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ABSTRACT 

A wind turbine is equipped with lots of sensors whose 

measurements are recorded by the supervisory control and 

data acquisition (SCADA) system and stored every 10 

minutes. The pitch subsystem of a wind turbine is of critical 

importance as it presents the highest failure rate. Thus, 

selecting the most essential features from the SCADA system 

is performed in order to detect faults efficiently. In this study, 

a feature space of 49 features is available, referring to the 

condition of a hydraulic pitch system. The dimensionality of 

this feature space (original input space) is reduced using a 

Deep Autoencoder in order to extract latent information. The 

architecture of the Autoencoder is investigated regarding its 

efficiency on fault detection task. This way, effect of new 

extracted features on the performance of the classifier is 

presented. A Support Vector Machine (SVM) classifier is 

trained using a set of healthy (fault free) and faulty data, 

representing different kind of pitch system failures. The data 

are acquired from a wind farm of five 2.3MW fixed-speed 

wind turbines. The performance metric used to evaluate their 

effect on data is F1-score.  Results show that SVM using new 

extracted feature by Autoencoder outperforms SVM 

classifier using the original feature set, underlining the power 

of Autoencoders to unveil latent information.  

1. INTRODUCTION 

Wind energy is the fastest developing renewable energy in 

the world, and especially in Europe. Based on the annual 

report of WindEurope, in 2021 the total installed wind power 

capacity was 236 GW (WindEurope, 2022). Wind turbine 

costs are strongly associated with the profitability and wind 

energy share in the energy production in daily basis. In 

particular, the total generation cost of wind energy is between 

4.5 and 8.7 €cent/kWh in case of onshore wind turbine, but 

the costs generated by Operation and Maintenance (O&M) is 

estimated to be 1-1.5 €cent/kWh (Blanco, 2009). Thus, O&M 

associated costs are very important and the only solution for 

consistent monitoring and maintenance is to accurately 

interpret the measurements. This interpretation is allowed 

through advanced data analysis techniques on the 

measurements of each wind turbine. 

For that reason, each wind turbine is equipped with 

Supervisory Control and Data Acquisition (SCADA) system. 

SCADA system stores a plethora of measurements in a wind 

turbine ranging from environmental measurements to 

pressures and temperatures. Typically, measurements are 

stored in 10-min intervals even though they are sampled in 

higher frequency, e.g., 1 sec. Processing of SCADA signals 

has been a common strategy for a lot of windfarm operators, 

since it provides a cheap solution for wind turbine 

monitoring, avoiding the installation of more sensors.  

A notable number of researchers have developed 

methodologies to process those SCADA signals for condition 

monitoring in wind turbines (Zaher, McArthur, Infield & Y. 

Patel, 2009; Chen, Zappala, Crabtree & Tavner, 2014; Tautz-

Weinert & Watson, 2017; Yang, Court & Jiang, 2013). In 

addition, Stetco, Dinmohammadi, Zhao, Robu, Flynn, 

Barnes, Keane and Nenadic (2019) have summarized 

Machine Learning techniques that have been used in 

literature for wind turbine condition monitoring. 

Furthermore, more advanced techniques from the Deep 

Learning area have been the subject of the review in the study 

of Helbing and Ritter (2018), indicating the rise of Deep 

Learning for performing fault detection in wind turbines.  

Regarding recent advancements in this application area, 

Convolutional Neural Network (CNN) have been widely 

used by researchers (Ulmer, Jarlskog, Pizza, Manninen & 

Goren Huber, 2020), as well as its variants such as 

convolutional neural network (CNN) and bidirectional gated 

recurrent unit (BiGRU) with attention mechanism (CNN-

BiGRU-AM) (Xiang, Yang, Hu, Su & Wang, 2022), CNN 
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with Long Short-Term Memory (LSTM) and attention 

mechanism (CNN-LSTM-AM) (Xiang, Wang, Yang, Hu & 

Su, 2021), convolutional neural networks (CNN) and gated 

recurrent unit (GRU) (Kong, Tang, Deng, Liu & Hana, 2020) 

and generative adversarial network (GAN) coupled with a 

temporal CNN (TCNN) (Afrasiabi, Afrasiabi, Parang, 

Mohammadi, Arefi & Rastegar, 2019). Additionally, 

different versions of autoencoders have been used like deep 

joint variational autoencoder (JVAE) for gearbox monitoring 

(Yang & Zhang, 2021), moving window stacked multilevel 

denoising AE (MW-SMDAE) (Chen, Li, Chen, Wang & 

Jiang, 2020) and sparse dictionary learning based adversarial 

variational auto-encoders (AVAE_SDL) (Liu, Teng, Wu, 

Wu, Liu & Ma, 2021). Finally, LSTM for gearbox monitoring 

has been applied by Qian, Tian, Kanfoud, Lee and Gan 

(2019). 

