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Abstract: Sleep disorders are a growing threat nowadays as they are linked to neurological, cardiovas-
cular and metabolic diseases. The gold standard methodology for sleep study is polysomnography
(PSG), an intrusive and onerous technique that can disrupt normal routines. In this perspective,
m-Health technologies offer an unobtrusive and rapid solution for home monitoring. We developed
a multi-scale method based on motion signal extracted from an unobtrusive device to evaluate sleep
behavior. Data used in this study were collected during two different acquisition campaigns by using
a Pressure Bed Sensor (PBS). The first one was carried out with 22 subjects for sleep problems, and
the second one comprises 11 healthy shift workers. All underwent full PSG and PBS recordings. The
algorithm consists of extracting sleep quality and fragmentation indexes correlating to clinical metrics.
In particular, the method classifies sleep windows of 1-s of the motion signal into: displacement (DI),
quiet sleep (QS), disrupted sleep (DS) and absence from the bed (ABS). QS proved to be positively
correlated (0.72 ± 0.014) to Sleep Efficiency (SE) and DS/DI positively correlated (0.85 ± 0.007) to the
Apnea-Hypopnea Index (AHI). The work proved to be potentially helpful in the early investigation
of sleep in the home environment. The minimized intrusiveness of the device together with a low
complexity and good performance might provide valuable indications for the home monitoring of
sleep disorders and for subjects’ awareness.

Keywords: sleep monitoring; pressure bed sensor (PBS); unobtrusive measure; multi-scale analysis;
sleep apnea–hypopnea syndrome (SAHS); shift-working

1. Introduction

Sleep is a biological process intrinsic to life and essential for optimal health as it plays
a critical role in brain function and systemic physiology. However, sleep complications
and disorders are a growing threat nowadays, affecting up to 70 million people in the
United States and approximately 45 million in Europe [1]. Sleep disturbances can involve
sleep deprivation and fragmentation [2], occurring when the necessary amount and quality
of sleep is not achieved and when there is difficulty in falling asleep [3] or maintaining
continuous pattern of sleep [4]. On the other hand, sleep can be affected by other disorder
events such as respiratory or motor ones [3].

In this regard, one of the most common and alarming conditions of sleep breathing
disorders is Sleep Apnea-Hypopnea Syndrome (SAHS). It affects more adult males with
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respect to adult females and it is associated with many factors such as overweight and
obesity, alcohol, smoking, nasal congestion, and estrogen depletion in menopause, but the
only intervention strategy currently supported with enough evidence is weight loss [5,6].
The sleep of subjects suffering of SAHS is characterized by cessations (apnea) or consid-
erable reductions (hypopnea) in respiratory flow. These abnormal episodes are recurrent
during the night and can last from a few seconds to minutes [7]. It follows that sleep results
are strongly fragmented, whereas other symptoms are excessive sleepiness, decreased
cognitive performance, fatigue and also depression [8].

Thus, fragmented sleep can affect the capabilities of memorization, learning and
concentration, but also mood and behavior. Due to bad sleep quality, social problems are
also frequent such as reduced working efficiency and increased risk in traffic accidents.
Importantly, it is also well-known that when the poor sleep condition is prolonged for a
long time the risk of developing cardiovascular pathologies such as hypertension increases.
For these reasons and the current increase in the number of jobs requiring changing and
prolonged shifts, such as nursery, the sleep fragmentation assessment represents a main
topic [9,10].

Polysomnography (PSG) is currently the primary method for sleep analysis and is
considered the gold standard for sleep monitoring. However, it is an onerous and intrusive
technique that can disrupt normal routines. In addition, single nightly measurements of
patients, are insufficient to study intrinsic patterns of variability or to correlate sleep with
the timing of other activities [11].

With the perspective of minimizing the intrusiveness, m-Health technologies have
been developed lately, offering a rapid, customized, and synergistic solution through the
use of unobtrusive wearable or home automation devices to monitor vital signs during
daily activities [12]. In spite of the fact that great diffusion only occurred in recent years,
these devices have found applications in a wide range of scenarios [13] such as fitness or
sport [14], rehabilitation [15], health monitoring [16,17] and sleep analysis [18,19] for the
aims of prolonged monitoring and preventive interventions.

Different technologies were widely employed for different goals related to sleep anal-
ysis such as extracting quality indexes [20], evaluating fragmentation [21] or detecting
disorders episodes [22] and sleep phases [23,24]. Methods can be divided according to
the devices used, such as electrocardiogram-based [25], actigraphy [26], smartphones [27],
smartwatches and complete IMUs [28] or contactless devices, such as bed pressure sen-
sors [7,10,29]. The latter are one of the latest technologies having the advantage of not
generating any discomfort. Indeed, these kinds of sensors do not need direct contact with
the subject’s body, but they can be integrated into the home environment. Furthermore,
the position where the devices are located (smartwatches on the wrists, contactless devices
embedded in the bed, near chest or under the mattress) was also evaluated in different
studies [24,30,31].

Computational methods used to extract valuable information for screening purposes
are mainly based on signal processing and Artificial Intelligence (AI). Common features
extracted are averages, ranges, angles, skewness, kurtosis and Wavelet coefficients [32,33],
whereas classifiers used are K-Nearest Neighbor (KNN) [34], Decision Tree, Random Forest,
Support Vector Machine [10,24,34–36] and Hidden Markov Models (HMMs) [37].

In this work, we developed a multi-scale method based on motion signal extracted
from an unobtrusive Pressure Bed Sensor (PBS) to evaluate sleep behavior. The contribu-
tions of the study are:

• The implementation of a visualization tool for sleep fragmentation as a function of the
activity level;

• The evaluation of the sleep activity level dynamics from the multi-scale perspective;
• The sleep quality indexes extracted from the visualization tool and multi-scale analysis

which were compared to clinical metrics, such as Sleep Efficiency (SE) and Apnea-
Hypopnea Index (AHI);
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• The analysis on motion signal from two different datasets composed of shift-working
nurses and people with suspicions of sleep apnea;

• An easy tool useful for non-invasive devices based on the only motion signal suitable
for home monitoring.

2. Materials and Methods
2.1. Data Acquisition and Study Population

Data used in this study were collected by means of two different acquisition campaigns
performed by using the same device, already employed in [7,10,29]. Ethical approval and
informed consent details are reported in the cited works.

