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Abstract

Fast and automated collection of forest data, such as species composition in-

formation, is required to support climate mitigation actions. Recently, there

have been significant advances in the use of terrestrial laser scanning (TLS)

instruments, which facilitate the capture of detailed forest structure. How-

ever, for tree species recognition the structural information from TLS has

mainly been used to complement spectral information. TLS-only classifica-

tion studies have been limited in size and diversity of plot forest types. In

this paper, we investigate the potential of TLS for tree species classifica-
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tion. We used quantitative structure models to determine 17 structural tree

features. These features were computed for 758 trees of five tree species,

including two understory species, of a 1.4 hectare mixed deciduous forest

plot. Three classification methods were compared: k-nearest neighbours,

multinomial logistic regression and support vector machine. We assessed the

potential underlying causes for structural differences with principal compo-

nent analysis. We obtained classification success rates of approximately 80%,

however, with producer accuracies for three of the five species ranging from

0 to 60%. Low producer accuracies were the result of a high intra- and low

inter-species variability. These effects were, respectively, caused by a high

size-dependency of the structural features and a convergence of structural

traits across species as a result of the individual tree position in the forest

canopy and shade tolerance. Nevertheless, the producer accuracies could be

improved through sensitivity vs. specificity trade-offs, with over 50% for

all species being obtainable. The high intra -and low inter-species variabil-

ity complicate the classification. Furthermore, the classification performance

and best classification method greatly depend on its targeted application. In

conclusion, this study proves the added value of TLS for tree species classi-

fication but also shows that TLS opens up potential for testing and further

development of ecological theory.

Keywords: Quantitative structure model, Structural tree features,

Terrestrial laser scanning, Tree species classification, Machine learning

classifiers
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1. Introduction

Forests play a significant role in the mitigation of climate change through

their ability to sequester CO2 (Bonan, 2008). Although forest ecosystems

are resilient, and many species and ecosystems have adapted historically

to changing conditions, future changes are likely to occur at rates that are

beyond the natural adaptive capacity of the majority of forest species or

ecosystems (Keenan, 2015). The development of methodologies for monitor-

ing and assessing forests impacted by hazardous natural processes is therefore

increasingly important, resulting in a demand for fast and automated collec-

tion of forest data (Deshayes et al., 2006).

Tree species information is important for accurate biomass estimates, bio-

diversity studies, gas exchange or forest floor research (Fender et al., 2013;

Vesterdal et al., 2008; Hobbie et al., 2006). Information on species composi-

tion is traditionally summarised in forest inventories. These inventories are

compiled for the effective management of forested ecosystems, as tree species

information significantly benefits economic, ecological and technical interests

(Gong et al., 1997).

Light detection and ranging (LiDAR) instruments collect 3D point clouds

by emitting laser pulses and recording the time it takes for the pulse to return.

From the range and the angle of the laser pulses the (x,y,z) coordinates are

determined. Analysis of this data can provide information on the organisa-
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tion and structure of trees. Most LiDAR-based species classification studies

use airborne laser scanning, but since the early 2000s, there has been a grow-

ing interest in terrestrial laser scanning (TLS) as a tool for individual tree

and forest plot measurements (Newnham et al., 2015). However, tree species

classification from TLS data has only featured in a few studies (Puttonen

et al., 2010). For instance, Othmani et al. (2013) focused on the 3D geomet-

ric texture of bark to classify 75 trees of five tree species (hornbeam, oak,

spruce, beech, pine) using the random forest algorithm. They were able to

obtain an average overall classification accuracy of 85% ± 5%. More recently,

Lin and Herold (2016) classified 40 trees (comprised of four species) based

on explicit tree structure parameters using the support vector machine al-

gorithm, obtaining a maximum total accuracy of 90.0% and a robust total

accuracy of 77.5%. A study with a larger sample of 1200 trees and a more

automatic solution was presented by Åkerblom et al. (2017). They applied

quantitative structure models (QSMs) to obtain structural features of the

tree and used these for tree species classification. QSMs are cylinder models

which are solely reconstructed using the cartesian (x,y,z) coordinates of the

3D point cloud data. QSMs can approximate the branching structure, geom-

etry, and volume of the trees and store geometric and topological properties

from which features can be derived (Raumonen et al., 2013; Calders et al.,

2015a).

The results of Åkerblom et al. (2017) show that by using single species
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forest plots for training and testing, it is possible to achieve an average clas-

sification accuracy above 93%. However, for their preliminary mixed-species

forest plot testing, accuracy was lower as neither the classification method

parameters or the feature combination were optimised.

