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a b s t r a c t

Modular co-simulation contributes to both engineering and research, but the earlier solutions have
lacked the combination of platform independence, loose coupling between the modules, and tools
for straightforward development. This paper describes the simulation platform SimCES (Simulation
Environment of Complex Energy System) that solves these issues with a microservice architecture,
combining message-broker-based communication, containerization, and a development toolkit. The
components can even communicate over Internet. Furthermore, there are developer tools that enable
an easy start for developers with Python and Docker, but any external platform is possible too. SimCES
is domain agnostic but stems from the energy domain.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Motivation and significance

Simulation systems can receive benefit from a modular, loosely
oupled architecture in the spirit of microservices. Simulations
re often implemented in a centralized way with a tight coupling
etween the components simulating the related sub-problems.
ight coupling refers to features, such as point-to-point depen-
encies, synchronous computation, centralized control, static
inding, strong platform dependencies, and the simultaneous
eployment of components [1, Ch. 4]. Such systems serve inade-
uately when the components

• represent several independent, competing optimizers,
• are developed by separate teams that are experts in their

own domain,

∗ Corresponding author.
E-mail address: petri.kannisto@tuni.fi (Petri Kannisto).

• are developed and deployed independently from each other,
• are best executed in different hardware and software plat-

forms, possibly in separate locations.

These requirements could be met with a system inspired from
microservice architectures [2].

This paper introduces Simulation Environment of Complex
Energy System (SimCES), an open source platform that facili-
tates the development of complex simulation systems with a
modular, message-broker-based architecture. SimCES provides
loose coupling between the components, enabling the develop-
ers to focus on their component only, because the architecture
takes care of component parametrization and synchronization
during execution. Modular simulation approaches are often re-
ferred to as co-simulation [3]. However, often co-simulation refers
to tight coupling with no distribution over a network. Instead,
SimCES enables the simulation components to execute on any

platform as long as they implement the required workflow and
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PI, built upon a message broker. Furthermore, platform in-
ependence adds flexibility to environments, enabling external
imulation systems and even server clusters to be connected
or resource-intensive calculation. The simulations are configured
ith a human-readable file that defines the parameters and

ncluded components, facilitating the comparison of simulation
esults in varying scenarios. The other advantages include a
ontainer ecosystem for reusable simulation images as well as
programming toolkit to reduce the development effort. The
bjectives of SimCES can be summarized as follows:

What kind of software platform enables the development of
complex simulation systems when the requirements are mod-
ularity, loose coupling, platform independence, distribution
over Internet, configurability, and parametrization?

SimCES is not restricted to any particular application area
lthough energy domain was the initial motivator. Earlier, the
ore idea of SimCES was explained in [4], but this was work
n progress, still lacking the container ecosystem concept, the
evelopment toolkit, and the current simulation cases.
Next, Section 2 reviews related research. Then, Section 3 ex-

lains the design of SimCES. Section 4 introduces concrete appli-
ations, followed by a discussion about the impact in Section 5.
inally, Section 6 concludes the article.

. Related research

The earlier simulation platforms lack the combination of loose
oupling, platform independence, domain-agnostic design, and
he possibility to build a domain ecosystem from simulation
omponents. Mosaik API enables distributed simulation but con-
ects the components via sockets [5]. These connect point-to-
oint and therefore lack scalability in large-scale systems. iTETRIS
as developed to enable distributed simulation for intelligent
ransportation systems [6]. While distributed and configurable,
t was designed for a single domain. SimApi has been developed
xclusively for the energy management of buildings, and its archi-
ecture lacks the single-protocol-for-all-communication approach
f SimCES [7]. DEMKit was developed exclusively for energy
anagement and is a toolkit rather than a platform for dis-

ributed simulation [8]. MOOSE is a platform for modular, parallel
ultiphysics simulations but integrates the modules into one
pplication over C++ APIs [9]. The co-simulation system LICPIE
uilds upon a middleware with similarities to SimCES but lacks
he publish–subscribe approach and aims at connecting simula-
ors rather than proving a platform for simulation components of
ny size [10]. Despite modularity, SpaceCRAFT VR is centralized
nd communicates over sockets, therefore lacking any actual
rotocol support to build scalable systems over Internet [11]. CO-
OP showed the applicability of a message broker in distributed
imulation but is an industrial integration framework rather than
simulation platform [12]. Spine Toolbox is a simulation and
odeling tool rather than a platform [13]. As far as is known,
imCES is the only platform enabling a component-based domain
cosystem. Of the reviewed simulation software, all but LICPIE
nd SpaceCRAFT VR are open source similar to SimCES.
Even open standards exist for co-simulation. Functional Mock-

p Interface (FMI) is a commonly used interface specification [14].
ompared to SimCES, FMI lacks an explicit support for network
ommunication, which would facilitate interoperability and dis-
ribution. Still, FMI can be complemented with ‘‘FMIGo!" that
rovides a backend and enables networking [15]. Compared to
he message-broker-based SimCES, ‘‘FMIGo!’’ builds the network
ommunication upon ZeroMQ [16], which is brokerless and there-
ore provides no Internet-wide message routing. Distributed Co-
imulation Protocol (DCP) is another technology for networked

distribution [17]. However, the included protocols lack message
routing, and DCP assumes central orchestration whereas SimCES
is distributed.