The literature presented so far was mainly focused on the 

monitoring of the wind turbine, as a whole. The pitch system 

in wind turbines is very crucial for their operation since they 

present the highest failure rate and among the highest 

downtime according to several surveys (Wilkinson, 

Hendriks, Spinato, Harman, Gomez, Bulacio, Roca, Tavner, 

Feng, & Long, 2010; Carroll, McDonald, & McMillan, 2016; 

Ribrant, & Bertling, 2007). Therefore, it is considered the 

most critical subsystem and it needs to be monitored as 

effectively as possible. Pitch system monitoring has gained 

attention by several researchers. Chen, Matthews, and Tavner 

(2013, 2015) has implemented an a -priori adaptive neuro 

fuzzy inference system (APK-ANFIS) to monitor pitch 

system using as features five basic features (i.e., power 

output, wind speed, blade angle, rotor speed and motor torque 

for only the case of electric pitch system). Their study 

focused only on their average values. ANFIS has been used 

as well by Korkos, Linjama, Kleemola, and Lehtovaara 

(2022), investigating the effect of average and standard 

deviation values of the features mentioned in Chen et al. 

(2013, 2015). In addition, the novelty of their research was 

that their dataset contained a list of diverse pitch-system 

faults, referring to almost every kind of components. The 

same technique (ANFIS) was used in the studies of 

Schlechtingen, Santos, and Achiche (2013) and 

Schlechtingen and Santos (2014) in order to build normal 

behaviour models. Schlechtingen and Santos (2014) 

particularly used the model for hydraulic oil leakage, which 

is a common failure in the pitch system. Additionally, a pitch 

system fault, with no additional provided information, has 

been detected effectively using a multi-level-denoising 

autoencoder (MLD-AE) by Wu, Jiang, Wang, Xie, and Li 

(2019). 

Apart from ANFIS, Support Vector Machines (SVM) have 

been used for fault detection. SVM classifiers have been 

developed by Leahy, Hu, Konstantakopoulos, Spanos, C.J., 

& and Agogino (2016, 2018), whereas Hu, Leahy, 

Konstantakopoulos, Auslander, Spanos, and Agogino (2017) 

trained SVM classifiers in an enhanced feature set according 

to domain knowledge. A variation of SVM, called 

asymmetric SVM, has been implemented by Wu, Su, Lu, and 

Rui (2015) to diagnose internal leakage of hydraulic cylinder. 

On the contrary, pitch-system fault detection has been dealt 

as a regression problem by Pandit and Infield (2019).  

Finally, Gaussian Processes (GP) have been popular to some 

researchers dealing with pitch system faults. Pandit and 

Infield (2018) have trained their GP model using power 

curve, the rotor speed curve and the blade pitch angle curve 

as the feature set. Guo and Infield (2020) trained a 

multivariable power curve model with a modified Cholesky 

decomposition GP. 

However, scientists have developed techniques to extract 

latent information from the SCADA signals in order to 

provide more enhanced information to wind turbine 

operators. These techniques belong to the broad area of the 

so-called dimensionality reduction techniques as well. In 

general, traditional Principal Component Analysis (PCA) 

(Jolliffe, 2002) has been applied in many fields, representing 

a linear transformation of input space. Additionally, 

nonlinear transformations have been applied to input space 

using the kernel trick in PCA, resulting in the kernel PCA 

(Smola, 1998). Nevertheless, the most advanced technique, 

arisen from the Deep Learning field, is Autoencoders 

(Goodfellow, Bengio, & Courville, 2016). Autoencoders are 

mainly a generalization of PCA, and they are based on neural 

network architectures. Denoising Autoencoders, which is a 

specific type of regularized Autoencoder has been used for 

dimensionality reduction techniques in wind turbines by Liu, 

Cheng, Kong, Wang, and Cui (2019) and Wu et al. (2019). 

But use of Autoencoders for dimensionality reduction has not 

been focused on pitch system monitoring. Thus, investigation 

of them is necessary and it has high potentials to provide 

more information about the condition of this subsystem to the 

operators. The extracted information will be also enhanced if 

the pitch faults, which are contained in the dataset, represent 

different kind of the most common faults. This is particularly 

interesting and adds up value in literature because studies in 

the past have failed to refer to specific types of faults that 

have been taken into account when setting up their dataset or 

have presented very limited information. Furthermore, the 

advantage of having more diverse faults is beneficial when 

performing identification of those types and that work will be 

realized in the future by the authors. 