The PBS device was designed with eight electrodes, located in two columns and four
rows, to acquire the measurement of pressure change generated by the sleeping subject.
PBS covers a measurement area of 64 cm × 64 cm and it was placed under the mattress at
the middle of the sleeping subject’s body. A deepened description of the setup and more
details of the device are reported in [7,10,29]. The device was used to acquire:

Dataset 1: includes 22 subjects (11 males and 11 females, age: 48–63 years) that un-
derwent full PSG and PBS recording at the laboratory of the Sleep Centre of Tampere
University Hospital (TaUH, Tampere, Finland) for suspected sleep apnea. PSG measured
cardiac (ECG), neuronal (EEG), and muscular (EMG) activity. In addition to two elastic
bands for Respiratory Inductive Plethysmogram on the thorax and abdomen position,
a pulse oximeter for oxygen saturation in blood, thermistor, and nasal cannula for airflow
measurement were used during the recording. The Respiratory Event (RE) scoring was
performed through an automatic procedure (Rem-Logic software - Embla Systems limited
liability company) that detects abnormal events from the nasal airflow signal. For example,
apneas are detected as a reduction greater or equal to 90% from the baseline. After the
evaluation of the thoracic and abdominal respiratory effort for the classification of the REs,
an expert clinician made manual corrections (e.g., false positive/negative REs), if neces-
sary. Each RE present in the recordings was labeled according to four different classes
corresponding to the type of RE: (1) Obstructive Sleep Apnea (OSA); (2) Central Apnea;
(3) Hypopnea; and (4) Mixed Apnea [7].

Dataset 2: comprises 11 healthy females (age: 20–54 years) that underwent standard
PSG and PBS recording at the sleep laboratory of the Finnish Institute of Occupational
Health (FIOH, Helsinki, Finland) measuring night or day time sleep for shift workers.
Two different recordings, one during daytime sleep after a night shift of work and one
during nighttime sleep, were obtained from each subject. The hypnograms of the resulting
22 recordings were then scored by medical specialists following a standard procedure.
Each sleep phase was labeled according to the 7 possible classes: (1) Stage 1; (2) Stage 2;
(3) Stage 3; (4) Stage 4; (5) REM; (6) Wake with lights off and; (7) Wake with lights on [10].

PBS recording data files gathered were written into a memory card and synchronized
with the reference PSG for the analysis. Information about all recordings from both datasets
are summarized in Table 1.

2.2. Data Conditioning

A signal reflecting the motion and displacement activity occurring during sleep is
possible to be captured from the different channels acquired through the PBS.

In Dataset 1, the motion signal was extracted computing the standard deviation for
each measurement channel with a sliding raised cosine 4-s window. Then, the average value
between channel-wise standard deviations was taken [7]. On the other hand, in Dataset 2,
the motion signal was obtained from Principal Component Analysis (PCA) [10]. For both
datasets the normalization for the maximum value of the recording was performed.
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Table 1. Characteristics of the datasets.

1. Apnea Dataset 2. Shift-Work Dataset

Rec. Subj. ST
(h) SE TNE AHI Rec. Subj. ST

(h) SE Timetable

1 * S1 6.01 0.72 21 3.49 23 S23 4.34 0.95 D
2 S2 9.66 0.77 145 15.01 24 S23 9.00 0.83 N

3 * S3 8.98 0.95 368 40.99 25 S24 3.90 0.84 D
4 S4 8.74 0.42 2 0.23 26 S24 9.83 0.85 N
5 S5 7.64 0.44 1 0.13 27 S25 4.94 0.85 D
6 S6 8.87 0.66 454 50.63 28 S25 8.36 0.69 N
7 S7 7.22 0.63 13 1.80 29 S26 4.06 0.69 D
8 S8 8.34 0.59 6 0.72 30 S26 8.37 0.89 N
9 S9 9.65 0.68 5 0.52 31 S27 4.89 0.86 D

10 S10 6.18 0.46 196 31.74 32 S27 9.05 0.83 N
11 S11 6.61 0.61 345 52.21 33 S28 5.54 0.94 D
12 S12 6.49 0.53 180 27.75 34 S28 8.46 0.95 N

13 * S13 7.69 0.58 99 12.87 35 S29 5.25 0.93 D
14 S14 9.05 0.68 162 17.90 36 S29 8.68 0.75 N

15 * S15 7.32 0.63 161 22.00 37 S30 4.13 0.93 D
16 S16 11.17 0.64 109 9.76 38 S30 8.09 0.90 N
17 S17 6.79 0.38 319 46.97 39 S31 4.60 0.86 D
18 S18 8.56 0.90 39 4.56 40 S31 9.23 0.85 N
19 S19 8.18 0.87 27 3.30 41 S32 4.80 0.79 D
20 S20 7.02 0.77 161 22.92 42 S32 7.86 0.92 N
21 S21 8.40 0.91 1 0.12 43 S33 5.21 0.47 D
22 S22 5.73 0.80 34 5.93 44 S33 9.52 0.71 N

ST: Sleep Time in hours; SE: Sleep Efficiency; TNE: Total Number of Events; AHI: Apnea-Hypopnea Index; The
recordings marked with “*” symbol are the recordings considered uncertain (see the Section 2.6 for the selection
of the uncertain recordings).

2.3. Pipeline Overview

A multi-scale algorithm using motion signal was designed to assess the sleep quality
on the two different datasets. The pipeline can be divided into different steps with the
purpose of identifying different states during sleep and analyze their trends at different time
scales. After the extraction of the motion signal and the pre-conditioning, the thresholding
method is applied to recognize different kinds of activity in various scenarios. Specifically:
THABS represents the threshold below which subject’s absence from the bed is identified
and THDI is the threshold above which displacements due to subject movements are
detected. Afterwards, a multi-scale analysis based on the cumulative histogram of quiet
sleep periods is performed to analyze sleep fragmentation to recognize quiet and disrupted
sleep. The evaluation is based on prolonged periods of absence of displacements, identified
through minQS that represents the minimum duration considered for a quiet sleep interval.
A summary of the pipeline is shown in Figure 1.
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Figure 1. Complete pipeline of the designed algorithm.

2.3.1. Motion Detection

The power of the motion signal varies according to the different types of noise that
may arise in the environment. Three types of noise identify three situations of interest to be
monitored during sleep:

• External noise: due to the characteristics of the surrounding environment (e.g., traffic).
When only this noise is present (σ2 < THABS) absence from the bed can be assumed
(hereafter called ABS);

• Physiological noise: due to the natural physiological activity (e.g., breathing) of the
subject. If detected (THABS < σ2 < THDI), presence in the bed with no sleep disturbs
or movements can be assumed (hereafter called quiet sleep—QS);

• Displacement: due to physiological movements (σ2 > THDI) during sleep cycle or
abnormal ones (hereafter called DI).
Body movements cause the strongest components in the signal, sometimes even satu-
rating the sensor signal, being many orders higher than the other possible components
generated by the different noise sources. It is well-known that in typical adult sleep
behavior transitions from REM to almost-awake moments generate body movements
each 1.5 h that last a few seconds in physiological sleep [38,39]. On the other hand,
displacements may also be related to other kind of conditions and scenarios. In partic-
ular, the presence of disturbed breathing events (i.e., all thoracic movements stronger
than normal physiological activity such as apnea) or abnormal movements (such as
myclonias) induce strong fluctuations in the motion signal.
The major difference between these cases can be identified through the different
duration and periodicity of the events. The abnormal ones are, indeed, more frequent
and closer to each other, resulting in shorter periods of disrupted sleep (hereafter
called DS). An example of signal highlighting apnea events is shown Figure 2 (box 1).