The agent-based approach provides an alternative to simulate
interaction. The concept agent-based model refers to modeling
the behavior of intelligent actors [18]. Respectively, agent-based
modeling and simulation emphasizes the utilization of agents for
simulation purposes [19]. These approaches build upon an inter-
face scheme made specifically for agents, whereas SimCES uses
interfaces similar to the respective real-life software systems,
enabling simulation or emulation in software-in-the-loop fashion.

SimCES builds upon a microservice architecture but can be
considered a special case. The microservice architecture is a
distributed design approach where the software components
are fine grained, communicate over simple channels, as well
as are executed and deployed independent of each other [20].
Microservices bring scalability as well as agility to development
and deployment, but more of governance is required compared
to a monolith [21]. There are dozens of design patterns for
microservices, of which at least asynchronous messaging, ser-
vice discovery (with topics in the message broker), externalized
configuration, and log aggregator have been applied in Sim-
CES [22]. Microservices can communicate over multiple patterns,
of which publish–subscribe, message-oriented middleware, and
asynchronous communication apply to SimCES in contrast to
the more typical synchronous Restful approach [23]. Eventually,
SimCES is a special case of microservices due to not only its
differences in deployment and instantiation but also the lifecycle
of execution. SimCES was not designed to host services with a
long uptime but it rather assumes a re-instantiation for each
simulation run. Depending on what is simulated, the simulation
run typically takes from a few seconds to a few hours, and
the user presumably monitors the execution. This condition is a
relaxation compared to any continuously operating microservice
architecture that should consider, e.g., resilience, fault tolerance,
and deployment at runtime. That is, SimCES can be considered a
manually executed microservice system.

3. Software description

This section explains the architecture of SimCES, first pre-
senting the fundamental principles and technologies. This is fol-
lowed by software platforms, component management, and the
development toolkit.

3.1. Architecture fundamentals

Any co-simulation necessitates information exchange between
the components, and SimCES implements this with a message
broker using the topic-based publish–subscribe pattern. The bro-
ker enables loose coupling, effectively hiding the components
from each other and removing point-to-point connections [24].
That is, to communicate, each component only needs the topics
to publish to and to listen to. The actual message routing oc-
curs in the broker, reducing the communication burden of the
components.

Because the message broker provides loose coupling in time,
special attention is necessary to synchronize the components.
For example, when the platform simulates energy consumption
during a particular hour in a day, the components must be made
aware of the time. This is reached with epochs, periods of simu-
lated time that the platform communicates to the components.
An epoch starts when the platform instructs this and ends when
all components have finished the related calculation. The length
of epochs can be set based on the needs of the simulation. The
epoch concept is explained in detail in [4].
2
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Fig. 1. The AMQP message broker enables the simulation components to be
distributed over Internet.

Technically, the messaging is based on Advanced Message
ueueing Protocol (AMQP), and the messages are encoded in
avaScript Object Notation (JSON). AMQP 0-9-1 is an Internet
tandard (supported by, e.g., RabbitMQ [25]), whereas JSON is
mong the most popular serialization formats. This standard-
ased design enables any software platform for the components
s well as any geographical location (see Fig. 1).
The platform includes a logging system that records all mes-

ages sent during simulation. After a simulation run, the user
an retrieve these messages to analyze the results. The logging
ystem can even generate timeseries from similarly structured
essages published to the same topic, facilitating the analysis of

he results. For example, to follow how the energy consumption
f a simulated load has changed, the user would generate a
imeseries from the consumption messages published from the
omponent. The timeseries can be generated in either JSON or
omma Separated Values (CSV) for a spreadsheet.

.2. Platforms and image registries

SimCES enables the components to execute either in the plat-
orm as Docker containers (platform managed) or any other envi-
onment (externally managed). If needed, a single simulation can
pply both approaches. Containerization facilitates the setup of
omponents, but if a component requires a specific platform, it
ust be externally managed. The containerized components can
e either built locally or retrieved from a public image registry.
hat is, there are three types of component origins: externally
anaged platform, public or private image registry, and local
uild (see Fig. 2). The core of the platform itself, which manages
omponent execution and synchronization, is deployed as Docker
ontainers.
To enable the platform to operate an arbitrary component

eveloped by anyone, the component must provide a manifest
or an interface. This includes the name, type, and description
f the component as well as Docker image name or location
or platform-managed components. Additionally, the manifest
an define attributes to be delivered at startup to enable the
arametrization of simulations. For platform-managed compo-
ents, these are injected as environment variables, whereas ex-
ernally managed components receive these in a dedicated mes-
age from the broker. The format of the manifest is YAML (recur-
ive acronym from YAML Ain’t Markup Language), which enables
diting even by non-technical users. An example manifest is
vailable at [26].