The objective of this study is to investigate the development 

of a Denoising Autoencoder (DAE), as a feature extraction 

technique, for fault detection of a wind turbine hydraulic 

pitch system. DAE makes use of nonlinear transformations of 

input space and its feature extraction potential is assessed 

through the performance of Support Vector Machine, which 

is used as classifier. This research has collected the most 

informative features for the hydraulic pitch system and the 

training dataset includes normal and faulty points derived 

from nine different faulty events. These faulty events include 
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diverse faults of every single component in the hydraulic 

pitch system, whose effect have not been investigated in 

earlier studies. The performance of the new latent dimensions 

on the classifier of SVM shows greater performance than 

using the original input space as input of SVM. 

The paper is organized as follows. In Section 2, Deep 

Autoencoder for dimensionality reduction and feature 

extraction is described. In Section 3, the theory of SVM for 

classification problems is presented. Section 4 refers to the 

dataset of this research, which is referred to the hydraulic 

pitch system. Section 5 demonstrates the results, followed by 

the conclusions in the last section. 

2. DEEP AUTOENCODER FOR DIMENSIONALITY REDUCTION 

Autoencoders have been primarily used for dimensionality 

reduction tasks. Their clear advantage over other traditional 

dimensionality reduction techniques such as PCA is that they 

are based on nonlinear transformation of the input space. An 

autoencoder is composed of an encoder and a decoder. The 

encoder transforms the ambient space to a lower-dimensional 

space, in case of an undercomplete or to a higher dimensional 

if it is an overcomplete one. On the contrary, the decoder 

transforms the new feature space back to the original space. 

Essentially, an autoencoder is a neural network which tries to 

learn the copying task of the input space. It requires only the 

input space and not the label, thus it belongs to unsupervised 

techniques. The encoder and decoder are typically nonlinear 

using several activation functions including sigmoid 

function, hyperbolic tangent function (tanh) or Rectified 

Linear Unit (ReLU). 

More specifically, an encoder maps an input x ϵ ℝ𝑚  to a 

hidden representation h through the activation function fs, 

shown in Eq.( 1 ). 

  h = 𝑓𝑠(𝑊𝑥 + 𝑏) 

     

( 1 ) 

 

where W is a m x m weight matrix and b is a bias vector. The 

decoder tries to reconstruct x from the latent representation, 

resulting in �̂� (Eq. ( 2 )). 

  x̂ = 𝑓𝑠(𝑊′ℎ + 𝑏′) 
    ( 2 ) 

 

Where 𝑊′  and 𝑏′  are the parameters of the decoder in a 

similar way as in the encoder. An autoencoder is said to have 

tied weights if 𝑊′ = 𝑊𝑇 . The parameters of the autoencoder, 

represented shortly by 𝜃 = {𝑊, 𝑏}, 𝜃′ = {𝑊′, 𝑏′} , are 

estimated after minimization of the average reconstruction 

error, demonstrated in Eq. ( 3 ). 

𝜃∗, 𝜃′∗ = argmin
𝜃,𝜃′

1

𝑛
∑ 𝐿(𝑥(𝑖) , �̂�(𝑖))

𝑛

𝑖=1

 

 

( 3 ) 

 

The loss function L is the traditional mean squared error 

𝐿(𝑥, �̂�) = ‖𝑥 − �̂�‖2. 

Even though an autoencoder deals with the copying task of 

its input to its output, exact reconstruction is useless and no 

new latent information is extracted. In addition, if both the 

encoder and decoder functions are given too much capacity, 

it fails to learn anything useful. That is the reason why 

researchers suggested regularized autoencoders, which 

additionally provide sparsity of the representation, smallness 

of the derivative of the representation and robustness to noise 

and missing inputs (Goodfellow et al, 2016). Such 

regularized autoencoders are sparse autoencoders and 

denoising autoencoders. 

Denoising Autoencoders (DAE) are similar to the traditional 

autoencoders, but the input of them is a corrupted version of 

original input space. Furthermore, the end goal is to predict 

the original input and not the corrupted one. Consequently, 

before implementing autoencoder, the input is corrupted by 

either adding Gaussian noise or salt-and-pepper noise or 

masking noise (Vincent, Larochelle, Bengio, & Manzagol, 

2008). In other words, the input of a DAE will be the 

corrupted �̃� and not x, and the loss function is the L2 norm 

between the reconstruction of corrupted datapoints and 

original datapoints. 

3. SVM AS CLASSIFIER 

Support Vector Machines (SVM) (Cortes & Vapnik, 1995) 

have gained a lot of attention from 2000 onwards due to its 

ability to provide better classification performance, 

compared to Artificial Neural Networks. However, it can be 

also used for regression problems. In particular, SVMs 

nonlinearly map the input space into a higher-dimensional 

space and then a linear decision boundary is set to separate 

the classes. Therefore, it may seem that a linear decision line 

has been constructed, but in reality, this line is nonlinear in 

the original space. Finally, the decision boundary is based on 

the support vectors, which are essentially a small amount of 

datapoints that allow to define the best separation boundary 

between two classes. 

