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Abstract In this article we consider the partitioned linear model M12 = {y, X1β1 +
X2β2, V}, where µ = X1β1 + X2β2, and the corresponding small model M1 =
{y, X1β1, V}, where µ1 = X1β1. These models are supplemented with the new
unobservable random vector y∗, coming from y∗ = Kβ1 + ε∗, where the covariance
matrix of y∗ is known as well as the cross-covariance matrix between y∗ and y. We
focus on comparing the BLUEs of µ1 and µ, and BLUPs of y∗ and ε∗ under M12
and M1.
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1 Introduction

In this paper we consider the partitioned linear model y = X1β1 + X2β2 + ε and
so-called small model (submodel) y = X1β1 + ε, or shortly
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A12 = {y, Xβ, V} = {y, X1β1 + X2β2, V} , A1 = {y, X1β1, V} . (1)

Here y is an n-dimensional observable response variable, and ε is an unobservable
random error with a known covariance matrix cov(ε) = V = cov(y) and expectation
E(ε) = 0. The matrix X is a known n × p matrix, i.e., X ∈ Rn×p , partitioned
columnwise as X = (X1 : X2), Xi ∈ R

n×pi , i = 1, 2. Vector β = (β′1, β
′
2)′ ∈ Rp is a

vector of fixed (but unknown) parameters; here symbol ′ stands for the transpose.
Let the new unknown q-dimensional future response y∗ be

y∗ = X∗β + ε∗ = Kβ1 + ε∗ , X∗ = (K : 0) , K ∈ Rq×p1, (2)

and
cov

(
y
y∗

)
=

(
V V12
V21 V22

)
. (3)

Of course, the word “new” need not be taken here literally. Putting A12, A1 and (2)
together, we can denote the models shortly as

M1 =

{(
y
y∗

)
,

(
X1
K

)
β1,

(
V V12
V21 V22

)}
, (4a)

M12 =

{(
y
y∗

)
,

(
X
X∗

)
β,

(
V V12
V21 V22

)}
=

{(
y
y∗

)
,

(
X1 X2
K 0

)
β,

(
V V12
V21 V22

)}
. (4b)

Thus: M12 is the full model with new observations and M1 is the small model with
new observations. We may drop off the subscripts from M12 if the partitioning is
not essential in the context. We are interested in estimating µ∗ = X∗β and predicting
y∗ and ε∗ on the basis of y.

As for notations, the symbols r(A), A−, A+, C (A), and C (A)⊥, denote, re-
spectively, the rank, a generalized inverse, the (unique) Moore–Penrose inverse, the
column space, and the orthogonal complement of the column space of the matrix A.
By A⊥ we denote any matrix satisfying C (A⊥) = C (A)⊥. Furthermore, we will
write PA = PC (A) = AA+ = A(A′A)−A′ to denote the orthogonal projector (with
respect to the standard inner product) onto C (A). The orthogonal projector onto
C (A)⊥ is denoted asQA = Ia −PA, where Ia refers to the a × a identity matrix and
a is the number of rows of A. It appears convenient to use the short notations

M = In − PX , Mi = In − PXi , i = 1, 2. (5)

One obvious choice for X⊥ is M.
When using generalized inverses it is important to know whether the expressions

are independent of the choice of the generalized inverses involved. Lemma 1 below
gives some invariance conditions; cf. Rao & Mitra (1971, Lemma 2.2.4).

Lemma 1 For nonnull matrices A and C the following holds:
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(a) AB−C = AB+C for all B− ⇐⇒ C (C) ⊂ C (B) & C (A′) ⊂ C (B′).
(b) AA−C = C for some (and hence for all) A− ⇐⇒ C (C) ⊂ C (A).

Let the setW of nonnegative definite matrices be defined as

W =
{
W ∈ Rn×n : W = V + XUU′X′, C (W) = C (X : V)

}
. (6)

In (6), U can be any matrix comprising p rows as long as C (W) = C (X : V) is
satisfied. Lemma 2 collects together some important properties of the classW; see,
e.g., Baksalary et al. (1990, Th. 2) and Puntanen et al. (2011, Sect. 12.3).

Lemma 2 Let V be an n × n nonnegative definite matrix, let X be an n × p matrix,
and define W as W = V + XUU′X′, where U is a p × p matrix, i.e., W ∈ W . Then
the following statements are equivalent:

(a) C (X : V) = C (W) ,
(b) C (X) ⊂ C (W) ,
(c) C (X′W−X) = C (X′) for any choice of W−,
(d) X(X′W−X)−X′W−X = X for any choices of W− and (X′W−X)−.

For the partitioned linear model M12 we will say that W ∈ W if the following
properties hold:

W = V + XUU′X′ = V + X1U1U′1X
′
1 + X2U2U′2X

′
2 , (7a)

Wi = V + XiUiU′iX
′
i, i = 1, 2, (7b)

C (W) = C (X : V) , C (Wi ) = C (Xi : V) , i = 1, 2. (7c)

The particular choice of U = (X1 : U2) does not matter in our considerations and
for simplicity we have put U′1U2 = 0.

By the consistency of the model M it is meant that y lies in C (X : V) with
probability 1; see, e.g., Baksalary et al. (1992). Hence we assume that under the
consistent model M the observed numerical value of y satisfies

y ∈ C (X : V) = C (X : VX⊥) = C (X : VM) = C (X) ⊕ C (VM) , (8)

where “⊕” refers to the direct sum, implying that C (X) ∩ C (VX⊥) = {0}. For the
equality C (X : V) = C (X : VM), we refer to Rao (1974, Lemma 2.1). There is a
related decomposition, see, e.g., Puntanen et al. (2011, Th. 8): for any conformable
matrices A and B we have

C (A : B) = C (A : QAB) , and thereby P(A:B) = PA + PQAB . (9)

Thus we can obtain part (a) of Lemma 3 below.