Therefore, due to the huge differences in the power of the motion signal, the first
phase of the algorithm consists of detecting the three main states through the thresholding
method. In Figure 2 (box 2), a motion signal showing the differences in power during
these distinct states (i) ABS; (ii) QS/DS and (iii) DI and the two thresholds that would
identify them is reported. In the figure, it is also highlighted that signal intervals between
the two thresholds cannot be considered only related to QS, but also to DS, according to
the different duration of periods with no displacements.
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Figure 2. Example of motion signals on time intervals of about one hour of the rec. 2. In (a) the
labeled apnea events are shown. Brown dashed lines represent the event starting, while yellow
dashed lines the ending. In (b) the two thresholds are shown to highlight the different sources of
noise. In particular, THDI (horizontal line in red) is the threshold above considering displacements,
whereas THABS (horizontal line in gray) is the threshold below considering absence from the bed
because of the reduced activity due to the only external noise. The activity between the two thresholds
highlights the period spent lying on the bed that can identify QS and DS. Furthermore, a long time
interval identifying QS is highlighted between the two dashed blue vertical lines, while a short time
interval identifying DS is shown between the two dashed green vertical lines.

2.3.2. Multi-Scale Analysis for Sleep Fragmentation

The only identification of body displacements may suggest potential sleep disorders
but in some cases it is fundamental to specifically investigate their characteristics. For this
purpose, we introduced the cumulative histogram of QS periods.

The proposed visualization method helps to investigate the duration of these peri-
ods, as well as the total amount of QS based on the multi-scale approach. In addition,
the disruptions are also easily interpretable and analyzable in their characteristic periodicity.
This evaluation of the sleep fragmentation allows to highlight random or specific patterns
providing a minimum duration to actually consider a period as QS.

In some cases such as SAHS or myoclonia, threshold-based detection occurs frequently
and for a short time. As a consequence, short periods of motion signal below THDI and
between two detected DI events surrounding them (for example, intervals between apnea
or abnormal movement events or short stationary periods due to physiological movements)
would be correctly detected as DS because of the definition the minimum QS interval.
On the other hand, intervals in which the subject is simply lying on the bed would not be
considered as QS since they are expected to be characterized by shorter periods of absence
of DI. Furthermore, cases in which frequent and long movements occur, not necessarily
related to any specific disorder, would be highlighted, identifying a fragmented sleep that
may be helpful to be aware of.

Therefore, the exploration of sleep fragmentation through the cumulative histogram of
QS periods allows to improve the thresholding-based estimation by accurately identifying
real QS (length(THABS < σ2 < THDI) > minQS) and DS (length(THABS < σ2 < THDI) <
minQS). The latter, among all the possible scenarios in which it can occur, is indeed
generally related to bad rest periods that it would be crucial to detect and distinguish from
QS to correctly monitor the sleep.

In Figure 3, the expected cumulative histograms of QS periods in possible disturbed
and healthy good sleep cases are shown. Specifically, it is possible to analyze how much
time the subject has spent in periods of QS long at least a certain duration (indicated on the
x-axis). Reducing this interval, the cumulative duration increases until it is matched to the
recording duration. Indeed, the scale of durations is followed by DI and ABS durations
which complete 100% of the cumulative. For this reason, the axis is oriented from long to
short periods of QS. It is worth noting that the axis starts from periods of 60 min, because an
occasional interruption of a longer period does not affect the estimate. It is worth noting
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that high slope points are marking the step-up of QS interruption below the given duration.
This may be a marker of repeated disturbances (e.g., SAHS events or myoclonus) with a
period equal or shorter than the step-up point.

Figure 3. Schema representing the possible cumulative histogram of QS periods in disturbed (red) and
healthy good (dashed blue) sleep. The point of maximum slope (red dot) is expected to characterize
the dynamics of the fragmented sleep.

The typical sleep pattern is characterized by regular REM/light/deep sleep cycles,
thus, it is expected to present no movement other than spontaneous ones occurring during
transitions from REM and to result in a modest percentage of fragmented sleep. Conversely,
distinct characteristics can be expected and investigated on the cumulative histogram of QS
according to the different pathological/disturbed sleep. For example, major percentages of
sleep constituted by short periods of QS or significant durations of ABS can be expected in
SAHS or insomnia, respectively.

2.4. Displacement Analysis and Parameters Optimization

In order to identify the four states of interest (i) ABS; (ii) QS; (iii) DS (iiii) DI, it is
necessary to appropriately tune the parameters of the method.

The first parameter to be set is the window size to be considered to evaluate the power
of the signal. For this purpose, the distribution of durations of the characterizing DI events
were investigated across the two datasets setting different thresholds at 0.01, 0.05, 0.1, 0.2,
0.3, 0.35 and 0.5 on the normalized signal.

From the Probability Density Functions (PDF) shown in Figure 4, it is possible to notice
that the durations of the DI extracted from Dataset 1 are distributed up to 20 s. Conversely,
in Dataset 2, the majority of the displacement periods (more than 50% of total duration) are
segments of 1- and 2-s.

Figure 4. Probability Density Function (PDF) of the displacements duration in the Apnea Dataset (a)
and the Shift-Work Dataset (b). The durations were obtained setting thresholds at 0.01, 0.05, 0.1, 0.2,
0.3, 0.35 and 0.5.
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Therefore, the power of the signal was evaluated on 1-s windows as larger intervals
would lead to the misdetection of short movements and transitions, which turn out to be
very frequent, especially in the Dataset 2.

It is also worth noting that longer DI characterizing Dataset 1 are in agreement with
subjects enrolled for sleep problems. Furthermore, the maximum value in the PDF, for al-
most all thresholds used can be noticed around 5 s, highlighting the typical duration in
the order of less than a dozen seconds of the apnea episodes. [6,40]. Conversely, subjects
enrolled in Dataset 2 are all healthy resulting in shorter DIs.