SVM is given in Eq. ( 4 ), which clearly shows its dependence 

on a nonlinear transformation φ. 

  𝑓(𝑥) = 𝑢𝑇𝜑(𝑥) + 𝑑 

     

( 4 ) 

 

where φ(x) is the nonlinear transformation of the input space 

to the high-dimensional feature space. The output of SVM is 

not probabilities, but the class label. In other words, if f is 

positive, SVM predicts the positive class and if f is negative, 

it predicts the negative class.   

The u and d parameters are determined by minimizing the 

regularized risk function. However, most of the times some 

of the datapoints are allowed to be misclassified, leading to 

soft margin SVM. Soft margin SVM is given by minimizing 
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the dual Lagrangian �̃� function, shown in Eq. ( 5 ), where 

some of the datapoints are allowed to be misclassified. 

�̃�(𝑎) = ∑ 𝑎𝑛

𝑁

𝑛=1

−
1

2
∑ ∑ 𝑎𝑛𝑎𝑚𝑦𝑛𝑦𝑚𝐾(𝑥𝑛 , 𝑥𝑚)

𝑁

𝑚=1

𝑁

𝑛=1

 

 

( 5 ) 

 

where 𝐾(𝑥𝑛 , 𝑥𝑚) = 𝜑(𝑥𝑛)𝑇𝜑(𝑥𝑚), that represents a kernel, 

thus leading to nonlinear SVM. an are non-negative 

Lagrangian multipliers, which define the final solution for u 

and d shown in Eq. ( 6 ) and Eq. ( 7 ) respectively. 

 𝑢 = ∑ 𝑎𝑛𝑦𝑛𝜙(𝑥𝑛)

𝑁

𝑛=1

 

 

( 6 ) 

 

𝑑 =
1

𝑁ℳ

∑ (𝑦𝑛 − ∑ 𝑎𝑚𝑦𝑚𝐾(𝑥𝑛 , 𝑥𝑚)

𝑚𝜖𝑆

)

𝑛𝜖ℳ

 

 

( 7 ) 

 

where ℳ represent the set of indices of data points where 0 

< an < C, C is the regularization constant and yn are the target 

values of the input xn. 

Common kernels for kernel SVM are polynomial kernels, 

sigmoid kernel and Radial Basis Function (RBF) kernels (Eq. 

( 8 )), whose hyperparameter γ is half of the variance of the 

standard normal density.  

 𝐾(𝑥𝑛, 𝑥𝑚) = exp (−𝛾‖𝑥𝑛 − 𝑥𝑚‖2) 

 

    ( 8 ) 

 

4. DATASET 

This study makes use of 10-year long available data, derived 

from the SCADA system of a windfarm in western Finland. 

The studied windfarm includes five wind turbines of 2.3 MW, 

which are fixed-speed and have a hydraulic pitch system. 

These SCADA data include average, standard deviation, 

maximum and minimum of several measurements stored in 

10-min intervals. Nevertheless, the objective of this research 

is fault detection in the hydraulic pitch system, thus the most 

effective parameters have been selected which have the 

biggest impact on its operation.  

These features have been preprocessed and labelled 

according to Korkos et al (2022). Then, features have been 

normalized using Min-Max normalization (Eq. ( 9 )). The 

normalized values would be in the range between 0 and 1.  

 
𝑥𝑛𝑒𝑤

𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 

 

( 9 ) 

 

where, 𝑥𝑖  and 𝑥𝑛𝑒𝑤
𝑖  are the original and normalized feature 

respectively and 𝑥𝑚𝑖𝑛  and 𝑥𝑚𝑎𝑥  are the minimum and 

maximum values of each feature. 

Table 1. SCADA features and their short names demonstrates 

the list of features that were used as input at the 

dimensionality reduction technique. Their names are 

mentioned using shortened form followed by {“_mean”, 

“_stdev”, “_max”, “_min”}. However, only gust wind speed 

contains a single value, instead of the statistical quantities 

mentioned before. For example, if maximum value of power 

output is mentioned, the shortened name will be “PO_max”. 

In total, the original feature space is 49-dimensional. 

Table 1. SCADA features and their short names 

 

Name Description Blade 

RS Rotor speed - 

BAA Blade angle A A 

BAB Blade angle B B 

BAC Blade angle C C 

WS Wind speed - 

PO Power output - 

Gust_WS Gust wind speed - 

HPrA Hub Pressure A A 

HPrB Hub Pressure B B 

HPrC Hub Pressure C C 

HydP Hydraulic Pressure - 

AmbT Ambient Temp. - 

HubT Hub Temp. - 

 

This study collected a dataset which contains normal and 

faulty operation datapoints. More specifically, faulty dataset 

contains data when different kind of events of faults were 

occurred. In particular, Table 2 shows the nine pitch events 

that have been taken into account for this study. For normal 

data points the label has been assigned to zero and for faulty 

data points the label is one. The data are owned by Suomen 

Hyötytuuli Oy and are not publicly available due to 

confidentiality reasons. 

