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Abstract
Predicting volatility is a critical activity for taking risk- adjusted decisions in asset trading and allocation. In order to provide
effective decision-making support, in this paper we investigate the profitability of a deep Long Short-Term Memory (LSTM)
Neural Network for forecasting daily stock market volatility using a panel of 28 assets representative of the Dow Jones
Industrial Average index combined with the market factor proxied by the SPY and, separately, a panel of 92 assets belonging
to the NASDAQ 100 index. The Dow Jones plus SPY data are from January 2002 to August 2008, while the NASDAQ
100 is from December 2012 to November 2017. If, on the one hand, we expect that this evolutionary behavior can be
effectively captured adaptively through the use of Artificial Intelligence (AI) flexible methods, on the other, in this setting,
standard parametric approaches could fail to provide optimal predictions. We compared the volatility forecasts generated
by the LSTM approach to those obtained through use of widely recognized benchmarks models in this field, in particular,
univariate parametric models such as the Realized Generalized Autoregressive Conditionally Heteroskedastic (R-GARCH)
and the Glosten–Jagannathan–Runkle Multiplicative Error Models (GJR-MEM). The results demonstrate the superiority of
the LSTM over the widely popular R-GARCH and GJR-MEM univariate parametric methods, when forecasting in condition
of high volatility, while still producing comparable predictions for more tranquil periods.

Keywords Deep learning · LSTM · Time series · Forecasting · Volatility

1 Introduction

Asset management decisions made by investors with global
portfolios of equities, bonds and other asset management
instruments are driven by the fundamental principle of max-
imizing the expected return on a given level of risk. These
decisions include the allocation of assets through trading
in asset management instruments subject to price changes
in order to obtain the best combination of risk and reward
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(known as the risk-reward trade-off) that takes into account
the investor’s specific assets and objectives.

There is no doubt that the decision on how to invest her-
itage lies primarily in the ability of human judgment to
recognize opportunities for return based on the economic,
social and political context and the events that condition its
evolution. The altered context translates into a change in the
attractiveness of asset management assets, i.e., in their value
and in turn in the price that can lead to gains or losses.
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Another element that helps to change the price is those
factors that specifically affect a company, a sector or even a
country. Prudent management relies on decisions to diversify
investments between assets with a negative price correlation,
i.e., assets whose price tends to move in opposite directions.
In this way, any losses in value on certain assets can be offset
at least in part by returns on other assets. Finally, trading
activity and the additional element contribute significantly
to the price fluctuations of an asset. It reflects the ability to
cross supply and demand on the asset management markets.

Therefore, risk, return and asset correlation are the key
measures used in asset management models. Quantifying
the potential loss of assets is a major part of risk man-
agement, trading in asset management markets and asset
allocation. To be able to measure these losses and make
informed investment decisions, investors need to estimate
risks (Blume 1971). Since volatility has some well-known
statistical regularities that make it inherently forecastable,
it is among one of the most accepted and used measures
of risk in the financial market. These regularities include
the volatility clustering effect, leading to positive and per-
sistent auto-correlations of volatility measures, the leverage
effect, which is related to the negative correlation between
past returns and current volatility values, and the dynamic
cross-correlation between the volatilities of different assets
that give rise to the well-known phenomenon of volatility
spillovers. In addition, it is worth remembering that volatility
is a key ingredient for computing more refined risk measures
such as the Value at Risk or the Expected Shortfall.

Predicting volatility is challenging task, where modern
artificial intelligence can come at rescue. Conventional tech-
niques, mostly based on GARCH modeling and its variant,
are not able to consider a market as a whole, thus volatility
spillovers. In this paper, we aim to show that deep learning
can help to build models of volatility forecasting, discussing
properties and experimental results. In particular, the paper
focuses on LSTM as an effective tool for the purpose of esti-
mating the forecasting volatility.

In the evaluation of volatility forecasts, identifying the
underlying market regime is of fundamental importance, as
generating accurate predictions is more important in peri-
ods of higher volatility of the stock markets rather than in
more tranquil periods. In fact, in periods of greater price
variability, such as those that accompany and follow periods
of economic and financial crisis, the timing risk in trading
operations exposes to a greater risk of large losses. It is, at
this stage, important to be aware that the forecasting perfor-
mance of different approaches to volatility forecasting can
be highly dependent on the market regime, as identified in
terms of the corresponding long-run volatility level. An obvi-
ous consequence is that the (ex-ante) identification of the best
performing model could, and should, take into account the
underlying volatility level.

Despite the significant progresses in the field of finan-
cial econometrics, see, e.g., Hamilton and Susmel (1994)
and Kim and Kim (1996), and artificial intelligence, this
task is still very complex and expert judgment still plays
a fundamental role in recognizing the factors that anticipate
and characterize moments of high uncertainty in the mar-
kets. This is due to the fact that, adequately supported by
the outcome provided by quantitative forecasting models,
human intervention is able to convey heterogeneous sources
of information, of both quantitative and qualitative nature,
that would be otherwise hardly embedded in any formalized
quantitative forecasting approach.

In this paper we propose a model for volatility prediction
that is based on LSTM. Comparison to existing approaches,
namely R-GARCH and GJR-MEM, together with conven-
tional RNN, is performed with respect to different volatility
regimes, in order to point out how the identification of the
market volatility regime is important for identification of the
optimal forecasting model.

LSTM effectiveness is showcased by using a panel of 28
assets representative of the Dow Jones Industrial Average
index combined with the market factor proxied by the SPY
and, separately, a panel of 92 assets belonging to the NAS-
DAQ 100 index. The Dow Jones plus SPY data are from
January 2002 to August 2008, while the NASDAQ 100 is
from December 2012 to November 2017. Both markets, in
the periods considered, were affected by extremely critical
events as the global financial crisis (GFC) of 2007–2008 and
the consequences of the European debt crisis 2011–2012,
which led to changes in the level and dynamics of market
volatility during and after the crisis.

The remainder of the paper is structured as follows. An
overview of related literature is given in Sect. 2. The data
used in the empirical application and the investigated tech-
niques are described inSect. 3.1. TheLSTMapproach and the
related experimental setup are briefly discussed in Sects. 3.2
and 3.3. The two parametric competitors used as benchmarks
in our empirical analysis, i.e., theR-GARCHandGJR-MEM,
are presented in Sects. 3.4 and 3.5, respectively, while Sect.
3.6 introduces the two loss functions used for training the
models and the metrics for out-of-sample forecast evalua-
tion. The empirical results of the out-of-sample forecasting
comparison are presented and discussed in Sect. 4, followed
by the comparison with Recurrent Neural Networks in Sect.
5. Conclusions are given in Sect. 6.

2 Related work

As the prediction of volatility is a major factor in risk anal-
ysis, many efforts have been made to implement parametric
as well as nonparametric predictive methods for forecast-
ing future volatility. Depending on the reference information
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set, the proposed approaches can be classified into two broad
categories. Of these, the first includes approaches fitted to
time series of daily log-returns. In the parametric world, this
class of methods includes the Generalized Autoregressive
Conditionally Heteroskedastic (GARCH) models (Boller-
slev 1986) and their numerous univariate and multivariate
recent extensions (Bauwens et al. 2006; Gerlach and Wang
2016; Huang et al. 2017; Wang et al. 2018). In the non-
parametric world, we recall a consistent number of papers
applying nonparametric approximators of squared returns
(such as smoothing splines Langrock et al. 2015; Zhang and
Teo2015or neural networks to time series Fischer andKrauss
2018; Kourentzes et al. 2014; Wang et al. 2015) which pro-
vides an unbiased but noisy volatility proxy.

The second and more recent class of approaches for
volatility forecasting replaces this noisy volatility proxy with
more efficient realized volatility measures (Andersen and
Teräsvirta 2009) built from time series of high-frequency
asset prices. Notable examples of parametric models falling
into this second class are the Multiplicative Error Models
(MEM) Engle and Russell (1998) and the Realized GARCH
(R-GARCH) Hansen et al. (2012) techniques. The main
structural difference between R-GARCH and MEM models
is that R-GARCH uses bivariate information on log-returns
and realized volatility, whereas MEM are directly fitted to a
univariate realized volatility series—log-returns are eventu-
ally used only as external regressors for capturing leverage
effects. Similarly, in a nonparametric environment, neural
networks (McAleer and Medeiros 2011) or other nonpara-
metric filters (Chen et al. 2018) can be applied to time series
of realized volatility measures to forecast future volatility.
See also Han and Zhang (2012) nonparametric volatility
modeling for non-stationary time series.

