. A note of caution, however, is that we did not have a replication
sample and the possibility of a false positive result should be acknowledged.

Our results, in agreement with several previous studies, suggest that mtDNA
variation does not have a significant role in the regulation of blood pressure. In
addition, we did not observe any sex-specific effects.

Taken together, this thesis provides both novel and additional evidence in support
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of the mitochondrial genetic control of peripheral blood transcriptomics and DNA
methylation, with little indication found for sex- and prediabetes-specific effects and
no sign of an association between blood pressure and mtDNA variation.

82



REFERENCES

Achilli, A. et al. (2011). Mitochondrial DNA Backgrounds Might Modulate Diabetes
Complications Rather than T2DM as a Whole. PLOS ONE 6.6, e21029. DOI:
10.1371/journal.pone.0021029.

Akbari, M., Keijzers, G., Maynard, S., Scheibye-Knudsen, M., Desler, C., Hickson,
I. D. and Bohr, V. A. (2014). Overexpression of DNA Ligase III in Mitochondria
Protects Cells against Oxidative Stress and Improves Mitochondrial DNA Base
Excision Repair. DNA Repair 16, 44–53. DOI: 10.1016/j.dnarep.2014.01.
015.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990). Basic
Local Alignment Search Tool. J. Mol. Biol. 215.3, 403–410. DOI: 10.1016/S0022-
2836(05)80360-2.

American Diabetes Association (2014). Diagnosis and Classification of Diabetes Mel-
litus. Diabetes Care 37, S81–S90. DOI: 10.2337/dc14-S081.

Anastasiadi, D., Esteve-Codina, A. and Piferrer, F. (2018). Consistent Inverse Corre-
lation between DNA Methylation of the First Intron and Gene Expression across
Tissues and Species. Epigenetics Chromatin 11, 37. DOI: 10.1186/s13072-018-
0205-1.

Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R.,
Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H.,
Smith, A. J. H., Staden, R. and Young, I. G. (1981). Sequence and Organization of
the Human Mitochondrial Genome. Nature 290.5806, 457–465. DOI: 10.1038/
290457a0.

Andrews, R. M., Kubacka, I., Chinnery, P. F., Lightowlers, R. N., Turnbull, D. M.
and Howell, N. (1999). Reanalysis and Revision of the Cambridge Reference Se-
quence for Human Mitochondrial DNA. Nat. Genet. 23.2, 147–147. DOI: 10.
1038/13779.

83

https://doi.org/10.1371/journal.pone.0021029
https://doi.org/10.1016/j.dnarep.2014.01.015
https://doi.org/10.1016/j.dnarep.2014.01.015
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.2337/dc14-S081
https://doi.org/10.1186/s13072-018-0205-1
https://doi.org/10.1186/s13072-018-0205-1
https://doi.org/10.1038/290457a0
https://doi.org/10.1038/290457a0
https://doi.org/10.1038/13779
https://doi.org/10.1038/13779


Arning, L., Haghikia, A., Taherzadeh-Fard, E., Saft, C., Andrich, J., Pula, B., Höx-
termann, S., Wieczorek, S., Akkad, D. A., Perrech, M., Gold, R., Epplen, J. T.
and Chan, A. (2010). Mitochondrial Haplogroup H Correlates with ATP Lev-
els and Age at Onset in Huntington Disease. J. Mol. Med. 88.4, 431–436. DOI:
10.1007/s00109-010-0589-2.

Ashar, F. N., Zhang, Y., Longchamps, R. J., Lane, J., Moes, A., Grove, M. L., My-
chaleckyj, J. C., Taylor, K. D., Coresh, J., Rotter, J. I., Boerwinkle, E., Pankratz,
N., Guallar, E. and Arking, D. E. (2017). Association of Mitochondrial DNA
Copy Number With Cardiovascular Disease. JAMA Cardiol. 2.11, 1247–1255.
DOI: 10.1001/jamacardio.2017.3683.

Atilano, S. R., Malik, D., Chwa, M., Cáceres-del-Carpio, J., Nesburn, A. B., Boyer,
D. S., Kuppermann, B. D., Jazwinski, S. M., Miceli, M. V., Wallace, D. C., Udar,
N. and Kenney, M. C. (2015). Mitochondrial DNA Variants Can Mediate Methy-
lation Status of Inflammation, Angiogenesis and Signaling Genes. Hum. Mol. Genet.
24.16, 4491–4503. DOI: 10.1093/hmg/ddv173.

Auer, P. L., Reiner, A. P. and Leal, S. M. (2016). The Effect of Phenotypic Outliers
and Non-Normality on Rare-Variant Association Testing. Eur. J. Hum. Genet.
24.8, 1188–1194. DOI: 10.1038/ejhg.2015.270.

Baccarelli, A. A. and Byun, H.-M. (2015). Platelet Mitochondrial DNA Methylation:
A Potential New Marker of Cardiovascular Disease. Clin. Epigenetics 7, 44. DOI:
10.1186/s13148-015-0078-0.

Bai, R.-K., Leal, S. M., Covarrubias, D., Liu, A. and Wong, L.-J. C. (2007). Mito-
chondrial Genetic Background Modifies Breast Cancer Risk. Cancer Res. 67.10,
4687–4694. DOI: 10.1158/0008-5472.CAN-06-3554.

Bandelt, H.-J., Kloss-Brandstätter, A., Richards, M. B., Yao, Y.-G. and Logan, I.
(2014). The Case for the Continuing Use of the Revised Cambridge Reference
Sequence (rCRS) and the Standardization of Notation in Human Mitochondrial
DNA Studies. J. Hum. Genet. 59.2, 66–77. DOI: 10.1038/jhg.2013.120.

Barrett, J. C., Fry, B., Maller, J. and Daly, M. J. (2005). Haploview: Analysis and
Visualization of LD and Haplotype Maps. Bioinformatics 21.2, 263–265. DOI:
10.1093/bioinformatics/bth457.

Baudouin, S. V., Saunders, D., Tiangyou, W., Elson, J. L., Poynter, J., Pyle, A., Keers,
S., Turnbull, D. M., Howell, N. and Chinnery, P. F. (2005). Mitochondrial DNA

84

https://doi.org/10.1007/s00109-010-0589-2
https://doi.org/10.1001/jamacardio.2017.3683
https://doi.org/10.1093/hmg/ddv173
https://doi.org/10.1038/ejhg.2015.270
https://doi.org/10.1186/s13148-015-0078-0
https://doi.org/10.1158/0008-5472.CAN-06-3554
https://doi.org/10.1038/jhg.2013.120
https://doi.org/10.1093/bioinformatics/bth457


and Survival after Sepsis: A Prospective Study. Lancet 366.9503, 2118–2121. DOI:
10.1016/S0140-6736(05)67890-7.

Beekman, M., Dowling, D. K. and Aanen, D. K. (2014). The Costs of Being Male:
Are There Sex-Specific Effects of Uniparental Mitochondrial Inheritance?: Philos.
Trans. R. Soc. B 369.1646, 20130440. DOI: 10.1098/rstb.2013.0440.

Behar, D. M., van Oven, M., Rosset, S., Metspalu, M., Loogväli, E.-L., Silva, N. M.,
Kivisild, T., Torroni, A. and Villems, R. (2012). A “Copernican” Reassessment of
the Human Mitochondrial DNA Tree from Its Root. Am. J. Hum. Genet. 90.4,
675–684. DOI: 10.1016/j.ajhg.2012.03.002.

Bellizzi, D., D’Aquila, P., Giordano, M., Montesanto, A. and Passarino, G. (2012).
Global DNA Methylation Levels Are Modulated by Mitochondrial DNA Vari-
ants. Epigenomics 4.1, 17–27. DOI: 10.2217/epi.11.109.

Benowitz, N. L., Bernert, J. T., Foulds, J., Hecht, S. S., Jacob III, P., Jarvis, M. J.,
Joseph, A., Oncken, C. and Piper, M. E. (2020). Biochemical Verification of To-
bacco Use and Abstinence: 2019 Update. Nicotine Tob. Res. 22.7, 1086–1097. DOI:
10.1093/ntr/ntz132.

Biffi, A., Anderson, C. D., Nalls, M. A., Rahman, R., Sonni, A., Cortellini, L., Rost,
N. S., Matarin, M., Hernandez, D. G., Plourde, A., De Bakker, P. I. W., Ross,
O. A., Greenberg, S. M., Furie, K. L., Meschia, J. F., Singleton, A. B., Saxena, R.
and Rosand, J. (2010). Principal-Component Analysis for Assessment of Popula-
tion Stratification in Mitochondrial Medical Genetics. Am. J. Hum. Genet. 86.6,
904–917. DOI: 10.1016/j.ajhg.2010.05.005.

Birky, C. W. (1994). Relaxed and Stringent Genomes: Why Cytoplasmic Genes Don’t
Obey Mendel’s Laws. J. Hered. 85.5, 355–365. DOI: 10.1093/oxfordjournals.
jhered.a111480.

Brandes, R. P. (2014). Endothelial Dysfunction and Hypertension. Hypertension 64.5,
924–928. DOI: 10.1161/HYPERTENSIONAHA.114.03575.

Brown, W. M., George, M. and Wilson, A. C. (1979). Rapid Evolution of Animal
Mitochondrial DNA. Proc. Natl. Acad. Sci. U.S.A. 76.4, 1967–1971. DOI: 10.
1073/pnas.76.4.1967.

Buford, T. W., Todd, M. M., Kairalla, J. A., Mcdermott, M. M., Fragoso, C. A. V. F.,
Chen, H., Fielding, R. A., King, A. C., Newman, A. B. and Tranah, G. J. (2018).
Mitochondrial DNA Sequence Variants Associated with Blood Pressure Among

85

https://doi.org/10.1016/S0140-6736(05)67890-7
https://doi.org/10.1098/rstb.2013.0440
https://doi.org/10.1016/j.ajhg.2012.03.002
https://doi.org/10.2217/epi.11.109
https://doi.org/10.1093/ntr/ntz132
https://doi.org/10.1016/j.ajhg.2010.05.005
https://doi.org/10.1093/oxfordjournals.jhered.a111480
https://doi.org/10.1093/oxfordjournals.jhered.a111480
https://doi.org/10.1161/HYPERTENSIONAHA.114.03575
https://doi.org/10.1073/pnas.76.4.1967
https://doi.org/10.1073/pnas.76.4.1967


2 Cohorts of Older Adults. J. Am. Heart Assoc. 7.18, e010009. DOI: 10.1161/
JAHA.118.010009.

Campbell, S. L. and Wellen, K. E. (2018). Metabolic Signaling to the Nucleus in
Cancer. Mol. Cell 71.3, 398–408. DOI: 10.1016/j.molcel.2018.07.015.

Cann, R. L., Stoneking, M. and Wilson, A. C. (1987). Mitochondrial DNA and Hu-
man Evolution. Nature 325.6099, 31–36. DOI: 10.1038/325031a0.

Carey, B. W., Finley, L. W. S., Cross, J. R., Allis, C. D. and Thompson, C. B. (2015).
Intracellular Alpha-Ketoglutarate Maintains the Pluripotency of Embryonic Stem
Cells. Nature 518.7539, 413–416. DOI: 10.1038/nature13981.

Chen, H., Zheng, J., Xue, L., Meng, Y., Wang, Y., Zheng, B., Fang, F., Shi, S., Qiu,
Q., Jiang, P., Lu, Z., Mo, J. Q., Lu, J. and Guan, M.-X. (2012). The 12S rRNA
A1555G Mutation in the Mitochondrial Haplogroup D5a Is Responsible for Ma-
ternally Inherited Hypertension and Hearing Loss in Two Chinese Pedigrees.
Eur. J. Hum. Genet. 20.6, 607–612. DOI: 10.1038/ejhg.2011.259.

Chen, X., Zhang, Y., Xu, B., Cai, Z., Wang, L., Tian, J., Liu, Y. and Li, Y. (2016).
The Mitochondrial Calcium Uniporter Is Involved in Mitochondrial Calcium
Cycle Dysfunction: Underlying Mechanism of Hypertension Associated with
Mitochondrial tRNAIle A4263G Mutation. Int. J. Biochem. Cell B. 78, 307–314.
DOI: 10.1016/j.biocel.2016.07.018.

Chinnery, P. F., Elliott, H. R., Patel, S., Lambert, C., Keers, S. M., Durham, S. E.,
McCarthy, M. I., Hitman, G. A., Hattersley, A. T. and Walker, M. (2005). Role
of the Mitochondrial DNA 16184-16193 Poly-C Tract in Type 2 Diabetes. Lancet
366.9497, 1650–1651. DOI: 10.1016/S0140-6736(05)67492-2.

Chinnery, P. F. and Hudson, G. (2013). Mitochondrial Genetics. Br. Med. Bull. 106.1,
135–159. DOI: 10.1093/bmb/ldt017.

Chinnery, P. F., Mowbray, C., Patel, S. K., Elson, J. L., Sampson, M., Hitman, G. A.,
McCarthy, M. I., Hattersley, A. T. and Walker, M. (2007). Mitochondrial DNA
Haplogroups and Type 2 Diabetes: A Study of 897 Cases and 1010 Controls. J.
Med. Genet. 44.6, e80. DOI: 10.1136/jmg.2007.048876.

Chinnery, P. F. and Schon, E. A. (2003). Mitochondria. J. Neurol. Neurosurg. Psychi-
atry 74.9, 1188–1199. DOI: 10.1136/jnnp.74.9.1188.

Chinnery, P. F., DiMauro, S., Shanske, S., Schon, E. A., Zeviani, M., Mariotti, C.,
Carrara, F., Lombes, A., Laforet, P., Ogier, H., Jaksch, M., Lochmüller, H., Hor-
vath, R., Deschauer, M., Thorburn, D. R., Bindoff, L. A., Poulton, J., Taylor,

86

https://doi.org/10.1161/JAHA.118.010009
https://doi.org/10.1161/JAHA.118.010009
https://doi.org/10.1016/j.molcel.2018.07.015
https://doi.org/10.1038/325031a0
https://doi.org/10.1038/nature13981
https://doi.org/10.1038/ejhg.2011.259
https://doi.org/10.1016/j.biocel.2016.07.018
https://doi.org/10.1016/S0140-6736(05)67492-2
https://doi.org/10.1093/bmb/ldt017
https://doi.org/10.1136/jmg.2007.048876
https://doi.org/10.1136/jnnp.74.9.1188


R. W., Matthews, J. N. and Turnbull, D. M. (2004). Risk of Developing a Mito-
chondrial DNA Deletion Disorder. Lancet 364.9434, 592–596. DOI: 10.1016/
S0140-6736(04)16851-7.

Chinnery, P. F., Elliott, H. R., Syed, A. and Rothwell, P. M. (2010). Mitochon-
drial DNA Haplogroups and Risk of Transient Ischaemic Attack and Ischaemic
Stroke: A Genetic Association Study. Lancet Neurol. 9.5, 498–503. DOI: 10.
1016/S1474-4422(10)70083-1.

Chinnery, P. F., Elliott, H. R., Hudson, G., Samuels, D. C. and Relton, C. L. (2012).
Epigenetics, Epidemiology and Mitochondrial DNA Diseases. Int. J. Epidemiol.
41.1, 177–187. DOI: 10.1093/ije/dyr232.

Cohen, T., Levin, L. and Mishmar, D. (2016). Ancient Out-of-Africa Mitochondrial
DNA Variants Associate with Distinct Mitochondrial Gene Expression Patterns.
PLOS Genet. 12.11, e1006407. DOI: 10.1371/journal.pgen.1006407.

Cortés-Pereira, E., Fernández-Tajes, J., Fernández-Moreno, M., Vázquez-Mosquera,
M. E., Relaño, S., Ramos-Louro, P., Durán-Sotuela, A., Dalmao-Fernández, A.,
Oreiro, N., Blanco, F. J. and Rego-Pérez, I. (2019). Differential Association of
Mitochondrial DNA Haplogroups J and H With the Methylation Status of Ar-
ticular Cartilage: Potential Role in Apoptosis and Metabolic and Developmental
Processes. Arthritis Rheumatol. 71.7, 1191–1200. DOI: 10.1002/art.40857.

Cree, L. M., Samuels, D. C., de Sousa Lopes, S. C., Rajasimha, H. K., Wonnapinij,
P., Mann, J. R., Dahl, H.-H. M. and Chinnery, P. F. (2008). A Reduction of Mi-
tochondrial DNA Molecules during Embryogenesis Explains the Rapid Segrega-
tion of Genotypes. Nat. Genet. 40.2, 249–254. DOI: 10.1038/ng.2007.63.

Cui, J. S., Hopper, J. L. and Harrap, S. B. (2003). Antihypertensive Treatments
Obscure Familial Contributions to Blood Pressure Variation. Hypertension 41.2,
207–210. DOI: 10.1161/01.HYP.0000044938.94050.E3.

Dayama, G., Emery, S. B., Kidd, J. M. and Mills, R. E. (2014). The Genomic Land-
scape of Polymorphic Human Nuclear Mitochondrial Insertions. Nucleic Acids
Res. 42.20, 12640–12649. DOI: 10.1093/nar/gku1038.

De Bakker, P. I. W., Yelensky, R., Pe’er, I., Gabriel, S. B., Daly, M. J. and Altshuler,
D. (2005). Efficiency and Power in Genetic Association Studies. Nat. Genet. 37.11,
1217–1223. DOI: 10.1038/ng1669.

87

https://doi.org/10.1016/S0140-6736(04)16851-7
https://doi.org/10.1016/S0140-6736(04)16851-7
https://doi.org/10.1016/S1474-4422(10)70083-1
https://doi.org/10.1016/S1474-4422(10)70083-1
https://doi.org/10.1093/ije/dyr232
https://doi.org/10.1371/journal.pgen.1006407
https://doi.org/10.1002/art.40857
https://doi.org/10.1038/ng.2007.63
https://doi.org/10.1161/01.HYP.0000044938.94050.E3
https://doi.org/10.1093/nar/gku1038
https://doi.org/10.1038/ng1669


Ding, Y., Xia, B., Yu, J., Leng, J. and Huang, J. (2013). Mitochondrial DNA Muta-
tions and Essential Hypertension (Review). Int. J. Mol. Med. 32.4, 768–774. DOI:
10.3892/ijmm.2013.1459.

Dor, Y. and Cedar, H. (2018). Principles of DNA Methylation and Their Impli-
cations for Biology and Medicine. Lancet 392.10149, 777–786. DOI: 10.1016/
S0140-6736(18)31268-6.

Dowling, D. K. and Adrian, R. E. (2019). Challenges and Prospects for Testing the
Mother’s Curse Hypothesis. Integr. Comp. Biol. 59.4, 875–889. DOI: 10.1093/
icb/icz110.

Dunham-Snary, K. J., Sandel, M. W., Sammy, M. J., Westbrook, D. G., Xiao, R., Mc-
Monigle, R. J., Ratcliffe, W. F., Penn, A., Young, M. E. and Ballinger, S. W. (2018).
Mitochondrial – Nuclear Genetic Interaction Modulates Whole Body Metabolism,
Adiposity and Gene Expression in Vivo. EBioMedicine 36, 316–328. DOI: 10.
1016/j.ebiom.2018.08.036.

Ebner, S., Mangge, H., Langhof, H., Halle, M., Siegrist, M., Aigner, E., Paulmichl,
K., Paulweber, B., Datz, C., Sperl, W., Kofler, B. and Weghuber, D. (2015). Mi-
tochondrial Haplogroup T Is Associated with Obesity in Austrian Juveniles and
Adults. PLOS ONE 10.8, e0135622. DOI: 10.1371/journal.pone.0135622.

Ehret, G. B. et al. (2011). Genetic Variants in Novel Pathways Influence Blood Pres-
sure and Cardiovascular Disease Risk. Nature 478.7367, 103–109. DOI: 10.1038/
nature10405.

English, J., Son, J. M., Cardamone, M. D., Lee, C. and Perissi, V. (2020). Decoding
the Rosetta Stone of Mitonuclear Communication. Pharmacol. Res. 161, 105161.
DOI: 10.1016/j.phrs.2020.105161.

Fang, H., Hu, N., Zhao, Q., Wang, B., Zhou, H., Fu, Q., Shen, L., Chen, X., Shen,
F. and Lyu, J. (2018). mtDNA Haplogroup N9a Increases the Risk of Type 2
Diabetes by Altering Mitochondrial Function and Intracellular Mitochondrial
Signals. Diabetes 67.7, 1441–1453. DOI: 10.2337/db17-0974.

Fernández-Moreno, M., Soto-Hermida, A., Vázquez-Mosquera, M. E., Cortés-Pereira,
E., Relaño, S., Hermida-Gómez, T., Pértega, S., Oreiro-Villar, N., Fernández-
López, C., Garesse, R., Blanco, F. J. and Rego-Pérez, I. (2017). Mitochondrial
DNA Haplogroups Influence the Risk of Incident Knee Osteoarthritis in OAI
and CHECK Cohorts. A Meta-Analysis and Functional Study. Ann. Rheum. Dis.
76.6, 1114–1122. DOI: 10.1136/annrheumdis-2016-210131.

88

https://doi.org/10.3892/ijmm.2013.1459
https://doi.org/10.1016/S0140-6736(18)31268-6
https://doi.org/10.1016/S0140-6736(18)31268-6
https://doi.org/10.1093/icb/icz110
https://doi.org/10.1093/icb/icz110
https://doi.org/10.1016/j.ebiom.2018.08.036
https://doi.org/10.1016/j.ebiom.2018.08.036
https://doi.org/10.1371/journal.pone.0135622
https://doi.org/10.1038/nature10405
https://doi.org/10.1038/nature10405
https://doi.org/10.1016/j.phrs.2020.105161
https://doi.org/10.2337/db17-0974
https://doi.org/10.1136/annrheumdis-2016-210131


Fetterman, J. L. and Ballinger, S. W. (2019). Mitochondrial Genetics Regulate Nu-
clear Gene Expression through Metabolites. Proc. Natl. Acad. Sci. 116.32, 15763–
15765. DOI: 10.1073/pnas.1909996116.

Fetterman, J. L., Zelickson, B. R., Johnson, L. W., Moellering, D. R., Westbrook,
D. G., Pompilius, M., Sammy, M. J., Johnson, M., Dunham-Snary, K. J., Cao, X.,
Bradley, W. E., Zhang, J., Wei, C.-C., Chacko, B., Schurr, T. G., Kesterson, R. A.,
Dell’italia, L. J., Darley-Usmar, V. M., Welch, D. R. and Ballinger, S. W. (2013).
Mitochondrial Genetic Background Modulates Bioenergetics and Susceptibility
to Acute Cardiac Volume Overload. Biochem. J. 455.2, 157–167. DOI: 10.1042/
BJ20130029.

Fiorito, G. et al. (2019). Socioeconomic Position, Lifestyle Habits and Biomarkers
of Epigenetic Aging: A Multi-Cohort Analysis. Aging 11.7, 2045–2070. DOI: 10.
18632/aging.101900.

Fish, J., Raule, N. and Attardi, G. (2004). Discovery of a Major D-Loop Replica-
tion Origin Reveals Two Modes of Human mtDNA Synthesis. Science 306.5704,
2098–2101. DOI: 10.1126/science.1102077.

Formentini, L., Sánchez-Aragó, M., Sánchez-Cenizo, L. and Cuezva, J. M. (2012).
The Mitochondrial ATPase Inhibitory Factor 1 Triggers a ROS-Mediated Ret-
rograde Prosurvival and Proliferative Response. Mol. Cell 45.6, 731–742. DOI:
10.1016/j.molcel.2012.01.008.

Fortin, J.-P., Triche Jr, T. J. and Hansen, K. D. (2017). Preprocessing, Normaliza-
tion and Integration of the Illumina HumanMethylationEPIC Array with Minfi.
Bioinformatics 33.4, 558–560. DOI: 10.1093/bioinformatics/btw691.

Frank, S. A. and Hurst, S. A. (1996). Mitochondria and Male Disease. Nature 383.6597,
224–224. DOI: 10.1038/383224a0.

Friedman, J. R. and Nunnari, J. (2014). Mitochondrial Form and Function. Nature
505.7483, 335–343. DOI: 10.1038/nature12985.

Friedrich, V. K., Rubel, M. A. and Schurr, T. G. (2021). Mitochondrial Genetic Vari-
ation in Human Bioenergetics, Adaptation, and Adult Disease. Am. J. Hum. Biol.
34.2, e23629. DOI: 10.1002/ajhb.23629.

Fuku, N., Park, K. S., Yamada, Y., Nishigaki, Y., Cho, Y. M., Matsuo, H., Segawa, T.,
Watanabe, S., Kato, K., Yokoi, K., Nozawa, Y., Lee, H. K. and Tanaka, M. (2007).
Mitochondrial Haplogroup N9a Confers Resistance against Type 2 Diabetes in
Asians. Am. J. Hum. Genet. 80.3, 407–415. DOI: 10.1086/512202.

89

https://doi.org/10.1073/pnas.1909996116
https://doi.org/10.1042/BJ20130029
https://doi.org/10.1042/BJ20130029
https://doi.org/10.18632/aging.101900
https://doi.org/10.18632/aging.101900
https://doi.org/10.1126/science.1102077
https://doi.org/10.1016/j.molcel.2012.01.008
https://doi.org/10.1093/bioinformatics/btw691
https://doi.org/10.1038/383224a0
https://doi.org/10.1038/nature12985
https://doi.org/10.1002/ajhb.23629
https://doi.org/10.1086/512202


Garcia-Roves, P. M., Osler, M. E., Holmström, M. H. and Zierath, J. R. (2008).
Gain-of-Function R225Q Mutation in AMP-activated Protein Kinase Gamma-
3 Subunit Increases Mitochondrial Biogenesis in Glycolytic Skeletal Muscle. J.
Biol. Chem. 283.51, 35724–35734. DOI: 10.1074/jbc.M805078200.