 

Table 2. Event list 

 

No Pitch event 

1 Hydraulic hoses and oils replacement 

2 Hub oil leakage + Hyd. Oil replacement + Bl. 

valve 6 replacement 

3 Block replacement at blade B (No3) 
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4 Block leakage in blade B(No1) 

5 Replacement of A- blade valve 102 (No3) 

6 Replacement of A, B, C- blade valve 116 (No3) 

7 Nitrogen accumulator (No 4) replacement of 

Blade A (No5) 

8 Blade tracking error during stop/operation of 

Blade A (No1) 

9 Replacement of hyd. cylinder (No2) 

5. RESULTS AND DISCUSSION 

New features have been extracted using a Denoising 

Autoencoder (DAE). Autoencoders have the advantage to use 

nonlinear transformation of input space. Thus, they belong to 

nonlinear dimensionality reduction techniques. This study 

investigated different architectures of DAEs. These 

architectures are presented on the Table 3, as well as their 

activation functions. If n is the dimension of original dataset, 

n = 49 for this study which is the dimension of both input and 

output layer.  

Table 3. Different architectures of DAEs under investigation 

 

No Architecture 
Activation 

Function 

1 [n,64,32,16,8,16,32,64,n] ReLU 

2 [n,32,32,16,8,16,32,32,n] ReLU 

3 [n,32,32,16,8,16,32,32,n] sigmoid 

4 [n,32,8,32,n] sigmoid 

5 [n,32,24,16,10,6,10,16,24,32,n] sigmoid 

 

The best architecture was achieved by 

[n,32,32,16,8,16,32,32,n] (Figure 1) using sigmoid function 

as activation function. In addition, Mean Squared Error 

(MSE) was chosen as loss function and the optimization 

algorithm was Adam algorithm. The corruption of input was 

selected to be a Gaussian noise. Gaussian noise was 

represented by the standard normal distribution N(0,1) 

multiplied by 0.02. This multiplier has been chosen after 

appropriate tuning. 

 

Figure 1. Denoising Autoencoder (DAE) 

[n,32,32,16,8,16,32,32,n] architecture 

 

Figure 2 demonstrates a two-dimensional representation of 

8D latent space. T-distributed Stochastic Neighbor 

Embedding has been applied to the new extracted features 

(8D) in order to provide a visualization of them. Figure 2 

shows that the two classes can be clearly separated. Thus, 

features extracted by the developed DAE, shown in Figure 1,  

really extracts hidden information and helps to separate the 

two classes more clearly.  

 

Figure 2. Two of the new extracted features using 

Autoencoder [n,32,32,16,8,16,32,32,n] 

 

After the reduction of the dimensions and the extraction of 

the new features, Support Vector Machine classifier was 

trained in order to perform the fault detection task. 

Hyperparameter tuning of SVM has been performed through 

cross validation between the regularization constant C, type 

of kernel and hyperparameter γ, in case of Radial Basis 

Function (RBF) kernel. More specifically, this research 

investigated values of C in the list {0.01, 0.1, 1, 10, 100, 

1000} (being either linear or RBF kernel) as well as ‘γ’ values 

in the list {0.1, 1, 10, 50. 100, 500} should the kernel is RBF.  

Dataset has been split in two parts, i.e., 80% for training and 

20% for testing. Training dataset is separated in training 

dataset and validation set during cross-validation process in 
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order to determine the hyperparameters. The final training of 

the SVM classifier has been done in the whole training set. 

The performance of the classifier was assessed based on the 

F1-score, shown in Eq. ( 10 ). This performance metric was 

chosen instead of other such as accuracy because normal 

operation class represents the vast majority of the datapoints 

and a correct evaluation requires to take into account that 

missed faulty points will be shown at the performance metric. 

 

 

𝐹1 =  
2 ∙ 𝑇𝑃

2 ∙ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

( 10 ) 

 

where TP represent True Positive, meaning that the faulty 

points (label “1”) were truly detected. The same notion is 

followed for FP (False Positive) and FN (False Negative), 

whose actual label was “0” and “1” respectively, but the 

opposite class was predicted. 

Table 4 summarizes the results of F1-score when performing 

3-fold cross validation for every combination of kernel, C and 

γ values. F1-scores are given as an average value during 

calculation of it in the 3-fold datasets and standard deviation 

is presented within parentheses. Best linear SVM model is 

acquired for C value of 1000. In contrast, the highest F1-

scores using RBF SVM is received when using C = 1000 and 

γ = 10, which has the best performance in the validation set 

among all investigated classifiers.  