Several extensions have beenproposed to parametricmod-
els. For instance, inAndersen et al. (2007) the authors suggest
that the total return variation process can be separated in
jumps and non-jumps movements, where almost all of the
predictability in daily, weekly, and monthly return volatili-
ties comes from the non-jump component. Building on this
idea, Maciel et al. (2017) investigated evolving possibilis-
tic fuzzy modeling to forecast realized volatility with jumps.
Their possibilistic model improves robustness to noisy data
and outliers, which is an essential requirement in financial
markets volatility modeling and forecasting.

All above-discussed approaches are univariate. Neverthe-
less, the presence of phenomena such as common features
and volatility spillovers make the analysis of multivariate
volatility panels potentially very profitable. In a parametric
setting, however, the number of required model parameters
explodes rapidly as the cross-sectional dimensionof the panel
increases, making the estimation unfeasible even for mod-
erately large dimensions, unless some heavy, and untested
parametric restrictions are imposed.

Typically, it is often assumed that all the volatilities in
the panel share the same dynamic dependence structure and
volatility spillovers are not present (Pakel et al. 2011). Those
assumptions are clearly unrealistic and they greatly reduce
the ability of the parametric models, albeit multivariate, to
describe the complexity of the dynamic structure which is
observed in financial time series. These considerations con-
tribute to the scarce attention that multivariate models for
volatility panels have received in the literature on parametric
modeling of financial time series.

Feed-forward neural networks are a favorite class of mul-
tivariate, nonparametric models used to study dependencies
and trends in the data, e.g., using multiple inputs from the
past to predict the future time step (Chakraborty et al. 1992).
However, when using traditional neural network models,
much effort is devoted to making sure that what is pre-
sented for training in the input layer is already in a format
that allows the network to recognize the significant pat-
terns (“feature engineering”). This process usually requires
some ad-hoc procedures and soon becomes one of the most
time-consuming parts of neural network modeling. In a deep
learning framework instead, by adding more and more lay-
ers between input and output (hence “deep”), the model
allows richer intermediate representations to be built and
most of the feature engineering process can be achieved by
the algorithm itself, in an almost automatic fashion. This lat-
ter point improves prediction accuracy and strongly widens
the domains of applications. As a drawback, deep learning
models require a large amount of data to outperform other
approaches and are computationally expensive to train. How-
ever, in financial applications, a large amount of data can be
quickly gathered, making deep learning applications appro-
priate and viable.

The main focus of this paper is on proving the effec-
tiveness of using deep learning techniques for multivariate
volatility forecasting. In particular, a deep Long Short-Term
Memory (LSTM) Neural Network (Hochreiter and Schmid-
huber 1997) is applied. LSTMs can have several advantages
compared to the modeling approaches used so far in the liter-
ature. The application of this class of models to multivariate
volatility forecasting is particularly appealing since it allows
to overcome the curse of dimensionality typically limiting
the application of complex multivariate parametric models.

Firstly, they can be seen as nonparametric statistical
models, and consequently, they do not suffer from the mis-
specification problems which typically affect parametric
modeling strategies. Secondly, they can overcome the curse
of dimensionality problem which affects both standard non-
parametric estimation techniques and several multivariate
parametricmodels (Poggio et al. 2017). Thismakes the use of
LSTMs feasible even for high dimensional temporal datasets.
Moreover, they do not require any undesirable reduction of
the parameter space through untestable, unrealistic restric-
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tions, which, otherwise,might significantly reduce the ability
of the model to reveal well-known stylized facts about multi-
variate financial time series (such as spillovers and complex
dynamics). Finally, they can benefit from modeling complex
nonlinear and long-term dependencies, leading to improved
accurate predictions (Gers et al. 2002).

One of the main benefits of using a recurring network
such as LSTM is the ability to make the prediction adap-
tive to time. The concept of internal state/memory translates
into an implicit stretching or warping of the time axis. This
detail is well known to those involved in speech analysis,
since the correspondence between patterns must necessar-
ily take into account an inevitable misalignment along the
time axis. In the financial domain we are dealing with in
this paper, this translates into the need to consider a mis-
alignment of the time series of asset prices or volatility in a
market, due to market inefficiencies or propagation between
sectors. To solve this problem, one of the most popular tech-
niques is dynamic time warping (DWT) (Itakura 1975). This
aspect has been very recently taken up and generalized by
Rivest and Kohar (2020). In their work, they propose squared
timing error (STE) as a new cost function of timing error
that incorporates the principles of DWT. Among the various
experiments, they also consider a price prediction problem in
finance. Their method focuses on binary time series. In this
case, they try to determine when a price exceeds a certain
threshold. In the experiment they assume the closing prices
of the shares that make up the NASDAQ-100 index in the
period from April 1, 2013 until March 31, 2014. They calcu-
late the 14-day moving average, assuming as threshold 0.7
of historical volatility in the same period, i.e., the 14-day
moving standard deviation.

However, the advantage of using a recurring network,
whether LSTM or any other architecture, is precisely in
incorporating propagation effects into hidden state units. The
question of how to make the internal memory of a recurring
network effective has been the focus of many recent develop-
ments. Yu et al. (2019) offer an extensive overview of them.
Besides the pioneering work of Hochreiter and Schmidhu-
ber (1997) that led to the definition of LSTM, it is worth to
mention the contributions given by Cho et al. (2014) regard-
ing the Gated Recurrent Unit (GRU), by Kalchbrenner et al.
(2015) for Grid LSTM, by Shi et al. (2015) for Convolu-
tional LSTM. A different approach is fostered by Graves
et al. (2014) for their Neural Turin Machine, suggesting to
make explicit into the architecture an external addressable
memory. Following this idea, one of the latest developments
in this area is offered by Quan et al. (2020), where they pro-
pose to equip a RNN with an external addressable working
memory (EAWM). This makes short and long-term informa-
tion explicit and directly manipulable, letting SGD to train
the network end-to-end.

Following a similar approach, Nápoles et al. (2020)
propose long-term cognitive network (LTCN) as a neural
cognitive mapping technique able to store long-term depen-
dencies between input and output sequences, especially in a
context where values of several dependent variables have to
be predicted. The approach consists in preserving the knowl-
edge of the expert encoded in a matrix of weights, trying to
optimize the nonlinear relationship offered by the activation
function of each neuron. In this sense, the training algorithm
is called non-synaptic back-propagation.

Most of the above work focuses on sequence analy-
sis in natural language processing problems, in particular
machine translation, text comprehension and text genera-
tion. Although LSTM is now a tool made available to finance
(e.g., see Troiano et al. 2018), at the best of our knowledge
the method proposed in this paper is novel as no attempt to
specify and estimate a comprehensive nonparametric volatil-
ity forecasting model for the whole market has been made
so far. In particular, nobody approached the problem using
Deep Learning (i.e., LSTM).

3 Materials andmethods

Asmentioned above, the methodology proposed in this work
is based on the application of Long Short-Term Memory
(LSTM) Neural Network for the forecast of the volatility
of the assets at a particular time, given its past values.

3.1 Data

Two datasets are used for the empirical experimentation. The
first dataset used by Hansen et al. (2012), includes 28 assets
from the Dow Jones Industrial Average (DJI 500) index plus
one exchange-traded index fundSPY, that tracks the S&P500
index. The sample spans the period from 1st January 2002 to
31st August 2008, including 1549 trading days. The second
dataset is related to 92 stocks belonging to the NASDAQ 100
indexwithin the period 1stDecember 2012 to 29thNovember
2017, for a total of 1256 trading days. Further detail on the
two datasets can be found in Tables 1 and 2, respectively1.

