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Abstract—The automation of processes that handle deformable 

materials is considered to be a complicated task. Due to their 
properties, these materials require specialised solutions for their 
manipulation, using robotic systems and mostly, using specif- 

ically developed hardware which limits its use for different 

deformable objects. To solve this issue, this paper presents 
an approach for bimanually manipulating Deformable Linear 

Objects (DLOs) using a dual-arm industrial robot. This approach 
aims at providing an automatic, generic, and easily reconfigurable 

solution and is implemented for routing cables in a human-centric 
platform. The approach consists of a cyber-physical system (CPS) 

composed by commercial hardware: a robot equipped with two 
parallel grippers, and a reconfigurable Robot Operating System 

(ROS) software. In more details, the developed software extracts 
information about the process, such as the routing path, keypoints 

of the workstation setup and objects dimensions. Then, it uses the 
extracted information to generate suitable bimanual trajectories 

for the robot. Finally, the approach has been tested for three 
different routing paths. 

Index Terms—Bimanual Manipulation, Deformable Object 

Manipulation, ROS Applications, Knowledge-Based Systems, 

Cyber-Physical Systems 

I. INTRODUCTION 

Deformable Linear Objects (DLOs) i.e., cables, ropes, 

hoses, cloth, etc. are highly relevant products of everyday 

life and are handled extensively in industrial, household, and 

medical (to highlight a few) scenarios daily. Much of these 

manipulations are currently performed manually by a human 

actor, as there is a wide gap between existing research and the 

commercial implementation of robotic systems, which could 

potentially replace humans to perform DLO manipulation and 

achieve satisfactory results. 

Handling of DLOs is still challenging for robots, primarily 

because of the lack of established cyber-physical systems 

(CPS) to properly perform and combine the outcomes of sens- 

ing, modelling, planning and control, for DLO manipulation 
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[1] [2]. Furthermore, existing work cells where traditional 

manipulation of DLOs takes place e.g., automotive factories, 

medical manufacturers, aircraft manufacturing, etc. have work 

environments designed to be suitable for human workers. 

The transition from manual to robotic workstations would 

be easier if the robots were anthropomorphic (dual-arm), as 

it would enable them to do most tasks which their human 

counterparts are capable of performing. Furthermore, utilizing 

dual-arm robots would facilitate the designing of production 

environments to be human-centric; which allows for mixed 

working models (humans and robots could work separately in 

individual shifts or together in parallel), and reduces the need 

for additional hardware required by conventional (single arm) 

robot-centric workstations. Additionally, there is an almost 

inevitable requirement of two robotic arms to handle the 

greater diversity of behavior and the challenges posed by 

DLOs and perform well coordinated motions [3]. 

The proposed manuscript is the documentation of a portion 

of work done in the project REMODEL!, which is a 4 year 

Research Innovation Action (RIA) project. REMODEL aims 

to bring about advanced handling techniques for DLOs in ex- 

isting production processes, which are predominantly human- 

labor intensive. The primary DLOs of interest in project 

REMODEL include wires, cables, wiring harnesses, laces and 

flexible tubes/ hoses. 

This paper presents an approach to develop a CPS for 

performing the routing operation of a cable by utilizing a 

dual-arm industrial robot, in a human centric environment. The 

dimensional characteristics of the cable are represented math- 

ematically and are utilized by a novel ROS (Robot Operating 

System) based bimanual planning and control framework to 

physically manipulate the DLO with the robot. 

The following contents of the document are organized as 

follows. Section II highlights the relevant existing research 

for hardware, software and DLO manipulation. Section III 

presents the developed CPS system and explains the methods 

! https://remodel-project.eu/



used to perform the cable routing operation. Section IV show- 

cases the results and outcomes of the conducted experiments. 

Finally, Section V documents the conclusions and possible 

areas for future research and exploration. 