Gemmell, N. J., Metcalf, V. J. and Allendorf, F. W. (2004). Mother’s Curse: The
Effect of mtDNA on Individual Fitness and Population Viability. Trends Ecol.
Evol. 19.5, 238–244. DOI: 10.1016/j.tree.2004.02.002.

Ghosh, A. R., Bhattacharya, R., Bhattacharya, S., Nargis, T., Rahaman, O., Dut-
tagupta, P., Raychaudhuri, D., Shiu, C., Liu, C., Roy, S., Ghosh, P., Khanna,
S., Chaudhuri, T., Tantia, O., Haak, S., Bandyopadhyay, S., Mukhopadhyay, S.,
Chakrabarti, P. and Ganguly, D. (2016). Adipose Recruitment and Activation of
Plasmacytoid Dendritic Cells Fuel Metaflammation. Diabetes 65.11, 3440–3452.
DOI: 10.2337/db16-0331.

Giacomello, M., Pyakurel, A., Glytsou, C. and Scorrano, L. (2020). The Cell Biology
of Mitochondrial Membrane Dynamics. Nat. Rev. Mol. Cell Biol. 21.4, 204–224.
DOI: 10.1038/s41580-020-0210-7.

Giles, R. E., Blanc, H., Cann, H. M. and Wallace, D. C. (1980). Maternal Inheritance
of Human Mitochondrial DNA. Proc. Natl. Acad. Sci. U.S.A. 77.11, 6715–6719.
DOI: 10.1073/pnas.77.11.6715.

Gomez-Alonso, M. d. C. et al. (2021). DNA Methylation and Lipid Metabolism:
An EWAS of 226 Metabolic Measures. Clin. Epigenetics 13, 7. DOI: 10.1186/
s13148-020-00957-8.

González, M. d. M., Ramos, A., Aluja, M. P. and Santos, C. (2020). Sensitivity of Mi-
tochondrial DNA Heteroplasmy Detection Using Next Generation Sequencing.
Mitochondrion 50, 88–93. DOI: 10.1016/j.mito.2019.10.006.

Gorman, G. S., Schaefer, A. M., Ng, Y., Gomez, N., Blakely, E. L., Alston, C. L.,
Feeney, C., Horvath, R., Yu-Wai-Man, P., Chinnery, P. F., Taylor, R. W., Turn-
bull, D. M. and McFarland, R. (2015). Prevalence of Nuclear and Mitochondrial
DNA Mutations Related to Adult Mitochondrial Disease. Ann. Neurol. 77.5, 753–
759. DOI: 10.1002/ana.24362.

Gray, M. W., Burger, G. and Lang, B. F. (1999). Mitochondrial Evolution. Science
283.5407, 1476–1481. DOI: 10.1126/science.283.5407.1476.

Greaves, L. C., Reeve, A. K., Taylor, R. W. and Turnbull, D. M. (2012). Mitochon-
drial DNA and Disease. J. Pathol. 226.2, 274–286. DOI: 10.1002/path.3028.

90

https://doi.org/10.1074/jbc.M805078200
https://doi.org/10.1016/j.tree.2004.02.002
https://doi.org/10.2337/db16-0331
https://doi.org/10.1038/s41580-020-0210-7
https://doi.org/10.1073/pnas.77.11.6715
https://doi.org/10.1186/s13148-020-00957-8
https://doi.org/10.1186/s13148-020-00957-8
https://doi.org/10.1016/j.mito.2019.10.006
https://doi.org/10.1002/ana.24362
https://doi.org/10.1126/science.283.5407.1476
https://doi.org/10.1002/path.3028


Greenberg, M. V. C. and Bourc’his, D. (2019). The Diverse Roles of DNA Methy-
lation in Mammalian Development and Disease. Nat. Rev. Mol. Cell Biol. 20.10,
590–607. DOI: 10.1038/s41580-019-0159-6.

Guha, M. and Avadhani, N. G. (2013). Mitochondrial Retrograde Signaling at the
Crossroads of Tumor Bioenergetics, Genetics and Epigenetics. Mitochondrion 13.6,
577–591. DOI: 10.1016/j.mito.2013.08.007.

Hauswirth, W. W. and Laipis, P. J. (1982). Mitochondrial DNA Polymorphism in
a Maternal Lineage of Holstein Cows. Proc. Natl. Acad. Sci. U.S.A. 79.15, 4686–
4690. DOI: 10.1073/pnas.79.15.4686.

Hazafa, A., Batool, A., Ahmad, S., Amjad, M., Chaudhry, S. N., Asad, J., Ghuman,
H. F., Khan, H. M., Naeem, M. and Ghani, U. (2021). Humanin: A Mitochondrial-
Derived Peptide in the Treatment of Apoptosis-Related Diseases. Life Sci. 264,
118679. DOI: 10.1016/j.lfs.2020.118679.

Hedman, M., Brandstätter, A., Pimenoff, V., Sistonen, P., Palo, J. U., Parson, W. and
Sajantila, A. (2007). Finnish Mitochondrial DNA HVS-I and HVS-II Population
Data. Forensic Sci. Int. 172.2, 171–178. DOI: 10.1016/j.forsciint.2006.09.
012.

Hertzog Santos, J. (2021). Mitochondria Signaling to the Epigenome: A Novel Role
for an Old Organelle. Free Radical Biology and Medicine 170, 59–69. DOI: 10.
1016/j.freeradbiomed.2020.11.016.

Hinttala, R., Kervinen, M., Uusimaa, J., Maliniemi, P., Finnilä, S., Rantala, H., Remes,
A. M., Hassinen, I. E. and Majamaa, K. (2010). Analysis of Functional Conse-
quences of Haplogroup J Polymorphisms m.4216T>C and m.3866T>C in Hu-
man MT-ND1: Mutagenesis of Homologous Positions in Escherichia Coli. Mito-
chondrion 10.4, 358–361. DOI: 10.1016/j.mito.2010.02.002.

Holyoake, A. J., McHugh, P., Wu, M., O’Carroll, S., Benny, P., Sin, I. L. and Sin,
F. Y. T. (2001). High Incidence of Single Nucleotide Substitutions in the Mito-
chondrial Genome Is Associated with Poor Semen Parameters in Men. Int. J. An-
drol. 24.3, 175–182. DOI: 10.1046/j.1365-2605.2001.00292.x.

Horvath, S. (2013). DNA Methylation Age of Human Tissues and Cell Types. Genome
Biol. 14.10, 3156. DOI: 10.1186/gb-2013-14-10-r115.

Hostalek, U. (2019). Global Epidemiology of Prediabetes - Present and Future Per-
spectives. Clin. Diabetes Endocrinol. 5.1, 5. DOI: 10.1186/s40842-019-0080-0.

91

https://doi.org/10.1038/s41580-019-0159-6
https://doi.org/10.1016/j.mito.2013.08.007
https://doi.org/10.1073/pnas.79.15.4686
https://doi.org/10.1016/j.lfs.2020.118679
https://doi.org/10.1016/j.forsciint.2006.09.012
https://doi.org/10.1016/j.forsciint.2006.09.012
https://doi.org/10.1016/j.freeradbiomed.2020.11.016
https://doi.org/10.1016/j.freeradbiomed.2020.11.016
https://doi.org/10.1016/j.mito.2010.02.002
https://doi.org/10.1046/j.1365-2605.2001.00292.x
https://doi.org/10.1186/gb-2013-14-10-r115
https://doi.org/10.1186/s40842-019-0080-0


Hottenga, J.-J., Whitfield, J. B., Geus, E. J. C. de, Boomsma, D. I. and Martin, N. G.
(2006). Heritability and Stability of Resting Blood Pressure in Australian Twins.
Twin Res. Hum. Genet. 9.2, 205–209. DOI: 10.1375/twin.9.2.205.

Houseman, E. A., Accomando, W. P., Koestler, D. C., Christensen, B. C., Marsit,
C. J., Nelson, H. H., Wiencke, J. K. and Kelsey, K. T. (2012). DNA Methylation
Arrays as Surrogate Measures of Cell Mixture Distribution. BMC Bioinformatics
13, 86. DOI: 10.1186/1471-2105-13-86.

Huan, T., Joehanes, R., Song, C., Peng, F., Guo, Y., Mendelson, M., Yao, C., Liu,
C., Ma, J., Richard, M., Agha, G., Guan, W., Almli, L. M., Conneely, K. N.,
Keefe, J., Hwang, S.-J., Johnson, A. D., Fornage, M., Liang, L. and Levy, D.
(2019). Genome-Wide Identification of DNA Methylation QTLs in Whole Blood
Highlights Pathways for Cardiovascular Disease. Nat. Commun. 10.1, 4267. DOI:
10.1038/s41467-019-12228-z.

Hudson, G., Nalls, M., Evans, J. R., Breen, D. P., Winder-Rhodes, S., Morrison,
K. E., Morris, H. R., Williams-Gray, C. H., Barker, R. A., Singleton, A. B., Hardy,
J., Wood, N. E., Burn, D. J. and Chinnery, P. F. (2013). Two-Stage Association
Study and Meta-Analysis of Mitochondrial DNA Variants in Parkinson Disease.
Neurology 80.22, 2042–2048. DOI: 10.1212/WNL.0b013e318294b434.

Hudson, G., Gomez-Duran, A., Wilson, I. J. and Chinnery, P. F. (2014). Recent
Mitochondrial DNA Mutations Increase the Risk of Developing Common Late-
Onset Human Diseases. PLOS Genet. 10.5, e1004369. DOI: 10.1371/journal.
pgen.1004369.

Hurtado-Roca, Y., Ledesma, M., Gonzalez-Lazaro, M., Moreno-Loshuertos, R., Fer-
nandez-Silva, P., Enriquez, J. A. and Laclaustra, M. (2016). Adjusting MtDNA
Quantification in Whole Blood for Peripheral Blood Platelet and Leukocyte Counts.
PLOS ONE 11.10, e0163770. DOI: 10.1371/journal.pone.0163770.

Hutchison, C. A., Newbold, J. E., Potter, S. S. and Edgell, M. H. (1974). Maternal In-
heritance of Mammalian Mitochondrial DNA. Nature 251.5475, 536–538. DOI:
10.1038/251536a0.

Hwang, S., Kwak, S. H., Bhak, J., Kang, H. S., Lee, Y. R., Koo, B. K., Park, K. S., Lee,
H. K., Cho, Y. M., Heon Kwak, S., Bhak, J., Kang, H. S., Lee, Y. R., Koo, B. K.,
Park, K. S., Lee, H. K. and Cho, M. (2011). Gene Expression Pattern in Transmi-
tochondrial Cytoplasmic Hybrid Cells Harboring Type 2 Diabetes-Associated

92

https://doi.org/10.1375/twin.9.2.205
https://doi.org/10.1186/1471-2105-13-86
https://doi.org/10.1038/s41467-019-12228-z
https://doi.org/10.1212/WNL.0b013e318294b434
https://doi.org/10.1371/journal.pgen.1004369
https://doi.org/10.1371/journal.pgen.1004369
https://doi.org/10.1371/journal.pone.0163770
https://doi.org/10.1038/251536a0


Mitochondrial DNA Haplogroups. PLOS ONE 6.7, e22116. DOI: 10.1371/
journal.pone.0022116.

Ingman, M. and Gyllensten, U. (2007). A Recent Genetic Link between Sami and
the Volga-Ural Region of Russia. Eur. J. Hum. Genet. 15.1, 115–120. DOI: 10.
1038/sj.ejhg.5201712.

Ingman, M., Kaessmann, H., Pääbo, S. and Gyllensten, U. (2000). Mitochondrial
Genome Variation and the Origin of Modern Humans. Nature 408.6813, 708–
713. DOI: 10.1038/35047064.

Innocenti, P., Morrow, E. H. and Dowling, D. K. (2011). Experimental Evidence
Supports a Sex-Specific Selective Sieve in Mitochondrial Genome Evolution. Sci-
ence 332.6031, 845–848.

Ioannidis, J. P. A. (2007). Non-Replication and Inconsistency in the Genome-Wide
Association Setting. Hum. Hered. 64.4, 203–213. DOI: 10.1159/000103512.

Jansen, R., Batista, S., Brooks, A. I., Tischfield, J. A., Willemsen, G., van Grootheest,
G., Hottenga, J.-J., Milaneschi, Y., Mbarek, H., Madar, V., Peyrot, W., Vink,
J. M., Verweij, C. L., de Geus, E. J., Smit, J. H., Wright, F. A., Sullivan, P. F.,
Boomsma, D. I. and Penninx, B. W. (2014). Sex Differences in the Human Periph-
eral Blood Transcriptome. BMC Genomics 15, 33. DOI: 10.1186/1471-2164-
15-33.

Juvinao-Quintero, D. L., Marioni, R. E., Ochoa-Rosales, C., Russ, T. C., Deary,
I. J., van Meurs, J. B. J., Voortman, T., Hivert, M.-F., Sharp, G. C., Relton, C. L.
and Elliott, H. R. (2021). DNA Methylation of Blood Cells Is Associated with
Prevalent Type 2 Diabetes in a Meta-Analysis of Four European Cohorts. Clin.
Epigenetics 13, 40. DOI: 10.1186/s13148-021-01027-3.

Kassam, I., Qi, T., Lloyd-Jones, L., Holloway, A., Bonder, M. J., Henders, A. K.,
Martin, N. G., Powell, J. E., Franke, L., Montgomery, G. W., Visscher, P. M. and
McRae, A. F. (2016). Evidence for Mitochondrial Genetic Control of Autoso-
mal Gene Expression. Hum. Mol. Genet. 25.24, 5332–5338. DOI: 10.1093/hmg/
ddw347.

Kenney, M. C., Chwa, M., Atilano, S. R., Falatoonzadeh, P., Ramirez, C., Malik, D.,
Tarek, M., Cáceres-del-Carpio, J., Nesburn, A. B., Boyer, D. S., Kuppermann,
B. D., Vawter, M., Michal Jazwinski, S., Miceli, M., Wallace, D. C. and Udar,
N. (2014a). Inherited Mitochondrial DNA Variants Can Affect Complement, In-

93

https://doi.org/10.1371/journal.pone.0022116
https://doi.org/10.1371/journal.pone.0022116
https://doi.org/10.1038/sj.ejhg.5201712
https://doi.org/10.1038/sj.ejhg.5201712
https://doi.org/10.1038/35047064
https://doi.org/10.1159/000103512
https://doi.org/10.1186/1471-2164-15-33
https://doi.org/10.1186/1471-2164-15-33
https://doi.org/10.1186/s13148-021-01027-3
https://doi.org/10.1093/hmg/ddw347
https://doi.org/10.1093/hmg/ddw347


flammation and Apoptosis Pathways: Insights into Mitochondrial-Nuclear Inter-
actions. Hum. Mol. Genet. 23.13, 3537–3551. DOI: 10.1093/hmg/ddu065.

Kenney, M. C., Chwa, M., Atilano, S. R., Falatoonzadeh, P., Ramirez, C., Malik,
D., Tarek, M., del Carpio, J. C., Nesburn, A. B., Boyer, D. S., Kuppermann,
B. D., Vawter, M. P., Jazwinski, S. M., Miceli, M. V., Wallace, D. C. and Udar, N.
(2014b). Molecular and Bioenergetic Differences between Cells with African ver-
sus European Inherited Mitochondrial DNA Haplogroups: Implications for Pop-
ulation Susceptibility to Diseases. Biochim. Biophys. Acta - Mol. Basis Dis. 1842.2,
208–219. DOI: 10.1016/j.bbadis.2013.10.016.

Kenney, M. C., Chwa, M., Atilano, S. R., Pavlis, J. M., Falatoonzadeh, P., Ramirez,
C., Malik, D., Hsu, T., Woo, G., Soe, K., Nesburn, A. B., Boyer, D. S., Kupper-
mann, B. D., Jazwinski, S. M., Miceli, M. V., Wallace, D. C. and Udar, N. (2013).
Mitochondrial DNA Variants Mediate Energy Production and Expression Levels
for CFH, C3 and EFEMP1 Genes: Implications for Age-Related Macular Degen-
eration. PLOS ONE 8.1, e54339. DOI: 10.1371/journal.pone.0054339.

Khramtsova, E. A., Davis, L. K. and Stranger, B. E. (2019). The Role of Sex in the
Genomics of Human Complex Traits. Nat. Rev. Genet. 20.3, 173–190. DOI: 10.
1038/s41576-018-0083-1.

Kim, S.-J., Xiao, J., Wan, J., Cohen, P. and Yen, K. (2017). Mitochondrially Derived
Peptides as Novel Regulators of Metabolism. J. Physiol. 595.21, 6613–6621. DOI:
10.1113/JP274472.

Kim, K. H., Son, J. M., Benayoun, B. A. and Lee, C. (2018). The Mitochondrial-
Encoded Peptide MOTS-c Translocates to the Nucleus to Regulate Nuclear Gene
Expression in Response to Metabolic Stress. Cell Metab. 28.3, 516–524.e7. DOI:
10.1016/j.cmet.2018.06.008.

Kim-Han, J. S., Reichert, S. A., Quick, K. L. and Dugan, L. L. (2001). BMCP1: A
Mitochondrial Uncoupling Protein in Neurons Which Regulates Mitochondrial
Function and Oxidant Production. J. Neurochem. 79.3, 658–668. DOI: 10.1046/
j.1471-4159.2001.00604.x.

Kirkman, M. A., Yu-Wai-Man, P., Korsten, A., Leonhardt, M., Dimitriadis, K., De
Coo, I. F., Klopstock, T. and Chinnery, P. F. (2009). Gene–Environment Inter-
actions in Leber Hereditary Optic Neuropathy. Brain 132.9, 2317–2326. DOI:
10.1093/brain/awp158.

94

https://doi.org/10.1093/hmg/ddu065
https://doi.org/10.1016/j.bbadis.2013.10.016
https://doi.org/10.1371/journal.pone.0054339
https://doi.org/10.1038/s41576-018-0083-1
https://doi.org/10.1038/s41576-018-0083-1
https://doi.org/10.1113/JP274472
https://doi.org/10.1016/j.cmet.2018.06.008
https://doi.org/10.1046/j.1471-4159.2001.00604.x
https://doi.org/10.1046/j.1471-4159.2001.00604.x
https://doi.org/10.1093/brain/awp158


Kivisild, T., Shen, P., Wall, D. P., Do, B., Sung, R., Davis, K. K., Passarino, G., Un-
derhill, P. A., Scharfe, C., Torroni, A., Scozzari, R., Modiano, D., Coppa, A., de
Knijff, P., Feldman, M., Cavalli-Sforza, L. L. and Oefner, P. J. (2005). The Role
of Selection in the Evolution of Human Mitochondrial Genomes. Genetics 172.1,
373–387. DOI: 10.1534/genetics.105.043901.

Kopinski, P. K., Janssen, K. A., Schaefer, P. M., Trefely, S., Perry, C. E., Potluri,
P., Tintos-Hernandez, J. A., Singh, L. N., Karch, K. R., Campbell, S. L., Doan,
M. T., Jiang, H., Nissim, I., Nakamaru-Ogiso, E., Wellen, K. E., Snyder, N. W.,
Garcia, B. A. and Wallace, D. C. (2019). Regulation of Nuclear Epigenome by
Mitochondrial DNA Heteroplasmy. Proc. Natl. Acad. Sci. U.S.A. 116.32, 16028–
16035. DOI: 10.1073/pnas.1906896116.

Kraja, A. T. et al. (2019). Associations of Mitochondrial and Nuclear Mitochondrial
Variants and Genes with Seven Metabolic Traits. Am. J. Hum. Genet. 104.1, 112–
138. DOI: 10.1016/J.AJHG.2018.12.001.

Kriebel, J., Herder, C., Rathmann, W., Wahl, S., Kunze, S. and Molnos, S. (2016).
Association between DNA Methylation in Whole Blood and Measures of Glu-
cose Metabolism: KORA F4 Study. PLOS ONE 11.3, e0152314. DOI: 10.1371/
journal.pone.0152314.

Krishnan, K. J., Reeve, A. K., Samuels, D. C., Chinnery, P. F., Blackwood, J. K.,
Taylor, R. W., Wanrooij, S., Spelbrink, J. N., Lightowlers, R. N. and Turnbull,
D. M. (2008). What Causes Mitochondrial DNA Deletions in Human Cells?: Nat.
Genet. 40.3, 275–279. DOI: 10.1038/ng.f.94.

Kwok, K. H.-H., Ho, P. W.-L., Chu, A. C.-Y., Ho, J. W.-M., Liu, H.-F., Yiu, D. C.-W.,
Chan, K.-H., Kung, M. H.-W., Ramsden, D. B. and Ho, S.-L. (2010). Mitochon-
drial UCP5 Is Neuroprotective by Preserving Mitochondrial Membrane Poten-
tial, ATP Levels, and Reducing Oxidative Stress in MPP+ and Dopamine Toxi-
city. Free Radical Bio. Med. 49.6, 1023–1035. DOI: 10.1016/j.freeradbiomed.
2010.06.017.

Lakshmipathy, U. and Campbell, C. (1999). The Human DNA Ligase III Gene En-
codes Nuclear and Mitochondrial Proteins. Mol. Cell. Biol. 19.5, 3869–3876. DOI:
10.1128/MCB.19.5.3869.

Landgraf, A. J. and Lee, Y. (2020). Dimensionality Reduction for Binary Data through
the Projection of Natural Parameters. J. Multivar. Anal. 180, 104668. DOI: 10.
1016/j.jmva.2020.104668.

95

https://doi.org/10.1534/genetics.105.043901
https://doi.org/10.1073/pnas.1906896116
https://doi.org/10.1016/J.AJHG.2018.12.001
https://doi.org/10.1371/journal.pone.0152314
https://doi.org/10.1371/journal.pone.0152314
https://doi.org/10.1038/ng.f.94
https://doi.org/10.1016/j.freeradbiomed.2010.06.017
https://doi.org/10.1016/j.freeradbiomed.2010.06.017
https://doi.org/10.1128/MCB.19.5.3869
https://doi.org/10.1016/j.jmva.2020.104668
https://doi.org/10.1016/j.jmva.2020.104668


Laricchia, K. M., Lake, N. J., Watts, N. A., Shand, M., Haessly, A., Gauthier, L., Ben-
jamin, D., Banks, E., Soto, J., Garimella, K., Emery, J., Genome Aggregation
Database Consortium, Rehm, H. L., MacArthur, D. G., Tiao, G., Lek, M. V.,
Mootha, V. K. and Calvo, S. E. (2022). Mitochondrial DNA Variation across
56,434 Individuals in gnomAD. Genome Res. 32.3, 569–582. DOI: 10.1101/gr.
276013.121.

Lee, W. T., Sun, X., Tsai, T.-S., Johnson, J. L., Gould, J. A., Garama, D. J., Gough,
D. J., McKenzie, M., Trounce, I. A. and John, J. C. S. (2017). Mitochondrial
DNA Haplotypes Induce Differential Patterns of DNA Methylation That Re-
sult in Differential Chromosomal Gene Expression Patterns. Cell Death Dis. 3.1,
1–11. DOI: 10.1038/cddiscovery.2017.62.

Lehne, B., Drong, A. W., Loh, M., Zhang, W., Scott, W. R., Tan, S.-T., Afzal, U.,
Scott, J., Jarvelin, M.-R., Elliott, P., McCarthy, M. I., Kooner, J. S. and Chambers,
J. C. (2015). A Coherent Approach for Analysis of the Illumina HumanMethyla-
tion450 BeadChip Improves Data Quality and Performance in Epigenome-Wide
Association Studies. Genome Biol. 16, 37. DOI: 10.1186/s13059-015-0600-x.

Lemire, M., Zaidi, S. H. E., Ban, M., Ge, B., Aïssi, D., Germain, M., Kassam, I.,
Wang, M., Zanke, B. W., Gagnon, F., Morange, P.-E., Trégouët, D.-A., Wells,
P. S., Sawcer, S., Gallinger, S., Pastinen, T. and Hudson, T. J. (2015). Long-Range
Epigenetic Regulation Is Conferred by Genetic Variation Located at Thousands
of Independent Loci. Nat. Commun. 6.1, 1–12. DOI: 10.1038/ncomms7326.

Li, B. and Leal, S. M. (2008). Methods for Detecting Associations with Rare Variants
for Common Diseases: Application to Analysis of Sequence Data. Am. J. Hum.
Genet. 83.3, 311–321. DOI: 10.1016/j.ajhg.2008.06.024.

Li, C. I., Mirus, J. E., Zhang, Y., Ramirez, A. B., Ladd, J. J., Prentice, R. L., McIn-
tosh, M. W., Hanash, S. M. and Lampe, P. D. (2012). Discovery and Preliminary
Confirmation of Novel Early Detection Biomarkers for Triple-Negative Breast
Cancer Using Preclinical Plasma Samples from the Women’s Health Initiative
Observational Study. Breast Cancer Res. Treat. 135.2, 611–618. DOI: 10.1007/
s10549-012-2204-4.

Li, H. and Durbin, R. (2009). Fast and Accurate Short Read Alignment with Burrows-
Wheeler Transform. Bioinformatics 25.14, 1754–1760. DOI: 10.1093/bioinformatics/
btp324.

96

https://doi.org/10.1101/gr.276013.121
https://doi.org/10.1101/gr.276013.121
https://doi.org/10.1038/cddiscovery.2017.62
https://doi.org/10.1186/s13059-015-0600-x
https://doi.org/10.1038/ncomms7326
https://doi.org/10.1016/j.ajhg.2008.06.024
https://doi.org/10.1007/s10549-012-2204-4
https://doi.org/10.1007/s10549-012-2204-4
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324


Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
Abecasis, G. and Durbin, R. (2009). The Sequence Alignment/Map Format and
SAMtools. Bioinformatics 25.16, 2078–2079. DOI: 10.1093/bioinformatics/
btp352.

