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Spectral scale transformations of nonstationary optical fields
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The notions of cross-spectral purity and spectral invariance of light impose specific structures for the field
coherence. Such concepts were originally introduced for stationary light and recently extended to nonstationary
fields. In this work, we establish general conditions for transforming scalar, pulsed, isodiffracting light beams
produced, for instance, in usual spherical-mirror laser resonators, to nonstationary secondary sources that exhibit
cross-spectral purity or spectral invariance. Further, we introduce hybrid refractive-diffractive imaging systems
which perform the desired transformation accurately over a wide spectral range irrespective of the spatial
coherence of the incident isodiffracting beam.
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I. INTRODUCTION

Cross-spectral purity [1] and spectral invariance [2] of light
are two cornerstone concepts in optical coherence theory.
Cross-spectral purity, first proposed by Mandel [1] in 1961,
physically amounts to two-beam interference in which the
superposition of the two beams exhibits the same normalized
spectrum as the input beams do. Spectral invariance, on the
other hand, was introduced by Wolf [2] in 1986 and is mani-
fested as light whose spectral properties remain unchanged on
free-space propagation; i.e., the far-zone normalized spectrum
is directionally invariant and equal to the normalized spectrum
across the source. The two phenomena set specific conditions
on the form of the coherence function: separability into spatial
and temporal parts for cross-spectral purity (the reduction for-
mula) [1,3], and Wolf’s scaling law [2] for spectral invariance.
The underlying significance of these concepts is that neither
purity nor invariance of the spectrum is a general property of
light fields, but rather they are features of these special field
types. In addition, they enlighten the coherence-induced spec-
tral changes on propagation and interference of light [4–9].

Cross-spectral purity and spectral invariance have been
extensively studied for both scalar [10–14] and electro-
magnetic [15–21] light in stationary conditions but were
only recently introduced for nonstationary fields [22–24].
A particularly important class of partially spatially coherent
nonstationary fields can be constructed using superpositions
of Hermite-Gaussian monochromatic modes of spherical-
mirror resonators. These monochromatic modes have the
same Rayleigh range for all spatial modes, labeled by in-
dex m, and it is also independent of frequency; see, e.g.,
Sec. 14.7 of Ref. [25]. Hence, each pulsed mode (fixed index
m), understood as a spectral superposition of monochromatic
modes, has a well-defined Rayleigh range. Likewise, the
Rayleigh range of all pulsed fields, obtained by an additional
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superposition over index m, have the same Rayleigh range.
Such fields are called isodiffracting and they satisfy a specific
(spectral) isodiffraction condition [26], which differs from the
conditions necessitated by cross-spectral purity and spectral
invariance.

In this work, we consider the transformation of isod-
iffracting fields into either cross-spectrally pure or spectrally
invariant fields. From previous studies it is known that cross-
spectrally pure stationary fields can be generated by an achro-
matic Fourier transformation [22]. Such an operation can be
accomplished by a compensating Fourier-transform system
which may be based entirely on refractive lenses or may also
contain diffractive elements [27–29]. In the present context,
we introduce chromatically compensating imaging (rather
than Fourier-transforming) systems which convert isodiffract-
ing fields to either spectrally invariant or cross-spectrally pure
fields. We design hybrid (refractive/diffractive) systems that
control the spectral magnification so as to realize the desired
transformations.

The structure of this paper is as follows. In Sec. II we recall
the concepts of cross-spectrally pure, spectrally invariant, and
isodiffracting nonstationary light. Then, in Sec. III, we present
the physical principles of the required transformations, and in
Sec. IV we design afocal first-order imaging systems to realize
these transformations with good accuracy. The performance
of the transformation systems for broadband light is evaluated
in Sec. V. Finally, the main conclusions and some implica-
tions of the work are discussed in Sec. VI.