Each asset is represented by two different time series, the
realized measure, namely volatility, and the related open–
close return. The realized measure vt is given by a realized
kernel estimator computed using the Parzen kernel function.
This estimator is similar to the realized variance, and more
importantly, it is robust to market micro-structure noise and
is more accurate than the quadratic variation estimator. The
implementation of the realized kernel follows the method

1 The data are publicly available on the following Zenodo repository
https://zenodo.org/record/2540818.
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Table 1 Dow Jones industrial
average assets used as case
study

Symbol Name Sector Capitalization (USD)

AA Alcoa Corp Materials 6.89B

AIG American International Group Financials 58.79B

AXP American Express Financials 75.99B

BA Boeing Industrials 140.50B

BAC Bank of America Financials 245.97B

C Citigroup Financials 187.94B

CAT Caterpillar Industrials 67.58B

CVX Chevron Energy 208.66B

DD EI du Pont de Nemours Materials 71.17B

DIS Disney Consumer Discretionary 168.52B

GE General Electric Industrials 223.20B

GM General Motors Consumer Discretionary 51.39B

HD Home Depot Consumer Discretionary 182.62B

IBM IBM Information Technology 135.28B

INTC Intel Information Technology 170.57B

JNJ Johnson & Johnson Health Care 357.45B

JPM JPMorgan Chase Financials 329.58B

KO Coca-Cola Consumer Staples 194.07B

MCD McDonald’s Consumer Discretionary 125.37B

MMM 3M Industrials 123.92B

MRK Merck Health Care 172.59B

MSFT Microsoft Information Technology 559.80B

PG Procter & Gamble Consumer Staples 231.51B

T AT&T Telecommunication Services 235.96B

UTX United Technologies Industrials 97.04B

VZ Verizon Telecommunication Services 199.52B

WMT Wal-Mart Consumer Staples 242.61B

XOM Exxon Mobil Energy 339.86B

SPY SPDR S&P500 ETF Trust – (Net Assets) 242,54B

Capitalization is given with respect to 4th August 2017 values

proposed by Barndorff-Nielsen et al. (2011) that guarantees
a positive estimate.

3.2 Long short-termmemory network

Long Short-Term Memory (LSTM) Network (Gers et al.
1999; Hochreiter and Schmidhuber 1997) is a Recurrent
Neural Network (RNN) architecture that acts as a Univer-
sal Turing Machine learner: given enough units to capture
the state and a proper weighting matrix to control its evolu-
tion, the model can replicate the output of any computable
function.

Because of this noticeable characteristic, LSTM is largely
employed in tasks of sequence processing, e.g., in natural
language processing (Sundermeyer et al. 2015; Tran et al.
2016;Yaoet al. 2014), speech recognition (Graves et al. 2013;
Han et al. 2017; Suwajanakorn et al. 2017), automatic control
(Gers et al. 2002; Hirose and Tajima 2017), omics sciences

(Lee et al. 2016; Leifert et al. 2016), and others. The LSTM
networks are gaining increasing interest and popularity in
time series modeling and prediction, as they can model long
and short range dependencies (Bianchi et al. 2017; Zaytar
and El Amrani 2016).

There are several variations (Graves 2013; Wang 2017;
Wang and Niepert 2019) of the original model proposed by
Hochreiter and Schmidhuber (1997). In this paper we adopt
the model presented by Graves (2013) (Fig. 1a) which is
governed by the set of equations given below:

it = σ(Wxi xt + Wli lt−1 + Wcict−1 + bi ), (1)

ft = σ(Wx f xt + Wl f lt−1 + Wcf ct−1 + b f ), (2)

ct = ft ct−1 + it tanh(Wxcxt + Wlclt−1 + bc), (3)

ot = σ(Wxoxt + Wlolt−1 + Wcoct + bo), (4)

lt = ot tanh(ct ). (5)
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Table 2 NASDAQ 100 assets used as case study

Sector Symbol

Capital Goods ILMN, KLAC, PCAR, PCLN, TSLA

Consumer
Non-Durables

CTAS, HAS, MDLZ, MNST

Consumer
Services

AMZN, CHTR, CMCSA, COST, DISCA, DISCK,
DISH,

DLTR, EXPE, FAST, FOXA, FOX, LBTYA,
LBTYK,

LVNTA, NFLX, ORLY, PAYX, QVCA, ROST,

SBUX, SIRI, TSCO, ULTA, VIAB, WYNN

Health Care ALGN, ALXN, AMGN, BIIB, CELG, ESRX,
GILD,

HOLX, HSIC, IDXX, INCY, ISRG, MYL, SHPG,
XRAY

Miscellaneous AKAM, CTRP, EBAY, MELI, NTES

Public Utilities VOD

Technology AAPL, ADBE, ADI, ADP, ADSK, AMAT, ATVI,

AVGO, BIDU, CA, CERN, CHKP, CSCO, CTSH,

CTXS, EA, FB, FISV, GOOGL, INTC, INTU,

LRCX, MCHP, MSFT, MU, MXIM, NVDA,
QCOM,

STX, SWKS, SYMC, TXN, VRSK, WDC, XLNX

Transportation JBHT

(b)

(a)

Fig. 1 LSTM architecture as presented by Graves (2013). a shows the
internals of a specific cell,whileb showshow the sequence is propagated
through the LSTM cells

The core of the LSTM is represented by the ct which
acts as a memory accumulator of the state information at
time t . The state evolves according to Eq. (3), subject to two
elements—the “forget gate” and the “input gate”, represented
at time t by the variables ft and it , respectively. The role
of ft is to erase the memory ct−1 according to the current
input xt (comprising open-close return and volatility), the
state lt−1 and the memory ct−1 (Eq. (2)). The forget gate is
counterbalanced by the input gate (Eq. (1)) that making use
of the same information has instead the role of reinforcing
or replacing the memory by activating a combination xt and
lt−1 (Eq. (3)). These last functions, as those governing the
activation of ft and it are learned as single-layer perceptrons
using the logistic function σ (Eq. (1) and Eq. (2)), or the tanh
function (Eq. (3)) as activation, where bi , b f and bc are the
respective biases. Once the memory is recomputed at time t ,
the LSTM emits the output ot as a function of xt , lt−1 and the
memory ct (Eq. (4)). This latter function is also learned as a
single-layer perceptron and finally, the LSTM computes the
state lt as given by Eq. (5). Figure 1b shows how a sequence
is propagated through the LSTM.

Themain advantage of this architecture is that thememory
ct is refreshed under the control of gates so that the gradi-
ent is limited to the last stage (also known as constant error
carousels Gers and Schmidhuber 2001; Gers et al. 1999) and
prevented from vanishing too quickly. This latter issue is a
critical one and a well-known limitation of RNN based on
older architectures, such as the Elman’s and Jordan’s refer-
ence models (Jozefowicz et al. 2015; Pascanu et al. 2013).

Because the LSTM learning function can be decomposed
into multiple intermediate steps, LSTMs can be “stacked”
such that the information produced by one LSTM step
becomes the input to another. This “stacked” architecture has
been applied to many real-world sequence modeling prob-
lems (Sutskever et al. 2014; Xu et al. 2015).

3.3 Experimental setup

The proposed model is a 2-layer stacked LSTM made of 2n
input and n output units, respectively, with n being the num-
ber of assets. This means 58/29 for DJI 500 and 184/92 for
NASDAQ 100. The output of the top LSTM is given as input
to a dense activation layer designed to provide the model’s
output (see Fig. 2 for a schematic description of the model).
The hidden activation function is a hyperbolic tangent, while
the recurrent activation is a hard sigmoid (default activation
functions for LSTM, as advised inHochreiter and Schmidhu-
ber 1997). To avoid negative forecasts (the realized volatility
is always continuous positive), a softplus function is used in
the output layer.

Two topologies of LSTM are tested and evaluated: uni-
variate and multivariate.
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Fig. 2 The proposed model for DJI 500 is a stack of two LSTM with
58 and 29 neurons each and a dense activation layer on the top. The size
of the dense layer is one in the univariate approach (LSTM-1) and 29
in the multivariate one (LSTM-29)

Table 3 Hyper-parameters for the LSTM

Hyper-parameter Range of optimization Optimal value

Dropout [0, 0.6] every 0.1 0.2

Number of training epochs
on pre-training data

[100, 400] every 50 300

Number of training epochs
on rolling window

[10, 30] every 5 20

Look-back [5, 100] every 5 20

Loss function MSE and QLIKE QLIKE

The optimal value of each hyper-parameter has been selected through
a grid search on the defined range

LSTM-1 has a univariate architecture (one model inde-
pendently trained for each asset) so takes as input only one
asset at a time (open-close return and volatility for a chosen
past window (rt−k, .., rt−1, vt−k, .., vt−1)) and produces as
output the one-step-ahead volatility (vt ).