Lemma 3 Consider X = (X1 : X2) and letM2 = In − PX2 . Then

(a) M = In − P(X1:X2) = In − (PX2 + PM2X1 ) =M2QM2X1 = QM2X1M2 ,
(b) C (X2) ⊂ C (X1 : V) ⇐⇒ C (M1X2) ⊂ C (M1V) .
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For the following lemma, see, e.g., Isotalo et al. (2008a), Puntanen et al. (2011,
Prop. 15.2) and Markiewicz & Puntanen (2019, Sec. 4).

Lemma 4 Consider the partitioned linear model {y,X1β1 + X2β2,V}, let W =

V + XUU′X′ ∈ W and denote M1 = In − PX1 and

Ṁ =M(MVM)−M , Ṁ1 =M1(M1VM1)−M1 . (10a)

Then the following equalities hold:

(a) X(X′W−X)−X′W+ = PW − VM(MVM)−MPW
= PW − VṀPW
= PW − VM(MVM)+

= PW − VM(MVM)+M .
(b) Replacing X,W,M and Ṁ with X1,W1,M1 and Ṁ1 in (a), the corresponding

expressions for X1(X′1W
−
1X1)−X′1W

+
1 can be obtained.

A couple of clarifying words about Lemma 4 may be in place. We observe that

VM(MVM)−MPW = VM(MVM)−PMV

= VM(MVM)+PMV

= VM(MVM)+, (11)

where we have used Lemma 1 and Lemma 3, which gives

MPW =M(PX + PMV) =MPMV = PMV . (12)

In addition, it is noteworthy that the matrix Ṁ = M(MVM)−M is unique with
respect to the choice of (MVM)− if and only if Rn = C (X : V), see Isotalo et al.
(2008a, p. 1439). For the Moore–Penrose inverse the following holds:

M(MVM)+M = (MVM)+M =M(MVM)+ = (MVM)+. (13)

Let A and B be arbitrary m× n matrices. Then, in the consistent linear model M ,
the estimators Ay and By are said to be equal with probability 1 if

Ay = By for all y ∈ C (X : V) = C (W) , (14)

where W ∈ W . Thus, if A and B satisfy (14), then A − B = CQW for some matrix
C. When talking about the equality of estimators like Ay = By, we often drop off
the phrase “with probability 1”.

The properties of the BLUE deserve particular attention when C (X : V) = Rn

does not hold: then there is an infinite number of multipliers B such that By is BLUE
but for all such multipliers the vector By itself is unique (with probability 1, which
is the phrase in this context). In the case of two linear models, Bi = {y,Xβ,Vi },
i = 1, 2,Mitra & Moore (1973) divide the problems into three questions:
(a) When is a specific linear representation of the BLUE of µ = Xβ under B1 also

a BLUE under B2?
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(b) When does µ = Xβ have a common BLUE under B1 and B2?
(c) When is the BLUE of µ = Xβ under B1 irrespective of the linear representation

used in its expression, also a BLUE under B2?

The purpose of this paper is to do considerations in the spirit of Mitra & Moore
(1973) regarding the models M12 and M1. We pick up particular fixed representa-
tions for the BLUEs and BLUPs under these two models, study the conditions under
which they are equal for all values of y ∈ C (X1 : X2 : V) or y ∈ C (X1 : V).
Moreover, we review the conditions under which all representations of the BLUEs
and BLUPs in one model continue to be valid in the other model. Corresponding
relations between the covariance matrices of the BLUEs, BLUPs and prediction
errors are characterized. The well-known (or pretty well-known) results are given
as Lemmas, while the new (or at least not so well-known) results are represented as
Propositions. As this paper is more like a review-type, though providing some new
characterizations, we provide a reasonable background and matrix tools, to make the
article more self-contained, i.e., easier to read. Most of this backgound material is
in the first two sections.

2 Fundamental BLUE and BLUP equations

A linear statistic By is said to be linear unbiased estimator (LUE) for µ∗ = X∗β in
M12 if its expectation is equal to µ∗, which happens if and only if X′∗ = X′B′. For
our purposes, the parametric function µ∗ = Kβ1 must be estimable in M12 and M1
as well. Now, see, e.g., Groß & Puntanen (2000, Lemma 1),

µ∗ = X∗β = (K : 0)β = Kβ1 is estimable under M12 (15)

if and only if C (K′) ⊂ C (X′1M2), i.e., K = JM2X1. Thus

X∗ = (K : 0) = (JM2X1 : 0) = JM2X = LX , where L = JM2 . (16)

This means that for our purpose it is essential to consider the best LUE, i.e., the
BLUE ofM2X1β1. Obviously (16) means that Kβ1 is estimable also under M1.

The LUE By is the best linear unbiased estimator, BLUE, of estimable X∗β if By
has the smallest covariance matrix in the Löwner sense among all LUEs of X∗β:

cov(By) ≤L cov(B#y) for all B# : B#X = X∗ . (17)

Correspondingly, the linear predictor Ay is said to be unbiased for y∗ if the expected
prediction error is zero, i.e., E(y∗ − Ay) = 0 for all β ∈ Rp , which happens if and
only if X′∗ = X′A′. When C (X′∗) ⊂ C (X′) holds, we will say that y∗ is predictable
under M . Now a linear unbiased predictor Ay is the best linear unbiased predictor,
BLUP, for y∗, if we have the Löwner ordering

cov(y∗ − Ay) ≤L cov(y∗ − A#y) for all A# : A#X = X∗ . (18)
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Consider then the BLUP of ε∗. Obviously Dy is an unbiased predictor for ε∗ if
and only if DX = 0, i.e., D = FM for some L. Thus the unbiased Dy is the BLUP
for ε∗ if and only if

cov(ε∗ − Dy) ≤L cov(ε∗ − FMy) for all F ∈ Rq×n . (19)

For Lemma 5, characterizing the BLUE, see, e.g., Rao (1973, p. 282), and the
BLUP, see, e.g., Christensen (2011, p. 294), and Isotalo & Puntanen (2006, p. 1015).
For part (d), see Isotalo et al. (2018, Th. 3.1). For the general reviews of the BLUP-
properties, see, e.g., Tian (2015a,b), Haslett & Puntanen (2017), and Markiewicz &
Puntanen (2018).