II. STATE OF THE ART AND THEORETICAL BACKGROUND 

A. Dual-arm manipulation 

Using robots in environments originally designed for hu- 

mans has always been a topic of great interest, as it would 

allow replacing human workers with robots without the need 

for major changes to the production environment. However, 

this is a complex task, and requires robots to implement 

some human capabilities, such as dual-arm manipulation. This 

presents new challenges besides the ones that were already 

present in single-arm manipulation, as new aspects, such as 

arms synchronization, self-collision avoidance and the high 

redundancy and internal forces of closed chain systems; have 

to be taken into account [4]. This increase in the complexity 

mainly depends on the type of interaction between the arms. 

D. Surdilovic et al. [5] classified dual-arm manipulation as 

un-coordinated, when each arm is working on a different 

task, and coordinated, when both arms work together in the 

same task. Additionally, a subdivision of this last group was 

done, differentiating goal-directed, when there is no physical 

interaction between the arms, and bimanual movements, when 

both hands interact with the same object. 

Due to the additional challenges, motion planning for 

dual-arm robots requires some new considerations. Lavalle 

suggested in [6] three strategies for decoupling each arm 

planning: prioritized planning, where the trajectory of one 

arm is calculated first and then the second arm trajectory is 

calculated considering the possible collisions with the first 

arm path; fixed-path coordination, where the trajectories of 

both arms are calculated independently and the goal is to 

find the timings to avoid collisions and obtain the required 

coordination; and fixed-roadmap coordination, that is an ex- 

tension of the previous strategy to roadmaps. Other approaches 

extend techniques traditionally used for single-arm motion 

planning, such as Randomized Path Planners (RPP) or Rapid- 

exploring Random Tree (RRT) algorithms, considering the 

additional problems of collisions and coordination between 

arms [7], [8]. An example of this is [7], where a RRP algorithm 

is extended to calculate transit and transfer subpaths for a 

dual-arm robotic system, in order to move an object without 

collisions. To achieve this, the arms may have to change the 

grasp of the object. Thus, during the transit paths the arms can 

move independently without moving the object and during the 

transfer paths the arms move the object forming a kinematics 

closed chain with it. 

In this work, a system for performing the bimanual ma- 

nipulation of a cable is presented, and two different motion 

planning strategies are followed depending on the situation. 

When both arms move the cable forming a kinematic closed 

chain, the trajectory waypoints of one arm are calculated 

and the second arm moves simultaneously, following the 

first; whereas for the rest of cases a decoupling fixed-path 

coordination strategy is followed. 

B. Robotic cable sensing and manipulation 

Owing to the virtually infinite degrees of freedom (DoF) of 

DLOs, a planned grasp may deform a section of the object 

and can cause unpredictable deformation in other sections of 

the DLO body. This causes form closure failure (failure in 

applying kinematic constraints) in almost all scenarios, unless 

in the case of biaxial tension [9]. Additionally, this creates the 

need for a dynamic updating of the contact points and contact 

forces applied by the actuator element on the DLO, through 

an intelligent and iterative feedback loop mechanism, to bring 

about the desired manipulation result on the object [10] 

Vision based monitoring systems are more pervasively uti- 

lized to continuously update the deformation model of the 

DLO in real-time. The obtained point cloud data is analyzed 

through various Machine Learning (ML) algorithms and the 

physical DLO are modelled as mathematical splines by utiliz- 

ing specialized estimators [11] [12]. An alternative to utilizing 

vision is employing tactile sensing systems utilizing optoelec- 

tronic sensors or smart materials, which detect the cable shape 

and orientation due to the physical deformations caused by the 

object when they wrap around the DLO [13]. Combining both 

vision and tactile sensing technologies, improves the accuracy 

and efficiency of the system by overcoming the issues faced 

by the individual systems implemented as standalones [14]. 

Merging multiple sensing technologies add redundancy to the 

system. A less commonly used method is to purely depend on 

mathematical models based on the physical properties of the 

cable and use minimum-energy-based schemes to determine 

the deviations in the cable geometry and to update the system 

state [15]. 