II. CONDITIONS FOR THE FIELD TYPES

Let us consider statistically nonstationary, partially co-
herent, scalar optical fields in the complex analytic signal
representation encompassing only the positive frequencies. In
the spectral domain, the field is expressed as E (ρ; ω), where
ρ = (x, y) refers to a spatial point and ω is the (angular)
frequency. The cross-spectral density (CSD) function between
the fields at points ρ1 and ρ2 and frequencies ω1 and ω2 is
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FIG. 1. Superposition of two beams from points ρ1 and ρ2 across
a plane, related to the notion of cross-spectral purity.

defined as [30]

W (ρ1, ρ2; ω1, ω2) = 〈E∗(ρ1; ω1)E (ρ2; ω2)〉, (1)

where the angular brackets and the asterisk denote ensemble
averaging and complex conjugation, respectively. The spectral
density of a nonstationary field is defined as [31–34]

S(ρ; ω) = W (ρ, ρ; ω,ω), (2)

and its normalized version is expressed as

s(ρ; ω) = S(ρ; ω)∫ ∞
0 S(ρ; ω)dω

. (3)

The complex degree of spectral coherence, defined via

μ(ρ1, ρ2; ω1, ω2) = W (ρ1, ρ2; ω1, ω2)

[S(ρ1; ω1)S(ρ2; ω2)]1/2
, (4)

satisfies the inequalities 0 � |μ(ρ1, ρ2; ω1, ω2)| � 1, where
the lower and upper limits correspond, respectively, to com-
plete incoherence and full coherence of the random field at
the values of the arguments.

A. Cross-spectral purity

At some point R, the superposition of the spectral fields
emanating from points ρ1 and ρ2 reads as

E (R; ω) = E (ρ1; ω) exp(iωR1/c)

+ E (ρ2; ω) exp(iωR2/c), (5)

where Ri = |ρi − R|, i ∈ (1, 2), are the distances between the
points (see Fig. 1) and c is the vacuum speed of light. The
phase difference between the two contributions due to free-
space propagation is ωτ = ω(R2 − R1)/c. The condition for
cross-spectral purity is that

s(R; ω) = s(ρ1; ω) = s(ρ2; ω) (6)

for some value of τ , which thus specifies the point R. The
requirements in Eq. (6) are strictly analogous to Mandel’s
conditions for cross-spectral purity of stationary light [1,3].
In the particular case of τ = 0, purity as given in Eq. (6) is
achieved, among other characteristics, if the CSD takes on the
form of a product,

W (ρ1, ρ2; ω1, ω2) = Ws(ρ1, ρ2)Wf (ω1, ω2), (7)

of planar spatial and spectral factors [22].

FIG. 2. Notation pertaining to far-field spectral invariance of ra-
diation from a planar secondary source in the xy plane.

B. Spectral invariance

The far-zone spectrum of a nonstationary partially coherent
source field characterized by a CSD in Eq. (1) is in the direc-
tion specified by the unit vector ŝ (see Fig. 2) given by [23]

S(∞)(ŝ; ω) =
(

2πsz

r

)2(
ω

c

)2

T

(
ω

c
σ,

ω

c
σ; ω,ω

)
. (8)

Above,

T (κ1, κ2; ω1, ω2) = 1

(2π )4

∫∫ ∞

−∞
W (ρ1, ρ2; ω1, ω2)

× exp [i(κ1 · ρ1 − κ2 · ρ2)]d2ρ1d2ρ2

(9)

is the angular correlation function, σ = (sx, sy) is the trans-
verse component of ŝ, and r is the distance from the source.