Li, H., Zhang, X., Wang, F., Ling, Z., Zhongwei, Y., Jiahui, F., Xiang, N., Peihua,
W., Xiang-Dong, F., Chen, C. and Wen, W. D. (2016). MicroRNA-21 Lowers
Blood Pressure in Spontaneous Hypertensive Rats by Upregulating Mitochon-
drial Translation. Circulation 134.10, 734–751. DOI: 10.1161/CIRCULATIONAHA.
116.023926.

Li, J. and Ji, L. (2005). Adjusting Multiple Testing in Multilocus Analyses Using the
Eigenvalues of a Correlation Matrix. Heredity 95.3, 221–227. DOI: 10.1038/sj.
hdy.6800717.

Lim, S. S. et al. (2012). A Comparative Risk Assessment of Burden of Disease and
Injury Attributable to 67 Risk Factors and Risk Factor Clusters in 21 Regions,
1990-2010: A Systematic Analysis for the Global Burden of Disease Study 2010.
The Lancet 380.9859, 2224–2260. DOI: 10.1016/S0140-6736(12)61766-8.

Liu, C., Yang, Q., Hwang, S.-J., Sun, F., Johnson, A. D., Shirihai, O. S., Vasan, R. S.,
Levy, D. and Schwartz, F. (2012). Association of Genetic Variation in the Mito-
chondrial Genome with Blood Pressure and Metabolic Traits. Hypertension 60.4,
949–956. DOI: 10.1161/HYPERTENSIONAHA.112.196519.

Liu, C., Fetterman, J. L., Sun, X., Yan, K., Liu, P., Luo, Y., Ding, J., Zhu, J. and Levy,
D. (2022). Comparison of Mitochondrial DNA Sequences from Whole Blood and
Lymphoblastoid Cell Lines. Sci. Rep. 12.1, 1801. DOI: 10.1038/s41598-022-
05814-7.

Liu, C. et al. (2016a). Meta-Analysis Identifies Common and Rare Variants Influenc-
ing Blood Pressure and Overlapping with Metabolic Trait Loci. Nat. Genet. 48.10,
1162–1170. DOI: 10.1038/ng.3660.

Liu, X. et al. (2021). Association of Mitochondrial DNA Copy Number with Car-
diometabolic Diseases. Cell Genomics 1.1, 100006. DOI: 10.1016/j.xgen.2021.
100006.

Liu, Y., Beyer, A. and Aebersold, R. (2016b). On the Dependency of Cellular Protein
Levels on mRNA Abundance. Cell 165.3, 535–550. DOI: 10.1016/j.cell.
2016.03.014.

97

https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1161/CIRCULATIONAHA.116.023926
https://doi.org/10.1161/CIRCULATIONAHA.116.023926
https://doi.org/10.1038/sj.hdy.6800717
https://doi.org/10.1038/sj.hdy.6800717
https://doi.org/10.1016/S0140-6736(12)61766-8
https://doi.org/10.1161/HYPERTENSIONAHA.112.196519
https://doi.org/10.1038/s41598-022-05814-7
https://doi.org/10.1038/s41598-022-05814-7
https://doi.org/10.1038/ng.3660
https://doi.org/10.1016/j.xgen.2021.100006
https://doi.org/10.1016/j.xgen.2021.100006
https://doi.org/10.1016/j.cell.2016.03.014
https://doi.org/10.1016/j.cell.2016.03.014


Lopes, A. F. C. (2020). Mitochondrial Metabolism and DNA Methylation: A Review
of the Interaction between Two Genomes. Clin. Epigenetics 12.1, 182. DOI: 10.
1186/s13148-020-00976-5.

Lott, M. T., Leipzig, J. N., Derbeneva, O., Xie, H. M., Chalkia, D., Sarmady, M.,
Procaccio, V. and Wallace, D. C. (2013). mtDNA Variation and Analysis Using
MITOMAP and MITOMASTER. Curr. Protoc. Bioinformatics 44.1, 23–26. DOI:
10.1002/0471250953.bi0123s44.

Lowe, R., Slodkowicz, G., Goldman, N. and Rakyan, V. K. (2015). The Human
Blood DNA Methylome Displays a Highly Distinctive Profile Compared with
Other Somatic Tissues. Epigenetics 10.4, 274–281. DOI: 10.1080/15592294.
2014.1003744.

Luo, S., Valencia, C. A., Zhang, J., Lee, N.-C., Slone, J., Gui, B., Wang, X., Li, Z.,
Dell, S., Brown, J. et al. (2018). Biparental Inheritance of Mitochondrial DNA
in Humans. Proc. Natl. Acad. Sci. U.S.A. 115.51, 13039–13044. DOI: 10.1073/
pnas.1810946115.

Luo, Y., Bond, J. D. and Ingram, V. M. (1997). Compromised Mitochondrial Func-
tion Leads to Increased Cytosolic Calcium and to Activation of MAP Kinases.
Proc. Natl. Acad. Sci. U.S.A. 94.18, 9705–9710. DOI: 10.1073/pnas.94.18.9705.

Lutz-Bonengel, S. and Parson, W. (2019). No Further Evidence for Paternal Leakage
of Mitochondrial DNA in Humans Yet. Proc. Natl. Acad. Sci. U.S.A. 116.6, 1821–
1822. DOI: 10.1073/pnas.1820533116.

Mägi, R., Lindgren, C. M. and Morris, A. P. (2010). Meta-Analysis of Sex-Specific
Genome-Wide Association Studies. Genet. Epidemiol. 34.8, 846–853. DOI: 10.
1002/gepi.20540.

Mägi, R. and Morris, A. P. (2010). GWAMA: Software for Genome-Wide Associa-
tion Meta-Analysis. BMC Bioinformatics 11, 288. DOI: 10.1186/1471-2105-
11-288.

Maier, T., Güell, M. and Serrano, L. (2009). Correlation of mRNA and Protein in
Complex Biological Samples. FEBS Lett. 583.24, 3966–3973. DOI: 10.1016/j.
febslet.2009.10.036.

Man, P. Y. W., Griffiths, P. G., Brown, D. T., Howell, N., Turnbull, D. M. and Chin-
nery, P. F. (2003). The Epidemiology of Leber Hereditary Optic Neuropathy in
the North East of England. Am. J. Hum. Genet. 72.2, 333–339. DOI: 10.1086/
346066.

98

https://doi.org/10.1186/s13148-020-00976-5
https://doi.org/10.1186/s13148-020-00976-5
https://doi.org/10.1002/0471250953.bi0123s44
https://doi.org/10.1080/15592294.2014.1003744
https://doi.org/10.1080/15592294.2014.1003744
https://doi.org/10.1073/pnas.1810946115
https://doi.org/10.1073/pnas.1810946115
https://doi.org/10.1073/pnas.94.18.9705
https://doi.org/10.1073/pnas.1820533116
https://doi.org/10.1002/gepi.20540
https://doi.org/10.1002/gepi.20540
https://doi.org/10.1186/1471-2105-11-288
https://doi.org/10.1186/1471-2105-11-288
https://doi.org/10.1016/j.febslet.2009.10.036
https://doi.org/10.1016/j.febslet.2009.10.036
https://doi.org/10.1086/346066
https://doi.org/10.1086/346066


Mansell, G., Gorrie-Stone, T. J., Bao, Y., Kumari, M., Schalkwyk, L. S., Mill, J. and
Hannon, E. (2019). Guidance for DNA Methylation Studies: Statistical Insights
from the Illumina EPIC Array. BMC Genomics 20, 366. DOI: 10.1186/s12864-
019-5761-7.

Marcuello, A., Martínez-Redondo, D., Dahmani, Y., Casajús, J. A., Ruiz-Pesini, E.,
Montoya, J., López-Pérez, M. J. and Díez-Sánchez, C. (2009). Human Mitochon-
drial Variants Influence on Oxygen Consumption. Mitochondrion 9.1, 27–30. DOI:
10.1016/j.mito.2008.10.002.

Margueron, R. and Reinberg, D. (2010). Chromatin Structure and the Inheritance of
Epigenetic Information. Nat. Rev. Genet. 11.4, 285–296. DOI: 10.1038/nrg2752.

Margulis, L. (1970). Recombination of Non-Chromosomal Genes in Chlamydomonas:
Assortment of Mitochondria and Chloroplasts?: J. Theor. Biol. 26.2, 337–342.
DOI: 10.1016/s0022-5193(70)80023-6.

Martínez-Reyes, I. and Chandel, N. S. (2020). Mitochondrial TCA Cycle Metabo-
lites Control Physiology and Disease. Nat. Commun. 11.1, 102. DOI: 10.1038/
s41467-019-13668-3.

Matilainen, O., Quirós, P. M. and Auwerx, J. (2017). Mitochondria and Epigenetics
– Crosstalk in Homeostasis and Stress. Trends Cell Biol. 27.6, 453–463. DOI: 10.
1016/j.tcb.2017.02.004.

Matsha, T. E., Pheiffer, C., Humphries, S. E., Gamieldien, J., Erasmus, R. T. and
Kengne, A. P. (2016). Genome-Wide DNA Methylation in Mixed Ancestry Indi-
viduals with Diabetes and Prediabetes from South Africa. Int. J. Endocrinol. 2016,
1–11. DOI: 10.1155/2016/3172093.

Melchinger, H., Jain, K., Tyagi, T. and Hwa, J. (2019). Role of Platelet Mitochondria:
Life in a Nucleus-Free Zone. Front. Cardiovasc. Med. 6, 153.

Melé, M. et al. (2015). The Human Transcriptome across Tissues and Individuals.
Science 348.6235, 660–665. DOI: 10.1126/science.aaa0355.

Mengel-From, J., Thinggaard, M., Dalgård, C., Kyvik, K. O., Christensen, K. and
Christiansen, L. (2014). Mitochondrial DNA Copy Number in Peripheral Blood
Cells Declines with Age and Is Associated with General Health among Elderly.
Hum. Genet. 133.9, 1149–1159. DOI: 10.1007/s00439-014-1458-9.

Messerli, F. H., Williams, B. and Ritz, E. (2007). Essential Hypertension. Lancet
370.9587, 591–603. DOI: 10.1016/S0140-6736(07)61299-9.

99

https://doi.org/10.1186/s12864-019-5761-7
https://doi.org/10.1186/s12864-019-5761-7
https://doi.org/10.1016/j.mito.2008.10.002
https://doi.org/10.1038/nrg2752
https://doi.org/10.1016/s0022-5193(70)80023-6
https://doi.org/10.1038/s41467-019-13668-3
https://doi.org/10.1038/s41467-019-13668-3
https://doi.org/10.1016/j.tcb.2017.02.004
https://doi.org/10.1016/j.tcb.2017.02.004
https://doi.org/10.1155/2016/3172093
https://doi.org/10.1126/science.aaa0355
https://doi.org/10.1007/s00439-014-1458-9
https://doi.org/10.1016/S0140-6736(07)61299-9


Michels, K. B., Binder, A. M., Dedeurwaerder, S., Epstein, C. B., Greally, J. M., Gut,
I., Houseman, E. A., Izzi, B., Kelsey, K. T., Meissner, A., Milosavljevic, A., Sieg-
mund, K. D., Bock, C. and Irizarry, R. A. (2013). Recommendations for the De-
sign and Analysis of Epigenome-Wide Association Studies. Nat. Methods 10.10,
949–955. DOI: 10.1038/nmeth.2632.

Middelberg, R. P., Ferreira, M. A., Henders, A. K., Heath, A. C., Madden, P. A.,
Montgomery, G. W., Martin, N. G. and Whitfield, J. B. (2011). Genetic Vari-
ants in LPL, OASL and TOMM40/APOE-C1-C2-C4 Genes Are Associated with
Multiple Cardiovascular-Related Traits. BMC Med. Genet. 12, 123. DOI: 10.1186/
1471-2350-12-123.

Miller, B., Arpawong, T. E., Jiao, H., Kim, S.-J., Yen, K., Mehta, H. H., Wan, J.,
Carpten, J. C. and Cohen, P. (2019). Comparing the Utility of Mitochondrial
and Nuclear DNA to Adjust for Genetic Ancestry in Association Studies. Cells
8.4, 306–306. DOI: 10.3390/cells8040306.

Miller, B., Kim, S.-J., Kumagai, H., Mehta, H. H., Xiang, W., Liu, J., Yen, K. and
Cohen, P. (2020). Peptides Derived from Small Mitochondrial Open Reading
Frames: Genomic, Biological, and Therapeutic Implications. Exp. Cell Res. 393.2,
112056. DOI: 10.1016/j.yexcr.2020.112056.

Milot, E., Moreau, C., Gagnon, A., Cohen, A. A., Brais, B. and Labuda, D. (2017).
Mother’s Curse Neutralizes Natural Selection against a Human Genetic Disease
over Three Centuries. Nat. Ecol. Evol. 1.9, 1400–1406. DOI: 10.1038/s41559-
017-0276-6.

Min, J. L. et al. (2021). Genomic and Phenotypic Insights from an Atlas of Ge-
netic Effects on DNA Methylation. Nat. Genet. 53.9, 1311–1321. DOI: 10.1038/
s41588-021-00923-x.

Mort, M., Evani, U. S., Krishnan, V. G., Kamati, K. K., Baenziger, P. H., Bagchi, A.,
Peters, B. J., Sathyesh, R., Li, B., Sun, Y., Xue, B., Shah, N. H., Kann, M. G.,
Cooper, D. N., Radivojac, P. and Mooney, S. D. (2010). In Silico Functional Pro-
filing of Human Disease-Associated and Polymorphic Amino Acid Substitutions.
Hum. Mutat. 31.3, 335–346. DOI: 10.1002/humu.21192.

Mossman, J. A., Slate, J., Birkhead, T. R., Moore, H. D. and Pacey, A. A. (2012). Mi-
tochondrial Haplotype Does Not Influence Sperm Motility in a UK Population
of Men. Hum. Reprod. 27.3, 641–651. DOI: 10.1093/humrep/der438.

100

https://doi.org/10.1038/nmeth.2632
https://doi.org/10.1186/1471-2350-12-123
https://doi.org/10.1186/1471-2350-12-123
https://doi.org/10.3390/cells8040306
https://doi.org/10.1016/j.yexcr.2020.112056
https://doi.org/10.1038/s41559-017-0276-6
https://doi.org/10.1038/s41559-017-0276-6
https://doi.org/10.1038/s41588-021-00923-x
https://doi.org/10.1038/s41588-021-00923-x
https://doi.org/10.1002/humu.21192
https://doi.org/10.1093/humrep/der438


Mossman, J. A., Tross, J. G., Li, N., Wu, Z. and Rand, D. M. (2016). Mitochondrial-
Nuclear Interactions Mediate Sex-Specific Transcriptional Profiles in Drosophila.
Genetics 204.2, 613–630. DOI: 10.1534/genetics.116.192328.

Mottis, A., Herzig, S. and Auwerx, J. (2019). Mitocellular Communication: Shap-
ing Health and Disease. Science 366.6467, 827–832. DOI: 10.1126/science.
aax3768.

Mueller, E. E., Eder, W., Ebner, S., Schwaiger, E., Santic, D., Kreindl, T., Stanger, O.,
Paulweber, B., Iglseder, B., Oberkofler, H., Maier, R., Mayr, J. A., Krempler, F.,
Weitgasser, R., Patsch, W., Sperl, W., Kofler, B. and Federici, M. (2011). The Mi-
tochondrial T16189C Polymorphism Is Associated with Coronary Artery Dis-
ease in Middle European Populations. PLOS ONE 6.1, e16455. DOI: 10.1371/
journal.pone.0016455.

Muller, H. J. (1964). The Relation of Recombination to Mutational Advance. Mut.
Res. - Fund. Mol. M. 1.1, 2–9. DOI: 10.1016/0027-5107(64)90047-8.

Nagarajan-Radha, V., Aitkenhead, I., Clancy, D. J., Chown, S. L. and Dowling, D. K.
(2020). Sex-Specific Effects of Mitochondrial Haplotype on Metabolic Rate in
Drosophila Melanogaster Support Predictions of the Mother’s Curse Hypothe-
sis. Philos. Trans. R. Soc. B 375.1790, 20190178. DOI: 10.1098/rstb.2019.0178.

Naue, J., Hörer, S., Sänger, T., Strobl, C., Hatzer-Grubwieser, P., Parson, W. and
Lutz-Bonengel, S. (2015). Evidence for Frequent and Tissue-Specific Sequence
Heteroplasmy in Human Mitochondrial DNA. Mitochondrion 20, 82–94. DOI:
10.1016/j.mito.2014.12.002.

Neckelmann, N., Li, K., Wade, R. P., Shuster, R. and Wallace, D. C. (1987). cDNA
Sequence of a Human Skeletal Muscle ADP/ATP Translocator: Lack of a Leader
Peptide, Divergence from a Fibroblast Translocator cDNA, and Coevolution with
Mitochondrial DNA Genes. Proc. Natl. Acad. Sci. U.S.A. 84.21, 7580–7584. DOI:
10.1073/pnas.84.21.7580.

Nieminen, T., Lehtinen, R., Viik, J., Lehtimäki, T., Niemelä, K., Nikus, K., Niemi,
M., Kallio, J., Kööbi, T., Turjanmaa, V. and Kähönen, M. (2006). The Finnish
Cardiovascular Study (FINCAVAS): Characterising Patients with High Risk of
Cardiovascular Morbidity and Mortality. BMC Cardiovasc. Disord. 6, 9. DOI:
10.1186/1471-2261-6-9.

101

https://doi.org/10.1534/genetics.116.192328
https://doi.org/10.1126/science.aax3768
https://doi.org/10.1126/science.aax3768
https://doi.org/10.1371/journal.pone.0016455
https://doi.org/10.1371/journal.pone.0016455
https://doi.org/10.1016/0027-5107(64)90047-8
https://doi.org/10.1098/rstb.2019.0178
https://doi.org/10.1016/j.mito.2014.12.002
https://doi.org/10.1073/pnas.84.21.7580
https://doi.org/10.1186/1471-2261-6-9


Nissanka, N. and Moraes, C. T. (2018). Mitochondrial DNA Damage and Reactive
Oxygen Species in Neurodegenerative Disease. FEBS Lett. 592.5, 728–742. DOI:
10.1002/1873-3468.12956.

Nolfi-Donegan, D., Braganza, A. and Shiva, S. (2020). Mitochondrial Electron Trans-
port Chain: Oxidative Phosphorylation, Oxidant Production, and Methods of
Measurement. Redox Biol. 37, 101674. DOI: 10.1016/j.redox.2020.101674.

Nyholt, D. R. (2004). A Simple Correction for Multiple Testing for Single-Nucleotide
Polymorphisms in Linkage Disequilibrium with Each Other. Am. J. Hum. Genet.
74.4, 765–769. DOI: 10.1086/383251.

Okbay, A. et al. (2016). Genome-Wide Association Study Identifies 74 Loci Associ-
ated with Educational Attainment. Nature 533.7604, 539–542. DOI: 10.1038/
nature17671.

Orlanski, S., Labi, V., Reizel, Y., Spiro, A., Lichtenstein, M., Levin-Klein, R., Ko-
ralov, S. B., Skversky, Y., Rajewsky, K., Cedar, H. and Bergman, Y. (2016). Tissue-
Specific DNA Demethylation Is Required for Proper B-cell Differentiation and
Function. Proc. Natl. Acad. Sci. U.S.A. 113.18, 5018–5023. DOI: 10.1073/pnas.
1604365113.

Oshiumi, H., Matsumoto, M., Hatakeyama, S. and Seya, T. (2009). Riplet/RNF135,
a RING Finger Protein, Ubiquitinates RIG-I to Promote Interferon-Beta Induc-
tion during the Early Phase of Viral Infection. J. Biol. Chem. 284.2, 807–817. DOI:
10.1074/jbc.M804259200.

Pagnamenta, A. T., Wei, W., Rahman, S. and Chinnery, P. F. (2021). Biparental In-
heritance of Mitochondrial DNA Revisited. Nat. Rev. Genet. 22.8, 477–478. DOI:
10.1038/s41576-021-00380-6.

Payne, B. A. I., Wilson, I. J., Yu-Wai-Man, P., Coxhead, J., Deehan, D., Horvath, R.,
Taylor, R. W., Samuels, D. C., Santibanez-Koref, M. and Chinnery, P. F. (2013).
Universal Heteroplasmy of Human Mitochondrial DNA. Hum. Mol. Genet. 22.2,
384–390. DOI: 10.1093/hmg/dds435.

Pedersen, K., Haupt-Jorgensen, M., Krogvold, L., Kaur, S., Gerling, I. C., Pociot,
F., Dahl-Joergensen, K. and Buschard, K. (2021). Genetic Predisposition in the
2’-5’A Pathway in the Development of Type 1 Diabetes: Potential Contribution
to Dysregulation of Innate Antiviral Immunity. Diabetologia 64.8, 1805–1815.
DOI: 10.1007/s00125-021-05469-5.

102

https://doi.org/10.1002/1873-3468.12956
https://doi.org/10.1016/j.redox.2020.101674
https://doi.org/10.1086/383251
https://doi.org/10.1038/nature17671
https://doi.org/10.1038/nature17671
https://doi.org/10.1073/pnas.1604365113
https://doi.org/10.1073/pnas.1604365113
https://doi.org/10.1074/jbc.M804259200
https://doi.org/10.1038/s41576-021-00380-6
https://doi.org/10.1093/hmg/dds435
https://doi.org/10.1007/s00125-021-05469-5


Pereira, L., Gonçalves, J., Franco-Duarte, R., Silva, J., Rocha, T., Arnold, C., Richards,
M. and Macaulay, V. (2007). No Evidence for an mtDNA Role in Sperm Motility:
Data from Complete Sequencing of Asthenozoospermic Males. Mol. Biol. Evol.
24.3, 868–874. DOI: 10.1093/molbev/msm004.

Pereira, L., Soares, P., Radivojac, P., Li, B. and Samuels, D. C. (2011). Comparing
Phylogeny and the Predicted Pathogenicity of Protein Variations Reveals Equal
Purifying Selection across the Global Human mtDNA Diversity. Am. J. Hum.
Genet. 88.4, 433–439. DOI: 10.1016/J.AJHG.2011.03.006.

Pesole, G., Gissi, C., De Chirico, A. and Saccone, C. (1999). Nucleotide Substitution
Rate of Mammalian Mitochondrial Genomes. J. Mol. Evol. 48.4, 427–434. DOI:
10.1007/PL00006487.

Pfanner, N., Warscheid, B. and Wiedemann, N. (2019). Mitochondrial Proteins: From
Biogenesis to Functional Networks. Nat. Rev. Mol. Cell Biol. 20.5, 267–284. DOI:
10.1038/s41580-018-0092-0.

Price, A. L., Zaitlen, N. A., Reich, D. and Patterson, N. (2010). New Approaches to
Population Stratification in Genome-Wide Association Studies. Nat. Rev. Genet.
11.7, 459–463. DOI: 10.1038/nrg2813.

Quirós, P. M., Mottis, A. and Auwerx, J. (2016). Mitonuclear Communication in
Homeostasis and Stress. Nat. Rev. Mol. Cell Biol. 17.4, 213–226. DOI: 10.1038/
nrm.2016.23.

Rabenstein, A., Catarino, C. B., Rampeltshammer, V., Schindler, D., Gallenmüller,
C., Priglinger, C., Pogarell, O., Rüther, T. and Klopstock, T. (2021). Smoking
and Alcohol, Health-Related Quality of Life and Psychiatric Comorbidities in
Leber’s Hereditary Optic Neuropathy Mutation Carriers: A Prospective Cohort
Study. Orphanet J. Rare Dis. 16.1, 127. DOI: 10.1186/s13023-021-01724-5.

Raitakari, O. T., Juonala, M., Rönnemaa, T., Keltikangas-Järvinen, L., Räsänen, L.,
Pietikäinen, M., Hutri-Kähönen, N., Taittonen, L., Jokinen, E., Marniemi, J.,
Jula, A., Telama, R., Kähönen, M., Lehtimäki, T., Åkerblom, H. K. and Viikari,
J. S. (2008). Cohort Profile: The Cardiovascular Risk in Young Finns Study. Int.
J. Epidemiol. 37.6, 1220–1226. DOI: 10.1093/ije/dym225.

Ramanjaneya, M., Bettahi, I., Jerobin, J., Chandra, P., Abi Khalil, C., Skarulis, M.,
Atkin, S. L. and Abou-Samra, A.-B. (2019). Mitochondrial-Derived Peptides Are
Down Regulated in Diabetes Subjects. Front. Endocrinol. 10, 331.

103

https://doi.org/10.1093/molbev/msm004
https://doi.org/10.1016/J.AJHG.2011.03.006
https://doi.org/10.1007/PL00006487
https://doi.org/10.1038/s41580-018-0092-0
https://doi.org/10.1038/nrg2813
https://doi.org/10.1038/nrm.2016.23
https://doi.org/10.1038/nrm.2016.23
https://doi.org/10.1186/s13023-021-01724-5
https://doi.org/10.1093/ije/dym225


Reynolds, J. C., Lai, R. W., Woodhead, J. S. T., Joly, J. H., Mitchell, C. J., Cameron-
Smith, D., Lu, R., Cohen, P., Graham, N. A., Benayoun, B. A., Merry, T. L. and
Lee, C. (2021). MOTS-c Is an Exercise-Induced Mitochondrial-Encoded Regula-
tor of Age-Dependent Physical Decline and Muscle Homeostasis. Nat. Commun.
12.1, 470. DOI: 10.1038/s41467-020-20790-0.

Ricchetti, M., Tekaia, F. and Dujon, B. (2004). Continued Colonization of the Hu-
man Genome by Mitochondrial DNA. PLOS Biol. 2.9, e273. DOI: 10.1371/
journal.pbio.0020273.

Ricquier, D. and Bouillaud, F. (2000). Mitochondrial Uncoupling Proteins: From
Mitochondria to the Regulation of Energy Balance. J. Physiol. 529.1, 3–10. DOI:
10.1111/j.1469-7793.2000.00003.x.