After creating and establishing the system state models, the 

next stage is to plan for optimum manipulation sequences 

to bring about the desired effect on the DLO, based on the 

real-time evolution of the aforementioned conditions. Robot 

planning is necessary to determine the sequence of acceptable 

configurations for the manipulator, with respect to the DLO, 

to perform the tasks. And a control system is required to 

manage the inputs given to the physical robot, to realize the 

pre-planned motions [16]. Both robot planning and control can 

be performed by utilizing ROS. Namely, an existing motion 

planning framework based in ROS called Movelt, which builds 

on ROS concepts and build-systems to create robotic projects 

for a wide range of applications. The Movelt environment 

is capable of handling robot motion planning, manipulation 

and control. These concepts are covered in more detail in the 

following section. 

C. ROS and Movelt 

ROS is a universal robotic framework, that can be used for 

creating software for any robotic system that is compatible 

with it [17]. One of the primary functions of ROS is to serve 

as an inter-process communication middleware, favoring the 

system modularity and the integration of systems [18]. This



communication is carried out by exchanging data in the form 

of messages”, which comprise of simple data structures. ROS 

enables the utilization of both Asynchronous and synchronous 

means of data exchange between the various nodes* (which 

represent the simplest components of the ROS systems). The 

asynchronous communication in ROS is done through a pub- 

lisher/ subscriber concept, wherein the nodes can communicate 

with each other, by publishing their messages or subscribing to 

messages through a common topic’, respectively. For making 

Remote Procedure Call (RPC) requests/ reply interactions, 

ROS utilizes a server/ client concept called services>. Services 

comprise of a two-set message wherein the client node sends 

a request to the server node and waits for the response. 

Additionally, for RPCs which require real time monitoring or 

the ability to pre-empt the process while mid-execution, ROS 

utilizes actions® which essentially provides the user tools to 

create goal-seeking servers, with means to monitor and kill it, 

through a client interface which can send the corresponding 

request to the server. 

Regarding the motion planning and manipulation in ROS, 

Movelt is the most widely used software [19]. It inte- 

grates motion planning, 3D perception, control, kinematic 

solvers, collision checking and scene information, allow- 

ing the fast generation of efficient and collision-free mo- 

tion plans from a sequence of waypoints [20]. Addition- 

ally, Movelt interfaces the robot controllers in order to 

send the trajectories to execute. These trajectories are sent 

in the form of JointTrajectory messages’, that con- 

tains a sequence of JointT' rajectoryPoints. Each of these 

JointTrajectoryPoints contains the joint values, speeds, 

accelerations and efforts of all the joints of a planning group 

(e.g. a robotic arm), as well as a time value, that is the time 

at which that point is reached since the beginning of the 

movement. 

III. CYBER-PHYSICAL CABLE ROUTING SYSTEM 

A. Robotic platform setup 

The test platform where the experiments are conducted is in 

an enclosed cell following the safety standards for an industrial 

robot. The robot utilized is the Yaskawa SDAIOF, which is a 

dual-arm industrial robot seven revolute joints in each arm 

and one in the torso. The robot is fitted with a Weiss WSG50 

gripper, which has precise control over the opening/ closing 

distances of the jaw and the force exerted on the product. 

The platform also has a platform where the cable (DLO) 

specimen is initially placed with pre-determined grasp target 

points for the robot, to perform the initial grasping. The test 

table where the placing and routing operations are performed 

is a modular setup, with specialized guides to help support 

7 http://wiki.ros.org/Messages 

3 http://wiki.ros.org/N odes 

4 http://wiki.ros.org/T ‘opics 

5 http://wiki.ros.org/Services 

Shttp://wiki.ros.org/actionlib 

7 http://docs.ros.org/en/noetic/api/trajectory_msgs/html/msg/JointTrajectory.html   

Fig. 1. Robotic platform setup, with the dual-arm industrial robot and the 

cable routing platform 

  

(a) Fingers CAD 

model 

(b) Semi-grasp fingers 

position 

Fig. 2. Gripper and specialized cable routing fingers. 

the cables as they are routed by the robot manipulator. The 

physical hardware setup is shown in Fig.1 

The gripper unit has a specialized design to align and center 

the midsection of the grasped cable. Additionally, the gripping 

system has three predetermined gripping jaw positions i.e., 

to perform fixed cable grasping, to slide along the length of 

grasped cable, and an open position to approach a cable to 

be grasped or to release an already grasped cable. This was 

defined based on the physical properties of the cable which 

includes its diameter, stiffness, and material. The gripper 

construction model and the semi-grasp position for sliding 

operation are illustrated in Fig.2. 