A necessary condition for spectral invariance is that the
normalized far-field spectrum

s(∞)(ŝ; ω) = S(∞)(ŝ; ω)∫ ∞
0 S(∞)(ŝ; ω)dω

(10)

is independent of direction, i.e., s(∞)(ŝ; ω) = s(∞)(ω). It was
established in Ref. [23] that this condition is satisfied if the
source-plane CSD is of the form

W (ρ1, ρ2; ω1, ω2) = [S(ρ̄; ω1)S(ρ̄; ω2)]1/2

× g(ρ1, ρ2; ω1, ω2), (11)

where g(ρ1, ρ2; ω1, ω2) obeys the boundary condition

g(ρ1, ρ2; ω,ω) = ν(�ρ; ω) = H (ω�ρ/c)

H (0)
, (12)

and ρ̄ = (ρ1 + ρ2)/2 and �ρ = ρ2 − ρ1 denote the average
and difference source-plane spatial coordinates. It then fol-
lows that s(∞)(ω) is equal to the normalized form

s̄(ω) = S(int)(ω)∫ ∞
0 S(int)(ω)dω

(13)

of the source-integrated spectral density

S(int)(ω) =
∫ ∞

−∞
S(ρ; ω)d2ρ, (14)

i.e., we have the equality s(∞)(ω) = s̄(ω).
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The scaling law for nonstationary fields, expressed by
Eqs. (11) and (12), reduces to Wolf’s original scaling law [2]
for stationary and quasihomogeous fields.

C. Isodiffracting fields

The CSD of any stationary field can be represented as an
incoherent superposition of fully coherent modal fields [30],
and a corresponding representation is available also for non-
stationary fields [35,36]. If the modal fields are separable in
Cartesian coordinates as

ψmn(x, y; ω) = ψm(x; ω)ψn(y; ω), (15)

where m and n are nonnegative integers, also the CSD is of
the separable form

W (ρ1, ρ2; ω1, ω2) = W (x1, x2; ω1, ω2)W (y1, y2; ω1, ω2),
(16)

where

W (x1, x2; ω1, ω2) =
∞∑

m=0

cmψ∗
m(x1; ω1)ψm(x2; ω2) (17)

and an analogous expression applies to W (y1, y2; ω1, ω2).
Here the coefficients cm are nonnegative and frequency inde-
pendent.

Let us, in particular, consider Hermite-Gaussian modal
fields of the form

ψm(x; ω) = [S0(ω)]1/4 (2/π )1/4

√
2mm!w0(ω)

× Hm

[ √
2x

w0(ω)

]
exp

[
− x2

w2
0 (ω)

]
, (18)

where Hm is a Hermite polynomial of order m, w0(ω) is
the frequency-dependent spatial beam width at the waist,
and S0(ω) is the spectral weight function of the mode.
Pulsed modes of this type are generated in the usual
paraxial spherical-mirror cavities. The Rayleigh range zR =
πw2

0 (ω)/λ, where λ is the wavelength, is frequency indepen-
dent for each spatial mode produced in such a cavity [25].
Therefore, the beam width w0(ω) must follow the condition

w0(ω) =
√

ω0

ω
w0, (19)

where w0 = w0(ω0) and ω0 is a reference frequency such as
the mean frequency of S0(ω). The pulsed beams emerging
from the cavity then expand upon propagation at the same rate
at each frequency ω, thus being sometimes called isodiffract-
ing [26]. Therefore, we refer to Eq. (19) as the isodiffraction
condition.

Since the requirement in Eq. (19) applies to each indi-
vidual mode, the property of isodiffraction is shared by all
superpositions of the form of Eq. (17), regardless of the dis-
tribution of the coefficients cm. A particularly important case,
however, is

cm = w0

√
2π

β

1

1 + 1/β

(
1 − β

1 + β

)m

, (20)

where the parameter β is bounded as 0 � β � 1. This leads
to pulsed isodiffracting partially coherent beams that are spa-
tially of the Gaussian Schell-model (GSM) type [26]. With
this choice of the coefficients the CSD assumes a compact
analytical form:

W (ρ1, ρ2; ω1, ω2) =
(

ω1

ω0

ω2

ω0

)1/2

[S0(ω1)S0(ω2)]1/2

× exp

(
−1 + β2

2β

ω1ρ
2
1 + ω2ρ

2
2

ω0w
2
0

)

× exp

(
1 − β2

β

√
ω1ω2

ω0

ρ1 · ρ2

w2
0

)
. (21)

The field is spatially fully coherent when β = 1, is spa-
tially quasihomogeneous when β � 1, and becomes spatially
incoherent when β → 0. The GSM fields have convenient
mathematical properties and in the present context allow one
to assess analytically the transformations of partially coherent
isodiffracting fields. Consequently, they provide significant
physical insight into the performed operations and, therefore,
we adopt the GSM pulsed beams in the analysis to follow.