Ristow, M. and Schmeisser, K. (2014). Mitohormesis: Promoting Health and Lifes-
pan by Increased Levels of Reactive Oxygen Species (ROS). Dose-Response 12.2,
288–341. DOI: 10.2203/dose-response.13-035.Ristow.

Ristow, M., Zarse, K., Oberbach, A., Klöting, N., Birringer, M., Kiehntopf, M.,
Stumvoll, M., Kahn, C. R. and Blüher, M. (2009). Antioxidants Prevent Health-
Promoting Effects of Physical Exercise in Humans. Proc. Natl. Acad. Sci. U.S.A.
106.21, 8665–8670. DOI: 10.1073/pnas.0903485106.

Rius, R., Cowley, M. J., Riley, L., Puttick, C., Thorburn, D. R. and Christodoulou, J.
(2019). Biparental Inheritance of Mitochondrial DNA in Humans Is Not a Com-
mon Phenomenon. Genet. Med. 21.12, 2823–2826. DOI: 10.1038/s41436-019-
0568-0.

Rizzuto, R., De Stefani, D., Raffaello, A. and Mammucari, C. (2012). Mitochondria
as Sensors and Regulators of Calcium Signalling. Nat. Rev. Mol. Cell Biol. 13.9,
566–578. DOI: 10.1038/nrm3412.

Rorbach, J. and Minczuk, M. (2012). The Post-Transcriptional Life of Mammalian
Mitochondrial RNA. Biochem. J. 444.3, 357–373. DOI: 10.1042/BJ20112208.

Ruiz-Pesini, E., Lapeña, A.-C., Díez-Sánchez, C., Pérez-Martos, A., Montoya, J., Al-
varez, E., Díaz, M., Urriés, A., Montoro, L., López-Pérez, M. J. and Enríquez,
J. A. (2000). Human mtDNA Haplogroups Associated with High or Reduced
Spermatozoa Motility. Am. J. Hum. Genet. 67.3, 682–696. DOI: 10.1086/303040.

Ruiz-Pesini, E., Mishmar, D., Brandon, M., Procaccio, V. and Wallace, D. C. (2004).
Effects of Purifying and Adaptive Selection on Regional Variation in Human
mtDNA. Science 303.5655, 223–226. DOI: 10.1126/science.1088434.

104

https://doi.org/10.1038/s41467-020-20790-0
https://doi.org/10.1371/journal.pbio.0020273
https://doi.org/10.1371/journal.pbio.0020273
https://doi.org/10.1111/j.1469-7793.2000.00003.x
https://doi.org/10.2203/dose-response.13-035.Ristow
https://doi.org/10.1073/pnas.0903485106
https://doi.org/10.1038/s41436-019-0568-0
https://doi.org/10.1038/s41436-019-0568-0
https://doi.org/10.1038/nrm3412
https://doi.org/10.1042/BJ20112208
https://doi.org/10.1086/303040
https://doi.org/10.1126/science.1088434


Saha, S. K., Saba, A. A., Hasib, M., Rimon, R. A., Hasan, I., Alam, M. S., Mah-
mud, I. and Nabi, A. H. M. N. (2021). Evaluation of D-loop Hypervariable Re-
gion I Variations, Haplogroups and Copy Number of Mitochondrial DNA in
Bangladeshi Population with Type 2 Diabetes. Heliyon 7.7, e07573. DOI: 10.
1016/j.heliyon.2021.e07573.

Salas, A., García-Magariños, M., Logan, I. and Bandelt, H. J. (2014). The Saga of
the Many Studies Wrongly Associating Mitochondrial DNA with Breast Cancer.
BMC Cancer 14, 659. DOI: 10.1186/1471-2407-14-659.

Samuels, D. C., Li, C., Li, B., Song, Z., Torstenson, E., Clay, H. B., Rokas, A.,
Thornton-Wells, T. A., Moore, J. H., Hughes, T. M., Hoffman, R. D., Haines,
J. L., Murdock, D. G., Mortlock, D. P. and Williams, S. M. (2013). Recurrent
Tissue-Specific mtDNA Mutations Are Common in Humans. PLOS Genet. 9.11,
e1003929. DOI: 10.1371/journal.pgen.1003929.

Santoro, A. et al. (2010). Evidence for Sub-Haplogroup H5 of Mitochondrial DNA
as a Risk Factor for Late Onset Alzheimer’s Disease. PLOS ONE 5.8, e12037.
DOI: 10.1371/journal.pone.0012037.

Saxena, R., De Bakker, P. I. W., Singer, K., Mootha, V., Burtt, N., Hirschhorn, J. N.,
Gaudet, D., Isomaa, B., Daly, M. J., Groop, L., Ardlie, K. G. and Altshuler, D.
(2006). Comprehensive Association Testing of Common Mitochondrial DNA
Variation in Metabolic Disease. Am. J. Hum. Genet. 79.1, 54–61. DOI: 10.1086/
504926.

Schon, E. A., DiMauro, S. and Hirano, M. (2012). Human Mitochondrial DNA:
Roles of Inherited and Somatic Mutations. Nat. Rev. Genet. 13.12, 878–890. DOI:
10.1038/nrg3275.

Schwartz, M. and Vissing, J. (2002). Paternal Inheritance of Mitochondrial DNA. N.
Engl. J. Med. 347.8, 576–580. DOI: 10.1056/NEJMoa020350.

Shabalin, A. A. (2012). Matrix eQTL: Ultra Fast eQTL Analysis via Large Matrix
Operations. Bioinformatics 28.10, 1353–1358. DOI: 10.1093/bioinformatics/
bts163.

Shadel, G. S. and Horvath, T. L. (2015). Mitochondrial ROS Signaling in Organismal
Homeostasis. Cell 163.3, 560–569. DOI: 10.1016/j.cell.2015.10.001.

Singmann, P. et al. (2015). Characterization of Whole-Genome Autosomal Differ-
ences of DNA Methylation between Men and Women. Epigenetics Chromatin 8,
43. DOI: 10.1186/s13072-015-0035-3.

105

https://doi.org/10.1016/j.heliyon.2021.e07573
https://doi.org/10.1016/j.heliyon.2021.e07573
https://doi.org/10.1186/1471-2407-14-659
https://doi.org/10.1371/journal.pgen.1003929
https://doi.org/10.1371/journal.pone.0012037
https://doi.org/10.1086/504926
https://doi.org/10.1086/504926
https://doi.org/10.1038/nrg3275
https://doi.org/10.1056/NEJMoa020350
https://doi.org/10.1093/bioinformatics/bts163
https://doi.org/10.1093/bioinformatics/bts163
https://doi.org/10.1016/j.cell.2015.10.001
https://doi.org/10.1186/s13072-015-0035-3


Smiraglia, D., Kulawiec, M., Bistulfi, G. L., Ghoshal, S. and Singh, K. K. (2008).
A Novel Role for Mitochondria in Regulating Epigenetic Modifications in the
Nucleus. Cancer Biol. Ther. 7.8, 1182–1190. DOI: 10.4161/cbt.7.8.6215.

Sonney, S., Leipzig, J., Lott, M. T., Zhang, S., Procaccio, V., Wallace, D. C. and
Sondheimer, N. (2017). Predicting the Pathogenicity of Novel Variants in Mito-
chondrial tRNA with MitoTIP. PLOS Comp. Biol. 13.12, e1005867. DOI: 10.
1371/journal.pcbi.1005867.

Steves, C. J., Spector, T. D. and Jackson, S. H. D. (2012). Ageing, Genes, Environ-
ment and Epigenetics: What Twin Studies Tell Us Now, and in the Future. Age
Ageing 41.5, 581–586. DOI: 10.1093/ageing/afs097.

Stewart, J. B. and Chinnery, P. F. (2015). The Dynamics of Mitochondrial DNA Het-
eroplasmy: Implications for Human Health and Disease. Nat. Rev. Genet. 16.9,
530–542. DOI: 10.1038/nrg3966.

Stewart, J. B. and Chinnery, P. F. (2021). Extreme Heterogeneity of Human Mi-
tochondrial DNA from Organelles to Populations. Nat. Rev. Genet. 22.2, 1–13.
DOI: 10.1038/s41576-020-00284-x.

Stewart, J. B., Freyer, C., Elson, J. L. and Larsson, N.-G. (2008). Purifying Selection
of mtDNA and Its Implications for Understanding Evolution and Mitochondrial
Disease. Nat. Rev. Genet. 9.9, 657–662. DOI: 10.1038/nrg2396.

Sulonen, A.-M., Ellonen, P., Almusa, H., Lepistö, M., Eldfors, S., Hannula, S., Mi-
ettinen, T., Tyynismaa, H., Salo, P., Heckman, C., Joensuu, H., Raivio, T., Suo-
malainen, A. and Saarela, J. (2011). Comparison of Solution-Based Exome Cap-
ture Methods for next Generation Sequencing. Genome Biol. 12.9, R94. DOI:
10.1186/gb-2011-12-9-r94.

Suomalainen, A. (2019). Mitochondrial DNA Inheritance in Humans: Mix, Match,
and Survival of the Fittest. Cell Metab. 30.2, 231–232. DOI: 10.1016/j.cmet.
2019.07.009.

Tabák, A. G., Herder, C., Rathmann, W., Brunner, E. J. and Kivimäki, M. (2012).
Prediabetes: A High-Risk State for Diabetes Development. The Lancet 379, 2279–
2290. DOI: 10.1016/S0140.

Takasaki, S. (2009). Mitochondrial Haplogroups Associated with Japanese Cente-
narians, Alzheimer’s Patients, Parkinson’s Patients, Type 2 Diabetic Patients and
Healthy Non-Obese Young Males. J. Genet. Genom. 36.7, 425–434. DOI: 10.
1016/S1673-8527(08)60132-0.

106

https://doi.org/10.4161/cbt.7.8.6215
https://doi.org/10.1371/journal.pcbi.1005867
https://doi.org/10.1371/journal.pcbi.1005867
https://doi.org/10.1093/ageing/afs097
https://doi.org/10.1038/nrg3966
https://doi.org/10.1038/s41576-020-00284-x
https://doi.org/10.1038/nrg2396
https://doi.org/10.1186/gb-2011-12-9-r94
https://doi.org/10.1016/j.cmet.2019.07.009
https://doi.org/10.1016/j.cmet.2019.07.009
https://doi.org/10.1016/S0140
https://doi.org/10.1016/S1673-8527(08)60132-0
https://doi.org/10.1016/S1673-8527(08)60132-0


Tamura, K. and Nei, M. (1993). Estimation of the Number of Nucleotide Substi-
tutions in the Control Region of Mitochondrial DNA in Humans and Chim-
panzees. Mol. Biol. Evol. 10.3, 512–526. DOI: 10.1093/oxfordjournals.molbev.
a040023.

Tang, Z. Z. and Lin, D. Y. (2015). Meta-Analysis for Discovering Rare-Variant As-
sociations: Statistical Methods and Software Programs. Am. J. Hum. Genet. 97.1,
35–53. DOI: 10.1016/j.ajhg.2015.05.001.

Taylor, R. W., McDonnell, M. T., Blakely, E. L., Chinnery, P. F., Taylor, G. A., How-
ell, N., Zeviani, M., Briem, E., Carrara, F. and Turnbull, D. M. (2003). Geno-
types from Patients Indicate No Paternal Mitochondrial DNA Contribution.
Ann. Neurol. 54.4, 521–524. DOI: 10.1002/ana.10673.

Teng, L., Zheng, J., Leng, J. and Ding, Y. (2012). Clinical and Molecular Characteri-
zation of a Han Chinese Family with High Penetrance of Essential Hypertension.
Mitochondrial DNA 23.6, 461–465. DOI: 10.3109/19401736.2012.710205.

Tobin, M. D., Sheehan, N. A., Scurrah, K. J. and Burton, P. R. (2005). Adjusting for
Treatment Effects in Studies of Quantitative Traits: Antihypertensive Therapy
and Systolic Blood Pressure. Stat. Med. 24.19, 2911–2935. DOI: 10.1002/sim.
2165.

Torroni, A., Huoponen, K., Francalacci, P., Petrozzi, M., Morelli, L., Scozzari, R.,
Obinu, D., Savontaus, M.-L. and Wallace, D. C. (1996). Classification of Euro-
pean mtDNAs from an Analysis of Three European Populations. Genetics 144.4,
1835–1850. DOI: 10.1093/genetics/144.4.1835.

Tragante, V. et al. (2014). Gene-Centric Meta-analysis in 87,736 Individuals of Eu-
ropean Ancestry Identifies Multiple Blood-Pressure-Related Loci. Am. J. Hum.
Genet. 94.3, 349–360. DOI: 10.1016/j.ajhg.2013.12.016.

Tretter, L. and Adam-Vizi, V. (2005). Alpha-Ketoglutarate Dehydrogenase: A Target
and Generator of Oxidative Stress. Philos. Trans. R. Soc. B 360.1464, 2335–2345.
DOI: 10.1098/rstb.2005.1764.

Van Dongen, J., Nivard, M. G., Willemsen, G., Hottenga, J.-J., Helmer, Q., Dolan,
C. V., Ehli, E. A., Davies, G. E., van Iterson, M., Breeze, C. E., Beck, S., Suchi-
man, H. E., Jansen, R., van Meurs, J. B., Heijmans, B. T., Slagboom, P. E. and
Boomsma, D. I. (2016). Genetic and Environmental Influences Interact with Age
and Sex in Shaping the Human Methylome. Nat. Commun. 7.1, 1–13. DOI: 10.
1038/ncomms11115.

107

https://doi.org/10.1093/oxfordjournals.molbev.a040023
https://doi.org/10.1093/oxfordjournals.molbev.a040023
https://doi.org/10.1016/j.ajhg.2015.05.001
https://doi.org/10.1002/ana.10673
https://doi.org/10.3109/19401736.2012.710205
https://doi.org/10.1002/sim.2165
https://doi.org/10.1002/sim.2165
https://doi.org/10.1093/genetics/144.4.1835
https://doi.org/10.1016/j.ajhg.2013.12.016
https://doi.org/10.1098/rstb.2005.1764
https://doi.org/10.1038/ncomms11115
https://doi.org/10.1038/ncomms11115


Van Iterson, M., van Zwet, E. W., Heijmans, B. T. and the BIOS Consortium (2017).
Controlling Bias and Inflation in Epigenome- and Transcriptome-Wide Associa-
tion Studies Using the Empirical Null Distribution. Genome Biol. 18, 19. DOI:
10.1186/s13059-016-1131-9.

Van Oven, M. (2015). PhyloTree Build 17: Growing the Human Mitochondrial DNA
Tree. Forensic Sci. Int. Genet. Suppl. Ser. 5, e392–e394. DOI: 10.1016/J.FSIGSS.
2015.09.155.

Van Oven, M. and Kayser, M. (2009). Updated Comprehensive Phylogenetic Tree of
Global Human Mitochondrial DNA Variation. Hum. Mutat. 30.2, E386–E394.
DOI: 10.1002/humu.20921.

Vázquez-Acevedo, M., Antaramian, A., Corona, N. and González-Halphen, D. (1993).
Subunit Structures of Purified Beef Mitochondrial Cytochromebc1 Complex from
Liver and Heart. J. Bioenerg. Biomembr. 25.4, 401–410. DOI: 10.1007/BF00762466.

Venter, M., Malan, L., van Dyk, E., Elson, J. L. and van der Westhuizen, F. H. (2017).
Using MutPred Derived mtDNA Load Scores to Evaluate mtDNA Variation in
Hypertension and Diabetes in a Two-Population Cohort: The SABPA Study. J.
Genet. Genomics 44.3, 139–149. DOI: 10.1016/J.JGG.2016.12.003.

Vivian, C. J., Brinker, A. E., Graw, S., Koestler, D. C., Legendre, C., Gooden, G. C.,
Salhia, B. and Welch, D. R. (2017). Mitochondrial Genomic Backgrounds Affect
Nuclear DNA Methylation and Gene Expression. Cancer Res. 77.22, 6202–6214.
DOI: 10.1158/0008-5472.CAN-17-1473.

Vona, B. et al. (2018). Expanding the Clinical Phenotype of IARS2-related Mitochon-
drial Disease. BMC Med. Genet. 19, 196. DOI: 10.1186/s12881-018-0709-3.

Walaszczyk, E., Luijten, M., Spijkerman, A. M. W., Bonder, M. J., Lutgers, H. L.,
Snieder, H., Wolffenbuttel, B. H. R. and van Vliet-Ostaptchouk, J. V. (2018).
DNA Methylation Markers Associated with Type 2 Diabetes, Fasting Glucose
and HbA 1c Levels: A Systematic Review and Replication in a Case-Control Sam-
ple of the Lifelines Study. Diabetologia 61.2, 354–368. DOI: 10.1007/s00125-
017-4497-7.

Wallace, D. C. (2007). Why Do We Still Have a Maternally Inherited Mitochondrial
DNA? Insights from Evolutionary Medicine. Annu. Rev. Biochem. 76, 781–821.
DOI: 10.1146/annurev.biochem.76.081205.150955.

Wallace, D. C. (2010). Mitochondrial DNA Mutations in Disease and Aging. Envi-
ron. Mol. Mutagen. 51.5, 440–450. DOI: 10.1002/em.20586.

108

https://doi.org/10.1186/s13059-016-1131-9
https://doi.org/10.1016/J.FSIGSS.2015.09.155
https://doi.org/10.1016/J.FSIGSS.2015.09.155
https://doi.org/10.1002/humu.20921
https://doi.org/10.1007/BF00762466
https://doi.org/10.1016/J.JGG.2016.12.003
https://doi.org/10.1158/0008-5472.CAN-17-1473
https://doi.org/10.1186/s12881-018-0709-3
https://doi.org/10.1007/s00125-017-4497-7
https://doi.org/10.1007/s00125-017-4497-7
https://doi.org/10.1146/annurev.biochem.76.081205.150955
https://doi.org/10.1002/em.20586


Wallace, D. C., Brown, M. D. and Lott, M. T. (1999). Mitochondrial DNA Variation
in Human Evolution and Disease. Gene 238.1, 211–230. DOI: 10.1016/S0378-
1119(99)00295-4.

Wang, J., Zhao, Q., Hastie, T. and Owen, A. B. (2017). Confounder Adjustment in
Multiple Hypothesis Testing. Ann. Stat. 45.5, 1863–1894. DOI: 10.1214/16-
AOS1511.

Wang, P. et al. (2022). Epigenome-Wide Association Study of Mitochondrial Genome
Copy Number. Hum. Mol. Genet. 31.2, 309–319. DOI: 10.1093/hmg/ddab240.

Wang, S., Li, R., Fettermann, A., Li, Z., Qian, Y., Liu, Y., Wang, X., Zhou, A., Mo,
J. Q., Yang, L., Jiang, P., Taschner, A., Rossmanith, W. and Guan, M.-X. (2011).
Maternally Inherited Essential Hypertension Is Associated With the Novel 4263A>G
Mutation in the Mitochondrial tRNA Ile Gene in a Large Han Chinese Family.
Circ. Res. 108.7, 862–870. DOI: 10.1161/CIRCRESAHA.110.231811.

Wang, X., Kang, D. D., Shen, K., Song, C., Lu, S., Chang, L.-C., Liao, S. G., Huo, Z.,
Tang, S. and Ding, Y. (2012). An R Package Suite for Microarray Meta-Analysis
in Quality Control, Differentially Expressed Gene Analysis and Pathway Enrich-
ment Detection. Bioinformatics 28.19, 2534–2536. DOI: 10.1093/bioinformatics/
bts485.

Wei, W. and Chinnery, P. F. (2020). Inheritance of Mitochondrial DNA in Humans:
Implications for Rare and Common Diseases. J. Intern. Med. 287, 634–644. DOI:
10.1111/joim.13047.

Wei, W. et al. (2019). Germline Selection Shapes Human Mitochondrial DNA Di-
versity. Science 364.6442, eaau6520. DOI: 10.1126/science.aau6520.

Weinberg, S. E., Singer, B. D., Steinert, E. M., Martinez, C. A., Mehta, M. M.,
Martínez-Reyes, I., Gao, P., Helmin, K. A., Abdala-Valencia, H., Sena, L. A.,
Schumacker, P. T., Turka, L. A. and Chandel, N. S. (2019). Mitochondrial Com-
plex III Is Essential for Suppressive Function of Regulatory T Cells. Nature 565.7740,
495–499. DOI: 10.1038/s41586-018-0846-z.

Weissensteiner, H., Forer, L., Fendt, L., Kheirkhah, A., Salas, A., Kronenberg, F.
and Schoenherr, S. (2021). Contamination Detection in Sequencing Studies Using
the Mitochondrial Phylogeny. Genome Res. 31.2, 309–316. DOI: 10.1101/gr.
256545.119.

Weissensteiner, H., Forer, L., Fuchsberger, C., Schöpf, B., Kloss-Brandstätter, A.,
Specht, G., Kronenberg, F. and Schönherr, S. (2016a). mtDNA-Server: Next-Generation

109

https://doi.org/10.1016/S0378-1119(99)00295-4
https://doi.org/10.1016/S0378-1119(99)00295-4
https://doi.org/10.1214/16-AOS1511
https://doi.org/10.1214/16-AOS1511
https://doi.org/10.1093/hmg/ddab240
https://doi.org/10.1161/CIRCRESAHA.110.231811
https://doi.org/10.1093/bioinformatics/bts485
https://doi.org/10.1093/bioinformatics/bts485
https://doi.org/10.1111/joim.13047
https://doi.org/10.1126/science.aau6520
https://doi.org/10.1038/s41586-018-0846-z
https://doi.org/10.1101/gr.256545.119
https://doi.org/10.1101/gr.256545.119


Sequencing Data Analysis of Human Mitochondrial DNA in the Cloud. Nucleic
Acids Res. 44.W1, W64–W69. DOI: 10.1093/nar/gkw247.

Weissensteiner, H., Pacher, D., Kloss-Brandstätter, A., Forer, L., Specht, G., Bandelt,
H.-J., Kronenberg, F., Salas, A. and Schönherr, S. (2016b). HaploGrep 2: Mito-
chondrial Haplogroup Classification in the Era of High-Throughput Sequencing.
Nucleic Acids Res. 44.W1, W58–W63. DOI: 10.1093/nar/gkw233.

West, A. P. and Shadel, G. S. (2017). Mitochondrial DNA in Innate Immune Re-
sponses and Inflammatory Pathology. Nat. Rev. Immunol. 17.6, 363–375. DOI:
10.1038/nri.2017.21.

Winkelmann, B. R., März, W., Boehm, B. O., Zotz, R., Hager, J., Hellstern, P. and
Senges, J. (2001). Rationale and Design of the LURIC Study - a Resource for Func-
tional Genomics, Pharmacogenomics and Long-Term Prognosis of Cardiovascu-
lar Disease. Pharmacogenomics 2, S1–S73. DOI: 10.1517/14622416.2.1.S1.

Wu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, M. and Lin, X. (2011). Rare-Variant
Association Testing for Sequencing Data with the Sequence Kernel Association
Test. Am. J. Hum. Genet. 89.1, 82–93. DOI: 10.1016/J.AJHG.2011.05.029.

Yang, J. et al. (2011). Genomic Inflation Factors under Polygenic Inheritance. Eur. J.
Hum. Genet. 19.7, 807–812. DOI: 10.1038/ejhg.2011.39.

Yang, S. Y., Castellani, C. A., Longchamps, R. J., Pillalamarri, V. K., O’Rourke, B.,
Guallar, E. and Arking, D. E. (2021). Blood-Derived Mitochondrial DNA Copy
Number Is Associated with Gene Expression across Multiple Tissues and Is Pre-
dictive for Incident Neurodegenerative Disease. Genome Res. 31.3, 349–358. DOI:
10.1101/gr.269381.120.

Zarse, K. and Ristow, M. (2015). A Mitochondrially Encoded Hormone Ameliorates
Obesity and Insulin Resistance. Cell Metab. 21.3, 355–356. DOI: 10.1016/j.
cmet.2015.02.013.

Zhang, P., Samuels, D. C., Wang, J., Zhao, S., Shyr, Y. and Guo, Y. (2016). Mitochon-
dria Single Nucleotide Variation across Six Blood Cell Types. Mitochondrion 28,
16–22. DOI: 10.1016/j.mito.2016.03.001.

Zhang, W., Qu, J., Liu, G.-H. and Belmonte, J. C. I. (2020). The Ageing Epigenome
and Its Rejuvenation. Nat. Rev. Mol. Cell Biol. 21.3, 137–150. DOI: 10.1038/
s41580-019-0204-5.

110

https://doi.org/10.1093/nar/gkw247
https://doi.org/10.1093/nar/gkw233
https://doi.org/10.1038/nri.2017.21
https://doi.org/10.1517/14622416.2.1.S1
https://doi.org/10.1016/J.AJHG.2011.05.029
https://doi.org/10.1038/ejhg.2011.39
https://doi.org/10.1101/gr.269381.120
https://doi.org/10.1016/j.cmet.2015.02.013
https://doi.org/10.1016/j.cmet.2015.02.013
https://doi.org/10.1016/j.mito.2016.03.001
https://doi.org/10.1038/s41580-019-0204-5
https://doi.org/10.1038/s41580-019-0204-5


Zhang, D.-X. and Hewitt, G. M. (1996). Nuclear Integrations: Challenges for Mito-
chondrial DNA Markers. Trends Ecol. Evol. 11.6, 247–251. DOI: 10.1016/0169-
5347(96)10031-8.

Zhao, R.-Z., Jiang, S., Zhang, L. and Yu, Z.-B. (2019). Mitochondrial Electron Trans-
port Chain, ROS Generation and Uncoupling. Int. J. Mol. Med. 44.1, 3–15. DOI:
10.3892/ijmm.2019.4188.

