
An approach for the bimanual manipulation of a

deformable linear object using a dual-arm industrial

robot: cable routing use case

Pablo Malvido Fresnillo
FAST-Lab, Faculty of Engineering

and Natural Sciences

Tampere University

Tampere, Finland

pablo.malvidofresnillo @tuni.fi

Abstract—The automation of processes that handle deformable

materials is considered to be a complicated task. Due to their
properties, these materials require specialised solutions for their
manipulation, using robotic systems and mostly, using specif-

ically developed hardware which limits its use for different

deformable objects. To solve this issue, this paper presents
an approach for bimanually manipulating Deformable Linear

Objects (DLOs) using a dual-arm industrial robot. This approach
aims at providing an automatic, generic, and easily reconfigurable

solution and is implemented for routing cables in a human-centric
platform. The approach consists of a cyber-physical system (CPS)

composed by commercial hardware: a robot equipped with two
parallel grippers, and a reconfigurable Robot Operating System

(ROS) software. In more details, the developed software extracts
information about the process, such as the routing path, keypoints

of the workstation setup and objects dimensions. Then, it uses the
extracted information to generate suitable bimanual trajectories

for the robot. Finally, the approach has been tested for three
different routing paths.

Index Terms—Bimanual Manipulation, Deformable Object

Manipulation, ROS Applications, Knowledge-Based Systems,

Cyber-Physical Systems

I. INTRODUCTION

Deformable Linear Objects (DLOs) i.e., cables, ropes,

hoses, cloth, etc. are highly relevant products of everyday

life and are handled extensively in industrial, household, and

medical (to highlight a few) scenarios daily. Much of these

manipulations are currently performed manually by a human

actor, as there is a wide gap between existing research and the

commercial implementation of robotic systems, which could

potentially replace humans to perform DLO manipulation and

achieve satisfactory results.

Handling of DLOs is still challenging for robots, primarily

because of the lack of established cyber-physical systems

(CPS) to properly perform and combine the outcomes of sens-

ing, modelling, planning and control, for DLO manipulation

The research leading to these results has received funding from the

European Union’s Horizon 2020 research and innovation program under

grant agreement n° 870133, correspondent to the project entitled REMODEL,

Robotic Technologies for the Manipulation of Complex Deformable Linear

objects.

Saigopal Vasudevan
FAST-Lab, Faculty of Engineering

and Natural Sciences

Tampere University

Tampere, Finland

saigopal.vasudevan @tuni.fi

Wael M. Mohammed
FAST-Lab, Faculty of Engineering

and Natural Sciences

Tampere University

Tampere, Finland

wael.mohammed @tuni.fi

[1] [2]. Furthermore, existing work cells where traditional

manipulation of DLOs takes place e.g., automotive factories,

medical manufacturers, aircraft manufacturing, etc. have work

environments designed to be suitable for human workers.

The transition from manual to robotic workstations would

be easier if the robots were anthropomorphic (dual-arm), as

it would enable them to do most tasks which their human

counterparts are capable of performing. Furthermore, utilizing

dual-arm robots would facilitate the designing of production

environments to be human-centric; which allows for mixed

working models (humans and robots could work separately in

individual shifts or together in parallel), and reduces the need

for additional hardware required by conventional (single arm)

robot-centric workstations. Additionally, there is an almost

inevitable requirement of two robotic arms to handle the

greater diversity of behavior and the challenges posed by

DLOs and perform well coordinated motions [3].

The proposed manuscript is the documentation of a portion

of work done in the project REMODEL!, which is a 4 year

Research Innovation Action (RIA) project. REMODEL aims

to bring about advanced handling techniques for DLOs in ex-

isting production processes, which are predominantly human-

labor intensive. The primary DLOs of interest in project

REMODEL include wires, cables, wiring harnesses, laces and

flexible tubes/ hoses.

This paper presents an approach to develop a CPS for

performing the routing operation of a cable by utilizing a

dual-arm industrial robot, in a human centric environment. The

dimensional characteristics of the cable are represented math-

ematically and are utilized by a novel ROS (Robot Operating

System) based bimanual planning and control framework to

physically manipulate the DLO with the robot.