III. TRANSFORMATION SYSTEMS

We proceed to examine the possibilities to transform isod-
iffracting fields to either cross-spectrally pure or spectrally
invariant fields using paraxial optical systems described by
ABCD matrices. In particular, we consider an afocal imaging
system whose frequency-dependent system matrix is given
by [37]

M(ω) =
[

A(ω) B(ω)
C(ω) D(ω)

]
=

[
M(ω) 0

0 1/M(ω)

]
, (22)

where M(ω) is the (spectral) magnification of the system.
If we denote the field at the input plane of the system by
E0(ρ; ω), the field at the output plane is

E (ρ; ω) = exp(iωL/c)

M(ω)
E0

[
ρ

M(ω)
; ω

]
, (23)

where L is the axial path length from the input plane to the
output plane. This result can be formally established by con-
sidering the traditional lens-system diffraction formula [38]
and using the method of a stationary phase (see Ref. [30],
Sec. 3.3.3) in the asymptotic limit B(ω) → 0 in Eq. (22).

Inserting Eq. (23) into Eq. (1) gives a relation between the
output-plane CSD and the input-plane W0(ρ1, ρ2; ω1, ω2) in
the form

W (ρ1, ρ2; ω1, ω2) = exp (i�ωL/c)

M(ω1)M(ω2)

× W0

[
ρ1

M(ω1)
,

ρ2

M(ω2)
; ω1, ω2

]
, (24)

where �ω = ω2 − ω1. Considering a CSD of the form of
Eq. (21) at the input plane and carrying out a derivation
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analogous to that in Ref. [23] gives the result

W (ρ1, ρ2; ω1, ω2)

= exp (i�ωL/c)

M(ω1)M(ω2)

(ω1

ω0

ω2

ω0

)1/2
[S0(ω1)S0(ω2)]1/2

× exp

{
−1 + β2

2β

[
ω1

ω0

ρ2
1

M2(ω1)w2
0

+ ω2

ω0

ρ2
2

M2(ω2)w2
0

]}

× exp

[
1 − β2

β

√
ω1ω2

ω0

ρ1 · ρ2

M(ω1)M(ω2)w2
0

]
(25)

at the output plane. The related spectral density takes the form

S(ρ, ω) = S0(ω)

M2(ω)

ω

ω0
exp

[
− ω

ω0

2ρ2

M2(ω)w2

]
, (26)

where we have denoted by

w = w0/
√

β (27)

the 1/e2 width of the output spatial intensity profile at ω =
ω0 and unit magnification. This is wider, by a coherence-
dependent factor of 1/

√
β, than the width of the fundamental

Gaussian mode m = n = 0 in the coherent-mode expansion of
the CSD.

A. Cross-spectral purity

For producing a cross-spectrally pure beam field we inves-
tigate systems with spectral magnification of the form

M(ω) =
√

ω

ω0
M0, (28)

where M0 = M(ω0). For a GSM input field, Eq. (25) gives an
output-plane CSD in the form of Eq. (7), with

Ws(ρ1, ρ2) = 1

M2
0

exp

(
−1 + β2

2β2

ρ2
1 + ρ2

2

M2
0w2

)

× exp

(
1 − β2

β2

ρ1 · ρ2

M2
0w2

)
(29)

and

Wf (ω1, ω2) = exp (i�ωL/c)[S0(ω1)S0(ω2)]1/2, (30)

where we have used Eq. (27). Hence, the CSD factors into
two functions containing spatial and spectral contributions
separately, as in Eq. (7), which ensures that the output field
is cross-spectrally pure.

