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Dynamical quantum phase transitions are at the forefront of current efforts to understand quantum matter out
of equilibrium. Except for a few exactly solvable models, predictions of these critical phenomena typically rely
on advanced numerical methods. However, those approaches are mostly restricted to one dimension, making
investigations of two-dimensional systems highly challenging. Here, we present evidence of dynamical quantum
phase transitions in strongly correlated spin lattices in two dimensions. To this end, we apply our recently
developed cumulant method [Phys. Rev. X 11, 041018 (2021)] to determine the zeros of the Loschmidt amplitude
in the complex plane of time, and we predict the crossing points of the thermodynamic lines of zeros with the
real-time axis, where dynamical quantum phase transitions occur. We find the critical times of a two-dimensional
quantum Ising lattice and the XYZ model with ferromagnetic or antiferromagnetic couplings. We also show how
dynamical quantum phase transitions can be predicted by measuring the initial energy fluctuations, for example
in quantum simulators or other engineered quantum systems.
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I. INTRODUCTION

Dynamical quantum phase transitions concern the critical
behavior of many-body systems that are brought out of equi-
librium by sudden parameter quenches [1–4]. Experimentally,
isolated quantum many-body systems can now be prepared
with specified initial conditions and made to evolve according
to a Hamiltonian that can be designed with exquisite con-
trol [5–10]. Dynamical quantum phase transitions may then
occur at critical times, where the overlap—the Loschmidt
amplitude—between the initial state and the time-evolved
state vanishes, and the associated free-energy density becomes
nonanalytic in the thermodynamic limit [11–16]. Dynamical
quantum phase transitions extend the framework of equi-
librium phase transitions [17,18] to the time evolution of
quantum many-body systems with the aim to define phases
of nonequilibrium quantum matter [19].

Theoretically, dynamical quantum phase transitions have
been investigated for exactly solvable problems [11–16], start-
ing with the Ising model in one dimension [1–3]. Generally,
however, the dynamics of interacting quantum many-body
systems is rarely analytically tractable, and tensor-network
methods have instead been used to explore dynamical quan-
tum phase transitions in one dimension [21–31]. The situation
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is even more challenging for systems in higher dimensions,
such as two-dimensional quantum lattices [32–36]. Here,
progress has been hindered by the lack of efficient numeri-
cal approaches, and only a handful of interacting problems
have been solved [30,37–40]. For this reason, the prediction
of dynamical quantum phase transitions in two-dimensional
systems with strong correlations has been identified as an
important open problem, in particular for understanding the
role of dimensionality for the critical dynamics [4].

FIG. 1. Dynamical quantum phase transitions in a spin lattice.
(a) Lattice of interacting spin-1/2 particles in a perpendicular mag-
netic field h. (b) Zeros of the Loschmidt amplitude in the complex
plane of time for the quench h1 = J → h2 = 5J with a ferromagnetic
coupling, J > 0, and Jx = −1.5J , Jy = −0.5J , and Jz = −0.5J in
the Hamiltonian (1) on different small lattices. The dashed lines are
guides to the eye that help identify the crossings (red markers) with
the imaginary axis corresponding to the critical times, where dynam-
ical quantum phase transitions occur. The characteristic timescale τ0

is defined in Eq. (5).
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In this article, we employ our recently developed cumulant
method to predict dynamical quantum phase transitions in
strongly correlated two-dimensional spin lattices following a
quench [41]. Our setup is illustrated in Fig. 1(a), showing a
lattice of interacting spins in a magnetic field. We initialize
the spins in the ground state corresponding to one value of the
field, and we investigate their time evolution as we suddenly
change the field strength. By promoting time to a complex
variable in the spirit of Lee-Yang theory [42–49], we use our
cumulant method to determine the zeros of the Loschmidt
amplitude in Fig. 1(b), which allows us to construct the ther-
modynamic lines of zeros, whose crossing points with the
imaginary axis (marked with red) signal the critical times
of the phase transitions. Importantly, the dynamical quantum
phase transitions can be predicted from the complex zeros
obtained for small lattices instead of identifying cusps or
other singularities in the rate function, which only become
pronounced for large systems. Moreover, we can construct
the full dynamical phase diagram, which consists of ther-
modynamic lines of zeros that separate different dynamical
regions. In some cases, these lines separate an ordered phase
from a disordered phase of an associated equilibrium system.
Our work thereby establishes a connection between dynamical
quantum phase transitions and related equilibrium phases of
matter.

II. SPIN LATTICE

We consider a two-dimensional square lattice with inter-
acting spin-1/2 particles in a perpendicular magnetic field h
as shown in Fig. 1(a). The system is described by the nearest-
neighbor spin Hamiltonian

Ĥ(h) =
∑
〈i j〉,α

Jα Ŝα
i Ŝα

j − h
∑

i

Ŝz
i , (1)

where Ŝα
i is the spin-1/2 operator for each spin component,

α = x, y, z, on site i, and Jα denotes the exchange couplings.
Here, the first sum runs over all nearest-neighbor pairs 〈i j〉,
and the second sum runs over all sites i. To minimize edge
effects, we impose periodic boundary conditions in both di-
rections. We also define J ≡ −(Jx + Jy)/2, which is positive
for ferromagnetic couplings and negative for antiferromag-
netic couplings, and we note that the quantum Ising model
is obtained by setting Jy = Jz = 0.