Afterwards, the two thresholds and the minimum QS period parameter, described in
Section 2.3.1, were set. The optimization was performed using a grid-search based strategy
on both datasets. In particular, the best values were found maximizing the correlations
between QS and SE and between DS and AHI, when present. In order to have balanced
values, both correlation values must be greater or equal than 0.5. Then, the best parameters
were obtained maximizing the sum of the two correlations. The resulting values chosen
were 0.05 for the threshold to recognize DI and 15 min as the minimum QS period.

2.5. Detrended Fluctuation Analysis

A widely-used multi-scale method is the Detrended Fluctuation Analysis (DFA). DFA
is a nonstationary time series technique that allows to recognize long-range correlations.
It is widely applied in the biomedical field for a variety of applications, such as [41,42].
DFA calculates the root-mean-square fluctuation of time series, disregarding trends and
nonstationarities in the data. It allows the detection of intrinsic self-similarity, and it also
avoids the spurious detection of apparent self-similarity.

DFA can be divided into three steps. The first one involves the shifting by the mean
and the cumulative sum of the time series. The second one consists of dividing it into
epochs (scales) of various size (logarithmically spaced) and considering these different
segmentations. In the third step, each epoch e is detrended and locally fit to a polynomial
finding the root mean square RMSe, and then the RMS∆s:

RMS∆s =

√√√√ 1
N

N

∑
i=1

[y(i)− y∆s(i)]2 (1)

where N is the total number of data points, RMS∆s is the root mean square obtained for
each scale and y is the input signal.

The Hurst exponent H is then estimated by computing the linear fit between log-
∆s and log-RMS∆s as a function of log-n. H is thus the slope of the line in the range
of time scales of interest and can be estimated using linear regression. Through H it is
possible to quantify the temporal correlations in the signal scale over different window
sizes. In particular, whether:

• H = 0.5, the time series is uncorrelated;
• H > 0.5, there are larger fluctuations on longer time-scales than expected by chance,

thus long-range correlations;
• H < 0.5, means that fluctuations are smaller in larger time windows than expected by

chance, thus the time series is anti-correlated.

Results of DFA applied to the motion signal extracted were compared to indexes
from the cumulative histogram of QS periods. For this reason, we logarithmically selected
15 scales from 1 to 60 min, in agreement to the scales considered by our method (see
Section 2.3.2).

2.6. Experimental Evaluation

Pearson’s correlation analysis was performed between different indexes in multiple
scenarios and conditions to assess the extracted sleep quality.
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First, the QS extracted index was correlated to SE, which was available for all record-
ings. SE is defined as:

SE =
ST
TIB

(2)

where ST is the total sleep time and TIB the total time spent “in bed”.
Second, AHI, which is the number of apnea and hypopnea events per hour of sleep,

was correlated to DS/DI index. AHI is defined as:

AHI =
TNE
TR

(3)

where TNE is the total number of apnea and hypopnea events and TR is total time duration
in hours of the recording. The AHI values for adults are categorized as:

• Normal (N): AHI < 5
• Mild sleep apnea (Mi): 5 ≤ AHI < 15
• Moderate sleep apnea (Mo): 15 ≤ AHI < 30
• Severe sleep apnea (S): AHI ≥ 30

In the correlation analyses, a recording with high values of SE and AHI (Rec.: 3; SE:
0.95; AHI: 40.99) was marked as uncertain. Furthermore, we also considered as uncertain
three recordings where hypopneas composed at least 80% of the total abnormal breathing
events (see Table 1). These specific abnormal respiratory events, indeed, do not generate
any motion [43], thus resulting in being undetectable by PBS.

Furthermore, the two datasets were split according to the SE. Specifically, the threshold
was set to 80%, being considered normal/healthy SE above it [44]. It resulted in 19 record-
ings with good sleep efficiency (GSE), of which 16 are from the Dataset 2 (8 during day
and 8 during night) and 3 from Dataset 1 (all with AHI < 5) and 21 bad sleep efficiency
(BSE), of which 15 are from the Dataset 1 (4 with AHI ≥ 30, 4 with 15 ≤ AHI < 30,
2 with 5 ≤ AHI < 15 and 5 with AHI < 5) and 6 from the Dataset 2 (3 during day and 3
during night).

Correlation analyses were also separately performed on the two datasets to evaluate
the presence and the duration of the displacements (DI state). These durations were statisti-
cally evaluated through Mann–Whitney tests between the independent subgroups obtained.

In particular, in Dataset 1, the recordings were analyzed together and divided into
the normal and mild sleep apnea (N/Mi) group vs. moderate and severe sleep apnea
(Mo/S) group. It resulted in groups of 10 N/Mi and 8 Mo/S recordings. In Dataset 2,
the recordings were analyzed together and dividing between the ones acquired during the
day (11 recordings) and during the night (11 recordings).

Finally, the multi-scale evaluation performed by using the algorithm was compared to
DFA. First, the Hurst exponent, that assesses the self-similarity of the time series, was com-
puted and tested through Mann–Whitney tests to assess statistically significant differences
across all groups. Then, SE and AHI were correlated to the Hurst exponent.

3. Results

First, sleep fragmentation was evaluated through the cumulative histogram of QS
periods. In general, this visualization revealed a greater area and a lower slope in subjects
with high SE and low AHI. In Figure 5, some example cases together with pie charts of the
three main states detected are shown.

It can be noticed that, since the percentage of DI is indicated in the cumulative his-
togram of QS immediately after the value 1 min on x-axis, the recordings having more
movements (green area) results in steeper slopes between the last QS period and DI percent-
age (such as subject 17 reported on middle left). Furthermore, it is worth noting that the
area of the cumulative histogram increases together with the percentage of QS (blue area).
No differences are visible in the last part of the cumulative histogram of QS periods because
the ABS state was never detected since no subject ever stood up during the acquisitions.
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Figure 5. Sleep quality evaluation and fragmentation of recordings from both datasets through pie
charts and cumulative histogram of QS periods.

All the results obtained by the algorithm for the three main states to be detected
recording by recording are then summarized in Table 2.

Afterwards, the Leave-One-Out Cross-Validation was performed on both datasets
evaluating the variability in the correlations between SE and QS detected and between AHI
and DS/DI detected. Parameters and results found were in line to those obtained through
Grid-Search approach described in the Section 2.4. In particular, the resulting correlations
between all SE and QS obtained (0.7162 ± 0.0143) and AHI, when available, and DS/DI
obtained (0.8537 ± 0.0073) remain stable across all folds.
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Table 2. Sleep quality indexes detected by the proposed algorithm for each recording of the
two datasets.