We build on the work of Åkerblom et al. (2017) to further test and explore

the automated tree species recognition algorithm for mixed species stands in-

cluding tall as well as understory tree species. We aim to test a classification

based only on TLS data in a mixed forest discriminating the five main tree

species present: Acer pseudoplatanus, Fraxinus excelsior, Crataegus monog-

yna, Corylus avellana, Quercus robur. We use structural information, in the

form of structural features, from 760 trees to classify these tree species. We

do this by first computing and examining the structural tree features for clas-

sification. Secondly, we explore the results of a principal component analysis

(PCA) on these features to gain insight into the key features that can be

used to discriminate the five main tree species. Thirdly, we apply, optimise

and compare k-nearest neighbours (KNN)-, multinomial logistic regression

(MLR)- and support vector machine (SVM)-classifiers and their parameters

for tree species classification.

2. Study area and data collection

Wytham Woods (Oxford, UK) is a 404 hectare, ancient semi-natural

woodland and one of the most researched areas of woodland in the world
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(Fig. 1). The site has been owned and maintained by Oxford University

since 1942. It is a very managed wood where the older, large trees tend to

have undergone coppicing and there is some intervention in the understory

as well. The mean annual temperature in Wytham Woods is 9.9 ◦C, and the

mean annual rainfall is 744 mm (The ECN Data Centre, 2019; Butt et al.,

2009).

Figure 1: Location and map of Wytham Woods with plot indicated by ‘X’ (The ECN
Data Centre, 2019).

The study area is a 1.4 ha plot in Wytham Woods and is part of an

18-hectare long-term Smithsonian forest inventory plot run by Oxford Uni-

versity (Forest GEO Global Earth Observatory Network, 2019). The local

origin coordinate (0,0) was measured with differential GPS and located at

51◦46′30.2088′′ N and 1◦20′20.5692′′ W. The 1.4 ha plot has SW-coordinate

(0, 100) and NE-coordinate (140, 200).
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The forest consists of about 23 species but is dominated (approximately

96%) by five tree species. More specifically, Acer Pseudoplatanus (AC-

ERPS, Sycamore), Fraxinus excelsior (FRAXEX, European/Common ash)

and Crataegus monogyna (CRATMO, Common hawthorn) constitute 88% of

the trees. Another 8% is Corylus avellana (CORYAV, Common Hazel) and

Quercus robur (QUERRO, Pedunculate/English oak). Example point clouds

of the observed tree species can be found in Fig. 2. As some of the trees are

not assigned species or are dead, the dataset consists of 760 identified and

living trees of which 550, 84, 66, 35 and 25 trees are ACERPS, FRAXEX,

CORYAV, QUERRO and CRATMO trees respectively. Additional informa-

tion on these five tree species in the 1.4 hectare Wytham Woods plot can be

found in Table 1. For all species (excluding QUERRO) young and mature

trees are included in the dataset. The stem density in this 1.4 ha study area

is 563 stems per hectare. The distribution of the stems of the different species

and their DBH is represented in Fig. 3.

Code # Median DBH [cm] DBH range [cm] Median height [m] Height range [m]
Acer pseudoplatanus ACERPS 570 (20) 18.60 0.50 - 146.00 16.20 1.67 - 30.50
Fraxinus excelsior FRAXEX 85 (1) 18.40 3.93 - 118.00 17.40 2.15 - 28.60
Corylus avellana CORYAV 68 (2) 8.33 0.50 - 16.00 7.92 0.89 - 14.00
Crataegus monogyna CRATMO 28 (3) 9.83 4.09 - 24.50 8.22 1.48 - 11.30
Quercus robur QUERRO 37 (2) 67.90 36.60 - 110.00 19.90 10.00 - 24.40

Table 1: Overview of the five main tree species in the 1.4 hectare Wytham Woods plot. It
includes the number of individuals of each tree species in the dataset, where the amount
between brackets is the amount of dead standing trees of that species. Also the mean
DBH [cm] and DBH range [cm] and the mean height [m] and height range [m] are given
for every tree species.

TLS data were collected by Calders et al. (2018) in leaf-off conditions
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Figure 2: Point clouds of the five main tree species in Wytham Woods coloured by height.
From left to right: ACERPS, FRAXEX, CORYAV, CRATMO, QUERRO.

with a RIEGL VZ-400 terrestrial laser scanner (RIEGL Laser Measurement

Systems GmbH). The instrument has a wavelength of 1550 nm and a nominal

beam divergence of 0.35 mrad. The angular sampling for both zenith and

azimuth angle is 0.04◦ and the azimuth and zenith range are 0◦-360◦ and

0◦-130◦ respectively. The plot was scanned in a 20 x 20 m regular grid.