The cable holder platform (Fig.7(a)) was utilized to preset 

the initial orientation, direction, and shape of the cable, to 

establish favorable conditions to grasp and manipulate the 

cables by eliminating uncertainty to some extent. The cable 

routing platform (Fig.7(b)) contains generic guides, which 

serve as insert locations and a support path, along which the 

robot arms could lay down and route the cable. 

The sequence of actions being performed in this experiment 

is that the robot picks the cable from the cable holder platform, 

places one end of the cable into the first guide of the routing



platform, and then proceeds to route the cable through the 

remaining guides as per the requirements of the path. The 

following section of the paper elaborates on the approach 

for determining the relevant strategy for contextual cable 

manipulation and a description of the sequence of actions 

performed in the cable routing experiment. 

B. Reconfigurable ROS system 

The goal for the development of the cyber-physical system 

was to make it flexible and easily reconfigurable, requiring 

little to no manual programming. Additionally, the system 

aims to be hardware-agnostic, i.e. that it can be implemented 

with any dual-arm robotic system with enough reachability. 

Due to this, ROS was the selected framework to develop and 

integrate the logic of the CPS. The ROS system is composed 

by two modules (see Fig.3): 

1) Information Module: Composed by a set of ROS nodes 

that extract, process and distribute information about the 

performed process. This information is sent through ROS 

services to the trajectory generator module, providing it with 

the knowledge about the working environment, the manip- 

ulated objects and the cable path, that is used to generate 

the trajectories. The information is extracted from several 

input files that can be classified in three groups depending 

on what kind of information they provide. The first group 

comprises of files that contain information about the working 

environment, in particular about the cable routing and the 

cable holder platforms described in Section III-A. Each of 

these platforms is described by three files: A CAD file in 

x3d format, from which the relative pose of each element of 

the assembly with respect to its parent element is obtained; a 

xml file that describes the geometry of every different element 

present in the platform, including their dimensions and their 

keypoints (e.g. the center point of a guide) with respect its 

own origin frame; and a csv file that relates every element in 

the CAD file with its model in the xml file. The information of 

these files is processed and combined, obtaining the keypoints 

of every element referred to the origin of the platform. This 

information, as well as the dimensions of each of the elements, 

can be requested by means of ROS services. 

The second group correspond to those files providing in- 

formation about the manipulated objects. In this case, as the 

manipulated objects are individual cables, just one file is 

required, describing their dimensions and color. Finally, the 

last group is the one that provides information about the 

process. It is composed by a single file that contains the high- 

level action plan of the process, specifying the sequence of 

skills, the platform elements where to perform them and the 

manipulated objects (e.g. Route Cablel through Guidel and 

Guide2). There are three possible skills: Pick Cable, Insert 

Connector and Route Cable. As with the first group, the 

information of these last two groups can be also requested 

using ROS services. 

2) Trajectory Generator Module: ROS node that generates 

and executes the robotic arms trajectories for the high-level 

action plan of the process, based on the information about the 

  
Algorithm 1 Trajectory Generator Module 

1: procedure PICKCABLE(op_data) 

2 Move robot to initial PickCable configuration 
3 Calculate approach, grasping and retract keypoints 

4: Calculate approach/retract waypoints by interpolation 

5 

6 

  

Calculate waypoints for sliding close to connector 

Calculate waypoints for aligning the Z axis of the grippers 
with the Z axis of the routing platform 

7: Transform all the waypoints to the grippers’ frames 
8: Execute dual-arm movements through the waypoints 

9: procedure PLACECONNECTOR(op_data) 
10: Align robot torso with the routing platform’s X axis 

11: Calculate approach, insert and retract keypoints 
12: Calculate waypoints to align the cable with the guide 