1. Apnea Dataset 2. Shift-Work Dataset

Rec. Subj. QS
(%)

DS
(%)

DI
(%) Rec. Subj. QS

(%)
DS
(%)

DI
(%)

1 * S1 12.02 51.46 36.52 23 S23 90.42 8.92 0.66
2 S2 35.23 49.81 14.96 24 S23 71.37 27.34 1.29

3 * S3 12.14 81.02 6.84 25 S24 93.64 5.43 0.93
4 S4 42.05 47.10 10.85 26 S24 79.78 19.66 0.56
5 S5 48.26 41.38 10.36 27 S25 81.31 17.99 0.70
6 S6 10.15 72.20 17.65 28 S25 68.34 30.61 1.05
7 S7 62.73 32.11 5.16 29 S26 73.18 25.99 0.82
8 S8 58.72 36.49 4.79 30 S26 79.03 20.08 0.89
9 S9 44.06 45.47 10.47 31 S27 81.28 18.13 0.59

10 S10 2.30 84.54 13.16 32 S27 68.44 30.76 0.80
11 S11 6.69 7.23 86.08 33 S28 92.63 6.94 0.43
12 S12 24.62 56.64 18.74 34 S28 91.23 8.34 0.43

13 * S13 0.02 82.63 17.35 35 S29 77.15 22.40 0.45
14 S14 44.02 48.89 7.09 36 S29 74.65 24.63 0.72

15 * S15 0 60.32 39.68 37 S30 84.57 14.87 0.56
16 S16 26.58 62.37 11.05 38 S30 77.02 22.19 0.79
17 S17 0 19.48 80.52 39 S31 68.61 30.76 0.63
18 S18 58.62 37.71 3.67 40 S31 69.66 29.31 1.03
19 S19 71.82 24.86 3.32 41 S32 82.21 17.14 0.65
20 S20 4.26 70.11 25.63 42 S32 92.58 6.87 0.55
21 S21 65.16 30.89 3.95 43 S33 50.16 48.39 1.45
22 S22 49.38 45.14 5.48 44 S33 76.13 23.27 0.60

The recordings marked with “*” symbol are the recordings considered uncertain (see the Section 2.6 for the
selection of the uncertain recordings).

Afterwards, the agreement between SE and QS and AHI and DS/DI was specifically
evaluated through Bland–Altman plots reported in Figures 6 and 7, where uncertain
recordings were also marked.

Figure 6. Bland–Altman Plot of SE vs. QS.
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Figure 7. Bland–Altman Plot of AHI vs. DS/DI.

The plots point out differences between each QS and the corresponding SE, and be-
tween DS/DI and AHI. In both cases, the mean difference was close to the zero (−0.24 and
0.37, respectively). As regards the comparison between SE and QS, only one recording is out
of agreement range (95% range: [−0.70; 0.23]) and it was one of those marked as uncertain.
All the other differences resulted in good agreement across a wide range of SE. The other
three uncertain recordings were among the recordings that deviated most from the average.
Moreover, in the evaluation of AHI in comparison to DS/DI, all differences were within
the confidential interval (95% range: [−0.09; 0.82]) with the uncertain recordings among
the most deviated ones.

The DI state was then specifically assessed. It is possible to notice that, for the thresh-
old (th = 0.05) selected through the procedure described in the Section 2.4, statistically
significant differences were found. In particular, the duration of DI differs between Shift-
Work and Apnea datasets. Furthermore, this difference was also found in the Apnea
Dataset between N/Mi and Mo/S (p-value: <0.05) subgroups and in both datasets between
GSE and BSE (p-value: <0.05) subgroups. A similar duration of displacements resulting in
no statistical difference was found in day and night recordings of the Shift-Work Dataset.
These results, together with the number of DI for each subgroup, are summarized in Table 3.
It is worth noting that the duration of displacements is expressed through the mean and
rank, at which outliers corresponding to 5% of the displacements in the least group were
removed in the pairwise analysis.

Moreover, the Hurst exponent obtained from DFA was evaluated at dataset- and
group-level, as described in the Section 2.6. Larger fluctuations resulting in a higher H
value in the Apnea Dataset with respect to the Shift-Work Dataset were found. Similar
dynamics were found between groups obtained from the same dataset (N/Mi vs. Mo/S,
D vs. N; p-value: >0.05), but a statistically significant difference in the self-similarity was
found between GSE and BSE groups extracted from both datasets (p-value: <0.05). All the
results are summarized in Table 4.

Afterwards, the indexes extracted by the algorithm and Hurst exponent were corre-
lated at dataset- and group-level with SE and AHI. All the results obtained from these
correlation analyses are summarized in the Table 5.

The correlation between QS and SE resulted to be positive and strong in almost all
groups. The Shift-Work Dataset resulted to be greater (0.82) in the case of recordings
acquired during the day than those acquired during the night (0.66). In the whole Apnea
Dataset, a minor correlation (0.5) with respect to Shift-Work Dataset (0.76) was noticed.
At the same time, in this dataset, a strong correlation was found between DS/DI and AHI
(0.85), greater in Mo/S (0.68) than N/Mi (0.44). On the contrary, with respect to QS vs. SE,
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the two subgroup correlations were comparable (N/Mi: 0.53; Mo/S: 0.48). Considering
both datasets, QS and SE strongly correlated as previously mentioned (0.72). Conversely,
the two subgroups, divided according to the SE show low and comparable correlation
values (GSE: 0.4; BSE: 0.39).

As regards as DFA result evaluation, the Hurst exponent was correlated to SE and
AHI, when available. In particular, in the Apnea Dataset, H vs. SE found correlation of
−0.6 in N/Mi subgroup, −0.41 in Mo/S subgroup and −0.47 in the whole set. AHI was
also compared to the results of the DFA but no correlations were found. On the other
hand, in the Shift-Work Dataset, only a high positive correlation of 0.75 in the case of night
recording was revealed. In general, good negative correlation (−0.53) between H and SE in
both datasets was highlighted, resulting in a great difference between GSE (0.34) and BSE
(−0.45) subgroups.

Table 3. Displacements extracted.