Individual trees were extracted with the semi-automatic approach Treeseg

(Burt et al., 2019). Full details on the tree segmentation can be found in

Calders et al. (2015b). The QSMs were reconstructed from the co-registered

TLS data with an approach building on the TreeQSM method by Raumonen

et al. (2013) and Calders et al. (2015b), which fits cylinders to the point cloud

data following the branch structure of each individual tree (Raumonen, 2019).

8



0 20 40 60 80 100 120 140
x [m]

100

120

140

160

180

200

220

y 
[m

]

ACERPS
FRAXEX

CORYAV
CRATMO

QUERRO

Figure 3: Stem distribution of all the trees in the 1.4 ha study area. The colours dark
blue, turquoise, yellow, purple and red represent the tree species ACERPS, FRAXEX,
CORYAV, CRATMO and QUERRO respectively. The size of the circles is relative to the
DBH of each tree.

3. Methods

3.1. Feature extraction

QSMs contain substantial geometric and topological data including branch-

ing structure. This is illustrated by the point cloud of a single tree and its

QSM in Fig. 4. We extracted 17 structural features from the QSMs of 760

trees. Fifteen structural features were based on those defined by Åkerblom
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et al. (2017) and two additional features were added.

(a) Point cloud (b) QSM

Figure 4: Illustration of the point cloud and the QSM of an ACERPS tree. The QSM
figure is coloured by branching order.

Because the dataset consists of a wide range of stem diameters for four

of the five species, we investigated normalisation of features as a function

of the DBH. Using DBH-normalised features effectively integrates the DBH-

distribution of the trees. Therefore, three out of nine features that show

size-dependency were altered. For the other six size dependent features no

improved linear normalisation was found. The list of extracted tree features

with their description and how their normalisation was adapted can be found

in Table 2.

3.2. Principal Component Analysis

To obtain an integrated view on the features, we performed a PCA which

uses an orthogonal transformation to convert the set of structural features
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Number Name Description Remarks

1 Stem branch angle
Median of the branching angles of the 1st order
branches in degrees. 0 is upwards and 180 down-
wards (parallel with the trunk). [°]

-

2 Stem branch cluster size
Average number of 1st order branches inside a 40
cm height interval for 1st order branches. Each
branch can only belong to one interval.

-

3 Stem branch radius
Mean ratio between the 10 largest 1st order
branches measured at the base and the stem ra-
dius at respective height.

Adaptation: mean ratio between the 10 largest
1st order branches measured at the base nor-
malised by the tree height.

4 Stem branch length
Average length of 1st order branches normalised
by DBH.

Adaptation: average length of 1st order branches
normalised by the tree height.

5 Stem branch distance

Average distance between 1st order branches com-
puted using a moving average with a window width
1 m. If window is empty average distance in win-
dow is set as half of window width. Normalised by
the DBH.

Adaptation: not normalised and no longer unit-
less [m].

6 Crown start height
Height of first stem branch in tree crown relative
to tree height.

-

7 Crown height
Vertical distance between the highest and lowest
crown cylinder relative to tree height.

-

8 Crown evenness
Crown cylinders divided into 8 angular bins. Ra-
tio between minimum heights of the highest and
lowest bin.

When one of the bins is empty, the value is set to
zero.

9 Crown diameter / height Ratio between crown diameter and crown height. -

10 DBH / height Ratio between DBH and total tree height. -

11 DBH / tree volume Ratio between DBH and total tree volume. [m−2] -

12 DBH / minimum tree radius
Ratio between DBH and the minimum of the ver-
tical bin radius estimates.

The minimum vertical bin diameter is used in-
stead of the radius based on the supplementary
video of Åkerblom et al. (2017).

13 Volume below 55 % of the tree Relative cylinder volume below 55% of tree height.
The volume is the branch volume (trunk not in-
cluded).

14 Cylinder length / tree volume
Ratio between total length of all cylinders and to-
tal tree volume. [m−2]

The cylinder length is the branch cylinder
length and the tree volume is the volume of the
branches (trunk not included).

15 Shedding ratio
The number of branches without children divided
by the number of all branches in the bottom third.

The branches are the stem branches instead of
all branches. Bottom third means the lower third
when the tree is divided in three parts based on
the tree height.

16 Branch angle ratio
Ratio of the medians of the branching angles of the
1st order branches and 2nd order branches.

New feature.

17 Relative volume ratio
Ratio of the percentage volume within 80 to 90% of
the tree height and the percentage volume within
0 to 10% of the tree height.

New feature.