13: Calculate approach/retract waypoints by interpolation 
14: Transform all the waypoints to the grippers’ frames 

15: Execute dual-arm movements through the waypoints 
16: Release and retract connector gripper 

17: procedure ROUTECABLE(op_data) 
18: Reorient the gripper to face the next guide 

19: Calculate waypoints for approaching the next guide 
20: Calculate waypoints sliding extra cable length 

21: Calculate waypoints for grasping the cable with the other 
gripper 

22: Calculate circular waypoints to align the cable with the guide 

23: Calculate circular waypoints to insert the cable 
24: Update pull_distance 

25: Transform all the waypoints to the grippers’ frames 
26: Execute dual-arm movements through the waypoints chang- 

ing the gripper position between pulling and sliding 

27: procedure MAIN 

28: ops_info <— Request the action plan of the process and 
info about all the involved elements to the Information Module 

through ROS services 
29: for cable_i + 1 to length of ops_info do 

30: call PickCable(ops_info|cable_i][0]) 
31: call PlaceConnector (ops_inf o|cable_i][1]) 

32: Calculate pull_distance 
33: for op_i < 3 to length of ops_in fo|cable_t] do 
34: call RouteCable(ops_in fo|[cable_i][op_t}) 

35: Release cables and retract arms 
  

working environment and the manipulated objects, provided by 

the information module. The structure of this node is presented 

in Algorithm 1. First of all, the node request all the required 

information about the process to the information module. This 

information includes the high level action plan, the keypoints 

and dimensions of the working environment elements involved 

in the process, and the properties of the cables and connectors 

to manipulate. This data is processed and stored in a dictionary, 

organizing it initially by object and then by operation. This 

knowledge about the process is then used to parametrize the 

different skills. 

Once the information is obtained, the node enters in a loop 

that executes the operations of every cable. For each operation, 

this information is used to calculate all the necessary keypoints 

and then, the waypoints of each arm are obtained by linear or 

circular interpolation between keypoints. The first operation of 

each cable is always picking it from the cable holder platform. 

Each extreme of the cable is grasped with one hand with a 

dual-arm movement. Then, the gripper that is farther to the
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Fig. 3. UML class diagram of the ROS system 

connector that will be inserted in the following operation has 

to slide along the cable, coming closer to the other gripper, 

achieving the grasp required for the future insertion. Due to 

the deformable nature of cables, depending on its shape, it 

can bend and get stuck in the fingers during this process. 

Therefore, to avoid this, the arm that is moving, moves down 

initially in order to slide the cable back against gravity so 

its shape is more predictable. These up/down movements are 

circular to keep the cable length constant and to not damage 

it. All these movements are defined with several waypoints 

that the fingers of the grippers have to go through. However, 

the node must convert these into waypoints for the wrists (last 

link of the robotic arms), so they can be sent to Movelt to 

calculate the trajectories. 

The second operation is always placing one of the cable 

connectors in a guide of the cable routing platform. For that the 

torso of the robot must align with the X axis of the platform, 

the grippers have to align the cable with the guide, insert it, 

and finally release and retract the hand that is closer to the 

connector. All this is done, as in the Pick Cable skill, by calcu- 

lating keypoints from the obtained operation information, and 

then the waypoints of each arm using different interpolation 

strategies. After placing the connector, the pull_distance is 

calculated, i.e. the distance that the cable must be pulled during 

the routing operations to adjust the connector to the first guide. 

This value is calculated considering the fingers thickness, the 

guides thickness and the offset values. 

Finally, once the connector is placed, the remaining oper- 

ations consist on routing the cable through different guides. 

As the cable is a deformable object, it must be in tension 

when being inserted into the guide, such that its shape can be 

approximately a straight line. As in this approach no sensory 

feedback is used, such as vision or torque, the arm movements 

to keep the cable tension are calculated mathematically. First 

of all, the gripper of the routing arm changes its orientation 

to point to the next guide and approaches to it sliding the 

cable. Then, once the gripper is at a certain offset distance to 

the guide (A in Fig.4(a)), it slides the additional cable length 

that will be required for inserting the cable. This distance 

(Reable) 18 the maximum distance that will be required during 

the circular movements to insert the cable, that can be at the 

top of the guide (Ri;;, before inserting, Fig.4(b)) or in front 

of the guide (Rj, <¢rt, after inserting, Fig.4(c)), depending on 

the guide dimensions. 