In addition, evaluating Eqs. (29) and (30) at a single
spatiospectral point and employing Eq. (3), we find the nor-
malized spectral density

s(ρ; ω) = S0(ω)∫ ∞
0 S0(ω)dω

, (31)

which is independent of the spatial position conforming to the
latter equality in Eq. (6). It should be noted, however, that
the above conclusions apply only to the field at the output
plane of the system. Cross-spectral purity is not preserved
upon propagation because of the frequency dependence of
the diffraction phenomena, which introduces space-frequency
coupling.

B. Spectral invariance

In order to satisfy the scaling-law conditions in Eqs. (11)
and (12), we examine a system whose spectral magnification
is of the form

M(ω) =
√

ω0

ω
M0. (32)

Considering again a GSM input field, we arrive at the result

W (ρ1, ρ2; ω1, ω2)

= exp (i�ωL/c)

M2
0

ω1

ω0

ω2

ω0
[S0(ω1)S0(ω2)]1/2

× exp

(
−1 + β2

2β

ω2
1ρ

2
1 + ω2

2ρ
2
2

ω2
0M2

0w2
0

)

× exp

[
1 − β2

β

(
ω1

ω0

ω2

ω0

)
ρ1 · ρ2

M2
0w2

0

]
. (33)

The spectral density and the complex degree of spectral co-
herence take the forms

S(ρ; ω) = S0(ω)

M2
0

( ω

ω0

)2
exp

[
−

(
ω

ω0

)2 2ρ2

M2
0w2

]
(34)

and

μ(ρ1, ρ2; ω1, ω2) = exp (i�ωL/c)

× exp

[
−1 − β2

2β2

(ω1ρ1 − ω2ρ2)2

ω2
0M2

0w2

]
,

(35)

respectively, where Eq. (27) is again used. This result shows
that the complex degree of spectral coherence at any sin-
gle point ρ1 = ρ2 = ρ > 0 is partial, i.e., |μ(ρ, ρ; ω1, ω2)| <

1, unless β = 1. In other words, partial spatial coherence
generally implies partial spectral coherence because of space-
frequency coupling.

To establish that the CSD in Eq. (33) is of the spectrally
invariant form we express it in terms of average and difference
spatial coordinates and additionally employ the corresponding
spectral coordinates ω̄ = (ω1 + ω2)/2 and �ω. This yields a
result in the form of Eq. (11) with S(ρ̄; ω) having the form of
Eq. (34) and

g(ρ̄,�ρ; ω̄,�ω) = exp (i�ωL/c)

× exp

[
−

(
�ω

ω0

)2( 1

β2
− 1

)
ρ̄2

2M2
0w2

]

× exp

[
−

( ω̄

ω0

)2 �ρ2

2M2
0w2β2

]

× exp

(
− ω̄�ω

ω2
0

1 + β2

β2

ρ̄�ρ

M2
0w2

)

× exp

[
−

(
�ω

ω0

)2
�ρ2

8M2
0w2

]
. (36)

We therefore have

ν(�ρ; ω) = exp

[
−

(
ω

ω0

)2
�ρ2

2M2
0w2β2

]
, (37)
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FIG. 3. Lens system geometry: L1 and L2 are (refractive or
diffractive) thin lenses with focal lengths f1 and f2. The object (input)
plane, the lenses, and the image (output) plane are separated by
distances d1, d2, and d3 that, along with f1 and f2, constitute the set
of design parameters.

which satisfies the condition (12) for spectrally invariant non-
stationary fields.

The normalized source-integrated spectrum, obtained by
inserting from Eq. (34) into Eq. (13), is simply the normalized
form of S0(ω), i.e.,

s̄(ω) = S0(ω)∫ ∞
0 S0(ω)dω

= s(∞)(ω). (38)

The latter equality follows directly from the scaling law and
can be verified by inserting the CSD in Eq. (33) into Eq. (9)
and using Eqs. (8) and (10).