.3. Development Toolkit

The implementation of all the required interactive workflows
ecessitates effort. The workflows must cover component pa-
ametrization, the start and end of execution, and component
ynchronization.

Fig. 2. The components can be externally managed systems or platform-
managed containers, the container images either retrieved from a container
registry or built locally.

For faster implementation, the developers can take advan-
tage from SimCES toolkit that implements the basic require-
ments of communication. Currently, the toolkit has a Python
implementation with the following main features:

• Proxy classes for message structures, covering:

– The messages needed for communication with the
platform (e.g., epochs and simulation start and end)

– The common metadata fields that appear frequently in
messages (e.g., timestamp, the ID of source component,
and epoch number)

• A client class for the message broker, creating an abstraction
layer to encapsulate the protocol-specific complexity

• An abstract base class for the basic workflow of compo-
nents; the component developer extends this with componen
specific functionality

While available for Python only, the toolkit can be devel-
oped for additional languages as needed. In SimCES documenta-
tion [27], the Python implementation is called Simulation Tools.

3.4. Iterative simulation

The specification of SimCES supports even iterative calculation
among multiple components. In this scheme, it is agreed at design
time that two or more components accept intermediate results
from each other via appropriate topics. An iterating component
can be either active or passive, which means that an active
component can decide when to end iteration, whereas passive
components simply iterate until an active component decides to
end. The end is indicated in a dedicated field in the message that
contains the calculated result. If the iteration fails to converge, the
provided final result may be calculated with a backup method. To
facilitate message filtering, the topic structure enables subscribers
to receive intermediate results, final results, or both.

For more information about iteration, see [27].1 However,
there are currently no prototypes to apply the specified iteration
scheme.

1 Exact link to iteration specification: https://simcesplatform.github.io/core_
workflow-sim/
3
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Fig. 3. The energy community (left) and the respective simulation components (right).

4. Applications

This section explains how SimCES operates in actual applica-
tions. While only two cases are included, there are more being
developed.

4.1. Platform fundamentals with energy community

Although SimCES was originally packaged as separate compo-
nents, this article is bundled with the ‘‘standalone’’ version that
ships in one repository. Still, this standalone version is function-
ally identical to the original one.

The standalone version includes the code required to build
an energy community demonstration for experiments. The term
energy community has multiple definitions and can be divided into
various categories [28]. Generally, the energy community refers
to a group of energy consumers or producers (or prosumers) that
operate together to generate shared value [29]. However, the
demonstration solely includes the communication of data from
predefined timeseries rather than actual simulations, as the main
purpose is to show how the platform operates.

The scenario presents an imaginary energy community of four
detached houses connected to the power grid as illustrated on the
left side of Fig. 3. Respectively, the right side how the function-
ality maps to simulation components. The four houses consume
electricity. In addition, two of them supply solar power with
photovoltaic equipment (PV ‘‘large’’ and ‘‘small’’) whereas one
charges an electric vehicle (EV). The scenario is explained in more
detail in the documentation [27]. To execute the scenario, refer to
the readme file shipped with the standalone version. Not only the
scenario but also SimCES platform were developed in the project
ProCemPlus [30].

4.2. More complex simulations

Another use case involves a study for congestion management
in electricity distribution, referring to the prevention of situa-
tions where the quality of electricity would deviate. A congestion
could, for example, lead to a non-acceptable voltage or current
level. Here, congestion management occurs with a market mech-
anism, that is, the operator of the distribution system announces
flexibility needs to avoid anticipated congestion whereas energy
communities make related bids [31]. The included simulation
components are predictive grid optimization, local flexibility mar-
ket, grid simulator, energy communities, and state monitoring,

Fig. 4. The congestion management scenario (left) and the respective simulation
components (right).

some of which are platform managed and the others externally
managed. Table 1 shows component details, whereas Fig. 4 illus-
trates communication. The study is funded by European Union
(EU) via the project INTERRFACE [32].