  

Riise = ve + Xoffset)? + (H + Zof fset)* 

Rinsert =L+2.- Xof fset 

Reable = max( Ri pe, Rinsert) 

The variables of the previous formulas are graphically 

explained in Fig. 4. Additionally, in order to avoid collisions 

when sliding the cable, the minimum angle for the sliding 

direction (see Fig 4(a)) is calculated according to the following 

formula: 

W oripper + W guide 

2A 

After sliding this extra cable length, the fingers will change 

to grasping position, and the other arm will move to grasp 

the cable in the previous guide. Then, the cable is pulled a 

small distance (function of the distance between grippers and 

the cable properties) to apply tension to the cable, and this 

distance between grippers is kept constant, being the radius of 

the lifting and inserting circular movements, thus keeping the 

tension of the cable all this time. 

All the explained skills, calculate waypoints for each arm in 

order to generate the dual-arm trajectories. However, the com- 

pute_cartesian_path() method of the MoveGroupCommander 

Movelt class just generates single arm trajectories. Hence, in 

order to generate dual-arm trajectories synchronizing arms and 

avoiding self-collisions, some functions have been developed 

(see Algorithm 2). 

The waypoints of each arm, calculated in each skill, are 

sent to the ExecuteDualTraj() function, where the potential 
self-collisions between arms are assessed and, in case of any, 

the trajectory is split and each part is calculated and executed 

separately. These are not real collisions, as the waypoints of 

both end effectors of the robot were calculated to avoid any 

kind of collisions (with itself or with the elements of the cell). 

However, this is necessary because the trajectory of each arm 

is calculated individually and then they are merged. Due to 

this, when calculating one arm, the other is considered to 

be static all the time and, even if it is supposed to move 

at the same time, its position is not updated for the self- 

collision checking of the Movelt trajectory planner. Therefore, 

the Movelt trajectory calculator could fail or retrieve a weird 

trajectory if the waypoints of one arm intersect with the initial 
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(d) Inserting circular movement (Reable) 

Fig. 4. Cable routing process. 

position of the other arm. In this approach, this issue is solved 

by splitting the trajectory, so it can be executed in different 

steps, updating the real arms positions before planning the 
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Fig. 5. UML activity diagram of the Trajectory Generator Module and its 

communication with the Information Module. The action boxes in white were 

developed in this paper and the ones in grey are existing functions of Movelt. 

remaining part of the trajectory. 

For merging the plans of both arms, they must be composed 

by the same number of JointT'rajectoryPoints, as many 

as the longest trajectory, and they must finish at the same 

time, the time of the slowest arm. To achieve this, intermediate 

points are added to the shorter trajectory by interpolation of 

their joint values, speeds and accelerations. Finally a new 

trajectory is generated including the joint values of both arms 

for each time step. In Fig.5 it can be seen how this novel 

Bimanual Trajectory Generator Module works, representing 

in grey the existing functions of Movelt and in white the 

additional developed functions. 

IV. EXPERIMENTAL EVALUATION 

The cable routing system was tested for three different con- 

figurations of guides, both in RVIZ (A ROS 3D visualization 

environment) and with the real robot. In the first scenario, the 

cable is routed through three guides following a straight line



  

Algorithm 2 Dual-arm trajectory generation 

1: procedure MERGEPLANS(traj_R, traj_L) 
: long_traj < Determine the trajectory with more 

JointTrajectoryPoints 

  

3: short_traj <— append intermediate points by interpolation 

to have the same length than long_traj. 
4: slow_traj + Determine the slower trajectory 

5: times < times of the slow_traj 
6: dual_traj <— Create a new trajectory including the joint 

values of both arms for each time step 
7: return dual_traj 

8: procedure DUALCARTESIANPATH(wp_R, wp_L) 