111

https://doi.org/10.1016/0169-5347(96)10031-8
https://doi.org/10.1016/0169-5347(96)10031-8
https://doi.org/10.3892/ijmm.2019.4188




ORIGINAL PUBLICATIONS





PUBLICATION

I

Discovery of mitochondrial DNA variants associated with genome-wide
blood cell gene expression: a population-based mtDNA sequencing study
Laaksonen, J., Seppälä, I., Raitoharju, E., Mononen, N., Lyytikäinen, L.-P.,

Waldenberger, M., Illig, T., Lepistö, M., Almusa, H., Ellonen, P.,
Hutri-Kähönen, N., Juonala, M., Kähönen, M., Raitakari, O., Salonen, J. T. and

Lehtimäki, T.

Human Molecular Genetics 28.8 (2019), 1381–1391

Publication reprinted with the permission of the copyright holders





†Jaakko Laaksonen, http://orcid.org/0000-0003-3577-6928
Received: October 16, 2018. Revised: December 14, 2018. Accepted: January 7, 2019

© The Author(s) 2019. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

1381

Human Molecular Genetics, 2019, Vol. 28, No. 8 1381–1391

doi: 10.1093/hmg/ddz011
Advance Access Publication Date: 9 January 2019
Association Studies Article

A S SOC I AT I ON STUD I E S ART I C L E

Discovery of mitochondrial DNA variants associated
with genome-wide blood cell gene expression: a
population-based mtDNA sequencing study
Jaakko Laaksonen1,†,*, Ilkka Seppälä1, Emma Raitoharju1, Nina Mononen1,
Leo-Pekka Lyytikäinen1, Melanie Waldenberger2,3, Thomas Illig4,5, Maija
Lepistö6, Henrikki Almusa6, Pekka Ellonen6, Nina Hutri-Kähönen7, Markus
Juonala8,9,10, Mika Kähönen11, Olli Raitakari12,13, Jukka T. Salonen14,15 and
Terho Lehtimäki1

1Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere,
Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland 2Research Unit of
Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health,
Neuherberg, 85764, Germany 3Institute of Epidemiology, Helmholtz Zentrum München, German Research
Center for Environmental Health, Neuherberg, 85764, Germany 4Hannover Unified Biobank, Hannover Medical
School, Hannover, 30625, Germany 5Institute for Human Genetics, Hannover Medical School, Hannover, 30625,
Germany 6Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, 00290, Finland
7Department of Pediatrics, Tampere University Hospital and Faculty of Medicine and Health Technology,
Tampere University, Tampere, 33520, Finland 8Department of Medicine, University of Turku, Turku, 20520,
Finland 9Division of Medicine, Turku University Hospital, Turku, 20520, Finland 10Murdoch Children’s Research
Institute, Parkville, Victoria, 3052, Australia 11Department of Clinical Physiology, Tampere University Hospital
and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere
University, Tampere, 33520, Finland 12Department of Clinical Physiology and Nuclear Medicine, University of
Turku and Turku University Hospital, Turku, 20520, Finland 13Research Centre for Applied and Preventive
Cardiovascular Medicine, University of Turku, Turku, 20520, Finland 14Department of Public Health, Faculty of
Medicine, University of Helsinki, Helsinki, 00014, Finland and 15MAS-Metabolic Analytical Services Oy,
Helsinki, 00990, Finland

*To whom correspondence should be addressed at: Faculty of Medicine and Health Technology, PO Box 100, FI-33014 Tampere University, Finland.
Tel: +358 504080774; Fax: +358 32599003; Email: jaakko.h.laaksonen@tuni.fi

Abstract

The effect of mitochondrial DNA (mtDNA) variation on peripheral blood transcriptomics in health and disease is not fully
known. Sex-specific mitochondrially controlled gene expression patterns have been shown in Drosophila melanogaster but in
humans, evidence is lacking. Functional variation in mtDNA may also have a role in the development of type 2 diabetes and
its precursor state, i.e. prediabetes. We examined the associations between mitochondrial single-nucleotide polymorphisms
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(mtSNPs) and peripheral blood transcriptomics with a focus on sex- and prediabetes-specific effects. The genome-wide
blood cell expression data of 19 637 probes, 199 deep-sequenced mtSNPs and nine haplogroups of 955 individuals from a
population-based Young Finns Study cohort were used. Significant associations were identified with linear regression and
analysis of covariance. The effects of sex and prediabetes on the associations between gene expression and mtSNPs were
studied using random-effect meta-analysis. Our analysis identified 53 significant expression probe-mtSNP associations after
Bonferroni correction, involving 7 genes and 31 mtSNPs. Eight probe-mtSNP signals remained independent after conditional
analysis. In addition, five genes showed differential expression between haplogroups. The meta-analysis did not show any
significant differences in linearmodel effect sizes betweenmales and females but identified the association between theOASL
gene and mtSNP C16294T to show prediabetes-specific effects. This study pinpoints new independent mtSNPs associated
with peripheral blood transcriptomics and replicates six previously reported associations, providing further evidence of the
mitochondrial genetic control of blood cell gene expression. In addition, we present evidence that prediabetes might lead to
perturbations in mitochondrial control.

Introduction
Mitochondrial DNA (mtDNA) is a maternally inherited, circular
molecule containing ∼16 600 nucleotides that encode 22 trans-
fer RNAs, 2 ribosomal RNAs and 13 polypeptides (1). It has a
highmutation rate and these polymorphisms have accumulated
during evolution, dividing the human population into smaller
mitochondrial haplogroups. The definition of these haplogroups
is based on particular combinations of certain single-nucleotide
polymorphisms (SNPs) in mtDNA. Mitochondrial haplogroups
are also associated with geographic areas and populations. For
example, virtually all ScandinavianmtDNA falls into 10 different
haplogroups: H, I, J, K, M, T, U, V, W and X (2,3).

mtDNA is transmittedmainly via thematernal lineage,which
could create a male–female asymmetry in the expected severity
of mitochondrial disease (4). The mitochondrial SNPs (mtSNPs)
that are deleterious to males but not to females, such as those
that impair sperm function, will not be subject to natural selec-
tion. This may play an important role for male-specific effects in
health and disease (5). This hypothesiswas tested in a study con-
ducted with Drosophila melanogaster, which found sex-specific
asymmetry in nuclear gene expression patterns. A strong effect
of mtSNPs on nuclear gene expression was only observed in
males, in females the mitochondrial effect was negligible (6).
A non-sequencing-based study conducted on humans showed
15 significant associations between mtSNPs and nuclear gene
expression but found little evidence of a sex-specific mitochon-
drial control of gene expression (7). The number of studied
mtSNPs was only 78, and it is possible that the sex-specific
effects are mediated via other mtSNPs not included in the study
sample.

Interaction among mtDNA and nuclear DNA encoded factors
is important to cellular function and in adaptation to environ-
mental changes. Since the co-evolution of these two genomes
has been demonstrated at a protein–protein interaction level and
somemodes of co-regulation at a transcriptional level also exist,
it is logical that disruption in mitochondria–nuclear signaling
may lead to disease (8,9). Some mtSNPs have been reported to
be associated with type 2 diabetes (T2D), but this association
has been seen only in Asians (10–12). A Korean study found
mitochondrial haplogroups to be associatedwith an increased or
decreased risk of T2D and with altered nuclear gene expression
patterns that correlate with the susceptibility to develop T2D
(13). However, it is unclear to what extent the mitochondrial–
nuclear interaction is altered when the glucose homeostasis
has already been impaired. Therefore, in addition to sex-specific
differences of special interest in this study is prediabetes, a
precursor state and a major risk factor for the development of
T2D (14).

In this study, we wanted to (a) replicate the earlier gene
expression–mtSNP associations (7), (b) to find new functional
associations with a greater number of mtSNPs by using
population-based mtDNA sequencing, (c) to study the dif-
ferential gene expression between the major Scandinavian
haplogroups present in our study population, (d) to investigate
whether any gene expression–mtSNP associations show sex-
specific differences and, finally, (e) to see whether gene
expression–mtSNP associations are affected by the onset of
prediabetes.

Results
Effect of mtSNPs and haplogroups on peripheral blood
gene expression

A total of 3 907 763 expression probe-mtSNP pairs were tested for
association in a linear regression model. The genomic inflation
factor was 1.00 (quantile–quantile plot for expected versus
observed P-values shown in Supplementary Material, Fig. S1),
indicating that an inflation of the genetic association due
to population stratification or undetected systematic error
is unlikely. As shown in Table 1, a total of 53 expression
probe-mtSNP pairs were significant after Bonferroni correction,
corresponding to 5 nuclear and 2 mitochondrial genes and 31
mtSNPs. These seven identified genes regulated bymtSNPs were
signal peptidase complex subunit 2 pseudogene 4 (SPCS2P4), ring
finger protein 113A (RNF113A), signal peptidase complex subunit
2 (SPCS2), mitochondrially encoded cytochrome c oxidase II (MT-
CO2), cardiolipin synthase 1 (CRLS1), solute carrier family 25
member 15 (SLC25A14) and mitochondrially encoded 16S RNA-
like 1 (MT-RNR2L1).

The pairwise conditional analysis results for all significant
mtSNPs with r2 > 0.30 are shown in online Supplementary
Material, Table S1. As expected, the results were influenced by
the extent of pairwise correlations and the strength of individual
associations. Five probe-mtSNP pairs that survived all pairwise
conditional analyses are shown in Table 2. The correlation was
very low between the two mtSNPs that associated with MT-
CO2 (r2 = 8.20 × 10–4) and only one mtSNP associated with
MT-RNR2L1; these associations were not subjected to condi-
tional analysis. In total, six mtSNPs (G8269A, G9055A, A11251G,
C15452T, A16162G and C16256T) had independent effect on gene
expression. Figure 1 illustrates the normalized expression inten-
sities for the top four genes relative to the alleles of the top
associated independent mtSNP.

Analysis of covariance (ANCOVA) and Tukey’s post hoc test
indicated that five expression probes, corresponding to four
nuclear and one mitochondrial genes, showed differential
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Table 1. The 53 probe–mtSNP associations that had a p of <1.28 × 10−8

Gene Illumina array ID mtSNP MAF Beta SE P-value Replication

SPCS2P4 4210315 G9055A 0.04 −1.11 0.08 1.81 × 10−39

SPCS2P4 4210315 A3480G 0.04 −1.09 0.09 4.84 × 10−32 ∗
SPCS2P4 4210315 A10550G 0.04 −1.08 0.09 9.49 × 10−32 ∗
SPCS2P4 4210315 C14167T 0.04 −1.08 0.09 9.49 × 10−32

SPCS2P4 4210315 T16224C 0.05 −0.95 0.08 1.77 × 10−30

SPCS2P4 4210315 T11299C 0.04 −1.03 0.09 5.94 × 10−29

SPCS2P4 4210315 T1189C 0.03 −1.04 0.09 1.17 × 10−27

RNF113A 6940196 G9055A 0.04 −1.23 0.13 2.48 × 10−21

SPCS2P4 4210315 T9698C 0.05 −0.74 0.08 1.01 × 10−19 ∗
RNF113A 6940196 C14167T 0.04 −1.25 0.14 1.87 × 10−18

RNF113A 6940196 A10550G 0.04 −1.24 0.14 1.95 × 10−18

RNF113A 6940196 A3480G 0.04 −1.24 0.14 2.70 × 10−18

SPCS2P4 4210315 A9093G 0.02 −1.03 0.12 4.72 × 10−18

RNF113A 6940196 T11299C 0.04 −1.20 0.14 1.21 × 10−17

RNF113A 6940196 T1189C 0.03 −1.23 0.14 4.42 × 10−17

SPCS2P4 4210315 T9903C 0.02 −1.06 0.12 7.24 × 10−17

SPCS2P4 4210315 T14798C 0.10 −0.60 0.07 9.74 × 10−16

SPCS2P4 4210315 A1811G 0.08 −0.50 0.07 4.86 × 10−14

RNF113A 6940196 T16224C 0.05 −0.96 0.13 8.58 × 10−14

SPCS2 7040068 G9055A 0.04 −0.93 0.12 9.59 × 10−14

CRLS1 2710446 A8869G 0.02 −0.75 0.10 5.30 × 10−13

CRLS1 2710446 T4639C 0.02 −0.75 0.10 8.45 × 10−13

SPCS2P4 4210315 G11377A 0.03 −0.76 0.11 2.19 × 10−12

RNF113A 6940196 T9698C 0.05 −0.87 0.12 2.57 × 10−12

CRLS1 2710446 C5263T 0.02 −0.75 0.11 5.28 × 10−12

RNF113A 6940196 A9093G 0.02 −1.23 0.18 7.40 × 10−12

MT-CO2 6550386 G8269A 0.01 −1.62 0.24 2.09 × 10−11 ∗
SPCS2P4 4210315 A11251G 0.12 1.04 0.15 2.64 × 10−11

SPCS2P4 4210315 C15452A 0.12 1.03 0.15 5.58 × 10−11

RNF113A 6940196 T9903C 0.02 −1.24 0.19 2.04 × 10−10

SLC25A14 1710754 A3505G 0.05 0.77 0.12 3.28 × 10−10

SLC25A14 1710754 T1243C 0.05 0.76 0.12 4.54 × 10−10

RNF113A 6940196 T14798C 0.10 −0.72 0.11 4.76 × 10−10

SPCS2 7040068 A3480G 0.04 −0.85 0.14 4.81 × 10−10 ∗
SPCS2 7040068 A10550G 0.04 −0.85 0.14 5.04 × 10−10 ∗
MT-RNR2L1 1230164 C16256T 0.07 0.39 0.06 5.28 × 10−10

SPCS2 7040068 C14167T 0.04 −0.85 0.14 5.44 × 10−10

SPCS2 7040068 T16224C 0.05 −0.76 0.12 9.72 × 10−10

SLC25A14 1710754 A11947G 0.05 0.75 0.12 1.03 × 10−9

SLC25A14 1710754 G8994A 0.05 0.74 0.12 1.09 × 10−9

RNF113A 6940196 T4216C 0.12 1.32 0.22 1.44 × 10−9

SLC25A14 1710754 G5046A 0.05 0.74 0.12 1.76 × 10−9

SPCS2P4 4210315 A10398G 0.14 −0.40 0.07 1.80 × 10−9

SLC25A14 1710754 G15884C 0.05 0.74 0.12 2.25 × 10−9

RNF113A 6940196 A1811G 0.08 −0.60 0.10 3.43 × 10−9

RNF113A 6940196 C15452A 0.12 1.39 0.24 5.22 × 10−9

MT-CO2 6550386 A16162G 0.06 −0.66 0.11 5.48 × 10−9

SPCS2 7040068 T11299C 0.04 −0.79 0.13 7.40 × 10−9

RNF113A 6940196 A11251G 0.12 1.36 0.23 7.84 × 10−9

SLC25A14 1710754 T12414C 0.05 0.69 0.12 8.01 × 10−9

SPCS2 7040068 T1189C 0.03 −0.82 0.14 8.27 × 10−9

SLC25A14 1710754 G5460A 0.05 0.65 0.11 9.93 × 10−9

RNF113A 6940196 G11377A 0.03 −0.93 0.16 1.18 × 10−8

Abbreviation: SD, standard deviance
The beta-coefficient represents the proportion of one SD change in normalized gene expression intensity (mean = 0, SD = 1). An asterisk (∗) marks the associations
that were replicated from the previous results (7).

expression between haplogroups (λGC = 1.04, Supplementary
Material, Fig. S2). Three of the genes, SPCS2P4, RNF113A and
SLC25A14, were also associated with individual mtSNPs, but
the other two genes, solute carrier family 2 member 8 (SLC2A8,
Illumina Array Address 5870326) and mitochondrially encoded

NADH dehydrogenase 5 (MT-ND5, Illumina Array Address
4880477), were not identified in the probe-mtSNP analysis. The
results of Tukey’s post hoc test are shown in Table 3. Figure 2
illustrates the expression levels of the top two genes, SPCS2P4
and RNF113A, which were significantly lower in haplogroup K
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Table 2. Independent mtSNP-gene association signals from the pairwise conditional analysis

Gene mtSNP Conditional P-value Conditional beta Conditional SE mtSNP-specific
Bonferroni-corrected P-value

SPCS2P4 G9055A 1.80 × 10–9 – 4.14 ×
10–29

−0.97 – −1.36 0.09–0.20 4.17 × 10–3

SPCS2P4 A11251G 1.41 × 10–3 0.97 0.30 5.00 × 10–2

SPCS2P4 C15452A 4.28 × 10–6 1.13 0.24 5.00 × 10–2

RNF113A G9055A 1.40 × 10–4 – 2.82 ×
10–14

−1.18 – −1.36 0.14–0.32 4.17 × 10–3

SPCS2 G9055A 3.68 × 10–5 – 1.38 ×
10–6

−0.90 – −1.39 0.21–0.31 8.33 × 10–3

The beta-coefficient represents the proportion of one SD change in normalized gene expression intensity (mean = 0, SD = 1). The mtSNP-specific Bonferroni-corrected
P-value accounts for the number of pairwise analyses made for each mtSNP and is defined as the limit of significance.

Figure 1. Combined boxplot and violin plot of the normalized expression intensities for the top four genes relative to the alleles of the top associated independent

mtSNP.

compared to all other eight major haplogroups. The expression
levels of the other three genes across haplogroups are shown in
Supplementary Material, Figure S3.

The genes identified to be associated with mtSNPs or hap-
logroups and not located in the mitochondrial genome were
SPCS2P4, RNF113A, SPCS2, CRLS1, SLC25A14 and SLC2A8. None of
these genes showed cross-hybridization with sequences on the
mitochondrial genome.

Sex- and prediabetes-specific effects

A random-effect meta-analysis showed no statistically sig-
nificant differences in the effect sizes of gene expression
between the sexes (results not shown). The characteristics of the
population used in the prediabetes-specific analysis are shown
in Table 4. Age, sex and bodymass index all differed significantly
between the groups (P ≤ 0.001). For one probe-mtSNP pair the
meta-analysis showed a significant difference in the effect
sizes between subjects with prediabetes and controls. A P-
value of 8.91 × 10−9 (λGC = 0.99, Supplementary Material, Fig. S4)

corresponded to the association between the expression of 2′-
5′-oligoadenylate synthase like (OASL, Illumina Array Address
ID 6280543) and mtSNP C16294T. Subjects with prediabetes
had an effect estimate of −0.74 [standard error (SE) of 0.12]
and a corresponding P-value of 9.69 × 10−6 (λGC = 0.99,
Supplementary Material, Fig. S5), while the control group had
an effect estimate of 0.43 (SE of 0.12) and a P-value of 4.22 × 10−4

(λGC = 1.00, Supplementary Material, Fig. S6).When we added an
interaction term between C16294T and prediabetes status to the
linear model explaining the expression of OASL, the interaction
between the minor allele T and the presence of prediabetes
was significant (effect estimate −1.07, SE 0.19 and a corre-
sponding P-value of 1.11 × 10−8). That is to say, on average,
subjects with prediabetes and the minor allele T had lower
expression levels of OASL compared to the reference allele,
while subjects with the T allele but no prediabetes had
higher expression levels compared to the reference allele, as can
be seen in Figure 3. Basic Local Alignment Search Tool (BLAST)
showed no evidence for cross-hybridization between OASL and
sequences on the mitochondrial genome.
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Table 3. Haplogroup-wise comparisons from Tukey’s post hoc test for the five differentially expressed genes identified in ANCOVA

Comparison Difference in means [95% CI] Tukey-adjusted P-value

SPCS2P4
K-H −1.27 [−1.80, −0.73] 1.33 × 10−11

K-U −1.23 [−1.78, −0.68] 2.38 × 10−10

K-J −1.30 [−1.93, −0.67] 8.57 × 10−9

K-W −1.35 [−2.04, −0.66] 6.08 × 10−8

K-V −1.17 [−1.82, −0.52] 9.93 × 10−7

K-T −1.10 [−1.78, −0.43] 1.55 × 10−5

K-I −1.47 [−2.38, −0.55] 2.74 × 10−5

K-X −1.28 [−2.14, −0.43] 1.09 × 10−4

RNF113A
K-H −1.44 [−1.97, −0.91]
K-U −1.53 [−2.07, −0.99]
K-J −1.52 [−2.14, −0.90] 2.48 × 10−12

K-T −1.44 [−2.10, −0.77] 1.06 × 10−9

K-W −1.42 [−2.10, −0.74] 4.73 × 10−9

K-X −1.48 [−2.32, −0.65] 1.65 × 10−6

K-I −1.57 [−2.47, −0.67] 2.75 × 10−6

K-V −1.03 [−1.67, −0.39] 2.21 × 10−5

K-U −0.50 [−0.94, −0.06] 1.20 × 10−2

SLC25A14
W-J 0.81 [0.21, 1.41] 1.01 × 10−3

W-H 0.55 [0.06, 1.05] 1.63 × 10−2

K-J 0.69 [0.05, 1.33] 2.53 × 10−2

W-X 0.86 [0.02, 1.69] 3.79 × 10−2

SLC2A8
U-J −0.46 [−0.88, −0.04] 2.06 × 10−2

U-H −0.25 [−0.50, 0.00] 4.34 × 10−2

MT-ND5
J-V 0.84 [0.30, 1.39] 7.05 × 10−5

J-U 0.59 [0.16, 1.01] 5.78 × 10−4

J-H 0.50 [0.10, 0.91] 3.24 × 10−3

J-W 0.69 [−1.29, −0.09] 1.14 × 10−2

Abbreviation: CI, confidence interval
One unit of difference in means represents the proportion of one SD change in normalized gene expression intensity.

Table 4. Characteristics of the population used in the prediabetes-specific analysis. Values are means (SD)

Controls Individuals with prediabetes

Number of subjects in group 584 249
Age, years 41.6 (5.00) 42.8 (5.10)
Males (%) 202 (34.5) 143 (57.4)
Body mass index, kg/m2 25.5 (4.16) 28.6 (5.42)

The Mann–Whitney U test was used for age and body mass index and the χ2 test for sex when the two groups were compared. P-value ≤0.001 for all comparisons.

Discussion
In this study,we first wanted to replicate the earlier gene-mtSNP
associations (7). We were able to replicate 6 of the 15 reported
associations. The nucleotide sequence in these previous results
differs from our sequence by one position, mtSNP A3481G in the
previous sequence corresponds with A3480G in our sequence
and A10551G with A10550G.

Secondly, we set out to find new associations with a greater
number of mtSNPs by using population-based mtDNA sequenc-
ing. From 3 907 763 analyzed expression probe-mtSNP pairs,
we identified 47 new associations after a strict correction for
multiple testing.Themajority of the associations included either

pseudogene SPCS2P4 in chromosome 1 or RNF113A in the X
chromosome. The first is involved in the biosynthesis of the N-
glycan precursor and transfer to a nascent protein, while the
latter encodes a protein containing two zinc finger domains.

After applying pairwise conditional analysis to all mtSNPs

showing at least modest linkage disequilibrium, five probe-
mtSNP pairs showed evidence for independent signaling.

In the expression of SPCS2P4, the effects of G9055A and
A11251G/C15452T were in opposite directions which also

support the independence of these signals. For SLC25A14 and
CRLS1, none of the signals remained independent. This could be

explained by the high linkage disequilibrium (pairwise r2 > 0.89
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Figure 2. Combined boxplot and violin plot of the normalized expression intensities of SPCS2P4 and RNF113A across the haplogroups.

Figure 3. Combined boxplot and violin plot of the normalized expression

intensities of OASL across the individuals with and without prediabetes relative

to mtSNP C16294T.

for all mtSNPs), all variants that associated with these two
genes in the unconditioned analysis together predispose to
differential gene expression. In addition, the associations with
mitochondrial genesMT-CO2 andMT-RNR2L1 seem to result from
independent signals. That is to say, in total, eight mtSNP-gene
associations were independent.

We also discovered that the expression intensities of four
nuclear and one mitochondrial gene differed between the major
Scandinavian haplogroups present in our study population.
The haplogroup distribution shown in Table 5 is similar to
the one previously reported in Finnish population. Compared
to other European populations, the frequency of haplogroup
U appears to be higher and the frequency of haplogroup K
lower in Finland (3,15). The lower intensities of SPCS2P4 and

Table 5.Absolute and relativemitochondrial haplogroup frequencies
in the study population

Haplogroup Absolute frequency Relative frequency (%)

H 405 43.4
U 240 25.7
J 69 7.4
V 58 6.2
T 48 5.1
W 43 4.6
K 35 3.7
X 20 2.1
I 16 1.7

RNF113A in haplogroup K result from the fact that the majority
of the mtSNPs associated with these two genes (e.g. G9055A,
A3480G and A10550G) are also the defining variants for this
haplogroup (16). The expression intensities of two genes, SLC2A8
and MT-ND5, were not associated at the mtSNP level. However,
the majority of the mtSNPs (C295T, C462T, A12612G, G13708A,
C16069T) defining haplogroup J (16) that associated with MT-
ND5, were in the top 20 variants associating with this gene.
Those associationswere not however significant after correction
for multiple testing. For haplogroup U that associated with
SLC2A8, none of the defining variants were in top 20 mtSNPs
associating with this gene. This implies that the haplogroup
effect is driven by small individual effects of many mtSNPs,
especially the expression of SLC2A8.

As already discussed earlier (7), the biological relevance of
these reported associations remain unclear, and they do not
necessarily imply causal relationships—i.e. all these mtSNPs
are not necessarily expression regulatory SNPs. However,
the associations may equally represent the altered cellular

activities resulting from the mtSNPs that the nuclear genome
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is then compensating for (13). In other studies, some of the
reported mtSNPs have been associated with non-mitochondrial

diseases. For example, the variant G9055A and haplogroup K
have been found to increase breast cancer risk in European–
American women (17). Interestingly, increased levels of protein
coded by RNF113A in plasma have been suggested to act as a
biomarker for breast cancer (18), while our analysis showed a
reduced expression of RNF113A associated with this mtSNP and
haplogroup.