Table 4. Best F1-scores of SVM for different pairs of C, γ 

and kernel 

 

F1-score C γ kernel 

0.731 (+/-0.013) 1000 - linear 

0.582 (+/-0.018) 0.01 10 RBF 

0.816 (+/-0.021) 0.1 50 RBF 

0.917 (+/-0.006) 1 100 RBF 

0.936 (+/-0.007) 10 50 RBF 

0.937 (+/-0.004) 100 10 RBF 

0.938 (+/-0.005) 1000 10 RBF 

 

Therefore, when using the developed Denoising 

Autoencoder, as feature extractor shown in Figure 1, the 

SVM performance for C = 1000 and γ = 10 is 0.9457%, 

according to F1-score. This study uses as benchmark the 

SVM performance when using only the original features. 

Benchmark’s performance is 0.8538%, thus the developed 

DAE provides increase of 10.8%.  This result outperforms the 

performance of Adaptive Neuro Fuzzy Inference system 

(ANFIS) presented in Korkos et al. (2022).  Results from 

other similar studies could not be directly compared to the 

present one. The reason is the dataset variability since each 

researcher uses a different dataset. However, Leahy et al. 

(2016) attained 65% F1-score for fault detection task without 

mentioning the details of the faults. Moreover, Hu et al. 

(2017) achieved 90% F1-score by increasing their feature set, 

which contained only the original SCADA features. Finally, 

APK-ANFIS model, developed by Chen et al. (2015), 

achieved 50% of F1-score for fixed-speed wind turbines 

using some pitch faults, providing no information about 

them. Consequently, the attained F1-score of the present 

study leads to the conclusion that Denoising Autoencoders 

are very powerful at extracting useful information out of the 

dataset. 

6. CONCLUSION 

In this paper, a Denoising Autoencoder (DAE) has been 

developed to extract hidden information that will contribute 

to more efficient monitoring of wind turbine hydraulic pitch 

system. The efficiency of DAE has been evaluated based on 

the performance of a Support Vector Machines (SVM) 

classifier, which uses the new extracted features as input. 

More specifically, the original feature set had been 49-

dimensional, including from environmental parameters to 

several pressures in the pitch system. Hence, the nonlinear 

transformations, employed by the developed DAE, attained 

0.9457%, which was 10.8% better than the case of SVM 

using directly the original feature set. As a result, pitch 

system, which is crucial for a wind turbine, can be monitored 

more effectively and accurately. Additionally, those 

extracted features may be used in future studies for 

diagnosing each fault separately. That information would 

provide great assistance to wind turbine operators and will 

lower maintenance costs. Possible other classifiers, from the 

Deep Learning field, may be investigated in the future such 

as 1D Convolutional Neural Network or Long Short-Term 

Memory network (LSTM). 

ACKNOWLEDGEMENT 

This research was funded by the Doctoral School of Industry 

Innovations (DSII) of Tampere University and Suomen 

Hyötytuuli Oy. 

REFERENCES 

Afrasiabi, S., Afrasiabi, M., Parang, B., Mohammadi, M., 

Arefi, M. M., & Rastegar, M. (2019). Wind turbine fault 

diagnosis with Generative-Temporal Convolutional 

Neural Network, 2019 IEEE International Conference 

on Environment and Electrical Engineering and 2019 

IEEE Industrial and Commercial Power Systems Europe 

(EEEIC / I&CPS Europe), pp. 1-5. doi: 

10.1109/EEEIC.2019.8783233 

Bishop, C.M. (2006). Pattern Recognition and Machine 

Learning, New York: Springer Science+Business 

Media, LLC. 

Blanco, I. (2009). The economics of wind energy, Renewable 

and Sustainable Energy Reviews, vol. 13, pp. 1372-

1382. doi: 10.1016/j.rser.2008.09.004 

Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022 - ISBN – 978-1-936263-36-3

Page 266



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022 

7 

Carroll, J., McDonald, A., & McMillan, D. (2016). Failure 

rate, repair time and unscheduled O & M cost analysis of 

offshore wind turbines, Wind Energy, vol. 19, pp. 1107-

1119. doi: 10.1002/we.1887 

Cortes, C., Vapnik,  V. (1995). Support-Vector Networks. 