The following contents of the document are organized as

follows. Section II highlights the relevant existing research

for hardware, software and DLO manipulation. Section III

presents the developed CPS system and explains the methods

! https://remodel-project.eu/

used to perform the cable routing operation. Section IV show-

cases the results and outcomes of the conducted experiments.

Finally, Section V documents the conclusions and possible

areas for future research and exploration.

II. STATE OF THE ART AND THEORETICAL BACKGROUND

A. Dual-arm manipulation

Using robots in environments originally designed for hu-

mans has always been a topic of great interest, as it would

allow replacing human workers with robots without the need

for major changes to the production environment. However,

this is a complex task, and requires robots to implement

some human capabilities, such as dual-arm manipulation. This

presents new challenges besides the ones that were already

present in single-arm manipulation, as new aspects, such as

arms synchronization, self-collision avoidance and the high

redundancy and internal forces of closed chain systems; have

to be taken into account [4]. This increase in the complexity

mainly depends on the type of interaction between the arms.

D. Surdilovic et al. [5] classified dual-arm manipulation as

un-coordinated, when each arm is working on a different

task, and coordinated, when both arms work together in the

same task. Additionally, a subdivision of this last group was

done, differentiating goal-directed, when there is no physical

interaction between the arms, and bimanual movements, when

both hands interact with the same object.

Due to the additional challenges, motion planning for

dual-arm robots requires some new considerations. Lavalle

suggested in [6] three strategies for decoupling each arm

planning: prioritized planning, where the trajectory of one

arm is calculated first and then the second arm trajectory is

calculated considering the possible collisions with the first

arm path; fixed-path coordination, where the trajectories of

both arms are calculated independently and the goal is to

find the timings to avoid collisions and obtain the required

coordination; and fixed-roadmap coordination, that is an ex-

tension of the previous strategy to roadmaps. Other approaches

extend techniques traditionally used for single-arm motion

planning, such as Randomized Path Planners (RPP) or Rapid-

exploring Random Tree (RRT) algorithms, considering the

additional problems of collisions and coordination between

arms [7], [8]. An example of this is [7], where a RRP algorithm

is extended to calculate transit and transfer subpaths for a

dual-arm robotic system, in order to move an object without

collisions. To achieve this, the arms may have to change the

grasp of the object. Thus, during the transit paths the arms can

move independently without moving the object and during the

transfer paths the arms move the object forming a kinematics

closed chain with it.

In this work, a system for performing the bimanual ma-

nipulation of a cable is presented, and two different motion

planning strategies are followed depending on the situation.

When both arms move the cable forming a kinematic closed

chain, the trajectory waypoints of one arm are calculated

and the second arm moves simultaneously, following the

first; whereas for the rest of cases a decoupling fixed-path

coordination strategy is followed.

B. Robotic cable sensing and manipulation

Owing to the virtually infinite degrees of freedom (DoF) of

DLOs, a planned grasp may deform a section of the object

and can cause unpredictable deformation in other sections of

the DLO body. This causes form closure failure (failure in

applying kinematic constraints) in almost all scenarios, unless

in the case of biaxial tension [9]. Additionally, this creates the

need for a dynamic updating of the contact points and contact

forces applied by the actuator element on the DLO, through

an intelligent and iterative feedback loop mechanism, to bring

about the desired manipulation result on the object [10]

Vision based monitoring systems are more pervasively uti-

lized to continuously update the deformation model of the

DLO in real-time. The obtained point cloud data is analyzed

through various Machine Learning (ML) algorithms and the

physical DLO are modelled as mathematical splines by utiliz-

ing specialized estimators [11] [12]. An alternative to utilizing

vision is employing tactile sensing systems utilizing optoelec-

tronic sensors or smart materials, which detect the cable shape

and orientation due to the physical deformations caused by the

object when they wrap around the DLO [13]. Combining both

vision and tactile sensing technologies, improves the accuracy

and efficiency of the system by overcoming the issues faced

by the individual systems implemented as standalones [14].

Merging multiple sensing technologies add redundancy to the

system. A less commonly used method is to purely depend on

mathematical models based on the physical properties of the

cable and use minimum-energy-based schemes to determine

the deviations in the cable geometry and to update the system

state [15].