IV. OPTICAL SYSTEM DESIGN

We have so far established that ideal afocal imaging
systems can transform isodiffracting input beams into a cross-
spectrally pure form if the spectral magnification follows
Eq. (28), or into a spectrally invariant form if the magni-
fication is as specified in Eq. (32). Next we describe how
such transformations can be achieved in practice with high
accuracy.

First-order systems based on purely refractive lenses are
known to enable an achromatic Fourier transform [27,28].
However, the addition of highly dispersive diffractive lenses
adds a new degree of freedom in the design of such spec-
trally compensating systems [29]. Expecting the same to be
true for imaging (rather than Fourier-transforming) systems,
we therefore consider hybrid afocal systems consisting of one
(ideal achromatic) refractive lens of focal length fr and one
diffractive lens with a frequency-dependent focal length [39]

fd(ω) = ω

ω0
fd, (39)

where fd = fd(ω0). The above expression shows that the
focal length of the diffractive element has a linear fre-
quency dependence, which is characteristic of all diffractive
lenses. The configuration of the two-lens system is shown
in Fig. 3. The designs to be presented below are based on
the thin-element approximation. However, neither the residual
chromatic aberration nor the finite lens-element thicknesses of
real achromats, or the finite substrate thickness of the diffrac-
tive lens, have a significant effect on system performance as
long as the principal planes of L1 and L2 are set at the designed
positions.

A. Cross-spectral purity

For cross-spectrally pure output, the achromat is posi-
tioned before the diffractive lens, i.e., f1 = fr and f2 = fd in
Fig. 3. After implementing the condition presented in Eq. (28)
for system magnification, together with the requirements in
Eq. (22) for an afocal imaging system at the reference wave-
length, we arrive at the conditions

d1 = fr + f 2
r

2 fd
, (40a)

d2 = fd + fr, (40b)

d3 = fd

2
(40c)

for the lens separations. These distances are positive as long as
both fr and fd(ω0) are selected to be positive. The system ma-
trix elements of a thin-lens setup which fulfils the conditions
given above will be exactly of the form presented in Eq. (28)
when ω = ω0. Hence, an afocal imaging system is achieved at
the reference wavelength. The performance at other frequen-
cies is obtained by calculating the ABCD ray-transfer matrix
for the setup in Fig. 3 with f1 = fr and f2 = fd(ω) as in
Eq. (39) and the lens separations given in Eqs. (40a)–(40c).
Using Eq. (22), we find that the magnification is

M(ω) = 3ω − ω0

2ω
M0, (41)

which at ω0 coincides with the exact magnification given
in Eq. (28) and approximates that at other frequencies. The
accuracy of the approximation is illustrated in Fig. 4(a). We
see that the condition of cross-spectral purity is satisfied with
high precision for a relatively wide spectral range around ω0.

B. Spectral invariance

When a spectrally invariant output field is pursued, the
arrangement of the two lenses is reversed with f1 = fd and
f2 = fr in the geometry of Fig. 3. By following a similar
procedure as previously, the expressions

d1 = fd

2
, (42a)

d2 = fd + fr, (42b)

d3 = fr + f 2
r

2 fd
(42c)

are obtained for the system distances. The system matrix will
then again satisfy the conditions of Eq. (22), with magnifica-
tion

M(ω) = ω + ω0

2ω
M0. (43)

Figure 4(b) shows the accuracy at which this expression ap-
proximates the ideal condition of Eq. (32). We observe from
the figure that the approximate magnification in the case of
spectral invariance remains highly accurate over a wider range
compared with the analogous result for cross-spectral purity.
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FIG. 4. Comparison between the ideal and approximated condi-
tions for (a) cross-spectral purity and (b) spectral invariance at output
in terms of the magnification M(ω) of the transformation system (for
M0 = −1).