Lemma 5 Consider the linear model with new observations defined as M12 where
C (X′∗) ⊂ C (X′), i.e., y∗ is predictable. Then the following statements hold:

(a) Ay = BLUP(y∗) ⇐⇒ A(X : VX⊥) = (X∗ : V21X⊥) , i.e., A ∈ {Py∗ |M12 } .
(b) By = BLUE(X∗β) ⇐⇒ B(X : VX⊥) = (X∗ : 0) , i.e., B ∈ {PX∗ |M12 } .
(c) Cy = BLUE(Xβ) ⇐⇒ C(X : VX⊥) = (X : 0) , i.e., C ∈ {PX |M12 } .
(d) Dy = BLUP(ε∗) ⇐⇒ D(X : VX⊥) = (0 : V21X⊥) , i.e., D ∈ {Pε∗ |M12 } .

The sets {Py∗ |M1 } , {PX1 |M1 } and {Pε∗ |M1 } are defined in the corresponding way.
Putting (b) and (d) of Lemma 5 together yields(

B
D

)
(X : VX⊥) =

(
X∗ 0
0 V21X⊥

)
, (20)

which implies that

A(X : VX⊥) = (B + D)(X : VX⊥) = (X∗ : V21X⊥) , (21)

and thereby (B + D)y is the BLUP for y∗ and we have

BLUP(y∗) = BLUE(X∗β) + BLUP(ε∗) , i.e., ỹ∗ = µ̃∗ + ε̃∗ . (22)

Using Lemma 2 we can obtain, for example, the following well-known solutions
to B and C in Lemma 5:

X∗(X′W−X)−X′W− ∈ {PX∗ |M } , X(X′W−X)−X′W− ∈ {PX |M } , (23)

whereW ∈ W and we can freely choose the generalized inverses involved. Expres-
sion X(X′W−X′)−X′W− is not necessarily unique with respect to the choice ofW−
but

G = X(X′W−X′)−X′W+ ∈ {PX |M } (24)

is unique whatever choice of W− we have. The general solution for C in Lemma 5,
can be expressed, for example, as

PX |M = G + NQW , where N ∈ Rn×n is free to vary, (25)
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andQW = In −PW. Thus the solution for C is unique if and only if C (X : V) = Rn .
In particular, in view of Lemma 4, we have the following:

G = X(X′W−X)−X′W+ = PW − VM(MVM)−MPW

= PW − VM(MVM)+ = PW − VM(MVM)+M , (26)

and thus

In −G = QW + VM(MVM)−MPW = QW + VM(MVM)+M . (27)

Corresponding expressions for G1 can be obtained by replacing X, M and W with
X1,M1 and W1, respectively, in (26). Premultiplying (26) by PX gives

G = PX − PXVM(MVM)+M , (28)

and correspondingly,

G1 = PX1 − PX1VM1(M1VM1)+M1 . (29)

Notice that by Lemma 1,

• G = X(X′W−X)−X′W+ is unique for any choice of W− and (X′W−X)−,
• VM(MVM)−MPW is unique for any choice of (MVM)−,
• VM(MVM)−M is unique for any choice of (MVM)− if and only if r(MV) =

r(M), i.e., r(X : V) = n.

In order to consider the BLUP(ε∗) under M12 , we observe that

V21V+(In −G)(X : VM) = (0 : V21M) , (30)

and thus V21V+(In −G) ∈ {Pε∗ |M12 } . On the other hand, in view of (27),

V21V+(In −G) = V21M(MVM)−MPW = V21M(MVM)+M , (31)

and so

ε̃∗ = BLUP(ε∗ |M12) = V21V+(In −G)y
= V21M(MVM)−MPWy
= V21M(MVM)+My
= Ey, (32)

where we have denoted

E = V21V+(In −G) = V21M(MVM)+M ∈ {Pε∗ |M12 } . (33)

The equation (32) holds for any y ∈ Rn . In particular, if y ∈ C (W), then we can
replace (MVM)+ with any (MVM)−. In the case of the small model we denote
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E1 = V21V+(In −G1) = V21M1(M1VM1)+M1 ∈ {Pε∗ |M1 } . (34)

Moreover, it can be observed that

E = V21W+(In −G) , E1 = V21W+1 (In −G1) . (35)

Let us denote L = JM2 and S = L − V21V+. Then we can write

ỹ∗ = BLUP(ỹ∗ |M12)
= LGy + V21V+(y −Gy) = LGy + Ey
= (L − V21V+)Gy + V21V+y = SGy + V21V+y
= Ty, (36)

where

T = LG + V21M(MVM)−MPW = LG + E
= SG + V21V+ ∈ {Py∗ |M12 } . (37)

Let us put our results together:

Lemma 6 Let y∗ be predictable under M12, so that

X∗ = (K : 0) = JM2X = LX = (JM2X1 : 0) = (LX1 : 0) (38)

for some J ∈ Rq×n , L = JM2, S = L − V21V+ and

G = X(X′W−X′)−X′W+, G1 = X1(X′1W
−X1)−X′1W

+, (39a)
E = V21M(MVM)+M , E1 = V21M1(M1VM1)−M1 . (39b)

Then the BLUP(y∗) under M12 can be written as

BLUP(y∗ |M12) = ỹ∗
= LGy + V21V+(In −G)y
= LGy + V21M(MVM)−MPWy
= LGy + V21M(MVM)+My
= LGy + Ey
= (L − V21V+)Gy + V21V+y
= SGy + V21V+y
= Ty, (40)

or shortly,
ỹ∗ = µ̃∗ + ε̃∗ . (41)