After creating and establishing the system state models, the

next stage is to plan for optimum manipulation sequences

to bring about the desired effect on the DLO, based on the

real-time evolution of the aforementioned conditions. Robot

planning is necessary to determine the sequence of acceptable

configurations for the manipulator, with respect to the DLO,

to perform the tasks. And a control system is required to

manage the inputs given to the physical robot, to realize the

pre-planned motions [16]. Both robot planning and control can

be performed by utilizing ROS. Namely, an existing motion

planning framework based in ROS called Movelt, which builds

on ROS concepts and build-systems to create robotic projects

for a wide range of applications. The Movelt environment

is capable of handling robot motion planning, manipulation

and control. These concepts are covered in more detail in the

following section.

C. ROS and Movelt

ROS is a universal robotic framework, that can be used for

creating software for any robotic system that is compatible

with it [17]. One of the primary functions of ROS is to serve

as an inter-process communication middleware, favoring the

system modularity and the integration of systems [18]. This

communication is carried out by exchanging data in the form

of messages”, which comprise of simple data structures. ROS

enables the utilization of both Asynchronous and synchronous

means of data exchange between the various nodes* (which

represent the simplest components of the ROS systems). The

asynchronous communication in ROS is done through a pub-

lisher/ subscriber concept, wherein the nodes can communicate

with each other, by publishing their messages or subscribing to

messages through a common topic’, respectively. For making

Remote Procedure Call (RPC) requests/ reply interactions,

ROS utilizes a server/ client concept called services>. Services

comprise of a two-set message wherein the client node sends

a request to the server node and waits for the response.

Additionally, for RPCs which require real time monitoring or

the ability to pre-empt the process while mid-execution, ROS

utilizes actions® which essentially provides the user tools to

create goal-seeking servers, with means to monitor and kill it,

through a client interface which can send the corresponding

request to the server.

Regarding the motion planning and manipulation in ROS,

Movelt is the most widely used software [19]. It inte-

grates motion planning, 3D perception, control, kinematic

solvers, collision checking and scene information, allow-

ing the fast generation of efficient and collision-free mo-

tion plans from a sequence of waypoints [20]. Addition-

ally, Movelt interfaces the robot controllers in order to

send the trajectories to execute. These trajectories are sent

in the form of JointTrajectory messages’, that con-

tains a sequence of JointT' rajectoryPoints. Each of these

JointTrajectoryPoints contains the joint values, speeds,

accelerations and efforts of all the joints of a planning group

(e.g. a robotic arm), as well as a time value, that is the time

at which that point is reached since the beginning of the

movement.

III. CYBER-PHYSICAL CABLE ROUTING SYSTEM

A. Robotic platform setup

The test platform where the experiments are conducted is in

an enclosed cell following the safety standards for an industrial

robot. The robot utilized is the Yaskawa SDAIOF, which is a

dual-arm industrial robot seven revolute joints in each arm

and one in the torso. The robot is fitted with a Weiss WSG50

gripper, which has precise control over the opening/ closing

distances of the jaw and the force exerted on the product.

The platform also has a platform where the cable (DLO)

specimen is initially placed with pre-determined grasp target

points for the robot, to perform the initial grasping. The test

table where the placing and routing operations are performed

is a modular setup, with specialized guides to help support

7 http://wiki.ros.org/Messages

3 http://wiki.ros.org/N odes

4 http://wiki.ros.org/T ‘opics

5 http://wiki.ros.org/Services

Shttp://wiki.ros.org/actionlib

7 http://docs.ros.org/en/noetic/api/trajectory_msgs/html/msg/JointTrajectory.html

Fig. 1. Robotic platform setup, with the dual-arm industrial robot and the

cable routing platform

(a) Fingers CAD

model

(b) Semi-grasp fingers

position

Fig. 2. Gripper and specialized cable routing fingers.

the cables as they are routed by the robot manipulator. The

physical hardware setup is shown in Fig.1

The gripper unit has a specialized design to align and center

the midsection of the grasped cable. Additionally, the gripping

system has three predetermined gripping jaw positions i.e.,

to perform fixed cable grasping, to slide along the length of

grasped cable, and an open position to approach a cable to

be grasped or to release an already grasped cable. This was

defined based on the physical properties of the cable which

includes its diameter, stiffness, and material. The gripper

construction model and the semi-grasp position for sliding

operation are illustrated in Fig.2.