LSTM-n has a multivariate architecture, where a single
model is trained using all the assets. This version takes as
input the daily returns and volatilities for a given pastwindow
(r it−k, .., r

i
t−1, v

i
t−k, .., v

i
t−1), i = 1, . . . , n and outputs the n

one-step-ahead volatility (vit , i = 1, . . . , n), where n = 29
for DJI 500 and n = 92 for NASDAQ 100.

The model is pre-trained by using the first 300 days of our
dataset with a look-back window of 20 days. Subsequently,
a rolling forecast is applied from day 301 onward. In partic-
ular, every time the one-step-ahead volatility is predicted, its
observed features (realized return and volatility) are used to
refine the network state, before moving the time window one
step. This procedure allows having an up-to-date network,
every time new information is available.

To avoid the look-ahead bias, the walk-forward testing
technique (Ladyzynski et al. 2013) has been applied on the
initial year of trading data and a grid search used to opti-
mize the hyper-parameters of the network. The validation is
performed by scanning the data using a sliding window of
length m (i.e., the look-back) on which the model is trained
on, and subsequently predicting on the following n samples
(in our case, with one-step-ahead prediction, n = 1). When
the end of this subset is reached the optimization window is
shifted forward by n. The grid search boundaries and opti-
mal values are reported in Table 3. The optimal number of
training epochs on the initial data was found to be in line

with the optimal number of days used for pre-training (i.e.,
300 days), while the number of epochs for the rolling period
had its best value consistent with the size of the look-back
(i.e., 20 days, equivalent to four weeks of trading data). We
observed that a smaller number of epochs would produce
an under-fitted network (smooth forecast trending with the
average of the last few data points), while a longer training
would produce an over-fitting network (giving a lot of weight
to the most recently shown data point). Furthermore, a larger
look-backwould impact the convergence (probably due to the
vanishing gradient problem). In addition, dropout, a standard
regularization technique used for deep learning models, was
used to avoid over-fitting, and its best value was found to be
around 0.20, as also suggested in Wan et al. (2013). Lastly,
we employed two loss functions to train our model, which
are described in Sect. 3.6.

3.3.1 LSTM computational complexity

In this section we report the computational complexity of our
proposed univariate and multivariate models.

The LSTMcomputational complexity can be estimated by
calculating the number of operations and number of trainable
parameters of the model.

Considering a network taking input vectors of size m and
giving output vectors of size n, the LSTM has a set of 2
matrices: U of dimension nm and W of dimension nn for
each of the three gates and one set for updating the cell state.
Lastly, there is a set of n biases.

The memory complexity (number of trainable weights)
of the LSTM can be calculated with the following formula:
4(nm + n2 + n).

The time complexity (i.e., number of operations required
to perform one training step) is calculated as follows. A
matrix multiplication requiresmnmultiplications andm(n−
1) additions, this needs to be done for mn elements, so the
complexity is mn(n + (m − 1)) = n2m + nm2 − nm

This operation is done for each gate (3), for the cell state,
and for the number of time steps (k = 20), 4k(n2m + nm2 −
nm).

While the number of operations required for one epoch
grows with the size of the inputs and outputs of the model,
the computational need is still negligible when compared to
the available computational power when employing a GPU
card. For instance, the biggest multivariate model trained in
the empirical experimentation, requires roughly 744 million
operations for one epoch, while the graphic card we used
(i.e., NVIDIA GeForce 1070) has a computational power of
6.5 TFLOPS, which allows to run 9 epochs per second.

Table 4 reports the total number of weights and number
of operations for each of the models trained in the empirical
experimentation.
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Table 4 The following table reports for each LSTM the number of trainable weights and the number of operations required for one training epoch

LSTM-1 DJI 500 LSTM-29 DJI 500 LSTM-1 NASDAQ 100 LSTM-92 NASDAQ 100

First LSTM input (m1) 1 29 1 92

First LSTM output (n1) 58 58 184 184

Second LSTM input (m2) 58 58 184 184

Second LSTM output (m2) 1 29 1 92

Number of trained models 29 1 92 1

Number of weights 410,640 30,624 12,662,880 305,808

Number of operations 15,608,960 23,144,320 498,360,320 744,832,000

Since in the univariate approach one model for each asset is trained individually, the number of weights and operations, is multiplied by the number
of assets (29 for the DJI500 and 92 for the NASDAQ100)

3.3.2 Data standardization

Before training the model, the data are standardized with 0-
mean and 1-variance. Since our features are in IR+, for each
sample (r2t , vt ), its negative (−r2t ,−vt ) is added to the data (to
have a perfect bell-shaped distribution). The resulting distri-
bution is alreadymean-centered, hence the values are divided
by their standard deviation, and finally, the added negative
values are dropped to restore the original set of observations.

3.4 Realized GARCH (R-GARCH)

The Realized GARCH introduced by Hansen et al. (2012)
has extended the class of GARCH models by replacing, in
the volatility dynamics, the squared returnswith amuchmore
efficient proxy such as a realized volatility measure. The
structure of the R-GARCH(1, 1) in its linear formulation
is given by:

rt = μ + √
ht zt , (6)

ht = ω + β ht−1 + γ vt−1, (7)

vt = ξ + ϕ ht + τ(zt ) + ut , (8)

where zt∼i .i .d.(0, 1) and ut∼i .i .d.(0, σ 2
u ) with zt and ut

being mutually independent. The first two equations are the
return equation and the volatility equation that define a class
of GARCH-X models, including those estimated in Visser
(2011), Engle (2002), and Barndorff-Nielsen and Shephard
(2005). The GARCH-X acronym refers to the fact that vt is
treated as an exogenous variable. It is worth noting that most
variants of ARCH and GARCH models are nested in the R-
GARCH framework. The measurement equation is justified
by the fact that any consistent estimator of the Integrated
Variance can bewritten as the sumof the conditional variance
plus a random innovation, where the latter is captured by
τ(zt ) + ut . The function τ(zt ) can accommodate leverage
effects, because it captures the dependence between returns
and future volatility. A common choice (Hansen et al. 2012)
that has been found to be empirically satisfactory is to use

the specification:

τ(zt ) = τ1 zt + τ2(z
2
t − 1). (9)

Substituting the measurement equation into the volatility
equation, it can be easily shown that the model implies an
AR(1) representation of ht :

ht = (ω + ξγ ) + (β + ϕγ )ht−1 + γ wt−1, (10)

where wt = τ(zt ) + ut . Furthermore, it is assumed that
the expectation of E(wt ) = 0. The coefficient (β + ϕγ )

reflects the persistence of volatility, whereas γ summarizes
the impact of the past realized measure on future volatility.

The general conditions required to ensure that the volatil-
ity process ht is stationary and the unconditional variance of
rt is finite and positive are given by:

ω + ξγ > 0, (11)

0 < β + ϕγ < 1. (12)

If the conditions in Eq. (11) are fulfilled, the unconditional
variance of rt , taking expectations of both sides in Eq. (10),
can be easily shown to be equal to (ω+ ξγ )/[1− (β +ϕγ )].
Finally, as for standard GARCH models, the positivity of ht
(∀t) is achieved under the general condition that ω, γ and β

are all positive.

3.5 GJR-MEM

Multiplicative Error Models (MEM) were first proposed by
Engle (2002) as a generalization to non-negative variables
of the Autoregressive Conditional Duration (ACD) models
of Engle and Russell (1998). Namely, let vt be a discrete
time process on [0,∞) (e.g., a realized measure). A general
formulation of the MEM is

vt = μtεt , (13)

μt = μ(ψμ, It−1), (14)
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where (εt |It−1)
i id∼ D+(1, σ 2). It can be easily seen that

E[vt |It−1] = μt , (15)

var[vt |It−1] = σ 2μ2
t , (16)

where the conditional expectation of the realized measure
(μt ) provides an estimate of the latent conditional variance
ht .