Displacements
1. Apnea Dataset

Dur N/Mi (n = 10) Mo/S (n = 8) p Wh
mean [rank] (s) 22.93 [1, 63] 26.85 [1, 110] <0.05 25.54 [1, 110]

n. DI 1494 2973 4467
2. Shift-Work Dataset

Dur D (n = 11) N (n = 11) p Wh
mean [rank] (s) 2.19 [1, 6] 2.17 [1, 5] >0.05 2.17 [1, 6]

n. DI 607 1271 1878
Both

Dur GSE (n = 19) BSE (n = 21) p Wh
mean [rank] (s) 4.65 [1, 21] 24.12 [1, 111] <0.05 18.62 [1, 111]

n. DI 1791 4554 6345
Dur: duration in seconds; n. DI: number of displacements; Wh: whole dataset; n: number of recordings. Non
parametric (Mann–Whitney test). In GSE: 16 are from Dataset 2 — 8 D and 8 N — and 3 from Dataset 1 — all N. In
BSE: 15 are from the Dataset 1 — 4 S 4 Mo, 2 Mi and 5 N — and 6 from the Dataset 2 — 3 D and 3 N.

Table 4. Self-similarity through Hurst Exponent (H) computation.

Hurst Exponent
1. Apnea Dataset

H N/Mi (n = 10) Mo/S (n = 8) p Wh
mean ± std 0.76 ± 0.07 0.75 ± 0.05 >0.05 0.75 ± 0.06

2. Shift-Work Dataset
H D (n = 11) N (n = 11) p Wh

mean ± std 0.63 ± 0.06 0.65 ± 0.04 >0.05 0.64 ± 0.05
Both

H GSE (n = 19) BSE (n = 21) 6 p Wh
mean ± std 0.65 ± 0.05 0.73 ± 0.08 <0.05 0.69 ± 0.08

Wh: whole dataset; n: number of recordings. Non parametric (Mann–Whitney test). In GSE: 16 are from Dataset 2
— 8 D and 8 N — and 3 from Dataset 1 — all N. In BSE: 15 are from the Dataset 1 — 4 S 4 Mo, 2 Mi and 5 N — and
6 from the Dataset 2 — 3 D and 3 N.

Table 5. Correlation analyses.

Correlation Analyses
1. Apnea Dataset 2. Shift-Work Dataset Both

N/Mi
(n = 10)

Mo/S
(n = 8) Whole D

(n = 11)
N

(n = 11) Whole GSE
(n = 19)

BSE
(n = 21) Whole

QS-SE 0.53 0.48 0.50 0.82 0.66 0.76 0.40 0.39 0.72
DS/DI-AHI 0.44 0.68 0.85 na na na na na na

H-SE −0.60 −0.41 −0.47 −0.17 0.75 0.07 0.34 −0.45 −0.53
H-AHI −0.21 0.30 −0.02 na na na na na na

Pearson’s correlation (good correlation in bold). na: unavailable results because of missing AHI; n: number of
recordings. In GSE: 16 are from Dataset 2 — 8 D and 8 N — and 3 from Dataset 1 — all N. In BSE: 15 are from the
Dataset 1 — 4 S 4 Mo, 2 Mi and 5 N — and 6 from the Dataset 2 — 3 D and 3 N.
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4. Discussion

In this work, we proposed a multi-scale method to assess the sleep behavior from
motion signals acquired through an unobtrusive device. For this purpose, we computed
indexes related to the sleep fragmentation at different temporal scales and evaluated
them through the comparison to clinical indexes. The complexity of the method is low,
the hardware requirements are low-cost and the four indexes of quality estimated are easily
interpretable and informative for users in everyday life.

The multi-scale analysis provided a visualization of sleep fragmentation and a tool
to identify states of interest during sleep, with particular attention to the definition of
quiet/disrupted sleep (QS/DS). In fact, although numerous valuable indexes are often
estimated through objective measures from different devices [20–24], the recognition of
real periods of QS is fundamental and may represent an easily interpretable indication
for the subject, especially in home monitoring. In different sleep pathologies, multi-scale
components of sleep fragmentation are difficult to be recognized and more informative
visualizations would be essential in clinics to better interpret the pathology of a specific
patient and its characteristics. For example, in the case of a Chronic Obstructive Pulmonary
Disease subject, how long is the interval between two apneas? The cumulative histogram
of QS periods extracted from the motion signal allowed us to analyze the sleep patterns in
comparison to healthy subjects and to visualize differences in sleep fragmentation.

4.1. Sleep Quality Indexes Assessment

From the different examples in Figure 5 some important characteristics were enhanced.
As expected, a minimal DI percentage was found in healthy subjects due only to the
spontaneous movements before REM phases (brief awakenings), characterizing a typical
no-disturbed sleep phase pattern [38,39]. Other general relevant properties observed in
these cases were that 50% of sleep is composed of QS periods of more than 30 min and
that the movements are exclusively composed of physiological ones that fragment in short
periods of QS a modest percentage of sleep. Conversely, during different kinds of disturbed
sleep it can be noticed that:

• Total time spent in DI state is greater than in the case of healthy sleep;
• Long periods of QS with an absence of DI constitute a small percentage of the night

and fragment a modest percentage of sleep into short periods of QS;
• The point of maximum slope characterizes the dynamics of fragmented sleep.

In particular, the latter represents the minimum QS period to be considered to assure
that real QS and DS periods are identified. In the datasets analyzed, 15 min was found to
be the best value to distinguish healthy and pathological sleep. However, it is worth noting
that, for the pathological cases, this point can significantly change according to the different
nature and severity of the disturbance. For example, the maximum slope in the reported
examples in Figure 5, although being less than 15 min, varies from being very close to the 0
min in the figure on the middle left (subject 17), to almost 15 min on the top left (subject
14). This value corresponds to the fastest change in the cumulative histogram, thus it is
expected to underline the most frequent and characteristic time interval fragmenting the QS
of the subject. The present insight points out the necessity of re-calibrating this parameter
for the specific sleep disorder to enable an optimal recognition. At the same time, this
result confirmed:

• The validity of the cumulative histogram of QS periods as a tool for the qualitative
investigation of sleep fragmentation during a night of sleep;

• Its worthiness in longitudinal studies, whatever the chosen period is. In fact, al-
though different sleep disorders can have different and specific dynamics, it is pos-
sible to highlight quality trends, showing improvements and worsenings among
multiple days.

Furthermore, these findings on the cumulative histogram of QS periods demonstrated
that a multi-scale analysis is needed when analyzing sleep from motion signal.
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Indeed, for the purpose of assessing QS and DS, we dealt with the problem of the
definition of a gold standard. These represent particular states during sleep which are
easily interpretable but that, to the best of our knowledge, were not explored through
objective measures from contactless devices. In this regard, what is a real period of quiet
sleep is not straightforward since in many sleep disorders there are intervals of stillness
that may be not actually quiet, as above-mentioned for apparent quiet sleep between
abnormal breathing/movement events [40]. Another concern about this finding is about
the intrinsic limitation of motion signal. It is indeed impossible to distinguish between
real QS periods and intervals in which the patient is completely still but awake. This is an
intrinsic limitation of the technology [24] but the identification of a minimum QS period
can also improve the robustness of the methods in these cases. On one hand, by correctly
setting this value, real QS periods are detected by verifying that they are enough long
to be considered undisrupted. On the other hand, it is unlikely that an awake person
remains totally still and with completely regular breathing for more than 15 min. Either
way, the awareness on this definition of QS must be considered.