Our fourth aim was to investigate whether any probe-mtSNP
associations show sex-specific differences by using a random-
effect meta-analysis, which did not reveal any significant
results. However, it is possible that sexually dimorphic effects
on gene expression are mediated via other mtSNPs that were
not included in this study. It is also worth mentioning that, to
our knowledge, the only study that has previously examined
these sex-specific effects in humans only took into account
homoplasmic mtDNA alleles (7) which was also the case in
the present study. For this reason, additional studies also
considering heteroplasmic alleles are needed, although the link
between heteroplasmy and sex-specific effects is not obvious.

Finally, we tested the hypothesis that probe-mtSNP associa-
tions are affected by the onset of prediabetes. We were able to
find support for this hypothesis by comparing the effect sizes
between samples with and without prediabetes, which showed
that the onset of prediabetes affects themitochondrial control of
the expression of OASL through mtSNP C16294T. This mtSNP in
the mtDNA control region has also been previously associated
with cardiovascular risk factors, it has been linked to obesity

in an Austrian population (19), and there is also evidence that
C16294T is associated with coronary artery disease, although
possibly through linkage to mtSNP T16189C (20). Functionally,
OASL encodes an interferon-inducible antiviral protein, and its
high expression levels in visceral adipose tissue, together with
other three interferon signature genes, have been found to be

positively correlated with adipose tissue and systemic insulin
resistance (21). These previous results link OASL to prediabetes,
since most persons with prediabetes are also insulin-resistant
(22). Our results are in contrast to those published earlier in

adipose tissue (21), since the expression of OASL was lower in T
allele carriers with prediabetes compared those without predia-
betes. However, profiling gene expression from peripheral blood
leukocytesmakes it challenging to speculate how the expression
levels represent the expression in other tissues, such as adipose
tissue. One hypothesis based on our results would be that the
chronic low-grade inflammation in prediabetes (23) is, to some
extent, milder in individuals with mtSNP C16294T.Whether this
has any clinical significance remains to be examined in longi-
tudinal studies. In addition, the effect of prediabetes on probe-
mtSNP associations should be replicated in other data sets.

The prevalence of prediabetes in the non-diabetic Finnish
population used in this study was 29.8%. In another Finnish
cohort, the prevalence was 9.6% in men and 10.4% in women

aged between 45 and 54 years (24). The higher prevalence in
our study can partly be explained by the lower cut-off point for
impaired fasting glucose. In addition, the study sample used in

(24) included also thosewith T2D,whereas theywere excluded in
the current study. The current prevalence is in line with the one

reported in the United States, where 35% of adults aged 20 years
or older had prediabetes in 2005–2008 (25). Although the preva-
lence is high, 5–10% of individuals per year with prediabetes will
progress to T2D, with the same proportion converting back to
normoglycemia (26).

The strength of this study is that the mtSNPs were obtained
through deep sequencing. Compared to microarray genotyping,
this increased the number of mtSNPs to be included in the
analyses. This study also has some limitations. The Finnish gene
pool has been shown to be distinctive, and the results may not
be directly generalizable to populations with a different ethnic
background, a fact that is pronounced in mitochondrial genetic
studies. Another limitation is that no oral glucose tolerance
tests were performed on the study population and the definition
of prediabetes was based only on fasting plasma glucose and
HbA1c levels. However, the HbA1c cut-off point for prediabetes
has a high specificity to identify cases of impaired glucose
tolerance (14).We also recognize thatmicroarray studies are lim-
ited by multiple testing problems and false positives, although
the number of false positive results was minimized by using
mitochondrial principal components (PCs) as covariates and a
strict Bonferroni correction.

In summary, this study provides both novel and additional
evidence for the mitochondrial genetic control of peripheral
blood cell gene expression. No significant evidence of sex-
specific effects of mtSNPs on gene expression was found, but
we present evidence that the onset of prediabetes may lead to
perturbations in thismitochondrial genetic control. The possible
clinical relevance of these results remains to be examined in
future functional and longitudinal studies.

Materials and Methods
Study participants

The Cardiovascular Risk in Young Finns Study (http://youngfinn
sstudy.utu.fi) is a Finnish longitudinal population study on the
evolution of cardiovascular risk factors from childhood to adult-
hood (27). We used data from the follow-up in 2011 when the
subjects were aged between 34 and 49 years, with the exception
of the mtDNA data, which was gathered in 2007. The follow-up
studies in 2007 and 2011 included 2204 and 2060 participants,
respectively. The study plan was approved by the ethics commit-
tees of all participating hospital districts, and the study protocol
of each study phase corresponded with the proposal by the
World Health Organization. All subjects gave written informed
consent, and the study was conducted in accordance with the
Declaration of Helsinki.

Blood transcriptomic analysis, RNA analysis and data
processing

Whole-blood samples were obtained from 2049 individuals for
RNA isolation. The 63 samples were discarded during the RNA
isolation protocol, leading to 1987 samples including one techni-
cal replicate taking part in the genome-wide expression analysis.
The 322 samples had too low concentration after amplifica-
tion step. After this, 1667 samples (including three replicates,
two from the mRNA amplification step) were analyzed with an
Illumina HumanHT-12 version 4 Expression BeadChip (Illumina
Inc.) containing 47 231 expression and 770 control probes. The
transcripts detected (detection P-value < 0.01) in less than 5%
of samples were excluded from the analysis. After this filtering
19 637 genes were used for analysis. We disregarded four sam-
pleswith less than 6000 significantly detected expression probes
(detection P-value < 0.01).

The expression data was processed in R (http://www.
r-project.org/) using a nonparametric background correction,
followed by quantile normalization with control and expression

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/28/8/1381/5281396 by guest on 16 N
ovem

ber 2020



1388 Human Molecular Genetics, 2019, Vol. 28, No. 8

probes, using the neqc function in the limma package (28) and
a log2 transformation. The expression levels were also zero
centered, and rank-based inverse normal transformation was
applied to further normalize the expression levels. Based on
RPS4Y1–2 and XIST mRNA levels on the Y and X chromosomes,
respectively, we excluded nine samples due to mismatch
with the recorded sex. After quality control, expression data
were available for 1654 samples including four technical
replicates, which were used to examine batch effects and
excluded subsequently. In summary, the expression analysis
was successful for 19 637 probes and 1650 samples. Other
details of the process have been described previously by
Turpeinen et al. (29).

MtDNA sequencing

Genomic DNA sample (n = 1817) concentrations were measured
from whole-blood samples with the Qubit BR dsDNA kit (Life
Technologies Ltd).mtDNAwas amplified from the genomic DNA
using the REPLI-g mtDNA kit (Qiagen) in a 15 μl reaction vol-
ume. After the enrichment, the amplified mtDNA samples were
processed into Illumina deep sequencing compatible libraries
with the Nextera DNA sample preparation kit (Illumina Inc.). The
mtDNA concentrations were measured with Qubit dsDNA for
Nextera tagmentation reaction. The reaction volume in the Nex-
tera tagmentation and amplification steps was 20 μl, and after
both steps the librarieswere purifiedwith a EdgeBio PerformaV3
96-Well Short Plate (Edge BioSystems). After the amplification,
the libraries were first incubated with 4 μl of EdgeBio SOPE
resin and then purified with EdgeBio Performa plates. After
purification, 48 samples with different index tags were pooled
together (2 μl each) in each pool and concentrated with DNA
Clean & ConcentratorTM-5 (Zymo Research). The final volume of
the concentrated pool was 15 μl. The sequencing-ready libraries
were quantitated with an Agilent 2100 Bioanalyzer High Sensi-
tivity kit (Agilent). The libraries were deep sequenced with the
Illumina HiSeq system. All the samples (n = 1667) that achieved
any mean bait coverage were included in the quality control
process.

The primer sites in the REPLI-g kit have not been published
and the data for each of the 16 samples was therefore validated
by amplifying the mtDNA in two different Polymerase chain
reaction (PCR) amplicons covering the whole mtDNA. The
primers have been previously described by Pietiläinen et al.
(30). The amplicons were processed into Illumina-compatible
sequencing libraries according to the same Nextera protocol
as detailed above. The data was analyzed using an in-house-
developed bioinformatics pipeline (31). The variants from REPLI-
g amplification and PCR amplification were compared, and no
significant differences were observed. The comparison results
confirm that REPLI-g primers do not affect the variant detection.

MtDNA quality control and data processing

First, samples with individual missingness >0.10 (134 samples)
were excluded. Next, samples were classified into haplogroups
by usingHaploGrep (32) (Phylotree build 16) (16) after comparison
to the revised Cambridge Reference Sequence (1). Only those
individuals whose haplogroup quality score was above 0.90 were
included for further analyses (66 samples rejected). At this qual-
ity threshold, haplogroup assignment is quite reliable, according
to the HaploGrep manual. After this, 1467 samples remained for
further analysis. Then, samples that had both gene expression

and mtDNA data were merged, after which 955 samples were
remaining. Next, 29 mtSNPs that obtained mean call ratios of
<0.85 were excluded, all samples had mean call ratio above
this value. After this, heteroplasmic alleles’ status was set to
missing. The remaining quality control steps included filtering
for missingness by mtSNP >0.05 (34 mtSNPs discarded) and
minor allele frequency (MAF) < 0.01 (538 mtSNPs discarded).
After these procedures, a total of 199 mtSNPs from 955 samples
(548 women and 407 men) were available for probe-mtSNP asso-
ciation analysis (Supplementary Material, Table S2).

For association testing, the haplogroups were assigned to
major haplogroups. Haplogroups with a frequency of less than
0.01 were excluded, leaving 934 samples for the haplogroup-
probe analysis. The haplogroup frequencies are shown in
Table 5. All major Scandinavian haplogroups except haplogroup
M were present (3).

Definition of prediabetes

Venous blood samples were drawn after an overnight fast for the
determination of serum glucose and glycated hemoglobin A1c
(HbA1c). The classification of prediabetes was based on fasting
glucose and HbA1c according to the criteria of the American
Diabetes Association (14). People with impaired fasting glucose
were defined as having a fasting plasma glucose level of 5.6–
6.9 mmol/L or an HbA1c level of 39–47 mmol/mol without a
diagnosis of T2D. The diagnosis of T2D included subjects with
a fasting plasma glucose level of 7.0 mmol/L or higher or an
HbA1c level of 48 mmol/mol or higher or those who reported
using oral glucose-lowering medication or insulin (but had not
reported having type 1 diabetes) or who had a reported diagnosis
of T2D by a physician.Those diagnosedwith type 1 diabeteswere
also ruled out. Of the 833 subjects for whom gene expression
and mtDNA data and prediabetes status were available, 249
had prediabetes, and 584 controls had normal levels of fasting
plasma glucose and HbA1c.

Statistical analysis

In order to investigate the association of peripheral blood gene
expression with mtSNPs, the expression levels were modeled
as a linear function of the presence (coded as 1) or absence
(coded as 0) of the minor allele using the lm function in R.
Age and sex were added as covariates to the linear model. We
calculated the P-values using a standard F test with one degree
of freedom and accounted for multiple testing using the Bon-
ferroni correction. Significance was defined as P < 1.28 × 10−8

(i.e. 0.05/[199 × 19 637]). With this P-value, MAF of 0.01 and
a minimum statistical power of 0.80, the minimum detectable
effect size was 1.58. With MAF of 0.05, the minimum effect
size was 0.72 (33). ANCOVA with age and sex as covariates was
employed to flag genes for those showing differential expression
between haplogroups. All genes with a P-value of <2.55 × 10−6

(i.e. 0.05/19 637) were compared using Tukey’s honest significant
difference test to confirm the between-haplogroup differences.
A Tukey-adjusted P-value of <0.05 was considered statistically
significant.

The sex-specific effects of mtSNPs on gene expression were
tested by applying the same linear model as described above
(sex was removed from the covariates) to males and females
separately.Differences in effect sizeswere compared by applying
a random-effect meta-analytic model to each probe using the
MetaDE package (34). Heterogeneity was examined by Cochran’s
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Q test with the corresponding P-value. A significant P-value
would suggest that there is a significant difference in effect
sizes between the sexes. For the sex-specific meta-analysis, the
number of mtSNPs tested was 156 because for some mtSNPs
the minor allele frequency was less than 0.01 in either males
or females (Supplementary Material, Table S3). Significance was
then defined as P < 1.63 × 10−8 (i.e. 0.05/[156 × 19 637]).

The effect of prediabetes on the association between
mtSNPs and gene expression was studied similarly. Age, sex
and body mass index were added as covariates to the linear
regression models. The number of mtSNPs included was
now 127, resulting in significance in random-effect meta-
analysis defined as P < 2.00 × 10−8 (i.e. 0.05/[127 × 19 637])
(Supplementary Material, Table S4). The Mann–Whitney U test
was used for age and body mass index and the χ2 test for sex
when the two groups were compared. After identifying the
significant associations,we also studied the interaction between
significant mtSNPs and prediabetes status on the expression of
pinpointed genes by adding an interaction term to the linear
model described above.

PC analysis was performed on all nuclear probes passing
quality control. The prcomp function (package stats) was used
to calculate nuclear PCs 1–20 from mean expression levels. The
use of gene expression principal components should reduce the
effect of technical factors (Illumina chip assignment, the RNA
amplification batch, the RNA isolation batch and the sample
storage time, in particular the time between blood donation
and RNA isolation) in our data (35). The use of mitochondrial
PCs has been demonstrated to be a robust method to control
of confounding due to population stratification. In addition,
the use of mitochondrial PCs effectively removes false posi-
tive associations but does not cause loss in power for detec-
tion of true associations (36). PC analysis was performed on all
mtSNPs passing quality control. Since the mtSNP were repre-
sented as binary variables, i.e. the presence or absence of minor
allele, logisticPCA package (37) was used to extract mitochon
drial PCs 1–20.

Both nuclear and mitochondrial PCs were added as covari-
ates, in addition to those mentioned above, in the linear mtSNP
association models until no additional reduction in genomic
inflation factor (λGC) could be achieved. Nuclear PCs 1–11 and
mitochondrial PCs 1–2 were used for all probe-mtSNP associa-
tion analyses. For haplogroup analysis in ANCOVA, nuclear PCs
1–11 were used. Mitochondrial PCs cannot be applied to hap-
logroup analysis, since the haplogroups are strongly correlated
with the mitochondrial PCs. The genomic inflation factor was
calculated using the GenABEL package (38). Values of λGC < 1.05
are generally considered benign (39).

For all significant mtSNPs for each probe, pairwise linkage
disequilibriumbetweenmtSNPswas quantified as squared Pear-
son correlation r2. All significant mtSNPs in at least modest
pairwise linkage disequilibrium (r2 > 0.30) were subjected to
pairwise conditional analysis in order to identify the indepen-
dent signals. Conditional analysis was performed by using the
same linear model as in the full analysis but additionally con-
ditioning for one additional significant mtSNP at a time. We
applied an mtSNP-specific Bonferroni correction (i.e. correction
for the number of pairwise analyses made for each mtSNP) to
account for multiple testing.

All significant probes from the above analyseswere tested for
cross-hybridization with sequences other than the target tran-
script using algorithm blastn from BLAST (40). We were partic-
ularly interested in probes that have sequence similarities with
the mtDNA. Probes were considered to show strong evidence for

cross-hybridization with the mtDNA if probes’ sequences had
90% identity over the aligned region, at least 40 of 50 matching
bps, and no gaps.
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Abstract

Mitochondria have a complex communication network with the surrounding cell and can alter nuclear DNA methylation (DNAm).
Variation in the mitochondrial DNA (mtDNA) has also been linked to differential DNAm. Genome-wide association studies have
identified numerous DNAm quantitative trait loci, but these studies have not examined the mitochondrial genome. Herein, we
quantified nuclear DNAm from blood and conducted a mitochondrial genome-wide association study of DNAm, with an additional
emphasis on sex- and prediabetes-specific heterogeneity.We used the Young Finns Study (n=926) with sequencedmtDNA genotypes
as a discovery sample and sought replication in the Ludwigshafen Risk and Cardiovascular Health study (n= 2317). We identified
numerous significant associations in the discovery phase (P< 10−9), but they were not replicated when accounting for multiple
testing. In total, 27 associations were nominally replicated with a P<0.05. The replication analysis presented no evidence of sex- or
prediabetes-specific heterogeneity. The 27 associations were included in a joint meta-analysis of the two cohorts, and 19 DNAm sites
associated withmtDNA variants,while four other sites showed haplogroup associations. An expression quantitative trait methylation
analysis was performed for the identified DNAm sites, pinpointing two statistically significant associations. This study provides
evidence of a mitochondrial genetic control of nuclear DNAmwith little evidence found for sex- and prediabetes-specific effects. The
lack of a comparable mtDNA data set for replication is a limitation in our study and further studies are needed to validate our results.

Introduction

Mitochondrial DNA (mtDNA) encodes 22 transfer RNAs,
two ribosomal RNAs and 13 protein subunits of the
4 oxidative phosphorylation (OXPHOS) complexes (1).
The mutation rate of mtDNA is significantly higher
than that of nuclear DNA, and mitochondrial single-
nucleotide polymorphisms (mtSNPs) have accumulated
during evolution, dividing the human population into

mitochondrial haplogroups just as populations have
colonized different geographic areas of the world (2).

Most of the mitochondrial proteome is encoded by
nuclear DNA, and crosstalk between mitochondria and
the nucleus is essential to maintaining normal cellular
function. Retrograde signals from mitochondria to the
nucleus induce changes in, for example, nuclear DNA
methylation (DNAm) and gene expression, which, in
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turn, can regulate mitochondrial functionality and
metabolism (3,4). Previous cohort-level studies have
shown that mtSNPs and haplogroups also associate
with nuclear gene expression in peripheral blood (5,6).
If the associations arose from causal relationships, they
could have been mediated by epigenetic changes. This
hypothesis is backed up by an in vitro study carried
out on human retinal cell cybrids with identical nuclei
but different mtDNA, which demonstrated expression
differences in inflammation, angiogenesis and signaling
genes between different haplogroups (7). After treatment
with a methylation inhibitor, the expression levels of
these genes became equivalent. Also, alterations in
the global DNAm levels have been identified between
haplogroups in peripheral blood (8). However, the effect
of individual mtSNPs on DNAm is less known, and
cohort-level association studies are lacking. Genome-
wide association studies have identified numerous
DNAm quantitative trait loci (9–11), but these studies
have not examined the mitochondrial genome.

Epigenetics may play a role in the etiology of type 2
diabetes (T2D)mellitus (12,13), and there is evidence that
epigenetic changes are likely to be an early process that
may occur before the onset of T2D, i.e. during prediabetes
(14). Although mtSNPs and haplogroups do not seem to
be associated with prediabetes or T2D in the European
population (15–17), theymay have smaller consequences
on a molecular level or modulate the complications of
the disease (18). For example,we have demonstrated that
the onset of prediabetesmay lead to changes in themito-
chondrial genetic control of the peripheral blood tran-
scriptome (6). However, the crosstalk between mtDNA
and the nuclear epigenome in the setting of prediabetes
is not known.

In the current study, we examined the mitochon-
drial genetic determinants of peripheral blood DNAm
obtained from 926 participants in the Young Finns
Study (YFS), with an additional focus on sex- and
prediabetes-specific effects. We sought replication in
an independent data set consisting of 2317 individuals
from the Ludwigshafen Risk and Cardiovascular Health
(LURIC) study and combined the replicated results in
a meta-analysis. Finally, we studied the associations
of the identified CpG sites with peripheral blood gene
expression to explore possible biological consequences
of the differential DNAm.

Results
Study characteristics
Table 1 provides the basic characteristics for both
cohorts. The LURIC study participants were, on average,
older than the YFS participants,with a higher percentage
of men and individuals with prediabetes. The proportion
of current smokers was similar in both cohorts, but the
percentage of never-smokers was higher in the YFS. The
fraction of ex-smokers in LURIC participants was also
higher in every subgroup, except among women.

mtSNPs associated with DNAm
A total of 88 513 545 CpG–mtSNP pairs were tested
in the discovery phase. The number of significant
associations after accounting for multiple hypothesis
testing (P<7.8× 10−10) was 5652, corresponding to
4618 unique CpG sites and 89 mtSNPs. The CpG
sites were scattered all around the nuclear genome.
A mitochondrial Manhattan plot representing the
significant associations for all CpG sites is shown in
Supplementary Material, Figure S1. The full list of signif-
icant associations is available as Supplementary Dataset
S1. The bacon-adjusted values from the 88513545 CpG–
mtSNP pairs yielded an estimated inflation factor (λ) of
1.00, which suggests minimal inflation.

In all, 685 CpG–mtSNP pairs thatwere significant in the
discovery phase were available for replication, resulting
in a significance level of P< 7.3× 10−5 (0.05/685). None
of the associations in the replication sample passed this
threshold, even though we expected to see 228 associa-
tions to reach this P-value. Twenty-one associations were
replicated with nominal significance (P< 0.05) (Table 2).
At this threshold, we expected virtually all 685 associa-
tions to replicate. There was no correlation between the
discovery and replication effect sizes (Pearson’s r=0.06,
Supplementary Material, Fig. S2), and 51% of the asso-
ciations had a consistent direction of effect. The fixed-
effect meta-analysis combining the nominally replicated
results yielded 19 associations with epigenome-wide sig-
nificance (P<7.8× 10−10) (Table 2 and Fig. 1).

Sexual dimorphism

In the YFS, fixed-effect meta-analysis revealed signifi-
cant differences in the effect sizes between the sexes
for 664 CpG–mtSNP pairs, corresponding to 35 unique
mtSNPs and 621 CpG sites, nine of which were located on
the X chromosome (SupplementaryMaterial,Dataset S2).
Inflation of the results was minimal in both the male-
and female-specific analyses (λ=1.00 for both sexes).
In the LURIC study, 135 of the 664 associations were
available for replication. In all, 46% of the associations
had a consistent direction of effect and there was no
correlation of effect sizes between the discovery and
replication cohorts (Pearson’s r=−0.08, Supplementary
Material, Fig. S3). None of the 135 associations exhibited
sex-specific heterogeneity with P< 3.7× 10−4 (0.05/135)
or with P<0.05.

Prediabetes-specific effects

In the discovery phase, 483 CpG–mtSNP pairs demon-
strated a significant difference in the effect sizes
between individuals with prediabetes and controls,
corresponding to 470 unique CpGs and 26 mtSNPs
(Supplementary Material, Dataset S3). No inflation was
observed (λ=1.00 for both groups). For replication, 113
CpG–mtSNP pairs were available, none of which were
replicated with heterogeneity P< 4.4× 10−4 (0.05/113)
or with P< 0.05. No correlation of effect sizes between
the two cohorts was observed (Pearson’s r=−0.04,
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Table 1. Basic characteristics of the YFS and LURIC cohorts; values are mean (SD) or n (%) for continuous and categorical variables,
respectively

All Men Women Prediabetes Controls

YFS
No. of participants 926 401 525 263 597
Age, years 41.9 (5.1) 42.1 (5.1) 41.8 (5.1) 43.0 (5.1) 41.4 (5.0)
Women 525 (56.7) − − 104 (39.5) 385 (64.5)
BMI, kg/m2 26.6 (5.0) 27.4 (4.6) 26.1 (5.1) 28.3 (5.4) 25.5 (4.2)
Active smoker 127 (13.7) 66 (16.5) 61 (11.6) 47 (17.9) 72 (12.1)
Smokes once a week or more often but not daily 34 (3.7) 19 (4.7) 15 (2.9) 8 (3.0) 22 (3.7)
Smokes less often than once a week 36 (3.9) 16 (4.0) 20 (3.8) 10 (3.8) 21 (3.5)
Attempts to quit smoking 12 (1.3) 7 (1.7) 5 (1.0) 4 (1.5) 7 (1.2)
Has quit smoking 234 (25.3) 111 (27.7) 123 (23.4) 71 (27.0) 150 (25.1)
Has never smoked 483 (52.2) 182 (45.4) 301 (57.3) 123 (46.8) 325 (54.5)

LURIC
No. of participants 2317 1599 718 1105 311
Age, years 62.8 (10.7) 62.0 (10.6) 64.8 (10.5) 62.0 (10.8) 57.6 (12.4)
Women 718 (31.0) − − 328 (29.7) 98 (31.5)
BMI, kg/m2 27.4 (4.1) 27.5 (3.8) 27.3 (4.7) 27.2 (3.8) 26.0 (3.8)
Heavy smokers 317 (13.7) 251 (15.7) 66 (9.2) 149 (13.5) 55 (17.7)
Light smokers 200 (8.6) 142 (8.9) 58 (8.1) 92 (8.3) 37 (11.9)
Former smokers, quit <10 years ago 319 (13.8) 254 (15.9) 65 (9.1) 154 (13.9) 43 (13.8)
Former smokers, quit ≥10 years ago 634 (27.4) 574 (35.9) 60 (8.4) 292 (26.4) 69 (22.2)
Has never smoked 847 (36.6) 378 (23.6) 469 (65.3) 418 (37.8) 107 (34.4)

Figure 1.Forest plot showing the 19 nominally replicatedmtSNP effects onDNAm,which also reached epigenome-wide significance in themeta-analysis.
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Figure 2. Forest plot showing the four nominally replicated haplogroup effects on DNAm, which also reached epigenome-wide significance in the
meta-analysis. In all associations, haplogroup H was used as the reference haplogroup.

Supplementary Material, Fig. S4), and 50% of the asso-
ciations had a consistent direction of effect.

Haplogroups associated with DNAm
The haplogroup frequencies and the corresponding
phenotype characteristics of both cohorts are shown
in Supplementary Material, Table S1. In both cohorts,
the most common major haplogroup was H. In the
discovery phase, a haplogroup-based analysis identified
142 significant associations (Supplementary Material,
Dataset S4) with minimal inflation (λ=0.99). The
differentially methylated CpG sites were associated with
six haplogroups: I (58.5% of the associations), X (22.5%),
W (9.2%), K (4.9%), T (4.2%) and J (0.7%).