The GJR-MEMmodel is obtained by borrowing from the
GARCH literature (Engle 2002; Glosten et al. 1993) the fol-
lowing dynamic equation for μt :

μt = ω + αvt−1 + βμt−1 + γ vt−1 I (rt−1 < 0), (17)

which allows the reproduction of volatility clustering as well
as leverage effects.

Coming to the specification of the distribution of εt , any
unit mean distribution with positive support could be used.
Possible choices include Gamma, Log-Normal, Weibull,
Inverted-Gamma andmixtures of them. In this paper we con-
sider the Gamma distribution which is a flexible choice able
to fit a variety of empirical settings. If (εt |It−1) ∼ �(θ, φ),
its density is given by

f (εt |It−1) = 1

�(θ)φθ
εθ−1
t exp

(
−εt

φ

)
. (18)

However, since E(εt |It−1) = θφ, to ensure unit mean, it
is needed to impose the constraint φ = 1/θ giving rise to the
following density

f (εt |It−1) = 1

�(θ)
θθ εθ−1

t exp (−θεt ). (19)

Model parameters can then be estimated maximizing
the likelihood function implied by the unit mean Gamma
assumption. It is worth noting that these estimates have
a quasi-maximum likelihood interpretation since it can be
shown that, given that μt is correctly specified, they are still
consistent and asymptotic normal even if the distribution of
εt is misspecified.

3.6 Evaluationmetrics

We have considered both online and offline evaluations. In
the online evaluation case, two alternative loss functions have
been used to train the LSTM models: the widely accepted
Mean Squared Error (MSE) for regression and forecast-
ing tasks; and the QLIKE function, particularly suitable for
volatility forecasting (Patton 2011). For the offline evalua-
tion case, we have considered a test data set (not used for
training) for out-of-sample evaluation using MSE, QLIKE
and the Pearson correlation index.

Given a vector Ŷ of N forecasts and the vector Y of
observed values, the MSE and QLIKE are defined as fol-
lows:

MSE = 1

N

N∑

i=1

(Ŷi − Yi )
2, (20)

QLIKE = 1

N

N∑

i=1

(log(Ŷi ) + Yi

Ŷi
). (21)

Thesemeasures are proposed in our evaluation framework
since they are considered to be robust for assessing volatil-
ity forecast performance (Patton 2011). A robust measure
must ensure that using a proxy for the volatility (the realized
kernel in our case) gives the same ranking as using the true
(unobservable) volatility of an asset.

Moreover, the Pearson correlation coefficient is computed
between the forecast and realized volatility of each estimated
model, to assess themodels ability to follow the assets trends.

Also, statistical test, namely Diebold-Mariano (DM), is
used to assess models’ Conditional Predictive Ability (CPA).
The one-tail DM (Diebold and Mariano 2002) is used with
squared error, predictive horizon equal to 1 (for one step
ahead forecast) and a significance threshold at 0.05, to test the
following NULL hypothesis ‘Model Mi has better predictive
ability than model Mj with a size level equal to α = 0.05’.

Lastly, the results are evaluated in terms of Value At Risk
(VaR) and Expected Shortfall (ES) estimation which are
widely adopted by practitioners and regulators as standard
measures of market risk for financial assets. The VaR encap-
sulates in a point-wise fashion the potential market value loss
of a financial asset over a time horizon h, at a significance
or coverage level αVaR . In our case we consider h = 1 and
αVaR = 0.05. Its performance is evaluated using two metrics:
the violation ratio (VR) and the average square magnitude
function (ASFM). The VR is the percentage occurrence of an
actual loss that is greater than the estimatedmaximum loss in
the VaR frameworkwhile the ASFM considers the amount of
possible defaultmeasuring the average squared cost of excep-
tions. The ES (Acerbi and Tasche 2002) is often referred to
as the conditional VaR (cVaR). The predictive performance
of the models under comparison in forecasting the pair (VaR,
ES) is assessed by computing the Asymmetric Laplace Score
(ALS), as defined in Taylor (2019): more accuratemodels are
expected to return lower values of the ALS criterion. The VR
and ASFM metrics are defined as in Dunis et al. (2010) and
Maciel et al. (2017).

4 Results and discussion

In this section, the proposed approach is implemented in two
variants: univariate (LSTM-1) and multivariate (LSTM-29
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Table 5 Evaluation Metrics for the DJI 500 dataset: The MSE, QLIKE and Pearson measures are reported for each asset and for each compared
model

Asset LSTM-1 LSTM-29 R-GARCH GJR-MEM

MSE QLIKE Pearson MSE QLIKE Pearson MSE QLIKE Pearson MSE QLIKE Pearson

AA 4.77 1.9871 0.59 3.65 1.9753 0.69 4.83 2.0125 0.60 4.05 1.9702 0.65

AIG 6.71 1.4047 0.61 4.84 1.3502 0.72 6.40 1.4303 0.61 5.40 1.3534 0.70

AXP 3.19 1.1222 0.77 1.70 1.1057 0.87 2.11 1.1139 0.84 2.00 1.1060 0.85

BA 0.88 1.4089 0.56 0.81 1.4014 0.62 0.85 1.4102 0.59 0.80 1.4023 0.62

BAC 3.93 0.9167 0.73 2.86 0.8878 0.81 5.19 0.9652 0.71 3.35 0.8991 0.77

C 5.86 1.2183 0.74 2.48 1.1888 0.89 3.62 1.2208 0.83 2.92 1.1912 0.86

CAT 1.12 1.5686 0.65 1.03 1.5559 0.69 1.18 1.5688 0.62 1.10 1.5595 0.66

CVX 1.36 1.3297 0.69 1.05 1.3262 0.76 1.20 1.3210 0.72 1.07 1.3135 0.75

DD 1.56 1.3125 0.64 1.10 1.2951 0.76 1.33 1.3225 0.72 1.11 1.2906 0.75

DIS 1.01 1.3500 0.52 0.86 1.3308 0.63 0.88 1.3351 0.61 0.83 1.3230 0.63

GE 0.57 0.9274 0.66 0.50 0.9214 0.72 0.54 0.9328 0.69 0.50 0.9109 0.71

GM 11.44 2.1415 0.62 9.83 2.1035 0.68 11.45 2.1048 0.62 10.79 2.0971 0.64

HD 2.58 1.5623 0.68 1.83 1.5563 0.78 1.99 1.5530 0.76 1.81 1.5417 0.77

IBM 0.65 1.0042 0.64 0.51 0.9995 0.73 0.65 1.0165 0.64 0.54 0.9900 0.70

INTC 1.42 1.7701 0.62 1.52 1.7711 0.62 1.51 1.7707 0.59 1.40 1.7621 0.62

JNJ 0.33 0.6027 0.52 0.32 0.6031 0.54 0.35 0.6566 0.48 0.34 0.6032 0.51

JPM 4.92 1.3190 0.76 3.86 1.3097 0.80 4.27 1.3223 0.78 3.24 1.2999 0.84

KO 0.28 0.7644 0.59 0.27 0.7645 0.61 0.34 0.8399 0.56 0.27 0.7557 0.60

MCD 1.32 1.3551 0.49 1.40 1.3736 0.48 1.32 1.3630 0.49 1.41 1.3579 0.47

MMM 0.64 1.0530 0.56 0.55 1.0512 0.65 0.68 1.0991 0.55 0.54 1.0444 0.64

MRK 9.45 1.5524 0.25 8.63 1.5483 0.38 9.75 1.5783 0.26 10.30 1.5341 0.28

MSFT 0.77 1.2006 0.60 0.63 1.2030 0.69 0.63 1.2070 0.68 0.57 1.1838 0.70

PG 0.25 0.7635 0.56 0.25 0.7696 0.58 0.31 0.8072 0.52 0.25 0.7584 0.57

SPY 0.17 0.1620 0.72 0.17 0.1519 0.75 0.16 0.1369 0.75 0.14 0.1267 0.78

T 1.97 1.4403 0.63 1.64 1.4304 0.70 2.12 1.4644 0.63 1.72 1.4266 0.69

UTX 0.85 1.1702 0.50 0.69 1.1634 0.62 0.97 1.1875 0.47 0.74 1.1585 0.59

VZ 1.40 1.2661 0.54 1.05 1.2643 0.70 1.15 1.2907 0.67 1.02 1.2530 0.70

WMT 0.71 1.1262 0.64 0.67 1.1253 0.68 0.88 1.1604 0.60 0.70 1.1163 0.65

XOM 0.95 1.2453 0.71 0.89 1.2484 0.73 0.92 1.2385 0.71 0.87 1.2324 0.73

and LSTM-92). The method is compared with two state-
of-the art methodologies, namely R-GARCH (Hansen et al.
2012) and GJR-MEM (Glosten et al. 1993). We discuss
empirical results from an out-of-sample forecasting compar-
ison, using returns and realized measures for the 28 Dow
Jones Industrial Average stocks plus one exchange-traded
index fund, SPY (which tracks the S&P 500 index) over a
period of 1250 days and for the 92 stocks belonging to the
NASDAQ 100 index over a period of 956 days.