Table 2: List of the structural tree features, initiated on the description of Åkerblom et al.
(2017). In the last column remarks concerning the description and the feature extraction
are added. Adaptation is the adapted form of the feature after feature evaluation to
remove size-dependency.
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into a set of linearly uncorrelated variables called principal components. All

the features were standardised onto the unit scale using the StandardScaler

from the scikit-learn library. The first two most significant (eigenvalue >1)

principal component axes were retained. The third component resulted in

a very similar division of the species as principal component 1 but with a

larger overlap between the species. Bivariate relationships between traits and

principal components were assessed with Spearman’s correlation coefficient r.

High correlation coefficients give insight into what the principal components

represent in terms of structural traits.

3.3. Classification

We performed the classification, using 17 structural features and three dif-

ferent classifiers, on 758 trees of the five main tree species in Wytham Woods.

Two trees were excluded from the dataset before classification as not all of

their structural features could be calculated. The QSMs of these trees had

no more than one branch and these trees were most likely dead. Feature

evaluation revealed that for about half of the features, young ACERPS and

FRAXEX trees showed different structural feature distributions compared to

the mature trees of both species. Because of this high size-dependency two

scenarios were applied. The first scenario considers five classes representing

the five main species. In order to improve classification in the second scenario

ACERPS and FRAXEX are split into mature and young trees, resulting in

7 classes. This separation was based on a DBH-threshold of 0.2 m which is
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the point where the height stops increasing linearly with the DBH for both

tree species (Butt et al., 2009).

Before the classification we standardised the data so that all features are

given a mean of zero and a standard deviation of one. Nested cross validation

(Fig. 5) was applied to determine the accuracy of each classifier using fully

independent data (Varma and Simon, 2006). We implemented this process

with five splits in the outer-validation loop and four splits in the inner-loop.

In each outer-loop we used the best parameters of the inner-loops to test the

accuracy. Eventually, we computed mean overall test accuracy scores, the

number of correctly classified trees divided by the total number of trees, over

the five outer-loops for every classifier.

The classification accuracy is not always the most appropriate metric to

evaluate the performance of a classifier, especially in the case of imbalanced

datasets or when you want to avoid false negatives at the cost of false positives

(Story and Congalton, 1986; Pozzolo et al., 2015). Therefore, we also com-

bined the prediction results to obtain aggregated confusion matrices which

give an overview of the error types we have made during classification (Story

and Congalton, 1986). From the confusion matrices the producer accuracies,

which are the number of correctly classified trees of a species divided by the

total number of trees of that species, were calculated.
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Figure 5: Illustration of nested cross-validation with five outer -and four innerloops. The
dataset is split up five times (outerloop) in 20% testing data and 80% training and tuning
data which is subsequently split up four times (innerloop) in 25% tuning data and 75%
training data. Optimal parameters are obtained for every innerloop and the best parameter
values are chosen for the outerloop. The mean test score is determined based on the test
scores for every outerloop.

In the case of imbalanced datasets the concepts of specificity and sensi-

tivity are also better suited than the classification accuracy (Newby et al.,

2013). The sensitivity is defined as the fraction of the smallest group that

is correctly identified while the specificity is the fraction of the largest group

that is correctly classified. Suppose, we have two species groups, ACERPS

(largest group) of which we have 548 trees and OTHER of which we have

210 trees. Of the OTHER class the classifier misses 130 predictions (62%)

while we still have a classification accuracy of 80% because 527 of the 548

ACERPS are correctly classified. So typically while the classifier achieves

a high overall classification accuracy and good specificity, the sensitivity is

14



poor. We computed these metrics based on the aggregated confusion matri-

ces assuming two classes ACERPS and OTHER (FRAXEX + CORYAV +

CRATMO + QUERRO).

The classification was performed for all feature combinations. The com-

bination with the best accuracy score was selected. For specific applications

the feature combination could be chosen based on a different performance

metric.

3.3.1. Classifiers

As the performance of a classifier often depends on the dataset, we ap-

plied three different classifiers (Duriqi et al., 2016). The first classification

method is the k-nearest neighbour (KNN) classifier where the object is as-

signed to the class most common among its k nearest neighbours (Liao and

Vemuri, 2002). A second popular classifier is the multinomial logistic re-

gression (MLR) classifier which assigns an observation to the class with the

highest probability (James et al., 2013). Thirdly, we implemented support

vector machines with the linear, polynomial and radial basis function kernels.