Twenty-two of the CpG sites that showed differential
methylation in the YFS were not available in LURIC, leav-
ing 120 CpG–haplogroup pairs for replication and setting
the significance threshold at P< 4.2× 10−4 (0.05/120).
None of the associations in the LURIC survived this
threshold; 15 associations were expected to reach this
level. Six associations were nominally replicated, with
the strongest association corresponding to P=8.2×10−4.
At a nominal threshold of P<0.05, we expected all
associations to replicate. There was a weak correlation
between the discovery and replication effect sizes
(Pearson’s r=0.23, Supplementary Material, Fig. S5), with
62% of the associations showing a consistent direction
of effect. Four associations were significant in the meta-
analysis (P< 1.0×10−8) (Table 3 and Fig. 2).

Expression quantitative trait methylation
analysis
Overall, the replication phase identified 27 CpGs that
showed differential methylation between mtSNPs or
haplogroups.We considered genes ±1 Mb from each CpG

site and tested 890 gene–CpG combinations for differen-
tial expression. Two associations were significant after
correction for multiple testing: inverse associations were
observed for cg25020969 (which showed lower methyla-
tion levels in haplogroup I) and probes ILMN_1681674
and ILMN_2358069, both at the MAD1L1 gene (effect
estimate: −4.63 and− 3.68, standard error: 1.05 and 0.91,
P-value: 1.2×10−5 and 5.9×10−5, respectively).

Discussion
The aim of the current study was to examine whether
mtDNA variants and haplogroups associate with periph-
eral blood DNAm. Although previous studies have inves-
tigated the effect of haplogroups in cybrid cell lines or by
using smaller sample sizes, the present study is, to the
best of our knowledge, the first to examine the associa-
tions ofmtSNPs on a cohort level and the largest to inves-
tigate the haplogroups’ effects. In the discovery analy-
sis of a Finnish population-based cohort, we identified
numerous significant associations suggesting mitochon-
drial genetic control of DNAm and even pinpointed asso-
ciations showing sex- and prediabetes-specific hetero-
geneity. Twenty-seven associations were nominally repli-
cated in a German hospital-based cohort. The nominally
replicated results were included in a joint meta-analysis
of the two cohorts after which 23 associations remained
significant. We were able to attempt replication only for
approximately 15 – 30% of the mtSNP-based associa-
tions from the discovery phase,mainly owing to different
mtDNA genotyping methods. We observed significantly
lower replication rates than predicted evenwhenweused
a relatively liberal replication threshold (P<0.05). The
lack of replication was not explained by the winner’s
curse. Study-specific heterogeneity owing to different
cohort characteristics may have had a major impact on
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replication. In addition, most of the effects identified in
the YFS populationmay simply not be present among the
LURIC study participants.

The most promising association was the one between
haplogroup W and CpG site cg25821304, mapping to the
gene RNF135 (Table 3). It was significant in the discovery
phase, reached borderline significance in replication and
was significant in the meta-analysis. This CpG site did
not show significant mRNA transcript associations, com-
plicating the interpretation of the functional relevance. It
has been documented that mitochondria are important
participants in innate immune responses to pathogens
and cellular damage and that also mtDNA variation
could influence those immune response pathways (19).
Our finding provides suggestive evidence for this since
the protein encoded by the RNF135 gene is involved in the
evoking of innate immunity against RNA virus infections
(20).

Of all the 27 identified CpG sites, 2 were significant in
the expression quantitative trait methylation analysis.
These associations, both corresponding to cg25020969,
were not surprising, as the target gene of this CpG
site and the two associated transcripts were the same,
MAD1L1. It should be noted, however, that rather than
being a strict dynamic mechanism for regulating gene
expression, DNAm changes can also serve as a long-term
memory of previous gene expression decisions that were
mediated by transcriptional factors that might no longer
be present in the cell (21).

The retrograde signals through which mitochon-
dria affect nuclear DNAm appear to be mediated by
tricarboxylic acid (TCA) cycle metabolites (22,23). α-
Ketoglutarate (α-KG) serves as a cofactor for ten-eleven
translocation hydroxylases (TET1-3) involved in DNA
demethylation, whereas fumarate and succinate inhibit
the TET enzymes. Even though the enzymes involved in
the TCA cycle are not encoded by mtDNA, the TCA cycle
is in constant feedback with the OXPHOS complexes,
providing a plausible link betweenmtDNA variation, TCA
metabolites and DNAm (22). In addition, experimental
findings have directly coupled mtDNA variation with
TCA metabolites and histone methylation (24). The
three DNA methyltransferases (DNMT1, DNMT3A and
DNMT3B) use S-adenosyl methionine (SAM) as a methyl
donor. Although SAM is generated by coupling the
methionine and folate cycles in the cytosol, these
cycles are dependent on intermediate mitochondrial
metabolism and ATP, and therefore, mtDNA variation
may affect the function of DNMTs (3). To support
these hypotheses, experimental findings on mouse
embryonic stem cells have shown that mitochondrial
haplogroups modulate the key regulators of both
DNAm and demethylation, DNMT1 and TET1, leading to
haplogroup-specific DNAmand gene expression patterns
(25).

The association between haplogroup I and cg20934571
(Table 3) may represent the retrograde response aiming
to regulatemitochondrial function.The CpG annotates to
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NADPHX dehydratase (NAXD, also known as CARKD), and
the protein productmay be targeted to themitochondria.
The protein catalyzes the repair of NADPHX, a damaged
form of reduced nicotinamide adenine dinucleotide
phosphate (NADPH) (26), and mitochondrial NADPH
plays a critical role in protecting the cells against
mitochondrial oxidative stress (27). Based on this, it
could be suggested that mutations defining haplogroup
I result in disturbances in NADPH homeostasis, which
leads to compensatory epigenetic changes. Another
interesting association is between variant m.14872C>T
(in the MT-CYB gene, a subunit of OXPHOS complex
III) and cg01965533 (Table 2), which annotates to dihy-
drolipoamide succinyltransferase (DLST). The protein
product of DLST is a subunit of the α-KG dehydrogenase
complex, which is a key control point in the TCA cycle
(28). Even though complex III is not directly coupled to
the TCA cycle, the identified association could result
from mitochondrial–nuclear communication, such as
alterations in the electron transport chain that are
compensated by epigenetic changes. However, these
speculations are purely hypothetical and these two CpGs
sites did not associate with mRNA transcripts.

We did not observe differential methylation at CpG
sites mapping to the genes that showed mtSNP- or
haplogroup-specific transcriptome profiles in Kassam
et al. (5) or in our previous study (6). In addition,
variantm.3480A>Gwas strongly associatedwith nuclear
DNA transcripts in both of these previous studies but
was not significantly associated with DNAm at any
stage in the present study. This suggests that, if there
is a causal relationship between mtSNP m.3480A>G
(and the mtSNPs tagged by it) and peripheral blood
transcriptomics, the expression regulatory mechanisms
are not mediated by changes in DNAm.

In a study using articular cartilage cells (29), hap-
logroup J was associated with differentially methylated
CpG sites when compared with haplogroup H. We could
not validate these results, as only one CpG site was dif-
ferentially associated with haplogroup J in the discovery
phase and none during replication. The present and the
aforementioned study had different sample sizes and
utilized different DNAm arrays; we examined approxi-
mately 30 times more CpG sites and haplogroup H or J
carriers. However, the DNAm profiles in peripheral blood
do not necessarily reflect similar methylation changes in
other tissues (30).

Themeta-analysis showed no evidence of prediabetes-
specific heterogeneity. Further studies usingmore homo-
geneous cohorts or larger sample sizes should be con-
ducted to gain more insight into the interplay between
mtDNA variation and DNAm in the setting of predia-
betes.

The maternal inheritance of mtDNA could create
male–female asymmetry in the consequences of mtDNA
mutations since mtSNPs that only affect males will not
be subject to natural selection (31). This hypothesis has
been tested in Drosophila melanogaster in which a strong

effect of mtSNPs on gene expression was observed only
in males, while the mitochondrial effect in females
was negligible (32). In humans, there is no evidence of
sex-specific mitochondrial genetic control of peripheral
blood gene expression (5,6). Even though sex-specific
DNAm patterns have been demonstrated in peripheral
blood (33,34), our results imply that, similarly to gene
expression,mtDNA variation has the same genetic effect
on peripheral blood DNAm in both sexes.

Strengths and limitations
The present study has strengths and limitations thatwar-
rant consideration.The variants in the YFSwere obtained
through next-generation sequencing, which allowed us
to study a broad range of mtDNA variants. Genotyping a
part of the LURIC participantswith two differentmicroar-
rays increased the quality of haplogroup assignment.
We were also able to verify the self-reported smoking
status with the cotinine measurements in the LURIC
study. The discovery analyses were adjusted for bias and
inflation using a state-of-the-artmethod thatwas specif-
ically developed for epigenome-wide association studies,
which maximizes power while properly controlling the
false-positive rate (35). Still, it is important to note that,
as with any (epi)genome-wide association study, it is pos-
sible that some of the identified associations represent
false positives.

The main weakness was the lack of a compara-
ble mtDNA data set for replication, as many of the
sequenced mtSNPs in the YFS were not genotyped in
the LURIC. For some mtSNPs, replication was sought
by using a tagged mtSNP, which could have resulted in
false-positive or false-negative replications. The smoking
status in the YFS was only self-reported and was not
verified by cotinine measurements. Finally, it should be
highlighted that the YFS is a population-based study,
whereas the LURIC participant pool mainly consists
of older patients referred to coronary angiography. As
DNAm variation has been associated with age numerous
times, the difference in the ages between the participants
of the two cohorts may have affected the results.
Also, other confounding factors owing to contrasting
participant characteristics may have yielded an effect
on the results since socioeconomic status (36) and lipid
composition (37), for instance, have independent effects
on DNAm.

Conclusion
This study provides evidence of a mitochondrial genetic
control of autosomal DNAm, with little evidence found
for sex- and prediabetes-specific effects. The functional
relevance of the identified associations remains unclear.
Further replication studies, preferably using sequenc-
ing data and more homogeneous study groups, should
be conducted to thoroughly establish the mitochondrial
genetic determinants of DNAm.
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Materials and Methods
Study populations
The YFS (http://youngfinnsstudy.utu.fi) is a Finnish lon-
gitudinal population study on the evolution of cardiovas-
cular risk factors from childhood to adulthood (38). We
utilized data from two follow-ups conducted in 2007 and
2011, including 2204 and 2060 participants, respectively.
Phenotypic information and DNAm data were collected
in 2011, and mtDNA data were obtained from the 2007
follow-up samples. The study was approved by the ethics
committee of the Hospital District of Southwest Finland,
and the study protocol of each study phase corresponded
with the proposal of the World Health Organization.

The LURIC study consists of 3316 patients of German
ancestry who underwent coronary angiography between
1997 and 2000 at a tertiary care center in Southwestern
Germany (39). The clinical indications for angiography
were chest pain or non-invasive tests that were consis-
tent with myocardial ischemia. Patients with any acute
illness other than acute coronary syndrome, any pre-
dominant non-cardiac disease and/or a history of malig-
nancy within the past 5 years were excluded from the
study. The study plan was approved by the ethics com-
mittee of the State Chamber of Physicians of Rhineland-
Palatinate.

All participants in both cohorts gave their written
informed consent, and the studies were conducted in
accordance with the Declaration of Helsinki.

DNAm assessment and quality control
In both cohorts, genomic DNA was extracted from
peripheral whole blood samples by standardized meth-
ods. DNAm levels were quantified using the Illumina
Infinium MethylationEPIC BeadChip according to the
manufacturer’s protocols. The array covers over 850 000
methylation sites across the nuclear DNA.

In the YFS, DNAm data were processed using theminfi
Bioconductor package in R (40). All analyzed samples
had a sum of detection P-values across all probes of
<0.05. The log2 -median of methylated and unmethy-
lated intensities among the analyzed samples clustered
within the default threshold (10.5) of the getQC function
in minfi. Samples for which the self-reported sex did not
match with the predicted sex obtained with the getSex
function in minfi were excluded. Background subtrac-
tion and dye-bias normalization were performed via the
noob method (41), and stratified quantile normalization
was performed using the preprocessQuantile function,
both implemented in minfi. Probes with a detection P-
value of >0.01 in 99% of the samples and cross-reactive
probes (42,43) were excluded from the analysis. Probes
with SNPs were removed using the dropLociwithSnps
function in minfi. After quality control, the total num-
ber of autosomal CpGs was 769 683 in 1529 samples.
In addition, the sex-specific analyses included 17334 X-
chromosomal CpGs.

In the LURIC study, quality control was implemented
using the CPACOR pipeline (44), excluding samples with a

call rate of ≤ 0.95 and those that showed sex discordance.
CpGs located in close proximity (1–2 bp) to a genetic poly-
morphism in the European population with a frequency
of >0.01% as well as cross-reactive probes and probes
with a detection P-value of >0.05 in at least 1% of the
samples were removed using the rmSNPandCH function
in the DMRcate package (45), followed by quantile nor-
malization. A total of 795 619 autosomal and 18138 X-
chromosomal CpGs from 2423 samples were included in
further analyses.

Beta values [ranging between 0 (no methylation) and
1 (full methylation)] were calculated according to the
equation b=M/(M+U+100), where M and U denote the
methylated and the unmethylated signals, respectively.

mtDNA sequencing and data processing
in the YFS
In the YFS, mtSNPs were determined by next-generation
sequencing. The pipeline has been described in detail
earlier (46). In brief, mtDNA was amplified from genomic
DNA samples (n=1807) and was sequenced with the
Illumina HiSeq system. Reads from all samples that
achieved any mean bait coverage (n=1658) were aligned
with the revised Cambridge Reference Sequence (1) and
were analyzed using Mutserve version 1.2.1, a stand-
alone version of the web tool mtDNA-Server (47), with
the default parameters. Variants overlapping with any
mtDNA-like sequence in the nucleus (NUMTs) were
excluded. The list of NUMTs insertions was based on the
work by Dayama et al. (48). The minimum heteroplasmy
level was set at 0.05—we defined sites with a hetero-
plasmy level below this threshold as homoplasmic wild-
type alleles and those with a heteroplasmy level >0.95
as homoplasmic variants.Mutserve identified variants in
1365 different nucleotide positions from 1657 samples.
We required each sequenced sample to have an overall
mean coverage of ≥30 and 1531 samples survived this
threshold. The average coverage across all samples was
536.

Samples without complete phenotype, DNAm and
mtDNA data were excluded after which 926 samples
(525 women and 401 men) remained for further analysis,
with 241 mtSNPs having an allele frequency of ≥0.01.
Heteroplasmic variants were excluded owing to their
low number. To reduce the computational effort, we
selected a set of 37 tagging mtSNPs (Supplementary
Material, Table S2) that captured 126 othermtSNPswith a
linkage disequilibrium of r2 ≥ 0.8 by using Tagger (49) and
HaploView (50). Seventy-eight mtSNPs were not tagged
by any another variant, which resulted in 115 mtSNPs to
be included in the association analyses.

Haplogroups were determined by using HaploGrep ver-
sion 2.2.0 (51) (Phylotree build 17) (52). For association
testing, the haplogroups were assigned to major hap-
logroups. Haplogroups with a frequency of <0.01 and
samples whose haplogroup quality score was <0.90 were
excluded, leaving 863 samples with nine haplogroups for
the haplogroup–CpG analysis.
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mtDNA genotyping and data processing
in the LURIC study
Genomic DNA was extracted from peripheral blood,
and the mtSNPs were genotyped using the Illumina
HumanExome-12 version 1.2 BeadChip (n=1981) and
the Illumina 200 k MetaboChip (n=3150) microarrays.
Samples with a call rate of <0.95, sex mismatch
and cryptic relatedness (pi-hat > 0.2) were removed
using PLINK version 1.90b6.21. Variants with an allele
frequency of <0.005 and a call rate of <0.95 were also
excluded. Heterozygous genotypes possibly owing to
mitochondrial heteroplasmy were coded as missing.

After quality control and the exclusion of samples
with missing phenotype, DNAm or mtDNA data, 1456
and 2290 samples from the HumanExome-12 and
MetaboChip arrays, respectively, were available for
further analyses. Of the variants genotyped with these
arrays, 53 HumanExome-12 mtSNPs and 42 MetaboChip
mtSNPs had an allele frequency of ≥0.005. Most of the
genotyped individuals (n=1429) were present in both
arrays, and the total number of individuals was 2317
(718 women and 1599 men).

Haplogroups were assigned by applying HaploGrep
separately to the two genotyping batches by applying
the ‘–chip’ parameter. We included haplogroups based
on two criteria: (1) a quality score≥0.90 in at least one
genotyping batch, or (2) a quality score of ≥0.80 and
the samemajor haplogroup assigned in both arrays. This
resulted in 998 samples to be included in the haplogroup–
CpG analysis.

Definition of clinical variables
Height and weight were measured, and body mass index
(BMI) was calculated as weight in kilograms divided by
height in meters squared. Sex was self-reported. In the
YFS, the smoking history of the participants was self-
reported and was classified into six categories based on
smoking frequency (active smoker or at least once a day,
once a week or more often but not daily, less often than
once a week, attempts to quit, has quit and has never
smoked). In the LURIC study, smoking status was also
self-reported but was additionally verified by the mea-
surement of serum cotinine concentration. A commonly
used cut-off to define active smoking is 15 μg/l (53), and
we used this value to reclassify self-reported non- or ex-
smokers as active smokers. Participants were categorized
into five groups: heavy smokers (defined as smoking ≥20
cigarettes per day), light smokers, former smokers who
quit smoking <10 years ago, former smokers who quit
smoking >10 years ago and never-smokers.

The classification of prediabetes was based on the
criteria of the American Diabetes Association (54).
Venous blood samples were drawn after an overnight
fast for the determination of serum glucose and glycated
hemoglobin A1c (HbA1c). Individuals with prediabetes
were defined as having a fasting plasma glucose (FPG)
level of 5.6–6.9 mmol/l, a 2-h plasma glucose level of
7.8–11.0 mmol/l during a 75-g oral glucose tolerance

test (OGTT), or an HbA1c level of 39–47 mmol/mol
without a diagnosis of T2D.The diagnosis of T2D included
individuals with an FPG level of ≥7.0 mmol/l, a 2-h
glucose level of ≥11.1 mmol/l during an OGTT or an
HbA1c level of ≥48 mmol/mol, or those who reported
using oral glucose-lowering medication or insulin (but
had not reported having type 1 diabetes) or who reported
having been diagnosed with T2D by a physician. Those
diagnosed with type 1 diabetes were also ruled out.
OGTTs were performed only for the LURIC participants.

Discovery analysis in the YFS
Differentially methylated CpG loci for mtSNPs were
identified using a linear regression model where the
methylation beta values were modeled as a linear
function of the presence (coded as 1) or absence (coded
as 0) of the variant allele using the lm function in R. The
model involved adjustment for age, sex, BMI, smoking
status, white blood cell type proportions, methylation
batch effects and principal components (PCs) derived
from the mtDNA data. The fraction of white blood cells
(CD8T, CD4T, NK cells, B cells, monocytes and gran-
ulocytes) was estimated through the reference-based
Houseman method (55) using the estimateCellCounts
function in the minfi package (40). Methylation batch
affects were addressed by including the first five PCs
of array control probes in the regression models. PC
analysis was performed on all mtDNA genotypes that
passed quality control using the logisticPCA package
(56). The use of mitochondrial PCs as covariates has
been demonstrated to be a robust method to adjust
for population stratification in genetic association
studies. In addition, the use of mitochondrial PCs
effectively removes false-positive associations but does
not cause a loss of power in detecting true associations
(57,58). All CpG–mtSNP analyses were adjusted for the
first six mitochondrial PCs. CpG loci were considered
differentially methylated if they reached a Bonferroni-
corrected P-value of 7.8× 10−10 (9×10−8/115) based on
the number of independent tests in a whole blood EPIC
array (59) and the number of mtSNPs.

Differential methylation between haplogroups

We applied a similar linear model to flag CpG sites for
those showing differential methylation between the nine
haplogroups. We selected the most common haplogroup
H to be the reference to which other haplogroups were
compared. Mitochondrial PCs were excluded from the
covariates since the haplogroups are strongly correlated
with the mitochondrial PCs. Significance was defined as
P<1.0× 10−8 (9× 10−8/9).

Sex- and prediabetes-specific analyses

The sex-specific effects of mtSNPs on methylation beta
values were tested by applying the same linear model as
described above to males and females separately. Differ-
ences in effect sizes were compared by applying a fixed-
effect inverse variance-weighted meta-analysis model to
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each CpG–mtSNP pair by pooling the effect estimates
and standard errors frommales and females in Genome-
Wide Association Meta-Analysis (GWAMA) software ver-
sion 2.1 (60). Heterogeneity was examined by calculating
the sex-heterogeneity P-value (61). A significant P-value
suggests that there is a significant difference in effect
sizes between the sexes. A minimum variant allele count
of 10 in both sexes was required, which resulted in 63
mtSNPs to be included and a significance threshold of
1.4× 10−9 (9× 10−8/63).

The effect of prediabetes on the association between
mtSNPs and DNAmwas studied similarly by applying the
linear model separately to individuals with prediabetes
and normoglycemic controls and by pooling the results in
GWAMA.The number ofmtSNPswas 47, and significance
was defined as P< 1.9× 10−9 (9× 10−8/47).

Control for bias and inflation

We corrected the effect estimates, their standard errors
and the corresponding P-values for bias and inflation
using the R package bacon (35), and all reported
results are bacon-corrected. We used the inflation
function in the same package to compute the inflation
factor λ for each association analysis from all CpG–
mtSNP/haplogroup pairs that were analyzed. The regime
of minimal inflation is λ < 1.14 (35).

Replication in the LURIC study
We sought replication in the LURIC study by applying the
same linear regression models as in the discovery phase.
We included variants with an allele frequency of >0.005,
or a minimum variant allele count of five in the sex- and
prediabetes-specific analyses. If a tagging mtSNP from
the discovery sample was not genotyped in the repli-
cation sample, an mtSNP for replication was searched
from the tagged mtSNPs. If several tagged mtSNPs were
genotyped, linear regression was performed on all tagged
variants and the sentinel mtSNP with the smallest asso-
ciation P-value was used.

Associations were considered fully replicated if the
replication P-value from the linear regression model fell
below a Bonferroni-corrected P-value of 0.05/n, with n
being the number of significant associations in the dis-
covery study covered in the replication sample. For nom-
inal replication, the P-value threshold was set at 0.05.
We also required consistent effect directions across both
cohorts and inmales/females and individuals with/with-
out prediabetes. The two Illuminamicroarrays were ana-
lyzed separately, including the 12 overlapping mtSNPs
present in both arrays, thus providing the opportunity of
validation in the case of significant results. Associations
with P< 0.05 in one genotyping batch and with P> 0.05 in
another batch were not regarded as replications.

We benchmarked the observed replication rates for
general mtSNP and haplogroup analyses by calculat-
ing the expected degree of replication. First, we used a
false-discovery rate inverse quantile transformation to
correct the effect sizes for the winner’s curse (62) and

also took into account the lower number of mtSNPs
available in the replication cohort. Second, we calcu-
lated the expected number of associations meeting the
Bonferroni-corrected replication threshold by using the
method described in Okbay et al. (63)

Finally, we performed a fixed-effect inverse variance-
weighted meta-analysis of the replicated associations by
combining the effect estimates and standard errors from
the discovery and replication cohorts with the GWAMA
software. An association was considered to be significant
if the meta-analysis P-value fell below the significance
threshold used in the corresponding discovery analysis.
The inverse variance-based method compensates for the
varying number of samples in the cohorts by allowing
larger studies to have more weight in the analysis (64).

Expression quantitative trait methylation
analysis
To gain insight into whether our association data were
connected to biological processes,we examined the asso-
ciations between peripheral blood genome-wide tran-
scriptomics and the differentially methylated CpG sites
identified in the replication phase. Gene expression and
DNAm data were available for 1364 YFS participants.
The expression data were analyzed using the Illumina
HumanHT-12 v4 Expression BeadChip. The procedures
have been described previously (6).

CpGs were regressed against cell count proportions
and the first 30 PCs of the array control probes. Similarly,
the 19 637 transcription probes were regressed against
the first 20 PCs derived from the expression data. For
each CpG site, expression probes within a 2 Mb window
(± 1 Mb) were included. Linear regression was applied
between the residuals from the CpG regression (explana-
tory variable) and the expression probe residuals (depen-
dent variable). The model was additionally adjusted for
age, sex and BMI. The P-value for statistical significance
was defined as 0.05 divided by the number of combina-
tions between CpGs and genes.

Supplementary Material
Supplementary Material is available at HMG online.
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Examining the effect 
of mitochondrial DNA variants 
on blood pressure in two Finnish 
cohorts
Jaakko Laaksonen  1*, Pashupati P. Mishra1, Ilkka Seppälä1, Leo‑Pekka Lyytikäinen1, 
Emma Raitoharju1, Nina Mononen1, Maija Lepistö2, Henrikki Almusa2, Pekka Ellonen2, 
Nina Hutri‑Kähönen3, Markus Juonala4,5,6, Olli Raitakari7,8,9, Mika Kähönen10, 
Jukka T. Salonen11,12 & Terho Lehtimäki1

High blood pressure (BP) is a major risk factor for many noncommunicable diseases. The effect of 
mitochondrial DNA single-nucleotide polymorphisms (mtSNPs) on BP is less known than that of 
nuclear SNPs. We investigated the mitochondrial genetic determinants of systolic, diastolic, and 
mean arterial BP. MtSNPs were determined from peripheral blood by sequencing or with genome-
wide association study SNP arrays in two independent Finnish cohorts, the Young Finns Study and 
the Finnish Cardiovascular Study, respectively. In total, over 4200 individuals were included. The 
effects of individual common mtSNPs, with an additional focus on sex-specificity, and aggregates of 
rare mtSNPs grouped by mitochondrial genes were evaluated by meta-analysis of linear regression 
and a sequence kernel association test, respectively. We accounted for the predicted pathogenicity of 
the rare variants within protein-encoding and the tRNA regions. In the meta-analysis of 87 common 
mtSNPs, we did not observe significant associations with any of the BP traits. Sex-specific and rare-
variant analyses did not pinpoint any significant associations either. Our results are in agreement 
with several previous studies suggesting that mtDNA variation does not have a significant role in the 
regulation of BP. Future studies might need to reconsider the mechanisms thought to link mtDNA 
with hypertension.