4.1 Dow Jones industrial average 500

A detailed comparison of the methods performance is given
in Table 5 with respect to each asset. The LSTM-29 approach
reaches the lowestMSE error for 18 out of the 29 assets when
compared with LSTM-1, R-GARCH and GJR-MEM meth-

Fig. 3 BAC one step ahead predictions. The observed time series are
given in gray and the predicted volatility values in black. Data point 0
is the 18th March 2003; data point 600 is the 10th August 2005; and
data point 1200 corresponds to the 8th August 2008

ods. In particular, the LSTM-29 has a lower error compared
to our univariate model for 25 out of 29 assets, equal in 2 and
worse in 2 cases. Compared to R-GARCH, the LSTM-29 is
better again in 25 out of 29 cases, equal for 1, and worse for
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3 assets. Lastly, our proposed approach is better, equal and
worse than GJR-MEM in 16, 3 and 10 cases, respectively.
An example of the one step ahead prediction given by the
LSTM-29 for the BAC asset is presented in Fig. 3.

Having a closer look at the MSE values from Table 5, the
LSTM-29 is not better than the other benchmarks on assets
with very low errors and hence volatility, in the considered
period (e.g., JNJ, KO, PG and SPY).

Next, the forecast models are employed in risk manage-
ment applications using Value At Risk (VaR). With the VaR
estimates, the models are evaluated using the VR, CVR and
the ASMF. Table 6 shows the values of VR, CVR and ASMF
for VaR estimation using the four models for all DJI 500
assets. The LSTM-29 achieved better VR (values closer to
our selectedVaRconfidence level—5%)compared toLSTM-
1 in 15 out of 29 assets, equal for 3 and worse for 11;
compared to the R-GARCH is better in 6 cases, equal in 2
and worse in 21, while compared to the GJR-MEM is better,
equal and worse in 23, 1 and 5 cases, respectively.

For the CVR , the LSTM-29 achieved better results (the
lower the value, the better) compared to LSTM-1 in 11 out
of 29 assets, equal for 3 and worse for 15; compared to the
R-GARCH is better in 21 cases, equal in 2 and worse in 6,
while compared to the GJR-MEM is better, equal and worse
in 5, 1 and 23 cases, respectively.

When considering the ASMF measure, the LSTM-29 is
better than the LSTM-1, R-GARCHandGJR-MEM in 21, 17
and 17 cases; and worse in 8, 12 and 12 cases, respectively.

Figure 4 is a scatter plot illustration comparing for each
asset, the performance of the LSTM-29 and the other mod-
els measured in terms of MSE difference (i.e., positive
values representing smaller errors and better LSTM-29 per-
formance) versus asset volatility in terms of its variance (i.e.,
higher values of variance representing stronger fluctuation in
daily volatilities) over the out of sample period (1250 days).

As can be seen from Fig. 4, the LSTM-29 is gener-
ally comparable with the other models at lower volatility,
while outperforming theLSTM-1 and the two state-of-the-art
R-GARCH and GJR-MEM approaches in higher volatility
regimes. This result is confirmed by the Pearson’s correla-
tion index with values 0.825 against LSTM-1, 0.800 against
R-GARCH, and 0.608 against GJR-MEM over the 29 assets.

To verify whether the proposed approach has statistically
superior predictive ability, a Diebold-Mariano test is per-
formed using a predictive horizon equal to 1 (one-step-ahead
forecast). As it can be observed from the results reported in
Table 7, the LSTM-29 has a better predictive ability for 10
out of 29 assets compared to the LSTM-1, 16 over 29 against
the R-GARCH, and 6 out of 29 assets for the GJR-MEM,
when considering a p-value strictly lower than 0.05. It is
also worth noticing that in the remaining cases LSTM-29 is
never worse than the compared models.

Furthermore, to test the dependence of forecasting accu-
racy on volatility conditions, we evaluated the errors (mean,
median, standard deviation (std) and median absolute devi-
ation (MAD)) for four volatility clusters: very low (VL);
low (L); high (H); and very high (VH) (Table 8). The clus-
ters are calculated taking the 50, 75 and 95 percentiles of
the smoothed volatility over time, using a 10-day centered
moving average andmoving variance of all the assets. Specif-
ically, for the moving average, we consider the following
ranges: 0 to 0.50 (up to 50%) for VL; 0.50 to 0.85 (up to
75%) for L; 0.85 to 2.80 (up to 95%) for H; and 2.80 to 13.92
(up to 100%) for VH. For the moving variance the ranges
are: 0 to 1.18 (up to 25%) for VL; 1.18 to 1.79 (up to 75%)
for L; 1.79 to 4.38 (up to 95%) for H; and 4.38 to 15.60 (up
to 100%) for VH. As can be seen from the DM test results
in Table 9, the LSTM-1 performs better than the multivariate
counterpart for relatively low volatility periods, while having
inferior performance for higher volatility ones. The LSTM-
29 is never worse than the R-GARCH, slightly worse than
the GJR-MEM for low volatilities and always statistically
better in high volatility settings.

However, it is worth noticing that the difference between
LSTM-1 and LSTM-29 seen from Table 8 is in practice neg-
ligible, valuing 0.010 (VL) and 0.024 (L) for the mean, 0.014
(VL) and 0.030 (L) for the median. The real impact is made
by the LSTM-29 within the VH volatility regime, where the
difference to LSTM-1, R-GARCH, GJR-MEM is, respec-
tively, 10.61, 7.17, and 2.40 for the mean and 0.59, 1.35,
and 0.92 for the median. Considering that the risk in trading
assets is considerable at higher volatility, the VH cluster is
also the most important to pay attention to.

In all regimes, we observed the tendency of LSTM-29
to provide larger values of volatility when compared to
R-GARCH and GJR-MEM estimates, and to be more con-
servative from a risk management perspective.

Figure 5 outlines the cumulative MSE recorded by the
considered models in the four different volatility regimes.
These curves are plotted by sorting the errors in decreasing
order so that larger errors come first, which is the reason of
the up-sloped shapes of the curves: they outline the tendency
of models to accumulate larger errors along the experimen-
tation. One can observe that the LSTM-29 performance is
always better than the other models in regimes of H and
VH volatility. In VL and L volatility regimes, the LSTM-
29 is a little worse than GJR-MEM, but still better than
R-GARCH in all considered regimes. This is not surprising
as the R-GARCH and GJR-MEM are econometric models
of volatility, while the LSTM is unaware of the underlying
stochastic process. Instead, the LSTM-1 achieved a better
accuracy for VL and L regimes, but performed poorly for the
VH volatility regime. For completeness, the LSTM-29 was
also trained without the index fund SPY, showing consistent
results.
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represents an asset. The LSTM-29 gets better in periods of high volatility

Table 7 Diebold-Mariano
statistic for the DJI 500 dataset
(with a p-value given in
brackets) for the LSTM-29
against LSTM-1, R-GARCH
and GJR-MEM

Asset LSTM-29 vs.