We now investigate the dynamical properties of the spins
when prepared in the ground state, |�(t = 0)〉 = |�0〉, cor-
responding to one value of the magnetic field, and then
time-evolved in a different magnetic field for t > 0. To this
end, we consider the Loschmidt amplitude

Z (it ) = 〈�0|e−itĤ(h2 )|�0〉, (2)

where h1 → h2 is the quench of the magnetic field, and we
have set h̄ = 1. In the thermodynamic limit, N → ∞, the rate
function, λ(t ) = − ln |Z (it )|2/N , becomes nonanalytic at the
critical times, where the system exhibits a dynamical quantum
phase transition. These phase transitions can be understood as
the zeros of Z (it ) crossing the imaginary axis in the complex
plane of τ = it for N → ∞, where they form lines or areas.
Thus, we aim to find the zeros of the Loschmidt amplitude for

finite lattices, τk , which can be factored as [1–3,42–49]

Z (τ = it ) = eατ
∏

k

(1 − τ/τk ) (3)

with α being a constant. We also define the Loschmidt cu-
mulants, 〈〈Ĥn〉〉τ = (−1)n∂n

τ lnZ (τ ), which for n > 1 can be
expressed in terms of the zeros as

〈〈Ĥn〉〉τ =
∑

k

(−1)n−1(n − 1)!

(τk − τ )n
. (4)

Generally, the Loschmidt cumulants are complex, however
at τ = 0 they reduce to the ordinary cumulants of the en-
ergy in the initial state with respect to the postquench
Hamiltonian, 〈〈Ĥn〉〉0 = 〈〈En〉〉. Moreover, by calculating sev-
eral Loschmidt cumulants, we can invert Eq. (4) to find the
zeros following Ref. [41]. (For calculating the Loschmidt
cumulants, we use the Krylov subspace method described
in Appendix C of Ref. [41].) We then find the zeros in the
vicinity of the chosen base point τ , and by using values of τ

throughout the complex plane we can map out the zeros of the
Loschmidt amplitude.

III. QUANTUM ISING LATTICE

Figure 2 shows zeros for a series of quenches in a
quantum Ising lattice, which clearly exhibits dynamical quan-
tum phase transitions at the critical times indicated by red
markers. The zeros were obtained for small lattices, yet we
can identify the thermodynamic lines of zeros. The character-
istic timescale

τ0 = π/

√
J2 + h2

2 (5)

interpolates between τ0 � π/h2 for the field-dominated
quenches in the bottom panels with h2 � J and τ0 � π/J
for the interaction-dominated quenches in the top row with
h2 	 J . Importantly, we observe dynamical quantum phase
transitions only for quenches that cross the equilibrium
critical point of about hc � 3.04J [50]. In panel (g), the spins
are confined to a plane, and they rotate in the strong magnetic
field with crossings occurring at equidistant times spaced
by τ0. Interestingly, these results coincide with those of the
one-dimensional quantum Ising model (indicated with gray
dashed lines), showing that the dimensionality of the lattice
plays only a little role for the field-dominated quenches. By
contrast, in panel (c), all spins initially point in the z-direction,
|�0〉 = ⊗N

i=1 | ↑(i)
z 〉 = ⊗N

i=1(| ↑(i)
x 〉 + | ↓(i)

x 〉)/
√

2, which
is an equal superposition of all eigenstates of the
postquench Hamiltonian with h2 = 0. The Loschmidt
amplitude is then given by the partition function of
the classical Ising model, Z (it ) = tr{e−itĤ(0)}/2N , with
an imaginary inverse temperature, β = it [32]. In that
case, the thermodynamic lines of zeros are known
[51], and they are shown with solid lines in panel
(c) as a check of our results. For the two-dimensional
lattice, the thermodynamic lines of zero reach the real axis,
corresponding to the thermal phase transition of the classical
Ising model in two dimensions. This is different from the
one-dimensional model, where the zeros stay off from the real
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FIG. 2. Two-dimensional quantum Ising lattice. The zeros of the Loschmidt amplitude are shown for several quenches, h1 → h2, in
quantum Ising lattices of different sizes. The dashed lines are guides to the eye that help identify the crossings with the imaginary axis,
indicated by red markers, where dynamical quantum phase transitions occur in the thermodynamic limit. The solid line in panel (c) shows the
thermodynamic lines of zeros for the classical Ising model found in Ref. [51]. The gray dashed lines are the thermodynamic lines of zeros
obtained in Ref. [1] for the quantum Ising model in one dimension.

axis due to the absence of spontaneous symmetry-breaking.
Interestingly, panel (c) illustrates how a dynamical quantum
phase transition occurs as we cross the same thermodynamic
line of zeros that separates the ordered and the disordered
phases of the classical Ising model in two dimensions. For
quenches with all energy scales, h1, h2, J , being of the same
order as in panel (e), the spins are strongly correlated, and
our methodology is needed to predict the critical times. Alto-
gether, Fig. 2 provides a detailed dynamical phase diagram of
the two-dimensional quantum Ising model following a field
quench.