The cable holder platform (Fig.7(a)) was utilized to preset

the initial orientation, direction, and shape of the cable, to

establish favorable conditions to grasp and manipulate the

cables by eliminating uncertainty to some extent. The cable

routing platform (Fig.7(b)) contains generic guides, which

serve as insert locations and a support path, along which the

robot arms could lay down and route the cable.

The sequence of actions being performed in this experiment

is that the robot picks the cable from the cable holder platform,

places one end of the cable into the first guide of the routing

platform, and then proceeds to route the cable through the

remaining guides as per the requirements of the path. The

following section of the paper elaborates on the approach

for determining the relevant strategy for contextual cable

manipulation and a description of the sequence of actions

performed in the cable routing experiment.

B. Reconfigurable ROS system

The goal for the development of the cyber-physical system

was to make it flexible and easily reconfigurable, requiring

little to no manual programming. Additionally, the system

aims to be hardware-agnostic, i.e. that it can be implemented

with any dual-arm robotic system with enough reachability.

Due to this, ROS was the selected framework to develop and

integrate the logic of the CPS. The ROS system is composed

by two modules (see Fig.3):

1) Information Module: Composed by a set of ROS nodes

that extract, process and distribute information about the

performed process. This information is sent through ROS

services to the trajectory generator module, providing it with

the knowledge about the working environment, the manip-

ulated objects and the cable path, that is used to generate

the trajectories. The information is extracted from several

input files that can be classified in three groups depending

on what kind of information they provide. The first group

comprises of files that contain information about the working

environment, in particular about the cable routing and the

cable holder platforms described in Section III-A. Each of

these platforms is described by three files: A CAD file in

x3d format, from which the relative pose of each element of

the assembly with respect to its parent element is obtained; a

xml file that describes the geometry of every different element

present in the platform, including their dimensions and their

keypoints (e.g. the center point of a guide) with respect its

own origin frame; and a csv file that relates every element in

the CAD file with its model in the xml file. The information of

these files is processed and combined, obtaining the keypoints

of every element referred to the origin of the platform. This

information, as well as the dimensions of each of the elements,

can be requested by means of ROS services.

The second group correspond to those files providing in-

formation about the manipulated objects. In this case, as the

manipulated objects are individual cables, just one file is

required, describing their dimensions and color. Finally, the

last group is the one that provides information about the

process. It is composed by a single file that contains the high-

level action plan of the process, specifying the sequence of

skills, the platform elements where to perform them and the

manipulated objects (e.g. Route Cablel through Guidel and

Guide2). There are three possible skills: Pick Cable, Insert

Connector and Route Cable. As with the first group, the

information of these last two groups can be also requested

using ROS services.

2) Trajectory Generator Module: ROS node that generates

and executes the robotic arms trajectories for the high-level

action plan of the process, based on the information about the

Algorithm 1 Trajectory Generator Module

1: procedure PICKCABLE(op_data)

2 Move robot to initial PickCable configuration
3 Calculate approach, grasping and retract keypoints

4: Calculate approach/retract waypoints by interpolation

5

6

Calculate waypoints for sliding close to connector

Calculate waypoints for aligning the Z axis of the grippers
with the Z axis of the routing platform

7: Transform all the waypoints to the grippers’ frames
8: Execute dual-arm movements through the waypoints

9: procedure PLACECONNECTOR(op_data)
10: Align robot torso with the routing platform’s X axis

11: Calculate approach, insert and retract keypoints
12: Calculate waypoints to align the cable with the guide

13: Calculate approach/retract waypoints by interpolation
14: Transform all the waypoints to the grippers’ frames

15: Execute dual-arm movements through the waypoints
16: Release and retract connector gripper

17: procedure ROUTECABLE(op_data)
18: Reorient the gripper to face the next guide

19: Calculate waypoints for approaching the next guide
20: Calculate waypoints sliding extra cable length