9: traj_R < compute_cartesian_path(wp_R) 
10: traj_L < compute_cartesian_path(wp_L) 
1: dual_traj < call MergePlans(traj_R, traj_L) 
12: execute(dual_traj) 

13: procedure EXECUTEDUALTRAJ(wp_R, wp_L) 
14: for 1 <— 1 to length of wp_R do 

15: if |wp_R[i], L_pose| < collision_threshold then 

16: j= ee i 

17: wp_R_1,wp_R_2 < split wp_R at index i 

18: wp_L_1,wp_L_2 < split wp_L at index j 
19: break 

20: for i + 1 to length of wp_L do 
21: if |wp_L{i], R_pose| < collision_threshold then 

22 j= aE 
23: wp_L_1,wp_L_2 < split wp_L at index 1 

24: wp_R_1,wp_R_2 < split wp_R at index j 

25: break 

26: call DualCartesianPath(wp_R_1, wp_L_1) 
27: call ExecuteDualTraj(wp_R_2, wp_L_2) 

28: procedure MAIN 

29: call ExecuteDualTraj(wp_R, wp_L) 
  

(Fig.6(a)); in the second, the cable is routed again through 

three guides but with a change of direction (Fig.6(b)); and in 

the third, four guides are used and the cable path has two 

changes of direction (Fig.6(c)). In the three experiments a 650 

mm long cable with a 6 mm diameter and a VGA connector 

in one of its ends was used, and it was picked from the cable 

holder platform, as can be seen in Fig.6(d). 

As Fig.6 shows, the trajectories were generated correctly 

for the three tested scenarios, and the dual-arm movements 

were executed properly both in RVIZ and with the real robot, 

routing the cable satisfactorily through the guides (Fig.7(b)). 

The coordination between arms was good, there were no 

entanglements when sliding the fingers along the cable, and the 

cable was not damaged during the manipulation. Additionally, 

it was proved that the information module works correctly, 

switching from one scenario to another just by changing its 

input files, allowing the fast and easy reconfiguration of the 

system. 

V. CONCLUSIONS AND FUTURE DIRECTIONS 

The manipulation of flexible materials is a challenging task 

in the robotics and automation field. In most cases, in order to 

deal with the uncertainties of these objects, the process ends 

up being too tailored for the specific robotic manipulator. The 

work done in this paper presents a solution for this issue, 

  

    

   
(b) 2% scenario, one change of 

direction 

(a) 18 scenario, straight cable 

  

(c) 3°@ scenario, two changes of direction (d) Pick cable 

Fig. 6. RVIZ visualization of the generated trajectories (right arm in green 

and left in red). 

  

(a) Robot picking the cable from 

the cable holder platform 

(b) Robot routing the cable along the 

guides of the cable routing platform 

Fig. 7. Real robot during the execution of the cable routing process. 

developing a CPS for routing a cable in a human-centric 

workplace using a dual-arm robot. The robot is equipped 

with two parallel grippers with specialized fingers, designed to 

either grasp or slide the cable, and the work cell is composed 

by two platforms, one for holding the cable initially in a known 

position, and another where the guides for routing the cable 

are mounted. Regarding the software of the system, it was 

developed in ROS and it is composed by two modules, one for 

extracting and providing information about the routing process 

and the other one in charge of generating and executing the 

robot trajectories. The system was tested for three different 

cable routing paths, following a straight line and with one 

and two changes of direction. The dual-arm trajectories were 

generated and executed correctly in the three experiments, and 

the cable was successfully routed in all of them. This shows 

that the strategy of keeping the cable in tension during the 

manipulation reduces the uncertainty to some extent, being 

able to work without sensor data. Additionally, the experiments 

probed the easy and fast reconfigurability of the system, 

modifying the process just by updating the information input 

files. 

After the successful results of this first implementation of



the system, the next goal is to extend it in order to route 

and assembly several wire harnesses. This process presents 

additional challenges, such as separating cable branches and 

routing multiple cables together. Therefore, the introduction 

of sensory information in the system will be considered. 
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