All classifiers were implemented in Python (Van Rossum and Drake Jr, 1995)

using the scikit-learn library (Pedregosa et al., 2011). Table 3 summarises

which parameters were optimised and the range over which they were opti-

mised.
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Classifier Parameters Parameter description Parameter range
KNN n-neighbours number of neighbours 1 to 20 in steps of 1

metric distance metric euclidian, manhattan or chebyshev
MLR C inverse of regularisation strength 0.001 to 100 in logarithmic steps

solver algorithm used in the optimisation problem lbfgs, sag or newton-cg
SVM C penalty parameter 0.001 to 100 in logarithmic steps

gamma kernel coefficient 0.001 to 100 in logarithmic steps

Table 3: Summary of parameter optimisation of the different classifiers. It in-
cludes the optimised parameters, their description and the range or option over which
they were optimised. The KNN-, MLR- and SVM-classifiers were implemented us-
ing sklearn.neighbors.KNeighborsClassifier, sklearn.linear model. LogisticRegression and
sklearn.svm.SVC from the scikit-learn library respectively.

In view of the unbalanced nature of the dataset, the parameter class weight,

optional for the MLR- and SVM-classifiers, was also studied. The default

option ‘none’ means that all classes have a weight equal to one while the

’balanced’ option automatically adjusts weights inversely proportional to the

class frequencies. We applied both modes for each classifier in each scenario.

4. Results

4.1. Feature evaluation

Univariate test showed that none of the individual features were signifi-

cantly different for all observed tree species (Fig. 6). Moreover, a substantial

amount of the structural features showed size-dependency despite the nor-

malisation procedure introduced.
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Figure 6: Boxplots and swarmplots of the different structural features for all the classes in
scenario 2. From left to right in every boxplot: young ACERPS, mature ACERPS, young
FRAXEX, mature FRAXEX, CORYAV, CRATMO, QUERRO. The vertical line inside
the box is the median. Box limits give the 1st and 3rd quartiles of the distribution and
the whiskers extend to 1.5 times the distance between the 1st and 3rd quartiles, or the
distribution extremes 18



For example, Fig. 7 shows that the stem branch angle (the median of the

branching angles of the first order branches) is higher and more variable for

small trees (DBH <0.2 m) but it becomes lower and consistent for mature

trees (DBH >0.2 m). However, Lin and Herold (2016) and Åkerblom et al.

(2017) explicitly mention normalising by the height or DBH to reduce the

impact of tree age but did not mention the quality of the normalisation

procedure nor any unexplained variance in the post-normalised data. This

high variability for small trees and more constant values for larger trees was

mainly observed for the tall tree species, ACERPS and FRAXEX, of which

small and large trees were included in the dataset. MacFarlane and Kane

(2017) also noticed that some architectural traits like stem slenderness and

relative crown length and width appeared to be more variable among trees

in light-limited functional groups i.e. young trees being overtopped by the

large dominant trees of the same species. Ultimately, this size-dependency

causes high intra-species variability, increasing classification error.
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Figure 7: Scatterplot of Feature 1, the stem branch angle [◦], versus the DBH [cm] of the
tree for the different tree species.

4.2. Principal Component Analysis

The first two important principal components explain 21.5% and 16.6% of

the total variance within the dataset. Small trees in the understory, which in-

clude shrubs and young trees, have a higher PCA1 score than larger dominant

trees (Fig. 8). There is also a high positive correlation of 0.80 between this

axis and feature 14, the total branch length divided by the total branch vol-

ume. This feature relates to the branch slenderness which has been proven to

be different for different canopy classes (understory, overtopped versus dom-

inant) and thus different tree height (MacFarlane and Kane, 2017). MacFar-

lane and Kane (2017) note that the branch slenderness is a complex function

of both species and canopy position and likely influences many aspects of tree
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function. However, PCA1 is also highly correlated to the crown start height

(the branch free stem height), which resulted in slightly different values for

QUERRO in comparison with ACERPS and FRAXEX, but is not obviously

related to the canopy class. In contrast, the second axis (PCA2) could be

related to shade-tolerance as it shows lower values for shade-tolerant species,

while higher PCA2 values are obtained for more shade-intolerant trees.

Figure 8: The scatterplot of the first two PCA-axes. Colour is according to species with
small trees in a different symbol than large trees of ACERPS and FRAXEX.
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4.3. Classification

For every classification method in both scenario 1 (5 classes) and scenario

2 (7 classes) a mean test accuracy and aggregated confusion matrix were ob-

tained. The mean test accuracies for scenario 1 (Table 4) did not vary much

over the different classification methods, with the lowest score of 80% for

the KNN-classifier and the highest score of 82% for the SVMrbf-classifier.