21: Calculate waypoints for grasping the cable with the other
gripper

22: Calculate circular waypoints to align the cable with the guide

23: Calculate circular waypoints to insert the cable
24: Update pull_distance

25: Transform all the waypoints to the grippers’ frames
26: Execute dual-arm movements through the waypoints chang-

ing the gripper position between pulling and sliding

27: procedure MAIN

28: ops_info <— Request the action plan of the process and
info about all the involved elements to the Information Module

through ROS services
29: for cable_i + 1 to length of ops_info do

30: call PickCable(ops_info|cable_i][0])
31: call PlaceConnector (ops_inf o|cable_i][1])

32: Calculate pull_distance
33: for op_i < 3 to length of ops_in fo|cable_t] do
34: call RouteCable(ops_in fo|[cable_i][op_t})

35: Release cables and retract arms

working environment and the manipulated objects, provided by

the information module. The structure of this node is presented

in Algorithm 1. First of all, the node request all the required

information about the process to the information module. This

information includes the high level action plan, the keypoints

and dimensions of the working environment elements involved

in the process, and the properties of the cables and connectors

to manipulate. This data is processed and stored in a dictionary,

organizing it initially by object and then by operation. This

knowledge about the process is then used to parametrize the

different skills.

Once the information is obtained, the node enters in a loop

that executes the operations of every cable. For each operation,

this information is used to calculate all the necessary keypoints

and then, the waypoints of each arm are obtained by linear or

circular interpolation between keypoints. The first operation of

each cable is always picking it from the cable holder platform.

Each extreme of the cable is grasped with one hand with a

dual-arm movement. Then, the gripper that is farther to the

Input files Information Module Ask for info Trajectory Generator Module Send motion

- CADx3d files Node for extracting (service request) PickCable() commands through

- CAD elements IDs afi the information 1 1 - PlaceConnector() RO Ney

- CAD elements’ Read files | Node for processing mrovides info RouteCable() (EtherNet/IP)
geometry description . the information (service response) Dual-arm Trajectory Robot

- Manipulated objects’ | > 1 Node providing the functions 1 1
description information: setup 1 1

- Process action plan visualization in RVIZ

and service servers

Fig. 3. UML class diagram of the ROS system

connector that will be inserted in the following operation has

to slide along the cable, coming closer to the other gripper,

achieving the grasp required for the future insertion. Due to

the deformable nature of cables, depending on its shape, it

can bend and get stuck in the fingers during this process.

Therefore, to avoid this, the arm that is moving, moves down

initially in order to slide the cable back against gravity so

its shape is more predictable. These up/down movements are

circular to keep the cable length constant and to not damage

it. All these movements are defined with several waypoints

that the fingers of the grippers have to go through. However,

the node must convert these into waypoints for the wrists (last

link of the robotic arms), so they can be sent to Movelt to

calculate the trajectories.

The second operation is always placing one of the cable

connectors in a guide of the cable routing platform. For that the

torso of the robot must align with the X axis of the platform,

the grippers have to align the cable with the guide, insert it,

and finally release and retract the hand that is closer to the

connector. All this is done, as in the Pick Cable skill, by calcu-

lating keypoints from the obtained operation information, and

then the waypoints of each arm using different interpolation

strategies. After placing the connector, the pull_distance is

calculated, i.e. the distance that the cable must be pulled during

the routing operations to adjust the connector to the first guide.

This value is calculated considering the fingers thickness, the

guides thickness and the offset values.

Finally, once the connector is placed, the remaining oper-

ations consist on routing the cable through different guides.

As the cable is a deformable object, it must be in tension

when being inserted into the guide, such that its shape can be

approximately a straight line. As in this approach no sensory

feedback is used, such as vision or torque, the arm movements

to keep the cable tension are calculated mathematically. First

of all, the gripper of the routing arm changes its orientation

to point to the next guide and approaches to it sliding the

cable. Then, once the gripper is at a certain offset distance to

the guide (A in Fig.4(a)), it slides the additional cable length

that will be required for inserting the cable. This distance

(Reable) 18 the maximum distance that will be required during

the circular movements to insert the cable, that can be at the

top of the guide (Ri;;, before inserting, Fig.4(b)) or in front

of the guide (Rj, <¢rt, after inserting, Fig.4(c)), depending on

the guide dimensions.