High blood pressure (BP) is a major public health problem. It is an established risk factor for many noncom-
municable diseases, such as cardiovascular disease, renal dysfunction, and dementia, and causes over 9 million 
premature deaths globally per year1. It is generally accepted that the regulation of BP is a multi-factorial trait, 
involving lifestyle, environmental, and genetic factors. To date, the majority of the genetic variants have been 
identified in studies of the nuclear genome2–4, and a limited number of studies have explicitly investigated the 
associations with variation in the mitochondrial genome. This gap in genetic knowledge is of a particular interest 
because, in addition to cellular energy production, mitochondria modulate, for example, the intracellular dynam-
ics of nitric oxide, reactive oxygen species, and Ca2+, which, in turn, control endothelial function in blood vessels5.
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Mitochondrial DNA (mtDNA) is a maternally inherited, double-stranded circular molecule containing 16,569 
nucleotides that encode 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs), and 13 protein subunits of 
the four oxidative phosphorylation (OXPHOS) complexes6. The majority of the proteins functioning in the 
mitochondria are, however, encoded in nuclear DNA. There are multiple copies of mtDNA within each cell, and 
the mtDNA mutation rate is significantly higher than that of nuclear DNA7. Given the high mutation rate and the 
fact that both common and rare variants may influence the disease phenotypes8, the most appropriate method 
to study mtDNA is through sequencing. One possible mechanism through which mutations in the mtDNA con-
tribute to BP variation is the oxidative stress due to an increased production of reactive oxygen species, which 
in turn causes cardiovascular and renal damage9–11. In addition to mutations in the mtDNA, the mitochondrial 
dysfunction may also be the consequence of mutations in the nuclear-encoded mitochondrial genes, or result 
from environmental and lifestyle factors.

Several studies with varying ethnic groups have demonstrated that a mutational hot spot for mitochondrial 
single-nucleotide polymorphisms (mtSNPs) associated with hypertension is in the tRNA-encoding genes10,12,13. 
However, many of these studies have been conducted on related individuals, and it is likely that most of these 
hypertension-associated variants are inherited and rare on a population level. While the role of naturally occur-
ring mtDNA variation is still incompletely understood14, some evidence for the association of mtSNPs with 
BP exists from well-established cohorts. In the Framingham Heart Study, one mtSNP in OXPHOS complex IV 
correlated with systolic blood pressure (SBP)15. In a recent two-cohort sequencing study of older North Ameri-
can adults, both common and rare mtSNPs in the tRNA region were associated with variation in SBP in white 
participants16. Negative results have also been reported: 64 tagging mtSNPs that efficiently capture common 
mtDNA variation in the European population were not associated with BP in a study consisting of over 2000 
individuals17, and a sequencing study conducted in South African population which utilized the MutPred patho-
genicity prediction scores did not find a significant role for mtDNA variation in association with blood pressure 
levels18. A lexical tree analysis with phylogenetically related mtDNA variants in European population identified 
significant relationships with some common diseases, e. g. multiple sclerosis, but not with hypertension19.

The goal of the present study was to investigate the effect of mtDNA variants on SBP, diastolic blood pressure 
(DBP), and mean arterial pressure (MAP) among participants of two independent Finnish cohorts. We sought to 
both discover new and replicate the previously reported mitochondrial genetic determinants of BP. We studied 
both the effects of common single mtSNPs and the pooled effects of rare variants across seven mtDNA regions.

Materials and methods
Study participants.  The Young Finns Study (YFS, http://young​finns​study​.utu.fi) is a Finnish longitudinal 
population study on the evolution of cardiovascular risk factors from childhood to adulthood20. We used the 
phenotype data from the follow-up in 2011 which included 2060 participants in total. The blood samples for 
mtDNA sequencing were obtained during the 2007 follow-up, when 2204 participants were examined. The study 
was approved by the ethical committee of the Hospital District of Southwest Finland (ETMK:68/1801/2017), 
and the study protocol of each study phase corresponded with the proposal by the World Health Organization.

The Finnish Cardiovascular Study (FINCAVAS) participant pool consists of patients recruited during 
2001–2007 who underwent exercise stress tests at Tampere University Hospital21. A total of 4,068 participants 
completed a technically successful exercise test. The main indications for the exercise test were a suspicion of 
coronary heart disease (frequency 46%), the evaluation of work capacity (26%), testing for vulnerability to 
arrhythmia during exercise (25%), and assessing the adequacy of coronary heart disease treatment (13%); some 
patients had more than one indication. The study protocol was approved by the Ethical Committee of the Pir-
kanmaa Hospital District, Finland (R00153).

All participants in both study cohorts gave their written informed consent, and the studies were conducted 
in accordance with the Declaration of Helsinki.

Blood pressure and other clinical measurements.  In the YFS, BP was determined as the average of 
three measurements taken at two-minute intervals in a sitting position from the right arm brachial artery with a 
random zero sphygmomanometer. Korotkoff ’s first phase was used as the sign of SBP and the fifth phase as the 
sign of DBP. In the FINCAVAS, the patients lay in the supine position for 10 min, after which BP was measured 
once by an experienced nurse using a brachial cuff according to the Korotkoff ’s method.

In both cohorts, the observed BPs were adjusted for antihypertensive medication usage. The medications 
were self-reported by the study participants, the duration of treatment was not known, and adherence was not 
assessed. Adjusted SBP was calculated by increasing the recorded measure by 8, 14, and 20 mmHg for 1, 2, and ≥ 3 
medication classes taken, respectively. DBP measurements were adjusted similarly by increasing the recorded 
measure by 4, 10, and 16 mmHg for 1, 2, and ≥ 3 medication classes taken, respectively22. This adjustment method 
has proven to work with both simulated and real-life data23, and it maximizes the genetic and shared environ-
mental variance components while minimizing individual-specific components22. FINCAVAS participants dis-
played clearly more antihypertensive medication usage (31%, 24%, and 16% on 1, 2, and ≥ 3 medication classes 
taken, respectively) than YFS participants (7%, 3%, and 0.3%, respectively). The mean adjustment was 10/6 and 
13/9 mmHg for treated YFS and FINCAVAS participants, respectively. Adjusted MAP was calculated from the 
adjusted SBP and DBP values as MAP = DBP + 0.333 × (SBP—DBP).

Height and weight were measured, and body mass index (BMI) was calculated as weight in kilograms divided 
by height in meters squared.

MtDNA sequencing and quality control in the YFS.  Genomic DNA sample (n = 1807) concentra-
tions were measured from whole-blood samples with the Qubit BR dsDNA kit (Life Technologies). MtDNA 
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was amplified from the genomic DNA using the REPLI-g mtDNA kit (Qiagen) in a 50 μl reaction volume. The 
primer sites in the REPLI-g kit have been previously validated24. After the amplification mtDNA samples were 
processed into Illumina sequencing-compatible libraries with the Nextera DNA sample preparation kit (Illu-
mina). The mtDNA concentrations were measured with Qubit dsDNA for Nextera tagmentation reaction. The 
reaction volume in the Nextera tagmentation and amplification steps was 20 μl, and after both steps the libraries 
were purified with an EdgeBio Performa V3 96-Well Short Plate (Edge BioSystems). After the amplification, the 
libraries were first incubated with 4 μl of EdgeBio SOPE resin and then purified with EdgeBio Performa plates. 
After purification, 48 samples with different index tags were pooled together (2 μl each) in each pool and concen-
trated with DNA Clean & Concentrator-5 (Zymo Research). The final volume of the concentrated pool was 15 μl. 
The sequencing-ready libraries were quantitated with an Agilent 2100 Bioanalyzer High Sensitivity kit (Agilent). 
The libraries were sequenced with the Illumina HiSeq system. All samples (n = 1658) that achieved any mean bait 
coverage were included in the further processing steps.

Paired-end FASTQ files were aligned with the revised Cambridge Reference Sequence (rCRS)6 using the 
sequence aligner BWA-MEM v. 0.7.1725. Reads mapped to the rCRS were sorted according to the start position 
and written into a BAM file using SAMtools v. 1.826. Homo- and heteroplasmic variants were then detected with 
Mutserve v. 1.2.1, a stand-alone version of the web tool mtDNA-server27. We applied the default thresholds for 
mapping, base, and alignment quality scores in the Phred scale: 20, 20, and 30, respectively. Mutations in the 
mtDNA can affect either all or a varying proportion of the mtDNA molecules, and the terms used for these phe-
nomena are homoplasmy and heteroplasmy, respectively7. The minimum heteroplasmy level was set to 0.05—we 
defined sites with a heteroplasmy level below this threshold as homoplasmic wild-type alleles and sites with a 
heteroplasmy level above 0.95 as homoplasmic variants. Mutserve applies a Bayesian model to the detection of 
homoplasmic variants, and in order to call a wild-type allele, we required a minimum sequencing coverage of five 
on both the forward and reverse strands. Mutserve identified mtSNPs in 1,365 different nucleotide positions from 
1657 samples. Mean coverages per sample and per mtSNP were 497 and 525, respectively. With this coverage, 
the 0.05 heteroplasmy detection level is quite reliable28. Genotypes for heteroplasmic variants overlapping with 
any mtDNA-like sequence in the nucleus (NUMTs) were set to missing. The list of NUMTs insertions was based 
on the work by Dayama et al.29 We required each sequenced sample to have an overall mean coverage of ≥ 50, 
and 1,434 samples had a mean coverage above this threshold. Then, samples that did not have both phenotype 
and mtDNA data available were excluded, after which 1,150 samples remained for further analysis. After this, 
mean coverages per sample and per mtSNP were 563 and 568, respectively. Of the 1,365 identified common and 
rare mtSNPs, 249 had an allele frequency of ≥ 0.01. Heteroplasmy level between 0.05 and 0.95 in at least 1% of 
the samples was observed only for one mtSNP, m.16192C>T in the hypervariable region. This mtSNP was not 
genotyped in the FINCAVAS arrays and hence not included in the meta-analysis. In general, heteroplasmy rate 
was low in most sites, for 99% of the sites the number of heteroplasmic samples was three or less. This finding 
is in line with a previous study which found the incidence of heteroplasmy to be higher in tissues with high 
metabolic activity30.

MtDNA genotyping and quality control in the FINCAVAS.  Genomic DNA was extracted from 
peripheral blood leukocytes by using the QIAamp DNA Blood Minikit and automated biorobot M48 extrac-
tion (Qiagen). We applied the Illumina Cardio-MetaboChip and HumanCoreExome-12 v1.1 SNP arrays for 
genotyping mtSNPs. Genotyping was completed for 2,824 and 1,032 samples using the Cardio-MetaboChip and 
HumanCoreExome arrays, respectively. Genotypes were called using Illumina’s GenomeStudio GenCall algo-
rithm. Samples with call rate of < 0.95, excess heterozygosity, cryptic relatedness (pi-hat > 0.2) and sex mismatch, 
as well as genetic outliers based on multi-dimensional scaling (MDS) plots, were removed. mtSNPs with a call 
rate of < 0.95 and a Hardy–Weinberg equilibrium p-value of ≤ 10–6 were also removed. Heterozygous genotypes 
possibly due to mitochondrial heteroplasmy or technical error were coded as missing. Homozygosity at a geno-
typed mtSNP indicates genotype frequency close to zero or one. After quality control, 53 mtSNPs from 2273 
samples genotyped with the Cardio-MetaboChip array and 146 mtSNPs from 926 samples genotyped with the 
HumanCoreExome array were available. For four individuals that were genotyped with both arrays, the geno-
types for the 34 overlapping mtSNPs were set as missing in the Cardio-MetaboChip array. After including only 
samples with both phenotype and mtDNA data available, 2193 and 923 samples from the Cardio-MetaboChip 
and HumanCoreExome arrays, respectively, were available for association analyses. The total number of indi-
viduals was 3112 since four samples were genotyped with both arrays. Of the variants genotyped with these 
arrays, 36 Cardio-MetaboChip mtSNPs and 67 HumanCoreExome mtSNPs had an allele frequency of ≥ 0.01.

Statistical analyses.  Association analyses of common variants.  In order to investigate the associations 
of SBP, DBP, and MAP with mtDNA variants, BP levels were modeled as a linear function of the presence 
(coded as 1) or absence (coded as 0) of the variant allele using the lm function in R. Heteroplasmic genotypes 
were set to missing. In order to achieve normality of the BP distributions, we applied the rescaled inverse nor-
mal transformation, i.e. multiplied the inverse normal transformed BP values by the standard deviation of the 
original trait values in each cohort. This strategy makes the distributions normal and controls the type I error, 
and restores the original scale of measurement and thus enhances the power of meta-analysis31. Inverse normal 
transformation also effectively deals with phenotypic outliers32. Age, sex, and BMI were added as covariates to 
the linear regression models and the p-values were calculated using a standard F test with one degree of freedom. 
Association analyses were performed separately for the three data sets, and a random-effect meta-analysis was 
then performed using GWAMA software33. Variants with an allele frequency of ≥ 0.01 were included. The total 
number of mtSNPs included in the meta-analysis was 87, of which 22 were present in YFS and in both FINCA-
VAS data sets. The number of mtSNPs present in YFS and only in the FINCAVAS participants genotyped with 
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the HumanCoreExome array was 52, and 13 mtSNPs were present in YFS and only in participants genotyped 
with the Cardio-MetaboChip array. Using Matrix Spectral Decomposition (matSpDlite)34 with the method of 
Li and Ji35, we determined that 45 of the 87 mtSNPs represented an estimate of the number of independent 
genetic effects for mtDNA. This resulted in a Bonferroni-corrected significance level of 0.0011 (i.e. 0.05/45). 
In the correction for multiple testing, we did not account for the testing of three BP traits, since they were cor-
related (Pearson’s correlation coefficients between adjusted SBP, DBP, and MAP values 0.78–0.96 in the YFS and 
0.67–0.92 in FINCAVAS).

Study power.  With a sample size of ~ 2000, meaning that an mtSNP with an allele frequency of ≥ 0.01 was pre-
sent in the YFS and the smaller FINCAVAS data set, our single-variant analysis had ~ 80% power to detect an 
mtSNP that explains 2.5% of the variance in BP. When an mtSNP with an allele frequency of ≥ 0.01 was present 
in the YFS and both FINCAVAS data sets, our analysis had ~ 95% and ~ 80% power to detect mtSNPs explaining 
2.5% and 1% of the variance, respectively36.

Sex‑specific analyses.  The power of sex-combined analysis (i.e. males and females analyzed together) is reduced 
when heterogeneity is present in the allelic effects between the sexes. We examined the possible heterogeneity by 
applying the same linear model as described above to males and females separately, and by applying sex-differ-
entiated meta-analysis in GWAMA33,37. In total, 66 mtSNPs with an allele frequency of ≥ 0.01 in both sexes were 
included in the meta-analysis. A sex-differentiated p-value below the individual p-values for males and females 
is indicative of a significant association with both sexes. We also tested for sex-specific heterogeneity, which is 
equivalent to a formal test of interaction with sex. A significant heterogeneity p-value would suggest that there is 
a difference in the effect sizes between the sexes. By using the same Matrix Spectral Decompositon as above, we 
now determined that 33 of the 66 mtSNPs represented an estimate of the number of independent genetic effects 
for mtDNA. To account for the two sexes tested, the significance level was now defined as 0.05/33/2 = 7.6 × 10–4.

Rare‑variant analyses.  Standard methods used to test for common variant associations are underpowered for 
detecting associations with rare variants38. The power of haplogroup-based analysis may also be insufficient if 
potential causative variants at a same mtDNA site are scattered across divergent haplogroups. The most common 
approaches for the analysis of rare-variant associations are the burden test and the sequence kernel association 
test (SKAT)38,39. The former collapses the rare variants within a specified region, assuming that all variants are 
either deleterious or protective. The latter aggregates and tests the collective effects of rare variants within a 
region without assuming similar directionality or effect size for each variant. Therefore, SKAT is superior to 
burden test for analyzing regions where both risk and protective variants as well as noncausal variants may be 
present39,40 and it has been successfully applied for both sequenced and genotyped mtDNA data16,41,42.

We used Mitomap43 to cluster the variants into seven regions, including each of the four OXPHOS complexes 
(I, III, IV, and V), all rRNAs combined, all tRNAs combined, and control region and non-coding regions com-
bined. Homoplasmic alleles were coded as 0 or 2, corresponding to the reference and variant allele, respectively. 
Heteroplasmic genotypes were introduced in a dosage matrix, similarly to imputed genotypes. The dosage was 
calculated as twice the heteroplasmy rate. We employed a SKAT meta-analysis with minor allele frequencies 
(MAFs) of ≤ 0.01 (T1) and ≤ 0.05 (T5) for SBP, DBP, and MAP, using the seqMeta package in R, with the default 
beta weights, and with age, sex, and BMI as covariates. Bonferroni-corrected statistical significance was defined 
as 0.0071 (i.e. 0.05/7).

In order to assess the functional relevance of non-synonymous variants, we predicted the pathogenicity of 
the identified variants with MutPred44,45 and MitoTIP46 pathogenicity scores. The MutPred algorithm assigns 
each variant in the protein-encoding mtDNA regions a pathogenicity score between 0 and 1. Variants with a 
MutPred score > 0.5 are potentially “harmful”, and variants with a score > 0.75 should be considered a high con-
fidence “harmful”. MitoTIP predicts the pathogenicity of the variants in the tRNA regions, and the prediction 
scores have been interpreted within quartiles as “likely benign”, “possibly benign”, “possibly pathogenic” or “likely 
pathogenic”. We leveraged SKAT meta-analysis for the BP levels, similarly as described above, but including only 
variants with a MutPred score > 0.5 or a MitoTIP classification “possibly” or “likely pathogenic”.

Control for population stratification.  The use of mtDNA principal components (PCs) as covariates has been 
demonstrated to be a robust method to adjust for population stratification in genetic association studies. In 
addition, the use of mitochondrial PCs effectively removes false-positive associations but does not cause a loss 
of power in detecting true associations47,48. Logistic PC analysis was performed on all homoplasmic genotypes 
passing quality control and with a MAF of ≥ 0.01 using the logisticPCA package49. For each data set, we selected 
the number of mitochondrial PCs for the single variant analyses so that the median chi-squared-based genomic 
inflation factor (λGC) was as close to one as possible. For SKAT, we selected the same number of PCs as were 
used in the sex-combined common variant analyses. Values of λGC < 1.05 are generally considered benign50. For 
any result data sets with λGC > 1.05, genomic control was applied by multiplying the standard errors of regression 
coefficients by the square root of the inflation factor of the respective study.

Results
On average, participants in the FINCAVAS were older and had higher BMI and BP levels than participants in 
the YFS (Table 1). We evaluated the associations of 87 common mtDNA variants with SBP, DBP, and MAP using 
random-effect meta-analysis in these two Finnish cohorts, with sample sizes of up to 4,262. When both sexes 
were analyzed together, we did not observe any statistically significant associations. The top three associations 
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are shown in Table 2. All meta-analysis results and the quantile–quantile plots from the cohort-level analyses 
are provided in the Supplemental material, in Table S1 and Fig. S1.

There was no evidence for differences between the sexes in the mitochondrial genetic control of BP levels. All 
results from the sex-differentiated and heterogeneity meta-analysis as well as the quantile–quantile plots from 
the cohort-level analyses are provided in the Supplemental material, in Table S2 and Figs. S2–S3.

Finally, we conducted SKAT meta-analyses on all rare (T1 test) and low-frequency (T5 test) variants. We also 
employed SKAT taking into account the predicted pathogenicity of the variants. None of the analyses yielded 
significant associations with the BP traits over of the tested mtDNA regions. All results from SKAT meta-analysis 
are provided in the Supplemental material, Tables S3 and S4.

Discussion
We conducted one the largest studies to date investigating the possible mitochondrial genetic determinants of 
BP. We did not find any associations that survived after correction for multiple testing.

We could not replicate the results where the common mtSNPs m.3197T>C and m.15924A>G were associated 
with higher SBP and MAP, respectively, in white North American individuals16. In the current study, the former 
mtSNP was sequenced or genotyped in over 2000 and the latter in over 4200 individuals, which casts doubt 
over the role of these two mtSNPs in the variation of BP. Possible confounding effects due to different genetic 
ancestry should not have had an effect on the associations, since both the previous and the current study included 
mitochondrial PCs as regression covariates47,48. However, it should be noted that, since the North American 
individuals were significantly older than the Finns in our cohorts, it is possible that the regulative role of these 
two mtSNPs is activated only in later life.

The aforementioned North American study16 identified significant pooled effects on SBP across variants in the 
tRNA regions in white participants. Our analysis of rare and low-frequency variants did not yield any significant 
associations, not even when we accounted for the predicted pathogenicity of the variants within protein-encoding 
and the tRNA regions. We did not account for the functional relevance of the variants in the rRNA regions 
because to the best of our knowledge, no tools exist for annotating pathogenicity for variants in those regions.

Another mtSNP previously found to be associated with SBP is m.5913G>A in the Framingham Heart Study15. 
In the current study, this mtSNP was only sequenced in the YFS population with a MAF of < 0.01, while it was 
not genotyped in FINCAVAS, which left us unable to study the effect of this mtSNP in single-variant analysis. 
While the sample size of the current study is, to the authors’ knowledge, one of largest used in investigating 
mtDNA associations with BP, our inability to replicate earlier findings from well-characterized cohorts under-
lines the need for mtDNA association studies with significantly larger sample sizes from multiple cohorts. For 
example, a recent study including ~ 170,000 individuals from 45 cohorts reported associations with seven meta-
bolic outcomes, but these did not include BP42. These large consortium studies can however be extremely costly, 
and another basis for future research could be achieved by introducing more homogeneous study groups with 
less confounding effects. We should also be ready to accept to the null hypothesis that mtDNA variants do not 

Table 1.   Baseline characteristics of the YFS and FINCAVAS cohorts. Values are means (SD). YFS Young Finns 
Study, FINCAVAS Finnish Cardiovascular Study, SBP systolic blood pressure, DBP diastolic blood pressure, 
MAP mean arterial pressure.

YFS
n = 1150

FINCAVAS
n = 3112

Age, years 42.2 (5.0) 56.3 (13.0)

Women, n (%) 661 (57.5) 1,214 (39.0)

Body mass index, kg/m2 26.5 (5.00) 27.5 (4.5)

Unadjusted SBP, mmHg 118.7 (13.9) 136.7 (18.9)

Unadjusted DBP, mmHg 74.8 (10.4) 80.0 (9.6)

Unadjusted MAP, mmHg 89.5 (10.8) 98.9 (11.3)

Medication-adjusted SBP, mmHg 119.7 (14.7) 145.6 (21.1)

Medication-adjusted DBP, mmHg 75.4 (10.8) 86.2 (11.2)

Medication-adjusted MAP, mmHg 90.2 (11.4) 106.0 (13.3)

Table 2.   Three most significant associations in the sex-combined meta-analysis. mtSNP mitochondrial 
single-nucleotide polymorphism, Trait the trait used for a specific test, Beta (SE) beta coefficient and the 
corresponding standard error, p unadjusted p-value from meta-analysis, MAF minor allele frequency, n sample 
size contributing in a particular mtSNP meta-analysis.

mtSNP Trait Beta (SE) p MAF n

m.1243T>C SBP − 4.22 (1.79) 0.019 0.024 4,219

m.15257G>A MAP 4.91 (2.20) 0.025 0.013 2,071

m.11674C>T SBP − 4.26 (1.91) 0.026 0.029 3,342
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contribute to BP variation on a significant level as it is implied by several previous studies17–19. Another hypothesis 
to be tested is that instead of being causal of BP variation, the mtDNA variants would impact the hypertension 
complications or alter the course of the disease51.

The strength of the current study was that the mtSNPs in the YFS were obtained through sequencing, which 
allowed us to study the effects of both common and rare variants. Another strength was the large range of blood 
pressure variation in our two independent cohorts, and the method we used to adjust for antihypertensive treat-
ment effects has proven to work across a wire variety of clinical scenarios22,23. Some limitations should also be 
acknowledged—the mtSNPs in FINCAVAS were genotyped, resulting in a relatively small number of mtSNPs 
included in the meta-analyses. The majority of the rare mtSNPs were identified only in the YFS population which 
decreased the power of the SKAT meta-analysis. We also applied a stringent threshold to define homoplasmic 
variants and wild-type alleles, but relaxing the threshold to e. g. 10% and 90% would have increased the number 
of homoplasmic alleles only marginally. Another limitation is that we only investigated substitutions, whereas 
mtDNA deletions and insertions were not identified. In addition, BP measurements were performed only once 
for the FINCAVAS participants. Ambulatory BP monitoring could greatly increase the robustness of the future 
studies.

In conclusion, we found no support for the hypothesis that common or rare mtSNPs play a significant role 
in the regulation of BP. While studies with larger sample sizes might show different results, we should also be 
open to the idea that the non-significant outcomes reported by the current and previous studies are in fact cor-
rect, and that future studies concerning this topic need to reconsider the mechanisms thought to link mtDNA 
with hypertension.

Data availability
The data sets generated and analyzed during the current study comprise health-related participant data, and 
their use is therefore restricted under the regulations concerning professional secrecy (Act on the Openness of 
Government Activities, 612/1999) and sensitive personal data (Personal Data Act, 523/1999, implementing the 
EU data protection directive 95/46/EC). Due to these legal constraints, the Ethics Committee of the Hospital 
District of Southwest Finland has stated in 2016 that individual-level data cannot be stored in public repositories 
or otherwise made publicly available. Data are, however, available from the authors upon a reasonable request.
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