T-tests confirm there are only significant differences between the mean test

accuracy scores of the SVMrbf-classifier and those of the KNN-, SVMlin-

and SVMpoly-classifiers (α=0.01). The accuracies seem relatively high but

are only 8.0% to 10% higher than the null accuracy (72%) of assuming ev-

ery tree being the dominant species. Producer accuracies reveal a different

story (Fig. 9a). These show accuracies above 95% for ACERPS, with little

variation among the classifiers. The latter is most likely due to the large

amount of observations obtained for ACERPS as misclassifying 10 ACERPS

trees will not significantly affect the accuracy ratio. The QUERRO class is

also relatively well classified but more variable, with accuracies between 69%

and 91% depending on the classifier, as there were only 35 QUERRO obser-

vations. However, here we need to keep in mind that the DBH range of this

class was limited to large, mature trees, thus simplifying the classification.

The shrub species, CORYAV and CRATMO have similarly low accuracies be-

tween 40% and 60% except for the KNN-classifier which only classifies 20%

of CRATMO trees correctly. These producer accuracies vary little despite

the small amount of observations for these species. Very low producer accu-

22



racies below 17% are obtained for FRAXEX which is mostly misclassified as

ACERPS (Table 5). These producer accuries can be translated in high speci-

ficity values of more than 95% for all classifiers but low sensitivities ranging

from 35% to 47%. Similar results for scenario 2 show that splitting up the

classes into age groups does not generally improve the mean test accuracy

score (Table 4). There are no significant differences between the mean test

accuracy scores of each method when comparing scenario 1 and 2 (α=0.01).

Default class weight
Scenario 1 (5 classes) Scenario 2 (7 classes) Scenario 2 converted to Scenario 1

Mean test accuracy (%) Standard deviation (pp) Mean test accuracy (%) Standard deviation (pp) Mean test accuracy (%)
KNN 79.95 3.06 75.35 2.26 79.29
MLR 80.87 2.95 79.04 2.15 80.87
SVMlin 80.87 1.76 79.29 2.31 81.00
SVMrbf 82.29 1.26 79.55 2.06 81.40
SVMpoly 80.61 2.30 76.67 3.59 80.61

Balanced class weight
MLR 68.74 3.09 65.59 4.05 68.21
SVMlin 74.03 3.61 69.89 4.27 72.16
SVMrbf 78.50 1.05 75.60 2.78 77.44
SVMpoly 78.88 1.61 72.58 2.08 76.52

Table 4: Summarising table of the mean test accuracies (%) and their standard deviations
(percentage points) obtained for the different classification methods for both scenarios, in
case of default and balanced class weight. Also the mean test accuracies converted from
the confusion matrices of scenario 2 to scenario 1 are shown.

Applying a balanced class weight increases the difference between differ-

ent classifiers. T-tests confirm that only the mean test accuracy scores of

SVMrbf and SVMpoly are not significantly different (α=0.01) when using

balanced class weights. The results of the MLR-classifier and the SVMlin-

classifier were affected most, since the mean test accuracies were about 12

and 6.9 percent lower for these classifiers respectively (Table 4). However,

a balanced class weight also results in a shift in producer accuracies which

was again largest in the MLR- and SVMlin-classifiers (Fig. 9). There is a
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trade-off between the accuracy for ACERPS (specificity) and the accuracies

of the other species (sensitivity) (Fig. 9). The mean test accuracies might

have diminished but a balanced class weight translates into more balanced

producer accuracies compared to the default case. Moreover, when the bal-

anced class weight is combined with scenario 2, the producer accuracies are

even more balanced and all accuracies are above 56% and 58% for the MLR

and SVMlin classifiers respectively (Fig. 9b).

Scenario 1 + Case default
actual\predicted ACERPS CORYAV CRATMO FRAXEX QUERRO TOTAL
ACERPS 540 6 1 0 1 548
CORYAV 33 27 6 0 0 66
CRATMO 9 2 14 0 0 25
FRAXEX 77 5 1 0 1 84
QUERRO 3 0 0 0 32 35

613 758

Scenario 2 + Case balanced
actual\predicted ACERPS IMM ACERPS MAT CORYAV CRATMO FRAXEX IMM FRAXEX MAT QUERRO TOTAL
ACERPS IMM 194 7 24 8 47 1 0 281
ACERPS MAT 8 207 0 2 0 49 1 267
CORYAV 12 0 38 4 12 0 0 66
CRATMO 3 0 4 15 3 0 0 25
FRAXEX IMM 12 2 7 4 21 1 0 47
FRAXEX MAT 1 8 0 0 1 26 1 37
QUERRO 0 4 0 0 0 2 29 35

547 758

Table 5: Aggregated confusion matrix of the SVMlin-classifier in scenario 1 in case of
default class weight and in scenario 2 in the case of balanced class weight. The rows are
the actual species in the dataset while the columns are the predicted species. The total
correctly classified number of trees is given in the bottom row on the left while the total
number of trees is given in the bottom row on the right.