LSTM-1 R-GARCH GJR-MEM

AA −2.42 (0.008***) −3.21 (0.001***) −2.53 (0.006***)

AIG −2.86 (0.002***) −2.35 (0.009***) −1.21 (0.114)

AXP −2.68 (0.004***) −2.76 (0.003***) −2.06 (0.020**)

BA −1.33 (0.092*) −1.92 (0.028**) 0.25 (0.597)

BAC −2.27 (0.012**) −3.11 (0.001***) −1.65 (0.049**)

C −3.12 (0.001***) −3.33 (0.000***) −2.17 (0.015**)

CAT −1.01 (0.157) −2.45 (0.007***) −1.28 (0.100*)

CVX −1.60 (0.055*) −1.54 (0.061*) −0.20 (0.420)

DD −1.77 (0.039**) −2.51 (0.006***) −0.18 (0.429)

DIS −1.55 (0.060*) −0.62 (0.267) 0.64 (0.739)

GE −0.85 (0.198) −0.85 (0.197) −0.10 (0.460)

GM −2.12 (0.017**) −2.91 (0.002***) −2.05 (0.020**)

HD −1.67 (0.048**) −1.03 (0.153) 0.14 (0.556)

IBM −1.81 (0.035**) −2.31 (0.011**) −0.89 (0.187)

INTC 0.64 (0.740) 0.05 (0.520) 1.27 (0.898)

JNJ −0.10 (0.458) −1.27 (0.100*) −1.69 (0.046**)

JPM −1.29 (0.099*) −1.37 (0.085*) 1.28 (0.900)

KO −0.28 (0.389) −2.9 (0.002***) −0.44 (0.331)

MCD 1.27 (0.898) 1.52 (0.935) −0.14 (0.443)

MMM −1.46 (0.072*) −2.36 (0.009***) 0.33 (0.628)

MRK −0.97 (0.165) −1.47 (0.071**) −1.58 (0.057*)

MSFT −0.93 (0.176) 0.02 (0.509) 1.38 (0.916)

PG −0.36 (0.360) −3.00 (0.001***) 0.00 (0.501)

SPY −0.09 (0.463) 0.33 (0.629) 1.92 (0.972)

T −1.76 (0.040**) −2.72 (0.003***) −1.20 (0.116)

UTX −0.87 (0.192) −1.72 (0.043**) −0.94 (0.173)

VZ −1.45 (0.074*) −1.02 (0.153) 0.58 (0.718)

WMT −0.74 (0.230) −2.26 (0.012**) −0.61 (0.272)

XOM −0.54 (0.293) −0.40 (0.343) 0.43 (0.665)

The p-values are marked with a * for 10% confidence level, with ** for 5% and with *** for 1%
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To investigate whether the proposed model is able to
accurately predict volatility level throughout extrememarket
events, we also considered its predictive performance during
the 2007–2008 crisis (in particular, focusing on the time span
of 200 trading days starting from the 1st July 2007).

Table 10 shows the MSE scored by each model in the
initial 1050 days (pre-crisis) and the last 200 days (in-crisis).
As already shown in Fig. 5, the LSTM-1 and GJR-MEM are
slightly better in the forecast within low volatility regimes
(pre-crisis), closely followed by the LSTM-29. On the other
hand, during the crisis period, the LSTM-29 performed better
than LSTM-1 and R-GARCH in 28 out of 29 cases, and in 20
out of 29 cases when compared to GJR-MEM. Furthermore,
R-GARCH was never able to achieve the best forecasting
performance for any of the assets during both the pre-crisis
and in-crisis periods.

In order to evaluate how much model A is better than
model B, we compute their MSE ratio as:

ratioMSE(A, B) = MSEA

MSEB

which gives a value greater than 1, if model B has better
accuracy than model A, and smaller than 1 otherwise. This
metric has been applied in order to compare the four models
performance during the pre-crisis and in-crisis periods.

As can be seen from Fig. 6a, the LSTM-29 is performing
better than LSTM-1 for 28 out of 29 assets (i.e., all except for
the MCD—the only point below the reference line) during
the in-crisis period, with up to 1.8 MSE ratio.

When compared to the R-GARCH model (Fig. 6b), the
LSTM-29 is showing similar performance. Again, the MCD
is better predicted by theR-GARCH in both periods and three
other assets are with worsened MSE ratio but are still better
predicted by the LSTM-29. The remaining 25 assets showed
an improved performance of LSTM-29 during the in-crisis
period.

Lastly, the comparison with GJR-MEM (Fig. 6c), shows
the LSTM-29 with increased accuracy on 15 assets during
the 200 high risk days. Five assets are with slightly worsened
prediction during the in-crisis period, five assets have close
prediction accuracy (at near 1 ratio), and three assets (i.e.,
INTC, MSFT, and SPY) are better predicted by the GJR-
MEM for both before and during the crisis.

Overall, the above discussed empirical results suggest that
the use of the LSTM approach for volatility forecasting can
be particularly profitable in turbulent periods where the eco-
nomic pay-off derived from generation of more accurate
volatility forecasts is potentially more substantial than those
in more tranquil periods.
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Table 9 Diebold-Mariano
statistic for the DJI 500 dataset
(with a p-value given in
brackets) for the LSTM-29
against LSTM-1, R-GARCH
and GJR-MEM for the four
volatility regimes

LSTM-29 vs.

LSTM-1 R-GARCH GJR-MEM

Moving Average Very Low 6.65 (1.000) – 2.12 (0.017) 2.21 (0.987)

Low 2.56 (0.995) – 2.30 (0.011) 1.07 (0.859)

High – 1.79 (0.037) – 5.23 (< 0.001) – 1.91 (0.028)

Very High – 7.11 (< 0.001) – 6.87 (< 0.001) – 2.58 (0.005)

Moving Variance Very Low 10.64 (1.000) 0.06 (0.524) 4.83 (1.000)

Low 5.06 (1.000) – 2.51 (0.006) 2.55 (0.995)

High – 2.88 (0.002) – 7.75 (< 0.001) – 1.13 (0.13)

Very High – 7.02 (< 0.001) – 6.66 (< 0.001) – 3.00 (0.001)

Fig. 5 Cumulative MSE for the four models at different volatility regimes (VL, L, H, and VH). The four volatility levels are calculated using the
50, 75 and 95 percentiles over the 29 assets. The different scale on the y-axis is due to the magnitude of the error in the four volatility regimes
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Table 10 MSE before and during the crisis periods on the DJI 500 dataset for the four considered models (the best performing model is given in
bold)