Corresponding expressions for the BLUP(y∗) under M1, i.e., for ỹ∗1 = T1y can be
obtained by replacing G, X, M and W with G1, X1, M1 and W1, respectively, in
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(40); shortly,
ỹ∗1 = µ̃∗1 + ε̃∗1 . (42)

For the covariance matrices we get

cov(µ̃) = cov(Gy) = GVG′ = V − VM(MVM)−MV, (43a)

cov(µ̃∗) = cov(LGy) = LGVG′L′, (43b)

cov(ε̃∗) = cov(Ey) = EVE′ = V21M(MVM)−MV12 . (43c)

For an extensive review of the BLUE’s covariance matrix, see Isotalo et al. (2008b).
The random vectors µ̃∗ and ε̃∗ are uncorrelated,

cov(µ̃∗, ε̃∗) = cov(LGy,Ey) = LGVM(MVM)+M = 0 , (44)

where we have used the fact that GVM = 0 and thereby

cov(ỹ∗) = cov(µ̃∗) + cov(ε̃∗) = LGVG′L′ + V21M(MVM)−MV12 . (45)

3 Equalities of the BLUEs under the full and small models

Let us start by considering the equality between cov(Gy) and cov(G1y). In light of
GG1 = G1 , we have

cov(µ̃1 |M1) = G1VG′1 = GG1VG′1G
′, (46)

and thus

cov(µ̃ |M12) − cov(µ̃1 |M1) = GVG′ −GG1VG′1G
′

= G(V −G1VG′1)G′

= GVM1(M1VM1)−M1VG′

= GVṀ1VG′, (47)

where we have used

cov(G1y) = G1VG′1 = V − VM1(M1VM1)−M1V. (48)

Clearly GVṀ1VG′ is nonnegative definite and thereby

cov(µ̃1 |M1) ≤L cov(µ̃ |M12) . (49)

It is obvious that the equality cov(µ̃1 |M1) = cov(µ̃ |M12) holds if and only if

GVM1 = 0 . (50)
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Actually, the above equality (50) is a necessary and sufficient condition forGy being
the BLUE for µ1 under the small model M1. Recall that the fundamental BLUE
equation in this case is

G(X1 : VM1) = (X1 : 0) , (51)

where the left-hand part GX1 = X1 trivially holds. Thus (50) is equivalent to
G ∈ {PX1 |M1 } . The general expression for a member of the class {PX |M } is

PX |M = G + NQW , where N is free to vary. (52)

It is easy to confirm that {PX |M } ⊂ {PX1 |M1 } if and only if GVM1 = 0. In other
words, every representation of the BLUE of µ under M12 is BLUE also under M1,
for which we can use notation

{BLUE(µ |M12)} ⊂ {BLUE(µ1 |M1)} , i.e., {PX |M12 } ⊂ {PX1 |M1 } . (53)

It may be mentioned that writing up the condition GVM1 = 0 we obtain

X(X′W−X′)−X′W+VM1 = 0 , (54)

which is equivalent to
X′W+VM1 = 0 . (55)

Consider then the covariance matrix of Gy −G1y:

cov(Gy −G1y) = GVG′ +G1VG′1 −GVG
′
1 −G1VG′. (56)

In view of G1 = PW1 − VM1(M1VM1)+M1 , we have

G1VG′ = [PW1 − VM1(M1VM1)+M1]VG′

= [V − VM1(M1VM1)+M1V]G′

= G1VG′1G
′ = G1VG′1 , (57)

where we have used GG1 = G1 and G1VG′1 = V − VṀ1V. Thus

cov(Gy −G1y) = cov(Gy) − cov(G1y)
= GVM1(M1VM1)−M1VG′

= cov |GVM1(M1VM1)−M1y] . (58)

Notice that the matrix GVṀ1 may not be unique but cov(GVṀ1y) is unique with
respect to the choice of (M1VM1)− in Ṁ1 =M1(M1VM1)−M1.

We can now put our findings together:

Proposition 1 The following statements are equivalent:

(a) Gy = G1y for all y ∈ C (W1) = C (X1 : VM1) ,
(b) cov(µ̃1 |M1) = cov(µ̃ |M12) ,
(c) GVM1 = 0 ,
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(d) X′W+VM1 = 0 ,
(e) G ∈ {PX1 |M1 } ,
(f) {PX |M12 } ⊂ {PX1 |M1 }, i.e., {BLUE(µ |M12)} ⊂ {BLUE(µ1 |M1)}.

Moreover, the following properties hold:

(g) G1VG′ = G1VG′1 ,
(h) cov(Gy −G1y) = cov(Gy) − cov(G1y) = cov(GVṀ1y) ,
(i) cov(G1y) ≤L cov(Gy) .

What about the equality

Gy = G1y for all y ∈ C (W) = C (X1 : X2 : VM) , (59)

i.e.,
G1(X1 : X2 : VM) = (X1 : X2 : 0) . (60)

Noting that G1X1 = X1 and G1VM = G1VM1QM1X2 = 0, we conclude that (60)
holds, i.e., G1 ∈ {PX |M12 } , if and only if

G1X2 = X2 , i.e., X1(X′1W
−
1X
′
1)−X′1W

+
1X2 = X2 . (61)

It is clear that (61) implies
C (X2) ⊂ C (X1) . (62)

On the other hand, if (62) holds then X2 = X1A for some A which further implies
(61). Assuming that (62) holds, i.e., C (X) = C (X1), we can use (28) and (29) and
conclude that G = G1 holds if and only if (62) holds.