To have a direct relation of QS and DS with gold-standard, qualitative and quantitative
analyses were carried out to show the agreement. From a first visual exploration of the
results (in Table 2) it can be noticed that QS in agreement to SE, shown in Table 1, is higher
in Dataset 2 than Dataset 1. On the other hand, the DI state appears to be much less present
in Dataset 2, which is consistent with known characteristics of motion signal in SAHS [7].
Indeed, subjects from Dataset 1 were acquired for sleep problems, resulting in numerous
members of the group suffering from SAHS and, thus, several abnormal movements.
Furthermore, a higher DS/DI tends to be associated with a higher AHI and a reduced SE.
A clear example is given by the comparison of recordings 6 and 19. Second, the correlations
between SE and QS and DS/DI and AHI of all recordings resulted to be high and with low
variability in cross-validation. This result was also confirmed by the Bland–Altman Plot
in Figures 6 and 7, where all recordings resulted to be in the agreement range, except for
one case, also marked as uncertain. In general, all uncertain recordings were among the
most deviated ones. This may suggest a good correlation with the proposed measures,
unless unexpected scenarios of SE and AHI and the intrinsic limitation of hypopneas
recognition. It is indeed well known that this kind of event can be difficult to be detected
by different devices and technologies [45,46], and, especially in motion signals where
differences cannot be visualized [43].

The motion signal, indeed, reflects the activity occurring during sleep, capturing all
kinds of movement, proving to correlate to wake stage periods [30,47]. The presence of
movement was thus tested on the datasets available through DI state to point out possible
valuable characteristics of the subgroups. In particular, it can be noticed that in Table 3
differences were found between all subgroups considered. In particular, in the case of
splitting through AHI and SE the differences were found to be statistically significant, while
dividing by timetable (Day vs. Night) not. Although a slight difference in DI durations
resulting in a bit higher variability during day was found (mean ± std; D: 2.19 ± 1.47; N:
2.17 ± 1.35), the number of DI events per hour in the whole of Dataset 2 was higher during
the night (D: 10.42; N: 13.84). This seems to confirm the similar results between daytime
and nighttime sleep as in [9,10], especially in subjects adapted to the shift-works. In a future
perspective, the algorithm may be employed in long-term monitoring at home according
to the different shifts and to assess the adaptation to these. Unobtrusive technologies
may be of unvaluable interest for the prevention of the well-known risks of occurrence
of coronary heart and cardiovascular disease, and beyond that, psychomotor and mood
problems [9,10,48].

4.2. Multi-Scale Analyses Comparison

Afterwards, the DFA multi-scale method was applied to investigate differences in the
Hurst Exponent. First, it is worth noting that no significant changes were found in Table 4
between subgroups of the same datasets. D and N recordings show similar dynamics in
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agreement to similar SE values in the two groups (D: 0.83 ± 0.14; N: 0.83 ± 0.09) but also
duration and number of DI per hour, as above mentioned. H also did not discriminate N/Mi
and Mo/S apnea patients. It is worth noting that 7 of the 10 recordings within N/Mi had
healthy AHI, but only 3 of these had healthy SE (≥80%). This result may suggest a reduced
sleep quality due to possible other reasons [49], although a low number of apnea episodes
occurred. This bias in the results seems to be also confirmed by the analysis performed
dividing both datasets between high and low SE. These two subgroups were composed
of 19 and 21 subjects, respectively, where the first included the 3 subjects from Dataset 1
considered healthy according to SE and 16 subjects from Dataset 2. This may suggest that
self-similarity significantly grows in fragmented sleep, presenting larger fluctuations.

Table 5 showed the correlations found between clinical indexes and computed ones
at the group- and subgroup-level. For example, for QS vs. SE a better correlation of
daytime recordings was noted, which may be associated to a slightly less variable SE
(SE-D: 0.83 ± 0.14; SE-N: 0.83 ± 0.08) due to shorter recordings. For other cases, slight
general greater correlation was found in subjects that slept better (N/Mi and GSE), which
is probably associated with motion signals from Mo/S and BSE being more variable,
in general. For this reason, in cases of bad sleep it is easier to correctly recognize DS/DI,
also mirroring the better correlation with AHI for Mo/S subgroup. Furthermore, bad sleep,
in general, can be caused by a number of reasons [49]. For example, although cases of
recordings with high percentage of hypopneas were excluded, in remaining ones they
can still be present and produce false QS periods. To deeply investigate the hypopneas,
the abnormal breathing events in the two subgroups of N/Mi and Mo/S were analyzed.
Although in Mo/S the number and the duration was clearly greater, the percentage of
hypopneas with respect to total duration of abnormal breathing events was less than N/Mi.
In particular, 0.39% of the total duration of all breathing events in Mo/S were hypopneas,
whereas 0.58% of the duration in N/Mi were hypopneas, hence resulting in a more difficult
recognition of DS and higher QS periods identification.

Another interesting finding was that the Hurst exponent resulted to negatively corre-
late to SE (−0.53). In agreement with previous result, H appears to grow as SE decreases,
and it is worth noting that this value is very similar in Mo/S and BSE subgroups (Mo/S:
−0.41; BSE: −0.45). The latter indeed contains all recordings of Mo/S (8/21) but also
seven from N/MI and six from Dataset 2. These cases appear to not heavily affect the
result obtained in Mo/S group and consistency among all unhealthy subjects. In general,
this may suggest an auto-affine structure in motion signal of SAHS cases, given by the
known periodical pattern [50,51], which is not present instead in low SE cases. On the other
hand, a positive good correlation was found between H and SE during night recordings of
Shift-Work Dataset (0.75). In D group and whole Dataset 2 this correlation was not found.
It is worth noting that the N group comprised the longest acquisitions and with good
and the least variable SE across all subjects, resulting to be the most homogeneous group.
In this case, a greater agreement between H and SE is suggested and it can be speculated
to mirror the less clear auto-affine structure in shorter recordings. Furthermore, we may
also speculate that H appears to be prone to great changes according to variable SE values.
Furthermore, this could possibly explain the great difference between the values in GSE
and BSE, since GSE is mainly composed by these recordings from Dataset 2, joined with
three recordings from Dataset 1 containing few apnea episodes. On the other hand, BSE is
mainly composed of recordings from Dataset 1, resulting in huge differences in correlations
obtained in the use of DFA, probably due to such different apnea case patterns.