Riise = ve + Xoffset)? + (H + Zof fset)*

Rinsert =L+2.- Xof fset

Reable = max(Ri pe, Rinsert)

The variables of the previous formulas are graphically

explained in Fig. 4. Additionally, in order to avoid collisions

when sliding the cable, the minimum angle for the sliding

direction (see Fig 4(a)) is calculated according to the following

formula:

W oripper + W guide

2A

After sliding this extra cable length, the fingers will change

to grasping position, and the other arm will move to grasp

the cable in the previous guide. Then, the cable is pulled a

small distance (function of the distance between grippers and

the cable properties) to apply tension to the cable, and this

distance between grippers is kept constant, being the radius of

the lifting and inserting circular movements, thus keeping the

tension of the cable all this time.

All the explained skills, calculate waypoints for each arm in

order to generate the dual-arm trajectories. However, the com-

pute_cartesian_path() method of the MoveGroupCommander

Movelt class just generates single arm trajectories. Hence, in

order to generate dual-arm trajectories synchronizing arms and

avoiding self-collisions, some functions have been developed

(see Algorithm 2).

The waypoints of each arm, calculated in each skill, are

sent to the ExecuteDualTraj() function, where the potential
self-collisions between arms are assessed and, in case of any,

the trajectory is split and each part is calculated and executed

separately. These are not real collisions, as the waypoints of

both end effectors of the robot were calculated to avoid any

kind of collisions (with itself or with the elements of the cell).

However, this is necessary because the trajectory of each arm

is calculated individually and then they are merged. Due to

this, when calculating one arm, the other is considered to

be static all the time and, even if it is supposed to move

at the same time, its position is not updated for the self-

collision checking of the Movelt trajectory planner. Therefore,

the Movelt trajectory calculator could fail or retrieve a weird

trajectory if the waypoints of one arm intersect with the initial

6 > arctan

Z_ offset

L

(d) Inserting circular movement (Reable)

Fig. 4. Cable routing process.

position of the other arm. In this approach, this issue is solved

by splitting the trajectory, so it can be executed in different

steps, updating the real arms positions before planning the

Information

module

Waypoints

calculation

 Interference between [No]

left/right arm and right/left

waypoints?

 Split

waypoints

 Plan left Plan right

Fig. 5. UML activity diagram of the Trajectory Generator Module and its

communication with the Information Module. The action boxes in white were

developed in this paper and the ones in grey are existing functions of Movelt.

remaining part of the trajectory.

For merging the plans of both arms, they must be composed

by the same number of JointT'rajectoryPoints, as many

as the longest trajectory, and they must finish at the same

time, the time of the slowest arm. To achieve this, intermediate

points are added to the shorter trajectory by interpolation of

their joint values, speeds and accelerations. Finally a new

trajectory is generated including the joint values of both arms

for each time step. In Fig.5 it can be seen how this novel

Bimanual Trajectory Generator Module works, representing

in grey the existing functions of Movelt and in white the

additional developed functions.

IV. EXPERIMENTAL EVALUATION

The cable routing system was tested for three different con-

figurations of guides, both in RVIZ (A ROS 3D visualization

environment) and with the real robot. In the first scenario, the

cable is routed through three guides following a straight line

Algorithm 2 Dual-arm trajectory generation

1: procedure MERGEPLANS(traj_R, traj_L)
: long_traj < Determine the trajectory with more

JointTrajectoryPoints

3: short_traj <— append intermediate points by interpolation

to have the same length than long_traj.
4: slow_traj + Determine the slower trajectory

5: times < times of the slow_traj
6: dual_traj <— Create a new trajectory including the joint

values of both arms for each time step
7: return dual_traj

8: procedure DUALCARTESIANPATH(wp_R, wp_L)

9: traj_R < compute_cartesian_path(wp_R)
10: traj_L < compute_cartesian_path(wp_L)
1: dual_traj < call MergePlans(traj_R, traj_L)
12: execute(dual_traj)