5. Discussion

Principal component analysis revealed that the largest effect on tree struc-

ture is related to canopy class and possibly shade-tolerance and not to species

as such. However, we need to keep in mind the limited number of species
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(a) Scenario 1 + Case default

(b) Scenario 2 + Case balanced

Figure 9: Producer accuracies for Scenario 1 (five classes) in the case of default class
weight and for Scenario 2 (seven classes) in the case of balanced class weight. The species
are represented in the order of increasing number of trees in the dataset

in the dataset. Nevertheless, this result makes sense as trees have to adapt

to local ecological conditions. MacFarlane and Kane (2017) state that this

adaptation leads to a convergence of tree traits across species. Ultimately

the convergence results in lower inter-species variation, which complicates

classification. These results support the findings of several studies that show

that species that differ in their maximum height and light demand are found

to differ in architectural traits (Poorter et al., 2006). Tall species grow effi-
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ciently in height to get access to sunlight and they do so by making a slender

stem and a more narrow crown (Thomas, 1996; Kohyama et al., 2003; Poorter

et al., 2003; Aiba and Nakashizuka, 2009). In contrast, small species enhance

current light interception by making wide and long crowns (Kohyama et al.,

2003; Poorter et al., 2003). Young trees of tall species, however, show more

variability in their structural traits resembling traits of small species.

5.1. Targeted application

Crucial for the evaluation of a classification method is defining an ulti-

mate objective. However, a specific objective or targeted application is often

missing in classification studies (Fassnacht et al., 2016). In fact, the definition

of optimum classification accuracy varies with the viewpoint of the user of

the application. We might want to monitor the abundance of Acer pseudopla-

tanus (ACERPS) because this is a highly successful invader of semi-natural

woodland in Wytham Woods (Butt et al., 2009). In this case a classification

method resulting in a high producer accuracy for ACERPS (high specificity),

such as a bimodal classifier, equals a successful result. All of the classification

methods with a default class weight satisfy this demand. However, it should

be kept in mind that the high specificity is combined with a low sensitivity re-

sulting in an overestimation of ACERPS. On the other hand, we might want

to monitor Fraxinus excelsior, which is a keystone tree species throughout

temperate Europe but whose future existence is threatened by an emerging

invasive fungal disease (Pautasso et al., 2013). Monitoring the abundance of
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FRAXEX requires high producer accuracies, and thus a high sensitivity, for

this species. The presented features and classification methods do not fulfil

this requirement as the maximum FRAXEX-accuracy was only 58% for the

SVMlin-classifier for scenario 2 in the balanced case.

Most landscape level classification studies using airborne hyperspectral

data, multi-spectral images or airborne LiDAR data cannot take into account

understory tree species or very young trees. For example, Lee et al. (2016)

mention focusing on mapping the six most dominant canopy tree species be-

cause subcanopy species and shrubs are hard to detect by airborne remote

sensing methods. Therefore, the influence of these trees on classification has

not been thoroughly investigated and the number of tree species classified

has been limited. In contrast to the airborne remote sensing methods, TLS

can include subcanopy trees and shrub species because it is a ground surface

observation, although this viewpoint also results in a suboptimal charac-

terisation of the tree crown. Nevertheless, surface measurement opens up

new avenues for ecological studies and in turn a deeper understanding of

the structure of trees enables more efficient classification. In fact, Fassnacht

et al. (2016) recommend that future research efforts should focus more on

this causal understanding of why tree species classification approaches work

under certain conditions and why they do not in other cases. Our dataset

and study are unique as it includes the classification of understory species

and tries to obtain an understanding of the drivers of the tree structure.
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5.2. Data fusion

There was a loss of knowledge at several steps as, firstly, the QSMs are

a summary of the point cloud data. The structural features, which are fed

to the classification and PCA, are in their turn a summary of the infor-

mation contained in the QSM. Nevertheless, the information contained in

the 17 structural features is sufficient to obtain moderate classification re-

sults depending on the targeted application. But, these structural features

are clearly not sufficient to separate Acer pseudoplatanus and Fraxinus ex-

celsior, which are structurally very similar trees. This could be the result

of the choice or formulation of these features, which may not be the best

ones for describing all the information, causing the overlap between differ-

ent species. The normalisation, which was mainly done by dividing by the

DBH or height, could also be in some cases better and more natural when

dividing by another variable, such as the DBH or height squared. Therefore,

other structural measures should be studied in order to further explore the

classification from TLS data alone. However, the convergence in tree and

branch architecture along a gradient of crowding and shading for individuals

of broad-leaved species as observed by MacFarlane and Kane (2017) makes

species classification, based on solely structural features, difficult.