Asset Before crisis During crisis

LSTM-1 LSTM-29 R-GARCH GJR-MEM LSTM-1 LSTM-29 R-GARCH GJR-MEM

AA 2.66 2.38 2.79 2.44 15.90 10.35 15.56 12.61

AIG 3.24 2.85 3.48 2.62 25.07 15.38 21.88 20.13

AXP 0.71 0.65 0.68 0.73 16.35 7.30 9.61 8.72

BA 0.58 0.57 0.62 0.59 2.48 2.04 2.06 1.91

BAC 0.37 0.34 0.39 0.37 22.78 16.24 30.63 19.10

C 0.51 0.39 0.43 0.37 34.19 13.49 20.52 16.44

CAT 0.85 0.82 0.88 0.84 2.45 2.07 2.72 2.44

CVX 0.91 0.78 0.78 0.73 3.69 2.51 3.44 2.84

DD 0.55 0.48 0.53 0.48 6.92 4.36 5.58 4.43

DIS 0.65 0.63 0.67 0.64 2.97 2.09 2.02 1.81

GE 0.21 0.25 0.23 0.21 2.48 1.82 2.23 2.06

GM 7.15 6.39 7.36 7.05 34.18 28.10 33.16 30.61

HD 0.70 0.75 0.69 0.68 12.39 7.46 8.80 7.76

IBM 0.25 0.25 0.26 0.22 2.78 1.86 2.73 2.22

INTC 0.85 0.97 0.93 0.88 4.46 4.41 4.63 4.15

JNJ 0.30 0.31 0.32 0.33 0.48 0.39 0.51 0.44

JPM 0.62 0.59 0.64 0.60 25.71 18.88 21.29 15.11

KO 0.18 0.19 0.22 0.18 0.76 0.70 0.94 0.78

MCD 1.20 1.26 1.20 1.32 1.96 2.17 1.97 1.94

MMM 0.46 0.41 0.46 0.40 1.61 1.29 1.86 1.27

MRK 6.37 6.43 6.50 7.18 25.81 20.38 27.01 26.92

MSFT 0.33 0.36 0.34 0.31 3.13 2.06 2.16 1.97

PG 0.20 0.20 0.22 0.20 0.56 0.53 0.78 0.52

SPY 0.06 0.07 0.06 0.05 0.71 0.64 0.68 0.55

T 1.27 1.22 1.72 1.32 5.70 3.87 4.22 3.86

UTX 0.35 0.36 0.39 0.34 3.51 2.44 4.05 2.86

VZ 0.59 0.64 0.66 0.60 5.71 3.24 3.71 3.24

WMT 0.36 0.37 0.40 0.36 2.57 2.27 3.44 2.46

XOM 0.67 0.63 0.59 0.57 2.42 2.30 2.72 2.43

(a) LSTM-1 (b) R-GARCH (c) GJR-MEM

Fig. 6 MSE rations of the LSTM-29 compared to: a the LSTM-1; b the R-GARCH; and c the GJR-MEMmodels. The x-axes represent the pre-crisis
period (up to 1st July 2007) and the y-axes—the in-crisis one (after 1st July 2007). Each dot is an asset and the bisect line is shown as reference
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4.2 NASDAQ 100

Results for the NASDAQ 100 dataset are reported in
Tables 11, 12 and Fig. 7. The latter shows the models’
cumulative MSE profile in the four volatility regimes for
the NASDAQ 100 dataset. As already observed with the DJI
500 (Fig. 5), the proposed method generally achieves better
accuracy when compared to the R-GARCH and GJR-MEM.
In this experiment, the univariate LSTM-1 not only outper-
forms the state-of-the-art methods, but also the multivariate
counterpart (LSTM-92) in all volatility regimes.

Table 11 reports the errors (mean, median, standard devia-
tion (std) and median absolute deviation (MAD)) for the four
volatility regimes. As it can be seen from Fig. 7, the LSTM-1
has smaller errors when compared to all other methods, for
both moving average and moving variance volatilities over
time. Themean/std are particularly high due to the difference
inmagnitudes across the92 assets,which is also evidentwhen
using the more robust median/MAD metrics.

Furthermore, the DM test (Table 12) is used to statisti-
cally assess the difference in errors between the best model
(LSTM-1) and the others (LSTM-92, R-GARCH and GJR-
MEM). The DM test shows the LSTM-1 to be statistically
better than the R-GARCH in all volatility regimes (p-value
< 0.05), better than LSTM-92 in three volatility regimes
(i.e., VL, H and VH) for moving variance, and in another
three regimes (i.e., L, H and VH) for the moving variance. In
the case of GJR-MEM, the LSTM-1 results are statistically
better in two volatility settings (i.e., VL and H).

As it can be seen, the LSTM-1 outperforms the multivari-
atemodel for theNASDAQdata. This limitation could be due
to the fact that while we are increasing the number of assets,
the number of samples in the time series is shorter (i.e., curse
of dimensionality). To allow the multivariate model to better
learn the assets’ interactions, there is the need for more data
points.

5 Comparison with recurrent neural
networks (RNN)

Eventually, we compare the proposed deep model with the
classic Elman Network (also known as Simple Recurrent
Network) (Elman 1990) on both DJI 500 and NASDAQ 100.
The Elman RNN topology only stores the previous values
of the hidden units, thus being only able to exploit informa-
tion from the most recent past. This comparison is carried
out to further justify the use of the more complex LSTM
model. Table 13 presents the mean/std and median/MAD of
the two methods (both univariate and multivariate) for the
two datasets. As can be seen, the LSTMs performances are
generally better than the RNN counterparts, achieving lower
estimate errors for all analyzed volatility regimes and across Ta
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Table 12 Diebold-Mariano
statistic for the NASDAQ 100
dataset (with a p-value given in
brackets) for the LSTM-1
against LSTM-92, R-GARCH
and GJR-MEM for the four
volatility regimes

LSTM-1 vs.

LSTM-92 R-GARCH GJR-MEM

Moving average Very low – 3.35 (0.001) – 40.06 (< 0.001) – 7.44 (< 0.001)

Low – 1.13 (0.259) – 5.54 (< 0.001) – 0.1 (0.923)

High – 7.91 (< 0.001) – 12.49 (< 0.001) – 3.41 (0.001)

Very high – 4.42 (< 0.001) – 5.27 (< 0.001) – 1.59 (0.113)

Moving variance Very Low – 0.48 (0.632) – 38.15 (< 0.001) – 4.75 (< 0.001)

Low – 3.6 (< 0.001) – 13.24 (< 0.001) – 0.87 (0.383)

High – 5.85 (< 0.001) – 10.53 (< 0.001) – 1.42 (0.155)

Very high – 4.29 (< 0.001) – 4.62 (< 0.001) – 1.7 (0.089)

Fig. 7 Cumulative MSE for the four models at different volatility regimes (VL, L, H and VH). The four volatility levels are calculated using the
50, 75 and 95 percentiles over the 92 assets. The different scale on the y-axis is due to the magnitude of the error in the four volatility regimes
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(a) DJI 500 (b) NASDAQ 100

Fig. 8 Cumulative MSE for the LSTM and RNN methods (both univariate and multivariate)

all metrics (with only few exceptions for RNN-29 with mov-
ing variance). Furthermore, Fig. 8 illustrates the cumulative
errors for the DJI 500 (Fig. 8a) and NASDAQ 100 (Fig. 8b)
datasets. As can be observed, the error profiles of both uni-
variate and multivariate LSTM are better (lower cumulative
error) than those achieved by the two comparedRNNmodels.
This result further acknowledges the ability of more com-
plex time series models to exploit both short- and long-term
dependencies in the available data.

6 Conclusion

In this paper, we investigated the profitability of using LSTM
for forecasting daily stock market volatility in order to sup-
port decision making in risk management applications. We
applied the model to a panel of 29 assets representative of the
Dow Jones Industrial Average index over the period 2002–
2008, in addition to the market factor proxied by the SPY,
and to 92 assets belonging to the NASDAQ 100 index within
the period December 2012 to November 2017.

Both periods entail different market regimes related the
outrise of two extremely critical events: the global asset man-
agement crisis (2007–2008) and the European debt crisis
(2011–2012).

Our findings confirmed the superiority of the LSTM
over widely popular univariate parametric benchmarks, such
as the R-GARCH and GJR-MEM, when forecasting in
regimes of high volatility, while still producing compara-
ble predictions for the low/medium volatility periods. These
conclusions are result of performance evaluation, using the
MSE, QLIKE and the Pearson correlation index in addition
to the Diebold-Mariano statistical test.

An attractive feature of the LSTM is that it easily allows
taking into account volatility spillover phenomena which

are dynamic dependence relationships among the volatili-
ties of different stocks. Such dependency is hard to identify
with conventional parametric approaches, due to the need of
large number of parameters to be handled by the models.
Furthermore, even simple models such as standard vector
auto-regressive techniques are easily affected by the curse of
dimensionality. On the other hand, the LSTM (belonging to
an emerging class of deep learning approaches) demonstrates
yet again its capability to cope with complex and highly
nonlinear dependencies among the considered variables and
in particular, shows superior performance in predicting and
forecasting especially in high turbulence and entropy condi-
tions for the considered high volatility stock market periods.

Results of the experiments show the ability of deep learn-
ingmodels to capture cross-volatility dependencies using the
whole market raw data, with no background knowledge of
the distribution of values and the dependency across assets
over time. Therefore, application of LSTM in this frame-
work is beneficial, and, from the perspective of practitioners
in Finance, it has the relevant advantage of being almost
completely data driven and model-blind from a statistical
point of view. Overall, it should be remarked that the degree
of complexity of the relationships linking individual asset
volatilitieswithin amarket is such to prevent the specification
and estimation of feasible multivariate parametric models. In
this perspective, deep learningmodels offer a highly valuable
tool for making robust and accurate inference on complex
phenomena such as volatility spillovers, contagion effects
and volatility co-movements and, in general, for accurate
risk and volatility forecasting.
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