A few scenarios have been simulated with some early results,
and the experience of SimCES is as follows. The under-study
distribution grid, in one scenario, was an actual electric power
distribution grid located in a small town in Finland. The duration
of the simulation was one week with a one-hour resolution.
The execution took approximately 45 min leading to 915,000
published messages. SimCES operated without any lag, and the
messages were accessible afterwards through the logging sys-
tem. Concerning the development process, the access to Docker
logs facilitated the development and testing of platform-managed
components. Due to the multidisciplinarity of the simulation,
there was a need for the cooperation of several developers with
different expertise, which was facilitated by SimCES thanks to
its distributed architecture. Nevertheless, the communication be-
tween the developers was challenging when aiming to reach a
common understanding of the functionalities and interactions
between components. In addition, maintaining comprehensive
and up-to-date documentation proved essential in saving effort
in the development.
4
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Table 1
The components in the congestion management simulation.
Component Functionality Implementation Managed

Energy community Offers flexibility Python By platform
Grid Represents and replicates the physical grid OpenDSS simulator with

Python wrapper
Externally

Local flexibility market Connects flexibility buyers and sellers Python By platform
Predictive grid
optimization

Detects flexibility needs in advance and selects
bids from the market

Matlab Externally

State monitoring Monitors the grid in real time Matlab Externally

Future research will cover more of cases. This includes at least
alue sharing mechanisms in an energy community.

. Impact

SimCES is a novel approach for distributed simulations, based
n a powerful paradigm. The advantages of the message bro-
er, particularly loose coupling, platform independence, and pos-
ibility for geographical distribution, provide an advantageous
ombination in complex scenarios with heterogeneous software
latforms.
Containerization introduces a possibility to develop re-usable

imulation components to form an entire ecosystem [33]. For
nstance, a simulation component can implement a model for
nergy storages. This would be shared via an image registry,
uch as Docker Hub or Github container registry, and deployed
nto simulations as needed. Such a storage component was al-
eady developed for SimCES [26]. In general, containerization is
onsidered a tool for modular software development, helping in
anagement [34]. Due to containerization, SimCES brings the

nfrastructure as code (IaC [35]) aspect into simulations, enabling
he automatic setup of the infrastructure and therefore facilitat-
ng deployments. Although this advantage lacks from externally
anaged components, presumably most components are devel-
ped as container images and any complex calculation, requiring
nother platform, is merely a subset among the components.
The microservice approach carries both advantages and disad-

antages in co-simulation. While there is agility in development,
overnance is necessary in development, and integration testing
an be challenging [21]. Different languages and technologies are
ossible, the components are physically isolated, and the applica-
ion size is unlimited (especially in externally managed compo-
ents), but the communication interfaces require implementation
ffort and cause latency, the users should be authenticated and
uthorized at runtime, and the whole is more complex compared
o non-Internet interfaces or a monolith [36]. These points apply
o not only microservice architectures in general but also SimCES.

Due to microservices, SimCES is inevitably more difficult to do-
ain experts compared to simulators that operate over straight-

orward application-to-application interfaces, but SimCES still
rovides supportive tools. Any developer accustomed to existing
idespread tools, such as FMI, Modelica, or Matlab, needs a
aradigm shift to adopt SimCES. However, while easier, these
ools or any platform reviewed in Section 2 lack the advantages
f SimCES. Additionally, even these simulators can be connected
o SimCES if needed to become a part of a multi-simulator
cheme. To help domain experts in development, there can be
n ICT professional to help in creating the required connections
which is likely no different from typical teams developing com-
lex simulators). On the other hand, SimCES offers a toolkit for
ython to help the developers, which is a clear benefit because
ython provides tools for scientific calculation. Python is the
ost popular language as of July 2022 [37]. For Matlab, a widely
dopted calculation and simulation tool, there is already a SimCES
onnector called AmqpMathToolIntegration [27].

As AMQP is an Internet protocol, there is no mechanism to
guarantee the time consumed for each message delivery, which
determines the real-time characteristics of SimCES. Internet pro-
tocols can neither reserve any bandwidth nor avoid congestion
in the network if such occurs. For more of determinism, the
message broker could operate in a closed network with some
capacity reserve and no competing traffic. While this may enable
millisecond-scale delivery times with powerful hardware, there is
no intention for hard real-time systems due to the lacking time
guarantees. If speed were the goal, a brokerless protocol would
eliminate the overhead from message routing, but this would
as well remove the characteristic of loosely coupled publish–
subscribe communication along with the topic-based discovery.

6. Conclusions

SimCES is a simulation environment that enables a domain
ecosystem of microservice-style simulation components, enabling
the components to be distributed as container images. Further-
more, SimCES enables simulation systems to span across software
platforms and locations, providing the tools required to man-
age the system as a whole. Any software platform is possible,
and the development toolkit (currently implemented in Python)
provides a low-effort way for the development of simulation
components. The microservice architecture has both advantages
and disadvantages, such as platform independence versus in-
creased complexity in communication, possibility of distributed
development versus requirement of developer coordination, and
distribution over network versus no support for hard real time.
The capabilities of the platform have been evaluated with case
studies in the energy domain.

In near future, SimCES will provide further results in ongoing
research projects in the energy domain. This includes at least
congestion management in future energy systems and energy
management in energy communities.
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