Let us consider the general expression for the member of the class {PX1 |M1 }:

PX1 |M1 = G1 + NQW1 for some N . (63)

The equality

Gy = (G1 + NQW1 )y for all y ∈ C (X1 : X2 : VM) , (64)

i.e., (G1 + NQW1 )(X1 : X2 : VM) = (X1 : X2 : 0), simplifies to

G1X2 + NQW1X2 = X2 . (65)

Requesting (65) to hold for any N yields C (X2) ⊂ C (W1), and consequently,
G1X2 = X2. Thus we conclude the following:

{PX1 |M1 } ⊂ {PX |M12 } ⇐⇒ C (X2) ⊂ C (X1) . (66)

Moreover, the inclusion C (X2) ⊂ C (X1) implies thatGVM1 = 0, which further, by
Proposition 1, implies that {PX |M12 } ⊂ {PX1 |M1 }.

We can also pose a question under which the set {PX |M12 } ∩ {PX1 |M1 } is not
empty. This happens whenever the equation
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A(X1 : X2 : VM : X1 : VM1) = (X1 : X2 : 0 : X1 : 0) , (67)

i.e., A(X1 : X2 : VM1) = (X1 : X2 : 0) has a solution for A. This happens if and
only if

C

(
X′
0

)
⊂ C

(
X′

M1V

)
, (68)

which can be expressed equivalently as C (X) ∩C (VM1) = {0}; see Puntanen et al.
(2011, Ch. 16).

Thus we have proved the following:

Proposition 2 The following statements are equivalent:

(a) Gy = G1y for all y ∈ C (W) = C (X1 : X2 : VM) ,
(b) Gy = G1y for all y ∈ Rn ,
(c) G1X2 = X2 ,
(d) G1 ∈ {PX |M12 } ,
(e) C (X2) ⊂ C (X1) ,
(f) {PX1 |M1 } ⊂ {PX |M12 } , i.e., {BLUE(µ1 |M1)} ⊂ {BLUE(µ |M12)} ,
(g) {PX1 |M1 } = {PX |M12 }, i.e., {BLUE(µ1 |M1)} = {BLUE(µ |M12)} .

Moreover,

(g) {PX |M12 } ∩ {PX1 |M1 } , {∅} ⇐⇒ C (X) ∩ C (VM1) = {0}.

In this context it is convenient to refer to the possible equality of µ̃1(M1) and
µ̃1(M12). Notice that in this sectionwe have put our attention on the equality between
µ̃1(M1) and µ̃(M12). Haslett & Puntanen (2010b) showed that if µ1 = X1β1 is
estimable under M12 and C (X2) ⊂ C (W1), then

µ̃1(M12) = µ̃1(M1) − X1(X′1W
−
1X1)−X′1W

+
1 µ̃2(M12) . (69)

From (69) it can be concluded that µ̃1(M12) = µ̃1(M1) holds if and only if
X′1W

+
1X2 = 0; see, e.g., Markiewicz & Puntanen (2019, Sec. 4). Some related

considerations, using different approach, appear in Lu et al. (2015) and Tian &
Zhang (2016).

4 Equalities of the BLUPs of the error term

The covariance matrices for ε̃1 and ε̃∗1 are

cov(ε̃∗) = EVE′ = V21M(MW1M)−MV12 , (70a)

cov(ε̃∗1) = E1VE′1 = V21M1(M1W1M1)−M1V12 . (70b)

Thus the the difference cov(ε̃∗1) − cov(ε̃∗) can be expressed as
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cov(ε̃∗1) − cov(ε̃∗) = V21W+1/21 (PW1/2
1 M1

− PW1/2
1 M)W+1/21 V12

= V21W+1/21 PAW+1/21 V12 , (71)

where
C (A) = C (W1/2

1 M1) ∩ C (W1/2
1 M)⊥. (72)

In (71) W1/2
1 refers to the nonnegative definite square root of W1 and W+1/21 is the

Moore–Penrose inverse of W1/2
1 , and so W1/2

1 W+1/21 = PW1 . For the difference of
two orthogonal projectors, see, e.g., Puntanen et al. (2011, Ch. 7).

In light of (71), we observe that cov(ε̃∗) ≤L cov(ε̃∗1) , while cov(ε̃∗) = cov(ε̃∗1)
holds if and only if

C (W+1/21 V12) ⊂ C (A)⊥ = C [(W1/2
1 M1)⊥ : W1/2

1 M] . (73)

In view of Lemma 4 of Markiewicz & Puntanen (2019),

C (W1/2
1 M1)⊥ = C (W+1/21 X1 : QW1 ) . (74)

Thus the equality cov(ε̃∗) = cov(ε̃∗1) holds if and only if

C (W+1/21 V12) ⊂ C [(W1/2
1 M1)⊥ : W1/2

1 M]

= C (W+1/21 X1 : QW1 : W
1/2
1 M) . (75)

Premultiplying (75) by W1/2
1 yields

C (V12) ⊂ C (X1 : W1M) = C (X1 : VM) , (76)

which is a necessary and sufficient condition for the equality cov(ε̃∗) = cov(ε̃∗1).
We can further show the following:

cov(ε̃∗1, ε̃∗) = E1VE′

= V21M1(M1VM1)+M1VM(MVM)+MV12

= V21M1(M1VM1)+M1VM1M(MVM)+MV12

= V21M1M(MVM)+MV12

= EVE′ = cov(ε̃∗) , (77)

where we have used M = M1M and V21M1(M1VM1)+M1VM1 = V21M1 . Thus
we have proved the following:

Proposition 3 Denote

E = V21M(MVM)+M , E1 = V21M1(M1VM1)+M1 . (78)

The following statements are equivalent:

(a) cov(ε̃∗) = cov(ε̃∗1) , i.e., EVE′ = E1VE′1 ,
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(b) C (V12) ⊂ C (X1 : VM) .

Moreover, the following statements hold:

(c) E1VE′ = EVE′ ,
(d) cov(ε̃∗1 − ε̃∗) = cov(ε̃∗1) − cov(ε̃∗) ,
(e) cov(ε̃∗) ≤L cov(ε̃∗1) .

Here is an extended version of Proposition 3.