IV. XYZ MODEL

The quantum Ising lattice is a prime example of a
two-dimensional quantum many-body system that exhibits
dynamical quantum phase transitions. However, our method
has a much broader scope, and we now go to the paradigmatic

XYZ model, which, in contrast to the quantum Ising model,
exhibits different physics for ferromagnetic and antiferromag-
netic couplings. To avoid artificial lattice frustration in the
latter case, we use antiperiodic boundary conditions along
directions with an odd number of sites for antiferromagnetic
couplings. Figure 3 shows zeros of the Loschmidt ampli-
tude for quenches in small lattices with antiferromagnetic or
ferromagnetic couplings. Dynamical phase transitions clearly
occur with antiferromagnetic couplings in panel (a). By con-
trast, as Jz evolves from being positive in Fig. 1(b) to being
zero and negative in panels (b) and (c) of Fig. 3, the dynamical
quantum phase transitions eventually go away, and the zeros
stay off from the imaginary axis in panel (c).

V. EXPERIMENTAL SIGNATURES

Finally, we show how dynamical quantum phase tran-
sitions can be predicted from measurements of the energy
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FIG. 3. XYZ model. Zeros of the Loschmidt amplitude in the complex plane of time for the quench h1 = |J| → h2 = 5|J| with (a) antifer-
romagnetic couplings Jx = −1.5J , Jy = −0.5J , Jz = −0.8J , J < 0; (b) ferromagnetic or antiferromagnetic couplings Jx = −1.5J , Jy = −0.5J ,
Jz = 0, J = 0; and (c) ferromagnetic couplings Jx = −1.5J , Jy = −0.5J , Jz = −0.8J , J > 0. The dashed lines are guides to the eye, and the
crossings with the imaginary axis are indicated by red markers.

fluctuations in the initial state only. At τ = 0, the Loschmidt
cumulants reduce to the ordinary cumulants of the postquench
Hamiltonian with respect to the initial state. Thus, by repeat-
edly preparing the system in the state |�0〉 and measuring the
energy given by the postquench Hamiltonian, one can con-
struct the energy distribution and extract the corresponding
cumulants for τ = 0. (By contrast, the results presented in
Figs. 2 and 3 were obtained by calculating Loschmidt cumu-
lants for many values of τ throughout the complex plane.)
This approach is illustrated in Fig. 4, where we mimic ex-
perimental data by simulating 106 measurements of the initial
energy and construct the distributions in panel (a) for a few
different lattice sizes. In panel (b) we show the cumulants
of the distributions, and in panel (c) we show the zeros of
the Loschmidt amplitude that we extract from the energy
cumulants by inverting Eq. (4) for the zeros with τ = 0. These
results demonstrate how the first dynamical phase transition
can be predicted from the initial energy fluctuations, which
one could hope to measure, for example on near-term quantum
simulators [52,53] or in other engineered quantum systems
such as small atomic structures on surfaces [54] or ultracold
atoms in optical lattices [55]. Cumulants of order 15 and

higher have been measured for electron transport through
quantum dots [56] and metallic islands [57], and the corre-
sponding Lee-Yang zeros were extracted in Ref. [58], showing
that this approach to dynamical phase transitions is experi-
mentally feasible.

VI. CONCLUSIONS AND OUTLOOK

We have presented evidence of dynamical quantum phase
transitions in two-dimensional quantum Ising lattices and in
the XYZ model with ferromagnetic or antiferromagnetic cou-
plings. To this end, we have employed a systematic strategy,
whereby we determine the zeros of the Loschmidt ampli-
tude in the complex plane of time, allowing us to identify
the thermodynamic lines of zeros and their crossings with
the real-time axis, where dynamical phase transitions occur.
This approach is also of experimental relevance, as it makes
it possible to predict the first critical time of a dynamical
quantum phase transition by measuring the energy fluctua-
tions in the initial state. Our work opens avenues for a wide
range of applications, and we conclude with an outlook on
possible directions for future developments: an immediate and

FIG. 4. Experimental signatures. (a) The distribution of the energy, given by the postquench Hamiltonian, in the initial state, obtained from
106 Monte Carlo simulations for the quench h1 = 2J → h2 = 5J and Jx = −1.5J , Jy = −0.5J with J > 0 and Jz = 0 in Eq. (1) on different
lattice sizes. (b) High cumulants of the energy distributions, displaced vertically for the sake of clarity. (c) Zeros of the Loschmidt amplitude
obtained from the cumulants in panel (b) with the dashed line being a guide to the eye that helps identify the crossing (red marker) with the
imaginary axis, where a dynamical phase transition occurs.
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interesting extension of the present work would be to consider
frustrated spin models. So far, we have only considered spin
lattices; however, quantum many-body systems involving in-
teracting fermions or bosons can also be treated. Furthermore,
it would be interesting to investigate the two-dimensional
quantum Ising model with long-range interactions to see if
connections to other notions of dynamical quantum phase
transitions can be established as in Ref. [20].
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