13: procedure EXECUTEDUALTRAJ(wp_R, wp_L)
14: for 1 <— 1 to length of wp_R do

15: if |wp_R[i], L_pose| < collision_threshold then

16: j= ee i

17: wp_R_1,wp_R_2 < split wp_R at index i

18: wp_L_1,wp_L_2 < split wp_L at index j
19: break

20: for i + 1 to length of wp_L do
21: if |wp_L{i], R_pose| < collision_threshold then

22 j= aE
23: wp_L_1,wp_L_2 < split wp_L at index 1

24: wp_R_1,wp_R_2 < split wp_R at index j

25: break

26: call DualCartesianPath(wp_R_1, wp_L_1)
27: call ExecuteDualTraj(wp_R_2, wp_L_2)

28: procedure MAIN

29: call ExecuteDualTraj(wp_R, wp_L)

(Fig.6(a)); in the second, the cable is routed again through

three guides but with a change of direction (Fig.6(b)); and in

the third, four guides are used and the cable path has two

changes of direction (Fig.6(c)). In the three experiments a 650

mm long cable with a 6 mm diameter and a VGA connector

in one of its ends was used, and it was picked from the cable

holder platform, as can be seen in Fig.6(d).

As Fig.6 shows, the trajectories were generated correctly

for the three tested scenarios, and the dual-arm movements

were executed properly both in RVIZ and with the real robot,

routing the cable satisfactorily through the guides (Fig.7(b)).

The coordination between arms was good, there were no

entanglements when sliding the fingers along the cable, and the

cable was not damaged during the manipulation. Additionally,

it was proved that the information module works correctly,

switching from one scenario to another just by changing its

input files, allowing the fast and easy reconfiguration of the

system.

V. CONCLUSIONS AND FUTURE DIRECTIONS

The manipulation of flexible materials is a challenging task

in the robotics and automation field. In most cases, in order to

deal with the uncertainties of these objects, the process ends

up being too tailored for the specific robotic manipulator. The

work done in this paper presents a solution for this issue,

(b) 2% scenario, one change of

direction

(a) 18 scenario, straight cable

(c) 3°@ scenario, two changes of direction (d) Pick cable

Fig. 6. RVIZ visualization of the generated trajectories (right arm in green

and left in red).

(a) Robot picking the cable from

the cable holder platform

(b) Robot routing the cable along the

guides of the cable routing platform

Fig. 7. Real robot during the execution of the cable routing process.

developing a CPS for routing a cable in a human-centric

workplace using a dual-arm robot. The robot is equipped

with two parallel grippers with specialized fingers, designed to

either grasp or slide the cable, and the work cell is composed

by two platforms, one for holding the cable initially in a known

position, and another where the guides for routing the cable

are mounted. Regarding the software of the system, it was

developed in ROS and it is composed by two modules, one for

extracting and providing information about the routing process

and the other one in charge of generating and executing the

robot trajectories. The system was tested for three different

cable routing paths, following a straight line and with one

and two changes of direction. The dual-arm trajectories were

generated and executed correctly in the three experiments, and

the cable was successfully routed in all of them. This shows

that the strategy of keeping the cable in tension during the

manipulation reduces the uncertainty to some extent, being

able to work without sensor data. Additionally, the experiments

probed the easy and fast reconfigurability of the system,

modifying the process just by updating the information input

files.

After the successful results of this first implementation of

the system, the next goal is to extend it in order to route

and assembly several wire harnesses. This process presents

additional challenges, such as separating cable branches and

routing multiple cables together. Therefore, the introduction

of sensory information in the system will be considered.

REFERENCES

[1] J. Sanchez, J.-A. Corrales, B.-C. Bouzgarrou, and Y. Mezouar, “Robotic

manipulation and sensing of deformable objects in domestic and in-

dustrial applications: a survey,” The International Journal of Robotics

Research, vol. 37, no. 7, pp. 688-716, 2018.

[2] W. M. Mohammed, P. Malvido Fresnillo, S. Vasudevan, Z. Gosar, and

J. L. Martinez Lastra, “An approach for modeling grasping configuration

using ontology-based taxonomy,” in 2020 IEEE Conference on Industrial

Cyberphysical Systems (ICPS), vol. 1, 2020, pp. 507-513.