Proposition 4 The following statements are equivalent:

(a) Ey = E1y for all y ∈ C (W1) = C (X1 : VM1) ,
(b) EVM1 = V21M1 ,
(c) cov(ε̃∗) = cov(ε̃∗1) , i.e., EVE′ = E1VE′1 ,
(d) C (V12) ⊂ C (X1 : VM) ,
(e) E ∈ {Pε∗ |M1 } ,
(f) {Pε∗ |M12 } ⊂ {Pε∗ |M1 } , i.e., {BLUP(ε∗ |M12)} ⊂ {BLUP(ε∗ |M1)} ,

(g) C

(
VM1
V21M1

)
⊂ C

(
X1 X2 VM
0 0 V21M

)
.

Proof Consider the equality Ey = E1y for all y ∈ C (X1 : VM1) . Now

E(X1 : VM1) = E1(X1 : VM1) = (0 : V21M1) (79)

holds if and only if

EVM1 = V21M(MVM)+MVM1 = V21M1 . (80)

Postmultiplying (80) by (M1VM1)−M1V12 yields

EVE′1 = EVE′ = E1VE′1 , (81)

i.e., cov(ε̃∗) = cov(ε̃∗1) . On the other hand, suppose that the equality cov(ε̃∗) =
cov(ε̃∗1) holds. Then by part (b) of Proposition 3,

V12 = X1A + VMB for some A and B . (82)

Straightforward calculation shows that (82) implies (80). Thus we have shown the
equivalence of (a), . . . , (e).

An arbitrary member of {Pε∗ |M12 } can be expressed as Pε∗ |M12 = E + NQW ,
where N is free to vary. Clearly

(E + NQW)(X1 : VM1) = (0 : V21M1) (83)

for any N if and only if EVM1 = V21M1. This proves the equivalence between (b)
and (f).

Obviously C (VM1) ⊂ C (W) and so

VM1 = (X1 : X2 : VM)D , (84)
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for some D = (A′ : B′ : C′)′. Thus EVM1 = V21M1 gets the form

EVM1 = E(X1 : X2 : VM)D = (0 : 0 : V21M)D
= V21MC = V21M1 , (85)

and thereby (g) is a necessary condition for (b). Its sufficiency follows by postmulti-
plying

E(X1 : X2 : VM) = (0 : 0 : V21M) (86)

by

*.
,

Ip1 A
0 B
0 C

+/
-

(87)

which yields E(X1 : VM1) = (0 : V21M1) .

Consider then the equality

Ey = E1y for all y ∈ C (W) = C (X1 : X2 : VM) , (88)

i.e.,
E1(X1 : X2 : VM) = (0 : 0 : V21M) . (89)

In view ofM =M1QM1X2 , we have

E1VM = E1VM1QM1X2 = V21M1QM1X2 = V21M , (90)

and thus (89) becomes

E1X2 = V21M1(M1VM1)+M1X2 = 0 . (91)

In this context we may mention that requesting

V21M1(M1VM1)−M1X2 = 0 for any (M1VM1)−, (92)

yields C (M1X2) ⊂ C (M1V) , i.e., C (X2) ⊂ C (X1 : V) , where we have used
Lemma 3.

An arbitrary member of the class {Pε∗ |M1 } can be expressed as

Pε∗ |M1 = E1 + NQW1 , (93)

where N is free to vary. Thereby, if the equality

(E1 + NQW1 )(X1 : X2 : VM) = (0 : 0 : V21M) (94)

holds for any matrix N, then necessarily

C (X2) ⊂ C (W1) , (95)
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in which case (94) simplifies to

E1X2 = V21M1(M1VM1)+M1X2 = 0 . (96)

In view of (95), we have
X2 = X1A + VM1B (97)

for some A and B. Substituting (97) into (96) yields

E1X2 = V21M1(M1VM1)+M1VM1B
= V21M1B
= 0 . (98)

Putting (97) and (98) together, gives

C

(
X2
0

)
⊂ C

(
X1 VM1
0 V21M1

)
. (99)

Thus (99) is a necessary condition for {Pε∗ |M1 } ⊂ {Pε∗ |M12 }. Its sufficiency is
straightforward to show. Thus we have proved the following:

Proposition 5 The following statements are equivalent:

(a) Ey = E1y for all y ∈ C (W) = C (X1 : X2 : VM) ,
(b) E1X2 = 0 .

Moreover, the following statements are equivalent:

(c) Ey = (E1 + NQW1 )y for all y ∈ C (W) and for all N ,
(d) E1X2 = 0 and C (X2) ⊂ C (W1) ,
(e) E1X2 = V21M1(M1VM1)−M1X2 = 0 for all (M1VM1)−,
(f) {Pε∗ |M1 } ⊂ {Pε∗ |M12 } ,

(g) C

(
X2
0

)
⊂ C

(
X1 VM1
0 V21M1

)
.

The following result can be straightforwardly confirmed.

Proposition 6 The following statements are equivalent:

(a) {Pε∗ |M1 } = {Pε∗ |M12 } ,

(b) C

(
X1 X2 VM
0 0 V21M

)
= C

(
X1 VM1
0 V21M1

)
.

5 Properties of the BLUPs of the future response

Let us recall the notations ỹ∗ = Ty and ỹ∗1 = T1y, where
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T = LG + E = SG + V21V+, (100a)
T1 = LG1 + E1 = SG1 + V21V+, (100b)

and S = L − V21V+. Thus ỹ∗ = Ty is one representation for the BLUP(y∗ | M12)
and y∗ − ỹ∗ is the corresponding prediction error. In this section we pay particular
attention on the covariancematrices of ỹ∗ and ỹ∗1 and of the corresponding prediction
errors.