V. SYSTEM PERFORMANCE FOR BROADBAND LIGHT

It is clear from Fig. 4 that the approximative magni-
fications are excellent around the reference frequency ω0

but the deviations from the ideal cases grow with the in-
crease of the spectral width of the field. To investigate how
this affects the transformation of isodiffracting input to ei-
ther cross-spectrally pure or spectrally invariant output, we
consider a model spectrum S0(ω) of the power-exponential
form [26,40,41]

[S0(ω)]1/4 =
(

ω0

ω

)1/4 1√
�(2p)

(
2p

ω

ω0

)p

exp

(
−p

ω

ω0

)
,

(44)

where p is a real positive constant that can be varied to control
the spectral bandwidth of the pulse train, ω0 is the mean
frequency, and �(x) is the gamma function. As discussed more
extensively in Ref. [26], the choice of p connects the weight
function to different regimes of optical pulses. In general, the
pulses are in the subcycle regime when p < 10, in the single-
cycle regime when p ∼ 15, and in the few-cycle regime when
p ∼ 50. This spectrum, though asymmetric, is mathematically
convenient since it contains no negative frequencies but yet
approaches a Gaussian spectrum when p increases, in which
case the mean frequency ω0 becomes the peak frequency.

A. Cross-spectral purity

For the output field to be cross-spectrally pure, its normal-
ized spectrum at every spatial point should be as in Eq. (31). If,
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FIG. 5. Normalized spectra of an ideal cross-spectrally pure field
and the spectra obtained by the approximative system magnification
at three spatial points when (a) p = 3 and (b) p = 5. The spectra are
plotted with respect to λ/λ0 and normalized to their values at λ = λ0

for clarity.

however, we insert the magnification in Eq. (41) into Eq. (26),
we see that this is not strictly true even at the on-axis point
ρ = 0.

Figure 5 shows the ideal normalized spectrum given by
Eq. (31) along with the normalized spectra obtained with the
approximate M(ω) at three radial positions: |ρ| = 0, |ρ| =
w/2, and |ρ| = w. The normalization in Eq. (3) was ac-
complished with numerical integration using Eq. (A1) in the
Appendix, and the results are plotted for p = 3 and p = 5.
In addition, the curves are further normalized to their values
at λ = λ0. Note that due to asymmetry, the model spec-
trum in Eq. (44) does not assume its maximum value at
λ0 and, consequently, the normalized spectra take on values
larger than unity. The approximation produces nearly cross-
spectrally pure output fields, apart from the long-wavelength
region, already at p ∼ 5, and the curves become nearly in-
distinguishable (not shown) if p > 10. Here we have plotted
the results only up to λ = 2λ0 (λ0 = 2πc/ω0), since if we
choose the center wavelength in the middle of the visible
spectrum (λ0 = 550 nm), 2λ0 corresponds to the band-gap
wavelength of a silicon photodetector. We see, in particular,
that the approximated spectrum is wider than the ideal at
points close to the optical axis, but narrower well outside the
axis.
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B. Spectral invariance

An ideal spectrally invariant output field should satisfy the
equalities in Eq. (38), but again the approximative spectral
magnification in Eq. (43) causes deviations from the ideal per-
formance. The source-integrated spectral density is obtained
by inserting from Eq. (26) into Eq. (14), and the result is
S(int)(ω) = S0(ω)πw2/2 irrespective of the spectral magnifi-
cation. Hence the first equality in Eq. (38) always holds, but
the second one does not.

For the far-field analysis we insert the CSD in Eq. (25) into
Eq. (9) and set ω1 = ω2, which yields

T
(ω

c
σ;

ω

c
σ; ω,ω

)

= 1

(2π )4

ω

ω0

S0(ω)

M2(ω)

∫∫ ∞

−∞
exp

[
−1 + β2

2β

ω

ω0

ρ2
1 + ρ2

2

M2(ω)w2
0

]

× exp

[
1 − β2

β

ω

ω0

ρ1 · ρ2

M2(ω)w2
0

]

× exp [i(ω/c)(σ · ρ1 − σ · ρ2)]d2ρ1d2ρ2. (45)