[3] M. Saha and P. Isto, “Manipulation planning for deformable linear

objects,’ IEEE Transactions on Robotics, vol. 23, no. 6, pp. 1141-1150,

2007.

C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D. V.

Dimarogonas, and D. Kragic, “Dual arm manipulation—A survey,”

Robotics and Autonomous Systems, vol. 60, no. 10, pp. 1340-1353, Oct.

2012.

[5] D. Surdilovic, Y. Yakut, T.-M. Nguyen, X. B. Pham, A. Vick, and

R. Martin-Martin, “Compliance control with dual-arm humanoid robots:

Design, planning and programming,” in 20/0 10th IEEE-RAS Interna-

tional Conference on Humanoid Robots, Dec. 2010, pp. 275-281, iSSN:

[4 =

2164-0580.
[6] S.M. LaValle, Planning Algorithms. Cambridge: Cambridge University

Press, 2006.

[7] Y. Koga and J.-C. Latombe, “Experiments in dual-arm manipulation

planning,” in Proceedings 1992 IEEE International Conference on

Robotics and Automation, May 1992, pp. 2238-2245 vol.3.

[8] N. Vahrenkamp, M. Do, T. Asfour, and R. Dillmann, “Integrated Grasp

and motion planning,” in 2010 IEEE International Conference on

Robotics and Automation, May 2010, pp. 2883-2888, iSSN: 1050-4729.

[9] F. Guo, H. Lin, and Y.-B. Jia, “Squeeze grasping of deformable planar

objects with segment contacts and stick/slip transitions,’ in 2013 IEEE

International Conference on Robotics and Automation. YEEE, 2013,

pp. 3736-3741.

[10] Y.-B. Jia, F Guo, and J. Tian, “On two-finger grasping of deformable

planar objects,” in 20/1] IEEE international conference on robotics and

automation. YEEE, 2011, pp. 5261-5266.

[11] J. Schulman, A. Lee, J. Ho, and P. Abbeel, “Tracking deformable objects

with point clouds,” in 2013 IEEE International Conference on Robotics

and Automation, 2013, pp. 1130-1137.

[12] S. Jin, C. Wang, and M. Tomizuka, “Robust deformation model approxi-

mation for robotic cable manipulation,” in 2019 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). YEEE, 2019, pp.

6586-6593.

[13] P. M. Fresnillo, S. Vasudevan, W. M. Mohammed, J. L. M. Lastra,

G. Laudante, S. Pirozzi, K. Galassi, and G. Palli, “Deformable objects

grasping and shape detection with tactile fingers and industrial grippers,”

in 2021 4th IEEE International Conference on Industrial Cyber-Physical

Systems (ICPS). TEEE, 2021, pp. 525-530.

[14] D. De Gregorio, R. Zanella, G. Palli, S. Pirozzi, and C. Melchiorri,

“Integration of robotic vision and tactile sensing for wire-terminal inser-

tion tasks,” JEEE Transactions on Automation Science and Engineering,

vol. 16, no. 2, pp. 585-598, 2018.

[15] A.J. Shah and J. A. Shah, “Towards manipulation planning for multiple

interlinked deformable linear objects,” in 20/6 IEEE International

Conference on Robotics and Automation (ICRA). EEE, 2016, pp.

3908-3915.

[16] J. Zhu, A. Cherubini, C. Dune, D. Navarro-Alarcon, F. Alambeigi,

D. Berenson, F. Ficuciello, K. Harada, X. Li, J. Pan et al., “Challenges

and outlook in robotic manipulation of deformable objects,” arXiv

preprint arXiv:2105.01767, 2021.

[17] “ROS: Home.” [Online]. Available: https://www.ros.org/

[18] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,

R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating

System,” in JCRA workshop on open source software, vol. 3. Kobe,

Japan, 2009, p. 5, issue: 3.2.

[19] “Movelt Motion Planning Framework.” [Online]. Available: https:

//moveit.ros.org/

[20] S. Chitta, “Movelt!: An Introduction,” in Robot Operating System (ROS):

The Complete Reference (Volume 1), ser. Studies in Computational

Intelligence, A. Koubaa, Ed. Cham: Springer International Publishing,

2016, pp. 3-27.