Machine Learning, vol. 20, pp. 273-297. doi: 

10.1007/BF00994018 

Chen, J., Li, J., Chen, W., Wang, Y., & Jiang, T. (2020) 

Anomaly detection for wind turbines based on the 

reconstruction of condition parameters using stacked 

denoising autoencoders, Renewable Energy, vol. 147, 

pp. 1469-1480. doi: 10.1016/j.renene.2019.09.041 

Chen, B., Matthews, P.C., & Tavner, P.J. (2013) Wind 

turbine pitch faults prognosis using a-priori knowledge-

based ANFIS, Expert Systems with Applications, vol. 40, 

pp. 6863-6876. doi: 10.1016/j.eswa.2013.06.018 

Chen, B., Matthews, P.C., & Tavner, P.J. (2015) Automated 

on-line fault prognosis for wind turbine pitch systems 

using supervisory control and data acquisition, IET 

Renewable Power Generation, vol. 9, pp. 503-513. doi: 

10.1049/iet-rpg.2014.0181 

Chen, B., Zappala, D., Crabtree, C.J., & Tavner, P.J. (2014) 

Survey of commercially available SCADA data analysis 

tools for wind turbine health monitoring. Technical 

Report. Durham University School of Engineering and 

Computing Sciences 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep 

Learning, Cambridge, MA: MIT Press 

Guo, P., & Infield, D. (2020). Wind turbine power curve 

modeling and monitoring with Gaussian process and 

SPRT, IEEE Trans. Sustain. Energy, vol. 11, pp. 107-

115. doi: 10.1109/TSTE.2018.2884699 

Helbing, G., & Ritter, M. (2018). Deep Learning for fault 

detection in wind turbines, Renewable and Sustainable 

Energy Reviews, vol. 98, pp. 189-198. doi: 

10.1016/j.rser.2018.09.012 

Hu, R.L., Leahy, K., Konstantakopoulos, I.C., Auslander, 

D.M., Spanos, C.J., & Agogino, A.M. (2017). Using 

domain knowledge features for wind turbine diagnostics, 

Proceedings of 2016 15th IEEE International 

Conference on Machine Learning and Applications 

(ICMLA). pp.  300-305. doi: 10.1109/ICMLA.2016.172 

Kong, Z., Tang, B., Deng, L., Liu W., & Hana, Y. (2020). 

Condition monitoring of wind turbines based on spatio-

temporal fusion of SCADA data by convolutional neural 

networks and gated recurrent units, Renewable Energy, 

vol. 146, pp. 760-768. doi: 

10.1016/j.renene.2019.07.033 

Korkos, P., Linjama, M., Kleemola, J., & Lehtovaara, A. 

(2022). Data annotation and feature extraction in fault 

detection in a wind turbine hydraulic pitch system. 

Renewable Energy, vol. 185, pp. 692-703. doi: 

10.1016/j.renene.2021.12.047 

Leahy, K., Hu, R.L., Konstantakopoulos, I.C., Spanos, C.J., 

& Agogino, A.M. (2016). Diagnosing wind turbine 

faults using machine learning techniques applied to 

operational data, 2016 IEEE International Conference 

on Prognostics and Health Management (ICPHM), pp. 

1–8. doi: 10.1109/ICPHM.2016.7542860 

Leahy, K., Hu, R.L., Konstantakopoulos, I.C., Spanos, C.J., 

Agogino, A.M., & O’Sullivan, D.T.J. (2018). 

Diagnosing and predicting wind turbine faults from 

SCADA data using support vector machines, 

International Journal of Prognostics and Health 

Management, vol. 9 (1), pp. 1-11. doi: 

10.36001/ijphm.2018.v9i1.2692 

Liu, Y., Cheng, H., Kong, X., Wang, Q., &. Cui, H. (2019). 

Intelligent wind turbine blade icing detection using 

supervisory control and data acquisition data and 

ensemble deep learning, Energy Science Engineering, 

vol. 7, pp. 2633-2645. doi: 10.1002/ese3.449 

Liu, X., Teng, W., Wu, S., Wu, X., Liu, Y., & Ma, Z. (2021), 

Sparse dictionary learning based adversarial variational 

auto-encoders for fault identification of wind turbines, 

Measurement, vol. 183. doi:  

10.1016/j.measurement.2021.109810 

Pandit, R.K., & Infield, D. (2018). Gaussian process 

operational curves for wind turbine condition 

monitoring, Energies, vol. 11 (7). doi: 

10.3390/en11071631 

Pandit, R.K., & Infield, D. (2019). Comparative assessments 

of binned and support vector regression-based blade 

pitch curve of a wind turbine for the purpose of condition 

monitoring, International Journal of Energy and 

Environmental Engineering, vol. 10, pp. 181-188. doi: 

10.1007/s40095-018-0287-3 

Qian, P., Tian, X., Kanfoud, J., Lee, J.L.Y., & Gan, T.H. 