The integrals in this expression can be evaluated with
Eq. (A2). This leads to

T
(ω

c
σ;

ω

c
σ; ω,ω

)
= 1

16π2

ω0

ω
S0(ω)M2(ω)w4β2

× exp

[
−k2

0

2

ω

ω0
M2(ω)w2β2|σ|2

]
,

(46)

where k0 = ω0/c. The far-field spectrum is obtained by insert-
ing the above expression into Eq. (8), with the result

S(∞)(θ ; ω) = k2
0

4r2

ω

ω0
S0(ω)M2(ω)w4β2 cos2 θ

× exp

[
−k2

0

2

ω

ω0
M2(ω)w2β2 sin2 θ

]
, (47)

where the angle θ satisfies sz = cos θ and |σ| = sin θ . In the
ideal case of Eq. (32) the far-field spectrum can be written in
the form

S(∞)(θ ; ω) = S0(ω)

(
w cos θ

r sin ϑ

)2

exp

(
−2

sin2 θ

sin2 ϑ

)
, (48)

where we have introduced an 1/e2 divergence angle ϑ by

sin ϑ = λ0

πM0wβ
. (49)

Hence the normalized spectrum is directionally invariant as
seen by recalling Eq. (10). Moreover, all partially coherent
fields with the same value of the product wβ are equivalent
regarding their far-zone radiation patterns. This feature is
analogous to the equivalence theorem for radiation patterns
of stationary GSM fields [30].

Figure 6 illustrates the spatially averaged source spectrum
and the far-zone normalized spectra if the approximation of
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FIG. 6. Normalized far-field spectra together with the normal-
ized source-averaged spectrum in the case of the approximate
spectral magnification given in Eq. (43), for angles θ = 0, θ = ϑ/2,
and θ = ϑ when (a) p = 3 and (b) p = 5. The spectra are normalized
to their values at λ0 = w/6.

the magnification is made according to Eq. (43). The normal-
ization is again accomplished with Eq. (A1), and we consider
the cases of p = 3 and p = 5 at three different angles: θ =
0, θ = ϑ/2, and θ = ϑ . Furthermore, the spectra are again
scaled to their values at λ = λ0. Since the approximation is
more accurate for the spectral-invariance transformation than
for the purity transformation, the results are even closer to the
ideal case also in the long-wavelength regime. We see that
the axial spectral width is slightly larger than the width of
the source-averaged spectrum, but it narrows to some degree
when the angle θ increases.

To experimentally verify the results presented above, one
would be interested in the spatial dependence of the ensemble-
averaged spectrum of the nonstationary field. Specifically,
one would measure the time-integrated form of the time-
dependent physical spectrum [42] of the pulsed field. The
results of such measurements are instrument-dependent and
provide a smoothed version of the spectrum in Eq. (2) as
discussed in Ref. [43].

VI. CONCLUSIONS

In this work, we studied the transformation of nonstation-
ary (pulsed) isodiffracting fields into either cross-spectrally
pure or spectrally invariant fields. For this purpose we
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introduced the conditions for an afocal ABCD imaging system
to realize the pursued transformations exactly. In addition,
for implementing the transformations we presented first-order
optical systems that are hybrid lens designs consisting of an
achromatic and a diffractive lens. While the spectral magnifi-
cation of such systems is only an approximation of the ideal,
we showed that the desired transformations can be accom-
plished at high precision even for broadband light.
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APPENDIX

The trapezoidal rule used to normalize the spectra in Figs. 5
and 6 reads as∫ b

a
f (x)dx ≈ b − a

2N

N∑
n=1

[ f (xn) + f (xn+1)], (A1)

where N is the number of points inside an equispaced division
of the interval (a, b) (see p. 253 of Ref. [44]). We also need
the integral formula∫ ∞

−∞
exp

(−ax2 ± bx
)
dx =

√
π

a
exp

(
b2

4a

)
, Rea > 0,

(A2)

which can be found from Ref. [45], p. 337.
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