4.3. Home Monitoring Perspectives

The results cast a new light on the home sleep assessment measures obtained from
unobtrusive devices that may be intuitively monitored by the subject. Recently many stud-
ies focused on the problem of minimizing intrusiveness [52], especially during sleep [53].
The problems of intrusiveness and conditioning related to PSG are well-known [54,55],
thus the continuous screening through home devices results to be fundamental, especially
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considering the latest development of these technologies [56]. Moreover, PBS has the advan-
tage of eliminating this problem. Numerous devices for sleep monitoring were successfully
developed in recent years, such as smartwatches and waist or chest belts [20,24,27], but with
the discomfort of wearing them during the whole sleep night. Although, it may be consid-
ered only a small limitation, its continuous use in daily living is discouraged. Conversely,
contactless devices do not need direct contact to the patient’s body, not generating any
discomfort and reaching good performance.

In Table 6, some state-of-the-art studies are reported to compare the proposed work in
terms of technologies, methods, datasets used, detected indexes and advantages. In par-
ticular, the studies were selected according to the datasets used and to characterize the
most widespread and valuable sleep indexes extracted in literature. It is worth noting from
the table that the studies based on EEG, ECG and PPG signals [32,36,57–62] can be used
to extract valuable information on sleep stages or sleep apnea; however, they need higher
computational cost and specialized devices for signal acquisition. On the other hand, other
works based on motion signal from accelerometer and PBS [7,10,24,63,64] underline the
advantage of causing low or mild discomfort to generally detect sleep and wake phases.
However, the proposed work based on PBS allows us to characterize the sleep activity level
dynamics from the multi-scale perspective and to provide interpretable indexes for the
continuous home monitoring, based only on the motion signal.

It is worth noting that home assessment through these devices must be employed
carefully. PSG is the gold-standard for sleep analysis and m-Health technologies may be
helpful in raising a first alarm. Indeed, subjects suffering from many sleep disturbances are
not often aware of their condition resulting in fatigue, low concentration and memoriza-
tion [65]. In other cases, there is hope for the clinicians that biomarkers and other indicators
will help diagnose presymptomatic signal of diseases. It was indeed found for example
that Parkinson’s Disease can be associated with Restless Leg Syndrome [66–68]. It follows
that its preventive identification would be of great importance.

Furthermore, as above mentioned, the algorithm results to be particularly helpful
for longitudinal study and, in general, to have an easy monitoring of personal sleep. It
could be helpful, for example, to visualize the sleep fragmentation of specific disturbed
nights or analyze the trend of QS/DS in correspondence to the introduction of preventive
measures. Examples may be the better care of personal sleep hygiene, such as making
sport [69,70], avoiding the use of electronic devices before sleeping [71], or in the worst
scenarios, the introduction of sleeping medication.

Table 6. State of the art comparison.

State of the Art
Reference Year Device Method Dataset (n. sub) Detected Indexes Advantages

Proposed work 2022 PBS
Multi-Scale Signal
Processing based
method

33 (HC vs. SAHS vs.
SW) ABS, QS, DS, DI No discomfort, interpretability,

model complexity

Hussain et al. [57] 2022 EEG MLP 154 Sleep stages Performance, low number of
channels, no feature extraction

Yang et al. [58] 2022 ECG 1D-SEResGNet 25 (HC vs. SAHS) OSA Embeddable in wearable, no
feature extraction

Wu et al. [59] 2021 PPG (wrist) IBS for fluctuation
analysis, RFC 92 (HC vs. SAHS) AHI Mild discomfort, interpretability

Banfi et al. [63] 2021 ACC (wrist) CNN 81 Sleep vs. Wake Mild discomfort, no feature
extraction

Baty et al. [36] 2020 ECG belt SVM 241 (HC vs. SAHS) AHI Mild discomfort, interpretability

Hulsegge et al. [64] 2019 2 ACC (thigh,
ankle)

LMM and GEE
logistic regression

194 (SW vs.
non-SW)

Onset, Offset,
TST

Mild discomfort, interpretability,
model complexity

Mendez et al. [10] 2017 PBS SVM 6 SW Sleep Stages No discomfort, interpretability,
model complexity

Aktaruzzaman et al. [24] 2017 ACC (wrist), HRV SVM 18 HC Sleep vs. Wake Mild discomfort, interpretability,
model complexity

Mora et al. [7] 2015 PBS Signal Processing
based method 24 (HC vs. SAHS) AHI No discomfort, interpretability,

model complexity

EEG: Electroencephalography; ECG: Electrocardiography; PPG: Photoplethysmography; ACC: triaxial accelerom-
eter; HRV: Heart Rate Variability; MLP: Multilayer Perceptron; 1D-SEResGNet: one-dimensional squeeze-and-
excitation residual group network; IBS: Information-Based Similarity; RFC: Random Forest Classifier; CNN:
Convolutional Neural Network; SVM: Support Vector Machine; LMM: Linear Mixed Models; GEE: Generalized
estimation equations; SW: Shift Workers.
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4.4. Accelerometer Experimentation and Adaptability

The present study was conceived with the aim of also identifying periods of absence
from the bed, which may be particularly helpful in cases of subjects with insomnia disorder
or that awakens multiple times during night [72]. Due to the fact that no subject in either
dataset ever got out of bed during the recordings, this investigation was not possible on the
presented data. This points out the importance of home monitoring, since the acquisition
conditions in a controlled environment do not perfectly mirror the real conditions. This
state was qualitatively assessed through an experimentation performed on a prototypal
device with a triaxial accelerometer, designed to monitor the sleep of subjects during daily
living. In particular, the recognition of the state of absence from the bed was achieved
through a manual setup, lasting 1 min. The device acquired data for 1 min with and
without the subject on the bed and setting the threshold through a ROC analysis. Due to
the significant difference between the only external noise, due to traffic and environmental
conditions, visible when subject is not lying on the bed, and physiological noise, due to
breathing for example, the identification did not result in relevant errors. All the results
on the other states representing sleep indexes resulted to be in line with PBS performance,
confirming the adaptability of accelerometer data.

5. Conclusions

In this work, we studied the multi-scale behavior of the motion signal extracted from
PBS during sleep. The experimentation conducted on two different datasets acquired from
shift-working nurses and people with suspicions of sleep apnea was assessed in correlation
to clinical indexes and compared to a multi-scale method. The entire pipeline is suitable
for online computation on an unobtrusive device dedicated to the described purpose of
avoiding any discomfort to the subject. This may provide valuable indications in daily
living for a rapid and continuous screening of sleep through a home device.
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