In view of (45), we have

cov(ỹ∗) = cov(µ̃∗) + cov(ε̃∗) = LGVG′L′ + EVE′, (101a)
cov(ỹ∗1) = cov(µ̃∗1) + cov(ε̃∗1) = LG1VG′1L

′ + E1VE′1 . (101b)

Moreover,

cov(ỹ∗, ỹ∗1) = cov(LGy + Ey, LG1y + E1y)
= LGVG1L′ + LGVE′1 + EVG

′
1L
′ + EVE′1

= LG1VG1L′ + EVE′ + LGVE′1 , (102)

where we have used GVG′1 = G1VG′1, EVE
′
1 = EVE′, and

EVG′1 = V21M(MVM)+MVW+1X1(X′1W
+
1X1)−X′1

= V21M(MVM)+MW1W+1X1(X′1W
+
1X1)−X′1

= 0 . (103)

Thus the equality

cov(ỹ∗ − ỹ∗1) = cov(ỹ∗) + cov(ỹ∗1) − cov(ỹ∗, ỹ∗1) − cov(ỹ∗1, ỹ1)
= cov(ỹ∗) − cov(ỹ∗1) + [2 cov(ỹ∗1) − cov(ỹ∗, ỹ∗1) − cov(ỹ∗1, ỹ1)]
= cov(ỹ∗) − cov(ỹ∗1) , (104)

holds if and only if 2 cov(ỹ∗1) = cov(ỹ∗, ỹ∗1) + cov(ỹ∗1, ỹ1) , i.e.,

2(LG1VG′1L
′ + E1VE′1) = 2(LG1VG1L′ + EVE′) + LGVE′1 + E1VG′L′, (105)

which further can be written as

2(E1VE′1 − EVE
′) = LGVE′1 + E1VG′L′. (106)

In passing we may mention that it be shown that

GVE′1 = V(E1 − E)′. (107)

Let us calculate cov(ỹ∗ − ỹ∗1) in another way. In view of

ỹ∗ − ỹ∗1 = Ty − T1y = S(G −G1)y, (108)
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and (58), we have

cov(ỹ∗ − ỹ∗1) = SGVM1(M1VM1)−M1VG′S′. (109)

We observe from (109) that cov(ỹ∗− ỹ∗1) = 0 if and only if SGVM1 = 0 .Moreover,
the equality ỹ∗ = ỹ∗1 holds for all y ∈ C (W1) if and only if

SG(X1 : VM1) = SG1(X1 : VM1) = S(X1 : 0) , (110)

i.e., SGVM1 = 0. Correspondingly, the equality ỹ∗ = ỹ∗1 for all y ∈ C (W) yields
the requirement SG1X2 = SX2.

Following Sengupta & Jammalamadaka (2003, p. 292) and Haslett et al. (2014,
p. 553), we can write the prediction errors as

y∗ − ỹ∗ = y∗ − Ty = (y∗ − V21V+y) − SGy, (111a)
y∗ − ỹ∗1 = y∗ − T1y = (y∗ − V21V+y) − SG1y. (111b)

The random vectors y∗ − V21V+y and SGy are uncorrelated,

cov(SGy, y∗ − V21V+y) = SGV12 − SGVV+V12 = 0 , (112)

and hence

cov(y∗ − ỹ∗) = cov(y∗ − V21V+y) + cov(SGy)
= V22 − V21V+V12 + SGVG′S′

= Σ22·1 + SGVG′S′. (113)

The first term Σ22·1 = V22 − V21V+V12 in (113) is the Schur complement of V in

Σ =

(
V V12
V21 V22

)
, (114)

and as Sengupta & Jammalamadaka (2003, p. 293) point out, it is the covariance
matrix of the prediction error associated with the best linear predictor (supposing
thatXβ were known) while the second term represents the increase in the covariance
matrix of the prediction error due to estimation of Xβ.

Remark 5.1. Suppose that µ = Xβ = E(y) and µ∗ = X∗β = E(y∗) are known. Then
the Best Linear Predictor of y∗ on the basis of y is the following:

BLP(y∗ | y) = µ∗ − V21V+(y − µ) . (115)

The prediction error is

ey∗ |y = y∗ − BLP(y∗ | y) = y∗ − [µ∗ − V21V+(y − µ)] , (116)

with
cov(ey∗ |y) = Σ22·1 = V22 − V21V+V12 . (117)
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Notice that Σ22·1 ≤L cov(y∗ − Ny) for all N.
Next we consider the difference between the covariance matrices of the prediction

errors. We have

cov(y∗ − ỹ∗) = Σ22·1 + SGVG′S′ =: C12 , (118a)
cov(y∗ − ỹ∗1) = Σ22·1 + SG1VG′1S

′ =: C1 , (118b)

and thereby, on account of (47),

C12 − C1 = SGVG′S′ − SG1VG′1S
′

= SGVG′S′ − SGG1VG′1G
′S′

= SGVM1(M1VM1)−M1VG′S′

= cov(ỹ∗ − ỹ∗1) . (119)

Obviously C1 ≤L C12 and C12 = C1 if and only if SGVM1 = 0. Conclusion: If
we add X2 into the model, observe the resulting y, predict y∗ on the basis of this
particular y, the resulting prediction error has a bigger covariance matrix (in the
Löwner sense) than that error which is based on X1 only.

We omit the consideration of the inclusion of the type {BLUP(y∗ | M1)} ⊂
{BLUP(y∗ | M12)}. Some related results appear in Haslett & Puntanen (2010a,
2013).

The proposition below collects together the results obtained in this section.
Proposition 7 Denote ỹ∗ = Ty and ỹ∗1 = T1y, where T and T1 are defined as in
(100a)–(100b). Then the following statements hold:

(a) cov(ỹ∗ − ỹ∗1) = SGVṀ1VG′S′,
(b) cov(y∗ − ỹ∗) − cov(y∗ − ỹ∗1) = cov(ỹ∗ − ỹ∗1) ,
(c) cov(y∗ − ỹ∗1) ≤L cov(y∗ − ỹ∗) .
The following statements are equivalent:

(d) cov(ỹ∗ − ỹ∗1) = 0 ,
(e) cov(y∗ − ỹ∗1) = cov(y∗ − ỹ∗) ,
(f) ỹ∗ = ỹ∗1 for all y ∈ C (W1) = C (X1 : VM1) ,
(g) SGVM1 = 0 .
Moreover, the following statements are equivalent:

(h) cov(ỹ∗ − ỹ∗1) = cov(ỹ∗) − cov(ỹ∗1) ,
(i) 2(E1VE′1 − EVE

′) = LGVE′1 + E1VG′L′.