(2019). A Novel Condition Monitoring Method of Wind 

Turbines Based on Long Short-Term Memory Neural 

Network, Energies, vol. 12 (18). doi: 

10.3390/en12183411 

Ribrant, J., & Bertling, L.M. (2007) Survey of failures in 

wind power systems with focus on Swedish wind power 

plants during 1997-2005, IEEE Trans. Energy Convers., 

vol. 22, pp. 167-173. doi: 10.1109/PES.2007.386112 

Schlechtingen, M., Santos, I.F., & Achiche, S. (2013) Wind 

turbine condition monitoring based on SCADA data 

using normal behavior models. Part 1: System 

description, Applied Soft Computing, vol. 13, pp. 259-

270. doi: 10.1016/j.asoc.2012.08.033 

Schlechtingen, M., & Santos, I.F. (2014) Wind turbine 

condition monitoring based on SCADA data using 

normal behavior models. Part 2: Application examples, 

Applied Soft Computing, vol. 14, pp. 447-460. doi: 

10.1016/j.asoc.2013.09.016 

Stetco, A., Dinmohammadi, F., Zhao, X., Robu, V., Flynn, 

D., Barnes, M., Keane, J., & Nenadic, G. (2019) 

Machine learning methods for wind turbine condition 

monitoring: A review, Renewable Energy. vol. 133, pp.  

620-635. doi:10.1016/j.renene.2018.10.047  

Tautz-Weinert, J., & Watson, S.J., (2017). Using SCADA 

data for wind turbine condition monitoring - A review, 

Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022 - ISBN – 978-1-936263-36-3

Page 267



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022 

8 

IET Renewable Power Generation, vol. 11, pp. 382-394. 

doi: 10.1049/iet-rpg.2016.0248 

Ulmer, M., Jarlskog, E., Pizza, G., Manninen, J., & Goren 

Huber, L. (2020). Early Fault Detection Based on Wind 

Turbine SCADA Data Using Convolutional Neural 

Networks. PHM Society European Conference, vol. 

5(1), 9. doi: 10.36001/phme.2020.v5i1.1217 

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.A. 

(2008). Extracting and composing robust features with 

denoising autoencoders, Proceedings 25th International 

Conference on Machine Learning (pp. 1096-1103), 

Helsinki, Finland. doi:  10.1145/1390156.1390294 

Wilkinson, M., Hendriks, B., Spinato, F., Harman, K., 

Gomez, E., Bulacio, H., Roca, J., Tavner, P., Feng, Y., 

& Long, H. (2010). Methodology and results of the 

Reliawind reliability field study, European Wind Energy 

Conference Exhibition, EWEC 2010. April 20-23, 

Warsaw, Poland. 

WindEurope. (2022). Wind energy in Europe - 2021 Statistics 

and the outlook for 2022-2026, Annual report, Brussels, 

Belgium 

Wu, X., Jiang, G., Wang, X., Xie, P., & Li, X. (2019). A 

Multi-Level-Denoising Autoencoder approach for wind 

turbine fault detection, IEEE Access, vol. 7, pp. 59376-

59387. doi: 10.1109/ACCESS.2019.2914731 

Wu, X., Su, R., Lu, C., & Rui, X. (2015). Internal leakage 

detection for wind turbine hydraulic pitching system 

with computationally efficient adaptive asymmetric 

SVM, Proceedings of 2015 34th Chinese Control Conf., 

pp. 6126-6130, July 28-30, Hangzhou, China. doi: 

10.1109/ChiCC.2015.7260599 

Xiang, L., Wang, P., Yang, X., Hu, A., & Su, H. (2021). Fault 

detection of wind turbine based on SCADA data analysis 

using CNN and LSTM with attention mechanism, 

Measurement, vol. 175. doi: 

10.1016/j.measurement.2021.109094 

Xiang, L., Yang, X., Hu, A., Su, H., & Wang, P. (2022). 

Condition monitoring and anomaly detection of wind 

turbine based on cascaded and bidirectional deep 

learning networks, Applied Energy, vol. 305, doi: 

10.1016/j.apenergy.2021.117925 

Yang, W., Court, R., & Jiang, J., (2013). Wind turbine 

condition monitoring by the approach of SCADA data 

analysis, Renewable Energy, vol. 53, pp. 365-376. doi: 

10.1016/j.renene.2012.11.030 

Yang, L., & Zhang, Z. (2021). Wind turbine gearbox failure 

detection based on SCADA data: A Deep Learning-

based approach, IEEE Transactions on Instrumentation 

and Measurement, vol. 70, pp. 1-11, doi: 

10.1109/TIM.2020.3045800 

Zaher, A., McArthur, S.D.J.,  Infield, D.G., &  Patel, Y. 

(2009) Online wind turbine fault detection through 

automated SCADA data analysis. Wind Energy, vol. 12, 

pp. 574-593. doi: 10.1002/we.319  

 

 

Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022 - ISBN – 978-1-936263-36-3

Page 268