To achieve good classification results for every application, the combina-

tion of these structural features with other data sources should be considered.

Hyperspectral data has, for example, shown potential for tree species clas-
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sification and shown to be complementary to LiDAR data (Dalponte et al.,

2008; Jones et al., 2010; Alonzo et al., 2014). Fusion of airborne and ground-

based data is, however, still a technical challenge and has not been fully

investigated for TLS. Although our classification method is fully automatic,

collecting TLS data to build the QSMs is time consuming and has only been

done for limited areas of forest. Future development of mobile laser scan-

ning systems can potentially speed up the data collection process. Moreover,

Fassnacht et al. (2016) showed that there are few examples of tree species

classification over a large geographical extent. They also state that bridging

the gap between current approaches and tree species inventories over these

extents still remains one of the biggest challenges of this research field. Under

the explicit assumption that field plots represent their surrounding environ-

ment, field inventory plots have been used consistently to extrapolate the

understanding of the forest structure at plot level to landscape-to-regional

scales. The use of high-resolution remote sensing is a useful additional data

source for extrapolating field plot forest dynamics to larger scales. Fusion of

unmanned aerial vehicle (UAV) and terrestrial LiDAR data can potentially

be used for the 3D mapping of forest structure at plot to landscape levels,

which will be key for the reduction of uncertainties in forest structure and

carbon estimates (Brede et al., 2019).

Only a few classification studies, such as Korpela et al. (2014), system-

atically describe and examine the traits that drive the observed variance in
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the remote sensing signal and thereby enable or hamper species classification

(Fassnacht et al., 2016). Our main focus was on the variance introduced by

the tree-size. This size effect has not been thoroughly investigated in classifi-

cation before, as only canopy trees were considered previously due to sensor

limitations. However, size clearly affects the structural features that were

used to classify the tree species. But, the size of the tree is not the only

factor which influences the structure of trees. In the future other influencing

factors, such as the presence of neighbouring trees, competition, wind, soil

conditions, snow etc. have to be taken into account (Holbrook and Putz,

1989; Mäkelä and Vanninen, 1998; MacFarlane and Kane, 2017).

5.3. Limitations and prospects

This study considered every tree of the five main tree species, including

all sizes and shrub species, of a 1.4 ha plot in a mixed deciduous forest which

has been managed in a specific way. Therefore, the results might not be

applicable to more or less intensely managed woodlands even of the same

species composition. In this study the computed features were not specif-

ically validated. For the most basic ones, such as the DBH and height of

the tree, there have been many studies validating automated TLS deriva-

tion (Calders et al., 2014, 2015b). Other features should still be validated,

especially the features that concern the top part of the tree, which are well

known to be more occluded in TLS measurements. However, for the purpose
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of species classification the key concern is that computed values can separate

the species and not that the values are correct in absolute terms. Neverthe-

less, the classification of species that can only be separated by the top of

their crown need accurate crown characterisation. In this respect, we should

try to find crown features that are robust and less sensitive to poor TLS data

quality. The combination of drone LiDAR could help here if the TLS and

drone point clouds could be successfully combined.

More species from different forest types should be considered for future

studies. Large tropical trees are particularly challenging to reconstruct from

TLS data due to the complexity of trunk shapes (e.g. buttresses) and to

higher occlusion levels in tree crowns (Takoudjou et al., 2018). The classifi-

cation of species in an evergreen forest could also prove difficult due to the

presence of leaves which decreases the quality of the QSMs. In addition, as

the structure can be influenced by several factors, such as the nutrient con-

tent of the soil and climatic factors, future work should test the methodology

in different sites and plots to gain a better view on its applicability.

6. Conclusion

We examined the accuracy of tree species classification, in a mixed de-

ciduous forest plot including understory species, based on structural features

extracted from TLS-derived QSMs. The analysis revealed two factors com-

plicating classification. On the one hand, size-dependency increases intra-
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species variability while on the other hand the convergence of structural tree

traits across species of the same canopy class and shade tolerance group

decreases inter-species variability. Mean test accuracies around 80% were

achieved while producer accuracies ranged from 0 to 60% for three of the five

species. A trade-off between sensitivity and specificity, was made to improve

these producer accuracies obtaining more than 57% for all species. However,

determining the classification performance and best classification method

greatly depends on the application. These results bring us one step closer

to the integration of automated species identification from TLS into forest

inventories and thereby contributing to the effective management of forested

ecosystems. The additional information on the specific form of a tree, pre-

sented by the structural features, also gives more insight into the ecological

interactions between trees and their environment. In this way TLS data

opens up potential for testing and further development of ecological theory.
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