6 Conclusions

In this article we consider the partitioned linear model M12 = {y, X1β1 +X2β2, V}
and the small model M1 = {y, X1β1, V}. Both models are supplemented with the
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new unobservable random vector y∗, coming from y∗ = Kβ1 + ε∗, where Kβ1 is
estimable under both models. The covariance matrix of y∗ is known as well as the
cross-covariance matrix between y∗ and y.

Our aim to predict y∗ on the basis of M12 and M1 and consider the resulting
differences in the BLUEs and BLUPs. We consider the situation using given fixed
multipliers of the response y yielding the BLUEs and BLUPs, and in addition,
we characterize the whole class of multipliers in one model yielding the BLUEs
and BLUPs that continue providing the BLUEs and BLUPs in the other model.
Corresponding relations between the covariance matrices of the BLUEs, BLUPs and
prediction errors are characterized. Particular attention is paid on the cases whether
the response y lies in C (X1 : X2 : V) or in C (X1 : V).

Wemaymention, see, e.g., Isotalo et al. (2018), that the results regarding themodel
M12with newobservations can be applied to themixed linearmodel y = Xβ+Zu+e ,
where Xn×p and Zn×q are known matrices, β ∈ Rp is a vector of unknown fixed
effects, u is an unobservable vector (q elements) of random effects with E(u) = 0,
cov(u) = ∆, e is a random error vector with E(e) = 0, cov(e) = Φ, and cov(e, u) = 0.
Denoting g = Xβ +Zu, we have cov(y) = cov(Zu+ e) = Z∆Z′ +Φ, and the mixed
linear model can be expressed as a version of the model with “new observations”
corresponding y∗ in (2) being in g = Xβ + Zu.
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DOI

Baksalary, J.K., Rao, C.R. &Markiewicz, A. (1992). A study of the influence of the “natural restric-
tions” on estimation problems in the singular Gauss–Markov model. J. Stat. Plan. Inference,
31, 335–351. DOI

Christensen, R. (2011). Plane Answers to Complex Questions: the Theory of Linear Models, 4th
Edition. Springer, New York. DOI

Groß, J. & Puntanen, S. (2000). Estimation under a general partitioned linear model. Linear Algebra
Appl., 321, 131–144. DOI

http://www.jstor.org/stable/25050797
https://doi.org/10.1016/0378-3758(92)90141-E
http://dx.doi.org/10.1007/978-1-4419-9816-3
http://dx.doi.org/10.1016/S0024-3795(00)00028-8


Properties of BLUEs and BLUPs 21

Haslett, S.J., Isotalo, J., Liu, Y. & Puntanen, S. (2014). Equalities between OLSE, BLUE and BLUP
in the linear model. Stat. Pap., 55, 543–561. DOI

Haslett, S.J. & Puntanen, S. (2010a). A note on the equality of the BLUPs for new observations
under two linear models. Acta Comment. Univ. Tartu. Math., 14, 27–33. www

Haslett, S.J. & Puntanen, S. (2010b). Effect of adding regressors on the equality of the BLUEs
under two linear models. J. Stat. Plan. Inference, 140, 104–110. DOI

Haslett, S.J. & Puntanen, S. (2013). A review of conditions under which BLUEs and/or BLUPs
in one linear mixed model are also BLUEs and/or BLUPs in another. Calcutta Statist. Assoc.
Bull., 65, 25–41. DOI

Haslett, S.J. & Puntanen, S. (2017). Best linear unbiased prediction (BLUP). Wiley StatsRef:
Statistics ReferenceOnline. stat08120. (M.Davidian, R.Kenett, N.T. Longford, G.Molenberghs,
W.W. Piegorsch, F. Ruggeri, eds.) Wiley, Chichester. 6 pp. DOI

Isotalo, J., Markiewicz, A. & Puntanen, S. (2018). Some properties of linear prediction sufficiency
in the linear model. Trends and Perspectives in Linear Statistical Inference: LinStat, Istanbul,
2016. (M. Tez, D. von Rosen, eds.) Springer, Cham, pp. 111–129. DOI

Isotalo, J. & Puntanen, S. (2006). Linear prediction sufficiency for new observations in the general
Gauss–Markov model. Commun. Stat. Theory Methods, 35, 1011–1023. DOI

Isotalo, J., Puntanen, S. & Styan, G.P.H. (2008a). A useful matrix decomposition and its statistical
applications in linear regression. Commun. Stat. Theory Methods, 37, 1436–1457. DOI

Isotalo, J., Puntanen, S. & Styan, G.P.H. (2008b). The BLUE’s covariancematrix revisited: a review.
J. Stat. Plan. Inference, 138, 2722–2737. DOI

Lu, C., Gan, S. & Tian, Y. (2015). Some remarks on general linear model with new regressors.
Statist. Probab. Lett., 97, 16–24. DOI

Markiewicz, A. & Puntanen, S. (2018). Further properties of linear prediction sufficiency and the
BLUPs in the linear model with new observations. Afrika Statistika, 13, 1511–1530. DOI

Markiewicz, A. & Puntanen, S. (2019). Further properties of the linear sufficiency in the partitioned
linear model.Matrices, Statistics and Big Data: Selected Contributions from IWMS 2016. (S.E.
Ahmed, F. Carvalho, S. Puntanen, eds.) Springer, Cham, pp. 1–22. DOI

Mitra, S.K. & Moore, B.J. (1973). Gauss–Markov estimation with an incorrect dispersion matrix.
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